
Silvia Bonfanti
Angelo Gargantini
Paolo Salvaneschi (Eds.)

LN
CS

 1
41

31

35th IFIP WG 6.1 International Conference, ICTSS 2023
Bergamo, Italy, September 18–20, 2023
Proceedings

Testing Software
and Systems

Lecture Notes in Computer Science 14131
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Silvia Bonfanti · Angelo Gargantini ·
Paolo Salvaneschi
Editors

Testing Software
and Systems
35th IFIP WG 6.1 International Conference, ICTSS 2023
Bergamo, Italy, September 18–20, 2023
Proceedings

Editors
Silvia Bonfanti
University of Bergamo
Bergamo, Italy

Paolo Salvaneschi
Salvaneschi & Partners
Bergamo, Italy

Angelo Gargantini
University of Bergamo
Bergamo, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-43239-2 ISBN 978-3-031-43240-8 (eBook)
https://doi.org/10.1007/978-3-031-43240-8

© IFIP International Federation for Information Processing 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-9679-4551
https://orcid.org/0000-0002-4035-0131
https://doi.org/10.1007/978-3-031-43240-8

Preface

It is our great pleasure to welcome you to the proceedings of the 35th IFIPWG 6.1 Inter-
national Conference on Testing Software and Systems, ICTSS 2023, held in Bergamo,
Italy, from September 18th to September 20th, 2023.

ICTSS is a series of international conferences addressing conceptual, theoretical,
and practical problems of testing software systems, including communication protocols,
services, distributed platforms, middleware, embedded and cyber-physical systems, and
security infrastructures. The conference is dedicated to researchers, developers, testers,
and users from industry to present and discuss the most recent innovations, experiences,
and open challenges related to testing software and systems and measuring software
quality. In this edition, we received 63 papers, of which 7 were desk rejected. In the
review phase, each submission was single-blind reviewed by at least 3 reviewers of
the program committee, which was followed by a discussion phase. At the end of the
discussion, we accepted 20 papers divided into the following categories: 13 regular
papers, 6 short papers, and 1 journal-first paper. We would like to thank all program
committee members for their efforts in both reviewing and discussing the submissions.
The process of reviewing and selecting the papers was significantly simplified using
EquinOCS. In these conference proceedings, the papers are divided into the following
topical subheadings: Test generation, Test automation and design, Model-based testing,
and AI and smart contracts.

Wewere very glad to haveLeonardoMariani as keynote of ICTSS2023.Hepresented
a talk on Failure Analysis in CPS Simulink Models. We thank him for agreeing to give
an invited presentation at IFIP-ICTSS 2023.

Moreover, in this edition, we actively involved participants from industry, who
presented in a dedicated session their experience in software testing.

We want to acknowledge IFIP (International Federation for Information Processing)
for its sponsorship of ICTSS 2023 as well as Springer for having published this volume.

Finally, we are very grateful to the University of Bergamo for contributing to the
event by making available the conference room and funds to cover some expenses.

On behalf of the IFIP-ICTSS organizers, we hope that you find the proceedings
useful, interesting, and challenging.

September 2023 Silvia Bonfanti
Angelo Gargantini
Paolo Salvaneschi

Organization

Program Committee Chairs

Bonfanti, Silvia University of Bergamo, Italy
Gargantini, Angelo University of Bergamo, Italy
Salvaneschi, Paolo Salvaneschi & Partners, Italy

Steering Committee

Casola, Valentina Università di Napoli Federico II, Italy
Cavalli, Ana Télécom SudParis, France
Clark, David University College London, UK
De Benedictis, Alessandra Università di Napoli Federico II, Italy
Gaston, Christophe CEA-LIST, France
Hierons, Robert University of Sheffield, UK
Kosmatov, Nikolai CEA-LIST, France
Le Gall, Pascale CentraleSupélec, France
Menéndez, Héctor Middlesex University London, UK
Merayo, Mercedes Universidad Complutense de Madrid, Spain
Rak, Massimiliano Università degli studi della Campania, Italy

Program Committee

Aichernig, Bernhard K. Graz University of Technology, Austria
Amrani, Moussa University of Namur, Belgium
Arcaini, Paolo National Institute of Informatics, Japan
Barkaoui, Kamel Conservatoire National des Arts et Métiers, Paris
Bertolino, Antonia Italian National Research Council, Italy
Camilli, Matteo Politecnico di Milano, Italy
Campos, José University of Porto, Portugal
Cavalli, Ana Télécom SudParis, France
El-Fakih, Khaled American University of Sharjah, UAE
Gaston, Christophe CEA-LIST, France
Gomes, Francisco University of Gothenburg, Sweden
Hierons, Robert University of Sheffield, UK
Higashino, Teruo Osaka University, Japan
Khendek, Ferhat Concordia University, Canada
Kushik, Natalia SAMOVAR, Télécom SudParis, Institut

Polytechnique de Paris, France

viii Organization

Le Gall, Pascale CentraleSupélec, France
Lefticaru, Raluca University of Bradford, UK
Lei, Yu University of Texas at Arlington, USA
Lopez, Jorge Airbus, France
Mallouli, Wissam Montimage, France
Medina-Bulo, Inmaculada University of Cádiz, Spain
Menéndez, Héctor Middlesex University London, UK
Merayo, Mercedes Universidad Complutense de Madrid, Spain
Montes de Oca, Edgardo Montimage, France
Mousavi, Mohammad Reza King’s College London, UK
Núñez, Manuel Universidad Complutense de Madrid, Spain
Pecchia, Antonio University of Sannio, Italy
Peleska, Jan University of Bremen, Germany
Petke, Justyna University College London, UK
Pietrantuono, Roberto Università di Napoli Federico II, Italy
Polo, Macario University of Castilla-La Mancha, Spain
Rak, Massimiliano Università degli studi della Campania, Italy
Tramontana, Porfirio Università di Napoli Federico II, Italy
Trubiani, Catia Gran Sasso Science Institute, Italy
Türker, Uraz Cengiz University of Leicester, UK
Villano, Umberto University of Sannio, Italy
Wotawa, Franz Graz University of Technology, Austria
Yenigün, Hüsnü Sabancı University, Türkiye
Yevtushenko, Nina Ivannikov Institute for System Programming of

the RAS, Russia
Zaidi, Fatiha Université Paris Saclay, France

Additional Reviewers

Nguyen, Huu Nghia Montimage, France
Barboni, Morena University of Camerino, Italy
Khadka, Krishna University of Texas at Arlington, USA
Lallali, Mounir Universite de Bretagne Occidentale, France
Mahe, Erwan CentraleSupélec, France
Ouffoué, Georges APL Data Center, France
Petersen, Erick Télécom SudParis, France
Sachtleben, Robert University of Bremen, Germany
Shree, Sunny University of Texas at Arlington, USA
Sikder, Fadul University of Texas at Arlington, USA
Vinarskii, Evgenii Lomonosov Moscow State University, Russia

Failure Analysis in CPS Simulink Models (Keynotes)

Leonardo Mariani

University of Milano Bicocca, 20126 Milan, Italy
leonardo.mariani@unimib.it

Abstract. Failures observed in Simulink models are particularly hard to
debug and explain, since any computation normally involves every, or
most of, the elements in a model, and localization strategies based on the
detection of the elements (only) activated by failed tests cannot work in
this context.

To address this challenge, approaches that explore the behavioural
space of Simulink models to discover the internal behaviors that may
characterize failing tests have been proposed. In particular, we recently
worked on the generation and comparison of close passing and failing
executions, to isolate the internal behaviors likely responsible for the
failures. We investigated this approach both using models inferred from
passing executions, which are then compared to failing executions [1–3],
and by the straight comparison of pairs of passing and failing executions
[4].

Experimenting these approaches require a large number of faults,
which are seldom available in practice. In these cases, mutation testing is
particularly helpful to run large experiments with synthetic faults. Unfor-
tunately, the regular notion of mutant killing (i.e., the condition to reveal
a fault) that requires generating a test that produces different outputs for
the original and mutated version of a model, is not particularly useful in
the context of CPS Simulink models. In fact, faults are normally trivial
to activate and propagate to the output, thus being trivial to kill. Yet, a
mutant-killing test might not be particularly useful, especially when a
model must be validated against specific properties. In fact, the output
difference generated by a mutant-killing test might not be enough to vio-
late the available property, resulting in a test that would not expose the
problem in a targetmodel, evenwhen it exercises the fault. To address this
problem, we investigated the notion of property-based mutation testing,
which requires the generation of tests that exercise faults, while magnify-
ing their impact on the model up to causing the violation of the available
properties [5, 6].

The talk will discuss recent advances obtained in failure analysis and
fault injection in CPS Simulink models.

https://orcid.org/0000-0001-9527-7042

x L. Mariani

References

1. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: Automatic failure
explanation in CPS models. In: Ölveczky, P., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 69–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1_4

2. Bartocci, E., et al.: CPSDebug: automatic failure explanation in CPS models. Int. J.
Softw. Tools Technol. Transfer 23, 783–796 (2021). https://doi.org/10.1007/s10009-
020-00599-4

3. Bartocci, E., et al.: CPSDebug: a tool for explanation of failures in cyber-physical
systems. In: Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Tool Demo (2020)

4. Bartocci, E., Mariani, L., Nickovic, D., Yadav, D.: Search-based testing for accurate
fault localization in CPS. In: 33rd International Symposium on Software Reliability
Engineering (ISSRE) (2022)

5. Bartocci, E., Mariani, L., Nickovic, D., Yadav, D.: Property-based mutation testing.
In: IEEE Conference on Software Testing, Verification and Validation (ICST) (2023)

6. Bartocci, E., Mariani, L., Ničković, D., Yadav, D.: FIM: fault injection and mutation
for simulink. In: Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Tool Demo
Paper (2022)

https://doi.org/10.1007/978-3-030-30446-1_4
https://doi.org/10.1007/s10009-020-00599-4

Contents

Test Case Generation

A Rapid Review on Fuzz Security Testing for Software Protocol
Implementations . 3

Alessandro Marchetto

Enhancing Synthetic Test Data Generation with Language Models Using
a More Expressive Domain-Specific Language . 21

Chao Tan, Razieh Behjati, and Erik Arisholm

On the Evaluation of Photometric Stereo Applications Testing Using
Image Modifications . 40

Franz Wotawa, Ledio Jehaj, and Nicole Brosch

Seeding Contradiction: A Fast Method for Generating Full-Coverage Test
Suites . 52

Li Huang, Bertrand Meyer, and Manuel Oriol

Test Automation and Design

Automated Testing of Systems of Systems . 73
Özge Akat and Hasan Sözer

Empirical Verification of TQED - A New Test Design Heuristic Technique 80
Adam Roman, Michał Mnich, and Jarosław Hryszko

How Do Different Types of Testing Goals Affect Test Case Design? 97
Dia Istanbuly, Max Zimmer, and Gregory Gay

Multi-device, Robust, and Integrated Android GUI Testing: A Conceptual
Framework . 115

Riccardo Coppola, Luca Ardito, and Marco Torchiano

RQCODE: Security Requirements Formalization with Testing 126
Ildar Nigmatullin, Andrey Sadovykh, Sophie Ebersold, and Nan Messe

xii Contents

Understanding Problem Solving in Software Testing: An Exploration
of Tester Routines and Behavior . 143

Eduard Paul Enoiu, Gregory Gay, Jameel Esber, and Robert Feldt

Who Is Afraid of Test Smells? Assessing Technical Debt from Developer
Actions . 160

Zhongyan Chen, Suzanne M. Embury, and Markel Vigo

Model Based Testing

A Systematic Literature Review on Prioritizing Software Test Cases Using
Markov Chains . 179

G. Barbosa, É. Souza, L. Rebelo, M. Silva, J. Balera, and N. Vijaykumar

Complete Property-Oriented Module Testing . 183
Felix Brüning, Mario Gleirscher, Wen-ling Huang, Niklas Krafczyk,
Jan Peleska, and Robert Sachtleben

Compositionality in Model-Based Testing . 202
Gijs van Cuyck, Lars van Arragon, and Jan Tretmans

Prioritizing Test Cases with Markov Chains: A Preliminary Investigation 219
Luciana Rebelo, Érica Souza, Gian Berkenbrock, Gerson Barbosa,
Marlon Silva, André Endo, Nandamudi Vijaykumar, and Catia Trubiani

Probabilistic Approach for Minimizing Checking Sequences
for Non-deterministic FSMs . 237

Natalia Kushik, Nina Yevtushenko, and Jorge López

AI and Smart Contracts Testing

Applying Pairwise Combinatorial Testing to Large Language Model Testing . . . 247
Bernhard Garn, Ludwig Kampel, Manuel Leithner, Berina Celic,
Ceren Çulha, Irene Hiess, Klaus Kieseberg, Marlene Koelbing,
Dominik-Philip Schreiber, Michael Wagner, Christoph Wech,
Jovan Zivanovic, and Dimitris E. Simos

CATANA: Replay Testing for the Ethereum Blockchain . 257
Morena Barboni, Guglielmo De Angelis, Andrea Morichetta,
and Andrea Polini

Contents xiii

GResilience: Trading Off Between the Greenness and the Resilience
of Collaborative AI Systems . 266

Diaeddin Rimawi, Antonio Liotta, Marco Todescato, and Barbara Russo

Testing Quality of Training in QoE-Aware SFC Orchestration Based
on DRL Approach . 274

Mohamed Escheikh, Wiem Taktak, and Kamel Barkaoui

Author Index . 289

Test Case Generation

A Rapid Review on Fuzz Security Testing
for Software Protocol Implementations

Alessandro Marchetto(B)

University of Trento, Trento, Italy

alessandro.marchetto@unitn.it

Abstract. Nowadays, devices and systems are always connected for pro-
viding everyday services. Hence, there is a growing interest concerning
the adoption of secure software implementations of communication pro-
tocols that allow heterogeneous systems to exchange information and
data. In the last decade, several approaches and techniques for applying
fuzz security testing to such implementations have been proposed. Fuzz
security testing is a promising approach to discover software vulnerabil-
ities. It aims at exercising the implementation under test by means of
unexpected and potentially invalid inputs and data, aiming at triggering
misbehaviors, exceptions, and system crashes.

This paper presents a Rapid Review (RR) conducted to study fuzz
security testing for software implementations of communication proto-
cols. The following evidences emerged from our RR: (i) Industrial Con-
trol System and Internet of Thing protocols are among the most studied
ones; (ii) black-box fuzz security testing is frequently investigated and,
often, the proposed approaches require protocol or data specifications as
input; (iii) most of the detected vulnerabilities are related to memory
management and, less frequently, to input and data management and
validation, and (iv) only few tools are publicly available.

Keywords: Fuzzing Testing · Software Vulnerability · Rapid Review

1 Introduction

Modern devices and systems are widely and continuously connected for providing
everyday services. For instance, in the last years, embedded systems and Internet
of Things (IoT) are more and more connected and used in several domains, e.g.,
automotive, aerospace, telecommunications, and healthcare. The global market
of such systems is expected to still grow [6], thanks to technologies such as vir-
tualization, artificial intelligence, automation, high-performance hardware, and
5G low-latency communication.

Cyber-attacks that exploit weaknesses and vulnerabilities of such connected
systems are also growing [7] and can cause dramatic cyber-physical damages.
Several approaches and techniques for fuzz security testing (also referred as fuzz
testing or fuzzing) have been proposed in the literature for discovering such
system and software vulnerabilities. Fuzz testing exercises the target system

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 3–20, 2023.
https://doi.org/10.1007/978-3-031-43240-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_1&domain=pdf
http://orcid.org/0000-0002-6833-896X
https://doi.org/10.1007/978-3-031-43240-8_1

4 A. Marchetto

under test by means of a large set of unexpected and potentially invalid inputs
and data, aiming at triggering system’s failures (e.g., misbehaviors, exceptions,
and crashes). A system failure could reasonably be due to the presence of an
exploitable vulnerability in the target system [9]. Different types of fuzz testing
exist depending on the type of the target system, e.g., application fuzzing, file
format fuzzing and protocol fuzzing.

This paper presents a Rapid Review (RR) conducted to study the literature
of the last decade concerning fuzz security testing for software implementations
of communication protocols (software implementing communication protocols).
A protocol enables the communication between entities by defining rules, syn-
tax, semantics, synchronization, and possible errors of the communication. In
this paper, we aim at investigating: (i) the type of protocols tested with fuzz
testing; (ii) the type of fuzz testing approaches and techniques investigated in
the literature; (iii) the existing tools that can support protocol fuzz testing; and
(iv) the types of software vulnerabilities typically discovered by fuzz testing.

Rapid Reviews (RRs) [4] are a recent type of review approach proposed
for conducting evidence-based studies [10]. These studies aim at identifying the
current best evidence from the literature in a specific domain, thus improving
the decision making process in that domain. Differently from a conventional Sys-
tematic Literature Review (SLR), a RR takes into account constraints related to
practical situations and cases, such as the need of delivering evidence promptly,
with low costs, the need of reporting evidence in a clear and simple way without
formal synthesis. RRs omit and simplify some steps of conventional SLRs, thus
in a sense, lowering the generalizability of results, while preserving a systematic
and rigorous approach. RRs are not intended to replace SLRs: SLRs provide
in-depth insights, while RRs are lightweight review studies to easily and quickly
transfer knowledge to practitioners, through evidences. Indeed, differently from
SLRs, RRs
i start from a practical need and problem of practitioners [1], e.g., the beginning

of a new engineering project, the need of increasing the practitioners confi-
dence on decisions or to let them quickly acquire new information, concepts
and pointers concerning a specific problem or technology.

ii focus on a single source of data and involve a single researcher [4], thus
reducing costs, time (e.g., weeks rather than months required by conventional
SLRs) and resources at the expenses of the number of paper analyzed. RRs
are not expected to be exhaustive on the analysis of the literature studies,
this is not their goal;

iii apply a rigorous, even if simplified process, with respect to SLRs. For instance,
RRs do not conduct a rigorous quality appraisal of the literature studies.
However, it is worthy highlight that RRs are not informal reviews.

iv aim at collecting evidences and, even they can represent a preliminary step
towards the identification of research challenges and open issues, however,
this is not their goal;

v report the results in a narrative and descriptive form by focusing on the
evidence emerged, according to the goal of communicating to practitioners
[4]. RRs do not analyze data and present results by using a formal synthesis.

A RR on Fuzz Security Testing for Software Protocol Implementations 5

RRs are conducted through a 4-step process [4]: (1) analysis of the literature
studies identified to familiarize with concepts related to problem and domain
of interest; (2) creation of an initial set of themes/criteria, by classifying the
literature studies according to their concepts; (3) searching for data that support
or refute the criteria in the studies; and (4) production of the final report by
focusing on emerged evidences.

We opted for a RR because it better fits our needs with respect to a SLR.
As often happens for RRs, our RR has been triggered by the beginning of a new
project demanding for a fast screening of the literature to deliver evidences and
guidelines to the involved practitioners. To the best of our knowledge, only few
SLRs have investigated, from a research-oriented perspective, fuzz testing for
communication protocols and mainly by focusing on specific technologies (e.g.,
IoT) and application domains (e.g., Industrial Control Systems).

2 Related Works

Fuzz Security Testing. Fuzz testing exercises the target system under test
by a large set of inputs with the aim of triggering system’s failures. The typical
fuzz testing process [16] includes: (1) definition of input tests (named “seeds”) to
exercise the target system; (2) generation of fuzzing test data for the seeds; (3)
execution of the tests; (4) monitor of the target system and analysis of excep-
tions and crashes to detect exploits. There are two main traditional approaches
to fuzzing: mutation-based and generation-based fuzzing. Tools such as Amer-
ican Fuzzing Loop (AFL1) and LibFuzzer2 implement two gray-box fuzzing
approaches based on mutation. They start from some initial seeds (typically, real
data recorded during user sessions or a preliminary test session) then mutated
for producing inputs’ variants by flipping, replacing, and adding bits or bytes.
They also instrument the code of the target system and use heuristics to guide
both generation and mutation of test inputs. Several extensions of such tools
exist, e.g., AFLFast [2] uses Markov Chain Models to increase the code coverage
while producing tests. Tools such as Peach3, Boofuzz4 and Sulley [16] support
generation-based fuzzing approaches. They require user-provided data models
to generate inputs and, often, can use also templates and data/protocol spec-
ifications (e.g., data model, format, grammar). For instance, both Peach and
Boofuzz support black-box fuzzing and require a state machine of the proto-
col software (protocol states and transitions) and data specifications as inputs.
Other fuzzing tools exist for specific purposes, domains and technologies. For
instance, syzkaller5 is an unsupervised code-coverage guided tool developed for
Linux-kernel fuzzing. ZDHCP6 is a black-box fuzzing tool for DHCP servers.

1 https://github.com/google/AFL.
2 https://github.com/enovella/libfuzzer-workshop.
3 https://www.peach.tech.
4 https://github.com/jtpereyda/boofuzz.
5 https://github.com/google/syzkaller.
6 https://github.com/zdnscloud/zdhcp.

https://github.com/google/AFL
https://github.com/enovella/libfuzzer-workshop
https://www.peach.tech
https://github.com/jtpereyda/boofuzz
https://github.com/google/syzkaller
https://github.com/zdnscloud/zdhcp

6 A. Marchetto

kittyfuzzer7 and Mutiny8 are fuzz testing frameworks for non-TCP and TCP
channels. Snipuzz [5] is a black-box fuzzing tool for IoT firmwares. The effec-
tiveness of fuzz testing is strongly dependent on the target system under test.
This paper focuses on software implementations of communication protocols,
one of the area in which fuzz testing is widely adopted.

Secondary Studies. A few systematic literature reviews (SLRs) exist about
fuzz security testing for software implementations of communication protocols.
[8] presents the basic principles and the typical process applied to network proto-
col fuzzing, as well as the fundamental structure of a fuzzing system. The paper
also focuses on the adoption of machine learning algorithms for fuzz testing. [11]
surveys on protocol fuzz testing adopted for Industrial Control Systems. [12]
surveys on network protocol fuzz testing for information systems and applica-
tions. [12] conducts an in-depth analysis on a few selected studies that mainly
apply fuzz testing to network TCP/IP protocols. [15] reviews the techniques,
e.g., symbolic execution, taint analysis, artificial intelligence, that can be com-
bined with conventional fuzz testing approaches applied, in particular, to IoT
protocols and firmwares. [13] contextualizes the adoption of fuzz testing with
respect to others vulnerability discovery strategies (e.g., static analysis), with-
out focusing to software implementations of communication protocols. Despite
these SLRs are related to our RR, they did not fit our research goal, i.e., not
address our RQs. We do not focus on a specific domain (e.g., Industrial Control
Systems) or technology (e.g., IoT), as well as done by these SLRs. Furthermore,
these SLRs adopt a more research-oriented point of view with respect to our RR,
they discuss about general principles and processes to conduct fuzz testing. Dif-
ferently form these SLRs, we mainly focus on how the investigated approaches
and tools work, targeting practitioners. To the best of our knowledge, this paper
is the first one that presents a RR on the field of fuzz security testing for soft-
ware protocol implementations and that reports the result by using an evidence
briefing method.

3 Rapid Review

To plan and design the RR, according to Cartaxo et al. [3], we defined: (i) our
research questions (RQs); (ii) both data source and search strategy; (iii) the
criteria to analyze the literature papers; and (iv) the threats to validity limiting
our study.

3.1 Research Questions

The following research questions have been defined according to our goal of
identifying and analyzing existing approaches and tools, presented in the last

7 https://pypi.org/project/kittyfuzzer.
8 https://github.com/Cisco-Talos/mutiny-fuzzer.

https://pypi.org/project/kittyfuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer

A RR on Fuzz Security Testing for Software Protocol Implementations 7

decade, to apply fuzz security testing to software implementations of communi-
cation protocols.

– RQ1 What are the types of protocols tested?
RQ1 aims at identifying the type of protocols (e.g., telecommunication, pro-
prietary, web, IoT) tested in the literature by fuzz security testing. By start-
ing from the protocol’s type, we aim at identifying both the architecture
(e.g., server-client, web/mobile, desktop, embedded software, publisher and
subscriber) and the application domain (e.g., telecommunications, aerospace,
space, automotive, industrial system, network service) of the target system
under test.

– RQ2 What are the types of fuzzing testing approaches investigated?
RQ2 aims at characterizing the type of approaches (e.g., black-box, white-box,
gray-box) applied to conduct fuzz security testing for software implementa-
tions of communication protocols. To answer to RQ2, we have to go deeper
in the fuzz testing approach for identifying: (i) the required artifact (e.g.,
application requirements, application/protocol specifications, data specifica-
tion – model, grammar, format, data samples, execution samples, application
code); (ii) the adopted input and data generation strategy (e.g., generative,
grammar-based, mutation-based, smart - with knowledge on data, dumb -
without knowledge on data, evolutionary); and (iii) the adopted test oracles
and results verification procedure (e.g., exceptions, error-handling, software
crashes, assertion-based, comparison responses, memory checks).

– RQ3 What are the existing tools that support protocol fuzz testing?
RQ3 aims at identifying the available tools that support the investigated fuzz
testing approaches for software implementations of communication protocols.

– RQ4 What are the types of the software vulnerabilities discovered?
RQ4 aims at identifying the software vulnerabilities (e.g., memory leaks and
assertion failure, missing access control or authentication, improper or insuffi-
cient input check, wrong error handling routines) that are typically discovered
by fuzz security testing when dealing with software implementations of com-
munication protocols. It is also of interest, to identify the typical attacks (e.g.,
denial of services, man-in-the-middle, remote code execution) that can exploit
such vulnerabilities.

We believe that these RQs are of interest for both practitioners and
researchers. For instance, RQ1 and RQ3 can be useful for practitioners to know
if some work exists in the literature about the communication protocols they are
adopting in their business and to identify the fuzz testing tool that can better fits
their needs. RQ2 can help practitioners in identifying potential strategies that
they can adopt to improve the security of the software protocol implementations
they are adopting and developing. Finally, RQ4 can help practitioners in getting
a quick inside into the vulnerabilities that can be exploited by cyber-attackers.
Nevertheless, the answers to the RQs can help researchers in identifying the
non-adequately studied areas that can be require further investigation.

8 A. Marchetto

3.2 Data Source and Search Strategy

As suggested by Cartaxo et al. [3] for conducting a RR, we adopted Scopus as
a single database since it is a quite large source of peer-reviewed literature [14]
provided by several editors, e.g., ACM, IEEE, Springer, Elsevier, and Wiley.

We defined our search string by deriving terms and phrases of interest from
our RQs, such as: “Protocol”, “Fuzzing”, and “Vulnerability”, we then combined
them by using both AND and OR operators, thus obtaining the following search
query string in the Scopus syntax:

TITLE-ABS-KEY ("protocol") AND (TITLE-ABS-KEY
("vulnerability") OR TITLE-ABS-KEY ("security")) AND

(TITLE-ABS-KEY ("fuzzing") OR TITLE-ABS-KEY ("fuzz"))

“TITLE-ABS-KEY” is the Scopus command to search on titles, abstracts, or
keywords of each paper. The used query included also: (i) plurals and variants of
the listed terms and phrases (e.g., “vulnerabilities”, “fuzz”); and (ii) automatic
filtering criteria, i.e., we filter out papers published before the year 2012, aiming
at addressing contributions related to recent technologies and tools (as stated by
our goal), and we limit our search to papers published in conference proceedings
and journals (i.e., book were not considered) and written in English. From the
obtained list of 48 papers published, we removed the not accessible and the
abstract-only ones, thus obtaining a final list of 45 papers.

3.3 Analysis Criteria

According to the analysis strategy delineated by Cartaxo et al. [3] for a RR, we
conducted a thematic analysis [1] on each selected literature paper, by searching
on it notions and concepts according to some criteria identified for investigating
our RQs. Table 1 summarizes such criteria in terms of aspects and examples of
values. Four groups of aspects are considered:

– Work: goal and description of the paper under analysis, e.g., presentation
of a new fuzzing approach or a new technique, experimentation, reviewing
fuzzing techniques;

– Target system: aspects related to the target system under test, i.e., type of
the protocol, architecture and application domain of the protocol implemen-
tation;

– Investigated solution: in-depth aspects related to the investigated fuzz
testing approach;

– Available solution: aspects related to the presented or used tool that sup-
port the investigated solution;

– Vulnerability and attack: aspects related to the type of vulnerabilities that
can be discovered and the attacks that can exploit such vulnerabilities.

A three-step procedure has been applied to define such criteria: (1) an initial
set has been defined; (2) the initial set has been applied to some papers, aiming
at collecting feedback to refine and finalize the criteria. Finally, (3) all papers

A RR on Fuzz Security Testing for Software Protocol Implementations 9

have been analyzed and evidences collected. The objective is to use these criteria
for extracting evidences from the literature, thus investigating our RQs. In detail,
Target system is used for RQ1, both Investigated solution and Work are
used for RQ2, Available solution is used for RQ3, and, finally, Vulnerability
and attack is used for RQ4.

Table 1. Analysis criteria for the detailed analysis

Work

Goal: Presentation of a new technique/approach, experiment/assessment, tool presen-

tation, review

Goal description: One-sentence text description of the paper’s goal

Target system

Type of protocol: E.g., telecommunication, 5G/6G, proprietary, web, mobile, Internet

of Things

Type of architecture: E.g., server/client, web/mobile, embedded software, pub-

lisher/subscriber

Application domain: E.g., telecommunications, aerospace, automotive, industrial

system, networks

Vulnerability and attack

Type of Vulnerability: E.g., memory leaks and assertion failure, missing access con-

trol or authentication, improper or insufficient input check, wrong error handling

routines

Type of the attack: E.g., denial of services, man-in-the-middle, remote code

execution, malware

Investigated solution

Types of solution: E.g., black-box, white-box, gray-box

Analysis source: E.g., application requirements, application/protocol specifications,

random values, data grammar, data samples, execution samples, app. source code

Generation strategy: E.g., generative, grammar-based, mutation-based, mutation

with template, smart -knowledge on data structure, dumb -no knowledge on data struc-

ture, evolutionary

Strategy description: One-sentence text description of the paper’s input data gen-

eration strategy

Types of oracles: E.g., exceptions, error-handling, software craches, assertion-based,

comparison of the responses, checks of the memory

Available solution

Tool name: Free text description about the analysis method

Tool availability: E.g., yes - the tool is available, no - the tool is not available

Tool link: http/s link to the tool web site

Extended tool: Tool/techniques extended of of inspiration, if any

3.4 Limitations of the Study

The main limitation of the study affects the generalization of the RR’s findings
and it concerns the analysis of the literature (i) conducted by only one author,
which might have introduced a bias, and (ii) the adoption of only one data source
for searching the literature to be analyzed, that can have left some papers out
of the review. Another threat to the validity of our RR concerns (iii) the set
of criteria adopted in the in-depth analysis of each papers. We are conscious
that different criteria could be adopted and could lead to different results and
findings. These threats can limit the validity of our work but they are expected
for a RR [3].

10 A. Marchetto

4 Results

In order to present the results of our RR according to Cartaxo et al. [3], we high-
light relevant concepts and notions that emerged from our study, thus focusing
on the evidence. The complete list of the analyzed literature papers, details (e.g.,
authors, publication venues, year of publication), and results of the reported in-
depth analysis are available online9.

RQ1. Table 2 summarizes the relevant concepts emerged for the criterion Tar-
get system, used to derive the evidences concerning RQ1.

– Evidence 1.1 . A large number of papers investigate industrial control sys-
tems and Internet of Things (IoT) protocols (respectively 10 and 6 out of 45
papers), such as Modbus, MQTT, HTTP, Zigbee, just to cite a few of them.

– Evidence 1.2 . Among the specified ones, such protocols are used in partic-
ular within embedded systems (8 out 24 papers) and client/server (7 out 24
papers) architectures.

Table 2. RR results: Target system

Type of protocol

Industrial control systems (10), Network (8), Internet of Things (6), Stateful network (4),

Internet Key Exchange (2), In-vehicle networks (2), Non-IP based wireless (2),

Telecommunication (2), Center to field and center to center communications (1), Ethereum

network (1), HMI-device communication (1), Hypervisor peripherals (1), Multimedia network

(1), Routing network (1), Smart metering (1), Universal Serial Bus (1), and Wireless sensor

networks (1)

Examples of protocols: Industrial control systems (DNP3, EtherCAT, Ethernet/IP, HTTP,

ICMP, IEC104, IEC61850, MMS, Modbus, MQTT, Profinet, proprietary protocol, Siemens

S7), Network (DHCP, DNS, DNS, HTTP, NTP, POP, QQ, SNMP), Internet of Things

(HTTP, Modbus, MQTT, Zigbee, Z-Wave), Stateful network (DBMS, FTP, LightFTP,

RTSP,SMTP, SSL, tinyDTLS), Internet Key Exchange (IKE, IKEv2), In-vehicle networks

(SOME/IP, ZeroMQ), Non-IP based wireless (Bluetooth LE, ZigBee), telecommunication (5G,

5G RRC), Center to field and center to center communications (IETF HTTP, IETP FTP,

NTCIP, SOAP), Ethereum network (RPLx), HMI-device communication (ICMP, IEC61850,

Modbus-TCP), Multimedia network (DVB/MPEG2-TS, VoIP), Routing network (ICMP),

Smart metering (DLMS/COSEM), and Wireless sensor networks (ZigBee)

Type of architecture

Embedded systems (8), client/server (5), web/mobile (3), client/server with stateful

application (2), decentralized client/ server or publisher/ subscriber (2), publisher/subscriptor

(2), cooperative centralized systems (1), hypervisors (1)

Application domain

Network services (12), industrial control systems (6), IoT devices (6), industrial systems (3),

automotive (2), industrial remote control systems (2), telecommunication systems (2),

blockchain (1), home network (1), hypervisor containers (1), intelligent transportation systems

(1), medical (1), multimedia services (1), smart meter devices (1), and storage devices (1)

9 https://tinyurl.com/k2s9d5pz.

https://tinyurl.com/k2s9d5pz

A RR on Fuzz Security Testing for Software Protocol Implementations 11

– Evidence 1.3 . In terms of application domain, industrial systems, including
industrial control systems, IoT-based and remote control systems (17 out of
41) and network services (12 out of 41) attract most of the attention and
effort of the community.

RQ2. In terms of Work, we can see that (Evidence 2.1 .) the goal of almost
all the analyzed papers is to introduce a new fuzzing approach and technique
(respectively 28 and 6 out of 45 papers considered). Some of the papers (5 out of
45) present a framework that supports fuzzing testing and only one paper reports
an empirical assessment of existing fuzzing techniques. Finally, some papers (5
out of 45) are devoted to review the state-of-the-art for specific domains or
technologies. More interesting for our purpose, Tables 3, 4, 5 and Fig. 1 present
the relevant concepts emerged for the criterion Investigated solution, used to
derive the evidences concerning RQ2.

Table 3. RR results: Investigated solution - Types of solution and Analysis Source

Artifact Papers per Types of solution

Black-box Gray-box White-box

Required Inferred Required Inferred Required Inferred

Attack model, execution samples 1

Attack model, data samples 1

Code 2

Code (source code) + execution samples 1

Code + data model 3

Code + data model + execution samples 1

Code + execution samples 2 1

Code + protocol specification + data model 1

Code + state model 1

Code + state model, data model 1

Data model 2 8 2

Data model + state model 1 1

Data samples + data model 2

Data-flow model (CFG) 1

Execution samples 10 1

Execution samples + protocol specification 3

Protocol specification 4 1

State model 1 2 2

Structural model + data model 1

Not-detailed 2 14 6 1

Table 3 reports the number of papers, per type of the investigated solution
(e.g., black, gray, and white -box approach), that require a specific data artifact
as input or that recover such an artifact (respectively column “Required” and
“Inferred”). For instance, the table shows that one black-box approach (row

12 A. Marchetto

4, column 2) requires both an attack model and a set of execution samples as
input, while 8 of such approaches (row 14, column 3) recover a data model (e.g.,
type, format or grammar of protocol data), typically, by analyzing the execution
samples provided by the user or automatically collected by a crawler.

Table 4. RR results: Investigated solution - Generation strategy

Generation strategy Papers per Types of solution

black-box gray-box white-box

Mutation 2

Mutation (Dump) 5 2

Mutation (Smart) 6 2

Generative 4

Generative (Dump) 1

Generative (Smart) 2 2

Generative + Mutation (Dump) 1

Generative + Mutation (Smart) 1

Evolution 1 1

We applied a two-step approach to analyze the one-sentence descriptions,
manually written in the analysis phase by the author for each considered paper,
and that briefly summarizes the data generation strategy of fuzzing approaches
and techniques (Strategy description). (1) Group the one-sentence descrip-
tions, based on the their textual commonality, and (2) analyze the inter-cluster
descriptions, by looking for relevant terms and their connection. We excluded
the papers reviewing the literature from this analysis. To this aim, we first
used Lexos10. Lexos analyzes each sentence (i.e., document) by: (i) tokenizing
it, (ii) removing stop-words, (iii) computing Term Frequency-Inverse Document
Frequency (TF-ID), with the aim of reflecting the relevance of each term with
respect to the whole term’s corpus (terms of all sentences), and finally, (iv)
applying the K-Means clustering algorithm to group sentences according to their
terms. Figure 1(a) shows the clusters of the one-sentence strategy descriptions.
Figure 1(a) clearly shows that three groups of strategy descriptions emerged
from the investigated papers. We then used Voyant11 to extract the Collocated
Graphs built by considering all the one-sentence strategy descriptions within
each group/cluster. A collocated graph represents terms of a text that occur in
close proximity as a force-directed network graph; dark boxes in the graph are
the most frequent terms, while edges are relations between contextual terms.
In our case, such a graph highlights the relationship among relevant and com-
mon terms used to describe the input/data generation strategy of each app-
roach presented in each paper. Figure 1(b) (c) (d) present the three Collocated
Graphs built by considering all the one-sentence strategy descriptions within

10 http://lexos.wheatoncollege.edu.
11 https://voyant-tools.org.

http://lexos.wheatoncollege.edu
https://voyant-tools.org

A RR on Fuzz Security Testing for Software Protocol Implementations 13

Table 5. RR results: Investigated solution - Types of oracles

Types of oracles Papers per Types of solution

black-box gray-box white-box

State-based monitoring and analysis

Monitoring of the network and device status

4 2

(e.g., “Ping”, abnormal content) 3

Capture responses, identify exceptions and crashes 7 4 1

Detect crashes and use differential testing

(i.e., compare normal/fuzzy responses)

1

Analysis of responses and state-based monitoring 1

Identification of crashes from a log-based post-analysis 2 2

Post-verification of assertions in log-based analysis 3

Memory error detection 1 2 1

Verification of response time and response content

analysis

4

Response content analysis and memory error detection 1 1

each group/cluster in Fig. 1(a). For instance, the cluster in Fig. 1 groups: (b)
network fuzzing based on protocol specifications; (c) generation approaches that
capture data packet structure; and (d) approaches that use state machines and
message mutation. Overlaps can be observed, e.g., packets and generation are
common terms between (c) and (d).

– Evidence 2.2 . The large majority of the papers (26 out 39) proposed a new
black-box fuzzing approach/technique and most of them (9 out 26) require
at least the protocol specifications as input while other ones recover protocol
or data specifications during the approach execution (respectively 5 and 4
papers out of 26).

– Evidence 2.3 . Only very few papers (2 out of 39) proposed new white-box
fuzzing approaches. This is quite expected since in most of the cases, the
source code of the software implementing communication protocols is not
available.

– Evidence 2.4 . In terms of artifacts used as source of information, execution
or data samples are required by almost half of the black-box approaches (14
out 26) and of the gray-box approaches (6 our of 12).

– Evidence 2.5 . Binary and bytecode -level code coverage is widely used (14
out of 39 papers) by all types of approaches to collect feedback during the
fuzz testing, e.g., decide when stop testing.

14 A. Marchetto

Fig. 1. Clusters of Strategy description and related collocates graphs

– Evidence 2.6 . Mutation is widely used to produce new fuzzing test cases
or data (19 out of 39) and, in almost half of the cases, the applied mutation
is driven by some degree of “smartness” related to predefined or inferred
knowledge.

– Evidence 2.7 . In terms of test oracles, most of the approaches use: detection
of system’s exceptions and crashes, memory verification (e.g., wrong alloca-
tion, out-of-bound), analysis of the responses to the fuzzy requests (in terms
of time needed to the target system to respond and response content).

RQ3. Table 6 summarizes the relevant concepts emerged for the criterion Avail-
able solution, used to derive the evidences concerning RQ3.

A RR on Fuzz Security Testing for Software Protocol Implementations 15

Table 6. RR results: Available solution

Tool availability Tool name

Available ContractFuzzer, CyberExploit, libFuzzer, Polar-Fuzz, SIoTFuzzer, Snout,

StateFuzzer, V-Shuttle, Z-Fuzzer

Non-available APREFuzz, Charon, ENIPFuzz, EUFuzzer, FIoTFuzzer, FUZZUSB,

GANFuzzer, IKEProFuzzer, NDFuzz, NPSFUZZER, Ori, PAVFuzz, PCFuzzer,

Peach*, SATFuzz, SGPFuzzer, Vfuzz, other ad-hoc prototypes

Tool Programming

Language

Link

ContractFuzzer Go 80%, JS 8%, C 6.6% https://github.com/gongbell/

ContractFuzzer

CyberExploit Phython 87%, Shell 11% https://github.com/CyberExploitProject/

CyberExploit

libFuzzer C/C++ https://llvm.org/docs/LibFuzzer.html

Polar-Fuzz C 85%, Shell 7%, C++ 4% https://github.com/fouzhe/Polar-Fuzz

SIoTFuzzer Phython 74%, Shell 24% https://github.com/yinfeidi/Firmware-

fuzz-tool

Snout Phython 99% https://github.com/nislab/snout

StateFuzzer Java https://gitee.com/z11panyan/state-fuzzer

V-Shuttle C 90%, Shell 6% https://github.com/hustdebug/v-shuttle

Z-Fuzzer Phython 92%, C 3% https://github.com/zigbeeprotocol/Z-

Fuzzer

Parent tool List of tools that use/extend the parent one

AFL NDFuzz, NPSFUZZER, Polar-Fuzz, Ori, V-Shuttle, ad-hoc prototypes

AFLFast Polar-Fuzz

Boofuzz SIoTFuzzer

KittyFuzzer PCFuzzer

Mutiny NDFuzz

Peach Charon, NPSFUZZER, Peach*, PAVFuzz, ad-hoc prototypes

Snipuzz FIoTFuzzer

Sulley ad-hoc prototypes

syzkaller FUZZUSB

ZDHCP NDFuzz

To obtain an overall view, we built a Sankey diagram that relates relevant
aspects from RQ1 and notions on tools. A Sankey diagram is a flow diagram that
shows the flow between source and destination nodes, in which the width of the
connection of each flow is proportional to the flow rate of the relevance of the
depicted flow property. Figure 2 shows the built diagram that represents the flow
among: artifacts required (first layer in the diagram), artifacts inferred (second
layer), available tools (third layer), and extended or used tools (last layer).

– Evidence 3.1 . Most of the analyzed papers (31 out of 45) introduce a tool,
the adopted technology (e.g., tool architecture, libraries and programming
language) and, often, provide a name to their tool. Python and C/C++ are
the most popular programming languages.

– Evidence 3.2 . Only a small portion of these tools (9 out of 27), however, is
available online for testing purposes and almost all of them are provided by
Github12.

12 https://github.com.

https://github.com/gongbell/ContractFuzzer
https://github.com/gongbell/ContractFuzzer
https://github.com/CyberExploitProject/CyberExploit
https://github.com/CyberExploitProject/CyberExploit
https://llvm.org/docs/LibFuzzer.html
https://github.com/fouzhe/Polar-Fuzz
https://github.com/yinfeidi/Firmware-fuzz-tool
https://github.com/yinfeidi/Firmware-fuzz-tool
https://github.com/nislab/snout
https://gitee.com/z11panyan/state-fuzzer
https://github.com/hustdebug/v-shuttle
https://github.com/zigbeeprotocol/Z-Fuzzer
https://github.com/zigbeeprotocol/Z-Fuzzer
https://github.com

16 A. Marchetto

Fig. 2. Sankey diagram: required artifacts, inferred artifacts, tools and used tools

– Evidence 3.3 . A large number of tools (11 our of 18) that extend or use an
existing tools, use Peach or AFL.

– Evidence 3.4 . It seems that most of the tools do not recover a structured
artifact source (e.g., model or specification) or, at least, the related papers
do not explicitly describe it. In cases in which it happens, data models (e.g.,
data types, structure and grammar) are most frequently recovered.

RQ4. Table 7 summarizes the relevant concepts emerged for the criterion Vul-
nerability and attack, used to derive the evidences concerning RQ4.

– Evidence 4.1 . Most of the detected and documented vulnerabilities are
related to memory management (e.g., buffer overflow, heap/stack buffer over-
flow, null pointers, use-after-free) and, less frequently, to input and data man-
agement and validation (e.g., improper input validation, response timeout,
integer overflow, malformed packets, cross-site scripting).

– Evidence 4.2 . Among the specified ones, Denial of Service (DoS) and
Remote code execution (RCE) are the most frequent cyber-attacks that can
exploit such vulnerabilities.

A RR on Fuzz Security Testing for Software Protocol Implementations 17

Table 7. RR results: Vulnerability and attack

Type of Vulnerability

Buffer overflow (7), Heap buffer overflow (5), Null-pointer-de/referenced (5),
Stack buffer overflow (5), Memory errors (4), Use-after-free (4), Improper Input
Validation (3), Improper Memory Allocation (3), Response timeout - DoS (3),
Divide by Zero (2), Integer overflow (2), Invalid sequence (2), Malformed packets
(2), Out-of-bound read (2), Segmentation Fault (2), Assertion violation (1),
Authentication vulnerabilities (1), Command injection (1), Cross-site scripting -
XSS (1), Display error happens (1), Ethereum specific vulnerabilities (e.g.,
message and function calls, timestamps/block number dependencies, exceptions)
(1), Global buffer overflow (1), Improper data-access in messages (1), Improper
variable assignment (1), Infinite Loop (1), Memory leakage (1), Overheating (1),
Power loss (1), String vulnerabilities (1), switch set (1), Uncontrolled resources
(1), Unexpected device behavior (1), Vulnerability due to communication latency
(1), Web-type vulnerabilities (1)

Type of the attack

Denial of Service - DoS (15), Remote code execution - RCE (4), Information
leakage (2), Advanced Persistent Threats (1), Command injection (1),
Control-flow attacks (1), Data tampering (1), Eavesdropping (1), Elevation of
privilege (1), Impersonation (1), Integrity attack (1), Man-in-the-middle -MITM
(1), Memory corruption (1), Ping of Death (1), Security bypass (1), Web-based
attacks (1)

5 Final Remarks

This section collects observations and evidences we derived from our RR, that is
essential questions that can guide us when we have to start fuzzing, limitations
of the literature, and paper’s conclusions.

Start Fuzzing. We observe that when we have to start working with fuzz
testing, we have to clearly identify the target protocol and the target protocol
implementation that we have to test. We need to acquire some essential knowl-
edge about the protocol (e.g., Do we know type and format of the protocol data
and the protocol specifications?) and also about the specific protocol implemen-
tation (e.g., What is the technology adopted? Which type of system architecture
is implemented?). By analyzing such an information, relevant aspects of the pro-
tocol have to be clearly identified (e.g., Is it a state or stateless protocol? Do
the protocol adopt protection mechanisms such as authentication and message
encryption?). Then, we have to identify the artifacts that we can use as input
source for fuzzing (e.g., Do we have the protocol specifications? Is the data
model available? Do we have some data samples? Do we have the implemen-
tation source code or a binary image of the protocol implementation? Can we
capture some real traffic data? Do we have functional test cases to be used as
seeds?). Another aspect to consider is the type of vulnerability we are mainly
interested to discover (e.g., Which type of vulnerability and attack we are inter-
ested in limiting?). This is also related to the capability of monitoring the target

18 A. Marchetto

system and to analyze its response during fuzzing (e.g., What can be monitored
in the target system?). Finally, a key aspect concerns the selection of the tool
(e.g., Can I use an existing tool to fuzzing my target system?). We can select
an existing tool or, in most of the cases, plan to dedicate effort to extend an
existing tool to customize it for our target system.

Limitations of Fuzz Approaches and Tools. We observe the following lim-
itations of the existing approaches that need to be considered by practitioners
that have to work with fuzz testing.

– It is often unclear and under-investigated how initial seeds are composed and
generated. Even if it is a crucial enabler for fuzzing, in most of the cases, the
seeds’ composition is not considered.

– Only few tools are available and most of them are based on only two “parents”
tools. Furthermore, since fuzzing depends on the technology of the target
system, some development effort to customize such tools is expected before
adopting them.

– Often, the smartness/intelligence degree of existing tools appears limited and
they require manually-defined data/protocol models and specifications. This
implies human effort and domain knowledge, thus limiting the adoption of
fuzzing.

– Modern tools recover data/protocol models and specifications from traffic
samples, aiming at reducing the required human involvement. However, the
adoption of these tools is limited by several factors, e.g., ad-hoc recovery
capabilities are needed for dealing with specific protocols, which require spe-
cific knowledge and a non-trivial amount of traffic samples. Furthermore, the
use of data encryption and protection mechanisms can make these tools inef-
ficient.

– Tools have a limited capability of monitoring and analyzing both the target
system and the responses received from such a system, when the system is
exercised during fuzzing. In particular, often, in embedded and IoT systems,
the monitoring is limited to system crashes and memory management. This
strongly restricts the discovery of sets of vulnerabilities.

– The complexity of fuzz testing increases when state-based protocols or pro-
tocols that use authentication and protection mechanisms have to be tested.
Most of existing tools are based on single-data sessions, or pairs of fuzz test
requests and response checks; however, this is not enough for such kind of
situations.

Conclusions. This paper reports the findings of our RR on fuzz security testing
for software implementations of communication protocols. We can summarize the
main evidences as follows: (i) Industrial Control System and IoT protocols are
the most studied ones; (ii) black-box fuzz testing is often investigated and the
proposed approaches require protocol or data specifications as input; (iii) the
investigated gray-box fuzzing approaches, often, drive the test generation with

A RR on Fuzz Security Testing for Software Protocol Implementations 19

code coverage information; (iv) most of the detected vulnerabilities are related
to memory management and, less frequently, to input and data management
and validation; and (v) only a limited number of the investigated approaches is
supported by publicly available tools.
The results of this RR represent the starting point to create the knowledge base
needed to identify the requirements of a new fuzz testing tool we are developing
in a new project. Furthermore, we believe that the emerged evidences can be of
interest for practitioners and researchers since they can be used to characterize
existing approaches and tools, thus being able to: (i) select the most appropriate
tool for fuzz testing the software implementation of communication protocols in
use, and (ii) identify new areas that need to be further investigated.

References

1. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

2. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45(5), 489–506 (2019). https://doi.org/
10.1109/TSE.2017.2785841

3. Cartaxo, B., Pinto, G., Soares, S.: Rapid reviews in software engineering. In:
Felderer, M., Travassos, G. (eds.) Contemporary Empirical Methods in Software
Engineering, pp. 357–384. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-32489-6 13

4. Cartaxo, B., Pinto, G., Vieira, E., Soares, S.: Evidence briefings: towards a medium
to transfer knowledge from systematic reviews to practitioners. In: ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
ESEM, ACM (2016). https://doi.org/10.1145/2961111.2962603

5. Feng, X., et al.: Snipuzz: black-box fuzzing of IoT firmware via message snippet
inference. In: ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 337–350. ACM, New York (2021)

6. Globe Newswire: Embedded system market predicted to garner (2023)
7. Grand View Research: Next generation technology - cyber security market size,

share & trends report, 2023–2030 (2022)
8. Hu, Z., Pan, Z.: A systematic review of network protocol fuzzing techniques.

In: IEEE 4th Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), vol. 4, pp. 1000–1005 (2021). https://
doi.org/10.1109/IMCEC51613.2021.9482063

9. Juuso, A., Takanen, A., Kittilä, K.: Proactive cyber defense: understanding and
testing for advanced persistent threats (APTs). In: European Conference on Infor-
mation Warfare and Security (2013)

10. Kitchenham, B., Dyba, T., Jorgensen, M.: Evidence-based software engineering.
In: Proceedings of 26th International Conference on Software Engineering, pp.
273–281. ACM/IEEE (2004). https://doi.org/10.1109/ICSE.2004.1317449

11. Lan, H., Sun, Y.: Review on fuzz testing for protocols in industrial control systems.
In: IEEE Sixth International Conference on Data Science in Cyberspace (DSC),
pp. 433–438 (2021). https://doi.org/10.1109/DSC53577.2021.00068

12. Munea, T.L., Lim, H., Shon, T.: Network protocol fuzz testing for information
systems and applications: a survey and taxonomy. Multimedia Tools Appl. 75(22),
14745–14757 (2015). https://doi.org/10.1007/s11042-015-2763-6

https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1145/2961111.2962603
https://doi.org/10.1109/IMCEC51613.2021.9482063
https://doi.org/10.1109/IMCEC51613.2021.9482063
https://doi.org/10.1109/ICSE.2004.1317449
https://doi.org/10.1109/DSC53577.2021.00068
https://doi.org/10.1007/s11042-015-2763-6

20 A. Marchetto

13. Pan, Z., Liu, C., Liu, S., Guo, S.: Vulnerability discovery technology and its appli-
cations. JSW 8(8), 2000–2007 (2013)

14. Schotten, M., M’hamed., E., Meester, W., Steiginga, S., Ross, C.: A Brief His-
tory of Scopus: The World’s Largest Abstract and Citation Database of Scientific
Literature, pp. 31–58. CRC Press (2017). https://doi.org/10.1201/9781315155890

15. Shen, Q., Wen, M., Zhang, L., Wang, L., Shen, L., Cheng, J.: A systematic review of
fuzzy testing for information systems and applications. In: 2nd International Con-
ference on Electronics, Communications and Information Technology (CECIT),
pp. 156–162 (2021). https://doi.org/10.1109/CECIT53797.2021.00035

16. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education, London (2007)

https://doi.org/10.1201/9781315155890
https://doi.org/10.1109/CECIT53797.2021.00035

Enhancing Synthetic Test Data Generation
with Language Models Using a More
Expressive Domain-Specific Language

Chao Tan1,2(B) , Razieh Behjati2, and Erik Arisholm2

1 University of Oslo, Oslo, Norway
2 Testify AS, Oslo, Norway

chao.tan@testify.no

Abstract. Generating production-like test data that complies with
privacy regulations, such as the General Data Protection Regulation
(GDPR), is a significant challenge in testing data-intensive software sys-
tems. In our previous research, we posed this challenge as a language
modeling problem. We trained a language model to capture the statis-
tical properties of production data, and showed that it can effectively
generate production-like test data. However, the richness of the gener-
ated data in our earlier work was limited by the information capacity of
the domain-specific language that we used for representing the data and
the training corpus. In this paper, we present an enhanced approach, by
using a more expressive domain-specific language with a higher infor-
mation capacity. We show that using the new domain specific language
allowes better leveraging the deep-learning technology and generate even
richer, production-like test data. Our experiment results show that with
higher information capacity and constraints complexity, the new lan-
guage performs better regarding generated data quality, with an afford-
able increase on computational cost.

Keywords: synthetic data generation · domain specific language ·
deep learning · language modelling

1 Introduction

Production-like test data are essential at higher levels of the testing pyramid,
where the goal is to gain confidence in the correct behavior of a fully integrated
and deployed system. As the privacy protection regulations like GDPR pro-
hibit the use of production data containing personal and private information,
the demand for synthetic and production-like test data arises. Specifically, syn-
thetic test data need to be statistically representative of the production data
and conform with the business constraints of the domain and application.

The authors acknowledge the collaboration and support from the Norwegian Population
Registry, and the financial support from the Research Council of Norway.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 21–39, 2023.
https://doi.org/10.1007/978-3-031-43240-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_2&domain=pdf
http://orcid.org/0000-0002-0727-0092
https://doi.org/10.1007/978-3-031-43240-8_2

22 C. Tan et al.

To address the need for synthetic production-like test data, we previously
proposed a language modelling approach [24]. This approach involves building a
language model that captures the statistical characteristics of production data,
and using it to generate synthetic test data. We also proposed an evaluation
framework to measure the quality of the generated data in terms of statistical
representativeness and business constraint conformance. We applied our solution
to our case study, the Norwegian Population Registry (NPR), for integration
testing with other public and private organizations that exchange a large amount
of population data. We experimented with Char-RNN [23] algorithm and built a
language model that generates highly representative data that conforms to the
NPR domain’s business constraints. Our research demonstrates the effectiveness
of language modelling in generating synthetic production-like test data.

Our previous research highlights the potential of deep learning for gener-
ating high-quality test data suitable for high-level testing of complex systems.
However, a crucial step is constructing a training corpus from production data.

Modern software systems often use structured document formats like XML or
JSON to store and exchange data. However, raw production data is not suitable
for model training for several reasons. In application domain where raw produc-
tion data contain sensitive information, such data cannot be exposed outside of
production due to privacy protection regulations. Moreover, not all data in raw
form is important for testing, with some text or non-essential information having
little impact on system behavior. Thus, a training corpus should only include
the most important and non-sensitive information from production data.

To represent the selected information extracted from raw data, we use a
domain-specific language (DSL). In our previous experiments, we designed the
Steve132 DSL for the NPR domain, but it has limitations. Steve132 uses a fixed-
length format, where information fields are marked by their ordinal positions,
and there are no field delimiters. This format is efficient for representing records
with similar semantics, where all fields are relevant and present. But when it
comes to encoding many varying types of records, the fixed-length format results
in sparse sequences, and can easily become inefficient and impractical. Moreover,
the fixed-length format hampers the expression of complex domain constraints,
which is essential for generating realistic and valid test data.

This paper proposes a novel approach for designing DSLs with wider appli-
cability. Instead of relying on the position of information fields within the text
string, it uses structural tokens and a grammar to indicate information fields.
We apply this new design approach to the NPR domain and design a new DSL,
Steveflex. We experiment with this language by training a Char-RNN language
model with a Steveflex corpus and compare the generated data quality with the
Steve132. The results show that with higher information capacity and constraints
complexity, Steveflex performs better than Steve132 regarding generated data
quality, with affordable increase on computational cost.

Our contributions of this paper are as follows:

– we propose of an effective approach for designing DSLs with high information
capacity and expressiveness, to enhance the utility of deep-learning techniques
for test data generation,

DSL for Test Data Generation 23

– we measure and quantify the impact of the choice of the DSL on the model-
training performance and quality of the generated data, by applying our app-
roach to a real-world case study.

The remainder of the paper is organized as follows. We introduce our case
study in Sect. 2 before we present the two DSLs and discuss their expressiveness
and information capacity in Sect. 3. Section 4 presents our language model eval-
uation framework, and Sect. 5 presents our experiments, results and comparison
between the two languages. We discuss related work in Sect. 6 and conclude the
paper in Sect. 7.

2 Case Study

The Norwegian National Population Registry (NPR) collects, stores and man-
ages the personal data of all the residents of Norway and distributes electronic
personal information to more than 2000 organisations (which are referred to as
data consumers) so that they can provide service to society. The software system
in NPR is undergoing a modernisation process, and so are the software systems
of many of its data consumers. An effective setup for cross-organisational integra-
tion testing, which is critical for a successful transition, requires a large amount
of production-like data that can stimulate realistic test scenarios.

Under the restriction of GDPR, production data are strictly prohibited in
such testing. Therefore, our collaboration with the NPR aims to provide syn-
thetic, dynamic and production-like data to support the cross-organisational
integration testing between NPR and its data consumers. Dynamic in this con-
text refers to the test data not being static, but rather evolve and adapt, similar
to how the production data changes in a real production environment. To apply
our proposed solution and train a language model to generate a synthetic pop-
ulation representative of the Norwegian population synthetically, the first and
essential step is designing a domain-specific language to form a training corpus
from the NPR data.

2.1 Abstract Data Model

The software systems of the NPR and its data consumer organisations are event-
based systems. In these systems, each record of personal data, and any event
that happens to a person (birth, marriage or relocation) that gets registered
into NPR, are stored as XML documents.

We model the NPR data as an abstract event-based model in Fig. 1. An
event-based system can be seen as a collection of StatefulEntities, whose states
can be altered by events. Each stateful entity (or entity for short) consists of
a collection of StateDescriptors. The StateDecriptors are typed, and each type
of StateDescriptor describes one group of information about the entity. At any
time, an entity contains only one currently applicable instance of one type of
StateDescriptor. An event consists of one or more StateDescriptors. An event

24 C. Tan et al.

happening to an entity adds its StateDescriptor into the entity and the added
ones become currently applicable; if the entity has that type of StateDescriptor
from before, the existing instances are set to historical.

In the NPR domain, each personal data record is an StatefuEntity ; each
aspect of the personal data, for example, birth information, civil status, residence
address and many others, is a type of StateDescriptor. The collection of all the
personal data forms the population.

Fig. 1. Abstract data model for event-based systems. Note that the StateDescriper has
a boolean attribute isApplicable, which allows the data model to accommodate histor-
ical information about an entity: isApplicable: True means that this StateDescriptor
instance is currently applicable, and isApplicable: False indicates historical.

2.2 Conceptual Model of Event Generator and Event Specification

Based on the abstract data model of the event-based system, we propose a con-
ceptual model of an event generator, as shown in Fig. 2. At the heart of the event
generator is a StatisticalModel, which captures the statistical characteristics of
the events and of the states of the involved entities. The StatisticalModel samples
for EventSpecifications. An EventSpecification is an abstraction over an event in
an event-based containing important information fields.

Here is an example of a simplified event specification in the population reg-
istry domain:

Example 1 (Example EventSpecification). A single woman born in 1991 gets
married to a divorced man born in 1981.

Note that the real event would normally refer to the people involved in the
event by their personal identification numbers: e.g., “Person with Id M gets
married to Person with Id N ”. However, since a personal identification number is
generally a random sequence of digits, it does not carry any interesting statistical
information. Therefore, in the formation of event specifications we replace the
identities with basic information that carries statistical meaning for the model
to learn.

Algorithm 1 shows the event generation process. The algorithm takes four
inputs: (1) P (t), the state of the system at time t, which is essentially composed
of the states of all the stateful entities in the system at time t; (2) the statistical
model, M ; (3) a collection of constraints, C; and (4) the number of events to

DSL for Test Data Generation 25

Fig. 2. Conceptual Model of the Event Generator

Algorithm 1. Event Generator
1: function GenerateEvents(P (t),M,C,N)
2: E ← ∅; P ← P (t)

3: for i ← 1, N do
4: espec ← M.sample(N)
5: e ← createEvent(espec, P, C)
6: E ← E ∪ {e}
7: end for
8: P (t+1) ← updatePopulation(P,E)
9: return P (t+1), E

10: end function

generate N . The algorithm returns a collection of events E and the updated
state of the system P (t+1).

In Algorithm 1, each iteration in the for loop in lines 3–7 generates an event
e and adds it to E. Event generation in each iteration involves two steps. In
the first step, an event specification espec is sampled from M , in Line 4. To
construct a fully specified event, other details that are not captured by the
StatisticalModel must be added to this event specification. This is the second
step of event generation and is done by calling createEvent in Line 5. Based
on the information provided by the espec, the createEvent function fills out the
missing information by random sampling from a valid data range, while making
sure that the resulting event conforms to the business constraints C.

From the previous example of event specification, a simplified concrete syn-
thetic event can be generated, with the added details in angle brackets:

Example 2 (Example generated event). A single woman <named Beautiful
Flower>, born on <01-02-> 1991 <with ID xxxxxxxxxxx>, gets married to
a divorced man <named Green Tree> born on <02-01-> 1981 <with ID
xxxxxxxxxxx>

In particular, the createEvent function requires a domain-specific implemen-
tation and will not be discussed in depth in this paper.

26 C. Tan et al.

3 Domain Specific Language Design and Comparison

In event-based systems, in order to build a synthetic population that is dynamic
and statistically representative, it is sufficient to generate statistically represen-
tative events. Statistically representative events propagate through the systems
and maintain a statistically representative state of the population.

3.1 Domain Specific Formal Language - Steve132

Construction of Steve132 strings follow these steps: (1) select the informa-
tion fields to include from the production data, (2) encode each information
field’s possible values using fixed-length character-level tokens, (3) concatenate
the encoded information fields in a predetermined order to form a fixed-length
sequence of characters, and (4) if any included information field is absent in a
specific record of the production data, use filler characters of the same length to
denote the absence and take up the corresponding position in the text string.

Fig. 3. Steve132 example sentence, which describes a marriage event of a unmarried
female born in Febrary 1991. The spouse is a divorced male born in 1981.

Figure 3 illustrates the structure of a Steve132 sentence with an example,
which consists of three parts: the event type, the current state of the person, and
the event details. The string contains 132 characters, representing 48 information
fields, with 1 for event type, 18 for the state of the person, and 29 for details
of the event. The first two characters denote the event type (in this case, a
marriage event of type 11), followed by the state of the person and the details
of the event, respectively. The state of the person contains information such as
birth year, birth month, gender, and civil status, while the details of the event
include information about the spouse and the location and date of the marriage
event.

3.2 Domain Specifical Language - Steveflex

The Steveflex language design is also based on the abstract data model. We
design a set of structural tokens to denote the elements in the abstract data
model, as listed in Table 1. The event type, the current state of the entity and
the event details are denoted with token T, S and E. A state descriptor consists
of the state type and the state description. Angle brackets <> encloses the type

DSL for Test Data Generation 27

Fig. 4. Steveflex example sentence

Table 1. Structural tokens

Token Description

T Start of event type
E Start of event detail
S Start of statefull entity status
D End of sequence
<> Encloses type of state
[] Encloses description of state

of the state and square brackets [] encloses the description of the state. Token
D denotes the end of a sequence.

Besides the structural tokens, we utilize number characters to denote types,
specifically, event type and state type. And for construction of state description,
we utilize a similar approach as for the Steve132 language, i.e., (1) identify
information fields in this state description to include, (2) for each information
field, identify all its possible values and encode with fixed length character-level
tokens and (3) concatenate these information fields together to form a character
sequence. Further more, Steveflex uses lowercase characters and numbers for
state description tokens for better readability for humans and to avoid confusion
with the capital structural tokens.

Figure 4 shows an example of a Steveflex sequence. This sentence describes
a death event of event type 08. The event detail part shows that this event
modifies three states of a person: alters status to dead, changes the residence
address status to ceased, and registers a date of death, August 2020. The state
of the person part contains the person’s state before this event happens. This
person is a female born in August 1951. In “date of death” state in the event
detail part, we see that a pair of angle brackets enclose the state, which is of
type 15. The state description part is a sequence of six digits, denoting the year
and the month, and is enclosed in rectangular brackets. Note that the length

28 C. Tan et al.

and content of state descriptions vary with state types, as each type of state
contains different information fields.

A Steveflex sentence captures all the important information fields in a pro-
duction data record. If any states are absent, they are left out and do not need
any position filler in the sequence.

3.3 Historical Dimension in Expressiveness

The Steveflex language designates one character between the state type and the
state description part, i.e. the position between the right angle bracket ‘>’ and
the left rectangular bracket ‘[’, for extra information for each state descriptor,
i.e. meta data. The grammar for meta data in the NPR domain, as shown in
Table 2: The meta data field in a state in the event detail represents the register
operation code in the NPR, as shown in Fig. 4. It takes value from 0, 1, 2 and
3, representing four types of register operations: register a new state, alter the
current state, cancel the current state or alter the historical state. The meta data
field in the person state part takes value from 0 and 1, representing whether the
state is historical or currently applicable. Furthermore, if one state type has
multiple instances present in the person state, only one can have meta data 1,
meaning currently applicable, and all the others must have meta data 0, i.e.
historical.

Introducing the meta data highly increases the expressiveness of the Steveflex
language. Comparing to the Steve132 language, which cannot describe a person’s
historical state or different type of action of an event, the Steveflex language
provides a new dimension for expressing information in the NPR domain.

Table 2. Meta data grammar in Steveflex

meta data in state in the event detail meta data in state of the person state description

0 Register new state 0 historical
1 Alter current state 1 currently applicable
2 Cancel state If there are multiple instances of one type state, only one of them

can have meta data 1, and all the others must have meta data 0
3 Alter historical state

3.4 Higher Information Capacity

Due to its limited length, the Steve132 language excludes many important infor-
mation fields from the production data, such as contact information for death
residence, identification document from another country, shared residence for
children with divorced parents, parental responsibility and use of the Sami lan-
guage, and more. Excluding these important information fields leads to the
inability to simulate test scenarios that rely on these inputs. In contrast, the
Steveflex language captures all types of states and includes as many information

DSL for Test Data Generation 29

fields as needed. Steveflex defines 30 types of states; if all the defined states and
information fields present, a Steveflex sequence contains 141 information fields,
which is almost 3 times as many as that of the Steve132.

Not requiring filler characters makes the Steveflex language more efficient
in conveying information. To illustrate, in our Steve132 training corpus, the
sequences have an average of 68.03 filler characters for each, indicating that only
about 48.5% of the sequence length conveys information. In contrast, 100% of
the Steveflex sequence length conveys information.

4 Evaluation Framework

Language models are evaluated based on their performance in downstream tasks.
In the context of deep learning language models applied to generate production-
like data, we conduct experiments to address the following research questions:

– Syntactic validity: to what extent is the generated data valid?
– Statistical representativeness: to what extent is the generated data represen-

tative?
– Semantic validity: to what extent does the generated data conform to the

con- straints?

While only syntactically valid data holds value for testing purposes, it is the
combination of representative and semantically valid data that creates realistic
testing scenarios. It is important to note that the evaluation of statistical rep-
resentativeness and semantic validity is carried out exclusively on the subset of
data that meets the criteria for syntactic validity.

Syntactic Validity. The syntactic validity rate represents the percentage of
generated data that comply with the syntax and grammar of the DSL.

Representativeness. Representativeness is evaluated by measuring the simi-
larity between the distributions (and joint distributions) of information fields in
the generated and training data, but only on syntactically valid data. A person’s
data record in the NPR has many fields, including name, gender, birth date,
address, marital status, family relation, and many others. The events in NPR
also have many fields, and event type is one of them, and many event specific
information fields, such as spouse information for marriage event, and original
country for immigration event. Similarity of distributions and joint distributions
of these information fields indicates how well the generated person and events
represents the real data in the NPR

We measure distribution similarity with the symmetric and bounded Jensen-
Shannon divergence (JSD) metric [5], which is zero when two probability distri-
butions are identical and grows to a maximum value of 1.0 as the distributions
diverge.

30 C. Tan et al.

Semantic Validity. The semantic validity rate represents the percentage of
generated data that conforms to the application domain’s constraints. These
constraints can be specified in any logic language, and we use Python in Exam-
ple 3 to illustrate the format of the constraints: given a logical expression as the
condition, the semantic validity equals the evaluation result of a logical expres-
sion. A constraint with such a definition specifies a relationship between two or
more data fields.

Example 3 (Constraint definition).

if condition:
semantic_validity = expression

The following is an example of a constraint in the NPR domain:

if EventType == "Marriage":
semantic_validity = (person.age >= 18)

and (person.civilStatus not in ["pertnership", "married"
])
and (person.currentSpouseOrPartnerInfo = null)
and (event.spouseAge >= 18)

This constraint specifies that if an event is of type marriage, the person it hap-
pens to should be at least 18 years, has a civil status that is neither married
nor partnership and has no registered spouse or partner in the national registry.
Additionally, the event must state that the new spouse is also at least 18 years
old.

The validity rate for each constraint is the ratio of the number of generated
strings that are valid for this constraint, to the total number of generated strings.
Given a set of constraints, the aggregated or total validity rate is the ratio of
the number of total data records for which all of the constraints are valid to the
total number of data records.

Due to the complexity of real-world domains and applications, exhaustively
checking every constraint in a domain is impossible. High conformance to a
representative subset of the constraints can indicate that the model has learned
the business rules of the domain well. Therefore, a high semantic validity rate
for a subset of the constraints implies that the majority of the other constraints
will also hold for the majority of the generated data.

5 Experiment, Result and Comparison

We experiment with the Char-RNN algorithm to train the language model for
the Steveflex language. We obtain more than 108k of data records from the
NPR domain and transform the records into Steveflex sequences to form our
training corpus. For privacy protection reasons, we opt anonymized data instead
of raw production data. The anonymization process in NPR is standard, auto-
mated and managed by a dedicated data processing team. The algorithm used

DSL for Test Data Generation 31

for anonymization, to a great extent, preserves the statistical properties of the
production data. The amount of anonymized data available equals the amount
of real population data. However, for our experiments, we collected event docu-
ments recorded for 100 days to keep the data size and computational cost man-
ageable. Note that although the anonymized data is available for internal test-
ing in NPR, the anonymization algorithm is not sufficiently privacy-preserving
to make the data eligible for cross-organizational integration testing. However,
the synthetic data from the language model does not suffer from this restriction.
This is because no one-to-one correspondence exists between the generated event
or person documents and the event and person documents in production.

5.1 Result and Comparison

Syntactic Validity. We evaluated 850k generated sequences from our trained
Char-RNN language model. The syntactic validity rate of the generated data is
99.55%, demonstrating that the model learns the Steveflex syntax exceptionally
well.

The definition of syntactic validity for Steve132 is the same, and the gener-
ated data has a syntactic validity rate of 96.06%. The model learns the Steve132
language well, but the Steveflex language model outperforms it for this criteria.

Table 3. JSD and joint JSD

distributions Steveflex Steve132

seqLength 0.0093 0
eventType 0.0073 0.0032
person_birth_year 0.0061 0.0102
person_birth_month 0.0036 0.0072
person_civil_status 0.0011 0.0028
person_residence_municipality 0.0127 0.0267
person_death_yearn 0.0015 0.0001
person_death_month 0.0109 0.0002
person_immigrant_from_country 0.0088 0.0066
person_emigrate_to_country 0.0013 0.0018
partner_birth_year 0.0000 0.0021
joint_eventType_municipality 0.0267 0.0404
joint_eventType_birthYear_civilStatus 0.0310 0.0383
joint_birthYear_gender_fromCountry 0.0266 0.0285
joint_eventType_stateChange 0.0083 -
joint_personStatus_state 0.0173 -

Representativeness. Table 3 summarizes the results for both Steveflex and
Steve132, including single information field JSDs in the first part of the table
and joint JSDs of multiple information fields in the second part.

32 C. Tan et al.

The first item in the table, seqLength, indicates the similarity of the sequence
length distributions for training and generated data. Although sequence length is
not an information field in the Steveflex or Steve132 sequence, it is an important
indication of the similarity between generated data and training data.

For Steve132, the JSD for sequence length is 0, indicating that the distribu-
tion of sequence length is identical between the generated data and training data.
In fact, all the generated data from the Steve132 model have a fixed length of 132
characters, matching the training data. In contrast, the length of the Steveflex
sequences varies significantly. The sequence length in the training corpus ranges
from 82 to 1049 with an average of 179.8. For Steveflex, the JSD for sequence
length is 0.0073, indicating that the sequence length distributions of the gen-
erated data and training data are highly similar. The JSD values for the other
single information fields for both Steveflex and Steve132 are relatively small,
indicating that the distributions of the generated data are similar to those of the
training data.

Note that in the second part of the table, two joint distributions are missing
for Steve132 : joint_eventType_stateChange and joint_personStatus_state. The
joint_eventType_stateChange represents the joint distribution of event types
and the type of states they alter, i.e., what type of events alters what type of
information. And the joint_personStatus_state is the joint distribution of the
person status, and the presence of type of state descriptors for the person. These
distributions involve typed states, which do not exist in the Steve132 language.

It is not practical to examine all the distributions and joint distributions
of the synthetic data and training data. Overall, however, we can confidently
conclude that both the Steveflex and Steve132 models learn the statistical prop-
erties of the training data of its language, and can generate highly-representative
data. Despite the higher complexity of Steveflex, the JSDs and joint JSDs are
comparable to or even better than those of Steve132.

Table 4. Constraint conformity - Steve132

Event type Cyclomatic complexity Valid rate

Marriage 4 98.25%
Birth 3 99.94%
Death 2 100%
Relocation within municipality 3 99.95%
Relocation between municipality 3 99.89%
Immigration 2 99.43%
Emigration 3 99.64%
Change name 2 100%
Over all 2.73(average) 97.12%

Semantic Validity. Table 4 provides a summary of the constraint checks for
8 event types in the generated Steve132 sequences, including marriage, birth,

DSL for Test Data Generation 33

and death events, etc. The constraints are expressed as Python functions (see
Appendix A). To evaluate of the complexity of these constraints, we check the
cyclomatic complexity, i.e., the number of decisions in the validation function
for each event type, as listed in the table. On average, each event type has a
cyclomatic complexity of 2.73. In the generated data, two types of events have
100% valid rate, five types have more than 99% valid rate, and one has 98.25%.
In total, the generated data have a 97.12% valid rate.

Steveflex has more complex constraints than Steve132. These constraints
apply to either a single state, between multiple states or to the whole event.
Table 5 shows the constraint-checking results for two types of states and two
types of events, which are shown in Appendix B.

Steveflex defines 10 types of civil status, and in the NPR domain, there
is one rule for each civil status type; besides, the state must have valid meta
data indicating it is currently applicable. Hence, the constraint for state “civil
status” has 11 checks. The constraints for events are more complex than those
for the states because they usually involve checking multiple states in both the
event details and person state descriptions. For example, the constraint for event
type “death” involves the checks for state Death, Residence Address, and Status,
and their operation codes and metadata. This constraint has 20 checks. The
constraint for “change of civil status” event has 27 checks. On average, these
four constraints have a cyclomatic complexity of 15, which shows that Steveflex
constraints are much more complex than Steve132 constraints. The valid rates
for all these constraints are more than 99%, and the overall valid rate is 99.74%.
Despite the higher complexity of the constraints, the Steveflex generated data
overperforms that of the Steve132 regarding semantic validity.

The above three subsections demonstrate that, despite its higher information
capacity and greater complexity in terms of language syntax and domain con-
straints, the data generated using Steveflex is of comparable or superior quality
to that of Steve132. These results showcase the impressive learning ability of the
Char-RNN algorithm for complex DSLs and suggest its potential application for
data generation with language modeling in other domains.

Table 5. Constraint conformity - Steveflex

State or event type Cyclomatic complexity Valid rate

State ID number 2 99.99%
State civil status 11 99.99%
Event death 20 99.97%
Event Change in civil status 27 99.76%
Overall 15(average) 99.74%

34 C. Tan et al.

5.2 Experimental Setup

Our training utilized a Tesla T4-4C virtual GPU with 4GB of available GPU
memory for both Steve132 and Steveflex experiments. We employed a PyTorch
Char-RNN implementation [1] and fine-tuned various hyperparameters to iden-
tify the best model based on model loss and generated data quality.

Table 6. Experiment setup comparison

Steveflex Steve132

Network size Two layers network, each with 400 GRU units Two layers network, each with 100 GRU units
Training data size 113M 23M
Training epochs 13 28
Training time 26 h 4 h
Generation time for 100k sequences 100 min less than 5 min

Our training setup is summarized in Table 6. The best performing Steveflex
model has two layers, with 400 GRU units in each layer, and employs the Adam
optimizer [10]. The network has over 2 million parameters and was trained for 27
epochs. The lowest validation loss is achieved after 26 hours of training, at the
end of the 13th epoch, and we use the model at the end of this epoch for data
generation. Using this model, it takes approximately 100 minutes to generate
100k sequences.

Comparing to the Steve132 setup, the network size for the Steveflex model
is four times larger, and the training time is more than six times longer. This is
expected due to the larger model size and training corpus size. As a consequence,
the data generation time is also longer for the same number of sequences.

The NPR domain expects population data statistics to change slowly, so
retraining the model frequently is not necessary. The training corpus is com-
posed of 100 days of production data, making quarterly retraining a reasonable
option. A 26-hour training time for quarterly retraining is feasible for this appli-
cation. On average, there are about 1,000 events per day in the NPR domain,
so generating 100,000 sequences is enough to simulate a production-like data
flow for a quarter. A 100-minute data generation time every quarter is manage-
able s well. Overall, the increase on computational cost for adopting Steveflex is
entirely affordable.

6 Related Work

Generating test data is a well-researched topic, with various techniques proposed,
such as combinatorial [13,18,19], metaheuristic search [6,8,14], model-based [2,
22,26], fuzzing [12,15], and machine learning algorithms [4,7,9,27]. While many
of these approaches focus on increasing test coverage at lower testing levels, high-
level testing, such as integration and end-to-end testing, is essential for quality
assurance of large-scale complex software systems. However, simulating realistic

DSL for Test Data Generation 35

test scenarios at this level is challenging without access to production-like test
data. This is where our research comes in, as it addresses this challenge.

Along with the flourishing of deep learning techniques, language models,
especially large language models (LLMs), have progressed rapidly in recent
years [3,11,17,20,25]. It is also reported that LLMs are used for bug fix-
ing [16,21]. However, the computational cost of training such models is huge.
Hoffman et al. [25] proposed a relation between scaling up model size and increas-
ing the number of training tokens, However, this relation cannot be applied to
our approach of training language models for DSL for data generation purpose.
Our language models, Steve132 and Steveflex-NPR, differ from LLMs in multi-
ple ways, including the learning objective, complexity, and evaluation methods.
Additionally, our models are trained on epochs, and we do not have an unlim-
ited corpus like many of the LLM training, making it challenging to scale up the
number of training tokens as language size scales up. Nonetheless, the proposed
relation offers a potential direction for optimizing model training.

7 Conclusion

In this paper, we present a novel approach for designing domain-specific lan-
guages for synthetic data generation using language models. We apply this
design approach to the Norwegian Population Registry domain and design a
more expressive DSL with higher information capacity and constraint complex-
ity, the Steveflex. Through the training of a language model for Steveflex and an
evaluation of the generated data, we show that the new language outperforms the
previous DSL, Steve132 in terms of data quality. Moreover, we demonstrate that
the increase in computational cost associated with using Steveflex is affordable,
making it a feasible choice for synthetic data generation in the NPR domain.
Our approach can also be applied to other domains to design DSLs for synthetic
data generation, which can result in high-quality synthetic data with a lower cost
and effort compared to manual data synthesis. Overall, our work contributes to
the advancement of synthetic data generation in various domains, with poten-
tial applications in privacy-preserving data collection, data analysis and machine
learning.

A Steve132 constraints

""" check s t a t e v a l i d i t y """
""" State ID number """
def isStateValid_IDnumber (s t a t e) :

s ement i c_va l id i ty = (s t a t e .
hasOneApplicable == True)

and (s t a t e . year in range (1900 ,2023))
return sement i c_va l id i ty

""" State C i v i l Status """
def i sS ta t eVa l id_Civ i lS ta tu s (s t a t e) :

s ement i c_va l id i ty = True
i f s t a t e . hasOneApplicable == False

sement i c_va l id i ty = False
return sement i c_va l id i ty

match s t a t e . c i v i l S t a t u s :
case " s i n g l e " :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

case "married" :
sement i c_va l id i ty = s ta t e .

hasSpouseInfo
case "widowed" :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

case " divorced " :
sement i c_va l id i ty = not s t a t e .

hasSpouseInfo
case " separated " :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

case " r e g i s t e r edPa r tn e r sh i p " :
sement i c_va l id i ty = s ta t e .

hasSpouseInfo
case " separatedPartner " :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

case " divorcedPartner " :
sement i c_va l id i ty = not s t a t e .

hasSpouseInfo

36 C. Tan et al.

case " surv iv ingPartner " :
sement i c_va l id i ty = not s t a t e .

hasSpouseInfo
case "unknown" :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

return sement i c_va l id i ty

""" check event v a l i d i t y """
""" Event Death """
def isEventValid_death (event , personState

) :
i f event . hasEntityDeath == False :

re turn False
match event . ent ityDeath . operationCode :

case "RegisterNew" :
i f personState . hasEntityDeath ==

True :
i f personState . ent ityDeath .

hasOneApplicable == True :
return False

case ["AlterCurrentState " | "
CancelState "] :

i f personState . hasEntityDeath ==
False :

re turn False
i f personState . ent ityDeath .

hasOneApplicable == False :
re turn False

case " A l t e rH i s t o r i c a l S t a t e " :
i f personState . hasEntityDeath ==

False :
re turn False

i f personState . ent ityDeath .
hasOneNonApplicable == False :

re turn False
i f personState .

hasEntityResidencyAddress == True
i f event . hasEntityResidencyAddress ==

False
return False

i f event . ent i tyRes idencyAddress .
hasOneApplicable == False
return False

i f personState . hasEnt i tyStatus == False
return True

i f person . en t i t yS ta tu s . hasOneApplicable
== False

return True
i f event . hasEnt i tyStatus == True :

i f event . en t i t yS ta tu s . operationCode
== "CancelState " and

event . en t i t yS ta tu s . s t a t eu s == "
Dead" :

return True
i f personState . hasEnt i tyStatus == False

:
re turn False

i f not (personState . en t i t yS ta tu s .
hasOneApplicable and

personState . en t i t yS ta tu s . s t a tu s == "
Dead") :

return False
i f (event . ent ityDeath . hasOneApplicable

and
event . ent ityDeath . hasDate) :
re turn True

return False

""" Event Change C i v i l Status """
def isEventVal id_ChangeCivi lStatus (event ,

personState) :
s ement i c_va l id i ty = True
i f event . ha sEnt i tyC iv i lS ta tus == False

return False
match event . e n t i t yC i v i l S t a t u s .

c i v i l S t a t u s :
case ["married" | "
r e g i s t e r edPa r tn e r sh i p "] :
i f event . e n t i t yC i v i l S t a t u s .

hasSpouseInfo == False :
re turn False

case ["unknown"] :
pass

case _:
i f event . e n t i t yC i v i l S t a t u s .

hasSpouseInfo == True
return False

match event . e n t i t yC i v i l S t a t u s .
operationCode :

case "RegisterNew" :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn True
i f personState . e n t i t yC i v i l S t a t u s .

hasOneApplicable == False :
re turn True

match event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s :

case "unknown" :
i f personState .

ha sEnt i tyC iv i lS ta tus == True
return False

case ["married" | "
r e g i s t e r edPa r tn e r sh i p "] :

i f personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s in ["
married" , " r e g i s t e r edPa r tn e r sh i p "] :

re turn False
case _:

i f personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s in ["
married" , " r e g i s t e r edPa r tn e r sh i p "]

return True
return False

case "AlterCurrentState " :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn False
i f personState . e n t i t yC i v i l S t a t u s .

hasOneApplicable == False :
re turn False

i f event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s == personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s

return False
return True

case "CancelState " :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn False
i f personState . e n t i t yC i v i l S t a t u s .

hasOneApplicable == False :
re turn False

i f event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s == personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s

return True
return False

case " A l t e rH i s t o r i c a l S t a t e " :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn False
i f personState . e n t i t yC i v i l S t a t u s .

hasNonApplicable == False :
re turn False

i f event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s == personState .
e n t i t yC i v i l S t a t u s . h i s t o ry .
c i v i l S t a t u s

return False
return sement i c_va l id i ty

B Steveflex constraints

""" check s t a t e v a l i d i t y """
""" State ID number """
def isStateValid_IDnumber (s t a t e) :

s ement i c_va l id i ty = (s t a t e .
hasOneApplicable == True)

and (s t a t e . year in range (1900 ,2023))
return sement i c_va l id i ty

""" State C i v i l Status """
def i sS ta t eVa l id_Civ i lS ta tu s (s t a t e) :

s ement i c_va l id i ty = True
i f s t a t e . hasOneApplicable == False

sement i c_va l id i ty = False
return sement i c_va l id i ty

match s t a t e . c i v i l S t a t u s :
case " s i n g l e " :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

case "married" :
sement i c_va l id i ty = s ta t e .

hasSpouseInfo

DSL for Test Data Generation 37

case "widowed" :
sement i c_va l id i ty = not s t a t e .

hasSpouseInfo
case " divorced " :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

case " separated " :
sement i c_va l id i ty = not s t a t e .

hasSpouseInfo
case " r e g i s t e r edPa r tn e r sh i p " :

sement i c_va l id i ty = s ta t e .
hasSpouseInfo

case " separatedPartner " :
sement i c_va l id i ty = not s t a t e .

hasSpouseInfo
case " divorcedPartner " :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

case " surv iv ingPartner " :
sement i c_va l id i ty = not s t a t e .

hasSpouseInfo
case "unknown" :

sement i c_va l id i ty = not s t a t e .
hasSpouseInfo

return sement i c_va l id i ty

""" check event v a l i d i t y """
""" Event Death """
def isEventValid_death (event , personState

) :
i f event . hasEntityDeath == False :

re turn False
match event . ent ityDeath . operationCode :

case "RegisterNew" :
i f personState . hasEntityDeath ==

True :
i f personState . ent ityDeath .

hasOneApplicable == True :
return False

case ["AlterCurrentState " | "
CancelState "] :

i f personState . hasEntityDeath ==
False :

re turn False
i f personState . ent ityDeath .

hasOneApplicable == False :
re turn False

case " A l t e rH i s t o r i c a l S t a t e " :
i f personState . hasEntityDeath ==

False :
re turn False

i f personState . ent ityDeath .
hasOneNonApplicable == False :

re turn False
i f personState .

hasEntityResidencyAddress == True
i f event . hasEntityResidencyAddress ==

False
return False

i f event . ent i tyRes idencyAddress .
hasOneApplicable == False
return False

i f personState . hasEnt i tyStatus == False
return True

i f person . en t i t yS ta tu s . hasOneApplicable
== False

return True
i f event . hasEnt i tyStatus == True :

i f event . en t i t yS ta tu s . operationCode
== "CancelState " and

event . en t i t yS ta tu s . s t a t eu s == "
Dead" :

return True
i f personState . hasEnt i tyStatus == False

:
re turn False

i f not (personState . en t i t yS ta tu s .
hasOneApplicable and

personState . en t i t yS ta tu s . s t a tu s == "
Dead") :

return False
i f (event . ent ityDeath . hasOneApplicable

and
event . ent ityDeath . hasDate) :
re turn True

return False

""" Event Change C i v i l Status """
def isEventVal id_ChangeCivi lStatus (event ,

personState) :
s ement i c_va l id i ty = True
i f event . ha sEnt i tyC iv i lS ta tus == False

return False
match event . e n t i t yC i v i l S t a t u s .

c i v i l S t a t u s :
case ["married" | "
r e g i s t e r edPa r tn e r sh i p "] :
i f event . e n t i t yC i v i l S t a t u s .

hasSpouseInfo == False :
re turn False

case ["unknown"] :
pass

case _:
i f event . e n t i t yC i v i l S t a t u s .

hasSpouseInfo == True
return False

match event . e n t i t yC i v i l S t a t u s .
operationCode :

case "RegisterNew" :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn True
i f personState . e n t i t yC i v i l S t a t u s .

hasOneApplicable == False :
re turn True

match event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s :

case "unknown" :
i f personState .

ha sEnt i tyC iv i lS ta tus == True
return False

case ["married" | "
r e g i s t e r edPa r tn e r sh i p "] :

i f personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s in ["
married" , " r e g i s t e r edPa r tn e r sh i p "] :

re turn False
case _:

i f personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s in ["
married" , " r e g i s t e r edPa r tn e r sh i p "]

return True
return False

case "AlterCurrentState " :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn False
i f personState . e n t i t yC i v i l S t a t u s .

hasOneApplicable == False :
re turn False

i f event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s == personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s

return False
return True

case "CancelState " :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn False
i f personState . e n t i t yC i v i l S t a t u s .

hasOneApplicable == False :
re turn False

i f event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s == personState .
e n t i t yC i v i l S t a t u s . c i v i l S t a t u s

return True
return False

case " A l t e rH i s t o r i c a l S t a t e " :
i f personState . ha sEnt i tyC iv i lS ta tus
== False :

re turn False
i f personState . e n t i t yC i v i l S t a t u s .

hasNonApplicable == False :
re turn False

i f event . e n t i t yC i v i l S t a t u s .
c i v i l S t a t u s == personState .
e n t i t yC i v i l S t a t u s . h i s t o ry .
c i v i l S t a t u s

return False
return sement i c_va l id i ty

38 C. Tan et al.

References

1. char-rnn.pytorch. https://github.com/spro/char-rnn.pytorch. Accessed Aug 2019
2. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL

constraints with search techniques. IEEE Trans. Software Eng. 39(10), 1376–1402
(2013)

3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

4. Čegiň, J., Rástočnỳ, K.: Test data generation for MC/DC criterion using rein-
forcement learning. In: 2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 354–357. IEEE (2020)

5. Fuglede, B., Topsoe, F.: Jensen-Shannon divergence and Hilbert space embedding.
In: Proceedings of International Symposium on Information Theory, ISIT 2004, p.
31. IEEE (2004). https://doi.org/10.1109/ISIT.2004.1365067

6. Gois, N., Porfírio, P., Coelho, A.: A multi-objective metaheuristic approach to
search-based stress testing. In: 2017 IEEE International Conference on Computer
and Information Technology (CIT), pp. 55–62. IEEE (2017)

7. Ji, S., Chen, Q., Zhang, P.: Neural network based test case generation for data-flow
oriented testing. In: 2019 IEEE International Conference on Artificial Intelligence
Testing (AITest), pp. 35–36. IEEE (2019)

8. Khari, M., Kumar, M., et al.: Analysis of software security testing using meta-
heuristic search technique. In: 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom), pp. 2147–2152. IEEE (2016)

9. Kim, J., Kwon, M., Yoo, S.: Generating test input with deep reinforcement learn-
ing. In: 2018 IEEE/ACM 11th International Workshop on Search-Based Software
Testing (SBST), pp. 51–58. IEEE (2018)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980arXiv:1412.6980 (2014)

11. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP
tasks. Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)

12. Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1(1), 1–13 (2018)
13. Li, N., Lei, Y., Khan, H.R., Liu, J., Guo, Y.: Applying combinatorial test data

generation to big data applications. In: 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 637–647. IEEE (2016)

14. McMinn, P.: Search-based software testing: past, present and future. In: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops, pp. 153–163. IEEE (2011)

15. Padhye, R., Lemieux, C., Sen, K., Papadakis, M., Le Traon, Y.: Semantic fuzzing
with zest. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 329–340 (2019)

16. Prenner, J.A., Babii, H., Robbes, R.: Can OpenAI’s codex fix bugs? An evaluation
on QuixBugs. In: Proceedings of the Third International Workshop on Automated
Program Repair, pp. 69–75 (2022)

17. Rae, J.W., et al.: Scaling language models: methods, analysis & insights from
training gopher. arXiv preprint arXiv:2112.11446 (2021)

18. Salecker, E., Glesner, S.: Combinatorial interaction testing for test selection in
grammar-based testing. In: 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, pp. 610–619. IEEE (2012)

19. Simos, D.E., Kuhn, R., Voyiatzis, A.G., Kacker, R.: Combinatorial methods in
security testing. IEEE Comput. 49(10), 80–83 (2016)

https://github.com/spro/char-rnn.pytorch
https://doi.org/10.1109/ISIT.2004.1365067
http://arxiv.org/abs/1412.6980arXiv:1412.6980
http://arxiv.org/abs/2112.11446

DSL for Test Data Generation 39

20. Smith, S., et al.: Using DeepSpeed and megatron to train megatron-turing NLG
530B, a large-scale generative language model. arXiv preprint arXiv:2201.11990
(2022)

21. Sobania, D., Briesch, M., Hanna, C., Petke, J.: An analysis of the automatic bug
fixing performance of ChatGPT. arXiv preprint arXiv:2301.08653 (2023)

22. Soltana, G., Sabetzadeh, M., Briand, L.C.: Synthetic data generation for statis-
tical testing. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 872–882. IEEE (2017)

23. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning
(ICML 2011), pp. 1017–1024 (2011)

24. Tan, C., Behjati, R., Arisholm, E.: Application of deep learning models to gener-
ate representative and scalable synthetic test data for the Norwegian population
registry. J. Syst. Softw. (2020, submitted)

25. Thoppilan, R., et al.: LaMDA: language models for dialog applications. arXiv
preprint arXiv:2201.08239 (2022)

26. Yano, T., Martins, E., de Sousa, F.L.: A model-based approach for robustness test
generation. In: 2011 Fifth Latin-American Symposium on Dependable Computing
Workshops, pp. 33–34. IEEE (2011)

27. Zhou, X., Zhao, R., You, F.: EFSM-based test data generation with multi-
population genetic algorithm. In: 2014 IEEE 5th International Conference on Soft-
ware Engineering and Service Science, pp. 925–928. IEEE (2014)

http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2301.08653
http://arxiv.org/abs/2201.08239

On the Evaluation of Photometric Stereo
Applications Testing Using Image

Modifications

Franz Wotawa1(B) , Ledio Jehaj1, and Nicole Brosch2

1 Graz University of Technology, Institute for Software Technology, Inffeldgasse
16b/2, 8010 Graz, Austria

{wotawa,ljehaj}@ist.tugraz.at
2 AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria

Abstract. Computer vision is vital for various applications like object
tracking for autonomous driving or quality assurance. Hence, assur-
ing that computer vision fulfills given quality criteria is essential and
requires sufficient testing. In previous work, authors introduced a testing
method relying on image modifications for a photometric stereo applica-
tion. Image modifications include pixel errors or the rotation of images
to be analyzed, revealing a substantial impact on the computed outcome
of the photometric stereo application, depending on the applied modifi-
cation. This paper focuses on whether we can reproduce the impact of
image modifications in a real-world setup. In particular, we compare the
impact of the rotation of the analyzed sample with the rotation modifi-
cation applied to the image of the sample. The comparison indicates a
similar effect when using rotation, showing that testing based on image
modifications is valuable for verifying computer vision applications.

Keywords: Testing computer vision applications · Test automation ·
Test case generation

1 Introduction

Testing, i.e., finding interactions between a system and its environment that
lead to unexpected or unwanted behavior, is essential to the development and
accounts for up to 50% of the total development costs [1]. To reduce these costs,
we require test automation, which appears in two flavors, i.e., the automation
of test execution and the automated test suite (or test case) generation. When
testing pure software, automated test execution only requires appropriate frame-
works. However, when testing systems comprising hardware and software that
interact with the natural world, the automation of test execution requires addi-
tional hardware that emulates the outside world, which is costly and often only
valid for a particular system under test. The alternative, i.e., testing the system
itself, requires building it, which is costly and prevents testing the system as
early as possible during development.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 40–51, 2023.
https://doi.org/10.1007/978-3-031-43240-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_3&domain=pdf
http://orcid.org/0000-0002-0462-2283
https://doi.org/10.1007/978-3-031-43240-8_3

Evaluating Photometric Stereo Applications Testing 41

Therefore, industries like automotive introduce methods for testing systems
at all stages of development utilizing physical and 3D simulation. Especially
in the case of autonomous driving, such virtual verification becomes inevitable
because of the vast number of potential interactions between the autonomous
car and its environment that we need to consider for quality assurance [7,14,17].
However, when relying on simulation, someone might be interested in answering
whether testing based on simulation is sufficient for fault detection. Unfortu-
nately, there is only little scientific work tackling this question. Sotiropoulos and
colleagues [11] carried out experiments in the area of mobile robotics, where
they used simulation to detect faults already discovered in reality. The paper
indicates that a substantial part of all faults can be identified in simulation
too. However, utilizing the simulation for testing also comes with challenges.
El Mostadi and colleagues [9] discussed several technical challenges influencing
simulation outcomes to virtual testing.

In this paper, we contribute to the question regarding the difference between
virtual and real verification and validation. In particular, we consider the area of
computer vision and focus on testing photometric stereo applications. Such appli-
cations use pictures from different angles or lightning conditions to extract 3D
models. In our case, we consider an implementation for quality assurance of riblet
surfaces. Riblets, which mimic natural surfaces like shark skin, are microstructures
aiming at reducing drag. Application areas are wind turbines, airplanes, and other
devices where drag negatively influences performance. Therefore, any damages in
riblets decrease drag reduction (see e.g. [8]) and may lead to replacing the surface.
For more information regarding the system under test and its testing, we refer to
previous publications [15,16], where we utilized an image modification framework
for generating tests. We used modification operators that mimic faults potentially
occurring in practice, like changing light conditions, missing pixels, or rotations.

In particular, we focus on the rotation operator. We compare the outcome
of the riblet inspection tool [2] on surfaces where we apply manual rotation and
rotations of images utilizing the corresponding operator from an image modifi-
cation framework. This comparison partially answers whether testing based on
an image modification framework captures reality and is the main contribution
of this paper.

It is worth noting that besides the already introduced papers, there is lit-
tle research on testing riblet inspection tools and photometric stereo systems.
Research in riblet inspection focuses mainly on improving photometric stereo
and other algorithms rather than on testing implementations and systems. For
example, [5] presents a CNN-based photometric stereo method that learns the
relationship between the input and surface normals of the scene. It improves con-
ventional BRDF-based photometric stereo algorithms by taking the global light
into account and not only the artificial light sources. Alternatively, [6] intro-
duces a photometric stereo method that makes the photometric stereo more
robust from image noise, and [10] develops a method for testing drag-reduction
riblet-surfaces based on the Spaldig formula.

Most of the papers dealing with testing computer vision focus on the under-
lying methods, e.g., neural networks. Applications of testing include checking

42 F. Wotawa et al.

the robustness of neural networks. [3] creates perturbations (modifications) of
images that a neural network fails to detect or classify correctly. The main focus
is road signs since they are the most vulnerable objects allowing easy manipu-
lation with potentially catastrophic effects. [4] suggest types of attacks on data
that a machine learning algorithm uses to train and test itself. It also points
out machine learning algorithms that cannot defend against these attacks. [12]
shows that different realistic image transformations, like contrast or the presence
of fog, can be used to generate tests that increase neuron coverage. Their exper-
iments show that we can use these images for retraining neural networks. Their
paper uses the testing results as new input for the system to learn and improve.
[13] is another paper considering image misclassification of neural networks due
to adversarial manipulation. In contrast to these papers, we do not focus on a
particular computer vision method like neural networks for image classification.
Instead, we are interested in the impact of real versus simulated modifications
on the outcome of computer vision algorithms like photometric stereo.

We organize this paper as follows: We start introducing the underlying overall
framework and setup of photometric stereo. Afterward, we discuss the carried-
out experiments. The experimental part of this paper is central. We discuss the
setup, the obtained results, and threats to validity. Finally, we summarize the
paper.

2 The System Under Test

The system under test is a computer vision application developed to inspect
the quality of riblet surfaces [2]. Riblet surfaces have tiny symmetric structures
about 50µm high and are used to reduce drag, based on the shark skin effect.
These structures are commonly used, e.g., in aviation, to lower fuel consumption,
but over time they deteriorate and need to be replaced. Therefore, there is a
need for tools that can assess the quality of riblet surfaces. The riblet surface
inspection tool relies on the photometric stereo, which involves using one camera
and multiple light sources to capture images of the same object under different
lighting conditions (see Fig. 1). Photometric stereo applications use these images
to generate a 2.5D model of the object, which computer vision methods can use
to extract object information. The inspection tool we use for our experiments
returns the percentages of defect pixels, scratch pixels, and abrasion pixels of
provided riblets. Defect pixels refer to any destroyed parts of the riblet surface.
The tool categorizes defect pixels as follows: Scratch pixels refer to a group of
pixels that indicate a scratch on the riblet surface, whereas abrasion pixels refer
to any shape of pixel errors that are not scratch-shaped. Hence, the number of
defect pixels is the sum of scratch and abrasion pixels.

We can divide the riblet inspection tool into two main parts: 1) the photom-
etry and 2) the inspection part. The photometry part comprises hardware and
software. As shown in Fig. 1, the tool uses a camera setup with four lights from
four different angles to capture the four image samples of the riblet. Python
software implements the hardware control to capture the four images, one for

Evaluating Photometric Stereo Applications Testing 43

Fig. 1. Principle of the photometric stereo application.

each lighting angle. In addition, the software implements the photometric stereo
algorithms. For this, it requires a calibration procedure, which uses a sample of
four images of the riblet and an image of five spheres. The calibration procedure
shall be performed before each new experiment. Afterward, the implemented
algorithm takes the image sample and constructs a 2.5D model. The output of
this process using the four images is information about the surface normals in x,
y, and z directions. These normals are vectors that show the surface orientation.
In addition, the tool provides the Albedo map that gives information about the
reflectivity or brightness of the surface. It is a 2D image that shows the variations
in the surface’s reflectance properties across different regions.

The photometry output information is input for the inspection part, which
is implemented in Matlab. The inspection output is a defect map showing the
defect, scratch, and abrasion pixels detected. Apart from the defect map, the
inspection tool also outputs a general info text file, which shows all the inspec-
tion results in a textual format. We use the provided textual information for
evaluation.

In our previous work [15], we tested the described riblet inspection tool using
different image modification methods. These methods include: increasing and
decreasing image brightness, changing the pixel color in random areas of the
image, image rotation, color inversion, and simulating camera lens distortion.
We used three different samples of riblet surfaces to apply the modifications.
The carried-out tests revealed a significant impact on the system’s output under
the test of the modification method used. Therefore, we developed an automation
framework for computer vision applications to generate and carry out the tests.

We implemented this general framework for testing computer vision applica-
tions in Python, utilizing native and third-party libraries for data management,
image modification, and user interface. We presented the first version of the
framework in a previous paper (see [16]), and the latest version in [15]. The
framework handles three main components (see Fig. 2). The first is the system
under test. It is used without any changes and connected to the rest of the
framework via a user interface. The second component is the modification com-
ponent. The modification component implements several modification methods
and is independent of the image format. The last component is the evaluation
component. In this component, we call the modification methods on the image

44 F. Wotawa et al.

sample, call the system under test, and write all the results in a structured table.
For testing the riblet surface inspection tool, we had to slightly adapt this gen-
eral framework. We implemented the following steps to test the riblet inspection
tool, which takes the riblet sample with four images of the riblet, each captured
with a different light source angle, as input.

1. Run the riblet inspection tool calibration (process happens inside the system
under test).

2. Run the riblet inspection tool with the original riblet sample as input and
save the inspection results.

3. Perform image modification on the original sample.
4. Run the riblet inspection tool with the modified riblet images as input and

save the inspection results.
5. Output a table with all obtained results for the original and modified images.

In the next section, we discuss the evaluation of the rotation operator con-
sidering manual rotation as the baseline.

Fig. 2. Framework general architecture with numbered steps of its workflow.

3 Experiments

All the experiments are based on an existing framework comprising an image
modification part and the photometric stereo application, i.e., the riblet inspec-
tion tool, we want to test (see [16]). In our experiments, we focussed on evalu-
ating the precision of the rotation modifier in comparison with manual rotation.
Figure 3 depicts the used test setup. Rotations are performed arround the cen-
ter of the riblet under analysis. The experimental setup has two paths. The
first path starts from the images taken from the riblet without rotations (A).
The image snapshot is rotated (B) and passed to the image analysis framework
(PSA) in step (B). This path is referred to the rotation path utilizing the image
modification framework. The second path applies manual rotation in step (1).
Afterward, in step (2) we take the image snapshot and pass this to the analysis

Evaluating Photometric Stereo Applications Testing 45

Fig. 3. Image modification versus manual application. The basic experimental setup.

in step (3). Again we use the same image analysis framework (PS) for computing
the quality of the riblet.

It is worth mentioning that there is a difference in both paths. In the case
of manual rotation, we always obtain a snapshot covering the riblet. This is not
the case when applying the image modification framework where rotation leads
to small areas (which are in white in Fig. 3). Hence, we cover not the whole
riblet surface anymore. Note that in our first experiments, the areas which are
not covered, are replaced with black color. In a further experiment, we used
the following method, which we implemented in python. This method utilizes
the floodfill method from cv2 library1. The method connects every pixel to it’s
neighbor pixels. The connection happens when the difference of two pixels is
within some threshold. If the neighbor pixel is more than 50% different in color,
we make the neighbors pixel color the same as our current pixel. In this way we
fill the black areas with the mostly used color of the entire image.

There are a lot of different quality measures used for comparing results
of different methods. In our case we have the results obtained from manual
inspection, which serve as the baseline. In the experiments, we want to know
how far away results from automated rotation utilizing the image modification
framework are. For measuring the difference between the values obtained from
rotation using the image modification framework and the one from manual rota-
tion, we rely on the relative error defined as follows:

δ =
∣
∣
∣
∣

vA − vE
vE

∣
∣
∣
∣
· 100% (1)

In this formula, vA indicates the actual value, i.e., the value obtained using
the image modification framework, and vE the expected value, i.e., the one we
get when applying manual rotation. Note that we do not know the real value of
the quality of the riblet part from which we take the snapshot. Hence, we use the
1 See https://opencv.org.

https://opencv.org

46 F. Wotawa et al.

relative error for obtaining an indicator of precision and not accuracy. However,
this is sufficient for our analysis because we want to know whether testing based
on image modification is close to expectations.

We carried out the experiments using the first setup using two dif-
ferent riblets. One riblet was from a wind turbine blade with white background
and the other was mounted on a piece of carbon with black background.

Table 1. Defect pixels obtained when rotating a riblet surface of a wind turbine blade
(A), and one on a piece of carbon (B). α indicates the rotation angle. vA the measure-
ment obtained when rotating the riblet using the image modification framework, and
vE the measurement using manual rotation. δ is the computed relative error. The star
“*” indicates the measurement and relative error when using an optimal background
color for missing parts of the image occurring during rotation.

Black backgr. Opt. backgr.
α vE vA δ v∗

A δ∗

0 5.08 5.08 0.00% 5.08 0.00%
1 5.04 5.84 15.87% 6.04 19.84%
5 4.84 6.44 33.20% 7.16 48.09%

10 4.81 7.09 47.40% 9.07 88.57%
20 4.85 7.25 49.61% 8.68 79.12%
30 6.19 7.24 16.91 11.37 83.59%
40 33.25 7.49 77.48% 7.11 78.62%
45 49.82 7.55 84.84% 5.75 88.46%
90 88.39 - - - -

Avg. 40.66% 60.79%
(A) Wind turbine riblet

Black backgr. Opt. backgr.
α vE vA δ v∗

A δ∗

0 2.99 2.99 0.00% 2.99 0.00%
1 2.93 3.82 30.33% 3.88 32.38%
5 3.08 3.93 27.64% 4.05 31.54%

10 3.05 4.34 42.53% 4.42 45.16%
20 3.39 5.00 4.95% 4.95 45.89%
30 3.16 4.83 52.75 5.20 64.45%

Avg. 33.44% 36.57%
(B) Carbon riblet

Table 1 summarizes the obtained experimental results utilizing the available
riblet inspection tool. The rotation angle (α) varies from 0 to 90◦ in case of the
wind turbine blade and from 0 to 30 for the carbon riblet. In column vE , we
see the expected values, i.e., the defect pixels obtained using manual rotation.
Column vA shows the results when using the image modification framework
and black color for filling unknown areas occurring during rotation. Column v∗

A

states the defect pixels when using the optimized coloring instead of black. δ
and δ∗ show the computed relative error for both cases of coloring. When using
black, we have one case of rotation (90◦) for the wind turbine blade riblet where
the riblet inspection tool reveals an error message and does not give back any
information about the defect pixel rate.

Evaluating Photometric Stereo Applications Testing 47

Regarding the results, we see the following. In both coloring cases, the rela-
tive error is rather large varying between 4.95% in the best case for the carbon
riblet to 84.84% for the wind turbine blade riblet. We see also no substantial
changes for the different background colors for missing riblet parts occurring
during automated image rotation. However, we see also that the obtained defect
pixel values are always larger for rotations using the image modification frame-
work in the range from 0 to 30◦. Hence, it seems that the results obtained using
the image modification framework overestimate the real impact of rotation. We
see also that there is an impact of rotation, which automatically modified images
using rotation also are able to reveal.

However, two questions remain after carrying out the first experimental
setup. First, the impact of filling empty areas occurring during rotation is
unclear. Second, there are substantial differences in case of rotations larger than
30◦. To answer the first one, we are going to carry out a second experimen-
tal setup. For the second question, we manually analysed the rotated images.
In Fig. 4, we see a difference between manual and automated rotation, which
should not occur. We also had a look at the images of manual rotation of the
wind turbine blade riblet showing that the manual rotation was not carried out
very precisely. This explains at least partially, the larger differences between
manual and automated rotation.

Fig. 4. Wind turbine blade riblets used for comparing the defect rate when applying
manual and automated rotation of 45◦. On the left, we see the manually rotated image,
and on the right, the image that we rotated using the image modification framework.

48 F. Wotawa et al.

Fig. 5. The second experimental setup where we take a subarea of the original snap-
shots for rotation to minimize empty parts with no riblet information.

To obtain more information regarding the influence of empty areas occur-
ring during rotation when using the image modification framework, we slightly
adapted the original experimental setup and conducted the experiments again
using a second experimental setup. Figure 5 shows the extended setup where
we take a sub-image from the original snapshot (A) having the same height-to-
width ratio but a width w allowing us to perform rotation without empty areas.
For the second experimental setup we focus on rotations between 0 and 30◦ only.

Table 2. Defect pixels obtained for the second experiment using the wind turbine
riblet (A) and the carbon riblet, where we only consider sub-images for minimizing
empty areas during image rotation. vA is the measurement obtained when rotating
the riblet using the image modification framework, and vE is the measurement using
manual rotation. δ is the computed relative error.

α vE vA δ

0 1.78 1.78 0.00%
1 2.52 1.71 32.12%
5 4.57 1.44 68.52%

10 10.40 0.92 91.15%
20 10.91 0.76 93.03%
30 11.95 0.81 93.22%

Avg. 67.77%
(A) Wind turbine riblet

α vE vA δ

0 4.74 4.74 0.00%
1 4.79 4.96 3.48%
5 4.76 5.13 7.80%

10 4.47 5.21 16.45%
20 4.41 4.35 1.29%
30 3.36 3.84 14.35%

Avg. 7.23%
(B) Carbon riblet

Table 2 comprises the results of the second experiment. For rotations up to
30◦, we see no improvements in case of the wind turbine riblet but substantial
improvements for the carbon riblet. We further analysed the manual rotation

Evaluating Photometric Stereo Applications Testing 49

for the wind turbine riblet for smaller rotations. We found that even for smaller
manual rotations there are visible differences that cannot be explained using
rotational effects. Hence, it seems that the whole manual rotation for the wind
turbine blade was not carried out with sufficient precision.

Hence, in the following analysis, we only focus on the carbon riblet case.
There we see a substantially smaller relative error compared to the first exper-
iments. On average, we obtain 7.23% relative error, which is an excellent preci-
sion. This value is also substantially smaller compared to the results from the
first experimental setup. Hence, we can conclude that when relying on rotations
not introducing areas to be filled, the overall results of defect pixels obtained
from the image modification framework are within the range of manual rota-
tion. Hence, image modification can be used for carrying out testing providing
reasonable precision, where reasonable means that the automated modifications
are close to the manual modifications.

In summary, we can conclude the following from the two experiments:

– A high precision of manual rotation is required to allow comparing its outcome
with the one of automated rotation.

– The precision of automated rotation for testing is sufficient when eliminating
influencing factors like missing area information.

– Using image modification frameworks is able to indicate influences like rota-
tion on the computed number of defects even in cases where precision is not
that appropriate.

– Testing using image modification may overestimate the influence of faults like
rotation on the overall result.

Threats to validity mainly comprise internal threats. We only used two particular
riblets for carrying out the experiments. We did not select the riblet accordingly
to specific influencing parameters if there are even any. Hence, we do not expect
substantial differences when using more riblets. We may used the riblet inspec-
tion tool wrongly when carrying out the experiments leading to different results.
This threat is very unlikely because of several reasons. First, we used the same
setup in previous work, gaining sufficient experience for using the image analy-
sis framework. Second, we checked our toolchain for shortcomings several times.
Finally, we used the same setup for carrying out all the experiments. Because we
carried out all experiments automatically using a program, there cannot be any
direct human influence on the results of image modification. However, of course,
we have an indirect influence caused by manual rotations, where the center of
rotation or the degrees of rotation might not be 100% precise. We evaluated
images of manual rotation as part of analysis.

For external threats, we may have an interaction effect of selection biases
and the experimental variable, i.e., the number of pixel defects measured using
the image analysis framework. However, we do not see it very likely that man-
ual rotation and automated rotation are substantially different for other riblet
surfaces.

50 F. Wotawa et al.

4 Conclusions

This paper tackled investigations on the differences between image modification
based on programs and manual modifications. The motivation behind this is to
contribute to the clarification of whether simulations used in testing are accurate
enough to reveal faults or any other conclusions. In particular, we focused on
testing computer vision applications (and, in this case, a riblet inspection tool)
where testing relies on automated image modification frameworks. We compared
the results obtained using manual rotations of riblets with the ones computed
using image rotation. The experiments reveal that there are several influencing
parameters on the outcome. First, the precision of manual rotation cannot always
be guaranteed, obviously influencing the outcome of the analysis. Second, we
must pay attention to the effects of automatic rotation, like empty areas.

We do not see any substantial difference in the computed outcome when
considering mentioned pitfalls. Moreover, even the first experiments show that
using image modification operators reveal potential relationships between faults
and their impact. For example, image modification already showed the impact
of image rotation on the outcome of the riblet inspection tool but overestimated
this. Hence, testing computer vision using image modification can provide good
results, which are sufficient for practice. In future research, we want to extend
this evaluation to other types of image modifications.

Acknowledgements. This work is funded by the Austrian Research Promotion
Agency (FFG) within the project RiSPECT (874163).

References

1. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold (1990)
2. Brosch, N., Ginner, L., Schneider, S., Antensteiner, D., Traxler, L.: Quality inspec-

tion of translucent and micro-structured functional surfaces. In: Jalali, B., ichi
Kitayama, K. (eds.) AI and Optical Data Sciences III, vol. 12019, pp. 173–184.
International Society for Optics and Photonics, SPIE (2022). https://doi.org/10.
1117/12.2605273

3. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classifi-
cation. CVPR J. (2018)

4. Goodfellow, I., McDaniel, P., Papernot, N.: Making machine learning robust
against adversarial inputs. Commun. ACM 61(7), 56–66 (2018). https://doi.org/
10.1145/3134599

5. Ikehata, S.: CNN-PS: CNN-based photometric stereo for general non-convex sur-
faces. In: Proceedings of the European Conference on Computer Vision (ECCV)
(2018)

6. Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo using
sparse regression. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 318–325 (2012). https://doi.org/10.1109/CVPR.2012.6247691

7. Klück, F., Wotawa, F., Neubauer, G., Tao, J., Nica, M.: Analysing experimental
results obtained when applying search-based testing to verify automated driving
functions. In: DSA, pp. 213–219. IEEE (2021)

https://doi.org/10.1117/12.2605273
https://doi.org/10.1117/12.2605273
https://doi.org/10.1145/3134599
https://doi.org/10.1145/3134599
https://doi.org/10.1109/CVPR.2012.6247691

Evaluating Photometric Stereo Applications Testing 51

8. Leitl, P.A., Wotawa, F., Naughton, J.W., Feichtinger, C., Husen, N.M., Flanschger,
A.: Measurements of macroscopic and microscopic riblet defects and their impact
on performance. In: Proceedings of the AIAA SCITECH 2022 Forum, vol. 37, San
Diego, CA & Virtual (2022). https://doi.org/10.2514/6.2022-0916

9. Mostadi, M.E., Waeselynck, H., Gabriel, J.M.: Seven technical issues that may ruin
your virtual tests for ADAS. In: 2021 IEEE Intelligent Vehicles Symposium (IV),
pp. 16–21 (2021). https://doi.org/10.1109/IV48863.2021.9575953

10. Song, B.W., Liu, Z.Y., Xu, T., Hu, H.B., Huang, M.M.: A method for testing drag-
reduction on riblet surfaces based on the Spalding formula. J. Mar. Sci. Appl. 8(4),
333–337 (2009). https://doi.org/10.1007/s11804-009-8073-5

11. Sotiropoulos, T., Waeselynck, H., Guiochet, J., Ingrand, F.: Can robot naviga-
tion bugs be found in simulation? An exploratory study. In: 2017 IEEE Interna-
tional Conference on Software Quality, Reliability and Security (QRS), pp. 150–159
(2017). https://doi.org/10.1109/QRS.2017.25

12. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th International Confer-
ence on Software Engineering, ICSE 2018, pp. 303–314. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3180155.3180220

13. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: International Conference on Tools and Algorithms for
Construction and Analysis of Systems (2017)

14. Wotawa, F.: On the importance of system testing for assuring safety of AI systems.
In: AISafety@IJCAI. CEUR Workshop Proceedings, vol. 2419. CEUR-WS.org
(2019)

15. Wotawa, F., Jahaj, L.: Testing photometric stereo applications. In: 2022 9th Inter-
national Conference on Dependable Systems and Their Applications (DSA) (2022).
https://doi.org/10.1109/DSA56465.2022.00029

16. Wotawa, F., Klampfl, L., Jahaj, L.: A framework for the automation of test-
ing computer vision systems. In: 2021 IEEE/ACM International Conference on
Automation of Software Test (AST), pp. 121–124 (2021). https://doi.org/10.1109/
AST52587.2021.00023

17. Wotawa, F., Peischl, B., Klück, F., Nica, M.: Quality assurance methodologies for
automated driving. Elektrotech. Informationstechnik 135(4–5), 322–327 (2018)

https://doi.org/10.2514/6.2022-0916
https://doi.org/10.1109/IV48863.2021.9575953
https://doi.org/10.1007/s11804-009-8073-5
https://doi.org/10.1109/QRS.2017.25
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1109/DSA56465.2022.00029
https://doi.org/10.1109/AST52587.2021.00023
https://doi.org/10.1109/AST52587.2021.00023

Seeding Contradiction: A Fast Method
for Generating Full-Coverage Test Suites

Li Huang1, Bertrand Meyer1,2(B) , and Manuel Oriol1

1 Constructor Institute, Schaffhausen, Switzerland
{li.huang,bm,mo}@sit.org

2 Eiffel Software, Santa Barbara, CA, USA
https://constructor.org, https://eiffel.com

Abstract. The regression test suite, a key resource for managing pro-
gram evolution, needs to achieve 100% coverage, or very close, to be
useful. Devising a test suite manually is unacceptably tedious, but exist-
ing automated methods are often inefficient. The method described in
this article, “Seeding Contradiction”, inserts incorrect instructions into
every basic block of the program, enabling an SMT-based Hoare-style
prover to generate a counterexample for every branch of the program
and, from the collection of all such counterexamples, a test suite. The
method is static, works fast, and achieves excellent coverage.

Keywords: Testing · Coverage · Software verification · Eiffel

1 Overview

In the modern theory and practice of software engineering, tests have gained a
place of choice among the artifacts of software production, on an equal footing
with code. One particularly important rule is that every deployed program should
come accompanied with a regression test suite achieving high branch coverage
and making it possible to check, after any change to the software, that previous
functionality still works: no “regression” has occurred.

Producing a high-coverage regression test suite is a delicate and labor-
intensive task. Tools exist (such as RANDOOP [23], Pex [25], AutoTest [4] and
Korat [7]) but they are typically dynamic, meaning that they require numerous
executions of the code. The Seeding Contradiction (SC) method and the sup-
porting tools presented in this article typically achieve 100% coverage (excluding
unreachable code, which they may help detect) and involve no execution of the
code, ensuring very fast results.

The principal insight of Seeding Contradiction is to exploit the power of
modern program provers, which attempt to generate a counterexample of pro-
gram correctness. In normal program proving, we hope that the prover will not
find such a counterexample: a proof follows from the demonstrated inability to
disprove the program’s correctness. Switching the focus from proofs to tests, we
may look at counterexamples in a different way: as test cases. We may call this

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 52–70, 2023.
https://doi.org/10.1007/978-3-031-43240-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_4&domain=pdf
http://orcid.org/0000-0002-5985-7434
https://doi.org/10.1007/978-3-031-43240-8_4

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 53

approach Failed Proofs to Failing Tests or FP-FT. Previous research (including
by some of the present authors) has exploited FP-FT in various ways [13,14,20].
Seeding Contradiction extends FP-FT to a new goal: generating a full-coverage
test suite, by applying FP-FT to seeded versions of the program in which a
branch has on purpose been made incorrect. For every such variant, the prover
generates a counterexample exercising the corresponding branch. Combining the
result for all branches yields a high-coverage test suite. In fact coverage is nor-
mally 100%, with the following provisions:

• Some branches may be unreachable. Then by definition no test could cover
them; the tool may help identify such cases. (Terminology: we will use the
term exhaustive coverage to mean 100% coverage of reachable branches.)

• Limitations of the prover may prevent reaching 100%. In our examples so far
such cases do not arise.

The method involves no execution of the code and on examples tried so far
produces a test suite much faster than dynamic techniques (Sect. 5).

The current setup involves the AutoProof [3,26] verification framework for
contract-equipped Eiffel [19] code, relying internally on the Boogie proof system
[5,18] and the Z3 SMT solver [11]. It is generalizable to other approaches.

The discussion is organized as follows. Section 2 presents the approach by
considering a small example. Section 3 examines the theoretical correctness of
that approach. Section 4 describes the extent to which we have applied it so far,
and Sect. 5 assesses the results. Section 6 discusses limitations of the current state
of the work and threats to validity of the evaluation results. Section 7 reviews
related work and Sect. 8 presents conclusions and future work.

2 The Method

A simple code example will illustrate the essential idea behind Seeded Compo-
sition.

2.1 Falsifying a Code Block

Consider a small routine consisting of a single conditional instruction:
simple (a: INTEGER)

do
if a > 0 then x := 1 else x := 2 end

end

where x is an integer attribute of the enclosing class. In a Design-by-Contract
approach intended to achieve correctness by construction, the routine might
include the following postcondition part (with =⇒ denoting implication):

ensure
a > 0 =⇒ x = 1
a ≤ 0 =⇒ x = 2

54 L. Huang et al.

With or without the postcondition, how can we obtain a regression test suite
that will exercise both branches?

Various techniques exist, discussed in Sect. 7 and generally requiring execu-
tion of the code. The Seeding Contradiction technique is, as noted, static (it does
not involve executing the code); it assumes that we have a toolset for proving
program correctness. Specifically, we rely on the AutoProof environment [3,26],
with a tool stack presented in Fig. 1, in which the Boogie prover is itself based
on an SMT solver, currently Z3. A characteristic of this style of proof is that it
relies on a disproof of the opposite property: the SMT solver tries to construct
at least one counterexample, violating the desired result. If it cannot find one,
the proof is successful.

Fig. 1. AutoProof tool stack

In this work, as in previous articles using the general FP-FT approach [13,14],
we are interested in a proof that actually fails: then the counterexample can be
useful on its own, yielding a directly usable test.

In contrast with the earlier FP-FT work, the proof that will fail is not a proof
of the actual program but of a modified version, into which we have inserted
(“seeded”) incorrect instructions. In the example, we change the first branch, so
that the routine now reads

simple (a: INTEGER)
do

if a > 0 then
check False end -- This is the added instruction
x := 1 -- The rest is unchanged.

else
x := 2

end
end

A “check C end” instruction (assert C in some other notations [17]) states
that the programmer expects condition C to hold at the corresponding program
point. Specifically, its semantics is the following, from both a dynamic perspec-
tive (what happens if it gets executed) and a static, proof-oriented perspective:
• From a dynamic viewpoint, executing the instruction means: if condition C

has value True at that point, the check instruction has no effect other than
evaluating C; if C evaluates to False and the programmer has enabled run-
time assertion monitoring, as possible in EiffelStudio, execution produces a
violated-assertion exception, usually implying that it terminates abnormally.

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 55

• In the present discussion’s static approach, the goal is to prove the program
correct. The semantics of the check instruction is that it is correct if and
only if the condition C alway has value True at the given program point. If
the prover cannot establish that property, the proof fails.

In a general FP-FT approach, the key property is that in the static view, if
the proof fails, an SMT-based prover will generate a counterexample. In the
Seeding Contradiction approach, C is False: the proof always fails and we get a
counterexample exercising the corresponding branch—exactly what we need if,
as part of a regression test suite, we want a test exercising the given branch.

For the simple code seeded with a check False end, such a counterexample
will, by construction, lead to execution of the first branch (a > 0) of the condi-
tional. If we have an efficient mechanism to turn counterexamples into tests, as
described in earlier work [13,14], we can get, out of this counterexample, a test
of the original program which exercises the first branch of the conditional.

Such a generated test enjoys several interesting properties:

• It can be produced even in the absence of a formal specification (contract
elements such as the postcondition above).

• Unless the enclosing code (here the routine simple) is unreachable, the test
can be produced whether the program is correct or incorrect.

• If the program is correct, the test will pass and is useful as a regression test
(which may fail in a later revision of the program that introduces a bug).

• Generating it does not require any execution.
• That generation process is fast in practice (Sect. 5).

The next sections will show how to generalize the just outlined idea to pro-
duce such tests not only for one branch as here but for all branches of the
program, as needed to obtain an exhaustive-coverage regression test suite.

2.2 Block Variables

To generalize the approach, the following terminology is useful. So far it has
been convenient to talk informally of “branches”, but the more precise concept is
basic block, defined in the testing and compilation literature as a sequence of
instructions not containing conditionals or loops. (This definition is for a struc-
tured program with no branching instructions. In a more general approach, a
basic block is any process node—as opposed to decision nodes—in the program’s
flowchart.) “Block” as used below is an abbreviation for “basic block”.

The method illustrated on the simple example generates a test guaranteed to
exercise a specific block of a correct program: seed the program by adding to the
chosen block one check False end instruction. Then, as seen in the example, we
run the prover and apply the FP-FT scheme: since the program is now incorrect,
the proof fails and the prover generates a counterexample, which we turn into a
runnable test guaranteed to exercise the given block in the original program.

To generalize this approach so that it will generate a test suite exercising all
blocks, a straightforward idea is “Multiple Seeded Programs” (MSP): generate

56 L. Huang et al.

such a seeded program for each of its blocks in turn; then run the prover on
every such program, in each case producing a counterexample and generating a
test from it. Subject to conditions in Sect. 3 below, the MSP approach is correct,
in the sense that together the generated tests exercise all reachable blocks. It is,
however, impractical: for a single original program, we would need to generate
a possibly very large number of seeded programs, and run every one of them
through the prover.

To obtain a realistic process, we can instead generate a single seeded program,
designed to produce the same counterexamples as would all the MSP-generated
programs taken together. A helpful property of a good counterexample-based
prover is that it can deal with a program containing several faults and generate
a set of counterexamples, each addressing one of the faults. In the example above,
we can submit to the prover a single seeded program of the form

simple (a: INTEGER)
do

if a > 0 then
check False end
x := 1 -- Instruction 1

else
check False end
x := 2 -- Instruction 2

end
end

which will produce two counterexamples, one for each branch. We call this app-
roach “RSSP” (Repeatedly Seeded Single Program). With AutoProof, the FP-FT
tools generate tests with a = 1 and a = 0. (More precisely, the prover initially
generates larger and less intuitive values, but a minimization technique described
in earlier work [14] produces 1 and 0.)

This approach does not suffice for more complex examples. Assume that after
the conditional instruction the routine simple includes another conditional:

-- This code comes after the above conditional (Instructions 1-2)
if a2 > a then

x := 3 -- Instruction 3
else

x := 4 -- Instruction 4
end

With the program seeded as above, even if we insert a check False end
into each of the two new blocks (before Instructions 3 and 4), we will get tests
covering only two cases (1-4, 2-4), not four (1-3, 1-4, 2-3, 2-4) as needed. These
two tests, a = 1 and a = 0, fail to cover Instruction 3. The reason is that the
prover does not generate specific tests for the branches of the second conditional
(3–4) since it correctly determines that they are unreachable as both branches of
the first conditional (1–2) now include a check False end. They were, however,
both reachable in the original! The test suite fails to achieve exhaustive coverage.

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 57

The solution to this “Seeded Unreachability” issue is to make the check them-
selves conditional. In the seeded program, for every routine under processing,
such as simple, we may number every basic block, from 1 to some N, and add to
the routine an argument bn (for “block number”) with an associated precondition

require
bn ≥ 0 -- See below why 0 and not 1.
bn ≤ N

To avoid changing the routine’s interface (as the addition of an argument
implies), we will instead make bn a local variable and add an initial instruction
that assigns to bn, non-deterministically, a value between 0 and N. Either way,
we now use, as seeded instructions, no longer just check False end but

if bn = i then check False end end

where i is the number assigned to the block. In the example, the fully seeded rou-
tine body for the extended version of simple with two conditionals, is (choosing
the option of making bn a local variable rather than an argument):

bn := ‘‘Value chosen non−deterministically between 0 and N’’
if a > 0 then

if bn = 1 then check False end end
x := 1 -- Instruction 1

else
if bn = 2 then check False end end
x := 2 -- Instruction 2

end

if a2 > a then
if bn = 3 then check False end end
x := 3 -- Instruction 3

else
if bn = 4 then check False end end
x := 4 -- Instruction 4

end

As in the previous attempt, there are four incorrect check False instruc-
tions, but all are now reachable for bn values ranging from 1 to 4. The prover
generates counterexamples exercising all the paths of the original program (with
appropriately generated values for its original variables). In this case there is
only one relevant variable, a; AutoProof’s prover generates, for the pair [bn, a],
the test values [1, 1], [2, 0], [3, −1], [4, 0]. These four tests provide 100% branch
coverage for the program and can serve as a regression test suite. We call this
technique Conditional Seeding; it addresses the Seeded Unreachability issue.

As noted above, we accept for bn not only values between 1 and N (the num-
ber of basic blocks) but also 0. This convention has no bearing on test generation
and coverage but ensures that the behavior of the original program remains pos-
sible in the seeded version: for bn = 0, none of the seeded check False will
execute, so the program behaves exactly as the original. If the original was cor-
rect, the prover will not generate any counterexample for that value.

58 L. Huang et al.

3 Correctness

The goal of a test-suite-generation strategy is to produce high-coverage test suites.
The Seeding Contradiction strategy is more ambitious: we consider it correct if
it achieves exhaustive coverage (as defined in Sect. 1: full coverage of reach-
able branches). More precisely, we will now prove that SC is “coverage-complete”
if the prover is “reachability-sound”, “correctness-sound” and “counterexample-
complete”. Section 3.1 defines these concepts and Sect. 3.2 has the proof.

3.1 Definitions and Assumptions

Establishing the correctness of SC requires precise conventions and terminology.
A general assumption is the availability of an “FP-FT” mechanism which, as

described in previous articles [13], can produce directly executable tests (expressed
in the target programming language, in our case Eiffel) from counterexamples pro-
duced by the SMT-based prover. As a consequence, the rest of this discussion does
not distinguish between the notions of counterexample and test.1

The definition of basic block, or just block for short, appeared earlier
(Sect. 2.2).

For simplicity, we assume that the programs are structured, meaning that
they use sequences, loops and conditionals as their only control structures. Also,
we consider that a conditional always includes exactly one “else” part (possibly
empty), and that a loop has two blocks, the loop body and an empty block (cor-
responding to the case of zero iterations). Further, expressions, particularly con-
ditional expressions used in conditional instructions, are side-effect-free. Thanks
to these conventions, instruction coverage (also known as statement coverage)
and branch coverage are the same concept, called just “coverage” from now on.

A (possibly empty) block of a program is reachable if at least one set of input
values will cause it to be executed, and otherwise (if, regardless of the input, it
cannot be executed) unreachable. Reachability is an undecidable property for
any realistic programming language, but that need not bother us since this work
relies on a prover of which we will only require that it be reachability-sound:
if a block is reachable, the prover will indeed characterize it as reachable. (The
prover might, the other way, wrongly characterize a block as reachable when in
fact it is not: with if cos2 (x) + sin2 (x) = 100 then y := 0 else y := 1
end, the prover might consider y = 0 as a possible outcome if it does not have
enough built-in knowledge about trigonometric functions. That too-conservative
determination does not endanger the SC strategy.)

A program may contain instructions of the form check C end, with no effect
on execution (as previewed in Sect. 2). Such an instruction is correct if and only
if the condition C will hold on every execution of the instruction. This property
is again undecidable, and again we only need the prover to be correctness-
sound: if it tells us that an instruction is correct, it is. (We hope the other way
1 Counterexamples that the prover generates at first can use arbitrary values, sometimes

too large to be meaningful to programmers; as noted in Sect. 2.2, a minimization strat-
egy is available to produce more intuitive values. The SC technique and its analysis
are independent of such choices of counterexamples.

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 59

around too, but do not require it.) For the SC strategy we are interested in the
trivial case for which C is False.

Also for simplicity, we assume that all correctness properties are expressed in
the form of check instructions; in particular, we replace any contract elements
(preconditions, postconditions, loop invariants and variants, class invariants) by
such instructions added at the appropriate places in the program text.

With this convention, a block is correct if all its check instructions are, and
a program is correct if all its blocks are. For a normally written program, this
definition means that the program is correct in the usual sense; in particular, if it
has any contracts, it satisfies them, for example by having every routine ensure
its postcondition. The SC strategy, by adding check False end to individual
blocks, makes these blocks—and hence the program as a whole—incorrect.

A test suite is a collection of test cases for a program.
A test suite achieves exhaustive coverage if for every reachable block in

the program at least one of its test cases causes that block to be executed.
(Note the importance of having a reachability-sound prover: if it could wrongly
mark some reachable blocks as unreachable, it could wrongly report exhaustive
coverage, which is not acceptable. On the other hand, if it is reachability-sound,
it may pessimistically report less-than-exhaustive coverage for a test suite whose
coverage is in fact exhaustive, a disappointing but not lethal result. This case
does not occur in our examples thanks to the high quality of the prover.)

A test-suite-generation method (such as Seeding Contradiction) is coverage-
complete if the generated test suite achieves exhaustive coverage for any correct
program. In other words, for each reachable basic block of a correct program, at
least one test in the suite will execute the block.

Finally, consider a prover that can generate counterexamples for programs it
cannot prove correct. The prover is counterexample-complete if it generates a
counterexample for every block that it determines to be reachable and incorrect.

With these conventions, the correctness of the Seeding Contradiction method
is the property (proven next) that

If the prover is reachability-sound, correctness-sound and counterexample-
complete, SC is coverage-complete.

3.2 Proof of Correctness

To establish that correctness holds, on the basis of the preceding definitions, we
first establish the following two lemmas:

1 Any test case of a seeded program (the program modified by addition of
check instructions as described above) yields, by omitting the bn variable, a
test case of the original program, exercising the same basic block.

2 Any reachable block of the original program is reachable in the seeded one.

The proof of both lemmas follows from the observation that the seeded pro-
gram has the same variables as the original except for the addition of the bn
variable, which only appears in the conditional check instructions and hence

60 L. Huang et al.

does not affect the behavior of the program other than by possibly causing exe-
cution of one of these instructions in the corresponding block. If bn has value i
in such an execution, the execution of all blocks other than the block numbered
i (if any—remember that we accept the value 0 for bn), in particular the execu-
tion of any block in an execution path preceding the possible execution of block
i, proceeds exactly as in the original unseeded program. As a result:

• Any test executing block number i in the seeded program for any i has, for
all other variables (those of the original program), values that cause execution
of block i in the original program too, yielding Lemma 1.

• Consider a reachable block, numbered i, of the original program. Since it is
reachable, there exists a variable assignment, for the variables of the original
program, that causes its execution. That variable assignment complemented
by bn = i causes execution of block i in the seeded program, which is therefore
reachable, yielding Lemma 2.

To prove that SC satisfies the definition of correctness (given at the end of
Sect. 3.1):

• Assume that the original program is correct; then the only incorrect instruc-
tions in the seeded program are the added conditional check instructions (the
if C then check False end at the beginning of every block).

• Consider an arbitrary reachable basic block B, of the original program.
Because of Lemma 2, it is also reachable in the seeded program.

• If the prover is reachability-sound, it indeed determines that block B is (in
the seeded program) reachable.

• If the prover is also correctness-sound, it determines that B’s seeded check
instruction is incorrect, and hence (by definition) that B itself is incorrect.

• Then if it is counter-example-complete it will generate a counterexample that
executes B in the seeded program.

• By Lemma 1, that counterexample yields a test that executes block B in the
original program.

• As a consequence, by the definition of correctness above, the Seeding Contra-
diction strategy is correct.

3.3 Correctness in Practice

To determine that SC as implemented is correct, we depend on properties of the
prover: the definition assumes that the prover is reachability-sound, correctness-
sound and counterexample-complete.

To our knowledge, no formal specification exists for the relevant tools in our
actual tool stack (Fig. 1), particularly Z3 and Boogie. In their actual behavior
as observed pragmatically, however, the tools satisfy the required properties.

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 61

4 Implementation

We have implemented Seeding Contradiction strategy in the form of a new option
of the AutoProof program-proving framework, called “Full-coverage Test Gener-
ation” (FTG)2. The implementation relies on the FP-FT [13,14] feature of Auto-
Proof, which enables automatic generation of failed tests from failed proofs. The
objective is to add the incorrect check instructions at the appropriate program
locations so that the verification of the seeded program results in proof failures,
yielding an exhaustive-coverage test suite as described above.

Like the rest of AutoProof, seeding is modular: routine by routine. It is
applied at the Boogie level, so that the Eiffel program remains untouched. The
Boogie equivalent of the check instruction is written assert. Depending on the
structure of the code for a routine r, five cases arise, reviewed now.

A - Plain Block. If the body of r includes no conditional and hence has only
one path, the SC strategy inserts a single assert false at the beginning of the
body. Verification of r results in failure of the assertion; by applying FP-FT, we
obtain a valid test case of r (whose test input satisfies the precondition).

B - Implicit Else Branch. If r contains a conditional whose else branch is
implicit, SC makes it explicit and produces a test case covering the branch. Figure 2
shows an example: SC inserts two assert clauses, one in the then branch and the
other in the else branch that it creates. Running the proof produces two coun-
terexamples for the two injected assert clauses, hence two tests.

Fig. 2. Instrumentation for r with implicit else branch. Left: original Eiffel code of
r. Right, seeded Boogie code. Bi (i ∈ {0, 1, 2}) is a basic block in Eiffel, c a branch
predicate evaluating to true or false, T (Bi) the Boogie translation of Bi.

C - Cascading Branches. If r has a series of branches placed sequentially, as
in Fig. 3, the SC algorithm inserts an assert false clause in each branch. The
resulting tests cover all branches.

D - Nested Branches. When conditionals are nested, SC only generates tests
targeting the leaf branches—those with no embedded conditionals. This app-
roach is sound since any program execution that exercises a leaf branch must
also go through all the branches leading to it. Figure 4 has three leaf branches
2 AutoProof including the FTG option is available for download at

github.com/huangl223/ES-AP-Installation.

https://github.com/huangl223/ES-AP-Installation

62 L. Huang et al.

Fig. 3. Instrumentation for cascading branches: three assert false clauses are
inserted for the three branches in r; note that the elseif instruction in Eiffel, together
with the last else instruction, is mapped to a nested if−else instruction in Boogie.

for blocks B2, B3 and B5. Any execution going through B2 and B3 will exercise
B1; SC only inserts assert instructions for leaves (none for B1).

Fig. 4. Instrumentation for nested branches

E - Sequential Decisions. If r has multiple successive decision instructions, as
in Fig. 5, SC inserts the conditional assert false instructions as explained in
Sect. 2.2. It declares a variable bn for the block number and adds “if (bn == i)
assert false;”. Since the value of bn is between 0 and N (number of target
blocks), it adds a clause “requires bn≥0 && bn≤N” to the precondition of r.

5 Evaluation and Comparison with Dynamic Techniques

We performed a performance evaluation of Seeding Contradiction as imple-
mented in AutoProof per the preceding section, comparing it to two existing
test generation tools: IntelliTest [25] (previously known as Pex, a symbolic exe-
cution test-generation tool for .NET) and AutoTest [4], a test generation tool
for Eiffel using Adaptive Random Testing, specifically ARTOO [10]).

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 63

Fig. 5. Instrumentation for sequential conditionals

5.1 Comparison Criteria and Overview of the Results

The experiment applies all three tools to generate tests for 20 programs adapted
from examples in the AutoProof tutorial3 and benchmarks of previous software
verification competitions [6,15,27]. Table 1 lists their characteristics, including
implementation size (number of Lines Of Code) and number of branches.

Table 1. Examples
Account Clock Heater Lamp Max Linear

Search
Insertion
Sort

Gnome
Sort

Square
root

Sum and
max

Arithmetic

LOC 214 153 102 95 49 64 122 62 56 56 204
Branches 14 10 8 8 3 5 5 5 5 4 14

Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

Total

74 89 188 49 85 232 167 165 183 2409
5 7 11 4 6 9 5 5 8 141

The comparison addresses three metrics: coverage; time needed to generate
the tests; size of the test suite. All code and results are available at https://
github.com/huangl223/ICTSS2023.

The examples are originally in Eiffel; we translated them manually into C#
for IntelliTest. The experiment includes a test generation session for every exam-
ple in every tool. For AutoTest, whose algorithms keeps generating tests until a
preset time limit, it uses 10min (600 s) as that limit; there is no time limit for
the other two approaches.

All sessions took place on a machine with a 2.1GHz Intel 12-Core proces-
sor and 32 GB of memory, running Windows 11 and Microsoft .NET 7.0.203.
Versions used are: EiffelStudio 22.05 (used through AutoProof and AutoTest);
Boogie 2.11.10; Z3 solver 4.8.14; Visual Studio 2022 (integrated with IntelliTest).

Table 2 shows an overview of the results. SC and IntelliTest handle the exam-
ples well, with coverage close to 100%; SC reaches exhaustive coverage (100%
coverage of reachable branches) for all 20 examples and IntelliTest for 19 exam-
ples. AutoTest, due to its random core, achieves the lowest coverage, reaching
exhaustive coverage for only 7 examples.
3 http://autoproof.sit.org/autoproof/tutorial.

https://github.com/huangl223/ICTSS2023
https://github.com/huangl223/ICTSS2023
http://autoproof.sit.org/autoproof/tutorial

64 L. Huang et al.

Table 2. Overall result
Metrics SC IntelliTest AutoTest

Avg. branch coverage 99.37% 97.15% 81.2%
Number of examples reaching exhaustive coverage 20 19 7

Avg. time for reaching exhaustive coverage (s) 0.487 27 259
Avg. number of generated tests for reaching exhaustive coverage 6.26 10.47 623.28

To reach exhaustive coverage, SC performs significantly faster than the other
two: it needs less than 0.5 s on average—about 50 times less than IntelliTest and
500 times than AutoTest. SC also generates the smallest test suite; the average
size of the exhaustive-coverage test suite from IntelliTest is slightly larger than
SC, and both are much smaller than AutoTest. The importance of minimizing
the size of test suites has become a crucial concern [22].

5.2 Detailed Results

Table 3 shows coverage results. For each example, we executed the generated test
suite and calculated coverage as the ratio of number of exercised branches over
number of branches. SC always reaches exhaustive coverage (the maximum pos-
sible for Lamp is 87.5% as it contains an unreachable branch). IntelliTest reaches
exhaustive coverage for most examples but misses it for Account and Lamp.
AutoTest’s coverage varies from 50% to 100%. Occasionally, it performs better
than IntelliTest, reaching the maximum 87.5% for Lamp against IntelliTest’s 50%.

Table 3. Result: branch coverage
Account Clock Heater Lamp Max Linear

Search
Insertion
Sort

Gnome
Sort

Square
root

Sum and max

SC 100% 100% 100% 87.5% 100% 100% 100% 100% 100% 100%
IntelliTest 92.85% 100 % 100% 50% 100% 100% 100% 100% 100% 100%
AutoTest 78.6% 70% 62.5% 87.5% 66.7% 100% 80% 60% 100% 100%

Arithmetic Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 85.7 % 72.7 % 75% 83.3% 100% 80% 80% 50%

Table 4 gives the time needed to produce the test suite in the various
approaches, using the following conventions:

• For SC, time for test generation includes two parts: proof time (for Auto-
Proof) and time for extracting tests from failed proofs (time for FP-FT).

• For AutoTest, the time is always the 10-minute timeout, chosen from experi-
ence: within that time, test generation of examples usually reaches a plateau.

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 65

• IntelliTest does not directly provide time information. We measure duration
manually by recording the timestamps of session start and termination.

In Table 4 results, SC is the fastest of the three, with all its test generation
runs taking less than 1 s. For IntelliTest, test generation takes less than 40 s for
most examples, but three of them out of 20 require more than one minute. For
AutoTest, test generation time varies from 1.71 s for Square root to more than
20min for Sum and max.

Table 4. Result: time (in seconds) to reach maximum coverage
Account Clock Heater Lamp Max Linear

Search
Insertion
Sort

Gnome
Sort

Square
root

Sum and max

SC 0.56 0.44 0.85 0.39 0.37 0.36 0.42 0.52 0.26 0.37
IntelliTest 9.58 7.44 8.06 – 8.19 9.63 11.77 10.89 12.86 10.99
AutoTest – – – 233.03 – 21.95 – – 1.71 1322.61

Arithmetic Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

0.415 0.44 0.48 0.43 0.52 0.39 0.90 0.50 0.59 0.54
32.98 99.29 13.07 31.36 9.59 80.91 111.57 17.81 14.74 12.32
14.49 150.86 – 330.89 – – 78.37 – – –

Another important criterion, when a tool covers all the branches of a pro-
gram, is how many redundant tests it produces. Table 5 presents the sizes of
the generated test suites of the three tools when reaching exhaustive coverage.
From a software engineering viewpoint, particularly for the long-term health of
a project, a smaller size achieving the same coverage is better, since it results
in a more manageable test suite giving the project the same benefits as a larger
one.

Among the three tools, SC generates the fewest tests. In most cases, the
number of tests is the same as the number of blocks: as each generated test results
from a proof failure of an incorrect instruction, seeded at one program location,
each test covers just the corresponding block and introduces no redundancy. If
nested branches are present, the size of the test suite can actually be less than the
number of branches: SC only generates tests targeting the innermost branches
(the leaf nodes of the control structure), as explained in Sect. 4; each test going
through these branches automatically covers all its enclosing branches. Intellitest
also generates small test suites, but is slower. The reason is Intellitest’s use of
concolic testing [24], which tests all feasible execution paths: since a branch can
occur in several paths, a test will often identify a branch that was already covered
by a different path. AutoTest, for its part, produces much larger test suites: as
an Adaptive Random Testing tool, it often generates multiple test cases covering
the same branches.

Tables 2, 3, 4 and 5 provide evidence of the benefits of the approach (subject
to the limitations examined in the next section): SC is fast and efficient; it uses
less than 1 s to produce an exhaustive-coverage test suite with the fewest number
of test cases. Other observations:

66 L. Huang et al.

Table 5. Result: number of generated tests to reach exhaustive coverage
Account Clock Heater Lamp Max Linear

Search
Insertion
Sort

Gnome
Sort

Square
root

Sum and max

SC 13 10 8 7 3 3 3 3 4 3
IntelliTest 13 13 8 – 4 7 5 7 5 5
AutoTest – – – 656 – 127 – – 18 1784

Arithmetic Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

14 4 7 9 2 5 9 5 4 7
25 6 15 27 4 9 18 12 8 8
531 905 – – – – 342 – – –

• AutoTest does not guarantee that the test inputs satisfy the routine’s precon-
dition, while SC and IntelliTest always generate precondition-satisfying test
inputs. The reason is that SC and IntelliTest rely on the results of constraint
solving, where the routine’s precondition is encoded as an assumption and
will always be satisfied.

• The SC approach is has a prerequisite: the program under test has to be
proved correct (the proof of the original program has no failure), while
AutoTest and IntelliTest have no such constraint.

• As to the values of the generated test inputs, IntelliTest and AutoTest always
apply small values that are easy to understand. SC initially produces test
inputs that may contain large values; its “minimization” mechanism [14] cor-
rects the problem.

6 Limitations and Threats to Validity

The setup of the SC approach assumes a Hoare-style verification framework
(of which Boogie is but one example), and the availability of a test generation
mechanism that supports generating test cases from proof failures. We have not
studied the possible application of the ideas to different verification frameworks,
based for example on abstract interpretation or model checking.

The current version of SC is subject to the following limitations:

• SC is not able to handle programs with non-linear computations (such as
derivation and exponentiation); this restriction comes from the underlying
SMT solver.

• SC does not support the more advanced parts of the Eiffel system, in partic-
ular generic classes. Data structures are limited to arrays and sequences.

These limitations will need to be removed for SC to be applicable to industrial-
grade programs.

The following considerations may influence the generalization of the results
achieved so far:

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 67

• The number of repeated experiments increased the potential threats to inter-
nal validity. We hope that further experiments with large number of iterations
will provide more conclusive evidence.

• Although a few of the examples classes that we processed so far are complex
and sophisticated, most are of a small size and not necessarily representative
of industrial-grade object-oriented programs. In the future, we intend to use
the EiffelBase library4, which has yielded extensive, representative results in
the evaluation of AutoProof and AutoTest, and exhibits considerable variety
and complexity in terms of size (according to various metrics), richness of
program semantics, and sophistication of algorithms and software architec-
ture.

7 Related Work

Previous work has taken advantage of counterexamples generated by failing
proofs, but for other purposes, in particular automatic program repair [21] and
generation of failing tests [13,20]. These techniques work on the original program
and not, as here, on a transformed program in which incorrect instructions have
been inserted with the express purpose of making the proof fail.

The earliest work we know to have applied this idea [1,2] generates tests
for low-level C programs using Bounded Model Checking (BMC) [16], produc-
ing test suites with exhaustive branch coverage. A more recent variant, for Java
bytecode, is JBMC [8]. In contrast with SC, each verification run only acti-
vates one assertion at a time, producing one counterexample. This approach is
conceptually similar, in the terminology of the present work (Sect. 2.2), to the
“MSP” (Multiple Seeded Programs) technique, although the C version [1] uses
compile-time macros, one for each block, to avoid the actual generation of mul-
tiple programs. In contrast, the present work uses RSSP (Repeatedly Seeded
Single Program), relying on a single run-time variable representing the block
number. BMC-based approaches rely on the correctness of the bound of the
execution trace: if the bound is not set correctly, some branches might not be
covered, requiring more verification runs to obtain a better bound.

Other techniques that apply constraint solving for generating inputs includes
test generations based on symbolic execution, such as Pex/IntelliTest [25], KLEE
[9], PathCrawler [28]. None of the strategies proposed guarantees exhaustive
branch coverage; they can achieve it when a systematic test generation strategy,
rather than one based on heuristics or randomization, is applied.

A very recent development (published just as the present work was being
submitted) is DTest, a toolkit [12] for generating unit tests for Dafny programs,
applying ideas similar to those of SC. As the generated Dafny tests are not
directly executable, test generation requires transformation of Dafny programs
and tests into a mainstream language. In contrast, the present approach works
directly on Eiffel programs. The DTest coverage results cited in the referenced
4 EiffelBase Data Structures: https://www.eiffel.org/doc/solutions/EiffelBase_Data_

Structures_Overview.

https://www.eiffel.org/doc/solutions/EiffelBase_Data_Structures_Overview
https://www.eiffel.org/doc/solutions/EiffelBase_Data_Structures_Overview

68 L. Huang et al.

article are 100% on only 2 of its examples, and go down to as low as 58% on
the others. One should not draw definite conclusions from these figures, since
the examples are different, their program sizes too (more precisely, most of the
examples are of comparable sizes, but the cited work has three between 1100
and 1900 LOCs, which we have not handled yet), and the article does not men-
tion any presence of unreachable code (which makes it impossible to distinguish
between full coverage and exhaustive coverage). It should be noted, however,
that the article also makes no mention of the “Seeded Unreachability” issue dis-
cussed in Sect. 2.2; in fact, it states that “DTest enters a loop where it systemat-
ically injects trivially failing trap assertions (meaning assert false)”, a technique
which generally leads, for any program with a non-trivial control structure, to
Seeded Unreachability and hence to decreased coverage. That omission may be
the reason for the relatively low coverage results reported in the article. The
Conditional Seeding technique of SC, introduced by the present work, addresses
Seeded Unreachability and has made it possible to reach exhaustive coverage
in all examples so far. In addition, to obtain small test suites, DTest seems to
require a separate minimization strategy, which takes from 8 to 1860 s on the
cited examples, far beyond the times of running SC. In discussing minimiza-
tion, the authors appear to come close to recognizing the Seeded Unreachability
issue, without using the Conditional Seeding technique, when they write that
“we determine the feasibility of a path via a query to the SMT solver, in which a
trap assertion is added that fails only if all the blocks along the path are visited”,
a technique that is “exponential in the number of SMT queries (running on all
benchmarks [cited in the article] would take weeks)”. SC does not appear to need
any such technique.

8 Conclusions and Future Work

The approach presented here, Seeding Contradiction (SC), automatically gener-
ates test suites that achieve exhaustive branch coverage very fast. The presen-
tation of the approach comes with a proof of correctness, defined as the guar-
antee that the generated test suite achieves exhaustive coverage (full coverage
of reachable branches). While technical limitations remain, the evaluation so far
demonstrates the effectiveness and efficiency of the SC approach through the
comparison with two existing test generators IntelliTest and AutoTest, in terms
of achieved coverage, generation time, and size of the test suite.

Ongoing work includes handling larger examples, processing entire classes
instead of single routines, providing a mechanism to generate tests covering
branches that a given test suite fails to cover, and taking advantage of the SC
strategy to identify dead code.

Acknowledgement. We are particularly grateful, for their extensive and patient help,
to Yi Wei (AutoTest) and Jocelyn Fiat (EiffelStudio and AutoProof). The paper ben-
efitted from perceptive comments by the anonymous referees on the original version.

Seeding Contradiction: Fast Generation of Full-Coverage Test Suites 69

References

1. Angeletti, D., Giunchiglia, E., Narizzano, M., Palma, G., Puddu, A., Sabina,
S.: Improving the automatic test generation process for coverage analysis using
CBMC. In: International RCRA Workshop (2009)

2. Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Automatic
test generation for coverage analysis using CBMC. In: Moreno-Díaz, R., Pichler,
F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 287–294.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04772-5_38

3. AutoProof. https://autoproof.sit.org/
4. AutoTest. https://www.eiffel.org/doc/eiffelstudio/Using_AutoTest
5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a

modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

6. Bormer, T., et al.: The COST IC0701 verification competition 2011. In: Beckert,
B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 3–21.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31762-0_2

7. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. ACM SIGSOFT Softw. Eng. Notes 27(4), 123–133 (2002)

8. Brenguier, R., Cordeiro, L., Kroening, D., Schrammel, P.: JBMC: A Bounded
Model Checking Tool for Java Bytecode. arXiv:2302.02381 (2023)

9. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), vol. 8, pp.
209–224 (2008)

10. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: adaptive random testing
for object-oriented software. In: International Conference on Software Engineering
(ICSE), pp. 71–80 (2008)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

12. Fedchin, A., et al.: A Toolkit for Automated Testing of Dafny (2023)
13. Huang, L., Meyer, B.: A Failed Proof Can Yield a Useful Test. arXiv:2208.09873

(2022)
14. Huang, L., Meyer, B., Oriol, M.: Improving counterexample quality from failed

program verification. In: International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), pp. 268–273. IEEE (2022)

15. Klebanov, V., et al.: The 1st verified software competition: experience report. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 154–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_14

16. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

17. Leino, K.R.M.: Program Proofs. MIT Press, Cambridge (2023)
18. Leino, K.R.M., Rümmer, P.: The Boogie 2 Type System: Design and Verification

Condition Generation. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.146.4277

19. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Hobo-
ken (1997)

https://doi.org/10.1007/978-3-642-04772-5_38
https://autoproof.sit.org/
https://www.eiffel.org/doc/eiffelstudio/Using_AutoTest
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-31762-0_2
http://arxiv.org/abs/2302.02381
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/2208.09873
https://doi.org/10.1007/978-3-642-21437-0_14
https://doi.org/10.1007/978-3-642-54862-8_26
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.4277
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.4277

70 L. Huang et al.

20. Nilizadeh, A., Calvo, M., Leavens, G.T., Cok, D.R.: Generating counterexamples
in the form of unit tests from hoare-style verification attempts. In: International
Conference on Formal Methods in Software Engineering (FormaliSE), pp. 124–128.
IEEE (2022)

21. Nilizadeh, A., Calvo, M., Leavens, G.T., Le, X.B.D.: More reliable test suites for
dynamic APR by using counterexamples. In: International Symposium on Software
Reliability Engineering (ISSRE), pp. 208–219. IEEE (2021)

22. Orso, A., Hsu, H.Y.: MINTS: a general framework and tool for supporting test-
suite minimization. In: International Conference on Software Engineering (ICSE),
pp. 419–429 (2009)

23. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for java. In:
Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications Companion, pp. 815–816 (2007)

24. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC-FSE), pp. 213–223 (2005)

25. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9_10

26. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0_53

27. Weide, B.W., et al.: Incremental benchmarks for software verification tools and
techniques. In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295,
pp. 84–98. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87873-
5_10

28. Williams, N.: Towards exhaustive branch coverage with PathCrawler. In: Inter-
national Conference on Automation of Software Tests (AST), pp. 117–120. IEEE
(2021)

https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-540-87873-5_10
https://doi.org/10.1007/978-3-540-87873-5_10

Test Automation and Design

Automated Testing of Systems of Systems

Özge Akat1,2 and Hasan Sözer2(B)

1 Vestel Electronics, Manisa, Turkey
ozge.akat@ozu.edu.tr

2 Ozyegin University, İstanbul, Turkey
hasan.sozer@ozyegin.edu.tr

Abstract. There are various kinds of software applications like mobile
and Web applications. These applications have different types of user
interfaces and user interaction methods. Hence, test automation tools
are either dedicated or configured for a particular kind of application.
Test scenarios can be implemented in the form of scripts and test execu-
tion can be automated separately for each type of application. However,
there are systems of systems that embody multiple types of applica-
tions deployed on various platforms. Test scenarios might cross-cut these
applications to be controlled collectively in the test script. In this paper,
we propose an approach for testing cross-platform systems of systems.
We present an application of it on a real system that involves a mobile
and a Web application that are supposed to work in coordination. Our
approach integrates a set of existing tools to facilitate test automation.
It provides testers with a unified interface for developing test scripts that
involve both mobile and Web applications. We conduct an industrial case
study and show that our tool can reduce the testing effort significantly.

Keywords: Test automation · Systems of systems · Mobile
applications · Web applications · Behaviour driven development

1 Introduction

The cost of testing activities may account for at least half of the development
costs [2,16]. The cost can further increase depending on the required reliability
level and the size of the system under test. Test automation is adopted to reduce
this cost [3,17] in almost every domain including Web applications [4,15,18]
and mobile applications [12]. These applications possess distinct user interfaces
and user interaction methods. Consequently, test automation tools are either
specifically designed or configured to cater to a particular type of application
and platform. Test scenarios can be implemented in the form of scripts, and test
execution can be automated separately for each type of application. However,
certain complex systems, known as systems of systems, incorporate multiple
types of applications. Usage scenarios that should be tested for these systems
may cut across various platforms, and it might be necessary to control them

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 73–79, 2023.
https://doi.org/10.1007/978-3-031-43240-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_5&domain=pdf
http://orcid.org/0009-0000-9215-4119
http://orcid.org/0000-0002-2968-4763
https://doi.org/10.1007/978-3-031-43240-8_5

74 Ö. Akat and H. Sözer

collectively in a single test script (See Fig. 1). For instance, a user of a Web
application might need to observe the result of an action that is performed by
another user on a mobile application. However, there is no direct automation
support for the execution of such test scripts.

Fig. 1. A test scenario that interacts with multiple cross-platform applications.

There have been studies [6–8,10] to explore test automation strategies when
dealing with multiple platforms. However, these studies focus on testing a single
system that is deployed on various platforms. Their aim is to identify inconsis-
tencies across platforms, such as cross-platform inconsistencies for mobile appli-
cations [10] and cross-browser inconsistencies for Web applications [8]. Addi-
tionally, in cases where different user interfaces are adopted for a wide range of
platforms, the research goal is to reduce duplicated testing efforts for these plat-
forms [6]. We tackle a different problem in this paper. Our goal is to facilitate
the automated testing of multiple, cross-platform systems that are supposed to
work in coordination. We integrate a set of existing tools to provide testers with
a unified interface for developing test scripts involving both mobile and Web
applications. We facilitate test automation by following the Behavior-Driven
Development (BDD) approach [13]. Test scripts can be developed as a composi-
tion of natural-language constructs that access multiple platforms concurrently.
We present an application of our approach on a real system that involves a mobile
and a Web application working in coordination. We conduct an industrial case
study and show that our approach can reduce the testing effort significantly.

The remainder of this paper is organized as follows. We summarize the related
studies in Sect. 2. We explain the implementation of our approach in Sect. 3. We
present a motivating example and a case study from the industry in Sect. 4.
Finally, in Sect. 5, we conclude the paper.

2 Related Work

The behavior and the Graphical User Interface (GUI) of a software application
might change depending on the deployed platform. Research efforts so far focus
on the identification of these platform inconsistencies, especially for Web appli-
cations [8] and mobile applications [10] that can be deployed on a variety of

Automated Testing of Systems of Systems 75

platforms. In this work, we focus on the testing of systems of systems, where
each involved system is deployed on a different platform.

The increasing number and variety of platforms increase test automation
efforts as well [6]. Frameworks like Apache Cordova, Xamarin, and React Native
enable the development of a single application that can be deployed on multi-
ple platforms. However, a separate test script has to be developed for testing
the application on each platform. x-PATeSCO [14] automatically generates test
scripts for multiple platforms. However, it focuses on testing a single application
at a time, unlike our approach.

Test scripts can be fragile due to changes in the GUI layout or code, as well as
differences among the deployed platforms. Visual GUI Testing (VGT) [1] gained
popularity due to its adaptability and resilience to these changes and differences.
However, VGT approaches proposed so far focus on testing a single application
rather than multiple types of applications on various platforms at the same time.

Appium [9] supports test automation across many platforms covering mobile
(iOS, Android, Tizen), browser (Chrome, Firefox, Safari), desktop (macOS, Win-
dows), and TV (Roku, tvOS, Android TV, Samsung) applications. It also sup-
ports several programming languages (e.g., Java, Pyhton, Ruby) for developing
test scripts. However, to use Appium, one needs to set up a set of drivers and
plugins depending on the target platform, and programming experience is nec-
essary to develop test scripts. Our goal is to provide support test automation for
multiple platforms at the same time and at a hig level of abstraction by follow-
ing BDD principles [13]. With our approach, test scripts can be written using
natural-language constructs that access multiple platforms concurrently, with-
out worrying about the underlying setup. In the following section, we discuss
our approach and its implementation in detail.

3 The Approach and Implementation

An overview of our approach is depicted in Fig. 2, where a set of tools are inte-
grated. In particular, our approach employs Cucumber [13], Selenium [5] and
Appium [9] for enabling test automation. A Selenium driver is used for steering
a Web application on a Chrome browser. An Appium driver is used for control-
ling a mobile application that works on an Android phone. Cucumber is used for
developing test scenarios. The test steps listed in these scenarios are mapped to
executable test scripts by test fixtures that we developed in Java.

Test scenarios are developed in Gherkin format, where test steps are specified
in structured natural language. Each of these test steps are mapped to a test
fixture by Cucumber. Test steps are annotated to differentiate among a num-
ber of target applications and platforms. Text fixtures use these annotations to
execute the intended user actions by employing the corresponding driver and
interface. The implementation of the test fixtures is available online at a public
repository1. While our current implementation utilizes Selenium and Appium, it

1 https://github.com/ozgeakat4/toss.

https://github.com/ozgeakat4/toss

76 Ö. Akat and H. Sözer

Fig. 2. Implementation of the approach with an integrated set of tools.

can be enhanced with alternative tools to accommodate diverse platforms. We
used the Bridge Pattern [11] for abstracting away platform details from the set
of possible generic test steps. In the following section, we present an application
of our approach on a real system from the industry.

4 Motivating Example from the Industry

Our approach is motivated by the testing processes of a system called Charge
Point Management System (CPMS). It is developed by a multi-industry man-
ufacturer, Vestel, for managing Electric Vehicle Chargers (EVCs)2. CPMS is
composed of 3 systems. There is a backend system that resides on the Azure
cloud platform to keep track of EVC resources and the relevant IoT protocols.
There is a Web application used by Charging Point Operators (CPOs) to control
the charging process, EVCs and users. There is also a mobile application used
by electrical vehicle owners for interacting with an EVC.

A user can start the charging process via the mobile application with or with-
out registration. After the charging process is completed, the payment is made
via Internet banking and checked through the CPO Web portal. The charging
process can be initiated by using QR codes via the mobile application. Regis-
tered users can make reservations through the mobile application, depending on
the availability of the connectors of EVCs. Reservations can be canceled via the
mobile application or the CPO Web portal. New charging points can be added
by CPOs, and users can locate these charging points on the map. When a faulty
charging point is to be removed from use, it can be deleted by CPOs, so that
users cannot access this device via the mobile application anymore.

CPMS has been subject to testing at various levels, including unit tests,
integration tests, and system tests. These tests could be automated for a single
system. For example, executable test scripts could be developed with Selenium
for the CPO Web portal. However, programming expertise is required and it
was not possible to automate end-to-end tests that involve multiple systems at
the same time. For instance, when a user reserves a particular EVC from the
mobile application, a status update should be visible at the CPO Web portal.
Likewise, when a new EVC is introduced by a CPO, it should be visible on the
2 http://vestelinternational.com/en/ev-charging-stations.

http://vestelinternational.com/en/ev-charging-stations

Automated Testing of Systems of Systems 77

map presented by the mobile application. Our approach facilitated the specifica-
tion and automated execution of such scenarios, without requiring programming
expertise. A sample test scenario is specified in Gherkin format in the following.

Scenario: Reserved charger
Given open webpage "<webpage>"
When login web with username "<username>" and password "<password>"
When search charger on web
Then charger is unreserved
When login app with username "<username>" and password "<password>"
And search charger on app
And reserve charger on app
Then search charger on web
Then charger is reserved

In the above scenario, the operator is logged on the portal first and the
charging point is added. Then, the charging point is searched on the portal
and verified by searching the charging point on the map presented by the mobile
application. This confirms that the charging point has been successfully added. In
one of the other scenarios, the user becomes a member via the mobile application
and the user is activated via the operator portal, enabling the user to start
charging thereafter. Listing 1.1 shows a sample snippet from the test fixture code.
Lines 1–4 correspond to the test setup, where drivers are initialized. Lines 5–9
correspond to the second line in the scenario listed above. Lines 10–19 correspond
to the 4, 5 and 6th lines, where a charger is searched.
1 public StepDefinition() throws IOException , ParseException {
2 AppTest = new AppiumTest ();
3 WebTest = new SeleniumTest ();
4 }
5 @Given("open␣webpage␣{string}")
6 public void open_webpage(String string) {
7 this.WebTest.driver.get(string);
8 this.WebTest.driver.manage().window().maximize ();
9 }

10 @Then("search␣charger␣on␣{word}")
11 public void search_charger_on(String system) ... {
12 try {
13 if(system.equals("web")) {
14 this.WebTest.driver.get("https :// vesteuwebapptest.net/CP");
15 this.WebTest.driver.findElement(By.id("Filter")).click();
16 this.WebTest.driver.findElement(By.id("Filter")).
17 sendKeys("DV -6");
18 this.WebTest.driver.findElement(By.id("dropdown")).click();
19 }
20 else if(system.equals("app")){
21 this.AppTest.driver.findElement(By.id("button")).click();
22 this.AppTest.driver.findElementByXPath (("buton")).click();
23 this.AppTest.driver.findElementByXPath (("EditText")).
24 sendKeys("DV -6");
25 }
26 }

Listing 1.1. A sliced sample snippet from the test fixture code.

78 Ö. Akat and H. Sözer

Table 1 lists the properties of the implemented test scenarios, the time it
takes to execute them manually and their execution time with our approach.
The scenario listed above is S2. We observe an order of magnitude reduction in
testing time. Every execution of the listed test scenarios saves more than half an
hour time and it does not require any manual effort. The test fixture code has
to be developed for new types of user actions and platforms. The last column of
Table 1 lists the time it took to develop these fixtures. However, this is a one-time
investment only and it can be amortized after a dozen test executions.

Table 1. Test scenarios and their execution time before and after automation.

Test
scenario

of test
steps

Manual
testing time
(min)

Test
execution
time (min)

Test devel-
opment
time (hrs)

S1 6 7 0.63 0.12
S2 9 6 0.56 1.5
S3 7 5 0.42 0.5
S4 5 5 0.37 0.33
S5 6 4 0.35 1.5
S6 3 2 0.18 0.33
S7 3 3 0.20 1
S8 3 2 0.15 0.5
S9 4 4 0.29 0.33
Total 46 38 3.06 6.11

5 Conclusion and Future Work

We introduced an approach for testing systems of systems. We integrated a set
of existing tools for implementing a generic approach. Our approach provides
testers with a unified interface for developing test scripts that involve multi-
ple applications deployed on various platforms at the same time. Currently it
supports Web and Android applications that are supposed to work in coordina-
tion. We also illustrated an application of our approach for the test automation
of a real system. We observed significant effort reduction for tests that were
previously performed manually.

As future work, we plan to increase the variety of platforms supported. We
also plan to conduct additional case studies and experiments for measuring the
effectiveness of our approach in test automation and effort reduction.

Acknowledgment. We would like to thank software developers and test engineers at
Vestel for supporting our case study.

Automated Testing of Systems of Systems 79

References

1. Alegroth, E., Feldt, R., Ryrholm, L.: Visual GUI testing in practice: challenges,
problems and limitations. Empir. Softw. Eng. 20, 694–744 (2015)

2. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold Co.,
New York (1990)

3. Berner, S., Weber, R., Keller, R.K.: Observations and lessons learned from auto-
mated testing. In: Proceedings of the 27th International Conference on Software
Engineering, pp. 571–579 (2005)

4. Biagiola, M., Stocco, A., Ricca, F., Tonella, P.: Dependency-aware web test gen-
eration. In: Proceedings of the IEEE 13th International Conference on Software
Testing, Validation and Verification, pp. 175–185 (2020)

5. Bruns, A., Kornstadt, A., Wichmann, D.: Web application tests with selenium.
IEEE Softw. 26(5), 88–91 (2009)

6. Choudhary, S.: Cross-platform testing and maintenance of web and mobile appli-
cations. In: Proceedings of the 36th International Conference on Software Engi-
neering, pp. 642–645 (2014)

7. Choudhary, S., Prasad, M., Orso, A.: Cross-platform feature matching for web
applications. In: Proceedings of the International Symposium on Software Testing
and Analysis, pp. 82–92 (2014)

8. Choudhary, S., Prasad, M., Orso, A.: X-PERT: a web application testing tool for
cross-browser inconsistency detection. In: Proceedings of the International Sympo-
sium on Software Testing and Analysis, pp. 417–420 (2014)

9. Das, K.: Creating Android, iOS, and Web Drivers on Demand, pp. 45–60. Apress,
Berkeley (2022)

10. Fazzini, M., Orso, A.: Automated cross-platform inconsistency detection for mobile
apps. In: Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 308–318 (2017)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Boston (1994)

12. Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T., Klein, J.: Automated testing of
android apps: a systematic literature review. IEEE Trans. Reliab. 68(1), 45–66
(2019)

13. Lawrence, R., Rayner, P.: Behavior-Driven Development with Cucumber. Addison-
Wesley Professional, Boston (2019)

14. Menegassi, A., Endo, A.: Automated tests for cross-platform mobile apps in mul-
tiple configurations. IET Softw. 14(1), 27–38 (2020)

15. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of mod-
ern Web applications. IEEE Trans. Softw. Eng. 38(1), 35–53 (2012)

16. Myers, G., Badgett, T., Sandler, C.: The Art of Software Testing, 3rd edn. John
Wiley and Sons Inc., Hoboken (2012)

17. Rafi, D., Moses, K., Petersen, K., Mäntylä, M.: Benefits and limitations of auto-
mated software testing: systematic literature review and practitioner survey. In:
Proceedings of the 7th International Workshop on Automation of Software Test,
pp. 36–42 (2012)

18. Sunman, N., Soydan, Y., Sözer, H.: Automated web application testing driven by
pre-recorded test cases. J. Syst. Softw. 193, 111441 (2022)

Empirical Verification of TQED - A New
Test Design Heuristic Technique

Adam Roman(B) , Michał Mnich , and Jarosław Hryszko

Faculty of Mathematics and Computer Science, Division of Software Engineering,
Jagiellonian University, Łojasiewicza 6, 30 -348 Krakow, Poland
{adam.roman,michal.mnich,jaroslaw.hryszko}@uj.edu.pl

Abstract. TQED is a universal test heuristic that assists testers in cre-
atively designing effective test cases. It involves defining the test problem
in terms of component elements, each of which is classified into one of
the four so-called dimensions, which are: time (T), quantity (Q), event
(E) and data (D). Then, test ideas are created by considering specific
combinations of the components, aided by the interpretation of combi-
nations of dimensions.

In this article, we compare the TQED model with other well-known
test heuristics and risk analysis techniques, and then present an empir-
ical verification of the effectiveness of the TQED model. We compare
the effectiveness of tests written by 24 developers who were asked to
implement code for the same problem, together with the unit tests. The
developers were divided into two groups, one of which used TQED when
designing unit tests and the other did not. Effectiveness was measured
in terms of code coverage, mutation coverage and failure rate of test
cases. To increase the objectivity of the study, a cross-experiment was
conducted in which each developer’s tests were run on the source code of
all other developers. Our research showed that TQED can significantly
support testers in creating strong tests that are more likely to detect
defects in code.

Keywords: test heuristics · test case design · test technique · TQED ·
creativity

1 Introduction

The IT systems being developed today are very complex products. Effective
control of their quality often requires sophisticated testing methods. This makes
testing itself a both technologically and intellectually challenging undertaking.
One of the key steps in the testing process is the analysis and design of test
cases. For test cases to be effective, that is, to detect existing defects in the
work product with the highest possible probability, they must be properly and
carefully designed. The variety and complexity of the problems a tester faces
in their daily work means that despite the existence of a number of specific
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 80–96, 2023.
https://doi.org/10.1007/978-3-031-43240-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_6&domain=pdf
http://orcid.org/0000-0002-1020-5128
http://orcid.org/0000-0002-6274-5521
http://orcid.org/0000-0002-4207-1080
https://doi.org/10.1007/978-3-031-43240-8_6

Empirical Verification of TQED - A New Test Design Heuristic Technique 81

test design approaches and techniques, they are never sufficient to achieve the
aforementioned goal. An essential ingredient of an effective design process is the
tester’s creativity, which is difficult to put into a precise, technical framework.

In Winograd’s book creativity is defined as “the process that results in novel
and useful products” [31]. In software testing, creativity can be viewed as the abil-
ity to generate original and valuable test ideas or solutions to testing problems.
It involves divergent thinking (i.e., the ability to explore multiple possibilities
and perspectives), as well as convergent thinking (i.e., the ability to analyze and
synthesize information to obtain a set of effective and efficient test cases that
can reveal defects in the software system and help to improve the overall soft-
ware quality). Creative test cases can often help uncover issues that might not
have been identified by more conventional approaches, like formal test design
techniques.

There are surprisingly few studies on creativity and its impact on software
engineering [15], not mentioning the software testing. It is quite striking, espe-
cially when we realize that the main task of a tester is to provide good and
effective tests that detect software failures with high probability. Achieving this
goal definitely relies on the tester’s creativity. In [9] a method for assessing the
creativity of software products is introduced. The authors say that it should be
measured in terms of the novelty and usefulness. This aligns with Winograd’s def-
inition. We adapt this definition for the tester’s creativity and assume that from
the tester’s point of view: novelty should be understood as the non-redundancy
of test cases, while usefulness should be understood as the ability to detect with
high probability a failure in the system under test.

It is well-known that creativity is one of the most important characteristics
of the software engineer [14] apart from factors like: team quality, fun, profes-
sionalism, having an ideology, non-financial benefits, penalty policies and good
relationship with users/customer. But how can testers increase their creativity?
To the best of our knowledge, there is no research on this topic. Some papers
mention the creativity only as a general method used in a given technique. The
example may be [1], where exploratory testing is described as a technique which
utilizes well the tester’s creativity. The same technique is mentioned in [11],
where it is said that the improvement of the DevOps process results in the fact
that manual (exploratory) tests basically complement automated tests (focus on
tests that require creativity).

Study conducted by Deak et al., concentrated on the motivations behind
selecting software testing as a career. They formulated a concise questionnaire,
guided by the research questions: How do computer science students perceive
software testing? What factors encourage or discourage students to pursue a
career in software testing? The research involved a sample of bachelor’s and
master’s students from the Norwegian University of Science and Technology,
as well as computer engineering students from University College. The survey
received a total of 161 responses. Among the negative aspects related to a career
in software testing, respondents characterized software testing as boring (48
participants) and not creative (15 participants) [12].

82 A. Roman et al.

Similar observations may be found in [15]. The authors performed an exper-
iment involving 68 students split into 12 teams. The aim was to check the cre-
ativity involvement in different software development phases. In one survey the
students had to decide if a given phase should be considered discipline-based or
creative. The creativeness for the phases: documenting with demanded format,
architecture design, architecture assessment, and programming was chosen by
resp. 33, 97, 44 and 81 percent. The testing phase was considered creative only
by... 19 percent of the students (sic!). This means that software testing is per-
ceived rather as a discipline-based phase, with well-defined techniques, processes
and activities that do not require any creativity at all.

The authors conclude: “If we classify (...) [the above mentioned] activities
into two categories: producing activities, including architecture design and pro-
gramming, and improving activities (quality assuring activities), including com-
pleting document with demanded format, architecture assessment and testing,
the results tell us that students perceive there is more creative work in producing
activities than in improving activities”.

However, it is obvious to any tester that improvement activities require at
least the same amount of creativity as the design phases. Formal test design
techniques can be used as such tools, but despite their concreteness, they are
not universal – each technique is very prescriptive and focuses only on some
particular aspect of the system under test. This can hinder the creative process,
because when applying a particular, formal test design technique, the tester is
always limited to a certain way of thinking (e.g., in case of Equivalence Parti-
tioning technique – to domain analysis).

Unlike scripted testing, where the tester follows a pre-defined set of steps to
verify that the software behaves as expected, exploratory testing is a more flexi-
ble, unscripted approach. Thus, exploratory testing is often considered a creative
process by researchers and practitioners. For example, Mårtensson et al. [23]
shared interview findings from 20 participants, who had experience ranging from
4 to 46 years (averaging over 13 years). These participants were associated with
four different companies, each involved in the development of large-scale software
systems. According to these experienced professionals, exploratory testing pro-
vides a more inventive, creative approach to their work. Therefore, they believe
it optimizes the skills and potential of the testers. Similar findings regarding
creativity during testing can be found in Pfahl et al. [26] survey results from an
online survey among Estonian and Finnish software developers and testers. The
authors find that among three most frequently indicated by respondents advan-
tages of exploratory testing, apart from efficiency and effectiveness is, indeed,
creativity. Some authors have even likened exploratory testing to scientific explo-
ration or detective work, both of which require a high degree of creativity and
problem-solving skills. Like a detective trying to solve a mystery, an exploratory
tester must use their observational skills, intuition, and creativity to find and
investigate potential issues with the software [2,20].

The previously mentioned works allow us to state that creativity is an impor-
tant factor in the attractiveness of the work of a software tester. Other research

Empirical Verification of TQED - A New Test Design Heuristic Technique 83

seem to support this statement. For example, the primary reason why de Jesus
et al. [18] began investigating the gamification usage in software testing was the
claim that, testing is considered unpleasant, dull and tedious”. In their work,
they recognize the development of creativity as one of the important goals to be
pursued through gamification in software testing. Moreover, De Souza et al. [28]
constructed a survey-based tool to explore the motivational factors among soft-
ware testers, which was rooted in a pre-existing theory of motivation within the
realm of software engineering. From a group of 80 software testers, they gath-
ered views on the nature of work in software testing and the elements of this
work that impact the testers’ motivation. As a result, they observed that among
other factors, like acquisition of knowledge and work variety, what profoundly
influences software testers motivation to work is creativity.

There are papers in the literature devoted to comparing the effectiveness
of testing techniques (e.g., directly comparing the effectiveness of the tech-
niques themselves [16], comparing the effectiveness of tests generated by differ-
ent tools [8], or comparing the effectiveness of test prioritization strategies [22]).
However, they mainly concern formal test design techniques, such as black-box
or white-box techniques. To the best of our knowledge, there is no such work,
involving empirical approach, devoted to less formal approaches (e.g., defect-
based or experience-based test techniques), let alone techniques or models that
support testers’ creativity.

In this study, we set out to fill this gap by empirically investigating the
effectiveness of one such technique for helping testers’ creativity. This is the
TQED model, proposed in [27]. In the experiment we conducted, we compared
the code and tests of programmers divided into two groups. Programmers in one
group were required to use the TQED model when writing tests. Programmers
in the other group did not use this technique. Then, in a crossover experiment,
by executing each programmer’s tests on the other programmers’ source codes,
we tested the effectiveness of tests written using TQED against tests written
without TQED. Our ultimate goal is to answer the following research question:

(RQ) Does the TQED technique help testers increase their creativity
and allow them to design stronger and more effective test cases?

The article is structured as follows. In Sect. 2 we briefly discuss the require-
ments for test creativity techniques. We introduce and classify, according to
these requirements, different test approaches and techniques. We compare these
methods with the TQED approach, against these requirements, justifying why
the TQED approach is interesting from a practical, tester’s point of view. In
Sect. 3 we present the TQED model in detail, together with an example of using
it in practice. Section 4 describes the results of the controlled experiment per-
formed to assess the effectiveness of the TQED method. Section 5 follows with
conclusions.

84 A. Roman et al.

2 TQED and Effectiveness of Test Design Techniques

There are many test design techniques, but their impact on tester’s creativity
varies. In order to compare these techniques and see where the TQED model
can be located against them, we introduce two factors to evaluate test design
techniques: versatility (universality) and concreteness (prescriptiveness). By ver-
satility, we mean the variety of projects and contexts in which a technique can
be successfully applied. By concreteness, we mean the degree to which a method
provides us with detailed information about test cases, coverage items, test data
or test ideas. Note that from a practical point of view, these are the two most
important features of test design techniques, because they allow the tester to
achieve the goal of creating effective test cases, regardless of the context.

In general, these two factors can be at odds with each other: a method that
can be applied to any situation is usually unable to provide a specific test idea
or meaningful test data. A very specific method, on the other hand, is usually
limited to some particular, narrow context of use. The ideal test technique should
be versatile (we should be able to apply it to every possible situation), and at
the same time its application should give us specific test cases and test data.
Of course, ideal techniques do not exist, but using these two characteristics we
can compare different techniques with each other. Figure 1 shows several types
of test techniques, in terms of their versatility and concreteness.

Fig. 1. Comparison of different test design approaches and techniques, regarding their
universality and concreteness.

Empirical Verification of TQED - A New Test Design Heuristic Technique 85

Formal black-box test design techniques (cf. [4,7,19,21]) tend to be very
specific, as they allow us to, among other things, provide specific test cases by
covering the relevant elements of the models they use. For example, Boundary
Value Analysis gives us the exact test data values that test cases should cover.
However, each of these techniques is a model of only one specific aspect of the
system under test. Hence, their universality is limited.

White-box techniques can be considered not very prescriptive and not very
versatile. This is because each white-box technique can only be applied to a
specific work product (e.g., source code). In addition, these techniques do not
provide specific test data, but only define criteria for covering structural elements
of the test object. Fault attacks are based on specific defects and failures and do
not provide the specific test data needed to cause those failures or reveal those
defects.

Experience-based test techniques [4,30], standards, standards and norms
(e.g., the quality model [17]) are universal, but do not allow the derivation of
any specific test data – this task fully rests with the tester, who is assumed to be
experienced and can best design the most appropriate test data. Testing heuris-
tics, such as those proposed by Bach [3] or Edgren [13], are also quite general.
However, compared to formal test design techniques, they are less specific. For
example, the “test each function, one at a time” heuristics proposed by Bach can
be applied to any type of functional testing, but provides no guidance on how
to do so.

The TQED approach, like random testing [5,24] or metamorphic test-
ing [6,29] techniques, can be considered a universal yet specific approach. All
of these techniques offer some general test case generation mechanisms that can
be applied to virtually any context of use. On the other hand, these procedures
are specific enough to derive specific test data (e.g., a random number generator
in the case of random testing) or give specific instructions on how to obtain such
data (e.g., metamorphic relations in the case of metamorphic testing). In the
case of the TQED approach, the generality of the test case generation mecha-
nism is due to the generality of the concept of the so-called problem dimensions,
while the ability to derive specific test data is related to the interpretation of
the combination of elements belonging to each problem dimension.

The above analysis shows that the TQED method may be an interesting and
useful approach with a very nice trade-off between versatility and concreteness.
In Sect. 3 we give a detailed description of the method, and in Sect. 4 we verify
empirically the effectiveness of the TQED.

3 TQED Model

The TQED model can be seen as a very simple (but universal) fault model based
on a few basic software features, although its purpose is to support test design
and enhance testers’ creativity. The theoretical basis of the model is inspired
by physics. Physics describes our world in terms of a few basic concepts, such
as mass, distance, time, or force. All other more complex characteristics can be

86 A. Roman et al.

expressed as a combination of basic concepts, for example, speed is a function
of distance and time.

Similarly, software can be described by four basic “dimensions”: data (D),
events (E), quantity (Q), and time (T). These act as building blocks for each
type of software and its behavior. Using these four concepts, we can build a model
to describe the operation of any software system at any level of abstraction, since
any software system involves processing (E) different amounts of data (D, Q)
over time (T). But this also means that we are able to derive many different fault
models from this model. Error models based on relationships between software
dimensions describe how software can fail, so they can be a very helpful tool for
generating ideas for effective and creative test cases.

Fig. 2. TQED model

The TQED model is shown in Fig. 2. It depicts all four primary dimensions
and their compositions. The three dots in the upper left corner suggest that there
may be more combinations, covering three, four, etc. of the basic dimensions.
Each dimension and each combination of dimensions can be interpreted by the
tester in terms of actual software characteristics, which should help the tester
come up with creative test ideas. The primary dimensions can stand for various
concepts related to the actual software – an example interpretation is shown in
table 1.

The procedure for using the TQED model is as follows. First, identify the
basic features of the software that can be classified into one of the basic dimen-
sions (D, E, Q, T). Then, various sensible combinations of these features are
considered. Each corresponds to a combination of their dimensions (for exam-
ple, D+D, E+T, D+D+E+Q, etc.), which is subject to interpretation in terms
of test conditions or test ideas. These form the basis for the test cases. Example
heuristics for interpreting certain combinations of dimensions are as follows:

Empirical Verification of TQED - A New Test Design Heuristic Technique 87

Table 1. The possible meaning of the TQED model components.

Dimension Represents Intuition Examples

Data immutable,
premanent entity
(variable, object,
element, part of a
system or
environment)

something fixed in
time, persistent
object

number, string, file,
file name, document,
object, GUI
element, database
record

Event phenomenon that,
when it occurs, can
change the state of a
system, environment
or user

something that has
short, almost zero
duration in time

use of a variable,
filling in a form,
pressing a button,
performing an
operation

Time a continuous
progression of
existence

an irreversible
succession from the
past, through the
present, to the
future

ordering, succession,
parallel, duration,
forward, backward

Quantity amount or number
of some part of a
system or
environment

number, volume,
size of something

length, minimum,
maximum,
boundary value,
part of, superset

– D+D: data merging, high-dimensional representation, element comparison,
relationships between data elements;

– D+E: data-driven event, event parameters, object operations;
– D+T: data persistence over a given period of time;
– D+Q: amount or volume of data, minimum or maximum value of data, num-

ber of objects;
– E+E: combination of events, business logic rules (if-then), sub-event within

an event;
– E+T: sequence of events, long-term event, short-term event, event duration;
– T+T: concurrency, time comparison, sum of time periods, race condition.

Note that the interpretation of the dimensions and their combinations is
always up to the tester. The method itself does not dictate anything here – it
is only a framework to be filled with the tester’s interpretation of the elements
suggested by the model (dimension combinations).

Comparison of TQED with Other Models. The TQED approach may
seem similar to the Category-Partition method, a formal test design technique
proposed by Ostrand and Blacer [25], but the latter is limited to functional
tests only. Category-Partition, moreover, is a hierarchical, combinatorial app-
roach that divides certain predefined categories into partitions and then combines

88 A. Roman et al.

different partitions from different categories. Hence, its versatility is less than
that of TQED.

The TQED approach is also similar to test heuristics in terms of universality
– it can be applied to any type of system, be it software or hardware, regardless
of the type of test, software lifecycle, etc. However, compared to test heuristics,
TQED is more specific. We showed earlier that the use of TQED involves some
normative rules for combining software dimensions, but it is always left to the
tester to interpret them.

Finally, TQED shares some similarities with the Hazard and Operability
(HAZOP) approach [10] – a form of risk management to identify, evaluate, and
control hazards and risks in complex processes. The HAZOP approach first iden-
tifies operational processes. From these, parameters or safe operating limits of
the process elements are defined so that deviations can be identified and so-called
“guide words” selected. Examples of common HAZOP guiding words are: No or
Not, More, Less, High, Low. With the use of guide words, workplace hazards
can be clearly defined as deviations that fall outside acceptable parameters or
safe operating limits. However, HAZOP was designed for use in the chemical,
pharmaceutical, oil and gas, and nuclear industries, not in software engineering.
In addition, the set of guide words is closed, limited and directed at describing
the parameters of industrial processes. TQED is flexible and open in this regard.

An Example of Using the TQED Approach. In this chapter, we show
a simple application of the TQED that results in a failure triggering. We will
test the most important feature of the well-known web-based time management
application, Google Calendar - adding an event to the calendar. When we want
to add an event to the calendar, we see a window like the one in Fig. 3a.

Fig. 3. Adding an event to Google Calendar (in Polish)

The creative process assisted by the TQED is figuratively shown in Fig. 4.
From the interface itself, we know that before clicking the ’Save’ button, the
application wants us to add both the event name and its time in the field. From
here we can derive the following dimensions: D1 (event name), D2 (time), E
(click the ’Save’ button). The tester can interpret the combination D1+D2 as

Empirical Verification of TQED - A New Test Design Heuristic Technique 89

“the name contains the time.” Using the “part of something” heuristic for the Q
dimension, we can go one level down this structure and derive the idea that the
hour contains numbers.

Fig. 4. Creative process supported with the TQED method.

At this point, we have the following idea for a test: see if we can add an
appointment with a name that contains both a number and an hour. For exam-
ple, we could try adding an event called “Meeting in room 121 12:30”. This works
fine if the application language is set to English. Since configuration items are
a typical example of a data dimension (D), we can think about changing this
setting, for example, we can change the language to Polish. Now things get inter-
esting. When we combine our test idea (add an event containing a number and
time, with the language set to Polish) with the obvious “click Save” dimension
E, we get our final idea of the test case that triggers the failure (Fig. 3b). Google
Calendar misinterprets the title of the event, assuming that the room number is
the time of the meeting.

4 Experiment

Experimental Setup. In order to empirically test the effectiveness of the
TQED approach and answer the research question posed at the beginning of the
article, we conducted an experiment. 24 programmers were asked to implement
the same application in Java language – a simple payment card management
program. The program consisted of three classes (Account, Atm, CreditCard)
containing 4, 7 and 8 methods, respectively. The programmers also had to imple-
ment unit tests for the code they wrote. When implementing the code, partici-
pants were not allowed to create public fields, only to use methods from defined
interfaces. In addition, participants were not allowed to add their own methods,
modify interfaces, or change the established version of the Java language and
the JUnit library. It was also not possible to create new (custom) constructors,

90 A. Roman et al.

but only to use existing ones – parameter-free. Thanks to these rules, it was
possible to cross-execute tests written by one developer on the code of any other
developer.

The developers were divided into two groups of 12: TQED (T) and non-
TQED, control group (0). The developers in group T were trained in the TQED
approach and instructed to write unit tests using this methodology. To verify that
the programmers followed this instruction, they were asked to add a comment
next to each test about which combinations of dimensions (T, Q, E, D) they
used to write the test. Programmers in group 0 wrote unit tests without using
TQED.

Fig. 5. Experimental design.

The experimental design is shown in Fig. 5. After all programmers wrote the
code and tests, each code was tested with each test set, so a total of 24× 24 =
576 test runs were performed. By using the cross-validation approach, greater
objectivity was achieved in evaluating the tests. This is because the tests were
evaluated on code for which they were not intended, since the respective test
author did not know the code implementations of the other participants in the
experiment. In this way, the effectiveness of the tests of the two groups, T and 0,
could be compared more objectively. Three measures were adopted to evaluate
the effectiveness of the tests: statement coverage, mutation coverage (also known
as mutation score) and failure rate.

Statement coverage is defined as SCov = (X/Y) · 100%, where X is the
number of statements executed during testing and Y is the total number of
executable statements in the code. SCov measures what portion of the code was
covered by tests and can be considered a basic (albeit very simple) measure of
test thoroughness.

Empirical Verification of TQED - A New Test Design Heuristic Technique 91

Mutation coverage measures the ability of tests to detect defects. In the
mutation testing process, a number of so-called mutants are created from the
source code. A mutant is the original code with an artificially introduced change
(defect) that simulates the programmer’s mistake. Tests are run on both the
original code and the mutant. If for each test the result on the original code and
on the mutant is the same, it means that the mutant was not detected by either
test, so either the tests are weak or the mutant happens to be equivalent to the
original code. If for at least one test the result on the original code and on the
mutant is different, it means that the test detected the mutant (the mutant is
said to be killed by the test). The more killed mutants, the stronger the tests
are. Mutation coverage is defined as MCov = (X/Y) · 100%, where X is the
number of mutants killed by the tests and Y is the total number of mutants
generated. For mutant generation, in our experiment we used the PIT Mutation
Testing tool (https://pitest.org/).

Failure rate is defined as FR = (X/Y) · 100%, where X is the number of
test cases that failed and Y is the total number of test cases run. FR is the
percentage of test cases that failed, so it is a similar measure to MCov in that
it describes the ability of tests to detect defects. The difference between MCov
and FR is that FR is measured on actual code, while MCov rather takes into
account the potential power of tests also if the tests are run on code that is
changed in the future.

Results and Discussion. Table 2 shows the basic statistics of the code, test
cases and mutants, by group (T and 0) and implemented classes. The programs
written by the two groups are similar both in terms of their size, the number of
tests written, and the number of mutants generated for each class.

Table 2. Statistics on code, tests and mutants for both groups.

Category Class Group 0 Group T Total
μ ± σ μ ± σ μ ± σ

Lines of Code Account.java 10.75 ± 3.64 11.17 ± 3.34 10.96 ± 3.50

Atm.java 17.92 ± 5.48 22.33 ± 7.50 20.13 ± 6.92

CreditCard.java 33.75 ± 6.52 35.58 ± 8.17 34.67 ± 7.44

Total 62.4 ± 10.47 69.08 ± 10.21 65.75 ± 11.63

Number of tests Account.java 6.42 ± 3.90 7.00 ± 3.57 6.71 ± 3.67

Atm.java 15.75 ± 10.93 14.67 ± 7.34 15.21 ± 9.12

CreditCard.java 15.08 ± 8.73 19.33 ± 8.90 17.21 ± 8.89

Number of mutants Account.java 9.00 ± 1.22 8.23 ± 2.26 8.60 ± 1.88

Atm.java 15.58 ± 4.54 18.31 ± 7.40 17.00 ± 6.34

CreditCard.java 25.25 ± 7.51 22.62 ± 8.60 23.88 ± 8.20

μ = mean value, σ = standard deviation.

https://pitest.org/

92 A. Roman et al.

Each of the 24 test sets was executed on each of the 24 programs written, as
well as on the mutants generated for these programs. For each of the 24×24 = 576
test/code combinations, statement coverage, mutation coverage and failure rate
were measured for the test cases run. The results were averaged across groups
0 and T. In the tables below, the results are reported separately for the four
test/code combinations: 0/T (group 0 tests run on group T programs), T/0, 0/0
and T/T. The measures are also reported for group 0 tests and group T tests
performed on all programs (from both groups).

The results of code coverage compared to mutation coverage are interesting.
Table 3 shows the average statement coverage achieved by the tests of one group
on the code of the other group. It is noticeable that the tests of group 0 achieve
higher coverage compared to those of group T. The difference is about 7% (83%
vs. 76.2%). This difference is statistically significant (two-sample t-test, N=288,
p-value=5.07×10−5 for homoscedastic groups (F-test, p-value=0.125)). However,
as can be seen in Table 4, Group T tests achieve 3% higher mutation coverage
than Group 0 tests (68.8% vs. 65.7%). This difference is also statistically sig-
nificant (two-sample t-test, N=288, p-value = 0.003 for heteroscedastic groups
(F-test, p-value=5.5× 10−5)). These results can be interpreted as follows. Using
the TQED approach makes it possible to create tests that cover a smaller but
more quality-relevant portion of the code. Although these tests cover less code
than Group 0 tests, they are more effective, as shown by the mutation coverage.

Table 3. Statistics on statement coverage.

Tests from ↓ on code from → Group 0 Group T All

Group 0 85.3% 80.8% 83.0%
Group T 77.6% 74.8% 76.2%
All 81.5% 77.8% 79.6%

Table 4. Statistics on mutation coverage.

Tests from ↓ on code from → Group 0 Group T All

Group 0 63.7% 67.6% 65.7%
Group T 66.8% 70.8% 68.8%
All 65.3% 69.2% 67.2%

Finally, Table 5 shows the failure rate results. As in the case of mutation
coverage, the failure rate turned out to be significantly higher (by more than
8%) for the tests from group T (37.6% vs. 29.3%). This difference is statistically
significant (two-sample t-test, n1 = 900, n2 = 975, p-value = 4.5× 10−9). Thus,

Empirical Verification of TQED - A New Test Design Heuristic Technique 93

despite achieving lower statement coverage, tests written using the TQED app-
roach were failing 28% more often ((37.6−29.3)/29.3) than tests written without
using this approach.

Table 5. Statistics on failure rate.

Tests from ↓ on code from → Group 0 Group T All

Group 0 23.6% 34.5% 29.3%
Group T 39.2% 35.8% 37.6%
All 30.0% 37.0% 33.6%

The observed both higher mutation coverage and higher failure ratio for
Group T tests allows us to positively answer the research question posed at the
beginning of the article: the TQED approach supports testers in creatively devel-
oping better, more efficient tests capable of detecting defects more frequently.
Thus, the TQED approach can be considered a valuable tool in a tester’s work
during test analysis and design.

Threats to Validity. Although the results of the experiment showed the pos-
itive impact of the TQED approach on the effectiveness of the test cases, the
following threats to validity should be taken into account:

– (internal validity) The experiment included a small group of developers (N =
24). However, the number of code/test combinations of 24 × 24 = 576 was
sufficient to draw statistically significant conclusions within the experiment.
In addition, participants were randomly assigned to groups 0 and T to avoid
systematic bias between the study groups.

– (external validity) The participants in the experiment were first- and second-
year graduate students in computer science. Although most of them were
working professionally as programmers at the time of the experiment, their
professional experience in both programming and testing was not very exten-
sive. The effectiveness of the TQED method may prove to be different when
applied, for example, by experienced testers.

– (external validity) The tests involved a single, small program written in Java
(in most cases, the number of lines of code written was 54–76), with only 3
classes and a total of 19 methods. The effectiveness of the method may prove
to be different in production applications, where the software has thousands
of classes and millions of lines of code, and is written in languages other than
Java.

– (external validity) The test cases involved only functional tests and were
written only at the level of unit tests and very simple component integration
tests. The effectiveness of the method was not tested at higher levels of testing
(e.g., system integration tests, system tests or acceptance tests) or for non-
functional testing.

94 A. Roman et al.

5 Conclusions

In this paper, we described the TQED technique for supporting testers’ creativ-
ity during the test analysis and design phase. We compared it with other similar
approaches, justifying its relatively high generality while being highly prescrip-
tive when it comes to providing ideas for test data or test ideas. We conducted
an experiment that showed that the use of TQED increases the strength of test
cases, expressed in terms of mutation coverage and failure rate. The results of
the study allow us to conclude that TQED can be successfully applied in practice
as an effective heuristics for test case design.

Links to Data Files. The code containing the definitions of the interfaces the
participants were to implement, as well as the solutions provided by the partic-
ipants, can be found at github.com/Software-Engineering-Jagiellonian/TQED-
experiment

References

1. Afzal, W., Ghazi, A.N., Itkonen, J., Torkar, R., Andrews, A., Bhatti, K.: An exper-
iment on the effectiveness and efficiency of exploratory testing. Empirical Softw.
Eng. 20(3), 844–878 (2014). https://doi.org/10.1007/s10664-014-9301-4

2. Bach, J.: Exploratory testing explained. https://wwwsatisfice.com/articles/et-
article.pdf (2003)

3. Bach, J.: Heuristic test strategy model (2019). https://www.satisfice.com/
download/heuristic-test-strategy-model

4. Beizer, B.: Black-Box Testing. Techniques for Functional Testing of Software and
Systems, Wiley (1995)

5. Chen, J., Chen, H., Wu, Y., Mao, C., Cai, S.: Adaptive random testing based on the
modified metric-memory tree and information entropy. In: 2022 9th International
Conference on Dependable Systems and Their Applications (DSA), pp. 615–623
(2022). https://doi.org/10.1109/DSA56465.2022.00088

6. Chen, T., Cheung, S., Yiu, S.: Metamorphic testing: a new approach for generat-
ing next test cases. Technical Report HKUST-CS98-01, University of Science and
Technology, Hong Kong (1998)

7. Copeland, L.: A Practitioner’s Guide to Software Test Design. Artech House Pub-
lishers, Norwood (2003)

8. Corradini, D., Zampieri, A., Pasqua, M., Ceccato, M.: Empirical comparison of
black-box test case generation tools for restful APIS. In: 2021 IEEE 21st Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 226–236 (2021). https://doi.org/10.1109/SCAM52516.2021.00035

9. Crawford, B., Crawford, K., Soto, R., de la Barra, C.L.: Creativity in agile software
development methods. Commun. Comput. Inf. Sci. 529, 131–135 (2015)

10. Crawley, F., Tyler, B.: HAZOP: Guide to Best Practice, 3rd edn. Elsevier (2015).
https://doi.org/10.1016/C2014-0-04859-9

11. Cruzes, D.S., Melsnes, K., Marczak, S.: Testing in a DevOps Era: perceptions of
testers in norwegian organisations. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS,
vol. 11622, pp. 442–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-24305-0_33

https://doi.org/10.1007/s10664-014-9301-4
https://wwwsatisfice.com/articles/et-article.pdf
https://wwwsatisfice.com/articles/et-article.pdf
https://www.satisfice.com/download/heuristic-test-strategy-model
https://www.satisfice.com/download/heuristic-test-strategy-model
https://doi.org/10.1109/DSA56465.2022.00088
https://doi.org/10.1109/SCAM52516.2021.00035
https://doi.org/10.1016/C2014-0-04859-9
https://doi.org/10.1007/978-3-030-24305-0_33
https://doi.org/10.1007/978-3-030-24305-0_33

Empirical Verification of TQED - A New Test Design Heuristic Technique 95

12. Deak, A., Stålhane, T., Cruzes, D.: Factors influencing the choice of a career in
software testing among norwegian students. Softw. Eng. 796 (2013)

13. Edgren, R.: The little black book on test design (2012). https://www.thetesteye.
com/papers/TheLittleBlackBookOnTestDesign.pdf

14. Franca, C., Gouveia, T., Santos, P., Santana, C., Silva, F.: Motivation in software
engineering: a systematic review update. In: IET Seminar Digest, pp. 154–163.
EASE 2011 (2011). https://doi.org/10.1049/ic.2011.0019

15. Gu, M., Tong, X.: Towards hypotheses on creativity in software development. In:
Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 47–61. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24659-6_4

16. Henard, C., Papadakis, M., Harman, M., Jia, Y., Le Traon, Y.: Comparing white-
box and black-box test prioritization. In: 2016 IEEE/ACM 38th International Con-
ference on Software Engineering (ICSE), pp. 523–534 (2016). https://doi.org/10.
1145/2884781.2884791

17. ISO/IEC: ISO/IEC 25010. Systems and software engineering - Product quality.
ISO/IEC (2011)

18. de Jesus, G.M., Ferrari, F.C., de Paula Porto, D., Fabbri, S.C.P.F.: Gamification
in software testing: a characterization study. In: Proceedings of the III Brazilian
Symposium on Systematic and Automated Software Testing, pp. 39–48 (2018)

19. Jorgensen, P.C.: Software Testing. A Craftsman’s Approach, CRC Press, Boca
Raton (2014)

20. Kaner, C.: Exploratory testing. In: Quality Assurance Institute Worldwide Annual
Software Testing Conference, pp. 1–14 (2006). https://kaner.com/pdfs/ETatQAI.
pdf

21. Kaner, C., Padmanabhan, S., Hoffman, D.: The Domain Testing Workbook. Con-
text Driven Press (2013)

22. Luo, Q., Moran, K., Poshyvanyk, D.: A large-scale empirical comparison of static
and dynamic test case prioritization techniques. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 559–570. FSE 2016, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2950290.2950344

23. Mårtensson, T., Martini, A., Ståhl, D., Bosch, J.: Excellence in exploratory test-
ing: success factors in large-scale industry projects. In: Franch, X., Männistö, T.,
Martínez-Fernández, S. (eds.) PROFES 2019. LNCS, vol. 11915, pp. 299–314.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35333-9_21

24. Mayer, J., Schneckenburger, C.: An empirical analysis and comparison of random
testing techniques. In: Proceedings of the 2006 ACM/IEEE International Sympo-
sium on Empirical Software Engineering, ISESE 2006, pp. 105–114. Association
for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/
1159733.1159751

25. Ostrand, T., Blacer, M.: The category-partition method for specifying and gener-
ating functional tests. Commun. ACM 31(6), 676–686 (1988)

26. Pfahl, D., Yin, H., Mäntylä, M.V., Münch, J.: How is exploratory testing used? a
state-of-the-practice survey. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, pp. 1–10 (2014)

27. Roman, A.: Thinking-Driven Testing. The Most Reasonable Approach to Quality
Control. Springer Nature (2018). https://doi.org/10.1007/978-3-319-73195-7

28. de Souza Santos, R.E., De Magalhaes, C.V.C., da Silva Correia-Neto, J., Da Silva,
F.Q.B., Capretz, L.F., Souza, R.: Would you like to motivate software testers? ask
them how. In: 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 95–104. IEEE (2017)

https://www.thetesteye.com/papers/TheLittleBlackBookOnTestDesign.pdf
https://www.thetesteye.com/papers/TheLittleBlackBookOnTestDesign.pdf
https://doi.org/10.1049/ic.2011.0019
https://doi.org/10.1007/978-3-540-24659-6_4
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1145/2884781.2884791
https://kaner.com/pdfs/ETatQAI.pdf
https://kaner.com/pdfs/ETatQAI.pdf
https://doi.org/10.1145/2950290.2950344
https://doi.org/10.1007/978-3-030-35333-9_21
https://doi.org/10.1145/1159733.1159751
https://doi.org/10.1145/1159733.1159751
https://doi.org/10.1007/978-3-319-73195-7

96 A. Roman et al.

29. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982). https://doi.org/10.1093/comjnl/25.4.465

30. Whittaker, A.: Exploratory Software Testing. Addison-Wesley, Boston (2009)
31. Winograd, T.: Bring Design to Software. Addison Wesley, Boston (1996)

https://doi.org/10.1093/comjnl/25.4.465

How Do Different Types of Testing Goals
Affect Test Case Design?

Dia Istanbuly, Max Zimmer, and Gregory Gay(B)

Chalmers, University of Gothenburg, Gothenburg, Sweden
{gusistdi,gusmaxzi}@student.gu.se, greg@greggay.com

Abstract. Test cases are designed in service of goals, e.g., functional
correctness or performance. Unfortunately, we lack a clear understand-
ing of how specific goal types influence test design. In this study, we
explore this relationship through interviews and a survey with software
developers, with a focus on identification and importance of goal types,
quantitative relations between goals and tests, and personal, organiza-
tional, methodological, and technological factors.

We identify nine goal types and their importance, and perform further
analysis of three—correctness, reliability, and quality. We observe that
test design for correctness forms a “default” design process that is mod-
ified when pursuing other goals. For the examined goal types, test cases
tend to be simple, with many tests targeting a single goal and each test
focusing on 1–2 goals at a time. We observe differences in testing prac-
tices, tools, and targeted system types between goal types. In addition,
we observe that test design can be influenced by organization, process,
and team makeup. This study provides a foundation for future research
on test design and testing goals.

Keywords: Software Testing · Test Design · Testing Goals ·
Functional Testing · Non-Functional Testing

1 Introduction

Software testing is a process where input is applied to a system-under-test (SUT)
and observations of the reaction to the input are used to verify that the SUT
operates correctly [19]. It is the most common verification technique, and can be
conducted in many forms and at different levels of granularity within the code of
the SUT [4]. Testers may write test cases before or after writing the code-under-
test [20], and according to different personal problem-solving models [9,12].

Unifying all testing approaches, practices, and technologies is that tests are
designed in service of goals. These goals can vary in nature and type—for exam-
ple, a test might be written to verify functional requirements, to show that
known security risks are mitigated, or to ensure that performance thresholds are
met [17]. The nature of problem-solving implies that developers must have goals

Support provided by Software Center Project 30: “Aspects of Automated Testing”.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 97–114, 2023.
https://doi.org/10.1007/978-3-031-43240-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_7&domain=pdf
http://orcid.org/0000-0001-6794-9585
https://doi.org/10.1007/978-3-031-43240-8_7

98 D. Istanbuly et al.

that they wish to achieve through the act of designing tests, even if those goals
are not explicitly enumerated in requirements or other documentation [9,18].

Despite the prominence of testing as a development practice, we lack a clear
understanding of how specific types of testing goals influence the practice of
test design. For example, Enoiu et al. proposed a model of test case design as a
problem solving process [9]. This model makes it clear that tests are designed to
show the attainment of specific goals, but does not discuss what common types
of goals are, or how different goal types could influence this process.

The purpose of this research is to explore the types of goals that testers pur-
sue and the influence of these goal types on the process that developers follow to
design tests that assess attainment of those goals. Understanding the relation-
ship between test case design and different types of testing goals could provide
benefits to both researchers and practitioners. For example, such understanding
enables characterization of test design practices and the ability to offer clear guid-
ance to developers creating tests for specific types of goals—potentially leading
to improved effectiveness or efficiency of the testing process. In addition, charac-
terization of design practices can benefit automated test generation, potentially
leading to the development of more human-like generation tools [8,11].

In particular, we are interested in the exploring the types of goals pursued, the
relative importance of different goal types, quantitative relations between goal
types and test cases—tests-per-goal and goals-per-test—and personal, organiza-
tional, methodological, and technological factors that may influence the relation-
ship between goal types and the test design process. To address these topics, we
have conducted a series of interviews with software developers in various domains
and of varying experience. Thematic analysis of the interviews was then used to
develop a survey for wider distribution.

Based on analyses of the interview and survey responses, we have identified
nine goal types, including correctness, reliability, performance, quality, security,
customer satisfaction, risk management, improving maintenance cost, and pro-
cess improvement. Correctness was ranked most important, followed by reliabil-
ity and security. Customer satisfaction and maintenance cost were seen as least
important, but were still valued.

We focused on correctness, reliability, and quality for analysis. Test design
for correctness forms a “default” design process, which is followed in a modi-
fied form for other goals. For all three goal types, several tests are needed to
assess goal attainment, and tests focus on 1–2 goals at a time. Testers often
start the design process following pre-existing patterns (e.g., using past tests as
templates). We also make observations regarding differences in testing practices
and tools employed during test design for these three goal types. We further
observe that test design can be influenced by process, organization, and team
structure.

This study provides a foundation for future research on test case design and
testing goals, and enables deeper modeling of test design as a cognitive problem-
solving process. To help enable future research, we also make our thematic inter-
view coding and survey responses available1.

1 Available at https://doi.org/10.5281/zenodo.8106998.

https://doi.org/10.5281/zenodo.8106998

How Do Different Types of Testing Goals Affect Test Case Design? 99

2 Background

During software testing, input is applied to the SUT and the resulting output and
other observations are captured [19]. These observations are compared to embed-
ded expectations, called test oracles, to determine whether the SUT operated
within expectations. Oracles often directly reflect the goals of test creation [2].

Testing can take place at multiple levels of granularity [19]. At the lowest
level, unit tests examine small code elements in isolation with dependencies
substituted for “mock” (static) results [21]. During integration testing, depen-
dent units are combined. Then, during system testing, high-level functionality is
invoked through interfaces. Tests can be written at all three levels as executable
code, using frameworks such as JUnit, PyTest, or Postman [21].

Testing can also be performed manually. This is common during exploratory
testing—where humans perform ad-hoc testing based on “tours” [24]—and accep-
tance testing—where customers offer feedback [22]. Tests are often written after
code has been developed. However, test-driven development advocates for test
creation before code development [14].

3 Related Work

Enoiu et al. hypothesized that our understanding of test design practices could
be improved by formulating test design as a cognitive problem solving model [9].
Their exploratory work proposes that testers follow a seven stage process, includ-
ing identification and definition of testing goals, knowledge analysis, strategy
planning, information and resource organization, progress monitoring, and eval-
uation. Their research provides inspiration. In particular, we focus on the goal
aspect of this model—filling in gaps in our understanding of the goals that testers
focus on and how those goals influence test design. Our findings complement,
and could lead to elaborations, in this model—as well as in other research that
examines testing as a cognitive process, e.g., Aniche et al.’s framework for how
developers approach test design [1] or Hale et al.’s cognitive model of how devel-
opers choose, implement, and evaluate debugging rules and strategies [12,13].

There has been limited research on how developers approach test case design
in practice [9]. For example, Garousi et al. surveyed software developers to
examine techniques, tools, methods, and metrics used in test design [10]. They
observed that the usage of JUnit and IBM Rational testing tools have been
overtaken by NUnit and web application tools. They also observed that organi-
zations were still slow to adopt test-driven development. Eldh et al. asked experts
to review 500 test cases written by novice testers [7]. They examined whether
the tests matched the IEEE test case template, and also compared the mistakes
made by the novices to those made by expert testers. Some mistakes were made
by both groups, but others—such as not cleaning up after test execution—were
made far more often by novices. Beer and Ramler also investigate how testers’
experience impacts the effectiveness of testing methods and tools [3]. They briefly
examine test design, noting that experience plays a large role in determining the

100 D. Istanbuly et al.

Table 1. Demographic information on interview participants.

ID Role Development Experience

P1 Software Developer 7.0 Years
P2 Senior Consultant, DevOps Architect 13.0 Years
P3 Software Developer 0.5 Years
P4 Software Developer 9.0 Years
P5 Software Developer 4.0 Years
P6 Software Developer 3.0 Years
P7 Test Manager, Scrum Master 10.5 Years
P8 Quality Manager 6.0 Years
P9 Software Developer 2.0 Years

19
12

4
2Support

5.4%
Researcher
10.8%
Tester
32.4%

Developer
51.4%

Role

4
8

65

14
9+
37.8%
6-9
13.5%

1-3
21.6%

3-6
16.2%

Dev. Experience
2

7

7
8

13
9+
35.1%

6-9
21.6%

1-3
18.9%

3-6
18.9%

Test Experience

Fig. 1. Demographic information on survey participants.

effectiveness of the designed tests. Although all three studies examine aspects of
test design, they—and other past studies—do not closely examine the influence
of different goals on test design. Our study contributes to filling this gap.

4 Methodology

We hypothesize that developers follow distinct patterns when designing tests in
relation to specific types of testing goals. To examine this hypothesis, we address
the following research questions:
– RQ1: What types of goals do developers attempt to achieve when designing

test cases, and how do they perceive the importance of these goal types?
– RQ2: What approaches are taken to design tests for these goal types?

• RQ2.1: How many test cases are generally required to achieve a goal of
a specific type?

• RQ2.2: How many goals of each type are generally targeted by a test?
• RQ2.3: Are there patterns that explain the relationship between the

selected goal type and the resulting test design process?

To address these questions, we performed semi-structured interviews to gain
insight into the test design process. We then performed a thematic analysis of
the interview findings, and designed a follow-up survey for wide distribution to
provide further evidence for the findings from the interview study, as well as
additional quantitative and qualitative data to help answer our research ques-
tions.

How Do Different Types of Testing Goals Affect Test Case Design? 101

4.1 Population and Sampling

We performed a series of nine interviews—selected through convenience
sampling—with software developers in Gothenburg, Sweden. 37 unique respon-
dents, from around the world, filled out the survey2. Table 1 outlines demo-
graphic information on the interview participants, including their role and devel-
opment experience. Figure 1 summarizes the same information for the survey
participants, with the addition of testing experience3. The interview and sur-
vey participants work in many domains—e.g., automotive, data analytics, and
telecommunications.

Table 2. Interview questions, linked to research questions

RQ Interview Question

N/A 1. What is your professional role?
2. How much experience do you have in software development?
3. Do you write test cases for code?
4. How much experience do you have in software testing?

RQ1 5. Can you describe the goals that you target through the creation of test
cases?
6. What are you trying to achieve, avoid, or discover when creating test
cases?

RQ2 7. What methods do you use to test your code?
8. Describe the process you follow to design test cases
9. What tools do you use to create test cases?
10. Do you design test cases by yourself or in a group?
11. How do you perform test design in order to achieve your goals?
12. How have your testing methods changed over time?

RQ2.1 13. How many test cases do you tend to design for each goal you want to
achieve?

RQ2.2 14. Do you design test cases to achieve one or multiple goals at once?
15. How many goals do you target with each test case?

RQ2.3 16. Do you have any recurring test case design habits?
17. Do you tend to design test cases in the same way as long as it works,
or do you regularly search for new tools and approaches when designing
test cases?
18. How do you assess success or failure at achieving a goal?
19. In case of failure to achieve a goal, what do you do to address
problems?
20. If you have achieved a goal, how do you proceed?

2 One survey response was discarded, as a respondent answered twice. We retained
the first response from this participant.

3 Job titles have been merged when similar, e.g., “software tester” and “test engineer”.
The survey asked for both development and testing experience, while the interview
only asked about years of development experience.

102 D. Istanbuly et al.

Table 3. Survey questions, linked to research questions. MC = multiple choice.

RQ Survey Question Format

N/A 1. What is your profession? Free Text
2. How many years of experience do you have with development? MC
3. How many years of experience do you have with software testing? MC

RQ1 4. Do you have specific goals or types of goals when designing tests? MC
5. Please rank the following types of goals by ascending importance MC (Grid)

(Q6–12 repeated for two goal types indicated as most important)

RQ2 6. What testing techniques do you use for this goal? MC, Free Text
7. Please outline your typical design process when designing a test
case to achieve the selected goal type.

Free Text

8. What tools do you use to design tests for the selected goal type? MC, Free Text
9. What type of system do you design tests of this goal type for? MC, Free Text

RQ2.1 10. How many tests do you typically design for a goal of this type? MC

RQ2.2 11. How many goals of this type do you try to cover with a single
test?

MC

RQ2.3 12. When designing test cases for this goal type, how often do you
tend to re-use a particular test case design pattern?

MC, Free Text

13. Do you design test cases by yourself or in a team? MC
14.Are there standards or pre-defined methods used within your
organization when designing test cases or goals?

MC, Free Text

15. How do development and process methodologies (e.g.
Scrum/DevOps) influence the way you write tests to achieve
different goal types?

Free Text

4.2 Data Collection

Interviews: Interviews were conducted electronically between January–
February 2022. At the start of an interview, we gave a brief overview of the
research topic. Interview responses were recorded, with permission, for analy-
sis and observer triangulation. The interviews were semi-structured, following
the interview guide in Table 2. However, follow-up questions were asked if fur-
ther discussion was needed. The interviews were transcribed using speech-to-text
software, then manually corrected through consultation with the original audio.

Survey: The survey consisted of mostly quantitative questions, with a small
number of open-ended questions, and was designed according to the guidelines
of Linåker et al. [15]. The questions are listed in Table 3. We focused on quan-
titative questions to decrease the time burden [16]. To complete the survey, the
participants were required to answer all multiple-choice questions, but open-
ended questions were optional. The survey was pre-tested with two participants,
and the feedback was used to clarify wording and question order. The survey
was conducted using Google Forms4. Links for the survey were then distributed
via email, as well as on social media platforms.
4 https://forms.gle/bhzpUCX9PdXbebiH8.

https://forms.gle/bhzpUCX9PdXbebiH8

How Do Different Types of Testing Goals Affect Test Case Design? 103

4.3 Data Analysis

Thematic Analysis: The interview transcripts were analyzed using thematic
analysis, following the guidelines of Cruzes et al. [6] and Braun et al. [5]. To con-
duct this process, we independently examined transcripts, highlighting aspects
relevant to the research questions (“codes”). The codes were subsequently orga-
nized and aggregated into sub-themes, which were clustered into themes.

After individual coding was completed for the first interview, we compared
the codes. After the first iteration, our codes did not achieve an 80% similar-
ity threshold. Therefore, we came to an agreement on sub-theme identification
and code classification. After a second iteration, a similarity of over 80% was
achieved. This process was conducted iteratively, and was paused for discussion.

An overview of the themes and sub-themes is shown in Table 4. These themes
and sub-themes, as well as the underlying codes, were used both to directly assist
in addressing the research questions as well as to design the survey instrument.

Survey Analysis: The survey consisted of both quantitative and open-ended
qualitative questions. To analyze quantitative data, we used summary statistics
(e.g., mean and variance of responses, separated by goal type) [23]. Responses
to open-ended questions were assessed using thematic coding. As the survey was
designed using the interview codes and themes, no additional themes or sub-
themes were identified. Instead, survey responses enriched the existing codes.

Table 4. Themes (bold) and sub-themes from interviews.

Theme Explanation

Experience Interviewees’ experiences in development and testing
Profession Interviewees’ job titles and responsibilities
Test Case Design Encompasses sub-themes related to test design planning and execution
Design Process Steps that interviewees take when designing tests to achieve their goals
Alone/In Group Whether interviewees work individually or in a group during test design
Design Plan Specific practices interviewees apply while test design
Design-Goal Relation Factors that relate goals to test design (e.g., the number of tests to achieve a specific type of goal)
Recurring Habits Common practices performed while designing test cases, (e.g., basing new tests on earlier tests)
Testing Goals Specific goal types that interviewees design tests to achieve (e.g., functional correctness or performance)
Measuring Success How interviewees determine whether goals are achieved (e.g., code coverage, customer satisfaction)
In Case of Failure Steps taken when goals are not met (e.g., fault analysis)
In Case of Success Steps taken when tests show goals are achieved (e.g. performing a demo to the client).
Testing Tools Tools and technologies used to plan, design and execute tests (e.g., JUnit)
Testing Methods Testing methods or practices (e.g., Test Driven Development) used by the interviewees to achieve their goals
Change Over Time How interviewees evolved their testing practices following experiences, mistakes, and new technologies or practices.
System Type The type of system tested (e.g., API end-points, embedded)

104 D. Istanbuly et al.

5 Results and Discussion

5.1 Goals and Goal Importance

Test design can not take place without some reason to design tests in the first
place. During the interviews, we identified nine specific types of goals that testers
pursue. These types are defined in Table 5. 76% of survey respondents confirmed
that they have specified, pre-determined goals when designing test cases.

RQ1 (Goals): The goal types identified include correctness, reliability,
performance, quality, security, customer satisfaction, risk management,
improving maintenance cost, and process improvement.

Table 5. Goal types identified in interviews.

Goal Type Definition

Correctness Tests assess SUT behavioral consistency with specifications

Reliability Tests assess the ability of the SUT to remain available and
failure-free in a specified environment over a period of time

Performance Tests assess the ability of the SUT to meet performance goals
(e.g., response time)

Quality Tests assess whether the SUT meets specified quality goals (e.g.,
usability)

Security Tests assess whether the SUT can protect data and services
from unauthorized access

Customer Satisfaction Tests assess whether the SUT meets the needs of a customer

Risk Management Tests are used to forecast and evaluate threats and their
possible impact on the SUT

Maintenance Cost Tests are used to make SUT maintenance more efficient

Process Improvement Tests are created as part of an attempt to improve the testing
process (e.g., writing automated test code to replace manual
testing)

Survey participants were asked to rank these goal types in importance. The
results of this ranking are shown in Fig. 2, along with their average ranking. As
might be expected, correctness was ranked as the most important goal (59%).

Interestingly, seven participants indicated correctness as their least important
goal. At least three of these work with machine learning, where non-determinism
often makes assessing correctness difficult. This could be a reason for the low
ranking. Among the seven, risk management, performance, customer satisfac-
tion, and maintenance cost reduction ranked highly.

Correctness was followed by reliability. These are followed by assessment
of non-functional qualities—security, quality, and performance—and risk man-
agement. These goals are important, but are often secondary considerations. In
some cases, the participants were highly split in their rankings—e.g., for security,
quality, and risk—with a near-even split between high and low importance.

How Do Different Types of Testing Goals Affect Test Case Design? 105

Fig. 2. Ranking of goal importance (1 = most important, 9 = least important). Average
ranking indicated in parentheses.

Customer satisfaction and improving process or maintenance are seen, gen-
erally, as the least important goals. However, all goal types were highly impor-
tant among a subset of participants. Some differences could be explained by the
nature of the organization that the tester works for. If products are created for
clients, then pleasing those clients is—naturally—a high priority. If the organi-
zation sells the product widely, then individuals do not have to give approval.

RQ1 (Goals): Correctness was ranked most important, followed by reli-
ability. Customer satisfaction and maintenance cost were seen as the least
important. However, all goal types are important for some.

In the survey, we asked participants to answer a set of questions for two
chosen goal types. To avoid drawing biased conclusions, we primarily focus in
the following subsections on goal types that we received at least five responses
for—correctness (33 responses), reliability (12 responses), and quality (8
responses)—or on observations not dependent on specific goal types.

5.2 Quantitative Relationship Between Goal Types and Tests

Test Cases Per Goal: Figure 3(a) shows the average number of tests needed to
achieve a goal. Correctness requires the most tests per goal, on average (6.42).
Advice on test design often advocates for creating multiple tests for functions
that, individually, are simple and focused on a single outcome or facet of the
tested function. For example, a common (and highly debated5) recommendation
is to use a single assertion per test case. Multiple interviewees echoed this advice.
Figure 3(a) indicates that this advice is followed, and that multiple tests are
needed to demonstrate that a complex function fulfills its specification.

5 E.g., https://softwareengineering.stackexchange.com/questions/394557/should-test
s-perform-a-single-assertion-or-are-multiple-related-assertions-acce.

https://softwareengineering.stackexchange.com/questions/394557/should-tests-perform-a-single-assertion-or-are-multiple-related-assertions-acce
https://softwareengineering.stackexchange.com/questions/394557/should-tests-perform-a-single-assertion-or-are-multiple-related-assertions-acce

106 D. Istanbuly et al.

0.00

4.00

8.00

Correctness Reliability Quality
0.00
1.00
2.00

Correctness Reliability Quality

Fig. 3. Quantitative relationship between tests and goals of correctness, reliability, and
quality types.

Reliability goals, which typically take different measurements (e.g., failure
rate or availability) and compare them to thresholds, require fewer test cases to
assess. However, multiple tests are still required to assess a single goal.

RQ2.1 (Tests Per Goal): Several tests are needed to assess whether a
single correctness, reliability, or quality goal is met. Correctness requires
the most, an average of 6.42 tests per goal.

Goals Per Test Case: Figure 3(b) shows the average number of goals targeted
in a single test—on average, approximately two correctness or quality goals, or
one reliability goal. This offers further indication that testers tend to focus on
creating focused tests over large tests that target many goals at once.

RQ2.2 (Goals Per Test): A single test case tends to focus on 1–2
correctness, reliability, or quality goals.

5.3 Influence of Goals on Test Design

In this subsection, we will explore multiple factors that affect and illustrate the
relationship between testing goals and test design practices.

“Typical” Design Process: Survey participants were asked to outline their
typical test design process for their selected goal types. Test design for cor-
rectness often starts with examination of documentation and discussion with
stakeholders. The gathered knowledge is then processed during brainstorming:

“Identify basic tests to use as foundation..., discussions with others ..., questioning,
setting up environments with test data, reviewing tests” - SP10

“I design a simulation of that components usage, and compare with the hand-
written solution (done in my head).” - SP3

“I clarify requirements, do mindmaps and discuss with different oracles...” - SP12

Many respondents start by designing basic “happy path” tests for a func-
tion showing that the standard outcomes of the function are met. Then—often
iteratively—tests are designed to cover additional scenarios:

How Do Different Types of Testing Goals Affect Test Case Design? 107

“Write tests, write minimal code to make tests pass, examine if there are features
or corner cases that don’t have tests yet, go to step one.” - SP13

Respondents stressed the importance of simplicity:

“I try to isolate requirements and design as simple a test case as possible ... I focus
on making the test easy to understand, partly by making it small and independent
... I may write multiple test cases for one requirement because there may be multiple
modes of failure.” - SP4

There was emphasis on considering perspectives, tools, and environments:

“... cover all aspects of the test, such as—bare minimum—up to maximum range
of values, different user types if they exist, positive/negative aspects, etc.” - SP30

“1. try to understand the functionality specification 2. try to understand the test
environment needed 3. trying to understand what tools are needed 4. trying to
understand acceptance criteria 5. create test steps” - SP19

Interview Experts, Prioritize
Needs (Risk Mgmt.)

Reliability Over Time
Non-Functional/Quality Goals

Consider Environment, Dependencies, Repeat
Execution (Reliability, Performance)

Consider Sensitivity to Code Change,
Documentation of Code (Maintenance Cost)

Consider Recent Code Changes (Risk Mgmt.)

Examine
Functional

Specifications
Discuss With
Stakeholders

Formulate
Specific Goal(s)

Formulate
Acceptance

Criteria

Design “Sunny
Day” Test Cases

Identify
Untested
Aspects

Design
Additional Test

Cases

Perform Addt.
Research (Risk Mgmt.)

Fig. 4. Typical design process for correctness, with modifications for other goals.

We asked interviewees to describe their typical test design process. Although
specific goal types were not considered at that time, their comments largely echo
the process outlined above for correctness and illustrated in Fig. 4. Testers collect
information, brainstorm, then iteratively create test cases until all functional
outcomes are covered—focusing on individually simple and understandable tests.

Enoiu et al. proposed that testers follow a seven stage process—identification
and definition of testing goals, knowledge analysis, strategy planning, informa-
tion and resource organization, progress monitoring, and evaluation [9]. Our
observations suggest that this model is largely followed when testers pursue cor-
rectness goals. Some aspects of this process may be given more or less weight
at times—or even skipped entirely—depending on the form of testing or due to
personal experience and preferences. For example, during unit testing, there may
not be active discussions with stakeholders. However, this basic process offers a
basic outline for discussions on test design.

The responses written about other goal types suggest that the process in
Fig. 4 is followed—in a modified form—when pursuing the other goals. For exam-
ple, the core differences for reliability-demonstrating tests are that (a) reliability

108 D. Istanbuly et al.

must be measured over a period of time, and (b), the SUT should be tested in
a realistic environment—which may contain unreliable dependencies. For both
reliability and performance, it was also suggested that tests must execute oper-
ations multiple times:

“... stress test both that failing dependencies are correctly handled and that failures
don’t happen too often over a longer time of nominal operation.” - SP4

For quality goals, tests examine both functional correctness and attainment of
non-functional properties:

“... to improve the quality, there could be some overlap of functional and non
functional requirements testing here.” - SP7

To reduce maintenance costs, testers should design tests that are sensitive to
inadvertent code change and use tests to document the code:

“... ensure that the changes to the interface are documented through tests, with
the goal of making tests that would be sensitive to inadvertent changes ...” - SP21

Risk management often requires interviews and research, prioritization, and
understanding of recent code changes:

“I ask subject matter experts about the software under test, do some research, then
try to write tests that will help mitigate risk.” - SP33

“I take input from all stakeholders to assess what is most important ... Also talk
to developers to assess complexity of code that might have been mostly impacted
by the change ...” - SP12

RQ2.3 (Relationship Factors): Test design for correctness goals starts
with knowledge gathering and brainstorming, then design of “happy path”
tests, then design of tests covering alternative outcomes. When assessing
reliability or performance, tests should utilize a realistic environment,
assess behavior over time, and be executed multiple times. Tests for qual-
ity blend functional and non-functional aspects. Tests can reduce main-
tenance costs by documenting and detecting changes. Risk management
requires research, discussion, and awareness of change.

Use of Recurring Design Patterns: Survey participants were asked if they
follow recurring patterns when designing tests for different types of goals. This
could include, for example, using past test cases as templates or following specific
structures for writing test cases for that goal. Figure 5 indicates that the majority
of respondents use such patterns as a starting point:

“... I overwhelmingly look for similar tests that I can adapt ... initially, then use it
to get to the happy path. Following that I’ll typically duplicate the test and ensure
that some critical conditionals are covered. If it feels like there isn’t a test case I
can steal, or that setup is too onerous, then I will manually repeat the happy path
process until it works before considering adding a test case or two.” - SP21

How Do Different Types of Testing Goals Affect Test Case Design? 109

0.00

40.00

Use Patterns Use, but Deviate No Patterns

Correctness Reliability Quality

Fig. 5. % of participants re-using patterns when designing tests for correctness, relia-
bility, and quality goals.

RQ2.3 (Relationship Factors): Testers often start test design follow-
ing patterns. For quality goals, testers often deviate from these patterns.

System Type: The type of system may influence the goal types pursued and
their importance. In Fig. 6, we indicate the percentage of respondents who target
various system types. We observe a potential relationship between reliability’s
importance and the level of required trust in a SUT.

0.00
20.00
40.00
60.00
80.00

Web Mobile Database Desktop Embedded Other (Custom)

Correctness Reliability Quality

Fig. 6. % of respondents designing tests for correctness, reliability, and quality goals
for different system types.

Embedded systems make up the largest proportion of reliability responses.
Such systems have high safety demands, and testers may need to show evidence of
correctness, reliability, and quality. No respondents indicated that they develop
reliability tests for mobile applications. This may be due to the lack of criticality
in such programs. This observation should be further explored in future work.

RQ2.3 (Relationship Factors): Demonstrating reliability is a focus for
embedded systems. Reliability may not be important for mobile apps.

Practices and Tools: The testing practices employed—as well as the tools—
may differ between goal types. Figure 7 indicates the percentage of respondents
who employed different approaches, including levels of granularity (e.g., unit test-
ing), focuses (e.g., functional versus non-functional testing), and other practices
(e.g., mocking, test-driven development). Figure 8 does the same for different
types of tools. For both, the initial set of options were derived from interviews.
However, some respondents suggested additional options. “Automated Testing

110 D. Istanbuly et al.

Framework” includes frameworks where tests are written as code. The most
common responses included JUnit, PyTest, and Google Test.

0.00

25.00

50.00

75.00

100.00

Unit Testing

Integration Testing

System Testing
GUI Testing

Acceptance Testing

Exploratory Testing

Manual Testing

Functional Testing

Non-Functional Testing

Test-Driven Dev.
Mocking

Correctness Reliability Quality

Fig. 7. % of respondents performing testing practices when designing tests for correct-
ness, reliability, and quality goals.

0.00

25.00

50.00

75.00

100.00

Command Line
API Testing

Automated Testing

Jupyter Notebooks

CI/CD Pipelines

Property-Based Testing

Analysis Tools

BDD frameworks

Browser-Based Testing
Jira/XRay

SILK test

Brainstorming Tools

Correctness Reliabilility Quality

Fig. 8. % of respondents using different tools when designing tests for correctness,
reliability, and quality goals.

All three goal types are pursued at all major levels of granularity. How-
ever, reliability is relatively uncommon when using human-driven practices—i.e.,
acceptance, exploratory, and manual testing. Reliability is often demonstrated
by executing tests repeatedly or over a period of time [19]. This typically requires
automation. In addition, reliability is often attained before presenting the SUT
to a client, reducing the importance of acceptance testing. Test design for reli-
ability also typically does not seem to use mocking or test-driven development,
perhaps because reliability is most meaningful for a near-final product.

In contrast, quality is often a focus of GUI and human-driven practices. Some
typical quality types, such as usability, rely on replicating the typical user expe-
rience. This may lead to prominent use of human-driven practices. Correctness,

How Do Different Types of Testing Goals Affect Test Case Design? 111

as the “default” goal of testing, necessitates use of almost all practices, with the
exception of acceptance testing. Acceptance testing is generally conducted at a
late stage of development—when developers have a product to demonstrate [22].
At this stage, correctness testing may have largely concluded.

Automated testing frameworks, CI/CD pipelines, API frameworks, and
command-line scripting are used for all three goal types. Property-based testing
tools, which generate random input to violate properties, are used to assess cor-
rectness or reliability, but not quality goals. Test management tools, such as Jira
and its Xray plug-in, are used for correctness and quality. However, they are less
useful for reliability, which depends primarily on executing tests on demand.

RQ2.3 (Relationship Factors): Reliability is often pursued using
code-focused, automated practices on a near-final product. Quality is
often pursued using human and GUI-focused practices. Acceptance test-
ing is rare for correctness and reliability, but more common for qual-
ity. Automated and API testing frameworks, CI/CD pipelines, and
command-line scripting are common for all goal types.

Organizational Factors: Organizational policies, process, and team compo-
sition could also influence test design, regardless of the goal type. We asked
survey participants whether there are test design constraints enforced by their
organization or legal regulations. Figure 9(a) indicates that constraints affect the
majority (48.60%) percent of respondents.

18
13

6
N/A or Unknown
16.2%

No
35.1%

Yes
48.6%

15

8

14
Both
37.8%
With a Team
21.6%

By Myself
40.5%

Fig. 9. Organizational factors that may affect test design.

We also asked respondents whether they design tests alone, in a team, or
both, as collaborative design may lead to different tests than design by a single
tester. Figure 9(b) indicates that a slight plurality (40.50%) work along, but that
many work in team settings at all (21.60%) or some (37.80%) times. Interviewees
suggested that the need for teamwork increases with project complexity:

“If design strategies are needed, teamwork is mandatory.” - P4

In a group setting, test design is also often led by test leads with assistance from
others working under them:

112 D. Istanbuly et al.

“Test leads can do a pretty good job there. So, trust your test leads.” - P2

Survey participants were also asked about the influence of development processes
on test design. Many felt that there was no influence—other than the positive
increase in the use of CI tools and DevOps—or even that testers are the ones
that influence development practices:

“Most often we influence them... We are also the gateway that demands documen-
tation.” - SP19

Others discussed positive and negative aspects of short development cycles:

“Short cycle times encouraged by an agile-like methodology do make it difficult
sometimes to add test cases, but some of our PRs tend to be quite self contained
(i.e. the change is proposed with several test cases).” - SP21

Multiple respondents indicated that agile processes can be beneficial for getting
feedback and offering structure:

“It helps me to be structured. Keep track of things, like if all the functionalities
are covered by the test suits are not.” - SP7

Respondents also warned that rigid enforcement of practices can waste testing
resources that could otherwise be devoted to more productive goals:

“large suite that must pass ... makes the teams ‘waste’ time when making sure that
as many as possible checks will pass when pushing to master.” - SP23

RQ2.3 (Relationship Factors): Test design can be influenced by pro-
cess, organization, and team structure. Many testers are constrained by
organization or regulatory policies. Testers perform design individually
somewhat more often, but also often work in teams. Testers feel they
can influence development methodologies, and that agile processes offer
feedback and structure. However, there are positive and negative aspects
of short release cycles, and rigid practice enforcement can waste time.

6 Threats to Validity

Conclusion Validity: The number of responses may affect conclusion reliabil-
ity. However, our thematic findings reached saturation within nine interviews,
and the qualitative survey results fell within the same themes and sub-themes.
Further interviews or survey results could enrich our findings, but may not pro-
duce significant additions.

Construct Validity: The interviews or survey could have missing or confusing
questions, and there was opportunity for misinterpretation. There is also a risk
that participants may not be familiar with particular terminology. However, as

How Do Different Types of Testing Goals Affect Test Case Design? 113

all participants had prior experience in testing, this risk is minimized. We also
provided a brief introduction before the interviews and the survey to further
reduce this risk. The use of semi-structured interviews allowed us to ask follow-
up questions. We also conducted pre-testing of the survey.

External Validity: The generalizability of our findings is influenced by the
number and background of participants. Our participants represent a variety of
development roles, experience levels, and product domains. Therefore, we believe
that our results are relatively applicable to the software development industry.

Internal Validity: We applied thematic coding, a qualitative practice that
suffers from known bias threats. We mitigated these threats by performing inde-
pendent coding and comparing results, finding sufficient agreement. We make
our results available for further analysis, increasing transparency.

7 Conclusion

Our interviews with testers suggest nine common types of goals pursued when
designing test cases, as well as an indication of the relative importance of each
goal type. Our findings also shed light on the process of test design for different
goals, as well as the factors that can influence this design process.

This research provides a basis for understanding how test design is influenced
by particular types of testing goals. Our observations should be confirmed and
expanded in future work with further, focused data collection. In particular,
we plan to further explore the collective impact of organization factors, team-
versus-individual design, and testing goals on the design process. We would also
like to explore situations where multiple types of goals are targeted simultane-
ously during test design. We additionally plan to expand our model of the test
design process, with a focus on how knowledge of tester practices can enhance
automated test generation.

References

1. Aniche, M., Treude, C., Zaidman, A.: How developers engineer test cases: an obser-
vational study. IEEE Trans. Softw. Eng. 48(12), 4925–4946 (2022)

2. Barr, E., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in
software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

3. Beer, A., Ramler, R.: The role of experience in software testing practice. In: 2008
34th Euromicro Conference Software Engineering and Advanced Applications, pp.
258–265 (2008)

4. Bentley, J.E., Bank, W., Charlotte, N.: Software testing fundamentals-concepts,
roles, and terminology. In: Proceedings of SAS Conference, pp. 1–12 (2005)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

6. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement, pp. 275–284 (2011)

114 D. Istanbuly et al.

7. Eldh, S., Hansson, H., Punnekkat, S.: Analysis of mistakes as a method to improve
test case design. In: 2011 Fourth IEEE International Conference on Software Test-
ing, Verification and Validation, pp. 70–79 (2011)

8. Enoiu, E., Feldt, R.: Towards human-like automated test generation: perspectives
from cognition and problem solving. In: 2021 IEEE/ACM 13th International Work-
shop on Cooperative and Human Aspects of Software Engineering (CHASE), pp.
123–124 (2021)

9. Enoiu, E., Tukseferi, G., Feldt, R.: Towards a model of testers’ cognitive processes:
software testing as a problem solving approach. In: 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security Companion (QRS-C), pp.
272–279 (2020)

10. Garousi, V., Zhi, J.: A survey of software testing practices in Canada. J. Syst.
Softw. 86(5), 1354–1376 (2013)

11. Gay, G.: One-size-fits-none? Improving test generation using context-optimized
fitness functions. In: 2019 IEEE/ACM 12th International Workshop on Search-
Based Software Testing (SBST), pp. 3–4 (2019)

12. Hale, D.P., Haworth, D.A.: Towards a model of programmers’ cognitive processes
in software maintenance: a structural learning theory approach for debugging. J.
Softw. Maint. Res. Pract. 3(2), 85–106 (1991)

13. Hale, J.E., Sharpe, S., Hale, D.P.: An evaluation of the cognitive processes of
programmers engaged in software debugging. J. Softw. Maint. Res. Pract. 11(2),
73–91 (1999)

14. Karac, I., Turhan, B.: What do we (really) know about test-driven development?
IEEE Softw. 35(4), 81–85 (2018)

15. Linaker, J., Sulaman, S.M., Höst, M., de Mello, R.M.: Guidelines for conducting
surveys in software engineering v. 1.1. Lund University (2015)

16. Litwin, M.S., Fink, A.: How to Measure Survey Reliability and Validity, vol. 7.
Sage (1995)

17. McLeod, R., Jr., Everett, G.D.: Software Testing: Testing Across the Entire Soft-
ware Development Life Cycle. Wiley, Hoboken (2007)

18. Newell, A., Simon, H.A., et al.: Human Problem Solving, vol. 104. Prentice-Hall,
Englewood Cliffs (1972)

19. Pezze, M., Young, M.: Software Test and Analysis: Process, Principles, and Tech-
niques. Wiley, Hoboken (2006)

20. Quadri, S., Farooq, S.U.: Software testing-goals, principles, and limitations. Int. J.
Comput. Appl. 6(9), 1 (2010)

21. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23(4), 22–29 (2006)
22. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley Publishing Com-

pany, USA (2010)
23. Upton, G., Cook, I.: A Dictionary of Statistics 3E. Oxford University Press (2014)
24. Whittaker, J.A.: Exploratory Software Testing: Tips, Tricks, Tours, and Techniques

to Guide Test Design. Pearson Education (2009)

Multi-device, Robust, and Integrated
Android GUI Testing: A Conceptual

Framework

Riccardo Coppola(B) , Luca Ardito , and Marco Torchiano

Department of Control and Computer Engineering, Polytechnic University of Turin,
Corso Castelfidardo, 34/d, 10138 Torino, Italy

{riccardo.coppola,luca.ardito,marco.torchiano}@polito.it

Abstract. Android GUI (Graphical User Interface) testing is often over-
looked by developers, even if it holds the potential to guarantee sufficient
quality for the apps. It is typically regarded as a burdensome activity.
High maintenance costs, fragmentation, fragility, and flakiness of the test
artifacts are the main hurdles for wider adoption in practice. This article
identifies the main modules that could enable efficient and robust mobile
testing in continuous development environments. On top of them, we
sketch the infrastructure of a conceptual framework for the generation,
execution, and maintenance of mobile test suites. We also present a call
to action for software testers, developers, and researchers towards the
framework realization in practice.

Keywords: GUI testing · Mobile Testing · Android development ·
Testing Framework

1 Introduction

According to recent analyses, Android has achieved the highest overall market
share among all - not just mobile - operating systems1. Nowadays, Android apps
have reached a very high complexity in terms of both graphical appearance and
provided features. The above characteristics, and the fact that most interactions
with Android apps take place through their GUI (Graphical User Interface)
widgets, justify the need for thorough employment of GUI testing techniques.

Many tools for automating Android GUI testing are available in the market
[15]. However, research has shown that manual testing through the GUI is still
preferred to test automation because many challenges about the latter are still
lingering [18]. In recent years, academic literature and tools from the industry
have tackled many mobile-specific GUI testing challenges. However, to the best
of our knowledge, no comprehensive approach or framework is available, which
considers all the principal issues of the three phases of the test cases lifecycle:
generation, execution, and maintenance.
1 https://gs.statcounter.com/os-market-share#monthly-202111--202303.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 115–125, 2023.
https://doi.org/10.1007/978-3-031-43240-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_8&domain=pdf
http://orcid.org/0000-0003-4601-7425
http://orcid.org/0000-0002-0501-7886
http://orcid.org/0000-0001-5328-368X
https://gs.statcounter.com/os-market-share#monthly-202111--202303.
https://doi.org/10.1007/978-3-031-43240-8_8

116 R. Coppola et al.

Here we put forward a comprehensive conceptual framework for mobile GUI
testing: to do so, we summarize the most critical challenges of the practice, sur-
vey the existing techniques and tools tackling them, and propose an agenda for
practitioners aiming at incorporating mobile GUI testing in continuous develop-
ment pipelines.

2 Mobile GUI Testing: State of the Art and Practice

Both industry and academia have proposed many different tools and techniques
to perform GUI testing on mobile applications and identified several challenges
for the practice. We adopt two orthogonal classification schemes to categorize
mobile GUI testing techniques. The process of GUI testing revolves around the
identification of elements on the GUI. The properties and means to identify the
elements are called locators. Test cases also require oracles, i.e., properties that
have to be verified with assertions to verify that the test executed correctly. GUI
testing techniques can be classified according to how the elements on the GUI
are identified (i.e., based on the type of locator that is used) [1]:

– Coordinate-based GUI testing techniques identify widgets through exact on-
screen candidates. Due to major volatility of such properties, these techniques
have been largely abandoned in practice.

– Layout-based GUI testing techniques identify widgets through properties that
are declared in the Android layout descriptor of the current screen (e.g., ids,
text content, content description, widget type).

– Visual, or Image recognition-based GUI testing is based on computer vision
techniques, utilizing screen captures as locators. State-of-the-art image-based
approaches leverage techniques ranging from pixel-per-pixel comparison to
more elaborate matching algorithms (e.g., SIFT, SURF or Akaze feature vec-
tors [3]).

GUI testing techniques can also be classified according to how the test
sequences are generated. Adopting a taxonomy proposed by Linares-Vazquez
et al. [19]:

– Automation APIs or Scripted testing tools allow manual writing of test
scripts, using platform-specific scripting languages; test scripts can then be
executed using dedicated or universal test runners.

– Capture & Replay (C&R) testing tools automatically generate test scripts
from sequences of user interactions with the AUT (Application Under Test),
thus ‘capturing’ (recording) real usage scenarios [10].

– Automated Test Input Generation techniques automate the definition of the
test sequences; the generation can be based on heuristics (e.g., a random
selection of locators and verification of the occurrence of exceptions or bugs)
or on the coverage of a GUI model, which can be itself automatically generated
[5].

Multi-device, Robust, and Integrated Android GUI Testing 117

Despite the availability of tools for Android GUI testing, research has high-
lighted that the practice is often conducted manually by developers [7]. The
reasons behind the limited adoption of automated tools are manifold and spe-
cific to the mobile domain:

Fragmentation: One of the main issues for Android GUI testing is the intrinsic
Fragmentation of the domain: developers must verify and validate the com-
patibility of the AUT with multiple target configurations where it may be
deployed [16]. Such configurations include screen sizes, screen densities and
aspect ratios (hardware fragmentation) or different versions of the operat-
ing system where the AUT has to be installed (software fragmentation). The
fragmentation issue particularly plagues the Android domain because of the
multitude of devices running the operating system and the coexistence of
many releases of the o.s. (Operating System) that receive parallel support.
Therefore, the tester must run identical test sequences on multiple devices,
either real or emulated. This repetition represents an obstacle to the adoption
of continuous integration/development practices.

Fragility and Flakiness: Test scripts (either manually written or automatically
generated) for mobile applications need critical maintenance to cope with
even small changes in the application GUI during its life cycle. This issue is
typically referred to as Fragility and is considered among the main hindrances
to a wide adoption of GUI testing tools [9]. Fragility can be caused by changes
in the GUI layout properties that invalidate layout-based locators and oracles
or by aesthetic changes of the widgets that invalidate visual locators and
oracles. The Fragility in GUI tests requires the tester to analyze the outcome
of each test execution carefully. This action is needed because functionally
valid test sequences may lead to false positives due to the inability to find the
locators, and proper refactoring is therefore needed for fragile locators. Test
cases are hampered also by a high level of flakiness, i.e., they may have a non-
deterministic outcome over repeated runs. Flaky executions can be related to
unpredictable execution times, network availability, concurrency in the test
devices, and interaction with the execution environment [12].

Limited generalizability: The high complexity of the GUI and the many dif-
ferent ways of composing the individual screens (with orchestrations of Activ-
ities, Fragments and other components) pose relevant generalizability issues
to GUI testing techniques. It is not trivial to identify universal models able to
represent the GUI states of any application at the desired granularity. Several
efforts have been provided for mutation testing [11]. As well, to the best of
our knowledge, no coverage models have been defined yet in the academic
literature [6]. Therefore, evaluating the quality of generated test sequences or
comparing multiple testing tools’ results over multiple AUTs is still a complex
task.

Hybrid application testing: Finally, even though Native mobile applications
still represent the vast majority in the Android marketplace, many different
frameworks are available to construct hybrid or progressive web applications
that are rendered on a mobile browser to guarantee a similar – if not equivalent

118 R. Coppola et al.

Manual writing

Augmented / C&R

Application models

Existing tests

Gamification
techniques

Model-based
generation

Translation /
Repair

Layout-based tests

Visual tests

Automated
execution

Coverage statistics

Bugs & Defects

Test outcome

Real devices

Virtualized test environment

APK /Code changes

Usage metrics Repository Mining

Flakiness /
Fragility

predictors

Layout-based
repairs

Visual repairs

Test
prioritization and

selection Tests v i+1

GENERATION EXECUTION MAINTENANCE

Tests v_i

Fig. 1. Modules of the GEM framework: high-level view

– user experience to that of apps specifically designed for the mobile system.
Such frameworks typically define components using properties that differ from
those specified in the layout files of native apps, therefore making scripted
layout-based testing tools harder to generalize to all Android apps.

3 Conceptualization of the GEM Framework

The proposed framework, summarized in Fig. 1, is structured according to the
three main life cycle phases: Generation, Execution, and Maintenance (GEM).

3.1 Test Generation and Translation

The test generation module of the framework provides new test sequences to add
to the test suite for the AUT. The tools should expose multiple and coexisting
ways of defining test cases to generate test sequences sharing a common syntax.
As the first basic way of developing test cases, the tools shall allow traditional
manual writing of test sequences in the specific syntax adopted by the tool.

The framework should also offer ways of directly capture the interaction of
testers with the GUI of the AUT through the implementation of Capture &
Replay test sequence generation mechanisms. The literature about C&R testing
has recently witnessed some evolution for the concept, in the form of augmented
layers providing live information and suggestions to the tester to generate input
sequences and assertions. C&R test case generation can also be enriched by
incorporating concepts that can increase testers’ user experience and engage-
ment during the test capture sessions. Recent Software Engineering literature
has explored the benefits offered by the implementation of gamification mechan-
ics in software testing. Gamification consists in applying concepts that are proper
of game design to other practices, e.g. scoring mechanisms and leaderboards, or

Multi-device, Robust, and Integrated Android GUI Testing 119

graphical live feedback [14]. Gamification has been applied to the phase of test
case generation in Capture & Replay tools, where the testers can be incentivized
in performing more thorough exploration by the usage of scoring schemes, leader-
boards, progression indicators and live feedback [13].

Test generation should be guided by knowledge of the structure of the GUI
and the nature of the AUT. Traditional model-based approaches, which mainly
apply coverage-based heuristics on automatically built graph-based models, can
be paired with AI-based test generation techniques. The latter apply learning
mechanisms to automatically adapt general test sequences written in natural
language to the specific AUT after classifying it and its activities (i.e., individ-
ual screens shown to the user). AI-based test case generation can significantly
lower the effort in writing test case sequences and allow stakeholders without
software development skills, to easily write test cases without having access to
the application code or knowing the internal GUI structure of the AUT [4].

In our conceptualization, testing tools should allow the coexistence of vari-
ants of the same test sequences, based on layout-based and visual locators and
oracles. The benefits of having both variants of test cases are manifold. Firstly,
it enhances the expressive power of the test suite since the type of bugs found by
the two approaches are different: layout-based oracles can only verify the GUI
structure and properties of the AUT, while the application of image-recognition
based assertions can only spot defects in the visual rendering of the widgets. Sim-
ilarly, the two types of locators and oracles are fragile to a complementary type
of changes in the GUI of the AUT: pictorial changes invalidate visual test cases,
whilst changes in the layout properties invalidate the Layout-based test cases. In
our conceptualized framework, we envision applying a translation-based mecha-
nism, allowing the automated creation (or regeneration) of layout-based locators
and oracles from visual ones and vice versa. Such an approach has already been
proven effective for both the web and mobile domains [8,17] in enhancing the
test suites’ effectiveness and mitigating graphic fragilities.

In the generation phase of the framework, we identify a primary research gap
in the generation of visual test cases and the application of gamified mechanics.
Both methodologies have been explored for general-purpose or web-based tools,
but not specifically for the Android domain.

3.2 Test Execution

Once the test cases are generated, the Execution phase must take place for each
test sequence. The most important issue to tackle in this phase is the software
and hardware fragmentation of the Android OS and devices. Therefore, it is
fundamental to pair real devices with virtualized environments emulating most
of the available hardware, software and graphical configurations the AUT must
provide compatibility.

Several infrastructures have been conceptualized to provide virtual testbeds
to deploy mobile applications. Infrastructure-as-a-Service solutions have been
provided to perform layout-based GUI testing or performance testing [2]. Exist-
ing commercial tools (e.g., test.io) allow crowd-sourced execution of test cases on

120 R. Coppola et al.

real hardware devices; however, they mainly allow pure manual and exploratory
test sequences. In general, the current state of the art and practice lacks ways
to automatically and extensively execute image-recognition based test suites on
multiple configurations. At the end of the test execution, we envision the gener-
ation of complete test reporting, including the test cases outcome, found defects,
statistics and analyses of the execution issues that can lead to refinement and
enhancements of the test suites.

We envision that each testing environment should track the quantity of frag-
ile or flaky test cases. A possible solution to identify flaky test cases is to execute
each test case multiple times in order to flag the test cases as passing (all execu-
tions are passing), flaky (some executions are passing) or failing (all executions
fail). Failing tests can furtherly be divided into true positives (i.e., test cases
failing due to real defects in the AUT) and fragile tests (i.e., test cases failing
due to unrelated changes in the AUT). Sets of change-based metrics have been
defined in the empirical software engineering literature to measure the number
of fragile tests and their impact on the maintenance effort for the test suite [9].
The objective of fragility tracking is to mark the test cases as fragile if they
require too much intervention during the evolution of the AUT. Other modules
of the framework can use this flagging activity to aid test prioritization.

Regarding the Execution phase of our framework, we identify a primary
research gap about the coverage measurement when mobile test cases are exe-
cuted since no coverage model for mobile applications has been widely accepted
by research in the field. Albeit several precise coverage models exist (e.g., multi-
device coverage proposed by Vilkomir et al. to measure the reduction of the frag-
mentation issue [22]), a universally generalizable coverage model is still missing.

3.3 Test Maintenance and Repair

The literature highlights that test scripts maintained manually (either layout-
based or visual) can be tedious and costly when they become obsolete. Since
mobile applications typically have a quick evolution, the cost of test case main-
tenance can be required frequently and become unsustainable for developers.

In our framework, we envision a module in charge of automatically adapt-
ing the test cases to the changes in the APK, in the GUI pictorial appearance
and the application code. Since two equivalent sets of locators and oracles are
maintained for the test suite, both layout properties and visual locators have
to be updated automatically. Several approaches have been proposed for the
automated repair of test cases. Some tools are based on event-sequence models
describing the behaviour of the application and abstracting the changes made
to the GUI between different releases of the same application. These tools, how-
ever, are mainly aimed at preserving the connection between different screens
of the AUT traversed during the execution of test sequences and still require
the manual intervention of the testers for the preparation of the original models
that guide the testing process. Alternative model-less approaches rely on the
definition of similarity indexes for the widgets to be interacted during test cases

Multi-device, Robust, and Integrated Android GUI Testing 121

to identify locators that should be treated as the same one even in the presence
of changes in their properties or visual appearance [23].

Even incorporating a sophisticated mechanism for test case repair, some test
sequences may still need manual maintenance during the evolution of the appli-
cation. The execution of test cases on multiple devices and configurations, espe-
cially when the GUI has to be rendered and verified through computer vision
algorithms, can also become unsustainable if the test suite grows significantly.
Therefore, a module for the maintenance of test cases should include mechanisms
to prioritize and select them to reduce the execution and maintenance time for
the subset of test sequences to execute in continuous integration and develop-
ment settings. Test prioritization should be guided from metrics resulting from
the test case execution module, e.g., generated bugs and coverage reports. At the
same time, the test prioritization and selection module should incorporate diverse
information gathered from repository mining. Usage metrics gathered through
mobile APIs on pilot users can help identify the activities and user interaction
sequences on which test cases should focus. Suppose the AUT is available as
an open-source repository (e.g., on GitHub). In that case, mechanisms can be
developed to mine and interpret the issues left by contributors to the project to
identify the most critical sections of the code. As well, if the AUT is released on
a marketplace, techniques of marketplace analysis can be deployed to mine the
user reviews and identify typical usage patterns leading to crashes.

We identify important research gaps regarding the Maintenance phase of our
framework. To the best of our knowledge, no automated mobile test suite repair
tools have been validated with real-world test suites. Similarly, no prioritization
model has been specifically described for mobile GUI test cases used for regres-
sion testing, and existing ones are mostly applied to non-functional properties
(e.g., for security testing [21]).

4 Discussion

The proposed framework constitutes a vision for the modules that may enable
a mobile testing pipeline incorporating multiple means to generate test cases,
execute tests on both real and virtual devices, and ease test suite maintenance
along the evolution of a mobile app. In our vision, a platform implementing all
the modules described in the framework would guarantee:

– Seamless Continuous Integration execution with tracking of test metrics on
multiple device and screen configurations. This could enable writing the tests
once and run them on all devices (solving the hardware fragmentation issue);

– Incremented robustness of tests to changes in structural layout and visual
appearance, reduced maintenance effort, and reduced time to find bugs when
tests are used with regression purposes. This would allow writing the test
once and run it for the whole mobile app lifecycle (solving the test fragility
issue).

122 R. Coppola et al.

Currently, no testing tool, either available on the market or described in the
literature, implements all the features described in our framework. The gener-
ation, execution and maintenance pipeline could be partly obtained by com-
bining multiple available instruments. Without claims of exhaustiveness, Table 1
reports, for each module of the framework, existing examples from academia and
industry. As reported in the table, there is a high availability of tools for man-
ual test case generation and acquisition of test sequences through the Capture &
Replay technique. Several of these tools come embedded in the Android develop-
ment environment (namely, UIAutomator, Espresso and the related Recorder).
Many tools, mostly academic, have been developed for model-based generation
of mobile test sequences. Several commercial platforms for crowdsourced testing
on multiple devices are also available. Definition and execution of visual test
cases can still be performed by utilizing multi-domain visual testing tools (e.g.,
Sikuli or EyeAutomate) that can be applied to emulated devices on a desktop
environment. Conversely, most of the modules in the frameworks related to the
maintenance of test cases are not fully implemented by available tools. Some
of them are still in early-stage academic investigation (e.g., fragility prediction
mechanisms and translation-based tools). However, academic literature in the
field proposed heuristics and metrics that can be adapted as add-ons to exist-
ing open-source testing frameworks. Finally, research on gamified mechanisms
is still in an early stage, and mainly tied to the practice of software engineering
in general, with very few verticalizations on the practice of desktop and web
application testing.

Table 1. Available tools implementing modules of the framework

Module Tool Origin Open-Source URL/Notes

Manual test case writing UIAutomator Industry Yes https://developer.android.com/training/testing/ui-automator
Espresso Industry Yes https://developer.android.com/training/testing/espresso
Appium Industry Yes https://appium.io
Ranorex Industry No https://lp.ranorex.com
Calabash Industry Yes https://github.com/calabash/calabash-android

Gamified test case generation – – – Described in academic research for web application testing
Model-based generation MobiGUITAR Academia Yes https://github.com/AndrewZcc/mobiGUITAR/actions

Tricentis Tosca Industry No https://www.tricentis.com/products/automate-continuous-testing-tosca/
Quantum Industry No https://www.perfecto.io/integrations/quantum
STOAT Academia Yes https://github.com/tingsu/Stoat
Droidbot Academia Yes https://github.com/honeynet/droidbot

Translation-based tools TOGGLE Academia No [8]
Capture & Replay TestProject Industry No https://testproject.io/mobile-test-recorder/

Repeato Industry No https://www.repeato.app
RERAN Academia Yes https://www.androidreran.com
Espresso Test Recorder Industry Yes https://developer.android.com/studio/test/espresso-test-recorder
Barista Academia Yes https://github.com/AdevintaSpain/Barista

Automated Execution Environments Test.io Industry No http://test.io
CrowdSprint Industry No http://crowdsprint.com
Firebase TestLab Industry No https://firebase.google.com/products/test-lab

Visual Test Case Execution Sikuli Academia Yes http://sikulix.com
EyeAutomate Industry No http://eyeautomate.com

Test Repair Mechanisms GUIDER Academia No [23]
Fragility Prediction Coppola et al Academia No [9]
Test Prioritization and Selection Michaels et al Academia No [20]

https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/espresso
https://appium.io
https://lp.ranorex.com
https://github.com/calabash/calabash-android
https://github.com/AndrewZcc/mobiGUITAR/actions
https://www.tricentis.com/products/automate-continuous-testing-tosca/
https://www.perfecto.io/integrations/quantum
https://github.com/tingsu/Stoat
https://github.com/honeynet/droidbot
https://testproject.io/mobile-test-recorder/
https://www.repeato.app
https://www.androidreran.com
https://developer.android.com/studio/test/espresso-test-recorder
https://github.com/AdevintaSpain/Barista
http://test.io
http://crowdsprint.com
https://firebase.google.com/products/test-lab
http://sikulix.com
http://eyeautomate.com

Multi-device, Robust, and Integrated Android GUI Testing 123

5 Call to Action

Based on the proposed framework and the relative mapping to existing and
missing tools, we can issue a call to action for three distinct stakeholders:

– Software Testers can leverage the framework to identify the tools needed to
generate test cases efficiently and adopt instruments for each of the categories
for which tools are already available ();

– Tool developers can leverage the framework to assess the existing tools against
the most crucial needs of the practice of GUI testing in industrial settings.
Practitioners can find opportunities for new implementations in the categories
of tools that have been – to the best of our knowledge – explored exclusively
by academic research, e.g. gamified testing tools, test repair and fragility
prediction mechanisms ();

– Researchers can leverage the framework to guide future research efforts, dis-
criminating between categories of tools that are widely implemented by the
industry and others that have not yet been explored for the mobile testing
domain. Systematic research efforts can be conducted in Software Engineer-
ing literature to categorize and classify all available tools for mobile testing
and provide a comprehensive state of the art mapping according to the frame-
work’s modules. Empirical research and industrial case studies are needed to
assess the benefits produced by each module of the framework in reducing
fragility, fragmentation, and maintenance effort required by test suites ().

6 Conclusions

In this paper, we envisioned future trends in the automated GUI testing land-
scape and provided action points for different stakeholders in the field. Our
framework can serve as an instrument for researchers and developers of testing
tools to assess which among envisioned modules are available in the literature
and the market and which need further research and development.

A tentative evaluation of the proposed framework would involve assessing its
potential to address the challenges and goals it sets out to achieve. In particular,
the framework aims to tackle issues related to hardware fragmentation, test
fragility, and test maintenance costs. It is important to note that a full evaluation
would require empirical research and industrial case studies, to fully validate the
benefits produced by each module of the framework in addressing the challenges
it aims to tackle.

It is still worth stressing that some of the modules in the framework, such
as fragility prediction mechanisms and translation-based tools, are still in early-
stage academic investigation or have not been fully implemented by available
tools. The success of the proposed framework in reducing test maintenance costs
would rely on the development and integration of these modules and their effec-
tiveness in practical scenarios.

124 R. Coppola et al.

References

1. Alégroth, E., Gao, Z., Oliveira, R., Memon, A.: Conceptualization and evaluation
of component-based testing unified with visual GUI testing: an empirical study.
In: 2015 IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), pp. 1–10. IEEE (2015)

2. Ali, A., Maghawry, H.A., Badr, N.: Automated parallel GUI testing as a service
for mobile applications. J. Softw. Evol. Process 30(10), e1963 (2018)

3. Ardito, L., Bottino, A., Coppola, R., Lamberti, F., Manigrasso, F., Morra, L.,
Torchiano, M.: Feature matching-based approaches to improve the robustness of
Android visual GUI testing. ACM Trans. Softw. Eng. Methodol. (TOSEM) 31(2),
1–32 (2021)

4. Ardito, L., Coppola, R., Leonardi, S., Morisio, M., Buy, U.: Automated test selec-
tion for Android apps based on APK and activity classification. IEEE Access 8,
187648–187670 (2020)

5. Choudhary, S.R., Gorla, A., Orso, A.: Automated test input generation for
Android: are we there yet?(e). In: 2015 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 429–440. IEEE (2015)

6. Coppola, R., Alégroth, E.: A taxonomy of metrics for GUI-based testing research:
a systematic literature review. Inf. Softw. Technol. 152, 107062 (2022)

7. Coppola, R., Ardito, L., Morisio, M., Torchiano, M.: Mobile testing: new challenges
and perceived difficulties from developers of the Italian industry. IT Professional
22(5), 32–39 (2020)

8. Coppola, R., Ardito, L., Torchiano, M., Alégroth, E.: Translation from layout-
based to visual Android test scripts: an empirical evaluation. J. Syst. Softw. 171,
110845 (2021)

9. Coppola, R., Morisio, M., Torchiano, M.: Mobile GUI testing fragility: a study on
open-source android applications. IEEE Trans. Reliab. 68(1), 67–90 (2018)

10. Di Martino, S., Fasolino, A.R., Starace, L.L.L., Tramontana, P.: Comparing the
effectiveness of capture and replay against automatic input generation for Android
graphical user interface testing. Softw. Testing Verification Reliab. 31(3), e1754
(2021)

11. Escobar-Velásquez, C., et al.: Enabling mutant generation for open-and closed-
source Android apps. IEEE Trans. Softw. Eng. 48(1), 186–208 (2020)

12. Fazzini, M., Gorla, A., Orso, A.: A framework for automated test mocking of mobile
apps. In: 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1204–1208. IEEE, Washington, DC, USA (2020)

13. Fulcini, T., Ardito, L.: Gamified exploratory GUI testing of web applications: a pre-
liminary evaluation. In: 2022 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 215–222. IEEE (2022)

14. Fulcini, T., Coppola, R., Ardito, L., Torchiano, M.: A review on tools, mechanics,
benefits, and challenges of gamified software testing. ACM Comput. Surv. (2023)

15. Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T.F., Klein, J.: Automated testing
of Android apps: a systematic literature review. IEEE Trans. Reliab. 68(1), 45–66
(2018)

16. Lanui, A., Chiew, T.K.: A cloud-based solution for testing applications’ compati-
bility and portability on fragmented Android platform. In: 2019 26th Asia-Pacific
Software Engineering Conference (APSEC), pp. 158–164. IEEE (2019)

17. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Pesto: automated migration of DOM-
based web tests towards the visual approach. Softw. Testing Verification Reliab.
28(4), e1665 (2018)

Multi-device, Robust, and Integrated Android GUI Testing 125

18. Linares-Vásquez, M., Bernal-Cárdenas, C., Moran, K., Poshyvanyk, D.: How do
developers test Android applications? In: 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 613–622. IEEE, Washington,
DC, USA (2017)

19. Linares-Vásquez, M., Moran, K., Poshyvanyk, D.: Continuous, evolutionary and
large-scale: a new perspective for automated mobile app testing. In: 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
399–410. IEEE, Washington, DC, USA (2017)

20. Michaels, R., Khan, M.K., Bryce, R.: Test suite prioritization with element and
event sequences for Android applications. In: 2021 IEEE 11th Annual Computing
and Communication Workshop and Conference (CCWC), pp. 1326–1332. IEEE,
Washington, DC, USA (2021)

21. Sadeghi, A., Esfahani, N., Malek, S.: Mining mobile app markets for prioritization
of security assessment effort. In: Proceedings of the 2nd ACM SIGSOFT Interna-
tional Workshop on App Market Analytics, pp. 1–7. Association for Computing
Machinery, New York, NY, USA (2017)

22. Vilkomir, S.: Multi-device coverage testing of mobile applications. Softw. Qual. J.
26(2), 197–215 (2018)

23. Xu, T., et al.: Guider: GUI structure and vision co-guided test script repair for
Android apps. In: Proceedings of the 30th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pp. 191–203. Association for Computing
Machinery, New York, NY, USA (2021)

RQCODE: Security Requirements
Formalization with Testing

Ildar Nigmatullin1(B), Andrey Sadovykh2, Sophie Ebersold1, and Nan Messe1

1 University of Toulouse - IRIT - CNRS, Toulouse, France
i.nigmatullin@yahoo.com
2 Softeam, Paris, France

Abstract. Secure software systems are crucial in today’s digital world,
where there is an ever-increasing amount of IT systems, leading to
more risks of exposing sensitive data and service outages. One of the
key aspects of secure software development is ensuring that security
requirements are met through the various stages of software development.
The process of testing security requirements is often complex and time-
consuming, notably because of the gap between the verification process
of security requirements and the testing process. To address this issue
and simplify the testing of security requirements, this paper proposes to
use the Requirements as Code approach (RQCODE). RQCODE com-
bines security requirements with code in a way to support automated
testing and continuous verification of security requirements throughout
the software development life cycle. This paper contributes to the field
of software security by providing a practical and effective approach to
bridge the gap between verification of security requirements and testing,
ultimately leading to more secure software systems. Additionally, it dis-
cusses the benefits of this approach, such as its ability to improve the
accuracy and consistency of testing, enabling the early detection of secu-
rity issues, and reducing the time and effort required for security testing.
It also discusses the challenges and limitations of the approach.

Keywords: Security Requirements · Security Testing · Seamless
Object-Oriented Requirements · Requirements As Code

1 Introduction

1.1 Importance of Security by Design

In today’s digital world, cyber-attacks are becoming increasingly common, which
leads to high risks of exposing sensitive data and service outages. It is thus essen-
tial to build secure software systems and thus be able to withstand attacks from
malicious actors. One of the most important aspects of secure software devel-
opment is ensuring that security requirements are met throughout the various
stages of software development. Security requirements are an important part
of software requirements and are intended to ensure that the software system is

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 126–142, 2023.
https://doi.org/10.1007/978-3-031-43240-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-43240-8_9

RQCODE: Security Requirements Formalization with Testing 127

secure and can withstand attacks such as unauthorized access attempts. Accord-
ing to [10], security requirements are defined as “statements of the desired prop-
erties or attributes of a system that are necessary for it to be secure.” Security
requirements are identified and specified early in the software development pro-
cess. This ensures that the system is secure from the start. It can be achieved
through various activities, such as threat modeling, risk assessment, and misuse
case analysis, as described in [17]. By identifying and specifying security require-
ments early, potential security risks can be mitigated or eliminated, reducing the
risk of vulnerabilities and attacks.

According to NIST SP 800-53 [?], security requirements should be verifiable,
and a verification plan should be developed to ensure that security requirements
are met. The verification plan should include testing and evaluation procedures
that verify the software’s compliance with the security requirements.

The Security-by-Design principle [20] is a key approach to achieving secu-
rity in software development. It is a proactive approach towards designing and
building secure software systems from the ground, rather than trying to retrofit
security features at the final steps or even in the production or operation envi-
ronments. Secure software development emphasizes the importance of building
security in each stage of the software development lifecycle.

Secure-by-Design ensures that IT systems are constructed to protect against
cyber threats aiming at accessing devices, data, and connected infrastructure.
Integrating Secure-by-Design practices in the development of new technology
products can significantly and efficiently enhance its security level, minimizing
risks of cyberattacks. Security-by-Design helps organizations to comply with
various security regulations and standards, such as the General Data Protection
Regulation (GDPR) [2] and the Payment Card Industry Data Security Standard
(PCI DSS) [3], by ensuring that security considerations are integrated into the
design of their systems and applications.

According to ISO 27034-1 [6], the Security-by-Design approach can help
achieve security requirements by ensuring that security is integrated early into
the software development process. By incorporating security into the design
phase, software developers can identify and address security issues early in the
development cycle. Incorporating secure design practices early on can minimize
the impact of potential security vulnerabilities and reduce the need for costly and
time-consuming security fixes later in the development process. By addressing
security requirements from the outset, Security-by-Design principles minimize
the impact of potential security threats and ensure that the system is able to
perform its intended function while remaining secure.

In the scope of the Security-by-Design paradigm, addressing security require-
ments is fundamental for building secure software. Verifiability ensures that the
security requirements are objective, clear, and measurable. It also helps in iden-
tifying potential weaknesses in the software and mitigating them before they can
be exploited by attackers. Additionally, verifiable security requirements provide
a means for stakeholders to evaluate the security of software and assess whether
it meets their needs and expectations.

128 I. Nigmatullin et al.

1.2 Importance of Security Testing

Testing is a critical aspect of software verification and validation, and several
testing techniques are available to verify and validate software requirements,
including functional testing, performance testing, and security testing [16]. Secu-
rity testing is a crucial part of ensuring that these security requirements are met.
By checking whether these requirements are satisfied under various conditions,
security testing aims to uncover vulnerabilities that could be exploited by attack-
ers. Due to the openness of modern service-oriented systems, security testing has
gained much interest in recent years and has become a vast field of research [5].

Security testing involves the evaluation of security requirements that pertain
to key security properties such as confidentiality, integrity, availability, authen-
tication, authorization, and nonrepudiation. The goal of security testing is to
determine whether the specified or intended security properties are correctly
implemented for a given set of assets of interest. This can be achieved through
conformance testing, where the system’s conformance to the security properties
is assessed based on well-defined, expected inputs. Alternatively, known vulner-
abilities can be addressed through destructive testing, which involves the use of
malicious, non-expected input data that is likely to exploit the identified vulner-
abilities [?].

According to Tiang-yang and et al. [21], there are two primary approaches
in security testing: security functional testing and security vulnerability testing.
Security functional testing aims to validate the correct implementation of spec-
ified security requirements, including security properties and mechanisms. On
the other hand, security vulnerability testing focuses on identifying unintended
vulnerabilities in a system. This type of testing involves simulating attacks and
penetration testing to assess the system’s resilience against potential threats.
However, security vulnerability testing requires specific expertise and can be
challenging to automate.

The security testing method the following techniques [21]: Model-based secu-
rity testing, Code-based testing and static analysis, Penetration testing, and
dynamic analysis, and Security regression testing.

Model-based security testing relies on requirements and design models cre-
ated during the analysis and design phase. This includes testing based on archi-
tectural and functional models, threat, fault, and risk models, as well as weakness
and vulnerability models. Code-based testing and static analysis involve manual
code reviews and static application security testing using source and byte code
developed during the development phase. Penetration testing and dynamic anal-
ysis focus on running systems in test or production environments. This includes
techniques such as penetration testing, vulnerability scanning, dynamic taint
analysis, and fuzzing. Security regression testing is performed during the main-
tenance phase and includes approaches like test suite minimization, test case
prioritization, and test case selection.

RQCODE: Security Requirements Formalization with Testing 129

Even though security testing techniques are crucial for identifying vulnerabil-
ities and ensuring the security of software systems, have certain limitations that
can impact their effectiveness for customers. Some of the limitations include:

Incomplete Coverage: Security testing techniques may not provide complete
coverage of all possible security vulnerabilities. It is challenging to anticipate
and test for every potential security weakness, and new threats can emerge
over time. Therefore, there is always a possibility of undiscovered vulnerabil-
ities remaining in the system. False Sense of Security: Customers may develop a
false sense of security if they rely solely on security testing techniques without
considering other security measures. Security testing alone cannot guarantee a
completely secure system. It is important to implement other security measures
such as secure coding practices, regular security updates, and user awareness
training. Resource Intensiveness [13]: Comprehensive security testing requires
significant resources, including time, expertise, and tools. Small businesses or
individual customers with limited resources may find it challenging to imple-
ment and afford rigorous security testing practices. Limited Human Expertise
[13]: Security testing techniques rely on human expertise and judgment, which
can introduce limitations. Testers may overlook certain vulnerabilities, misin-
terpret results, or lack the necessary skills to uncover complex security issues.
Evolving Threat Landscape: Security threats are constantly evolving, and new
vulnerabilities can emerge rapidly. Security testing techniques may struggle to
keep pace with the evolving threat landscape, leading to potential gaps in secu-
rity coverage.

To overcome these limitations, it is important for customers to adopt an
approach to cover security requirements. However, there are certain lacks in
security requirements specifications. They are often very high-level or vague -
mainly specifying the need to comply with a specific cyber-security standard.
There is definitely a need to make security clear and verifiable or at least as
verifiable as security tests.

This work introduces an approach to formalize the security requirements
by means of associated security tests. We present our approach and provide
examples from the cyber-security domain. Section 2 discusses the related work.
Section 3 presents our approach and provides illustrative examples. Section 4
discusses differences between RQCODE in comparison with security testing in
general. Section 5 gives the final conclusions.

2 Related Work

The SQUARE methodology [11] is designed to guide the development of security
requirements, with a focus on the quality attributes of software systems. The
methodology emphasizes the importance of identifying and prioritizing security
requirements early in the software development lifecycle.

SQUARE includes nine steps [11] that cover the entire software development
process. These steps are: identifying stakeholders, defining security objectives,
identifying security requirements, analyzing security risks, specifying security

130 I. Nigmatullin et al.

requirements, validating security requirements, tracing security requirements,
managing security requirements, and ensuring ongoing security.

Through these steps, SQUARE ensures that security requirements are clearly
defined, traceable, and measurable. It helps to identify potential security risks
and provides a framework for identifying security controls to mitigate those
risks. It also ensures that security requirements are integrated into the software
development process and that security considerations are taken into account
throughout the development lifecycle.

Some potential SQUARE’s limitations include [11]:

– Time-Consuming Process: SQUARE can be a time-consuming process, which
may not be suitable for projects with tight schedules.

– Requires Skilled Practitioners: SQUARE requires a team that has a good
understanding of security concepts, as they have to identify, categorize, and
prioritize security requirements.

– Lack of Automation: The SQUARE process is largely manual, which can
lead to human errors. Also, the lack of automated tool support may make the
process slower and more expensive.

– Lack of Formalization: SQUARE does not provide a notation that enforces
formalization and verifiability of security requirements.

For the automated verifiability of requirements, one may consider Behaviour-
Driven Design (BDD) [19]. BDD promotes starting development by specifying a
scenario for a feature to be developed. In BDD, a scenario in natural language
is automatically translated into an acceptance test. This is achieved through the
use of a structured, natural language format such as Gherkin, which is easy to
read and understand even for non-technical stakeholders.

Gherkin can be useful for several reasons in the context of security require-
ments. Firstly, Gherkin supports the creation of scenarios that clearly describe
the expected behavior of a secure system. This aids in ensuring that security
requirements are properly defined and understood. Secondly, Gherkin scenarios
can be used to create automated security tests that verify that the system is
functioning as expected. This helps to identify security vulnerabilities early in
the development process when they generally are easier and less expensive to
fix. For example, a security requirement for a banking application is that “only
authorized users are able to access account information”. A Gherkin scenario for
this requirement may look as follows:

1 Only authorized users can access account information

2 Given I am logged in as an unauthorized user

3 When I try to access my account information

4 Then I should see an error message

5 And I should not be able to access the information

Listing 1.1. Gherkin example

This scenario describes the behavior that should occur when an unauthorized
user attempts to access account information. By creating automated tests based

RQCODE: Security Requirements Formalization with Testing 131

on this scenario, developers can verify that the system is secure and functioning
as expected.

In the meantime, Gherkin has the limitations:

– Limited expressiveness: While Gherkin is designed to be easily understand-
able by non-technical stakeholders, its simplicity also means it can lack the
expressiveness necessary to define more complex behaviors [22].

– Requires good communication: Since Gherkin relies on collaboration between
technical and non-technical stakeholders, any communication breakdowns can
lead to poorly defined behaviors [18].

– Lack of automation support: Gherkin scenarios need to be manually trans-
lated into automated tests by developers. If the scenario is not well defined,
this can be a time-consuming and error-prone process [22].

– Maintenance overhead: If the software changes frequently, maintaining
Gherkin scenarios and corresponding tests can become a significant overhead
[1].

3 The ReQuirements as CODE Approach (RQCODE)

3.1 RQCODE Definition and Concepts

ReQuirements as CODE (RQCODE) is an approach to software development
that involves writing requirements in a code-like format, rather than as tra-
ditional text-based documentation. This approach enables developers to use
code to test requirements, automates the process of verifying requirements, and
improves collaboration between developers and other stakeholders. RQCODE
aims to bridge the gap between requirements and tests, enabling more efficient
and effective testing and earlier identification and resolution of issues [15]. This
approach supports modern software development practices, such as continuous
integration and automated testing, thereby improving the quality and accuracy
of requirements [1].

RQCODE, as described in [9], introduces a new way of utilizing the Seam-
less Object-Oriented Requirements (SOOR) paradigm in Java programming.
RQCODE involves representing requirements as classes that encompass mul-
tiple forms of representation, including a natural language description of the
requirement, along with methods for testing and verifying the requirement, such
as acceptance tests. This creates a direct traceability link between a requirement
and its implementation, which can be verified at any time through the execution
of the associated test.

Furthermore, the object-oriented approach facilitates the reusability of
requirements and tests via standard mechanisms, such as inheritance in Java. A
requirement can be either an extension or a specialization of another requirement
and can serve as a template for similar requirements by initializing a requirement
class with different parameters.

Seamless Object-Oriented Requirements (SOOR) [14] focuses on the seam-
less integration of requirements and object-oriented modeling, with the goal

132 I. Nigmatullin et al.

of establishing a close relationship between requirements and design elements.
SOOR uses a domain ontology to specify the concepts and relationships relevant
to the application domain, and it emphasizes modeling requirements in a way
that is consistent with the object-oriented paradigm [14].

The SOOR methodology documents requirements as software classes to
improve their verifiability and reusability. The key concepts of the approach
are specification drivers and semantic assertions expressed by pre- and post-
conditions. Specification drivers are contracted routines that serve specification
purposes, taking objects to be specified as arguments and expressing the effect
of operations on those objects with pre- and post-conditions. SOOR utilizes
concrete classes as Seamless Object-Oriented Requirements, capturing require-
ments as specification drivers. Each specification driver includes a comment that
describes a natural language version of the requirement.

The usage of SOOR in RQCODE for security requirements intends to pro-
vide several benefits. Firstly, RQCODE can enhance the traceability and trans-
parency of security requirements, making it easier to identify and track changes
to the requirements. This can lead to better collaboration and communication
among stakeholders involved in the development process, as well as easier com-
pliance with industry standards and regulations [12].

Secondly, RQCODE supports the use of formal methods and techniques for
security requirements modeling and verification, such as model checking and the-
orem proving. These methods can help identify potential security vulnerabilities
and ensure that the security requirements are consistent and complete.

3.2 RQCODE Example

The section demonstrates the following example of how RQCODE can be used
to meet security requirements, specifically in ATM Withdrawal:

1 Case:

2 As a bank customer

3 In order to withdraw cash

4 I want to use an ATM

5

6 Scenario: Successful withdrawal

7 Given the ATM has sufficient cash

8 And my account balance is greater than the withdrawal amount

9 When I insert my card

10 And enter my PIN

11 And select the withdrawal option

12 And enter the withdrawal amount

13 Then the ATM should dispense the cash

14 And update my account balance

15

16 Scenario: Insufficient funds

17 Given the ATM has sufficient cash

RQCODE: Security Requirements Formalization with Testing 133

18 And my account balance is less than the withdrawal amount

19 When I insert my card

20 And enter my PIN

21 And select the withdrawal option

22 And enter the withdrawal amount

23 Then the ATM should display an error message

24 And not dispense any cash

25 And not update my account balance

26

27 Scenario: Incorrect PIN

28 Given the ATM has sufficient cash

29 And my account balance is greater than the withdrawal amount

30 When I insert my card

31 And enter an incorrect PIN

32 Then the ATM should display an error message

33 And not allow me to proceed with the transaction

The above security requirement can be transformed into code with RQCODE:

1 public class SuccessfulWithdrawal implements RQCODE {

2 private final int MIN_WITHDRAWAL_AMOUNT = 20;

3 private final int MAX_WITHDRAWAL_AMOUNT = 500;

4

5 private final ScriptRequirement requirement = new STIGScript("

↪→{WITHDRAWAL_AMOUNT}",

6 "Withdrawal amount must be between " +

↪→MIN_WITHDRAWAL_AMOUNT + " and " +

↪→MAX_WITHDRAWAL_AMOUNT);

7

8 @Override

9 public ScriptRequirement requirement() {

10 return requirement;

11 }

12

13 @Override

14 public CheckStatus check() {

15 int withdrawalAmount = Integer.parseInt(requirement.

↪→getSettingValue());

16 if (withdrawalAmount < MIN_WITHDRAWAL_AMOUNT ||

↪→withdrawalAmount > MAX_WITHDRAWAL_AMOUNT) {

17 return CheckStatus.FAIL;

18 }

19 return CheckStatus.PASS;

20 }

21

22 public class InsufficientFunds implements RQCODE {

23 private final int MIN_BALANCE = 0;

134 I. Nigmatullin et al.

24

25 private final ScriptRequirement requirement = new STIGScript("

↪→{ACCOUNT_BALANCE}",

26 "Account balance must be greater than or equal to " +

↪→MIN_BALANCE);

27

28 @Override

29 public ScriptRequirement requirement() {

30 return requirement;

31 }

32

33 @Override

34 public CheckStatus check() {

35 int accountBalance = Integer.parseInt(requirement.

↪→getSettingValue());

36 if (accountBalance < MIN_BALANCE) {

37 return CheckStatus.FAIL;

38 }

39 return CheckStatus.PASS;

40 }

41

42 public class IncorrectPIN implements RQCODE {

43 private final String VALID_PIN = "1234";

44

45 private final ScriptRequirement requirement = new STIGScript("

↪→{PIN}",

46 "PIN must match the valid PIN");

47

48 @Override

49 public ScriptRequirement requirement() {

50 return requirement;

51 }

52

53 @Override

54 public CheckStatus check() {

55 String pin = requirement.getSettingValue();

56 if (!pin.equals(VALID_PIN)) {

57 return CheckStatus.FAIL;

58 }

59 return CheckStatus.PASS;

60 }

Listing 1.2. Example of RQCODE for ATM Withdrawal

In this example, the PasswordLength class implements the Pattern inter-
face and defines a pattern that checks whether a password’s length is within

RQCODE: Security Requirements Formalization with Testing 135

the minimum and maximum bounds. The RQCODEScript object defines the
setting name PASSWORD and a message to display if the check fails.

RQCODE provides a formalized verification of security requirements through
its built-in verification mechanism, which can output results of PASS, FAIL, or
INCOMPLETE. This feature ensures that the security requirements are met
and verified according to their intended specifications.

The check() method extracts the password from the pattern, checks its
length, and returns a CheckStatus value of PASS or FAIL depending on
whether the length is within the required bounds.

The enforce() method is not applicable for this pattern, as enforcing a
password length requirement would require modifying the application code or
configuration.

RQCODE provides a class-based approach that enables to define the security
requirements along with verification means. The Object-Oriented nature of the
definition makes it possible to reuse security requirements and tests, simplifying
maintenance and enhancing traceability. RQCODE includes specific packages
for baseline concepts and temporal patterns, as well as STIG (Security Tech-
nical Implementation Guide) [4] related classes that can be adapted to specific
platforms, such as Windows and Ubuntu.

Next, we discuss the RQCODE application to the Security Technical Imple-
mentation Guide in the following section.

3.3 Use Case of Security Technology Implementation Guide

In this study, we have taken into account four STIG requirements that are
designed to ensure the security of Windows 10 [7]. We have applied both security
testing and the RQCODE approach to evaluate their effectiveness. Our compar-
ison focuses on the efforts required to satisfy these requirements using the two
approaches.

STIG stands for Security Technical Implementation Guide, which are a set
of guidelines produced by the Defense Information Systems Agency (DISA) [4]
to help secure computer systems and networks. STIG provides detailed infor-
mation on how to configure and secure various operating systems, applications,
and network devices in accordance with security best practices and compliance
regulations.

The group of Security Policies in OS Windows 10 comprises four STIG secu-
rity requirements. These requirements have a common description related to
maintaining an audit trail of system activity logs. STIGs v-63447 and v-63449
relate to User Account Management records events such as creating, chang-
ing, deleting, renaming, disabling, or enabling user accounts. The description
of STIGs v-63463 and v-63467 is Logon records user logons. If this is an inter-
active logon, it is recorded on the local system. If it is to a network share, it is
recorded on the system accessed [7].

The following are the differences observed in these STIGs (Table 1):

– STIG v-63447 is responsible of User Account Management in case of failure.
It is described by “the system must be configured to audit Account Manage-
ment”. It is named “Account Management failure”.

136 I. Nigmatullin et al.

– STIG v-63449 is described by “the system must be configured to audit Account
Management”. It is named “User Account Management successes”.

– STIG v-63463: “The system must be configured to audit Logon/Logoff ”. It
is named “Logon - failures”.

– STIG v-63467: “The system must be configured to audit Logon/Logoff”. It is
named “Logon - successes”.

The Table 1 below describes some test cases for the above-mentioned STIGs.
The test cases include the Steps to Reproduce that are common for all
four STIGs. They can be used for further creation of a common Java class
using RQCODE approach (see the listing 1.4). The differences are in Expected
Results that will be represented as final Java classes (see the listing 1.5).

Table 1. Test Cases for 4 STIGs

STIG Requirement Steps to Reproduce Expected Result

STIG v-63447 1. Set “Enabled” Security Option
“Audit: Force audit policy
subcategory settings (Windows Vista
or later) to override audit policy
category settings” for the detailed
auditing subcategories to be effective

If the system does not audit
“Account Management > > User
Account Management - Failure”, this
is a finding.

2. Use the AuditPol tool to review
the current Audit Policy
configuration
3. Open a Command Prompt with
elevated privileges (“Run as
Administrator”)
4. Enter “AuditPol /get /category:*”
5. Compare the AuditPol settings
with the following. If the system
does not audit the following, this is a
finding:

STIG v-63449 If the system does not audit
“Account Management > User
Account Management - Success”,
this is a finding

STIG v-63463 If the system does not audit
“Logon/Logoff > > Logon - Failure”,
this is a finding

STIG v-63467 If the system does not audit
“Logon/Logoff > > Logon - Success”,
this is a finding

In the example below, we will demonstrate how the creation of RQCODE
patterns can streamline the execution of test cases for repetitive requirements.
The RQCODE approach involves the Requirement abstract class, which includes
a mandatory statement attribute for the requirement’s textual representation.
The Checkable interface’s check() method is redefined to facilitate built-in

RQCODE: Security Requirements Formalization with Testing 137

requirement verification, providing three possible outcomes: PASS, FAIL, or
INCOMPLETE. PASS signifies successful verification, while FAIL indicates
incorrect outputs and INCOMPLETE applies when verification cannot be
completed.

When a requirement can guide environment modifications to meet its spec-
ifications, the Enforceable interface is utilized. The enforce() method also
returns the status of SUCCESS, FAILURE, or INCOMPLETE, making it
useful for initiating countermeasures in security requirement scenarios.

In the RQCODE structure, dedicated packages are designated for baseline
concepts, temporal patterns, and STIG-related classes. Specific packages are
included for Windows 10 OS, and each platform package contains sub-packages
with platform-specific patterns, such as AuditPolicy. This modular organiza-
tion facilitates easy reuse of STIG requirements and guidelines.

With RQCODE, the STIGPattern is illustrated by the following example of
code (listing 1.3):

1 public interface STIGPattern extends Checkable, Enforceable {

2 public STIGScriptPattern pattern();

3

4 public boolean checkProcess(String script, String settingName,

↪→ String settingValue) throws Exception;

5 }

Listing 1.3. Example of STIGPattern

The AuditPolicy pattern, which inherits from STIGPattern, is represented
on the listing 1.4 as follows:

1 public abstract class AuditPolicyPattern implements STIGPattern {

2

3 @Override

4 public CheckStatus check() {

5 String settingName = pattern().getSettingName();

6 String settingValue = pattern().getSettingValue();

7

8 String script = pattern().prepareCheckScript();

9

10 boolean auditPolicyCheck;

11 try {

12 auditPolicyCheck = checkProcess(script, settingName,

↪→settingValue);

13 } catch (Exception e) {

14 e.printStackTrace();

15 return CheckStatus.INCOMPLETE;

16 }

17

18 if (auditPolicyCheck)

138 I. Nigmatullin et al.

19 return CheckStatus.PASS;

20 else

21 return CheckStatus.FAIL;

22 }

23

24 @Override

25 public EnforcementStatus enforce() {

26 String script = pattern().prepareEnforceScript();

27

28 try {

29 Process process = Runtime.getRuntime().exec(script);

30 process.waitFor();

31 } catch (Exception e) {

32 e.printStackTrace();

33 return EnforcementStatus.FAILURE;

34 }

35 return EnforcementStatus.SUCCESS;

36 }

Listing 1.4. Example of AuditPolicy pattern

The STIG requirement V-63447 is expressed in the listing 1.5 below.

1 public class V-63447 extends AuditPolicyPattern {

2 private final AuditPolicyScriptPattern pattern =

3 new AuditPolicyScriptPattern(

↪→AUDIT_POLICY_SCRIPT_PATTERN_ENFORCE,

4 AUDIT_POLICY_SCRIPT_PATTERN_CHECK,

5 "{0CCE9235-69AE-11D9-BED3-505054503030}",

6 "failure",

7 "enable");

8 @Override

9 public STIGScriptPattern pattern() {

10 return pattern;

11 }

Listing 1.5. Example of STIG V-63447

The provided code is an abstract class called AuditPolicyPattern which
implements the STIGPattern interface. It includes two methods, check() and
enforce(), which are used to verify and enforce the STIG requirement, respec-
tively.

0CCE9235-69AE-11D9-BED3-505054503030 is a Microsoft Subcatego-
ryGUID1. It identifies the User Account Management audit subcategory. Overall,
this code is used to implement the STIG pattern for Audit policy verification
and enforcement using the RQCODE framework.
1 https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpac/

77878370-0712-47cd-997d-b07053429f6d.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpac/77878370-0712-47cd-997d-b07053429f6d
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-gpac/77878370-0712-47cd-997d-b07053429f6d

RQCODE: Security Requirements Formalization with Testing 139

AuditPolicy pattern remains unchanged and is created only once. The only
parameters that need to be updated are within the public class V-63447, such
as AUDIT_POLICY_SCRIPT_PATTERN_CHECK, 0CCE9235-
69AE-11D9-BED3-505054503030. This means that the AuditPolicy pat-
tern can cover a large number of final Java classes related to specific STIG
requirements, thereby saving considerable effort given the huge number of STIGs.

4 Discussion

4.1 Background Needed

Individuals involved in implementing the RQCODE approach should possess an
understanding of OOP concepts such as inheritance. This knowledge enables
them to design and develop code that accurately represents the security require-
ments.

Additionally, a strong grasp of requirements engineering is essential for the
successful implementation of the RQCODE approach. It is necessary to effec-
tively communicate with stakeholders understanding their security concerns and
translating them into clear and concise requirements. By leveraging this knowl-
edge in object-oriented programming, quality assurance and requirements engi-
neering, practitioners can effectively apply the RQCODE approach to bridge the
gap between security requirements specification and implementation.

4.2 Security Testing

RQCODE and security testing are two distinct approaches that serve different
purposes in addressing security requirements. While both approaches contribute
to ensuring the security of a system, they cannot be directly compared in terms
of their objectives and focus.

Security testing primarily aims to identify errors, vulnerabilities, and gaps in
the system and its code. It involves various techniques such as penetration test-
ing, vulnerability scanning, and dynamic analysis to uncover potential security
weaknesses. The main goal of security testing is to assess the security posture
of the system and identify areas that require improvement or remediation. It
is more focused on detecting and mitigating security risks rather than directly
verifying the implementation of security requirements.

On the other hand, RQCODE is an approach that focuses on formalization
and verification of security requirements. It involves encoding security require-
ments into the software development process, allowing for automated verification
and analysis of the implemented security measures. RQCODE enables the inte-
gration of security requirements into the development workflow and ensures that
the implemented security measures align with the specified requirements.

The key distinction between RQCODE and security testing lies in their pri-
mary objectives. Security testing aims to identify and address security vulner-
abilities, while RQCODE focuses on verifying the compliance and implementa-
tion of security requirements. Security testing is more concerned with uncovering

140 I. Nigmatullin et al.

potential issues and gaps in the system, while RQCODE ensures that the security
requirements are met through automated verification.

5 Conclusion and Future Work

In conclusion, our research has shown that adopting the RQCODE approach can
contribute to formalizing the security requirements by specifying corresponding
security tests along with the requirements description expressed in natural lan-
guage. For that, RQCODE leverages programming languages, such as Java, to
express requirements as classes that incorporate verification means, we have
demonstrated the potential for enhanced reusability and traceability in require-
ments specifications.

The code-like representation of security requirements in Java programming
language can provide a more developer-friendly approach compared to other
formalization methods that often require expert knowledge and lack tool sup-
port for developers. The investigation we carried out in the security domain,
specifically with the STIG requirements, has provided concrete examples of how
RQCODE can be applied. These examples highlight the potential of security
tests for clarifying and formalizing security requirements. This can be considered
as the starting point for the analysis and verification of security requirements,
thereby achieving the development of secure software systems. This shift towards
expressing requirements as code not only facilitates the integration of verifica-
tion mechanisms, such as tests but also enables seamless collaboration between
stakeholders involved in the software development process.

In the context of security requirements and RQCODE, BDD, and SQUARE
can also be considered.

BDD [19] focuses on collaboration and communication among stakeholders to
define and verify system behaviors. It uses a structured language called Gherkin
to describe system behavior in a human-readable format. BDD can be used to
capture security requirements by expressing them as behavior scenarios, facili-
tating clear documentation and alignment of stakeholders.

SQUARE is a methodology specifically designed for security requirements
engineering. It provides a systematic approach to elicit, analyze, specify, and
validate security requirements [8].

RQCODE [9], or Requirements as Code, involves expressing requirements in
a coded form. It treats requirements as executable code and focuses on automat-
ing their verification. RQCODE translates security requirements into executable
code, allowing for automated testing and analysis to ensure compliance with the
specified security requirements.

Each approach has its strengths and can be beneficial for addressing security
requirements. BDD promotes collaboration and clear documentation of security
expectations. SQUARE provides a systematic methodology for thorough security
requirements engineering. RQCODE enables automated verification and testing
of security requirements.

In future work, we plan to gather feedback from industry partners through a
dedicated tutorial to evaluate the perceived benefits of the RQCODE approach.

RQCODE: Security Requirements Formalization with Testing 141

By comparing this approach with Test-Driven Development and exploring its
integration within Continuous Integration and Delivery practices, we aim to
further validate the effectiveness and applicability of RQCODE.

References

1. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right
Software. Manning Publications (2011)

2. Regulation, General Data Protection: General data protection regulation (GDPR)
- official legal text (2023). https://gdpr-info.eu. Accessed 11 July 2023

3. PCI Security Standards Council: Official PCI security standards (2023). https://
www.pcisecuritystandards.org/. Accessed 15 May 2023

4. DoD Cyber Exchange: Security technical implementation guides (STIGs) - DoD
cyber exchange (2023). https://public.cyber.mil/stigs/. Accessed 5 July 2023

5. Franke, U., Brynielsson, J.: Cyber situational awareness - a systematic review of the
literature. Comput. Secur. 46, 18–31 (2014). https://doi.org/10.1016/j.cose.2014.
06.008. https://www.sciencedirect.com/science/article/pii/S0167404814001011

6. Frontiers: ISO/IEC 27034-1:2011 (2023). https://www.iso.org/standard/44378.
html. Accessed 20 Apr 2023

7. Frontiers: Windows 10 Security Technical Implementation Guide - DoD cyber
exchange (2023). https://www.stigviewer.com. Accessed 23 MAy 2023

8. Gross, D., Yu, E.: From non-functional requirements to design through patterns.
Requirements Eng. 6(1), 18–36 (2001)

9. Ismaeel, K., Naumchev, A., Sadovykh, A., Truscan, D., Enoiu, E.P., Seceleanu, C.:
Security requirements as code: Example from VeriDevOps project. In: 2021 IEEE
29th International Requirements Engineering Conference Workshops (REW), pp.
357–363. IEEE (2021)

10. Jürjens, J.: Secure Systems Development with UML. Springer, Berlin (2005).
https://doi.org/10.1007/b137706

11. Mead, N.R., Stehney, T.: Security quality requirements engineering (SQUARE)
methodology. ACM SIGSOFT Softw. Eng. Not. 30, 1–7 (2005)

12. Mellado, D., Blanco, C., Sánchez, L.E., Fernández-Medina, E.: A systematic review
of security requirements engineering. Comput. Stand. Interfaces 32(4), 286–295
(2010)

13. Mukherjee, S., Roy, S., Bose, R.: Defining an appropriate trade-off to overcome
the challenges and limitations in software security testing. J. Xidian Univ. 14(2),
1471–1479 (2020)

14. Naumchev, A.: Seamless object-oriented requirements. In: 2019 International
Multi-Conference on Engineering, Computer and Information Sciences (SIBIR-
CON), pp. 0743–0748. IEEE (2019)

15. Nigmatullin, I., Sadovykh, A., Messe, N., Ebersold, S., Bruel, J.M.: RQCODE-
towards object-oriented requirements in the software security domain. In: 2022
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 2–6. IEEE (2022)

16. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, European edn.
McGraw-Hill (1994). Adapted by Darrel Ince

17. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases.
Requirements Eng. 10(1) (2005). https://doi.org/10.1007/s00766-004-0194-4

https://gdpr-info.eu
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://public.cyber.mil/stigs/
https://doi.org/10.1016/j.cose.2014.06.008
https://doi.org/10.1016/j.cose.2014.06.008
https://www.sciencedirect.com/science/article/pii/S0167404814001011
https://www.iso.org/standard/44378.html
https://www.iso.org/standard/44378.html
https://www.stigviewer.com
https://doi.org/10.1007/b137706
https://doi.org/10.1007/s00766-004-0194-4

142 I. Nigmatullin et al.

18. Smart, J.: BDD in Action: behavior-driven development for the whole software
lifecycle. Manning (2014)

19. Software: Behaviour-driven development - Cucumber documentation (2023).
https://cucumber.io/docs/bdd/. Accessed 1 May 2023

20. Team: Secure product design - OWASP cheat sheet series (2023). https://
cheatsheetseries.owasp.org/. Accessed 2 July 2023

21. Tian-yang, G., Yin-Sheng, S., You-yuan, F.: Research on software security testing.
In. J. Comput. Inf. Eng. 4(9), 1446–1450 (2010)

22. Tooke, S.: The Cucumber Book: Behaviour-Driven Development for Testers and
Developers. The Pragmatic Bookshelf (2017)

https://cucumber.io/docs/bdd/
https://cheatsheetseries.owasp.org/
https://cheatsheetseries.owasp.org/

Understanding Problem Solving
in Software Testing: An Exploration
of Tester Routines and Behavior

Eduard Paul Enoiu1(B) , Gregory Gay2,3 , Jameel Esber1,
and Robert Feldt2,3

1 Division of Networked and Embedded Systems,
Mälardalen University, Väster̊as, Sweden
{eduard.enoiu,jameel.esber}@mdu.se

2 Department of Computer Science and Engineering,
Chalmers University of Gothenburg, Gothenburg, Sweden

greg@greggay.com
3 Department of Computer Science and Engineering, University of Gothenburg,

Gothenburg, Sweden
robert.feldt@chalmers.se

Abstract. Software testing is a difficult, intellectual activity performed
in a social environment. Naturally, testers use and allocate multiple cog-
nitive resources towards this task. The goal of this study is to understand
better the routine and behaviour of human testers and their mental mod-
els when performing testing. We investigate this topic by surveying 38
software testers and developers in Sweden. The survey explores testers’
cognitive processes when performing testing by investigating the knowl-
edge they bring, the activities they select and perform, and the challenges
they face in their routine. By analyzing the survey results, we provide
a characterization of tester practices and identify insights regarding the
problem-solving process. We use these descriptions to further enhance a
cognitive model of software testing.

Keywords: Test Design · Problem Solving · Software Testing

1 Introduction

During software testing, test cases—sequences of input and expectations on the
resulting behavior of the system-under-test (SUT)—are designed and executed as
a method of determining whether the SUT is functioning correctly [15]. Testing is
the most common verification technique [15], and consequently, one of the most
researched topics in the software engineering field [14]. However, a significant
portion of past research has focused on improving the tools that testers use—
there is a lack of investigation of and, consequently, evidence regarding human
aspects of software testing.

Support provided by Software Center Project 30: “Aspects of Automated Testing”,
H2020 under grant agreement No. 957212 and Vinnova through SmartDelta project.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 143–159, 2023.
https://doi.org/10.1007/978-3-031-43240-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_10&domain=pdf
http://orcid.org/0000-0003-2416-4205
http://orcid.org/0000-0001-6794-9585
http://orcid.org/0000-0002-5179-4205
https://doi.org/10.1007/978-3-031-43240-8_10

144 E. P. Enoiu et al.

To that end, in previous research, we proposed a cognitive model of soft-
ware testing based on how problem solving is conceptualized in cognitive psy-
chology [5]. This model mapped software testing to a cyclical problem solv-
ing model, consisting of activities related to four major phases of the testing
process—understanding testing goals, planning testing strategy, executing tests,
and checking test results.

The purpose of this study is to gain a deeper understanding of the personal
routines of testers, including both their external behaviors and internal pro-
cesses. While our general knowledge of software testing is vast, there is a lack
of clear understanding of the personal decision-making processes of testers and
developers—e.g., how they reason, which test design techniques they apply, what
kind of difficulties they face, how they decide which test cases to create, and how
they decide to stop testing in different testing situations.

As a step towards narrowing this knowledge gap, in this study, we utilize
our earlier cognitive model as a foundation for collecting data on the testing
process [5]. We have surveyed 38 developers and testers working in the Swedish
software development industry, focusing on the activities performed, knowledge
utilized, and challenges encountered during each major phase of the testing pro-
cess, as defined in the cognitive model. We utilize thematic analysis of the survey
results to characterize how testers approach each of these phases. In turn, we
use this characterization to deepen the cognitive model.

Closing this knowledge gap has implications for both researchers and practi-
tioners. The development of a realistic cognitive model enables the formulation
of clear guidance on performing effective and efficient testing. In addition, a
cognitive model can benefit future approaches to automated test generation,
potentially leading to the development of more human-like generation tools [4].
This study provides a foundation for this future research on both human testing
practices and human-like test generation.

2 Background and Related Work

The field of Behavioral Software Engineering (BSE) focuses on understanding
the mental, social, and behavioral aspects of software engineering performed
by individuals, teams, and organizations [11]. As an example, Hale et al. [7]
created a model of the mental abilities required by programmers during software
maintenance. This cognitive process model of debugging combines declarative
models, such as a program understanding model, with problem-solving models,
based on the idea of structural learning. The proposed model was later tested
by Hale et al. [8] through a controlled experiment where participants debugged
a program with an unknown fault, and their verbal protocols were analyzed.

Robillard et al. [18] studied the thought processes of developers in mixed
teams comprised of engineers and psychologists to develop best practices. The-
matic analysis was utilized to define cognitive behaviors. This research showed
that software review involves three mental activities—review, alternative solu-
tion development, and synchronization.

Understanding Problem-Solving in Software Testing 145

Related Work
Problem-Solving Models

Author
Experience

Survey

Data

Collection

Thematic

Analysis
Test

Design
Model

Fig. 1. Overview of the method used for collecting data and developing the problem-
solving model of test design.

Letovsky [12] delved into the cognitive processes behind program compre-
hension, with a focus on specific moments that occur within seconds or minutes,
such as understanding the purpose behind a line of code. This investigation led
to the creation of a categorization system for questions and hypotheses, along
with a theory of the mental images and processes that produced them. The
questions were defined as procedures that evaluate the coherence and accuracy
of a person’s developing mental model, while the hypotheses were identified as
a planning process that draws on various forms of knowledge.

Recently, Aniche et al. [1] investigated the thought processes and decision-
making developers experience when manually engineering test cases. Using obser-
vations from developers and survey data, it provides a broad framework for
understanding developers’ approach to test case development.

Despite the diverse range of approaches, it is essential to examine software
testing as part of a problem-solving process to identify commonalities and gain
insights into the processes involved in problem-solving. These processes seem to
vary [1,5,10] depending on the specific testing problem/activity and how the
goal is mentally represented. As a first step towards investigating the problem-
solving perspectives, we previously hypothesized [5] that a cognitive test design
model could be represented as a cyclical problem-solving process and conducted
a pilot study with five students. As an initial approach, the software testing
cycle, considered as a traditional problem-solving process, contains the following
phases where a human tester needs to: (i) understand the test goal, (ii) formulate
the test strategy, (iii) execute the tests, and (iv) check the test results.

3 Method

In this research, we are interested in addressing the following questions: (1) How
do testers utilize cognitive resources, knowledge sources, and problem-solving pro-
cesses during testing? (2) What are the main challenges testers face in their
testing routine?

To address these questions, we followed a mixed-methods research approach
outlined in Fig. 1. This approach combines both qualitative and quantitative
data analysis using a survey, allowing us to develop a more comprehensive under-
standing of the problem-solving processes involved in software testing. We uti-
lized survey research to explore the opinions and decisions of individuals during

146 E. P. Enoiu et al.

Table 1. Survey questions.

Survey Question Format

1. How many years of experience do you have with development? Choice

2. How long have you been working with testing? Choice

3. What is the size of the company you work in? Choice

4. What role are you presently working in? Choice

5. Can you summarize what you typically do in your current role? Text

6. What programming languages do you use in your company? Choice

7. What activities do you perform when understanding the testing purpose/goal? Text

8. What knowledge do you bring when trying to understand the purpose/goal? Text

9. What kinds of purposes/goals do you use during testing? Choice

10. What are the difficulties you face when you try to understand the purpose/goal? Text

11. What activities do you perform when planning test strategy and/or creating tests? Text

12. What knowledge do you bring when you plan test strategy and/or create tests? Text

13. What difficulties do you face when planning test strategy and/or creating tests? Text

14. What test design techniques do you use to create tests? Text

15. What activities do you perform when executing test cases? Text

16. What knowledge do you bring when executing test cases? Text

17. What automated tools/frameworks do you use during testing? Text

18. What activities do you perform when checking test results? Text

19. What knowledge do you bring when checking test results? Text

20. What software testing tools do you use to check results? Text

21. Provide your top three challenges when checking test results Text

22. What criteria are used in your projects to decide to stop testing? Text

23. Do you agree with the purpose of this survey? Likert

24. Were there questions that were not clear? Text

25. Do you have any feedback on the survey topic? Text

testing. We developed an exploratory cross-sectional survey, utilizing both qual-
itative and quantitative descriptive methodology, and distributed it. We then
performed a thematic analysis of the qualitative data to obtain an extended
problem-solving model of software testing.

3.1 Survey Development

We started by identifying the related work on problem-solving models that have
been developed based on Polya’s phases in solving mathematical problems to rep-
resent problem-solving processes [16] on which our earlier model of test creation
and execution [5] was based. Psychologists have also described problem-solving
as a cyclical process, as noted by Bransford et al. [2], Hayes [9], and Pretz et
al. [17]. We used the overall phases previously outlined by Enoiu et al. [5] to
understand how this model of test creation happens in practice, and we focused
on the overall activities, knowledge, and other human aspects of different steps.
Based on these steps, we developed the questionnaire questions by concentrat-

Understanding Problem-Solving in Software Testing 147

20
7

4

7
10+
18.4%
5-10
10.5%
2-5
18.4%

0-2
52.6%

Dev. Experience

16

11

4

7
10+
18.4%
5-10
10.5%
2-5
28.9%

0-2
42.1%

Test Experience

0

4

8

12

C C++ C#
Java

Python
Other

Languages

238

7
Other
18.4%

QA/Tester
21.1%

Developer
60.5%

Role

19

6

13
Large (1000+)
34.2%

Medium (100-1000)
15.8%

Small (1-99)
50.0%

Company Size

Fig. 2. Demographic information on survey participants.

ing on the activities that participants perform when performing software testing
according to the initial problem-solving model of Enoiu et al. [5]. To start the
questionnaire, a brief explanation was provided about the survey’s objective.
In addition, participants were informed of ethical and social considerations and
were assured that all collected data would be anonymized.

The survey questions are listed in Table 1. The questions were split into
several sections, starting with demographic information. It then asked about
the activities that participants undertake when understanding the testing goal,
when planning a testing strategy, when executing testing activities, and when
checking their results. We then allowed participants to provide feedback.

3.2 Survey Population and Sampling

We targeted professionals in the software development industry. Our primary
distribution method was convenience sampling. Connections with organizations
were utilized to reach a large number of testers, developers, and practitioners in
Sweden to gather diverse opinions and perspectives. A total of 38 responses were
submitted. To ensure anonymity, we do not report the identities of respondents.

Demographic information is provided in Fig. 2. The participants had a strong
knowledge of software development, with all reporting at least one year of expe-
rience. The participants work for companies of all sizes, with half working for
small companies and in various roles—with the majority identifying as devel-
opers. The most common programming language reported was Java, but many
different languages were reported as being in use1.

3.3 Thematic Analysis

The open-ended questions in the questionnaire were subjected to thematic anal-
ysis, a qualitative technique for analyzing data [3]. This approach involves
1 The “other” languages include PHP, MATLAB, Flutter, JavaScript, and Simulink.

148 E. P. Enoiu et al.

Table 2. Themes and sub-themes related to participants’ activities, knowledge, and
challenges when understanding testing goals/purpose.

Theme Important Sub-themes

T1. Activities when understanding goals. T1.1. Understanding software requirements

T1.2. Document analysis

T1.3. Identifying the correct behavior of the system

T1.4. Finding bugs and faults

T1.5. Inspecting the architecture of the SUT

T1.6. Using experience from previous testing sessions.

T2. Knowledge used in understanding goals. T2.1. Documentation, Specifications, Requirements

T2.2. Code. , T2.3. Memory., T2.4. Experience

T2.5. Discussions with colleagues., T2.6. Web resources

T3. Challenges when understanding goals. T3.1. Incomplete or unclear requirements

T3.2. Complex and highly configurable scenarios

analyzing a collection of text—in this case, participants’ responses to open-
ended questions—to identify common themes, patterns, and topics that arise
frequently. We carried out our thematic analysis using a six-step process: becom-
ing familiar with the data, coding the responses, identifying themes, checking
the themes, naming the themes, and reporting our findings.

To begin with, we familiarized ourselves with the data by gathering and
reading the responses and making preliminary notes to obtain a comprehen-
sive understanding of the obtained data. The next step involved coding, which
entailed identifying specific words or sentences in the responses and assigning
them short labels or “codes” to describe their content.

After coding the responses, we reviewed and identified connections between
the codes and grouped them into broader themes. This involved combining mul-
tiple words and sentences to form cohesive themes. We then verified that the
themes accurately reflected the data by comparing them to the responses and
making modifications if necessary. Finally, we gave each theme a descriptive and
concise name. These themes were then used to extend our problem-solving model
of software testing.

4 Results and Discussions

This section presents the findings of the thematic analysis and introduces the
extension of the problem-solving model of software testing.

4.1 Survey Results

This section summarizes the results of analyzing the survey data. The results
are organized based on the sections of the survey, as explained in Sect. 3.1.
Understanding Testing Goals/Purpose: We asked participants to describe
their activities when understanding the purpose or goals of testing. As shown in

Understanding Problem-Solving in Software Testing 149

Table 3. Themes and sub-themes related to participants’ activities, knowledge, and
challenges when planning a test strategy.

Theme Important Sub-themes

T4. Activities while planning test strategy. T4.1. Identify the SUT., T4.2. Identify the test level

T4.3. Gather information from sessions in “previous” test levels

T4.4. Identify the requirements

T4.5. Identify the interfaces and create test cases

T4.6. Define the test environments., T4.7. Prepare documentation.

T5. Knowledge used in planning test strategy T5.1. Documents (Documentation, Specifications)

T5.2. Code., T5.3. Knowledge and Memory

T5.4. Experience., T5.5. Web resources.

T6. Challenges when planning test strategy T6.1. Difficulty in coming up with edge cases/out-of-bound bugs

T6.2. Correctly selecting the test steps

T6.3. Handing ambiguous/not clear requirements

T6.4. Lack of time., T6.5. Communication

T6.6. The use of testing documents created by others

T6.7. Unstable environment

T6.8. Test automation tooling understanding

Table 2, their answers revolved around understanding software requirements and
identifying the precise correct behavior of the SUT. This information was needed
to understand the recognition, definition and representation of goals before cre-
ating test cases.

Our thematic analysis revealed that, during the process of understanding
testing goals, participants follow a set of steps, including examining the archi-
tecture of the SUT, followed by identifying the interfaces (e.g., hardware, soft-
ware, and user interfaces) and determining which levels to test them on. Finally,
testers identify the responsibilities for the different test levels, if applicable.
One participant emphasized the value of conversations with colleagues:

“Firstly, I turn to the other team members since they ... have developed the new

functionality. Then if needed, I turn to code and/or documentation.”

Our thematic analysis yielded several sub-themes related to the knowledge
utilized during this step (Table 2). 61% of participants selected documents as a
source of knowledge. However, multiple sources are often required. The majority
of the same participants also chose code as another source of knowledge:

“I use multiple resources such as documents, code, and my memory, and consult

experts whenever necessary.”

A small number of participants indicated that they utilize knowledge from
previous testing experience, familiarity with the software and hardware, com-
prehension of the implementation and testing guidelines, web resources, their
memory, or conversations with colleagues. For example:

“I rely on my previous experience, as well as discussions with architects and devel-

opers, and an inspection of the architecture and requirement specifications.”

We inquired about whether test goals were discovered, created, or presented.
Most participants reported a blend of options. 66% (25) discovered goals, 47%

150 E. P. Enoiu et al.

Table 4. Themes and sub-themes related to participants’ activities, knowledge, and
tool use when executing test cases.

Theme Important Sub-themes

T7. Activities when executing a test case. T7.1. Test environment setup

T7.2. Selecting and running test cases

T7.3. Validate the test coverage

T7.4. Continuously observe and analyze outcomes.

T8. Knowledge used when executing tests. T8.1. Documents (Documentation, Specifications)

T8.2. Code., T8.3. Knowledge and Memory

T8.4. Experience

T8.5. Knowledge of administering the tests

T9. Automated tools/frameworks used. T9.1. Selenium., T9.2. Pytest., T9.3. Azure pipelines

T9.4. Xunit., T9.5. IntelliJ., T9.6. Apache JMeter

T9.7. MATLAB., T9.8. Eclipse., T9.9. Ranorex

T9.10. Laravel

(18) created their own goals, and 61% (23) utilized test goals that were defined
by someone else. One participant noted:

“The testing goals are already pre-defined as part of the company’s test strategy.

When creating test cases, we apply different test design techniques such as BVA

and equivalence partitioning.”

When examining the challenges faced when comprehending the pur-
pose/goals of testing, most participants identified incomplete or unclear require-
ments as one of the most common difficulties encountered during this phase.
One participant noted that vague requirements “cannot be developed and cannot
be tested.” Additionally, some participants reported facing challenges related to
complex or highly configurable scenarios, often exacerbated by communication
gaps between developers, testers, and clients.
Planning a Testing Strategy: Table 3 presents the activities involved in test
strategy planning and test case creation. For example, analyzing the application
before creating test cases based on experience or test specifications. Before com-
mencing testing activities, testers strive to gain an understanding of the SUT
by learning everything they can about it, obtaining detailed requirements, and
comprehending the developed solution.

Regarding knowledge that participants use when planning a test strategy, we
observed that most rely on documentation and the code. Additionally, testers
draw on previous testing experience, knowledge of testing guidelines, and spec-
ifications from earlier versions of the SUT. Participants who had been testing
for more than ten years mentioned that they preferred to use test strategy tem-
plates, knowledge of the SUT’s architecture, their own experience, and regulatory
requirements during the planning phase. One participant provided the following:

Understanding Problem-Solving in Software Testing 151

Table 5. Themes and sub-themes related to participants’ activities, challenges, and
criteria when planning to check test results.

Theme Important Sub-themes

T10. Result checking activities. T10.1. Compare test specifications with results obtained

T10.2. Discuss results with the development team

T10.3. Modify requirements, test cases, or code-under-test.

T11. Challenges in checking results. T11.1. Communication and interaction with other roles

T11.2. Lack of skilled testers skilled in test result analysis

T11.3. Lack of easy-to-use test analysis tools

T11.4. Lack of automation in test result checking

T11.5. Lack of historical test trends

T11.6. Difficulty understanding if the result is correct

T11.7. Challenging debugging process

T11.8. Misunderstanding of test specifications and requirements

T11.9. Incomplete historical record of test reports

T11.10. Unstable environment

T11.11. Challenging test selection based on result analysis

T11.12. Missing links between sources of documentation and logs.

T12. Completion criteria. T12.1. When testing done on all items in the testing plan

T12.2. Coverage of edge case scenarios and “normal” scenarios

T12.3. UI functionality is covered

T12.4. All specified tests and exploratory test sessions executed

T12.5. All found discrepancies are analyzed

T12.6. Human judgment., T12.7. Experience., T12.8. Budget

“Knowledge of the software and hardware, previous testing knowledge, knowledge

of the testing guidelines, and review of relevant documentation.”

Regarding challenges while planning test strategy or creating test cases, many
struggled with understanding complex or ambiguous requirements:

“Lack of clear requirements is the most common difficulty.”

Participants also identified limitations of testing tools, such as forced tool use
leading to an unstable environment. Additionally, participants mentioned that
lack of time for planning or tight deadlines were significant difficulties.

We also examined the test design techniques that participants employ. 26%
of participants (10) design test cases based on specifications, 29% (11) use code
as a basis for test design, and 24% (9) rely on their prior experience. 45% (17)
employed a combination of experience, specification, and code. One participant
provided a brief description of their creation techniques:

“We ensure that each public interface has at least some tests, and we also consider

code coverage. If a module has insufficient coverage, we add tests there. We also

consider different levels of testing and aim to conduct both unit tests, module-

integration tests, and system-level tests.”

Executing Test Cases: Participants were asked to describe their activities
during test case execution (Table 4). Responses indicated that activities include

152 E. P. Enoiu et al.

reviewing test specifications, writing test scripts, executing test scripts, and
reviewing results.

Multiple tasks were performed by participants during test case execution,
such as test environment setup, test case execution (including fulfilling pre-
conditions), log-file gathering, archiving of execution and log files, documen-
tation, and analysis of any found discrepancies. Automation of the test envi-
ronment was also discussed, with one participant stating that they try to auto-
mate everything, including the setup of the test environment, running test cases,
and observing the output. Some participants focused on debugging and defect
identification when software bugs appeared during test execution, while others
emphasized the importance of regression testing.

When executing test cases, participants often rely on documents and code
to review specifications, report bugs, and document test results. However, one
participant claimed that documentation is unnecessary once the tests are ready
to be executed, except for instructions on how to report the results. Another
participant mentioned that they only require knowledge of administering tests
for automated test runs.

The most popular tools used by testers and developers during test execu-
tion were Selenium and Pytest, as they provide frameworks for automating web
application testing and scalable and straightforward tests, respectively. Some
participants perform tests manually, while others use custom-made tools.
Checking Test Results: Participants were asked to describe their routine for
checking test results (Table 5). Their answers largely centered around compar-
ing test specifications with the results they obtained. Testers undertake several
activities while checking test results, e.g., comparing the requirements with the
test results. One participant emphasized that, during this process, it is important
to keep an eye on any events not specified in the test case. Some participants
also discussed the results with the development team or other testers, examined
test scripts, or provided feedback to the designers.

In the event of a test failure, testers and developers iteratively modify either
the tests or code until achieving the desired outcome. One participant shared:

“We rerun the test multiple times to confirm if it’s a fluke. We then proceed to

fix the test, the code being tested, or even the testing environment. This may

involve checking for errors in parameters when setting up dockers or regenerating

test data.”

In terms of the knowledge utilized when checking test results, documents
and code remain the most common sources. One participant emphasized the
significance of documentation testing:

“When tests fail, we almost always refer to the test case documentation. Though

sometimes insufficient, we write at least one sentence about the test’s purpose.

Since the test cases are usually small, this is usually adequate.”

However, one participant stated that the tests alone are adequate:

Understanding Problem-Solving in Software Testing 153

“The tests created contain all the necessary information to check the results.”

Participants identified the three primary challenges encountered while check-
ing results that they would like to see addressed in software testing research. One
participant highlighted some challenges that arise when tests fail:

“1: It can be difficult to recognize that a failed test already has an open bug report.

2: Multiple failed tests may be caused by the same underlying error. 3: It can be

challenging to differentiate between failing test cases due to actual software errors

versus test environment issues.”

Another also mentioned lack of observability into the causes of SUT behavior:

“The primary challenge is understanding whether the obtained result is correct by

chance or if the application is performing as intended.”

Other challenges identified include the need for test selection (due to hav-
ing too many tests to execute) and challenges that emerge from having to
make this selection—e.g., the time between executions and lack of certainty in
SUT correctness—visualization of test results over time, establishing traceability
between documentation sources, and the difficulty of knowing who is responsible
for dealing with test results (e.g., the test case creator, the feature developer, or
the test environment developers).

We also asked about the criteria participants utilized to determine whether
testing activities had been completed. One of the criteria that participants
used was ensuring that all the tests were executed successfully and met the
desired coverage levels of code and functionality requirements. Another partici-
pant stated that all planned tests must be executed without any stopping errors.
Other participants mentioned budget and deadline constraints. Another partic-
ipant indicated that the stopping criterion is when all test steps in the test
specification have been executed and assigned a pass/fail grade.

4.2 The Extended Problem Solving Model

Analyzing the survey results, we augmented our test design model [5] using a
detailed human problem-solving process model [13]. It operationalises the steps
testers take, clarifies the multiple sources of knowledge used and the internal
representations the activities are based on and updates. The extended model
is depicted in Fig. 3, with the new, process model in the inner circle of the
original problem solving model (outer two circles). The extension can be applied
throughout the problem-solving phases (mid circle) of the original model [5].
Below we provide further details, overall and per phase.

154 E. P. Enoiu et al.

Identify Test Goal

D
efine Test G

oal

An
al

yz
e

Kn
ow

le
dg

e
Form

 Stra
tegyOrganize Information

Allocate R
esources

M
on

ito
r P

ro
gr

es
s

Evaluate

UNDERSTAND TEST GOAL

PLAN T
EST S

TRATEGY
EXECUTE TESTS

CHECK T
EST R

ESULT

Given Test Goal
Found Test Goal

Discovered Test Goal

Internal Representation
- select problem space-

Environment

select
method

apply method change representation

Knowledge
domain specific/general

code/documentation

succed
fail

Fig. 3. The extended problem-solving model of software testing.

The Overall Problem-Solving Process: To initiate the testing process, the
tester first analyzes the test goal and divides the goal into manageable compo-
nents, then creates a generic solution for each component—known as a test case.
These individual solutions are then combined to form a full test scenario that
covers the initial test goal. In Table 6 we consider a specific test goal of security
testing and go through the steps outlined in the process, providing practical
examples. It is important to note that the testing cycle is not always a linear
process, and skilled testers are able to remain flexible. Often, the completion
of the cycle leads to the identification of a new test goal, which requires the
repetition of the process itself as well as its phases.

In Fig. 3, we depict the interaction between the problem solver and a test-
ing environment. Initially, the tester inspects the environment and generates an
internal representation based on the context of the test goal (e.g., a flowchart
that illustrates potential SQL injection attacks and vulnerabilities). This repre-
sentation involves selecting a problem space to define the test goal’s represen-
tation, the context of problem-solving, and the inferences that can be drawn

Understanding Problem-Solving in Software Testing 155

Table 6. An example of the steps outlined in the problem-solving process for a specific
test goal in security testing.

Overall Steps Practical Examples

Understand the Test Goal Identify the Test Goal: Recognize potential security vulnerabilities in the login
mechanism of a web application

Define the Test Goal: Design a test case that bypasses the login mechanism using SQL
injection and brute-force attacks.

Plan Test Strategy Analyze Knowledge: Analyze the login mechanism’s code and infrastructure, review
security guidelines and understand common attack vectors used to exploit login
vulnerabilities

Form Strategy: Craft a test case that attempts to inject malicious SQL statements into
the login form fields to check if the application has implemented proper input validation
to prevent SQL injection attacks.

Execute Tests Organize Information and Allocate Resources: Document the different attack scenarios,
list the expected outcomes, and prepare the necessary tools, such as automated security
testing tools or proxy servers, to capture and analyze network traffic during the test.

Check Test Results Monitor Progress: Execute the test case, observe if the application properly rejects the
malicious input, and monitor if any unauthorized database queries or errors occur

Evaluate: Analyze the test results, identify any successful security breaches or
vulnerabilities

from it based on general knowledge and past experience (e.g., understanding
where the system might be vulnerable and what signs might suggest a failing
test case). Equipped with this representation, the tester selects a problem solv-
ing method associated with each phase of software testing. For instance, in the
solution-searching phase, the tester may revisit the mental representation (e.g.,
fault trees, checklists), apply different methods for test design (e.g., boundary
value analysis), and employ heuristic strategies to facilitate the creation of test
cases. The results of these steps are then monitored, and feedback is provided,
which may lead to modifications in the representation of the test goal. The sur-
vey results suggest that testers rely on multiple and varied sources of knowledge
when creating and executing test cases. Among these, documentation is the most
commonly used across all testing activities. Testers refer to documents such as
specifications, project requirements, and testing guidelines to ensure that needs
are met, defects are identified, quality and risk are assessed, confidence is estab-
lished, and defects are prevented. In practice, code is the most crucial knowledge
that testers and developers use during the testing process. It is used to inspect
and verify the SUT and detect faults throughout the testing process. Finally,
experience and skills are also fundamental sources of knowledge that testers and
developers leverage in their routines.

During the testing process, testers engage in different activities at each phase
specified by the mid-circle. The process model of the inner circle thus applies
throughout the phases of the mid-circle. For example, when understanding the
test goal, testers mainly focus on comprehending the software requirements and
outlining the acceptable behavior of the system. Some of the primary activities
they perform include inspecting the system’s architecture, identifying the various
interfaces (hardware, software, and user), determining the appropriate testing
level, and clarifying the responsibilities for the different test levels.

156 E. P. Enoiu et al.

Identify the Test Goal: This is the phase when a tester understands and
defines the test objective as a problem that requires a solution. Getzels [6] iden-
tifies three types of problems—those that are given, those that are discovered,
and those that are created or generated. A given test goal is presented to the
tester (e.g., a pre-defined criteria-based test goal, such as applying particular
input partitions). A discovered test goal, however, must be identified. Such a
test goal exists but has not been clearly stated to the tester, which has to seek
out the knowledge gap to discover what the test goal is. In contrast to given and
discovered test goals, a created test goal must first be recognized and formulated.
In these cases, testers may use exploratory test methods and develop new test
objectives based on their knowledge, skills, and interactions with the SUT.
Define the Test Goal: This relates to how one can mentally define the test
goals and what the linked tests must accomplish. The test goal definition phase of
testing is when the scope and objectives of each test are established and defined
precisely. A test goal presents a collection of “givens”. When dealing with these
constraints, a tester performs certain procedures to achieve the desired state
(i.e., creating a test fulfilling a test goal). A test goal can be expressed in many
ways, including graphically or audibly. For example, to achieve pairwise coverage,
one must describe the objective as the task of generating all available pairs of
parameter values that may be applied by at least one test case.
Analyze Knowledge: This phase structures the tester’s knowledge concerning
testing scenarios. Every tester addresses a particular scenario with a different
set of knowledge. For example, someone familiar with test design techniques
will assess their past knowledge and use various methods and representations
of the test goal to clearly state the needed strategies. To develop test cases, we
might have to use broad abilities such as inference, case-based logic, and gener-
alization to organize the data gathered throughout the various processes. On a
broader level, higher cognitive abilities such as inspiration and allocating men-
tal resources such as awareness and effort must be used. Additionally, domain
expertise, such as electrical, mathematics, computer science principles, program-
ming concepts, and regulations, would be required. We discovered that testers’
primary activities involve acquiring a deep understanding of the SUT, obtain-
ing the exact requirements that led to its development, and comprehending the
generated test solution. They also develop tests that cover a distinct portion of
the system or algorithms.
Form Strategy: In this step, one needs to create a solution approach for gener-
ating the required test cases using certain operators. These operators are cogni-
tive frameworks of the operations that a tester may conduct on the “givens.” For
instance, some computations require the use of mental operators. The activities
required to reach the target state are the set of actions required to construct
test cases that satisfy a particular test goal. While the operators are often not
listed in the test goal, we may infer them based on our past knowledge (e.g.,
mathematical operators, cognitive operators).
Organize Information and Allocate Resources: After defining the test
goals, the next step for the tester is to manage their cognitive and physical

Understanding Problem-Solving in Software Testing 157

resources to develop and execute test cases. Testers can use automation tools
to develop test cases as executable scripts and allocate computer resources to
run test cases. Alternatively, when tests are performed manually, testers allocate
physical resources and document the test outcomes. We found that testers’ pri-
mary activities include reviewing test specifications, documenting test scripts,
and running these tests. Testers also archive test cases and log files and monitor
test execution to constantly document and analyze the SUT.
Monitor Progress and Evaluate: In the end, it is crucial for testers to monitor
the advancement towards the test objective(s). This phase involves tracking the
results of the test generation and execution procedures. In cases where the cor-
rect output cannot be easily defined, test oracles are incorporated into scripts or
results are manually monitored. This allows for the evaluation of test case qual-
ity. If testers determine that a test goal is not being met, they investigate the
issue and make adjustments. Testers analyze the sequence of procedures to deter-
mine if the test cases fail to validate the test objective. Our results suggest that
the testers’ main activity in this step involves comparing the software require-
ments and specifications with the obtained test results. Testers also discuss the
results with the development team or other testers to obtain feedback about the
outcomes. If the test fails, testers modify the test cases multiple times to achieve
the desired result. The primary activities testers and developers perform include
comparing test specifications with test results, discussing the results with the
team, and modifying the test cases.

5 Discussion

Based on our previously proposed problem solving model of testing we surveyed
38 professionals in the software development industry. The 25 questions of the
survey focused on the activities and knowledge they use and the challenges they
face in their daily test design, creation, and execution. The thematic analysis
then allowed us to extend the problem solving model with a process model
that can be instantiated in the phases of the overall process. While the specific
method changes between the phases, the extension clarifies that an internal
representation, formed based on knowledge about the environment and specific
test goals, first helps select and apply a phase-specific activity which in turn
leads to the internal representation being updated. Our results also clarify the
information that is used in this external-action-internal-refinement loop. Specific
challenges that testers face during the process were also identified.

In practice, companies can use the extended model as a basis for discussions
among testers and thus create a higher awareness of both the importance of
internal representations, the information and knowledge needed during the pro-
cess, and how to overcome or mitigate specific challenges. Researchers can use
the extended model as a basis for further data collection but also as a basis for
further theoretical refinement. They can also consider how their proposed new
testing technologies and methods fit with the problem-solving methods of testers
and how it addresses existing challenges.

158 E. P. Enoiu et al.

In comparison to most related works (e.g., [1,10]), our research proposes a
broader perspective on software testing as a problem-solving activity, emphasiz-
ing the cognitive processes involved. The study of Aniche et al. [1] aligns with our
model as it also acknowledges the presence of a mental model in test case devel-
opment. They also found that this mental model is updated when failures and
unexpected behavior surface during testing. However, our results also highlight
that the internal representations affect not only the test case that is developed
but help select the specific activity the tester uses during test creation and exe-
cution. Our extended model also places the detailed inner updating process in
the context of an outer, general problem-solving process which guides which
activities are appropriate.

5.1 Threats to Validity

A survey method was chosen because it allowed us to contact potential partici-
pants directly, and they could respond anonymously at their convenience. How-
ever, as the survey was conducted digitally and anonymously, we were unable to
follow up with participants for clarifications or further questions regarding their
responses. Consequently, it is possible that our survey participants misunder-
stood the questions or that we did not have a clear understanding of the testers’
perspectives when formulating the questions. To mitigate this risk, an expert in
software engineering reviewed the material provided and guided the respondents.
To prevent confusion during the survey, we provided brief explanations for each
attribute included in the questionnaire.

The survey garnered 38 responses which limit generalizability. To enable
comparisons and statistical evaluation, such as based on company size and years
of experience, a larger sample would be necessary. We thus focused only on
general trends across the entire dataset.

6 Conclusions

This study aimed to understand the routine and behavior of software testers
when performing testing, to improve software testing tools and environments
to better serve their needs. We surveyed software testers with an average of
five years of experience in the field and used thematic analysis to identify main
themes, including knowledge, activities, and challenges related to software test-
ing. Through this analysis, we gained insights into how testers use different
sources of information and perform various activities, such as understanding
software requirements, learning about the software, and discussing results with
other team members to get feedback. We refined an existing test design model
to show how knowledge and internal representations help select activities that
develop test cases that in turn, after execution, then lead to refined internal rep-
resentations. Overall, our study provides insights into the routine and behavior
of software testers during testing, which can inform the development of better
software testing advice, tools, and environments.

Understanding Problem-Solving in Software Testing 159

References

1. Aniche, M., Treude, C., Zaidman, A.: How developers engineer test cases: an obser-
vational study. IEEE Trans. Software Eng. 48(12), 4925–4946 (2021)

2. Bransford, J.D., Stein, B.S.: The ideal problem solver. New York: W. H (1984)
3. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.

3(2), 77,101 (2006)
4. Enoiu, E., Feldt, R.: Towards human-like automated test generation: perspectives

from cognition and problem solving. In: International Workshop on Cooperative
and Human Aspects of Software Engineering, pp. 123–124 (2021)

5. Enoiu, E., Tukseferi, G., Feldt, R.: Towards a model of testers’ cognitive processes:
software testing as a problem solving approach. In: International Conference on
Software Quality, Reliability and Security Companion, pp. 272–279. IEEE (2020)

6. Getzels, J.W.: The problem of the problem. In: New Directions for Methodology of
Social and Behavioral Science: Question Framing and Response Consistency, vol.
11, pp. 37–49 (1982)

7. Hale, D.P., Haworth, D.A.: Towards a model of programmers’ cognitive processes
in software maintenance: a structural learning theory approach for debugging. J.
Softw. Maintenance Res. Pract. 3(2), 85–106 (1991)

8. Hale, J.E., Sharpe, S., Hale, D.P.: An evaluation of the cognitive processes of
programmers engaged in software debugging. J. Softw. Maintenance Res. Practi.
11(2), 73–91 (1999)

9. Hayes, J.R.: Cognitive processes in creativity. In: Glover, J.A., Ronning, R.R.,
Reynolds, C.R. (eds.) Handbook of Creativity, pp. 135–145. Springer, Boston
(1989). https://doi.org/10.1007/978-1-4757-5356-1 7

10. Itkonen, J., Mäntylä, M.V., Lassenius, C.: The role of the tester’s knowledge in
exploratory software testing. IEEE Trans. Softw. Eng. 39(5), 707–724 (2012)

11. Lenberg, P., Feldt, R., Wallgren, L.G.: Behavioral software engineering: a definition
and systematic literature review. J. Syst. Softw. 107, 15–37 (2015)

12. Letovsky, S.: Cognitive processes in program comprehension. J. Syst. Softw. 7(4),
325–339 (1987)

13. Newel, A., Simon, H.A.: Human Problem Solving. Englewood Cliffs, NJ (1972)
14. Orso, A., Rothermel, G.: Software testing: a research travelogue (2000–2014). In:

Proceedings of the on Future of Software Engineering, FOSE 2014, pp. 117–132.
ACM, New York, NY, USA (2014)

15. Pezze, M., Young, M.: Software Test and Analysis: Process, Principles, and Tech-
niques. John Wiley and Sons, October 2006

16. Polya, G.: How to solve it (1957)
17. Pretz, J.E., Naples, A.J., Sternberg, R.J.: Recognizing, defining, and representing

problems. Psychol. Problem Solv. 30(3) (2003)
18. Robillard, P.N., d’Astous, P., Détienne, F., Visser, W.: Measuring cognitive activ-

ities in software engineering. In: Proceedings of the 20th International Conference
on Software Engineering, pp. 292–300. IEEE (1998)

https://doi.org/10.1007/978-1-4757-5356-1_7

Who Is Afraid of Test Smells? Assessing
Technical Debt from Developer Actions

Zhongyan Chen(B) , Suzanne M. Embury , and Markel Vigo

Department of Computer Science, The University of Manchester,
Manchester M13 9PL, UK

zhongyan.chen@manchester.ac.uk

Abstract. Test smells are patterns in test code that may indicate poor
code quality. Some recent studies have cast doubt on the accuracy and
usefulness of the test smells proposed and studied by the research commu-
nity. In this study, we aimed to determine whether developers view these
test smells as sources of technical debt worth spending effort to remove.
We selected 12 substantial open-source software systems and mapped
how 19 test smells from the literature were introduced and removed from
the code base over time. Out of these 19 smells, our results show that:
1) four test smells were rarely detected in our selected projects; 2) three
test smells are removed rapidly from the projects while another three are
removed from code bases slowly; 3) the remaining nine test smells did
not show a consistent pattern of quick or delayed removal. Our results
suggest that the test smells currently being studied by researchers do
not capture the true concerns of developers regarding test quality, with
current testing tool sets, with only three of the 19 smells studied showing
clear evidence of developer concern.

Keywords: Test Smells · Software Testing · Empirical Software
Engineering

1 Introduction

Software testing plays a vital role in revealing hidden defects in software and
in detecting functional regression. To maintain the quality of software over the
long term, a high quality test suite is needed. As with production code, quality
problems in test code are captured through the concept of code smells [7]: design
or other quality problems that may represent a source of technical debt. Code
smells that apply specifically to test code are called test smells. To help devel-
opers to write better test code, researchers have proposed a range of test smells,
based on evidence from developers [8,14,18]. These smells have been used as the
basis for other studies of test code quality [4,10,13,15,16,19].

However, the empirical evidence regarding whether the proposed test smells
actually represent poor practice is limited or even conflicting. One study found
that most developers surveyed considered 19 test smells shown to be poor test-
ing practices [14], while another studying 5 overlapping test smells found that
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 160–175, 2023.
https://doi.org/10.1007/978-3-031-43240-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_11&domain=pdf
http://orcid.org/0000-0002-6722-3298
http://orcid.org/0000-0002-3711-0778
http://orcid.org/0000-0003-4768-7623
https://doi.org/10.1007/978-3-031-43240-8_11

Assessing Technical Debt from Developer Actions 161

developers did not consider them to be actual design problems [17]. A more
recent study concluded that current definitions of test smells do not reflect real
test quality concerns [13]. If research is to assist developers in writing good test
code, a set of test smells for which there is consensus across the practitioner
community is needed.

Technical debt is a metaphor that refers to designs or implementations that
trade software quality for speedy delivery [6]. In this study, we use developer
actions to assess whether test smells are perceived as carrying technical debt.
We hypothesise that if developers are putting effort into removing test smell
instances, that supports the claim that the smell describes genuine technical
debt, whereas if developers allow smell instances to exist for long periods in code
bases then that calls into question whether the test smell represents a source of
genuine technical debt. Our study aims to answer the following research question:

RQ: Which of the test smells proposed by the research community are
viewed as sufficient sources of technical debt for developers to put effort
into their removal?

To answer the RQ, we investigated the occurrence of 19 test smells consistently
studied by the research community in 12 open-source software projects, tracking
their introduction and removal al across the commit history of the project. We
then conducted a quantitative analysis, looking at the frequency of introduction
of each smell type and the length of time the smell types were allowed to remain
within the code base. From this, we classified the technical debt potential of each
test smell based on the developers’ actions in response to them.

Our results found that only 3 of the 19 test smells studied were rapidly
removed from code bases by developers, indicating a consensus that they repre-
sent genuine technical debt. A further 3 test smells were found to be long-lived in
the code bases, indicating a consensus that they do not represent serious forms of
technical debt. Four of the test smells were only rarely introduced into the code
bases, making interpretation of their technical debt difficult. Either these smells
describe patterns of code that do not occur in practice, or they represent such
serious technical debt that developers work hard to make sure they are never
committed. The remaining 9 smells were observed throughout our code bases
but were removed neither quickly nor slowly by developers. Of these, 5 smell
types showed a lack of consensus across the projects, being removed quickly in
some projects and slowly in others. Our results suggest that the current set of
test smells does not map well to developer views on technical debt in test code
and that further research is required to address this.

2 Related Work

In this section, we present the foundations for our study in the existing literature
on test smells. We summarise the origins of the test smells we study, work on
tools to automatically detect them and other efforts to evaluate test smells,
which should be considered alongside the results from our study.

162 Z. Chen et al.

One of the earliest proposals, by Van Deursen et al., introduced 11 smell
types covering various aspects of test quality and proposed refactorings to remove
them [18], demonstrating the value of studying quality of test code independently
from production code. Later researchers expanded the set of test smells [8,14].
They provided unified names, and definitions for each test smell, setting the
foundation for future work on test code quality.

Techniques for detecting test smell instances have also been investigated. In a
systematic mapping study, Aljedaani et al. summarized the test smell detection
tools proposed by the research community in the last two decades and found
that recent tools are more adopted by further studies for their high scalabilities
[1]. Popular tools like tsDetect [15], JNose [19], and the tool by Bavota et al. [5]
can detect more test smells than earlier tools and have high correctness [1]. The
proposed tools provide the means to study test smells at scale in real software
systems.

Other researchers have looked for evidence in support of the test smells pro-
posed so far. Tufano et al. used Bavota’s tool [4] to detect 5 of the test smells
proposed by van Deursen et al. [18] in 152 systems to study how long test smells
survived in the code, reporting that the smells had high survivability [17]. They
also interviewed 19 developers and found that they did not recognize these smells
as design problems [17]. Spadini et al. used tsDetect [15] to detect test smells
in around 1,500 open-source projects and used a benchmark-based threshold
derivation methodology [2] to generate severity thresholds for 11 test smells [16].
They asked developers to rate the severity of each test smell and found that they
did not recognize some of the smells as design problems [16].

Kim et al. used the same tool to detect 18 test smells in 12 open-source
projects to investigate how the number of test smells evolved and was addressed
during the project’s development. They found that only 17% of the test smells
were deliberately addressed by developers [10]. This is supported by other test
smell evaluation studies. Panichella et al. used two tools [4,15] to detect instances
of 6 test smells in 10 projects and manually validated the results. They con-
cluded the smells studied do not reflect real maintainability concerns [13]. Bai et
al. assessed the impact of the Assertion Roulette test smell [18] on tests written
by 42 computer science students. They concluded that this test smell should
not be considered a genuine test smell as it had minimal impact on students’
programming accuracy and effectiveness [3]. While these studies question devel-
opers’ ability to recognize and address test smells [10,16,17], others concluded
that the test smells themselves do not reflect genuine quality concerns [3,13].

Among the above 5 evaluation studies, 3 studies [3,13,17] only studied a
small number of test smells proposed by van Deursen et al. [18]. Two studies
[10,16] included some smells proposed by both van Deursen et al. [18], and
Peruma et al. [14]. In four studies that used open-source projects, two analyzed
more than 1,000 commits [16,17]. If the research community is to provide tools
for developers to understand, correct and avoid poor practices in test code, a
definitive set of complete test smells backed by developers’ actions is needed.

Assessing Technical Debt from Developer Actions 163

3 Methodology

Our study aims to objectively assess the technical debt that developers associate
with test smells by observing the actions developers take when the smells are
present in code. In this section, we describe our evaluation context, and explain
the quantities we use to assess technical debt concerns, our data collection pro-
cesses and our analysis process.

3.1 The Evaluation Context

Test Smells Selection. Table 1 shows the 19 test smells that are included in
our study, selected from the literature [1,4,13–15,18,19].

To locate commits in which test smells are introduced and removed from
a range of large code bases, we need a way to automatically detect test smell
instances. Specifically, to allow us to track the existence of specific smells across
sequences of commits, from their introduction to their removal, we need a tool
that can tell us in which file and on what lines of code each smell is located.
Therefore, we focus on detection tools with this capability. Based on the map-
ping study by Aljedaani et al. [1], most existing tools focus on smells in Java
systems. Thus, we selected Java open-source projects and the smell detection
tool JNose [19] for our study. JNose can detect all test smells in Table 1. It
reuses the detection rules of tsDetect, achieving better precision and recall in a
later evaluation study [20].

Selected Target Projects. We selected open-source projects from GitHub
based on the following criteria. Each selected system must:

1. Be a non-fork Java project.
2. Be a software development project, rather than a tutorial or example project.
3. Contain at least one file having “.java” and “Test” in its name (to ensure the

project contains some test code).
4. Have at least 5 years of history and 500–10,000 commits (to ensure there

is sufficient time for even low severity technical debt to become visible to
developers and possibly removed; the upper limit is to ensure all commits
can be analysed within the time scales of this study).

5. Have either MIT or Apache-2.0 licenses which allow us to conduct derivative
work.

We used GitHub’s search function to find candidate projects meeting
criteria 1., 3., 4. and 5., ordered by star counts (as a rough measure of pop-
ularity). Criteria 2. was manually assessed. The top 12 systems meeting these
criteria were selected for our study, as shown in Table 2.

164 Z. Chen et al.

Table 1. Test Smells Selected for the Study

Test Smell Description

Test Smells Proposed by Van Deurse et al. [18]

Assertion Roulette A test method contains more than one assertion statement without
using the message parameter in the assertion method, which makes it
hard to locate the failed assertions of the test.

Eager Test A test method contains multiple calls to multiple production methods.
This smell results in difficulties in test comprehension and
maintenance.

General Fixture Not all fields instantiated within the setUp() method of a test class are
utilized by all test methods in the same test class. This smell may
execute unnecessary code and waste resources.

Lazy Test Multiple test methods calling the same production method. This smell
may make the test harder to maintain.

Mystery Guest A test method containing object instances of files and databases
classes, introducing hidden dependencies.

Resource Optimism A test method making optimistic assumptions about the
state/existence of external resources can cause the test result
unpredictable.

Sensitive Equality A test method invokes the toString() method of an object. Changes to
the implementation of toString() might result in failure.

Test Smells Proposed by Peruma et al. [14]

Conditional Test Logic A test method that contains one or more control statements, which
negatively impacts the ease of comprehension by developers as failing
to meet the condition could also be the cause of failure.

Constructor Initialization A test class that contains a constructor declaration. Ideally,
initialization of fields in tests should use setUp() method instead of a
constructor.

Default Test A test class is named either ExampleUnitTest or
ExampleInstrumentedTest. Some IDEs give default names for new test
classes but giving test classes meaningful names is considered good
practice.

Duplicate Assert A test method that contains more than one assertion statement with
the same parameters.

Empty Test A test method that does not contain a single executable statement.

Exception Catching Throwing A test method that contains either a throw statement or a catch clause.
Developers should utilize JUnit’s exception handling to automatically
pass/fail the test instead of using exception handling code.

Ignored Test A test method or class that contains the @Ignore annotation.

Magic Number Test An assertion method that contains a numeric literal as an argument.
Magic numbers do not indicate the meaning of the number and will
reduce the comprehensibility and maintainability of the test.

Redundant Print A test method that has print statements. Print statements in unit tests
are redundant as unit tests are automatically executed with little to no
human intervention.

Redundant Assertion A test method that contains an assertion statement in which the
expected and actual parameters are the same.

Sleepy Test A test method that invokes the Thread.sleep() method, which may
introduce additional delays to the test execution [16].

Unknown Test A test method that does not contain a single assertion statement

Assessing Technical Debt from Developer Actions 165

Table 2. The Target Projects (at the Point of Cloning)

GitHub Project Name Date of the Latest Observed Commit Project Lifetime (Years) Number of Analyzed Commits

caffeine 2022/12/18 9 664

dubbo 2022/09/22 12 1203

HikariCP 2023/02/01 11 330

javapoet 2021/04/15 10 231

Java-WebSocket 2022/07/04 13 95

jib 2023/01/09 7 959

mockito 2022/11/28 16 1513

mybatis-3 2023/03/13 14 803

redisson 2022/12/06 10 1028

retrofit 2023/03/31 14 412

RxJava 2022/02/10 11 1299

vert.x 2022/12/20 12 1774

3.2 Mean Time to Removal

Technical debt is usually assessed using the presence of code smells, with other
measures such as time/cost of removal also being used [11]. Since we aim to
assess test smells from technical debt, not the other way around, we cannot
use the smell-based approach. Instead, we choose time to removal (TTR) of the
smell, i.e., the interval between the timestamps of the commits introducing and
removing it, as our main measure, on the assumption that smells are removed
due to the actions of developers, reflecting their views on what makes for valuable
use of their time for their system. To aggregate the actions of many developers,
we use a mean time to removal (MTTR) score, applied to individual code bases
and across code bases.

3.3 Data Collection

The evaluation process followed for each target system is shown in Fig. 11. We
clone the target system and analyse it to select the commits that will be the
target for smell detection. JNose then runs on each selected commit, and the
details of the detected smells are stored. The TTR is calculated for each smell
instance removed during the project’s lifetime, and the results are aggregated to
give the MTTR for each smell type. These steps are explained below2

Target Commit Selection. To determine how long test smells exist in the tar-
get projects, we run the smell detection tool over each major version of the code
to determine commits where test smells are introduced and removed from the
code base. Typically, many commits will change only production code. There-
fore, to make our pipeline more efficient, we run smell detection only on commits

1 The study design was approved by Computer Science Department Panel, The Univer-
sity of Manchester Ref: 2023-15405-27595. All authors are available for clarifications.

2 The pipeline code is available at https://github.com/ZhongyanChen/tsObservatory..

https://github.com/ZhongyanChen/tsObservatory.

166 Z. Chen et al.

Fig. 1. Data Collection Process (Rounded rectangle: state; Rhomboid: input;
Rectangle: process; Wavy base rectangle: document)

where some change has been made to test code. To do this, we scan through the
commit history and identify the commits that meet the conditions below:

– Commits on the development mainline: The development mainline of a
repository records the key versions of the code base that contain only com-
pleted and integrated feature implementations. We limited our analysis to
commits on the development mainline and ignored work-in-progress commits
on feature branches. To do this, we manually identify the mainline branch
for each target project and configure the pipeline to seek out the first parent
commits on that branch.

– Commits changing at least one file having “.java” and “Test” in its
name: we use the approach of Peruma et al. [15] to identify test files, which
is based on best practice recommended by JUnit3. A commit is selected for
analysis if it adds, deletes or modifies a file meeting these criteria.

The number of commits in each project meeting both conditions is shown in the
rightmost column of Table 2.

Test Smell Detection. In this step, we check out each target commit and run
JNose to detect test smells for every detected smell instance, JNose records the
path of the file containing the instance, the path of the corresponding production
file (if applicable), the detected smell type, the test or production method names
involved in the smell, and the line number(s) on which the smell instance is
located. At the end of this step, we have a set of CSV files detailing the smells
detected in every target commit.

MTTR Computation. To compute the time to removal for each smell
instance, we need to know the commit when it was introduced into the code
base and the commit when it was removed. To do this, we must track a smell
instance across a sequence of commits. This is complicated by the fact that other
changes to the file may cause the smell to change its position, even if the smell
itself is unaffected by the commit. Therefore, when checking whether a smell has
3 https://junit.org/junit4/faq.html#running 15, accessed on 2023/03/30.

https://junit.org/junit4/faq.html#running_15

Assessing Technical Debt from Developer Actions 167

Fig. 2. The Mapping Process from CommitA to CommitB (Rounded rectangle:
state; Wavy base rectangle: document; Rectangle: process; Rhombus: Decision)

survived into the following commit, we worked out its expected new position in
the file based on the changes that have been made during the commit.

Given two consecutive commits, A and B, where A is an ancestor of B, we
use the following concepts to map a smell instance from A to B:

– SDRA: The smell detection results for commit A.
– SDRB: The smell detection results for commit B.
– MSDRA: The mapped smell detection results for commit A.

Git provides information on what file paths and which lines of code were changed
from commit A to B. We use this to produce MSDRA by updating the file paths
and line number(s) of every smell instance in SDRA. Every smell instance in
MSDRA that does not exist in SDRB is considered to have been removed by
commit B. Every instance in SDRB that is not in MSDRA is considered to
have been introduced in commit B. This process is illustrated in Fig. 2.

We run this process for all consecutive pairs of target commits and find, for
each smell instance, the commit in which it is introduced and removed. From
the commit timestamps, we calculate the time to removal for that particular
instance. Various MTTR can be calculated from the times to removal for all
instances, by aggregating against different sets.

Unfortunately, this process of mapping smell instances across commits is not
100% accurate, since it is impossible to distinguish between the modification of
a line and the insertion and deletion of lines. We ran a short study of how this
impacted our results and found that the effect on the overall accuracy of our
approach was low. We discuss these impacts in Sect. 5.

3.4 Data Analysis

We use the data described above to classify the 19 test smells according to
the support given to them by the developers’ actions. We use a two-step pro-
cess (Fig. 3) to classify each test smell into one of four categories: Under-
represented test smells, Rapidly removed test smells, Slowly removed
test smells, and Mid-range removal test smells. To perform this classifica-
tion for n target projects, we compute:

168 Z. Chen et al.

Fig. 3. Data Analysis Process (Rounded rectangle: state; Wavy base rectangles:
documents; Rectangle: process; Rhombus: Decision)

– intro(A)x: the number of instances of test smell A introduced across all com-
mits in project x.

– avgIntro(A): the average of intro(A)x across n target projects.
– MTTR(A)x: the mean time to removal across all instances of test smell A in

project x.
– R(A)x: the ratio MTTR(A)x

Lifetimex
for test smell A in project x.

To allow MTTRs to be compared across projects, we normalize by dividing
by the project’s lifetime. Since no tests may have been written in the early
stages of a project, we use the interval between the first commit in our target
set for project x and the latest observed commit as the project lifetime.

– MdnR(A): the median of R(A)x across all n projects.
– σR(A): the standard deviation of R(A)x across all n projects.

Smells classed in the mid-range removal are neither removed rapidly from
the code bases we studied nor left to languish for long periods of time. To
distinguish them, we can look at the level of agreement on their positioning
on our scale from the different projects using the standard deviation of R(A)
across all n projects.

The first step of our analysis separates out those test smells for which we found
insufficient examples to allow us to draw any firm conclusions. For each project
x, we calculate Intro(A)x and avgIntro(A) for each test smell A. Based on
central limit theorem [9], we set 30 as the threshold and classify all smells for
which avgIntro(A) is below that as under-represented, and therefore providing
insufficient samples from which to make a significant statistical inference.

The next step is to use the MdnR(A) and σR(A) to classify each remaining
test smell. We use the first and third quartiles (denoted Q1 and Q3 respectively)
as thresholds for this classification. A test smell A will be classified as rapidly
removed if MdnR(A) is below Q3. If MdnR(A) is within the interquartile range,
it will be a mid-range test smell. Finally, if MdnR(A) is in the range above Q3,
it will be classified as a slowly removed test smell.

Assessing Technical Debt from Developer Actions 169

Table 3. Results and Classifications of Test Smells

Test Smell avgIntro MdnR σR Classification

Constructor Initialization 2.333 - - Under-represented

Default Test 0 - -

Empty Test 6.167 - -

Redundant Assertion 19.917 - -

Mystery Guest 34.583 0.700% 0.075 Rapidly removed

Redundant Print 69.083 1.483% 0.078

Resource Optimism 40.083 5.454% 0.068

Lazy Test 1269.083 9.743% 0.038 Mid-range removal with consensus

Eager Test 1443.583 12.786% 0.048

Unknown Test 1660.167 9.930% 0.049

Ignored Test 384.833 7.912% 0.051

Exception Catching Throwing 614.417 11.931% 0.064

General Fixture 76.167 8.200% 0.157 Mid-range removal with mixed opinions

Conditional Test Logic 569.917 8.656% 0.068

Sensitive Equality 230.833 10364% 0.121

Sleepy Test 129.500 12.385% 0.090

Duplicate Assert 353.417 14.427% 0.074 Slowly removed

Assertion Roulette 5344.000 15.250% 0.087

Magic Number Test 2155.667 15.550% 0.096

4 Results and Discussion

The results from our study are shown in Table 34 The average introduction count
is given for each smell type. Four test smells are classified as underrepresented
due to their low average introduction rate across all the projects. These smells
do not participate further in the analysis. For the remaining 15 test smells, the
MdnR and σR are shown in Table 3.

Among the remaining 15 test smells, the MdnR of Ignored Test is Q1, and
the MdnR of Eager Test is Q3. This gives the classification to the other test
smells, as shown in the table. We divide the test smells in the interquartile range
based upon the standard deviation in their median removal rates, separating
those for which there is agreement across the projects in the study from those
where developer actions in the different projects give very different mean times
to removal.

4 The full data set of this study are provided as supplementary information accom-
panying this paper at https://figshare.manchester.ac.uk/projects/Evaluating Test
Smells in Open-Source Projects/164461.

https://figshare.manchester.ac.uk/projects/Evaluating_Test_Smells_in_Open-Source_Projects/164461
https://figshare.manchester.ac.uk/projects/Evaluating_Test_Smells_in_Open-Source_Projects/164461

170 Z. Chen et al.

4.1 Under-Represented Test Smells

We found 4 test smells that were rarely or never introduced in any of our selected
projects. We hypothesise two reasons for this:

– The smell is a source of serious technical debt, so most of its instances were
removed before the code was committed or through code review before inte-
gration into the development mainline.

– The detection rule for this smell is too strict and is under-reporting the
instances that are introduced.

We discuss each test smell placed in this category below.
Default Test: we observed no introductions of this smell in any of our

selected projects. It was originally proposed in a study of Android systems, so
the detection rule is designed around the default test method names used by
the Android Studio IDE [14]. Other IDEs for other languages and frameworks
would use different default names. The lack of observed instances of this smell
type could therefore be put down to the overly strict detection rule, rather than
questioning the rationale for the smell itself. We recommend broadening the
detection rule for this smell if it is to be used in future research.

Constructor Initialization: in the 12 studied projects, 5 yielded no exam-
ples of this smell while the others introduced fewer than 10 examples each. Fol-
lowing best practice, fixture set up should be done in a setUp() method instead
of using a constructor. The rationale for proposing this smell [14] is therefore
sound, and the detection rule aligns with best practice. A possible explanation
for the lack of examples is that developers are accustomed to using the setUp()
methods for fixture initialisation and do this without considering alternatives.

Empty Test and Redundant Assertion these two smells cause a test to
always pass or always fail, regardless of the behaviour of the production code it
pertains to test. Most of the participants in the survey conducted by Peruma
et al. agreed that these two smells should be removed from code. Peruma et al.
also noted that these smells are likely for debugging purposes only [14], which
could be the reason why they are rarely seen in mainline commits.

4.2 Rapidly Removed Test Smells

Three test smells fell into this category, with average times to removal of between
24 and 200 days. Instances of these smell types were removed promptly across all
our selected projects, suggesting that developers view them as significant sources
of technical debt worth putting time and effort into removing.

Redundant Print: print statements in test cases are redundant because
test suites are expected to execute with little or no human supervision. Peruma
et al. found that one cause of this smell is when print statements introduced for
temporary debugging purposes are not removed [14]. Although print statements
are poor practice, they don’t waste much time or computational resources unless
they occur in high numbers. The removal of this smell would likely be for code

Assessing Technical Debt from Developer Actions 171

cleanup than paying back technical debt. Although the average introduction rate
for Redundant Print is clearly above our threshold, 5 of our 12 projects contained
no examples of this smell while 4 projects introduced fewer than 10 instances.
RxJava has the most, with 602 instances, which skews the overall result. Thus,
the average may overstate the presence of this test smell in our data set.

Mystery Guest and Resource Optimism: significant loss of time and
testing power can be experienced when the Mystery Guest smell is present.
The use of external resources turns unit tests into integration tests and exposes
them to instability and performance costs. Resource Optimism reports situations
where important checks of test preconditions are omitted from the test definition.
If a test precondition is not satisfied then the test results cannot be properly
interpreted and the time spent running this test is wasted. Therefore, these
two test smells seem serious, compared to the smells discussed so far. However,
the detection rules for both these smells have some limitations. The rule for
Resource Optimism looks for specific tests on the File objects, ignoring other
resource types. Mystery Guest’s detection rule is slightly broader by including a
check for instances of a database class, but it also misses other external resources.
Therefore, we are likely under-reporting these two test smells.

4.3 Slowly Removed Test Smells

The 3 test smells in this category take, on average, between 527 and 568 days
to be removed, suggesting that they may not be perceived by developers as
representing sufficient technical debt to be worth the effort of removal.

Duplicate Assert: this smell occurs when a test method has multiple asser-
tions with the same parameters. Peruma et al. suggest that developers grouping
multiple test cases within single test methods may be one possible cause, along
with accidental copy-paste effects [14]. However, in their survey, they received
mixed responses and concluded that the spread of test conditions across test
methods is based on individual developer preferences [14]. Since the standard
deviation for Duplicate Assert is the median standard deviation of all the test
smells, our data is in line with the inconsistent responses to their survey. While
differing developer preferences is one explanation, in the projects we studied,
we also found that some duplicated assertions test the same variable’s value in
different states of the process under test. In this case, separating the assertions
across test case methods might be prohibitively expensive. Therefore, the smell
as currently defined may not be a true source of technical debt.

Assertion Roulette: this smell instance is found when the original JUnit
assert methods are used without providing the optional string “message” param-
eter that is displayed when the assertion fails. The original rationale for this was
that without this parameter it is hard to locate which assertion in the test suite
failed [18]. However, as Panichella et al. conclude, this rationale was reason-
able for JUnit 3 tests but makes less sense for later versions [13]. On this basis,
Panichella et al. concluded that this smell is obsolete and should no longer be
considered a test smell [13]. Our results support this conclusion. Its average

172 Z. Chen et al.

introduction rate is the highest among the 19 test smells, and on average, its
instances take the second longest time to be removed.

Magic Number Test: we found that it takes on average 568 days to remove
an instance of Magic Number Test, while its average introduction rate is the
second highest across all the test smells. This is perhaps surprising, as the pres-
ence of numeric and other literals in production code is a well-known and long-
respected code smell [7]. A possible explanation for this smell’s survival in test
code could be found in the differences between production code and test code.
In test code, numeric literals are often needed to specify the input values for test
cases and the expected output values. Unlike in production code, these literals
are intended to represent typical domain values that might be seen in production
use, rather than special literals with a specific meaning. They are included in the
code in a one-time-use fashion, scoped only within the test method. The results
of our study support the conclusion that this smell does not in fact describe a
source of significant technical debt for test code. However, if the same numeric
literal is used by multiple test methods or classes, it could cost developers more
time to refactor the code should a new value be needed. The current detection
rule will flag any assertions containing a numeric literal as an argument with-
out checking the numeric literal’s scope. Therefore, we recommend an improved
detection rule for this smell which can check the scope of the literal and can
report on non-numeric literals.

4.4 Mid Range Test Smells

As explained in Sect. 3.4, this remaining group of smells are the ones which
are neither removed rapidly nor left in the code bases for long periods of time.
To distinguish them, we look at the level of agreement on their ranking from
developers on the different projects. We use the standard deviation of the R(A)
to class each smell in this group into one of the two sub-groups listed in Table 3.

Test Smells with Mixed Opinions: our data shows that, of the smells
in this category, 4 have high standard deviations in their mean time to removal
rates. On average, their removal times range from 299 to 452 days. Sleepy Test,
where delays are inserted into tests to synchronise with distributed parallel
components, may be more prevalent (and harder to avoid) in projects with a
significant distributed element. Similarly, Conditional Test Logic and General
Fixture are easy to avoid on some projects but may be a significant time saver
for projects with complex fixture requirements. These must be treated as true
smells, sometimes indicating the presence of technical debt and sometimes indi-
cating a reasonable solution to a difficult testing task.

Sensitive Equality, however, is a different case. It occurs when the writer
of a test case uses the toString() method to check that the expected instance
is returned, rather than implementing and using a true equality check for the
class in question. This can cause instability in the tests because the definition of
the toString() method can be changed without realising the effect on the tests.
The detection rule in JNose looks for any use of a toString() method in a test
case to find instances of the smell. Unfortunately, this will also mark legitimate

Assessing Technical Debt from Developer Actions 173

uses (such as test cases verifying that a desired toString() functionality has been
implemented correctly) as smells. In our study, we found a reasonably high level
of occurrence of this smell but did not find evidence to suggest that developers are
rushing to remove it when it is present. We were unable to distinguish legitimate
from poor practice uses of toString(); it is possible that we would see different
patterns of removal in each case if we could.

Test Smells with Consensus: the standard deviations of the 5 test smells
in this group (Lazy Test, Eager Test, Unknown Test, Ignored Test, and Exception
Catching Throwing) are the lowest among all 19 test smells. There seems to be
a general agreement on the handling of these smells among our projects. They
are sometimes removed (perhaps when convenient) but are often left in place.

5 Threats to Validity

Strict detection rules: as discussed, the detection rules for Default Test, Mys-
tery Guest, and Resource Optimism in JNose are too strict compared to the test
smell definition. This leads to the strong possibility that we may have under-
reported instances of these test smells. We mitigated this by filtering out smells
with very low introduction rates to avoid drawing conclusions about smells for
which we had insufficient data. On the other hand, the detection rules for Magic
Number Test and Sensitive Equality are too weak, finding examples of smells
that do not really fit their definitions. By using these detection rules, we may be
over-reporting the number of instances of the affected smells.

Lacking information about the reasons for smell removal: our study
design allowed us to detect and track the existence and removal of test smells
across sequences of commits. However, we have not attempted to discover the
reasons why each test smell was removed. Was it because a developer identified
and intended to remove the smell deliberately? Or was it the result of other
changes made to the code base (i.e. removal of features, changes in design) that
accidentally caused the smell instance to be removed? Ideally, the accidentally
removed test smells should not be included in our data set as they cannot reflect
developers’ views on technical debt. Since our study design does not distinguish
the reason for removal, it is likely we are over-reporting the number of removed
test smells and maybe under or over-reporting the time to removal.

Limitations of smell instance mapping algorithm: as mentioned, our
algorithm for mapping test smells across sequences of commits has some limita-
tions. For example, suppose a commit refactors a test case where a smell instance
is located. The test case contains the smell both before and after refactoring.
However, our mapping algorithm cannot distinguish between this refactoring
and a smell deletion and insertion of a different smell of the same kind. Both
are represented the same way in the Git commit. In this example, our algorithm
would report that a smell instance was deleted and a new one was added in this
commit. This could cause over-reporting of the numbers of both introduced and
removed smell instances and under-reporting of the MTTRs.

174 Z. Chen et al.

6 Conclusions and Future Work

We have presented the results of a study into the introduction and removal of
test smells by developers in established open-source software projects, with the
aim of determining where there might be consensus on the smells that represent
genuine technical debt. Our aim is to supplement earlier studies evaluating test
smells and to understand which of the smells are suitable targets on which to
build future research. The results, shown in Sect. 4, give our classification for
each test smell included in this study into four categories. We only found 3 test
smells that tend to be rapidly removed from all the projects in our study, and
that would appear to represent sources of significant technical debt. This raises
questions as to the suitability of these smells to be included in the “canon” of
test smells or as subjects for further research on test code quality.

Several future directions are possible. One is the improvement of the detection
rules used to identify smell instances for the test smells so that the scale of
occurrence of the smells in code can be more accurately assessed. In addition,
it would be useful to be able to distinguish the intentional removal of smells by
developers from the accidental removal as a result of other changes. It may also
be useful to study smell instances in non-mainline commits, to see if code quality
management processes are helping to remove smell instances before integration
into the mainline. Information on developer intention may also be present in
commit messages and code reviews, or in discussions on pull/merge requests
and on issue trackers.

Beyond this, the number of test smells that survived our analysis is small—
far smaller and more limited in scope than the well-documented and accepted
production code smells. It seems unlikely that these surviving smells are a com-
plete reflection of all the quality issues that can arise when writing test code.
Indeed, several important aspects of modern testing practice are not covered,
particularly in the writing of fixture code, with the use of test doubles [12], for
example, as well as the role of test harness code. Yet more smells may be found
in the pragmatic aspects of test run configurations and CI pipeline definitions.
Perhaps sufficient time has now elapsed since the first test smells were proposed
to justify a revisiting of best practices in automated testing, to derive new smells
that reflect the concerns of current developers aiming to manage the quality of
their systems through testing.

References

1. Aljedaani, W., et al.: Test smell detection tools: a systematic mapping study. Eval.
Assessment Soft. Eng., 170–180 (2021)

2. Alves, T.L., Ypma, C., Visser, J.: Deriving metric thresholds from benchmark data.
In: 2010 IEEE International Conference on Software Maintenance, pp. 1–10. IEEE
(2010)

3. Bai, G.R., Presler-Marshall, K., Fisk, S.R., Stolee, K.T.: Is assertion roulette still a
test smell? An experiment from the perspective of testing education. In: 2022 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp.
1–7. IEEE (2022)

Assessing Technical Debt from Developer Actions 175

4. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: Are test smells really
harmful? An empirical study. Empir. Softw. Eng. 20, 1052–1094 (2015)

5. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: An empirical analysis
of the distribution of unit test smells and their impact on software maintenance.
In: 2012 28th IEEE International Conference on Software Maintenance (ICSM),
pp. 56–65. IEEE (2012)

6. Cunningham, W.: The WyCash portfolio management system. ACM SIGPLAN
OOPS Messenger 4(2), 29–30 (1992)

7. Fowler, M.: Refactoring. Addison-Wesley Professional (2018)
8. Garousi, V., Küçük, B.: Smells in software test code: a survey of knowledge in

industry and academia. J. Syst. Softw. 138, 52–81 (2018)
9. Hogg, R.V., Tanis, E.A., Zimmerman, D.L.: Probability and Statistical Inference,

vol. 993. Macmillan New York (1977)
10. Kim, D.J., Chen, T.H.P., Yang, J.: The secret life of test smells-an empirical study

on test smell evolution and maintenance. Empir. Softw. Eng. 26(5), 1–47 (2021)
11. Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., Fontana, F.A.: A systematic

literature review on technical debt prioritization: strategies, processes, factors, and
tools. J. Syst. Softw. 171, 110827 (2021)

12. McDonough, J.E.: Automated unit testing with ABAP. In: Automated Unit Test-
ing with ABAP, pp. 43–98. Apress, Berkeley, CA (2021). https://doi.org/10.1007/
978-1-4842-6951-0 5

13. Panichella, A., Panichella, S., Fraser, G., Sawant, A.A., Hellendoorn, V.J.: Test
smells 20 years later: detectability, validity, and reliability. Empir. Softw. Eng.
27(7), 170 (2022)

14. Peruma, A., Almalki, K., Newman, C.D., Mkaouer, M.W., Ouni, A., Palomba,
F.: On the distribution of test smells in open source android applications: an
exploratory study. In: Proceedings of the 29th Annual International Conference
on Computer Science and Software Engineering, pp. 193–202 (2019)

15. Peruma, A., Almalki, K., Newman, C.D., Mkaouer, M.W., Ouni, A., Palomba, F.:
tsDetect: an open source test smells detection tool. In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 1650–1654 (2020)

16. Spadini, D., Schvarcbacher, M., Oprescu, A.M., Bruntink, M., Bacchelli, A.: Inves-
tigating severity thresholds for test smells. In: Proceedings of the 17th International
Conference on Mining Software Repositories, pp. 311–321 (2020)

17. Tufano, M., et al.: An empirical investigation into the nature of test smells. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pp. 4–15 (2016)

18. Van Deursen, A., Moonen, L., Van Den Bergh, A., Kok, G.: Refactoring test code.
In: Proceedings of the 2nd International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2001), pp. 92–95. Citeseer (2001)

19. Virǵınio, T., et al.: JNose: Java test smell detector. In: Proceedings of the XXXIV
Brazilian Symposium on Software Engineering, pp. 564–569 (2020)

20. Virǵınio, T., et al.: On the test smells detection: an empirical study on the JNose
test accuracy. J. Softw. Eng. Res. Dev. 9, 8 (2021)

https://doi.org/10.1007/978-1-4842-6951-0_5
https://doi.org/10.1007/978-1-4842-6951-0_5

Model Based Testing

A Systematic Literature Review
on Prioritizing Software Test Cases Using

Markov Chains

G. Barbosa1,2 , É. Souza3 , L. Rebelo4,5(B) , M. Silva4 , J. Balera2 ,
and N. Vijaykumar2

1 Universidade Estadual Paulista - Unesp, Guaratinguetá, Brazil
2 Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, Brazil

3 Universidade Tecnológica Federal do Paraná - UTFPR, Cornélio Procópio, Brazil
4 Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - IFSP,

Jacaréı-Campos do Jordão, Brazil
5 Gran Sasso Science Institute - GSSI, L’Aquila, Italy

luciana.rebelo@gssi.it

Abstract. Software Testing is a costly activity since the size of the test
case set tends to increase as the construction of the software evolves. Test
Case Prioritization (TCP) can reduce the effort and cost of software
testing. TCP is an activity where a subset of the existing test cases
is selected in order to maximize the possibility of finding defects. On
the other hand, Markov chains representing a system, when solved, can
present the occupation time of each of their states. The idea is to use
such information and associate priority to those test cases that consist
of states with the highest probabilities. This journal-first paper provides
an overview of a systematic survey of the state-of-the-art to identify and
understand key initiatives for using Markov chains in TCP.

1 Extended Abstract

This journal-first paper summarises our recently published survey on the topic
of test case prioritization and Markov chain, published in 2022 on the Infor-
mation and Software Technology Journal [1]. Prioritizing test cases refers to
choosing those cases that are more important based on some metric, but with-
out decreasing the number of faults to be detected [4]. Test Case Prioritization
(TCP) presents techniques that propose to order test cases based on a defined
criterion, which can be fault detection rate, coverage rate, or probability of exe-
cution history, among others. Markov chain may represent the software system,
considering its available states, while the arcs indicate transitions among states
and are assigned probabilities that refer to the probability of a state to move
to another. With these probabilities, Markov chains can be solved to obtain
steady-state probabilities. Steady-state probabilities represent the percentage of
time occupied by each state. This characteristic can be applied for TCP, using
the probabilities to define priorities of what states are more active than oth-
ers. So, test cases going through states which have high probabilities, tend to
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 179–182, 2023.
https://doi.org/10.1007/978-3-031-43240-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_20&domain=pdf
http://orcid.org/0000-0002-1147-2519
http://orcid.org/0000-0001-7262-7863
http://orcid.org/0000-0002-5193-6218
http://orcid.org/0000-0002-6413-7888
http://orcid.org/0000-0001-6481-5362
http://orcid.org/0000-0002-9025-0841
https://doi.org/10.1007/978-3-031-43240-8_20

180 G. Barbosa et al.

higher usage of those specific paths. Therefore, if one must choose test cases, it
is interesting to exercise the paths that contain states with a high percentage of
occupation. These features applied in TCP can generate some benefits.

The objective of our work was to conduct a Systematic Literature Review
(SLR) in order to understand how Markov chains have been applied on TCP.
Aspects such as approaches, developed techniques, programming languages, ana-
lytical and simulation results, and validation tests were investigated. The major
contribution is to gather and explore the main test case prioritization techniques
using Markov chains that were and are being used now. In addition, we believe
that these SLR results can help to identify a body of knowledge to support future
research in Markov chains and TCP, providing a basis for other researchers as
well as students who consider learning about and contributing to this area.

Three research questions were identified and investigated: RQ1: When and
where the studies have been published? RQ2: How Markov chains have been
applied to prioritize test cases? and RQ3: What are the algorithms and/or tools
to support TCP using Markov chains in each study? In order to answer these
questions, the search string [(“Software Testing” OR “Software Test” OR “Test
Case” OR “Test Sequence”) AND (“Markov chains” OR “Markovian”)] was
applied on five different scientific bases (IEEE Xplore, ACM Digital Library,
Scopus, ScienceDirect, and SpringerLink), using inclusion and exclusion criteria.
After searching the selected sources, a total of 480 publications were returned
considering the studies published until July 2021 (no start date has been set).
As a result after applying the criteria a set of 10 studies remained. Over these
10 studies that remained, we performed backward snowballing process, looking
at all the references from the 10 studies selected (306 references), resulting in 2
studies. At the end, we got to 12 studies to be analyzed. We briefly summarise
how the results of our survey address the research questions listed above.

In answer to RQ1, 10 different publication sources were identified. It is worth
pointing out that four studies were published in the Journal Information and
Software Technology, showing that it can be a well-established forum for dis-
cussing the topic. Regarding the year of publication of the studies, it has spread
over the last two decades (from 2000 to 2017). This indicates that prioritization
of test cases, regardless of the applications and techniques used, has only been
recently employed. Among them, two papers are most recent, both published in
2017. And four papers are the oldest, published in 2000. Although the search
was carried out until July 2021, the last prioritization study using Markov chain
returned is from 2017, which shows an exploration gap in the last four years.
Also, to better understand the possible relationship between the 12 selected stud-
ies, we created a citation relationship. Analyzing the citations, we realized that
there is no significant relationship between the studies, as there are only four
citations between them. It is believed that this happens because the nature of
the test case prioritization applications in each study is quite different. Another
important aspect to better understand a research segment is where this type of
work has been carried out. From the 12 studies remained, institutions of these
authors belongs to six different countries. Among them, the largest concentration
is in China, containing five studies, followed by the USA with three.

A Systematic Literature Review 181

To understand key initiatives of using Markov chains in the priority test cases
context, RQ2 investigates which approaches have been proposed or applied in
the selected studies, that is, the main contexts in which test case prioritization
using Markov chains are inserted. Six forms of approaches were found, which are
– (i) Usage model : this approach explores test sequences according to the use
of software instead of testing a specific code [7]; (ii) Controlled Markov chains
(CMC): explores the interplay between software and control in order to introduce
some concepts of test case prioritization [2]; (iii) Model-based testing (MBT):
when probability-based heuristic is created to increase the search for paths in
graphs [6]; (iv) Regression testing : the test suite prioritization method is based
on fault activation analysis, and error propagation analysis – important key to
occur prioritization of test cases using Markov chains [5]; (v) Statistical testing :
allows cases to find the most probable and the rarest tests in a specification [3];
and (vi) Random testing : it is an alternative random-coverage-based algorithm,
applied specially to cover large problems [8]. Most of the studies have generated
new techniques in which Markov chains are used in the TCP process so that the
application of Markov chains plays a significant role within each technique.

Table 1 compiles the main information for RQ3, which refers to developed
techniques, programming languages, analytical and simulation results, and val-
idation tests. An important piece of information that could be present in the
table would be an open-source application that was developed. However, none
of the studies produced one. Except for A5, A7, A10, and A12, all others have
generated some new techniques in which Markov chains are used in the test case
prioritization process. As a major highlight, the study A6 has the most directly
applied technique, where automation of test cases prioritization is developed.
Most of the studies do not indicate the programming language used in their
development. In A3 and A9, MATLAB is used and A6 uses MATLAB Simulink.
With this information, we can better identify how the generated techniques were
developed, in terms of paradigms, for example. The last three columns of the
table bring us how the results were generated. Only studies A7, A8, and A11

did not generate results analytically. On the other hand, studies A5 and A12

were the only ones that did not use some numerical form to demonstrate their
results. This combination of analytical and numerical results and in most cases
demonstrates how complete the results are. And finally, which brings even more
assurance and confidence in the techniques developed and, in the results pre-
sented, only study A5 does not present a validation test.

To conclude, our motivation for this work was the fact that TCP is a prof-
itable field from the point of view of the entire software development cycle, as
its application can be useful in many ways, such as saving time and budget since
the goal is to optimize the process of software testing, which often consumes
a good deal of effort on the part of the development team. Overall, the major
contribution of this study was to elucidate the context of the application of
this subject. Based on the analysis of all 12 studies, we realized the benefits of
applying Markov chains for TCP. Thus, as a proposal for future work, we will
develop a test case generation and prioritization technique using Markov chains.

182 G. Barbosa et al.

Table 1. Information on the methodology used in the development of works on the
use of Markov chains for prioritizing test cases

ID Context Developed technique Programming
language

Analytical
results

Simulation
results

Validation
tests

A1 Usage model measure of the complexity of a software
specification

- ✓ ✓ ✓

A2 Usage model optimal test transition probabilities in a
Markov software usage model

- ✓ ✓ ✓

A3 Controlled MC adaptive software testing MATLAB ✓ ✓ ✓

A4 Controlled MC adaptive software testing (extended) ✓ ✓ ✓

A5 Controlled MC - - ✓ - -

A6 Model-based testing,
Regression testing

automatic prioritization of test cases MATLAB
Simulink

✓ ✓ ✓

A7 Statistical testing - - - ✓ ✓

A8 Model-based testing ant colony optimization algorithm and
model-based testing

- - ✓ ✓

A9 Model-based testing model driven approach for system validation MATLAB ✓ ✓ ✓

A10 Usage model, Statistical
testing

- - ✓ ✓ ✓

A11 Regression testing,
Random testing

Markov chain Monte Carlo Random Testing - - ✓ ✓

A12 Controlled MC - - ✓ - ✓

Our technique in the initial testing phase will use the probabilities of each test
sequence to perform the ranking. We also intend to make this tool available.

Acknowledgements. The authors acknowledge the support of the MUR (Italy)
Department of Excellence 2023 - 2027 for GSSI.

References

1. Barbosa, G., de Souza, É.F., dos Santos, L.B.R., da Silva, M., Balera, J.M., Vijayku-
mar, N.L.: A systematic literature review on prioritizing software test cases using
Markov chains. Inf. Softw. Technol. 147, 106902 (2022). https://doi.org/10.1016/j.
infsof.2022.106902

2. Cai, K.Y.: Optimal software testing and adaptive software testing in the context of
software cybernetics. Inf. Softw. Technol. 44(14), 841–855 (2002)

3. Devroey, X., et al.: Statistical prioritization for software product line testing: an
experience report. Softw. Syst. Model. 16(1), 153–171 (2015)

4. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family of
empirical studies. IEEE Trans. Software Eng. 28(2), 159–182 (2002)

5. Morozov, A., Ding, K., Chen, T., Janschek, K.: Test suite prioritization for effi-
cient regression testing of model-based automotive software. In: 2017 International
Conference on Software Analysis, Testing and Evolution (SATE), pp. 20–29 (2017)

6. Sayyari, F., Emadi, S.: Automated generation of software testing path based on
ant colony. In: 2015 International Congress on Technology, Communication and
Knowledge (ICTCK), pp. 435–440. IEEE (2015)

7. Walton, G., Poore, J.: Measuring complexity and coverage of software specifications.
Inf. Softw. Technol. 42(12), 859–872 (2000)

8. Zhou, B., Okamura, H., Dohi, T.: Application of Markov chain Monte Carlo ran-
dom testing to test case prioritization in regression testing. IEICE Trans. Inf. Syst.
E95.D(9), 2219–2226 (2012)

https://doi.org/10.1016/j.infsof.2022.106902
https://doi.org/10.1016/j.infsof.2022.106902

Complete Property-Oriented Module
Testing

Felix Brüning , Mario Gleirscher , Wen-ling Huang , Niklas Krafczyk ,
Jan Peleska(B) , and Robert Sachtleben

Department of Mathematics and Computer Science, University of Bremen,
Bibliothekstrasse 1, 28359 Bremen, Germany

{fbrning,mario.gleirscher,huang,niklas,peleska,rob_sac}@uni-bremen.de

Abstract. We present a novel approach to complete property-oriented
white box module testing: a finite test suite, created and extended online
(that is, during test execution), in combination with model learning and
model checking allows to prove or disprove that a software module fulfils
an arbitrary LTL property. The approach is applicable for modules with
possibly infinite input and output domains. The testing strategy is based
on the concept of black box checking proposed by other authors and on
a complete model-based equivalence testing strategy developed previ-
ously by the authors of this paper. Since the white box approach allows
for static analyses, basic information about internal states, guards and
assignment expressions can be extracted from the module code. With this
information at hand, the approach effectively performs a proof whether
the implementation satisfies the specified property. The “classical” black
box checking method is accelerated by means of coverage-guided fuzzing,
in combination with effective methods for learning, failure monitoring,
and conformance testing. This combination allows to reduce the over-
all effort for proving that the software fulfils the desired property in a
considerable way.

Keywords: Property-oriented testing · Module testing · Linear
Temporal Logic · Model learning · Formal verification

1 Introduction

Objectives. In this paper, we apply the concept of black box checking, as origi-
nally presented by Peled et al. [21,22], in the context of white box module testing.
Given an LTL property ϕ, tests are executed for learning the true behaviour of
an implementation under test (IuT) which is a software module I; this behaviour
is expressed by means of an initially unknown symbolic finite state machine B.

Niklas Krafczyk is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project number 407708394. Felix Brüning, Wen-ling Huang,
and Jan Peleska are funded by the German Ministry of Economics, Grant Agree-
ment 20X1908E.

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 183–201, 2023.
https://doi.org/10.1007/978-3-031-43240-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_12&domain=pdf
http://orcid.org/0009-0007-5055-3761
http://orcid.org/0000-0002-9445-6863
http://orcid.org/0000-0002-9915-5357
http://orcid.org/0000-0003-0475-4128
http://orcid.org/0000-0003-3667-9775
http://orcid.org/0000-0001-5514-7593
https://doi.org/10.1007/978-3-031-43240-8_12

184 F. Brüning et al.

While trying to learn the true representation of B from the test cases executed so
far, violations of ϕ are detected either by means of a monitor checking the reac-
tions of I to the test case inputs, or during model checking the model increments
B = M1,M2, . . . learnt so far. If a complete test of I against B = Mk proves the
language equivalence between I and B, the verification campaign terminates: I
fulfils ϕ if and only if B fulfils this property. This “proof by testing and property
checking” holds under certain hypotheses about the maximal number n of distin-
guishable states in I, and the guard expressions and output assignments used by
I. This information can be extracted from the IuT by means of static analyses.
Since these analyses are fairly simple and do not require the full understanding
of the programming language semantics, this approach to property verification
is a suitable method for testing modules programmed using complex program-
ming languages like C++, Java, C#, where software model checkers accepting
the complete syntax do not exist.

Background: Black Box Checking. In the original work by Peled et al. [21,
22], model learning was performed using Angluin’s L∗ algorithm [1]: under the
assumption that I has at most n distinguishable states, the black box B can be
reconstructed incrementally by executing finitely many tests against I.

Some tests serve to elaborate a new hypothesis about B (say, B = Mi), other
tests serve to verify or falsify that I is language-equivalent to the current version
of B. For the latter task, the W-Method [9,26] was used in [21,22]. This is a
complete testing method in the sense that, under the hypothesis that I has at
most n states, I passes the tests generated by the W-Method if and only if it is
language-equivalent to Mi. Failed test cases can be used by the L∗-algorithm to
modify and extend Mi, in order to create a refined model version Mi+1.

Using model checking, each new version of B is verified against ϕ. To this end,
the product of B and a Büchi-automaton P accepting ¬ϕ is constructed. If the
language of product automaton B ×P is non-empty, this indicates the existence
of a counterexample, that is, an infinite input/output sequence π violating ϕ [2].
For safety properties, the violation of ϕ can already be demonstrated on a finite
prefix π′ of π [24]. For liveness properties, omega regularity implies that the
infinite counterexample π can be written as π1π

ω
2 (infinitely many copies of π2

are appended to π1), with finite input/output sequences π1, π2 [2]. Since I is
assumed to have at most n states, it accepts π = π1π

ω
2 if and only if it accepts

π1π
n
2 , since the latter already implies the existence of a “lasso” [4] starting with

π1 and ending in a loop endlessly repeating π2. Therefore, either π′ or π1π
n
2 are

run against I. If the counterexample is accepted by I, an error has been found,
and the combined learning and testing process can be aborted. If I does not
accept the counterexample, this information can again be used to update B via
continued learning. If the latest increment B = Mk passes the check against ϕ,
and the complete test suite proves that I and B are language-equivalent, the
black box testing campaign has proven that I satisfies ϕ, under the hypothesis
that I has at most n distinguishable states.

Complete Property-Oriented Module Testing 185

Contributions. In this paper, we refine and optimise the black box checking
approach in several ways and specialise it for the purpose of white box soft-
ware module testing, including tool support. For B, we admit (nondeterministic)
symbolic finite state machines (SFSM) with finite state space, input and output
variables over arbitrary primitive data types (including infinite types like Z and
R) and transitions labelled by guard conditions over input variables and output
expressions over output and input variables. We advocate a white-box approach
which is quite realistic for software in safety-critical systems, where source code
needs to be verified by independent verification teams [28]. This allows us to
determine upper state bounds n and identify the guard and assignment expres-
sions used in the code by means of static analyses. These static analyses ensure
that a passed black box checking suite corresponds to an actual proof that I
satisfies property ϕ.

Regarding methodological contributions, the application of black box check-
ing to software with conceptually infinite input and output types is enabled by an
equivalence class partitioning method previously developed by the authors [14].
Otherwise black box checking would be infeasible, due to the large size of the
alphabets involved, when using interface variables of type double, float, int
directly.

Furthermore, we reduce the number of situations where tentative models
B = Mi need to be checked by means of a complete testing method. In particular,
our strategy allows to check tentative models later, after many distinguishable
states (say, �) of the IuT have already been discovered. This significantly reduces
the exponential term pn−�+1 influencing the size of the complete test suite, where
n ≥ � is the upper bound of potential distinguishable states in I, and p is the
number of input/output equivalence classes derived from guard conditions and
output expressions extracted from the code, as described below. Instead of the
“classical” L∗-algorithm, we use a novel, highly effective state machine learning
algorithm proposed by Vaandrager et al. [25]. For generating complete test suites,
a variant of the complete H-Method [12] is used, which needs significantly fewer
test cases than the W-Method in the average case [13]. We have modified the H-
Method for online testing : this means that the test case generation is incremental
and interleaved with the test execution, so that it is unnecessary to create a
complete suite, when tests of I against the current version of B fail early. We
apply the monitor concept proposed by Bauer et al. [3] for detecting safety
violations on the fly, during tests intended for model learning. This reduces the
need to perform complete model checking runs of B × P against ϕ. To speed
up the learning process and to avoid having to create complete suites for too
many intermediate increments of B, we apply coverage-guided fuzz testing [5,17]
for finding many distinguishable states of the implementation at an early stage.
Again, this leads to small exponents n − � + 1 in the term pn−�+1 dominating
the number of test cases to perform for a complete language equivalence test.

While these techniques for effort reduction cannot improve the worst case
complexity that was already calculated by Peled et al. [21,22], their combina-
tion significantly improves black box checking performance in the average case.

186 F. Brüning et al.

We confirm this by several experiments verifying control software from the auto-
motive domain. These experiments also show that the property testing approach
described in this paper is effectively applicable for testing modules performing
control tasks of realistic size and complexity. Therefore, the approach advocated
here is an interesting alternative to proving code correctness by means of code-
based model checkers or proof assistants. From the perspective of standards for
software development in safety-critical systems [8,16,28], our approach even has
a significant advantage in comparison to “pure” code verification, since tests are
actually executed against the IuT. The standards emphasise that verification
may never be based on static analyses (model checking, formal proof) alone: it
is always necessary to perform dynamic tests of the integrated HW/SW system
as well.

To the best of our knowledge, the approach presented here is the first to use
equivalence class abstractions for enabling complete property testing of source
code with large interfaces, using black box checking in combination with fuzzing.

Regarding the implementation of the approach, we present the open source
library libsfsmtest for complete model-based or property-oriented module test-
ing1, whose latest version supports the module testing strategy described in this
paper. For users only interested in the application of the library for practical
testing, a cloud interface2 is provided, supporting both test suite generation and
module test execution.

Related Work. Meng et al. [18] confirm that fuzz testing can be effective for
testing software against properties specified in LTL. However, their approach
does not provide any completeness guarantees: the tool LTL-fuzzer created by
the authors is to be used as an effective bug finder.

Pferscher et al. [23] also combine model learning and fuzzing, but with the
objective to check whether an implementation conforms to a reference model,
while our focus here is on property-oriented testing. The fuzzer is not guided by
the code coverage achieved, as in our approach, but by the coverage of a reference
model. Since the latter has not been validated with respect to completeness and
consistency, the testing process can only reveal discrepancies between reference
model and implementation, but not a correctness proof.

The model learning aspect of black box checking has received much attention
since Angluin’s seminal paper [1], and a comprehensive overview about improve-
ments and alternative approaches to automata learning is given by Vaandrager
et al. [25]. We could have made use of the LearnLib library [15] for the model
learning part in our Algorithm 2 (see Sect. 3). However, we would not have used
the W-Method or Wp-Method implemented there for equivalence testing and
finding counter examples, since our own library libfsmtest provides methods
like the H-Method that requires far less test effort in the average case. Moreover,
the new data structure and associated algorithms for learning that has been pro-

1 https://gitlab.informatik.uni-bremen.de/projects/29053.
2 https://fsmtestcloud.informatik.uni-bremen.de.

https://gitlab.informatik.uni-bremen.de/projects/29053
https://fsmtestcloud.informatik.uni-bremen.de

Complete Property-Oriented Module Testing 187

posed by Vaandrager et al. [25] is not yet available in LearnLib, and it seemed
particularly attractive with respect to maintainability and performance to us.

An alternative to LearnLib is AALpy by Aichernig et al. [19]. While its
Python implementation seems less attractive to us, due to the better perfor-
mance of C++, AALpy uses a strategy for disproving conformance between
preliminary model versions and an implementation that is an interesting alter-
native to our current implementation: AALpy tries to avoid the generation of
unnecessary complete conformance test suites by combining random testing with
the W-Method, expecting to find early discrepancies between a preliminary ver-
sion of the model and the implementation by means of random testing. In our
approach, we prefer to focus the application of random testing in an initial phase
using coverage guided fuzzing with the objective to find an initial candidate for
machine B with as many states as possible. After that, we relay on conformance
tests without randomisation, but create the cases of the H-Method incremen-
tally, which also avoids the creation of a full conformance test suite as long as
B and I do not conform.

Waga [27] presents a black box checking approach that is complementary to
ours in several ways. (1) The main objective is bug finding for cyber-physical sys-
tems, while we focus on complete property checks for software modules. (2) Waga
applies signal temporal logic, while we apply LTL. (3) Waga does not use any
means of abstractions comparable to the equivalence class abstractions we con-
sider to be crucial for complete property checking. Summarising, Waga’s app-
roach performs well for the purpose of bug finding on system level, while the
method advocated here provides complete checks on module level.

Overview. In Sect. 2, we summarise the foundations required for the combined
testing and black box checking approach described in this paper. In Sect. 3,
the methodological main result is presented. In Sect. 4, a short summary of the
available tool support is given. In Sect. 5, the application of our approach with
this tool platform is described, and performance data is presented. Section 6
contains a conclusion.

2 Theoretical Foundations

2.1 Black Box Checking

The strategy for combined learning, model checking, and testing proposed by
Peled et al. [22] is shown in Algorithm 1, with some adaptations for the notation
used in this paper. The strategy uses two sub-functions for learning and testing:
(1) As the first sub-function, Angluin’s L∗-algorithm [1] is invoked (lines 6, 25)
for learning the internal structure of the black box B representing the true
behaviour of implementation I. The L∗-algorithm is called in Algorithm 1 with
three parameters (I,Mi, π): I is the implementation, and the L∗-Algorithm may
execute additional tests against I, in order to produce a new model. Parameter
Mi specifies the latest assumption for the representation of B, and π is a word

188 F. Brüning et al.

representing a counterexample that is either accepted by Mi, but not by B, or
vice versa. Based on this information, L∗ returns a more refined model Mi+1.

(2) As the second sub-function, the W-Method [9,26] VC(I,Mi, �, k) is used
as a conformance test that is able to prove or disprove the language equivalence
between Mi and I, under the hypothesis that I has no more than k distinguish-
able states. The algorithm is called with the implementation I to be used in
the test, the currently learnt, minimised model Mi that may or may not be
equivalent to I, the number � of distinguishable states in Mi, and the currently
assumed upper bound k ≤ n of distinguishable states in I. Note that the worst
case estimate for the number of test steps to be executed for such a conformance
test is O(�3pn−�+1) [9].

Initially, the L∗-algorithm is set up with the empty machine (line 6). Then
the implementation is tested until (a) either the learnt model B satisfies ϕ and
has been shown to be language-equivalent to I by means of complete tests, under
the hypothesis that I has at most n states (line 18), or (b) an approximation
Mi of B has been learnt that violates ϕ on an infinite word π1π

ω
2 , and this word

is accepted by the implementation (line 22).

Algorithm 1. Black box checking strategy, as proposed by Peled et al. [22].
1 function BlackBoxChecker(in I : Implementation;
2 in ϕ : LTL formula to be fulfilled by I;
3 in n : maximal number of states of I) : {pass, fail}
4 begin

5 P := Büchi-Automaton accepting ¬ϕ;
6 M1 := L∗(I,empty,−); -- initialise learning algorithm with empty machine
7 i := 1;
8 while (true)
9 begin

10 X := Mi × P ; -- Product of machine learnt so far and BA checking ¬ϕ
11 if L(X) = ∅ then -- Mi does not violate ϕ

12 begin

13 � := number of states of Mi; k := �;
14 do

15 (conforms, π) := VC(I, Mi, �, k); -- apply the W-Method
16 k := k + 1;
17 while (k ≤ n ∧ conforms);
18 if (conforms) then return pass; -- Implementation conforms to Mi, and Mi

fulfils ϕ

19 end

20 else begin -- current model Mi violates ϕ

21 let π1, π2 such that π1πω
2 ∈ L(X); -- this word violates ϕ

22 if I passes test π1πn
2 then return fail;

23 else π := shortest prefix of π1πω
2 not accepted by I;

24 end

25 Mi+1 := L∗(I, Mi, π); -- extend model, using counterexample~π
26 i := i + 1;
27 end

28 end

Once a hypothetical model Mi has been proposed by the L∗-algorithm, its
product with the Büchi-automaton P accepting ¬ϕ is constructed (line 10). If

Complete Property-Oriented Module Testing 189

the language of this product is empty, this implies that Mi does not accept a
word violating ϕ. Therefore, it is checked whether Mi is language equivalent to
I, under the hypothesis that I does not have more than n states (lines 11—
19). This is done incrementally over k = �, . . . , n, in order to avoid superfluous
tests if the non-equivalence can already be detected with a smaller value k < n.
Therefore, the full number of O(�3pn−�+1) test steps only needs to be executed if
I conforms to Mi. If language equivalence between Mi and I can be established
by the conformance tests, the strategy terminates with verdict ‘pass’, since I
conforms to a mealy machine B = Mi that fulfils ϕ.

If the language of the product X := Mi × P is non-empty, this means that
Mi accepts a word satisfying ¬ϕ. Omega regularity implies that such a word
can be written as π1π

ω
2 , with finite prefix π1, followed by an infinite repetition

of finite word segment π2. To test whether the implementation accepts π1π
ω
2 , it

suffices to check whether it accepts π1π
n
2 , since I is assumed to have at most n

distinguishable states. If I accepts the finite test π1π
n
2 , we know that it accepts a

word violating ϕ and can stop the procedure by returning ‘fail’ (line 22). There
is no further need to look for a more refined model B = Mi+j representing the
true behaviour of I, since the implementation must be fixed anyway.

If, however, I rejects π1π
n
2 , this implies that the implementation cannot be

language-equivalent to the currently assumed representation Mi of B. Now we
look for the shortest prefix π of π1π

ω
2 that is rejected by I. This prefix is suitable

as a “teacher’s response” for the L∗-algorithm, to be used to construct a more
refined version Mi+1 of the true implementation behaviour (line 25).

Peled et al. prove ([22, Theorem 3]) that if the implementation satisfies ϕ, the
worst-case time complexity of the strategy described above is O(�3p�+l3pn−�+1+
l2mn), otherwise (error case), it is O(�3p�+ l2mn). The higher complexity in the
no-error case given by term l3pn−�+1 in the complexity sum is derived from the
fact that the equivalence tests of the implementation against the learnt model B
need to execute all test steps required for the conjecture that I has at most n
states. In the error case, these tests can be aborted earlier.

2.2 Equivalence Class Construction for SFSM

We summarise here previously obtained results [14] that are relevant for the
present paper. A symbolic finite state machine (SFSM) M is a state machine
operating on a finite set of control states and input variables and output variables
from a symbol set V = I ∪ O. Variables are typed by some (possibly infinite)
set D. A variable valuation is a function σ ∈ DV , associating a value σ(v) with
each variable symbol v ∈ V . Given a quantifier-free first order expression e with
free variables in V , we say that σ is a model for e (written σ |= e), if and only
if the formula e[v/σ(v) | v ∈ V], that is created from e by exchanging every
occurrence of a variable symbol v ∈ V by its valuation σ(v), evaluates to true.

A transition relation s1
g/a−−→ s2 connects certain control states s1, s2. The

transition label g/a consists of a guard expression g, that is, a quantifier-free
first order expression over variables from I, and update expressions a that are

190 F. Brüning et al.

Table 1. Construction method for I/O equivalence classes (from [14]).

1. Let Σ = ΣI ∪ ΣO ∪ AP be the set of all first-order formulae occurring in guard
conditions or output expressions of the IuT, or in the property specification ϕ.

2. For a set of formulae P ⊆ Σ, define a new first-order formula which is a conjunction
of formulae from P and negated formulae from Σ \ P :

φP ≡
∧

e∈P

e ∧
∧

e∈Σ\P

¬e. (1)

3. Let P denote the set of all formulae φ that have been constructed according to
Eq. (1) and that possess at least one valuation σ ∈ DV as model, so that σ |= φ.

4. For each φ ∈ P, define an input/output equivalence class io(φ) by

io(φ) = {σ ∈ DV | σ |= φ}.

5. Let A = {io(φ) | φ ∈ P} denote the set of all input/output equivalence classes.

first order expressions over at least one output variable and optional variables
from I. The language of M is the set L(M) ⊆ (DV)ω of all infinite traces of
valuations σ1, σ2, · · · ∈ DV , such that there exists a sequence of states s0, s1, . . .
starting in the initial state and guard and output expressions (g1/a1)(g2/a2) . . . ,
such that

∀i > 0 � si−1
gi/ai−−−→ si σi |= gi ∧ ai.

The property testing approach described in this paper applies to all software
modules whose input/output behaviour can be described by means of an SFSM.
The class of real-world applications that can be modelled by SFSM is quite large,
examples are airbag control modules, anti-lock braking systems (see Sect. 5) or
train control systems.

An input/output equivalence class io is a set of valuations σ ∈ DV con-
structed according to the specification in Table 1. The intuition behind this
specification is that the input/output equivalence classes partition the set DV

of valuations: two members of the same class are models for exactly the same
conjunction over all guard conditions, output expressions, and atomic proposi-
tions occurring in the LTL property ϕ to be verified, each conjunct occurring
either in positive or negated form. No valuation can be in more than one class,
since two classes differ in the sign (positive/negated) of at least one conjunct.

Two sequences π1, π2 ∈ (DV)ω of valuations are equivalent if each pair
of corresponding sequence elements (π1(i), π2(i)), i = 1, 2, . . . is contained in
the same input/output equivalence class. The following properties of equivalent

Complete Property-Oriented Module Testing 191

traces π1, π2 ∈ (DV)ω are crucial in the context of this paper [14, Theorem 2]3:
(1) π1 ∈ L(M) if and only if π2 ∈ L(M). (2) π1 and π2, when contained in L(M),
cover the same sequences of states in M (there is only one uniquely determined
state sequence if M is deterministic). (3) π1 |= ϕ if and only if π2 |= ϕ.4

3 Optimisation of the Test Method

Based on black box checking (Algorithm 1), we propose the new white box
module testing strategy specified in Algorithm 2 and incorporating several opti-
misations. This strategy is divided into three phases: (1) setup, (2) fuzzer-guided
exploration, and (3) learning as explained below.

Algorithm 2. White box module testing strategy.
1 function FuzzingBlackBoxLearner(in I : Implementation;
2 in ΣI : guard conditions;
3 in ΣO : output expressions;
4 in ϕ : LTL property to be verified;
5 in n : maximal number of states of I;
6 in rmax : maximum number of rounds of fuzzing;
7) : {pass, fail}
8 begin

9 -- Phase 1: Setup
10 AP := atomic propositions of ϕ;
11 A := input/output equivalence classes based on ΣI ∪ ΣO ∪ AP ;
12 H := set of input valuations σ1, σ2, . . ., such that for each ψ ∈ A, there exists

some σ ∈ H extendable to a valuation satisfying ψ;
13 T := {ε}; -- initialise a prefix-closed set of traces observed in I

14 P := construct a property monitor accepting ¬ϕ;
15

16 -- Phase 2: Fuzzer guided exploration
17 r := 0; -- number of performed fuzzing iterations
18 �T := 1; -- lower bound on the number of distinct states already observed
19 while (r < rmax and lT < n)
20 begin

21 b̄ := non−empty sequence of integers obtained from fuzzer;
22 x̄ := map each element b̄ to an element of H;
23 -- e.g. by selecting the (b mod |H| + 1)th element of H
24 outputQuery(I, T, P, x̄); -- apply x̄ to I and update T with the observed

output; return fail if P observes a violation of ϕ

25 r := r + 1;
26 �T := |maximalPairwiseDistinguishableSubsetOf(T)|
27 end

28

29 -- Phase 3: Learning using L#

3 Note that this theorem has only been formulated for finite traces πi in [14]. The
proof, however, holds for infinite traces πi ∈ (DV)ω as well, because π1, π2 ∈ (DV)ω

are equivalent if and only if all finite prefixes of π1, π2 with identical length are
equivalent.

4 Recall that LTL formulae over free variables from V have infinite sequences of val-
uations in DV as models [10].

192 F. Brüning et al.

30 M1 := L#(I, H, A, T, P, −) -- start learning using input alphabet H, output
alphabet A, and the observations T observed during fuzzing

31 i := 1;
32 while (true)
33 begin

34 X := Mi × P ; -- Product of machine learnt so far and BA checking ¬ϕ

35 if L(X) = ∅ then -- Mi does not violate ϕ

36 begin

37 � := number of states of Mi;
38 (conforms, π) := H(I, Mi, T, P, �, n); -- apply an online H-Method
39 if (conforms) then return pass;
40 -- Implementation conforms to Mi, and Mi fulfils ϕ

41 end

42 else begin -- current model Mi violates ϕ
43 let π1, π2 such that π1πω

2 ∈ L(X); -- this word violates ϕ

44 if I passes test π1πn
2 then return fail;

45 else π := shortest prefix of π1πω
2 not accepted by I;

46 end

47 Mi+1 := L#(I, H, A, T, P, π); -- learn more elaborate model,
48 -- based on counterexample π
49 i := i + 1;
50 end

51 end

Phase 1: Setup. In the first phase, we exploit white box knowledge on the
IuT in order to abstract from its possibly infinite input and output domains
to finitely many equivalence classes. To this end, the algorithm uses the two
input parameters ΣI and ΣO, denoting the guard conditions and output expres-
sions occurring in the IuT, respectively. Together with the atomic propositions
AP occurring in the LTL property ϕ to check, these are employed in comput-
ing input/output classes A (lines 10 and 11) using the techniques described in
Sect. 2. These classes could then already serve as symbolic inputs. However, since
multiple input/output classes may share the same input valuations, this could
introduce superfluous inputs. Thus, line 12 of the algorithm attempts to minimise
the number of inputs by only selecting sufficiently many input valuations σ ∈ H
to provide input representatives of all input/output classes. In the following, we
use elements of H both as symbols and as concrete input valuations.

The first phase concludes by initialising a tree T representing a prefix-closed
set of symbolic traces observed in the IuT (line 13), as well as a property monitor
P constructed as proposed by Bauer et al. [3] (line 14) to accept ¬ϕ. This
monitor detects violations of safety properties ϕ observed during the subsequent
execution of Algorithm 2. Since violations of liveness properties can only be
determined on infinite traces, these are accepted, but do not lead to failure
indications by the monitor.

Complete Property-Oriented Module Testing 193

Phase 2: Fuzzer-Guided Exploration. In the second phase, coverage-guided
fuzzing is employed to quickly reach a large number of distinct states in the IuT
and record observations on the behaviour of the IuT, with the aim of speeding
up the subsequent learning phase. Experiments confirming the efficacy of this
approach are discussed in Sect. 5.

Fuzzing is used for several iterations (lines 19—27). In each iteration, a non-
empty sequence of integers b̄ is obtained from the fuzzer and translated into a
sequence of input symbols x̄ by mapping each integer to an element of H (lines
21 and 22). Thereafter, x̄ is applied to the IuT (line 24). All such invocations
of the IuT in Algorithm 2 occur via calls to procedure outputQuery(I, T, P, x̄).
These reset the IuT and P to their initial states and initialise a symbolic trace
γ = ε. The following steps are then performed for each input symbol x in x̄ in
turn: First, x is translated into the concrete input valuation σI it symbolises,
which is then applied as input to the IuT. Next, the outputs σO observed in
response are used to create a valuation σI ∪σO ranging over all input and output
variables. This valuation belongs to exactly one input/output class y ∈ A, which
is considered as the output symbol observed for input symbol x. Thereafter, x/y
is appended to observation γ, which is then added to T . Finally, P is used to
check whether γ violates ϕ, in which case Algorithm 2 returns fail.

The fuzzer-guided exploration terminates as soon as one of the following con-
ditions is satisfied: (1) Fuzzing has been performed for rmax iterations, where
rmax is another input parameter of the algorithm, and the number of iterations
is tracked in variable r (lines 17 and 25), or (2) fuzzing has identified n distinct
states in the IuT. A lower bound on the number of identified distinct states in the
IuT is tracked in variable lT (lines 18 and 26), which is updated after each iter-
ation. This is realised via function maximalPairwiseDistinguishableSubsetOf(T)
as follows: First, pairs of traces are identified that are distinguishable in T .5
From these, a maximal set S ⊆ T is selected such that any pair of distinct traces
in S is distinguishable.6 Variable l is then set to |S|, as distinct traces in S must
reach distinct states in IuT I and hence |I| ≥ |S|.
Phase 3: Learning. The third phase (lines 30—50) finally implements learn-
ing in analogy to Algorithm 1. It differs from the latter in two aspects: First,
instead of Angluin’s L∗ algorithm [1], learning is performed using an adaptation
of the efficient L# algorithm proposed by Vaandrager et al. [25] (lines 30 and
47). L# follows the same minimally adequate teacher framework as L∗ in gen-
erating hypothesis state machines and providing these to the teacher to check
for equivalence with the IuT; hence it can directly replace the original calls to
L∗ in Algorithm 1. In contrast to line 6 of Algorithm 1 and also differing from
the original description of L#, which starts without prior knowledge, line 30 of

5 Traces α, β are distinguishable in T if there exists α.(x̄/ȳ), β.(x̄/ȳ′) ∈ T with ȳ �= ȳ′.
6 Note that finding the largest such set is equivalent to finding the largest clique [6]

in an undirected graph with vertexes T where traces are adjacent if and only if they
are distinguishable. This constitutes a computationally expensive problem, so that
we currently apply a greedy heuristic.

194 F. Brüning et al.

Algorithm 2 provides initial knowledge to the learning algorithm in the form of
T , the previously observed traces.

The second difference consists in the conformance testing strategy employed
to check whether the current hypothesis Mi is language-equivalent to the IuT
(line 38). Instead of the W-Method [9,26], we employ the H-Method [12]. While
both strategies exhibit the same worst case behaviour in terms of test steps, the
H-Method has been observed in practice to require on average significantly fewer
test steps [13]. We adapted the H-Method for online testing. That is, instead of
computing the entire test suite and only thereafter applying it to the IuT, we
interleave test case generation and application in an attempt to find failures
early. This is particularly effective if the current hypothesis contains fewer than
n states, as the term |H|n−�+1 dominates the number of test cases to consider.

Finally, recall that all interactions with the IuT within Algorithm 2 are per-
formed via function outputQuery first called in the second phase. Thus, for every
query to the IuT performed by the H-Method or by L# (lines 30, 38, 47), prop-
erty monitor P continues to check for violations of ϕ.

4 Tool Support: libfsmtest and libsfsmtest

We have implemented the described approach as a C++ framework based on
libFuzzer7, the coverage-guided fuzzing engine distributed as a part of the
LLVM project and on ltl3tools8 supporting the generation of runtime monitors
for LTL properties [3].

The implementation I is integrated into a test harness, which contains an
implementation of Algorithm 2. Alphabets ΣI and ΣO and the LTL property
ϕ are read from files using the libsfsmtest9 library, which also extracts the
atomic propositions AP occurring in ϕ. From these, the equivalence classes over
ΣI ∪ ΣO ∪ AP and a propositional abstraction of ϕ are constructed, from which
ltl3tools can construct a runtime monitor in a specific pseudo code represen-
tation. Using libsfsmtest again, this monitor is transformed into an executable
version reading and checking input/output valuations observed on I. We have
implemented the L# algorithm in libfsmtest10. The fuzzer invokes the test
harness, which orchestrates the translation from fuzzer inputs to input equiva-
lence classes, the application of inputs to I and the feedback of the observations
on I to the runtime monitor for ϕ and the learning algorithm.

Libraries libfsmtest and libsfsmtest are available as open source under
MIT license. If users are not interested in obtaining the source code, they can
perform the whole testing approach described here by using a cloud service.11

7 https://llvm.org/docs/LibFuzzer.html.
8 https://ltl3tools.sourceforge.net/.
9 https://gitlab.informatik.uni-bremen.de/projects/29053.

10 https://bitbucket.org/JanPeleska/libfsmtest/.
11 https://fsmtestcloud.informatik.uni-bremen.de.

https://llvm.org/docs/LibFuzzer.html
https://ltl3tools.sourceforge.net/
https://gitlab.informatik.uni-bremen.de/projects/29053
https://bitbucket.org/JanPeleska/libfsmtest/
https://fsmtestcloud.informatik.uni-bremen.de

Complete Property-Oriented Module Testing 195

5 Experiments

For evaluation of the property testing approach described in this paper, we
re-implemented an anti-lock braking system (ABS) for cars with lane stability
control, as designed and published by Bosch GmbH [11]. The full functionality
described there has been reduced to ABS for the front-left wheel only, and we
do not consider gravel road conditions.

The ABS system implements two fundamental tasks: (1) locking a wheel
should be avoided if the driver brakes too hard or brakes on slippery roads.
The ABS controller prevents wheel locking by alternately holding, reducing and
increasing the brake pressure for each wheel individually so that each wheel
rotates recurringly while braking, in order to keep the car steerable. (2) The ABS
controller implements a lane stability control to prevent the car from swerving
on asymmetric road conditions during braking with straight steering angle. The
ABS controller then adjusts the braking force in a car for all wheels, to facilitate
the steering intervention by the driver, while still applying the maximal possible
braking force. The ABS controller measures constantly the wheel velocity vU and
calculates the brake slip λB for each wheel, relative to the vehicle target speed
vR, which in this example is measured at the car powertrain. The equation to
calculate the slip is [11]

λB =
vU − vR

vR
.

The ABS controller evaluates the momentary acceleration α of each wheel
to detect each wheel’s tendency to lock. If α falls below the threshold −a < 0,
a possible wheel lock is detected and the input valve VI (in front of the brake
fluid inlet of the wheel brake cylinder) is closed, as well as the output valve VO
(after the brake fluid outlet of the wheel brake cylinder) to hold the current
brake pressure. The additional brake pump P to artificially increase the brake
pressure is set to mode OFF. Consequently, the negative wheel acceleration α is
not reduced any further. Then, if the brake slip falls below the maximum slip
threshold, the output valve is opened again. Thus, the brake pressure decreases
again, and α and the slip increase.

When α = −a, the valves are switched to hold pressure (both valves closed,
pump off). Now, the acceleration increases and can exceed two thresholds +a,+A
satisfying +a < +A. In the first iteration, the brake pressure will be increased
when α > +A, by setting VI := OPEN, VO := CLOSED, and P := ON. After a certain
time, α decreases and reaches +A, so that the ABS controller switches again to
hold pressure. The braking pressure is held until the +a threshold is reached.
At this point, the second iteration begins (henceforth repeating) and the brake
pressure is slowly increased until −a is reached. In the following cycles, α is
kept between the two thresholds −a and +a by the ABS controller. If the ABS
controller receives a signal from the yaw sensor that the car rotates around the z
axle during braking, an asymmetric road condition is detected. If the car rotates
to the direction of the current wheel, the driver is braking and the steering
angle is in direction straight ahead, the controller then tries to facilitate the
steering intervention by the driver by alternately reducing and increasing the

196 F. Brüning et al.

brake pressure of the current wheel but applying maximum possible braking
force in threshold −aGMA (slightly higher than −a) and +a until the rotation is
within the yaw threshold again.

The C++ implementation consists of one model with approx. 700 lines of
code. It processes 6 input variables of type double and writes to three output
variables with small enumeration types. The module behaviour depends on 11
(not necessarily pairwise distinguishable) internal control states. Table 2 shows
the LTL properties we tested on the example implementation.

The atomic propositions in the LTL formulae, together with the guards and
update expressions contained in the code, result in up to 784 input/output equiv-
alence classes ioi ∈ A that were calculated in about 203 s.

For each LTL property, we created one mutant that violates that property.
For properties 1, 2 and 4 we did so by manually applying one of the five mutation
operators12 described in [20] at random locations in the program, until we found
a mutant that violated that property. For each mutant we determined how fast
it could be found with our approach for different numbers of fuzzing rounds. The
time it took for a mutant to be killed for each run is shown in Table 3.

From this small set of data we can already conclude that the fuzzing can
enable a learning-based approach to be used on problems where it would other-
wise be not a sensible choice for economic reasons: While a purely learning-based
approach was able to find the property violations for properties 2 and 3, it ran
out of memory space in the other cases. This happens when equivalence queries
are done with too large of a difference between the number of discovered states
and the specified upper bound on the number of states. In all cases, we noticed
that some amount of fuzzing usually drastically reduced the runtime of the app-
roach. However, we also see that there is a trade-off to be made between making
sure that learning does not start too early, as can be seen for the case where we
used 100 fuzzing rounds for property 1, and taking too much time fuzzing, as
can be seen for the other approaches where 100 fuzzing rounds found the viola-
tion faster than most other settings. Obviously, a violation for property 2 was
rather easy to find on the corresponding mutant, and we attribute the runtime
differences in the different fuzzing round configurations to runtime noise in the
execution setup.

To investigate the runtime of the approach when there is no property viola-
tion found, we also ran it for the unmutated implementation which satisfies all
four properties. In this case, the full model for the implementation, which has
11 states, has to be learnt. Due to the differing amounts of input/output equiv-
alence classes for the properties, the runtimes can differ significantly for runs
with different properties. We ran the approach with 5000 fuzzing cycles once for
each property and logged the runtimes, number of applied input sequences and
number of applied inputs of the fuzzing and learning portions of the approach,
separately. For the number of applied inputs and input sequences we also sepa-
rately noted how many were applied during equivalence queries. Table 4 shows
the average, minimum and maximum numbers determined this way over all

12 ABS, AOR, LCR, ROR, UOI.

Complete Property-Oriented Module Testing 197

Table 2. The set of LTL properties checked on the example implementation.

LTL formula Description
G((driverBrakes ∧ vR ≥ vmin ∧

λB ≤ φ ∧ α ≤ −a ∧
|yaw| ≤ θ ∧ |β| ≤ ξ)

=⇒ (¬VI ∧ VO ∧ ¬P))

Whenever the driver brakes while the velocity is above the minimum
activation velocity vmin and when there is negative slip that is less
than threshold φ, the wheel circumference is decelerating and the car
is not yawing to either side more than θ radians per second while the
driver is not steering more than ξ radians to either side, then valve
VI shall be closed, VO opened, and the brake pump P shall be off to
release brake pressure.

G((driverBrakes ∧ vR ≥ vmin ∧
yaw < −θ ∧ |β| < ξ)

=⇒ (¬VI ∧ VO ∧ ¬P))

Whenever the driver brakes while the velocity is above the minimum
activation velocity vmin, the car is yawing to the left more than θ
radians per second while the driver is relatively straight (not more
than ξ radians to either side), then valve VI shall be closed, VO
opened, and the brake pump P shall be off to release brake pressure.

G(P = SLOW ∧
X(driverBrakes ∧ vR ≥ vmin ∧

α > −a ∧ |β| < ξ ∧ yaw ≥ −θ)

=⇒
X(P = SLOW))

Whenever the brake pump is increasing the pressure slowly, it will
continue to do so if the pressure is still too low for the acceleration α
of the wheel’s circumference to be below −a and if the driver
continues braking and steering straight ahead, the road conditions
stay symmetric and the vehicle is moving fast enough for the system
to be active.

G((α < −a ∧ driverBrakes ∧
vR ≥ vmin ∧
|β| < ξ ∧ yaw ≥ −θ)

=⇒
((¬VI)
U

¬(α < −a ∧ driverBrakes ∧
vR ≥ vmin ∧
|β| < ξ ∧ yaw ≥ −θ)))

Whenever the acceleration of the wheel’s circum- ference is less than
−a while the driver is braking, the vehicle velocity is above the
minimum activation velocity, the driver is steering relatively straight
ahead (no more than ξ radians to either side), and the vehicle is not
turning to the left more than θ radians per second, the brake
pressure will not be increased until any of these conditions change.

Table 3. Program runtimes for the example described above. These were recorded on
a kubernetes cluster with 1 CPU core and 16 GiB of RAM allocated to the task. OOM
denotes that the property violation was not found during fuzzing, and the learning
approach ran out of memory. rmax denotes the maximal number of fuzzing rounds
performed.

rmax Execution time
Property 1 Property 2 Property 3 Property 4

0 OOM 310ms 12.3 s OOM
100 OOM 5 ms 4.1 s 7.5 s
5000 21.4 s 10 ms 8.0 s 11.7 s
10000 39.1 s 4 ms 23.5 s 28.4 s

properties. We performed these experiments with the same fixed seed initializing
the random choices for the fuzzer, starting with seed = 1. This was incremented
by one only when the fuzzer would not discover enough states for the learning

198 F. Brüning et al.

to be able to learn the rest of the states without posing equivalence queries with
too few discovered state. For the four properties tested on the conforming IuT,
we succeeded with seed 1 twice, and with seeds 2 and 3 once. While this could
seem inconvenient, we found that simply launching several fuzzing runs with
different seeds was inexpensive and fast enough to still be practical.

Table 4. Runtime, number of applied input sequences and number of inputs applied
during testing all properties against the implementation satisfying all properties.

Prop. 1 Prop. 2 Prop. 3 Prop. 4

I/O Eq. Classes 600 600 784 714
Input Eq. Classes 120 117 138 124
Input Seq. Fuzzing 5000 5000 5000 5000
Input Seq. Learning 3311 3022 3764 5377
Input Seq. Equivalence Queries 38956 27862 32654 29522
Inputs Fuzzing 15245 19229 15595 17889
Inputs Learning 12409 10642 14217 19954
Inputs Equivalence Queries 47856 39325 45259 33577
Runtime Fuzzing 22.7 s 37.2 s 25.8 s 36.6 s
Runtime Learning 29.6 s 36.7 s 42.4 s 41.3 s

Compared to testing the mutants, testing the conforming implementation
takes significantly longer, which matches the complexity results. In our set of
problems, the equivalence queries are consistently the most expensive part of
the whole approach which is also supported by the complexity results reported
in Sect. 2.1. Furthermore, some of the runtime variations can be explained by the
variations in input/output equivalence classes caused by the atomic propositions
of the respective properties.13

6 Conclusion

In this paper, a novel white box module testing strategy based on learning has
been presented. This strategy is complete: given an LTL property ϕ and an
implementation under test I, it decides whether I satisfies ϕ under the assump-
tion that a representation of I as a symbolic finite state machine contains at
most n states and employs only guard and assignment expressions contained in
a set of expressions Σ. As n and Σ can be determined from static analysis of I,
the strategy effectively performs a proof whether I satisfies ϕ.

The strategy improves previous checking strategies based on learning [22]
in several aspects. First, it performs input/output abstraction and hence allows
13 To reproduce these results, our implementations of Algorithm 2 and of the ABS

experiment can be accessed at https://doi.org/10.5281/zenodo.8143283.

https://doi.org/10.5281/zenodo.8143283

Complete Property-Oriented Module Testing 199

checking of implementations with possibly infinite input and output domains.
Next, it employs fuzzing in order to quickly reach distinct states in I, speeding
up subsequent learning. Thereafter, it applies the efficient L# learning algo-
rithm [25] and reduces the number of required test cases for equivalence checks
by using the H-Method [12]. Finally, throughout the algorithm, violations of
ϕ observed in interactions with I are efficiently detected using a monitor [3].
The efficacy of these optimisations has been demonstrated in experiments with
modules performing control tasks of significant size and complexity

For future work, we plan to fully implement the LTL model checking per-
formed in Algorithm 2 in our tool and to pursue several further optimisations.
These include the use of parallelisation within computationally extensive tasks
such as the construction of input/output equivalence classes or applications of
the H-Method. Furthermore, we plan to evaluate various heuristics for tasks such
as the selection of input valuations (line 12 of Algorithm 2). Additionally, we plan
to lift the restriction that our current implementation of Algorithm 2 supports
only deterministic IuT (the underlying theory already covers nondeterministic
IuT behaviour). Finally, we plan to develop an argument for the tool qualifica-
tion [7] of our implementation based on the idea that if the strategy claims that
I satisfies ϕ, then the final hypothesis B = Mi of I’s model representation can
be used as reference model for and independent model-based testing algorithm
to be executed against I.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.

ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011). https://doi.org/10.
1145/2000799.2000800

4. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encod-
ings of bounded LTL model checking. Logical Methods Comput. Sci. 2(5),
November 2006. https://doi.org/10.2168/LMCS-2(5:5)2006, http://arxiv.org/abs/
cs/0611029, arXiv: cs/0611029

5. Böhme, M., Pham, V., Roychoudhury, A.: Coverage-based greybox fuzzing as
markov chain. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24–28, 2016, pp. 1032–1043. ACM
(2016). https://doi.org/10.1145/2976749.2978428

6. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-
lem. In: Du, D., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization,
pp. 1–74. Springer (1999). https://doi.org/10.1007/978-1-4757-3023-4_1

7. Brauer, J., Peleska, J., Schulze, U.: Efficient and Trustworthy Tool Qualification for
Model-Based Testing Tools. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS,
vol. 7641, pp. 8–23. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34691-0_3

8. CENELEC: EN 50128:2011 Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (2011)

https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.2168/LMCS-2(5:5)2006
http://arxiv.org/abs/cs/0611029
http://arxiv.org/abs/cs/0611029
http://arxiv.org/abs/cs/0611029
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1007/978-1-4757-3023-4_1
https://doi.org/10.1007/978-3-642-34691-0_3
https://doi.org/10.1007/978-3-642-34691-0_3

200 F. Brüning et al.

9. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. SE-4(3), 178–186 (1978)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

11. Dietsche, K.H., Reif, K.: Kraftfahrtechnisches Taschenbuch, 2nd edn. Springer
Vieweg (2018)

12. Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An improved conformance testing
method. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 204–218. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436_16

13. Endo, A.T., da Silva Simão, A.: Evaluating test suite characteristics, cost, and
effectiveness of FSM-based testing methods. Inf. Softw. Technol. 55(6), 1045–1062
(2013). https://doi.org/10.1016/j.infsof.2013.01.001

14. Huang, W.l., Krafczyk, N., Peleska, J.: Model-Based Conformance Testing and
Property Testing With Symbolic Finite State Machines - Technical Report. Zen-
odo, October 2022. https://doi.org/10.5281/zenodo.7267975. https://zenodo.org/
record/7267975, to appear in Science of Computer Programming SCP (Part I)
and Proceedings of the 10th IPM International Conference on Fundamentals of
Software Engineering FSEN 2023 (Part II)

15. Isberner, M., Howar, F., Steffen, B.: The Open-Source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_32

16. ISO/DIS 26262–6: Road vehicles - functional safety - Part 6: Product development:
software level (2009)

17. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.:
The art, science, and engineering of fuzzing: a survey. IEEE Trans. Software Eng.
(2019). https://doi.org/10.1109/TSE.2019.2946563

18. Meng, R., Dong, Z., Li, J., Beschastnikh, I., Roychoudhury, A.: Linear-time tem-
poral logic guided greybox fuzzing. In: Proceedings of the 44th International Con-
ference on Software Engineering, ICSE 2022, pp. 1343–1355. Association for Com-
puting Machinery, New York (2022). https://doi.org/10.1145/3510003.3510082

19. Muskardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: Aalpy: an active
automata learning library. Innov. Syst. Softw. Eng. 18(3), 417–426 (2022). https://
doi.org/10.1007/s11334-022-00449-3

20. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental
determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 5(2), 99–118 (1996)

21. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston (1999). https://doi.org/
10.1007/978-0-387-35578-8_13

22. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata Lang.
Combinatorics 7(2), 225–246 (2002). https://doi.org/10.25596/jalc-2002-225

23. Pferscher, A., Aichernig, B.K.: Stateful black-box fuzzing of bluetooth devices using
automata learning. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM 2022.
LNCS, vol. 13260, pp. 373–392. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-06773-0_20

24. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput.
6(5), 495–511 (1994). https://doi.org/10.1007/BF01211865. http://link.springer.
com/article/10.1007/BF01211865

https://doi.org/10.1007/11562436_16
https://doi.org/10.1016/j.infsof.2013.01.001
https://doi.org/10.5281/zenodo.7267975
https://zenodo.org/record/7267975
https://zenodo.org/record/7267975
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3510003.3510082
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.25596/jalc-2002-225
https://doi.org/10.1007/978-3-031-06773-0_20
https://doi.org/10.1007/978-3-031-06773-0_20
https://doi.org/10.1007/BF01211865
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01211865
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/BF01211865

Complete Property-Oriented Module Testing 201

25. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: TACAS 2022. LNCS, vol. 13243, pp.
223–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_12

26. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(July-August 1973)

27. Waga, M.: Falsification of cyber-physical systems with robustness-guided black-box
checking. In: Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Contro, HSCC 2020. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3365365.3382193, https://doi.org/10.1145/
3365365.3382193

28. WG-71, R.S.E.: RTCA DO-178C - Software Considerations in Airborne Systems
and Equipment Certification. 1140 Connecticut Avenue, N.W., Suite 1020, Wash-
ington, D.C. 20036, December 2011

https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1145/3365365.3382193

Compositionality in Model-Based Testing

Gijs van Cuyck1(B), Lars van Arragon1, and Jan Tretmans1,2

1 Institute iCIS, Radboud University, Nijmegen, The Netherlands
{gijs.vancuyck,lars.vanarragon,jan.tretmans}@ru.nl

2 TNO-ESI, Eindhoven, The Netherlands

Abstract. Model-based testing (MBT) promises a scalable solution to
testing large systems, if a model is available. Creating these models for
large systems, however, has proven to be difficult. Composing larger mod-
els from smaller ones could solve this, but our current MBT conformance
relation uioco is not compositional, i.e. correctly tested components,
when composed into a system, can still lead to a faulty system. To catch
these integration problems, we introduce a new relation over component
models called mutual acceptance. Mutually accepting components are
guaranteed to communicate correctly, which makes MBT compositional.
In addition to providing compositionality, mutual acceptance has benefits
when retesting systems with updated components, and when diagnosing
systems consisting of components.

Keywords: model-based testing · component-based testing ·
compositional testing · labelled transition systems · uioco

1 Introduction

Modern software systems are becoming increasingly large and complex. Tradi-
tional testing scales poorly for systems of these sizes. This causes the develop-
ment and maintenance of test suites to become costly and time consuming, which
slows down the development of new functionality. Model-Based Testing (MBT)
is a technique that has been developed to increase the efficiency and effective-
ness of testing. With MBT, testers create a model of the system under test from
which an MBT tool can then automatically generate and execute test cases.
This reduces the problem of creating and maintaining a test suite to creating
and maintaining a model of the system under test.

Creating models for complex systems, however, is still difficult and labori-
ous, since often no single person understands the whole system well enough. A
solution is to divide and conquer: the system is decomposed into its components
which are modelled and tested separately. This requires that the applied MBT
methodology is compositional : if each component implementation is correct with

This work is part of the project TiCToC - Testing in Times of Continuous Change,
project nr 17936, part of the research program MasCot - Mastering Complexity, which
is supported by the Dutch Research Council NWO.
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 202–218, 2023.
https://doi.org/10.1007/978-3-031-43240-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-43240-8_13

Compositionality in Model-Based Testing 203

respect to its component model, then it can be inferred that the composition of
component implementations, i.e. the system under test, is correct with respect
to the composition of component models, i.e. the system model.

In this paper, we investigate compositionality for MBT with labelled tran-
sition systems as models, uioco as the conformance relation, and parallelism
modelling component composition [4]. We define a relation over component spec-
ification models, called mutual acceptance, which guarantees that components
communicate neatly, and that uioco is preserved under composition. We gen-
eralise existing results on compositionality [4,8,11] by making less restrictive
assumptions and using a composition operator that is associative so that also
compositions of more than two components can be easily considered. Moreover,
we use the more recent uioco conformance relation instead of ioco [19]. A more
detailed comparison with related work can be found in Sect. 8.

In addition to compositionality, mutual acceptance also benefits testing evolv-
ing systems and software product lines. It enables more effective testing when a
component is replaced by an updated version, as will be elaborated in Sect. 7.
Diagnosis is the converse of compositionality: if the whole system has a failure,
then diagnosis tries to localise the failure in one of its components; Sect. 7 will
also discuss the use of mutual acceptance in diagnosis.

Overview. Section 2 contains preliminaries. Section 3 shows why the current app-
roach to compositional model-based testing is not desirable by means of an exam-
ple. Section 4 formalises what it means for two models to be compatible with
each other for use in model-based testing, and defines the mutual acceptance
relation �. Then Sect. 5 goes on to prove that this leads to desirable properties,
after which Sect. 6 revisits the example. Section 7 discusses how these properties
also lead to a reduced testing effort when substituting components, and how �
can be used in diagnosis. Section 8 describes some of the large body of related
work previously done in the area of compositional model-based testing. Finally,
Sects. 9 and 10 discuss possible future work and summarise the main results of
this paper, respectively. All proofs for lemmas and theorems can be found in the
extended version of this paper [6].

2 Preliminaries

We give the formal definitions for the MBT theory that we consider. We base
our work on the theory developed in [4,18]. The main formalism used is that of
labelled transition systems (LTS) (Definition 1). An LTS has states and transi-
tions between states that model events. An event can be an input, an output or
τ ; τ represents an internal transition which is not observable from the outside
and can therefore not be tested. Is, Us, etc., indicate inputs and outputs, respec-
tively, coming from LTS s. The shorthand Ls means Is ∪ Us. The name of an
LTS is sometimes used as shorthand for its starting state. LT S(I, U) denotes the
domain of labelled transition systems with inputs I and outputs U , or just LT S
if I and U are known. For technical reasons we restrict this class to strongly
converging and image-finite systems. Strong convergence means that infinite

204 G. van Cuyck et al.

sequences of τ -actions are not allowed to occur. Image-finiteness means that the
number of non-deterministically reachable states shall be finite. In examples,
inputs and outputs are given implicitly by prefixing inputs with ?, and outputs
with !. The same label can be in the input set of one LTS and in the output set
of another.

Definition 1. A Labelled Transition System is a 5-tuple 〈Q, I, U, T, q0〉 where:

– Q is a non-empty, countable set of states;
– I is a countable set of input labels;
– U is a countable set of output labels, which is disjoint from I;
– T ⊆ Q × (I ∪ U ∪ {τ}) × Q is a set of triples, the transition relation;
– q0 ∈ Q is the initial state.

Reasoning about labelled transition systems uses the concept of traces. A trace
is a sequence of labels that can occur when walking trough an LTS. Common
notation used when describing traces is repeated in Definition 2.

Definition 2. Let s ∈ LT S; p1, p2 ∈ Qs; � ∈ Ls; σ ∈ L∗
s; �τ ∈ Ls ∪ {τ};

στ ∈ (Ls ∪ {τ})∗, where ε denotes the empty sequence of labels.

p1
ε−→ p2

def
= p1 = p2

p1
�τ−→ p2

def
= (p1, �τ , p2) ∈ Ts

p1
�τ ·στ−−−→ p2

def
= ∃p3 ∈ Qs : p1

�τ−→ p3 ∧ p3
στ−→ p2

p1
σ−→ def

= ∃p3 ∈ Qs : p1
σ−→ p3

p1
σ−→ def
= �p3 ∈ Qs : p1

σ−→ p3

p1
ε=⇒ p2

def
= ∃ϕ ∈ {τ}∗ : p1

ϕ−→ p2

p1
σ·�=⇒ p2

def
= ∃p3, p4 ∈ Qs : p1

σ=⇒ p3 ∧ p3
�−→ p4 ∧ p4

ε=⇒ p2

p1
σ=⇒ def

= ∃p3 ∈ Qs : p1
σ=⇒ p3

p1
 σ=⇒ def
= �p3 ∈ Qs : p1

σ=⇒ p3

While specifications are often given as an LTS, IOTS are used to represent
implementations. In MBT, we commonly assume that we can always give any
input to an implementation. IOT S denotes the domain of all input-enabled
transition systems, and IOT S(I, U) denotes the domain of all input enabled
transition systems with input set I and output set U .

Definition 3. i ∈ LT S is an Input-Enabled Transition System (IOTS) if in
every state for every input, its transition relation either contains that input, or
reaches with just internal transitions another state that does so:

∀q ∈ Qi, � ∈ Ii : q
�=⇒

Compositionality in Model-Based Testing 205

Fig. 1. Parallel composition of system s and its environment e.

Multiple labelled transition systems can be composed to form larger mod-
els. For component specifications this is often done using parallel composition
(Definition 5). The result of parallel composition represents a system where all
the components are being executed at the same time independently of each
other. Synchronisation occurs on shared labels. An overview of the label sets of
a parallel composition is shown in Fig. 1. Note that we do not require the input
sets of the components to be disjoint, which will be explained below. Parallel
composition assumes synchronous communication between components. Systems
with asynchronous communication can still be modelled, but this requires giving
explicit specification for the communication medium.

Definition 4. s, e ∈ LT S are composable iff their respective output sets Us and
Ue are disjoint: Us ∩ Ue = ∅

Definition 5. Parallel composition || on two composable labelled transition sys-
tems s and e is defined as: s || e

def
= 〈Q, I, U, T, q0〉, where

– Q = {p || q | p ∈ Qs, q ∈ Qe }
– I = (Is \ Ue) ∪ (Ie \ Us)
– U = Us ∪ Ue

– q0 = q0s || q0e

– T is the minimal set satisfying the following inference rules
(where p, p1, p2 ∈ Qs, q, q1, q2 ∈ Qe):

p1
�−→ p2 � ∈ (Ls ∪ {τ}) \ Le � p1 || q

�−→ p2 || q

q1
�−→ q2 � ∈ (Le ∪ {τ}) \ Ls � p || q1

�−→ p || q2

p1
�−→ p2, q1

�−→ q2 � ∈ Ls ∩ Le � p1 || q1
�−→ p2 || q2

Lemma 1. Parallel composition is commutative and associative (up to isomor-
phism ≡), i.e. for s, e, t ∈ LT S, we have:

commutativity : s || e ≡ e || s
associativity : (s || e) || t ≡ s || (e || t)

206 G. van Cuyck et al.

Our definition for composable is weaker than the one in other papers: Is ∩ Ie =
Us ∩ Ue = ∅ [1,4,7]. This is because requiring disjoint input sets leads to a com-
position operator that is not associative [3]. A more detailed discussion of the
properties of various types of parallel composition can be found in [20]. With our
less restrictive definition of composable, parallel composition is both associative
and commutative as expressed in Lemma 1. This is important, as it means that
more than two components can also be composed and the order in which compo-
nents are composed does not matter. The remaining restriction of disjoint output
sets does not really restrict the applicability of parallel composition. Output sets
can always be made disjoint by renaming one output label and then duplicating
the synchronising transitions for the new label.

Another common approach to parallel composition is to replace all synchro-
nised transitions with τ transitions. This is done under the assumption that
communication between components is by default not observable by the outside
world and therefore should be hidden. A downside is that this removes informa-
tion, which makes specification-based analysis less useful. Additionally, a large
part of the model-based testing theory assumes convergence, i.e. the absence
of divergence. This means that there are no infinite paths of just τ -transitions
possible in the specification. By automatically hiding the labels of synchronised
transitions, divergence is often introduced into the composed specification. For
these reasons, we choose not to automatically hide labels during composition.

The main purpose of a labelled transition system when used for model-based
testing is to describe when an implementation is considered correct. This is done
through a conformance relation.

Two common conformance relations are ioco [18] and the more recent uioco
relation [4]. uioco differs from ioco in how it deals with nondeterministic under-
specification, i.e. how non-specified inputs are handled. Among others, uioco is
better suited for reasoning about composition. A detailed comparison of the two
relations can be found in [19].

Definition 6. For s ∈ LT S, δ /∈ Ls is a special output denoting the absence of
outputs, called quiescence. It is defined as follows (with p1, p2 ∈ Qs):

p1
δ−→ p2

def
= p1 = p2 ∧ ∀x ∈ Us ∪ {τ} : p1
x−→

Lδ, U δ is used as shorthand for L ∪ {δ}, U ∪ {δ} respectively.

Definition 7. Let s ∈ LT S; p1 ∈ Qs; P ⊆ Qs and σ ∈ Lδ
s
∗.

p1 after σ
def
= { p2 ∈ Qs | p1

σ=⇒ p2 }
out(p1)

def
= { x ∈ U δ

s | p1
x−→ }

out(P)
def
=

⋃
{ out(p) | p ∈ P }

Compositionality in Model-Based Testing 207

Definition 8. Let i ∈ IOT S(I, U); s ∈ LT S(I, U):

Utraces(s) def
= { σ ∈ Lδ∗ | s

σ=⇒ ∧ (�p ∈ Qs, σ1 · a · σ2 = σ :
a ∈ I ∧ s

σ1=⇒ p ∧ p
 a=⇒) }
i uioco s

def
= ∀σ ∈ Utraces(s) : out(i after σ) ⊆ out(s after σ)

3 Motivating Example: A Parking System

We argue that parallel composition does not work nicely with uioco, which we
will show with an example in this section. Consider two components that together
function as an automatic parking system in a car: a sensor which observes the
environment and an actuator that parks the car. An illustration of how these
two components communicate with each other and their environment is shown
in Fig. 2. Specifications for the behaviour of these components are shown in solid
black in Fig. 3. Their behaviour is straightforward: the parking component keeps
parking as long as the sensor tells it that it is safe to do so, but stops parking if
there is an obstacle, at which point it will stop the car and turn the sensor off.
These components are left under-specified on purpose: it does not really matter
what the sensor does if it detects an obstacle after it has been turned off, as
long as it does not start beeping. This gives an implementer of the actual sensor
some freedom, but still specifies the important behaviour.

Fig. 2. Two component parking system

Possible implementations that are uioco correct are also given in Fig. 3 using
the extra dashed blue transitions. On first glance this all seems to make sense,
and model-based testing will not find any problems when testing the components.
I.E. I1 uioco S1 ∧ I2 uioco S2. After composing our components using parallel
composition, however, which is shown in Fig. 4, the composed implementation is
not uioco correct to the composed specification.

The problem with the implementation in Fig. 4 is that it contains unspecified
output transitions. These can be seen as some of the dashed transitions, which are
only present in the implementation and not in the specification. This means that
the previously valid implementations are now generating outputs that are not

208 G. van Cuyck et al.

Fig. 3. Car component specifications () and implementations ()

part of the composed specification. Model-based testing will report an error here,
while the components are actually behaving as specified. Additionally, hidden
within these false positives, there is also an actual error: if the sensor detects an
obstacle after already having communicated that there is no obstacle, the parking
system will not respond and will just continue parking. This is represented by
the !beep transition from B3 to B1, which could for instance happen if a moving
obstacle like a person is present. This shows that only looking at the individual
components is not enough, as there are real problems that only become visible
when looking at combinations of components together.

We argue that the main problem with this example is that the component
specifications rely on unspecified behaviour. The sensor specification describes
exactly when the sensor is allowed to beep, but the parking specification does not
always specify what the result should be. There is no guarantee that the result
does not crash the system or violate any requirements. One way this could be
resolved is by expanding the specifications to be input complete [4]. However,
doing so would remove the possibility for under-specification, which is a desir-
able feature in modelling behaviour. Under-specification keeps models smaller
and more readable, and gives more freedom when implementing the specifica-
tion. Another approach is therefore desired: a specification should specify all the
behaviour that is used by other specifications, but leave the possibility of not
specifying unused behaviour. This goal will be made more concrete in Sect. 4.

4 Mutual Acceptance

In order to reason about specified and unspecified behaviour an explicit notion of
what it means for behaviour to be specified is required. For uioco, the allowance
of outputs is always explicitly specified. They are either present in the model and
therefore allowed, or absent and disallowed. After a specified input, the model
again defines what is allowed. Inputs are always implicitly allowed, but if an
input is not part of the model all behaviour after that input is allowed. This
means that the behaviour after an absent input is unspecified: the model does
not tell us what should or should not happen. Therefore, if all outputs given by
one component, are inputs present in the model of the other component, there
will be no unspecified behaviour. This requirement is formulated in Definitions 9

Compositionality in Model-Based Testing 209

Fig. 4. Car autopark and sensor composed S1||S2 () and I1||I2 ()

to 11: if after some σ ∈ Utraces(s || e) some pair of states s′, e′ is reached, and
s′ produces a synchronised output, then e′ must have this output as an input.
Note that this is trivially holds if e is input enabled which generalises earlier
results about component-based testing with uioco [4].

Definition 9. For s ∈ LTS; p ∈ Qs; P ⊆ Qs, the set of enabled inputs is
defined as:

in(p) def
= { � ∈ Is | p

�=⇒ }
in(P)

def
=

⋂
{ in(q) | q ∈ P }

Definition 10. Let σ ∈ Lδ∗; L ⊆ Lδ; and � ∈ Lδ. Projecting a trace to a smaller
set of labels is defined as:

ε � L def
= ε

(σ · �) � L def
= (σ � L) · � if � ∈ L

σ � L otherwise

Definition 11. Let s, e ∈ LT S be composable, then s accepts e iff:

s ↼ e
def
= ∀σ ∈ Utraces(s || e), s′ ∈ Qs, e′ ∈ Qe :

s || e
σ=⇒ s′ || e′ =⇒ out(e′) ∩ Is ⊆ in(s′) ∩ Ue

The symmetric version of the ↼ relation is defined in Definitions 12. Though
it might look like an equivalence relation, it is neither reflexive nor transitive.
Reflexivity fails because � is indirectly defined using parallel composition. This
means it is only defined on specifications that are composable, and any specifi-
cation with outputs is not composable with itself. Transitivity is also not true,
because each pair of specifications has its own sets of state pairs and shared
labels for which the ↼ relation must hold. This means each specification pair
must be checked independently of any other specifications.

210 G. van Cuyck et al.

Definition 12. Let s, e ∈ LT S be composable, then s mutually accepts e:

s � e
def
= s ↼ e ∧ e ↼ s

5 Compositionalility for Uioco

The previous section defined what it means for a specification to not trigger
undefined behaviour in another specification using the ↼ relation. This section
will prove that this property allows compositional testing using uioco.

Lemma 2 shows how for composable, input complete systems, traces in the
composed system can be transformed into traces in the component systems, and
the other way around. This allows for compositional model-based testing in input
complete systems. Lemma 3 then goes on to show that for Utraces, the same
is also possible as long as the two specifications are mutually accepting.

This is also where the composable requirement becomes important. It
enforces that all labels are either synchronised or only present in one of the
two label sets. This means that every trace σ can be split into a unique pair
of two projected traces σ � Lδ

s and σ � Lδ
e which can be replayed in s and e,

respectively. Without this requirement, it would be unclear what to do with
unsynchronised shared labels.

Lemma 2. let is, ie be composable IOTS, i′s ∈ Qis
, i′e ∈ Qie

, σ ∈ Lδ
is||ie

∗.

is || ie
σ=⇒ i′s || i′e ⇐⇒ is

σ�Lδ
is===⇒ i′s ∧ ie

σ�Lδ
ie===⇒ i′e

Lemma 3. let s, e be composable LTS, s′ ∈ Qs, e′ ∈ Qe, σ ∈ Utraces(s || e).

s � e =⇒ (s || e
σ=⇒ s′ || e′ ⇐⇒ s

σ�Lδ
s===⇒ s′ ∧ e

σ�Lδ
e===⇒ e′)

The � relation, and by extension Lemma 3, only consider Utraces and not
arbitrary traces because only states reachable by Utraces are important for
uioco. This does, however, create the extra requirement of checking that after
projecting a trace to a specific component, it is still part of the Utraces for
that component. Lemma 4 shows that the � relation ensures that Utraces are
preserved when projecting from a composed system, in both directions. This is
not trivial, as the special label δ is not normally preserved under composition.

Lemma 4. Let s, e ∈ LTS be composable, σ ∈ Lδ
s||e

∗.
s � e =⇒
(σ ∈ Utraces(s || e) ⇐⇒ σ � Lδ

s ∈ Utraces(s) ∧ σ � Lδ
e ∈ Utraces(e))

We now present Theorem 1, which is the main statement of this paper. It
states that for mutually accepting specifications, uioco is preserved under par-
allel composition. The other way around, if there is a problem that causes two

Compositionality in Model-Based Testing 211

Fig. 5. Mutually accepting versions of Fig. 3. (spec: , imp:)

composed implementations to be uioco-incorrect to their composed specifica-
tions, then this problem can also be found by testing with at least one of the
components. The reverse of this implication, however, does not hold, even if both
specifications are mutually accepting.

The reason for this is that the mutual acceptance relation only guarantees
that no invalid outputs are communicated. It does not enforce that something
is actually communicated. Therefore, it is possible for one of the two implemen-
tations to produce quiescence when this is not allowed, which is then masked in
the combined system by the outputs generated by the other component. This
highlights a property of the uioco relation: presence of specific outputs cannot
be enforced. One possible way to deal with this might be to extend the uioco
theory with a more fine grained concept of quiescence, allowing the detection of
quiescence in specific components, instead of only over the whole system. This
is further explored in [17].

Theorem 1. Let s, e ∈ LTS be composable, is, ie ∈ IOTS, then

s � e ∧ is uioco s ∧ ie uioco e =⇒ is || ie uioco s || e

Another thing to note is that when applying Theorem 1 in practice, this
makes the implicit assumption that you can correctly compose components. In
order to guarantee the correctness of the composed system, the composition
of components is and ie must actually behave as is || ie. This means that any
communicating channels must be connected as described in s and e, and that
there must not be some hidden implicit environment part of the composition
setup that further influences the behaviour of either of the components.

6 The Parking System Revisited

Using the results from Sect. 4 and Sect. 5, the problems with the parking sys-
tem from Sect. 3 can be explained: the two specifications in Fig. 3 are not mutu-
ally accepting. A counterexample is the trace safe ·obs, which is in the Utraces
of S1||S2, and goes to state B3. In state 3, however, S1 can perform output beep,

212 G. van Cuyck et al.

Fig. 6. Adapted car autopark and sensor composed (S3||S4) and (I3||I4)

while S2 does not accept input beep in state B. A number of other counterex-
amples can also be given, each one corresponding to one of the dashed output
transitions of S1||S2. These are the states where the composed implementation
produces unspecified outputs. Using these counterexamples, the points where
the specifications have to be extended can be identified. The result can be seen
in Fig. 5. Figure 5b now has several extra transitions for safe and beep defined
in the specification, exactly in those places where the sensor might supply these
inputs. The developer is now forced to think about what actually should happen
there, while the developer is still free to not specify inputs that should not occur
in normal operation. This is especially relevant for the beep transition originat-
ing from state B, which was previously unspecified. On further inspection, it is
revealed that a simple self loop is not desired here, because after a beep the car
should stop, and not continue to park. This would have resulted in undesired
behaviour if the specifications were simply made input enabled in an automatic
way, as was done in previous approaches [4]. Using a self-loop here would mean
that implementations are possible which pass all tests, but still do not stop when
an object is detected.

The result of composing the adapted specifications from Fig. 5 is shown in
Fig. 6. This specification now correctly finds that I1||I2 ���uioco S3||S4, which can
be seen with the trace safe · obs · beep which is present in the Utraces of S3||S4.
After this trace, I1||I2 can produce the output park , which is undesirable after
detecting an object, and also not allowed by S3||S4. But if each individual imple-
mentation is updated to be uioco correct according to its own adapted speci-
fication, as is done with I3 and I4, then their composition is again correct with
respect to the composed specifications, i.e. I3||I4 uioco S3||S4.

The example shows how the � relation can be used to find integration prob-
lems between components using their specifications. Possible problems are pre-
vented by expanding the specification, without requiring a full specification of
all inputs. This does not yet require any actual implementations, as the reason-
ing is done over the domain of all possible valid implementations. Finding these

Compositionality in Model-Based Testing 213

integration problems before starting integration testing, allows for fixing them
earlier in development.

7 Component Substitution and Diagnosis

In addition to providing compositionality in development and testing, mutual
acceptance has benefits when retesting systems with updated components, and
when diagnosing systems consisting of components. A common situation is that
one component becomes deprecated and needs to be replaced. This traditionally
has a high cost, because even if the new component is well tested, there is a
chance using it will cause problems with the other components already in use.
These issues mainly occur because replacing a component changes the environ-
ment for the other components. This means the other components, which are
the environment of the replaced component, might be called with new inputs
which have not yet been tested. A well known example where reuse of an old,
well tested component in a new environment caused the whole system to fail
is the crash of the Ariane-5 rocket [15,21]. Here, an important subsystem put
implicit requirements on the environment which were not documented or checked
to hold. Correctness was inferred from extensive testing, but after changing the
environment this testing became invalid, and the component failed anyway.

These problems can be reduced by using a specification-based analysis like
� in combination with model-based testing. Model-based testing can generate
tests for every defined sequence of inputs. If two specifications are mutually
accepting, then they only communicate outputs which are defined inputs for
the intended communication partner. These two points together mean that all
the model-based testing done up to the point of replacing a component is still
useful, because it was testing for all possible inputs, and not just the ones that
were in current use. This can give a much higher confidence that a component
switch will not cause any problems, because testing does not have to start from
square one. If the specification of the new component is not mutually accepting
with all the rest of the system, then the counterexamples point to all the places
where undefined inputs are given. This information can be used to improve the
specifications, and focus testing toward these possible problem areas.

The correctness reasoning made possible by the � relation can also be used
during diagnosis, by taking the converse of Theorem 1. If the whole system con-
tains a problem, and one or more components are found to be uioco correct, then
the problem must be located within one of the remaining components. Together
with Lemmas 3 and 4 this can then be used to narrow down a trace showing
uioco incorrectness of the whole system to a shorter trace showing uioco incor-
rectness of one specific component. This idea is expressed in Lemma 5. Since
composable requires each label to be part of at most one output set, the last
output of the counterexample uniquely identifies the problem component. This
does not work if the last output was δ, which could have been caused by a number
of components. In this case we can still find the faulty component by replaying
the projected traces in all components until the faulty one is found. This can,

214 G. van Cuyck et al.

for example, more accurately determine the source of bugs from gathered logs
containing full system traces.

Lemma 5. Let s, e ∈ LTS, is, ie ∈ IOT S, s � e, σ ∈ Utraces(s || e).

σ is a counterexample for is || ie uioco s || e =⇒
σ � Lδ

s is a counterexample for is uioco s ∨
σ � Lδ

e is a counterexample for ie uioco e

8 Related Work

The work in this paper is closely related to ideas already discussed in the context
of interface automata [8–10]. Interface automata are a type of labelled transition
system which can be used to model both the behaviour of a component and
the constraints it puts on its environment. These constraints are encoded in the
form of missing input transitions, which then signify that the component can
only be used in an environment that does not give these inputs. This closely
resembles the main idea behind the � relation. Apart from a slightly different
composability requirement which makes it associative, our definition for parallel
composition coincides with the one from [8]. Our definition for � also seems
to coincide with the absence of reachable (by Utraces) error states as defined
in [8]. The solution to reachable error states taken for interface automata is to
apply a pruning algorithm. This will remove input transitions to further restrict
the valid environments until all error states become unreachable. A downside of
this approach is that it becomes easy to generate composed models that after
pruning no longer give errors, but also no longer express the desired correct
behaviour. This is noted in [8] as the observation that the environment that
does not give any inputs at all, always avoids all avoidable error states. The
interface automata approach consists of removing transitions from the composed
specification until problem areas are unreachable. We instead choose to add
transitions to the component specifications until the problem areas no longer
exist. Another contribution of our work is the inclusion of quiescence, and the
direct link to the uioco implementation relation. This makes the theory easier
to apply in practice in the context of existing MBT tools.

An earlier attempt at formalising the correctness of a component with respect
to its environment was developed in [11]. It defines the eco (environmental con-
formance) relation with similar semantics to the accepts relation. The relation
eco, however, works on a specification for the environment, and a black box
implementation of the component. This means that eco conformance can only
be checked by testing, and this needs to be redone completely whenever a compo-
nent changes. Additionally, all labels of the component and its environment have
to communicate, i.e., there is no external communication, which further restricts
applicability. The eco approach also has a couple of advantages. Since eco is
checked using testing, it can be done on the fly. It also does not require how a
component calls other components as part of its input specifications. Instead,

Compositionality in Model-Based Testing 215

this information is gathered while testing and compared against the specifica-
tions of the components being called. This makes a possible combination of our
work with the eco theory and algorithms interesting.

In this paper, we describe when a component is a valid environment for
another component. Earlier work looking into the set of valid environments for
a given component was done in the field of contract-based design. A detailed
overview of this field can be found in [2]. A contract is defined as a tuple of a set of
valid environments and a set of valid implementations, where every combination
of environment and implementation can be composed. The definition of what
it means for an environment to be composable with an implementation is very
similar to our definitions, and it also describes how a labelled transition system
can be seen as a contract. The scope under consideration in [2], however, is
limited to receptive environments with the same label set as the components. All
components also have to be deterministic, and internal transitions or quiescence
are not discussed. A more recent addition to contract theory extends the scope
of [2] to hyper-contracts [13]. While this extends the scope of properties that
can be expressed as contracts, the current instantiation of the meta-theory for
labelled transition systems still has many of the restrictions imposed in [2]. In
contrast to the bottom up approach of combining component contracts into a
composed contract, a top down approach is also possible and sometimes desired.
Decomposing a set of requirements into individual component contracts has been
studied in [14].

Another way of describing compatible components is defining a specification
for the most permissive communication partner. All concrete communication
partners are then in some form of a refinement relation with this “operating
guideline”. This approach is outlined in [16] for acyclic finite labelled transition
systems. It assumes all communications to be asynchronous, while we assume
synchronous communication.

9 Future Work

Making specifications mutually accepting involves defining extra behaviour.
Some of this extra specification is desirable, for instance the beep transition from
state B in S4. This transition represents interesting behaviour that was missed
in the specification phase. Most other added transitions, however, are just sim-
ple self-loops, which represent that the input has to be ignored. If receiving an
input that was not specified is considered undefined behaviour, this is required to
ensure correct behaviour. Another possible interpretation would be that unspec-
ified inputs are buffered, until the other component is ready to receive them. In
such a setting, it would not be required that every input that can be given is spec-
ified immediately. It would then be enough that such inputs are specified always
eventually, after some amount of internal actions of the receiving component.
In general, it can be investigated how to (automatically) repair non-mutually
accepting systems.

In this paper, we have defined mutual acceptance, but no ways for practically
checking it have been given. Algorithms to efficiently check mutual acceptance

216 G. van Cuyck et al.

between specifications, or testing procedures to test mutual acceptance, analo-
gous to eco, need to be developed.

The theory introduced so far works on two components. Larger systems con-
sist of many components. Mutual acceptance can still be inferred by repeatedly
applying the parallel composition operator and Theorem 1. For example, when
combining specifications s1, s2 and s3 into (s1 || s2) || s3, we must check that
s1 || s2 � s3. Doing this directly using s1 || s2 might be complicated due to the
increasing number of parallel components. We postulate that multiway-mutual
acceptance can be inferred from pairwise-mutual acceptance. In general, mutual
acceptance of many components, with complicated communication structures,
should be further investigated.

Requiring � for all intermediate steps means that there cannot be any unex-
pected outputs. For real systems however, these outputs are only a problem if
they appear in the final composition of all the components. The fact that two
components do not work well in all environments is not a problem if you plan
to use them together with other components that will prevent this. Therefore,
a different definition of mutual acceptance for more than two components at a
time might be investigated.

To apply the theory in this paper to a practical use case, it will need to be
extended with the concept of data. Real systems can seldom be modelled with
a finite set of labels, but will instead send instances of data types to each other.
This has been formalised in the theory of symbolic transition systems (STS)
[5,12], which is the underlying formalism of several MBT tools. The concepts in
this paper could be extended to STS which would bring them closer to being
applied in practice.

10 Conclusion

Model-based testing is a promising technology for increasing the efficiency and
effectiveness of testing. The applicability of MBT, however, is limited by the
availability of models. Larger system models are hard to create, but can be com-
posed from multiple smaller component models. In this paper, we have defined
the mutual acceptance relation � between specifications, which guarantees that
model-based testing is compositional, i.e. if two components have been tested
for uioco-correctness with respect to their respective specifications, then the
composition of these implementations is also uioco-correct with respect to the
composition of their specifications, under the assumption that the parallel com-
position operator itself is faithfully implemented. This is an improvement over
previous results which obtained the same conclusion with a stricter requirement,
viz. that all specifications must be input-enabled [4]. In addition, we have shown
that this result can also help when updating older components with newer ones,
and when localising a faulty component during diagnosis of a large, component-
based system.

Compositionality in Model-Based Testing 217

References

1. Beneš, N., et al.: Complete composition operators for IOCO-testing theory. In:
Proceedings of the 18th International ACM SIGSOFT Symposium on Component-
Based Software Engineering. CBSE 2015. New York, NY, USA, May 2015, pp.
101–110. Association for Computing Machinery (2015). ISBN: 978-1-4503-3471-6.
https://doi.org/10.1145/2737166.2737175. Accessed 11 Oct 2021

2. Benveniste, A., et al.: Contracts for system design. Found. Trends R© Electron.
Des. Autom. 12(2-3), 124–400 (2018). ISSN: 1551-3939, 1551-3947. https://doi.
org/10.1561/1000000053. http://www.nowpublishers.com/article/Details/EDA-
053. Accessed 20 Dec 2022

3. Berendsen, J., Vaandrager, F.: Composition in a Paper by de Alfaro e.a. Is Not
Associative. Technical report. Radboud University, May 2008 (2008). https://sws.
cs.ru.nl/publications/papers/fvaan/commentdAdSF+.pdf

4. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco.
In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24617-6_7 ISBN:
978-3-540-24617-6. Accessed 29 Oct 2021

5. van den Bos, P., Tretmans, J.: Coverage-based testing with symbolic transition
systems. In: Beyer, D., Keller, C. (eds.) TAP 2019. LNCS, vol. 11823, pp. 64–
82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31157-5_5 ISBN:
978-3-030-31156-8. Accessed 23 Fen 2023

6. van Cuyck, G., van Arragon, L., Tretmans, J.: Compositionality in model-based
testing. In: CoRR abs/2307.03701 (2023). arXiv: 2307.03701. https://doi.org/10.
48550/arXiv.2307.03701

7. Daca, P., et al.: Compositional specifications for IOCO testing. In: Proceedings -
IEEE 7th International Conference on Software Testing, Verification and Valida-
tion, ICST 2014. March 2014, pp. 373–382 (2014). https://doi.org/10.1109/ICST.
2014.50. ISBN: 978-1-4799-2255-0

8. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ACM SIGSOFT Software
Engineering Notes 26(5), 109–120 (2001). ISSN: 0163–5948. https://dl.acm.org/
doi/10.1145/503271.503226. https://doi.org/10.1145/503271.503226. Accessed 29
Oct 2021

9. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45449-7_11
ISBN: 978-3- 540-42673-8. Accessed 29 Oct 2021

10. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NSS, vol. 195, pp. 83–104. Springer, Dordrecht (2005). https://doi.org/10.1007/1-
4020-3532-2_3 ISBN: 978-1-4020- 3532-6

11. Frantzen, L., Tretmans, J.: Model-based testing of environmental conformance of
components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2006. LNCS, vol. 4709, pp. 1–25. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-74792-5_1 ISBN: 978-3-540-74792-5

12. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-
4_1 ISBN: 978-3-540-25109-5. Accessed 3 Feb 2023

https://doi.org/10.1145/2737166.2737175
https://doi.org/10.1561/1000000053
https://doi.org/10.1561/1000000053
http://www.nowpublishers.com/article/Details/EDA-053
http://www.nowpublishers.com/article/Details/EDA-053
https://sws.cs.ru.nl/publications/papers/fvaan/commentdAdSF+.pdf
https://sws.cs.ru.nl/publications/papers/fvaan/commentdAdSF+.pdf
https://doi.org/10.1007/978-3-540-24617-6_7
https://doi.org/10.1007/978-3-030-31157-5_5
http://arxiv.org/abs/2307.03701
https://doi.org/10.48550/arXiv.2307.03701
https://doi.org/10.48550/arXiv.2307.03701
https://doi.org/10.1109/ICST.2014.50
https://doi.org/10.1109/ICST.2014.50
https://dl.acm.org/doi/10.1145/503271.503226
https://dl.acm.org/doi/10.1145/503271.503226
https://doi.org/10.1145/503271.503226
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/978-3-540-74792-5_1
https://doi.org/10.1007/978-3-540-74792-5_1
https://doi.org/10.1007/978-3-540-31848-4_1
https://doi.org/10.1007/978-3-540-31848-4_1

218 G. van Cuyck et al.

13. Incer, I., et al.: From interface automata to hypercontracts. In: Raskin, J.F., Chat-
terjee, K., Doyen, L., Majumdar, R. (eds.) Principles of Systems Design. LNCS,
vol. 13660, pp. 477–493. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-22337-2_23. ISBN: 978-3-031-22337-2. Accessed 10 Jan 2023

14. Kaiser, B., et al.: Contract-based design of embedded systems integrating nominal
behavior and safety. In: Complex Systems Informatics and Modeling, October, pp.
66–91 (2015). https://doi.org/10.7250/csimq.2015-4.05

15. Lions, J.L.: Ariane 5: Flight 501 Failure. Technical Report (1996). https://
esamultimedia.esa.int/docs/esa-x-1819eng.pdf

16. Massuthe, P., Schmidt, K.: Operating guidelines - an automata-theoretic founda-
tion for the service-oriented architecture. In: Fifth International Conference on
Quality Software (QSIC 2005). September 2005, pp. 452–457. https://doi.org/10.
1109/QSIC.2005.47

17. Noroozi, N.: Improving Input-Output Conformance Testing Theories. Ph.D. thesis.
Eindhoven: Technische Universiteit Eindhoven, October (2014). https://wiki.hh.
se/ceres/images/c/c2/Noroozi_thesis_2014.pdf. Accessed 15 Feb 2023

18. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8_1 ISBN: 978-3-540-78917-8. Accessed 22 Dec 2022

19. Tretmans, J., Janssen, R.: Goodbye IOCO. In: Jansen, N., Stoelinga, M., van den
Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model
Learning. LNCS, vol. 13560, pp. 491–511 (2022). https://doi.org/10.1007/978-3-
031-15629-8_26. ISBN: 978-3-031-15628-1. Accessed 4 Oct 2022

20. Vogler, W., Lüttgen.: A Linear-Time Branching-Time Per-spective on Interface
Automata. Acta Informatica 57(3), pp. 513–550 (2020). https://doi.org/10.1007/
s00236-020-00369-4. ISSN: 1432-0525, Accessed 21 Jun 2022

21. Weyuker, E.J.: Testing component-based software: a cautionary tale. IEEE Soft-
ware 15(5), 54–59. https://doi.org/10.1109/52.714817. ISSN: 1937–4194

https://doi.org/10.1007/978-3-031-22337-2_23
https://doi.org/10.1007/978-3-031-22337-2_23
https://doi.org/10.7250/csimq.2015-4.05
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
https://doi.org/10.1109/QSIC.2005.47
https://doi.org/10.1109/QSIC.2005.47
https://wiki.hh.se/ceres/images/c/c2/Noroozi_thesis_2014.pdf
https://wiki.hh.se/ceres/images/c/c2/Noroozi_thesis_2014.pdf
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-031-15629-8_26
https://doi.org/10.1007/978-3-031-15629-8_26
https://doi.org/10.1007/s00236-020-00369-4
https://doi.org/10.1007/s00236-020-00369-4
https://doi.org/10.1109/52.714817

Prioritizing Test Cases with Markov
Chains: A Preliminary Investigation

Luciana Rebelo1,5(B) , Érica Souza2 , Gian Berkenbrock3 ,
Gerson Barbosa4 , Marlon Silva8 , André Endo6 ,
Nandamudi Vijaykumar7 , and Catia Trubiani1

1 Gran Sasso Science Institute - GSSI, L’Aquila, Italy
luciana.rebelo@gssi.it

2 Universidade Tecnológica Federal do Paraná - UTFPR, Cornélio Procópio, Brazil
3 Universidade Federal de Santa Catarina - UFSC, Joinville, Brazil
4 Universidade Estadual Paulista - Unesp, Guaratinguetá, Brazil

5 Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - IFSP,
Jacaréı, Brazil

6 Universidade Federal de São Carlos - UFSCar, São Carlos, Brazil
7 Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, Brazil

8 Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - IFSP, Campos
do Jordão, Brazil

Abstract. Test Case Prioritization reduces the cost of software testing
by executing earlier the subset of test cases showing higher priorities.
The methodology consists of ranking test cases so that, in case of a
limited budget, only the top-ranked tests are exercised. One possible
direction for prioritizing test cases relies on considering the usage fre-
quency of a software sub-system. To this end, a promising direction is
to identify the likelihood of events occurring in software systems, and
this can be achieved by adopting Markov chains. This paper presents a
novel approach that analyzes the system scenarios modeled as a Markov
chain and ranks the generated test sequences to prioritize test cases. To
assess the proposed approach, we developed an algorithm and conducted
a preliminary and experimental study that investigates the feasibility of
using Markov chains as an appropriate means to prioritize test cases. We
demonstrate the strength of the novel strategy by evaluating two heuris-
tics, namely H1 (based on the transition probabilities) and H2 (based on
the steady-state probabilities), with established metrics. Results show (i)
coverage of 100% for both H1 and H2, and (ii) efficiency equal to 98.4%
for H1 and 99.4% for H2, on average.

Keywords: Software Testing · Test Case Prioritization · Markov chain

1 Introduction

One of the primary Verification and Validation (V&V) processes to ensure the
correctness of a software product is testing, which basically consists of empir-
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 219–236, 2023.
https://doi.org/10.1007/978-3-031-43240-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_14&domain=pdf
http://orcid.org/0000-0002-5193-6218
http://orcid.org/0000-0001-7262-7863
http://orcid.org/0000-0001-8071-1723
http://orcid.org/0000-0002-1147-2519
http://orcid.org/0000-0002-6413-7888
http://orcid.org/0000-0002-8737-1749
http://orcid.org/0000-0002-9025-0841
http://orcid.org/0000-0002-7675-6942
https://doi.org/10.1007/978-3-031-43240-8_14

220 L. Rebelo et al.

ically verifying its correctness [12]. The testing process includes several activi-
ties, the most challenging being the generation/selection of test cases. This activ-
ity consists of deciding the test cases that may present the highest chances of
pinpointing problems in the software system under analysis. Several techniques
have been developed to deal with this demand, e.g., [9,21]. Test Case Prioriti-
zation (TCP) [35], which was first proposed in the context of regression test-
ing, is an approach to deal with the problem of selecting test cases. The tech-
nique uses the entire test suite to prioritize test cases to be executed, using some
pre-defined criteria, such as fault detection rate, coverage rate, or history-usage
profile, among others. In traditional TCP, a set of test cases already exists, the
System Under Test (SUT) is modified and there is a need to ensure that new
defects are not introduced. Then, based on the knowledge of the change, the
existing test cases are ranked, and only the most prioritized run. Although TCP
was initially proposed in regression testing, it can also be applied in other gen-
eral testing scenarios, for example in situations where many (or all) test cases
are new [24]. One promising direction relies on the usage frequency of a (sub-)
system, since problems are most likely to occur. Kashyap et al. [17] proposes a
test plan generation and prioritization technique, through a probabilistic model,
where the underlying idea is to capture the critical system functionalities that are
most used by the system users. The results showed in [17] suggest that the actual
system usage provides a valid contribution when prioritizing test plans since the
system most likely improves its reliability by covering more probable bugs during
validation. Actual system usage is represented more accurately by the prioritized
test plans, if compared to the ad-hoc test plans, and hence, likely to improve the
system reliability by uncovering more probable bugs during system validation.

This paper advocates the prioritization of test cases while considering the sys-
tem usage frequency. One way is to quantify the likelihood of events occurring
in software systems, which can be achieved by adopting Markov chain models.
As recently outlined by Barbosa et al. [2], although there are some initiatives
to prioritize test cases using Markov chains, this is a new subject, still little
explored in the literature. This motivates our novel investigation, inspired by
the possibility of triggering further studies in this area of research. The soft-
ware can be modeled by a Finite State Machine (FSM) where the transition
arcs are labeled with inputs to be used to generate test cases. The same FSM
can be assigned with probabilities on the transition arcs and therefore represent
a Discrete Time Markov chain (DTMC). From this formal representation, it is
possible to compute the probabilities to obtain the steady-state probabilities.
These probabilities represent the percentage of time occupied by each state and,
in the long run, they are considered to be steady-state equilibrium. This char-
acteristic can be applied to TCP, using the probabilities to define priorities of
what states are more active or visited than others.

In our approach, we first generate the test cases and then reorder them
within the suite, leveraging the probabilities of each test sequence to perform
the ranking. We define two heuristics to assess the feasibility of Markov chains
in the prioritization of test cases: (H1) based on the transition probabilities;

Prioritizing Test Cases with Markov Chains 221

and (H2) based on the steady-state probabilities. We also define some metrics,
such as coverage and efficiency, among others, to quantify the feasibility of the
proposed approach. About coverage, as proposed in [18,19], we assume that the
selected test cases should assure the total coverage, hence our technique must
achieve 100% of coverage of all independent paths. About efficiency, as specified
in [13,16], we mean the saved computation as an outcome of our prioritization.
It is expressed as a percentage value and calculated as the ratio of the number
of disregarded test sequences w.r.t. the number of generated test sequences. For
instance, with 5k test cases, if our prioritization indicates 200 tests to be run,
then efficiency will be 96% (4800/5k).

To validate the proposed approach, we conducted a preliminary study consid-
ering different Markov chain models, from distinct domains. Although the eval-
uated systems are rather small in terms of the number of states and transitions,
the obtained results are promising, even more considering this is a preliminary
analysis acting as proof of concept. Experimental results demonstrate that our
strategy achieves coverage of 100% when using both H1 and H2; the efficiency
is estimated to be 98.4% for H1 and 99.4% for H2, on average. We observe that
H2 performed slightly better than H1, mainly for those models that generate a
large number of test sequences. Yet, further experiments are needed to assess the
approach in terms failure detection when compared with other methods. Sum-
marizing, the main contribution of our work is raising attention to considering
Markov chain models as a valid support to prioritize test cases, providing means
for practitioners and researchers to advance on the prioritization of test cases.

The rest of the paper is organized as follows. Section 2 briefly reviews related
work to better position our work. Section 3 introduces the main background
concepts. Section 4 presents the details of the approach. Section 5 describes the
experimental study and reports the results. Lessons learned are discussed in
Sect. 6, along with the conclusion and future research directions. Replication
data is publicly available: https://doi.org/10.5281/zenodo.7940360.

2 Related Work

Some initiatives toward employing Markov chains to prioritize test cases can be
found in the literature. For instance, Ozawa et al. [25] apply a Markov chain
reward model (based on DTMC) to verify how software code metrics affect
the test case prioritization. In the context of software testing, Bohme et al. [4]
make use of Markov chains to analyze the coverage of test cases on a grey
box model. The strategy goal explores more paths fuzzing the path seed, and
improving the coverage of the model. Kashyap et al. [17] propose a modeling
methodology for generation and prioritization of test cases. This research defines
the probability of set of test cases representing actual system usage as a likelihood
function. The used objective function is represented by the likelihood of a test -
which is a measure of how well a test case represents the actual system usage.
As outcome of this research, model-based activities are assessed as improving
the system reliability. The formalization relies on Markov Modulated Markov
Processes (MMMP), whereas the considered system shows two CTMC processes.

https://doi.org/10.5281/zenodo.7940360

222 L. Rebelo et al.

Recently, Barbosa et al. [2] conducted a SLR on studies that prioritize test
cases using Markov chains. According to this review, 12 initiatives adopting
Markov chains in TCP were applied in distinct contexts, which are – (i) Usage
model [32]; (ii) Controlled Markov chains (CMC) [7]; (iii) Model-based testing
(MBT) [29]; (iv) Regression testing [22]; (v) Statistical testing [10]; and (vi)
Random testing [36]. Among the 12 studies presented at SLR, we think that
the study of Morozov et al. [22] is the most closely related to our work. In
particular, they introduce a method for automatic prioritization of test cases
(belonging to an original test suite) to achieve efficient regression testing. The
test suite prioritization method considers two principles: (i) the error stimulation
in an updated test case block; and (ii) the detection of error propagation, i.e.,
the stimulated error should propagate to the place where it can be detected.
The main difference with our study is that we aim to make use of Markov chains
solutions as a solid foundation to generate and rank test cases, according to a test
adequacy criterion, as opposed to [22] that instead aims to provide a stochastic
error propagation analysis.

Summarizing, to the best of our knowledge, there is no exploratory study on
the effort of prioritizing test cases while solving Markov chains as support for
identifying the most used system functionalities, as we propose in this paper.

3 Background

3.1 Test Case Prioritization

Test Case Prioritization [35] uses the entire generated test suite and, based on
some criteria, prioritizes the suite to exercise those cases (of the suite) that
are ordered or ranked first to be exercised. In other words, TCP refers to a
set of test cases that are more important based on some metrics, but without
decreasing the number of faults to be detected [11]. In traditional TCP when
the SUT is modified and there is already a test suite, most of the time it is
not possible to exercise the entire test suite, due to resource restriction such as
time and budget. So, to achieve efficiency in the regression testing, only a part
of this suite might be exercised. In order to classify this test case suite, criteria
can be established. Some approaches in this direction make use of data mining
[23], Monte Carlo simulation [6], usage frequency techniques [17], and various
prioritization techniques [27], among others.

In this paper, although our initial objective is not regression testing of the
traditional TCP, we discuss how to make use of system usage frequency. Specifi-
cally, we propose to employ both transition probabilities and steady-state prob-
abilities (obtained by solving Markov chains) in order to rank the test cases. We
anticipate that our results assess the proposed strategy as a viable criterion to
minimize the number of test cases to be exercised on the implementation.

3.2 Markov Chains

Markov chains play a major role in a wide variety of applications. They can be
considered probability models in which knowledge about the past is not necessary

Prioritizing Test Cases with Markov Chains 223

as long as the present is known, i.e., the memory-less property [14,31]. Markov
chains can be represented as state-transition diagrams, whose formalism is based
on FSMs [20], consisting of a set of states and transitions linking states. They
can be either discrete-time (DTMC) or continuous-time (CTMC). The former
uses transition probabilities that represent labels on the transition arcs, while
the latter indicates duration of events on the transition arcs. Based on the inputs
of probability transitions, methods such as multiplication of matrices, and linear
algebra solutions can be employed to generate the steady-state probabilities [28].
These probabilities represent the percentage of time occupied by each state and
used to obtain performance metrics.

In this paper, we pursue the idea that these probabilities can play a key role
in prioritizing software test cases. Our strategy builds upon systems modeled
as ergodic Markov chains [33]. A Markov chain is ergodic when the following
criteria are met [5]: (i) transition probabilities linking any two given states must
be greater than 0, i.e., any state can be reached starting from a given state;
(ii) the chain must not have absorbing (recurrent) states, is irreducible, and
aperiodic; and (iii) there is only one steady-state probability vector π as solution
for πM = π, and

∑
i πi = 1, where M is the transition probabilities matrix.

4 Markov Chains Applied in TCP

This work presents an approach that analyzes scenarios modeled with Markov
chains and ranks the generated test sequences to prioritize them. An algorithm
is designed to receive different scenarios modeled from an FSM, to generate and
rank the test sequences. In this section we present the algorithm and describe
its main steps.

Consider the DTMC model shown in Fig. 1, modeled as an FSM, which is
ergodic, with states ‘S0, S1, S2, S3, S4’ and transitions following a stochastic
distribution. Nodes represent states, and edges represent transition arcs. The
nodes ‘S0’ and ‘S4’ are the initial and final states, respectively. The final state
has been randomly assigned through the use of the random walk algorithm
that requires a final state to complete a path in the FSM (more details are
provided later in the sequel of this section). Each edge is labelled with a transition
probability. The same chain can be represented by a transition matrix M . The
transition matrix is a square matrix of order n, where n is the number of states.
Each element corresponds to the probability of transition from one node to
another. For example, the matrix Mn×n in (2) represents the Markov chain of
Fig. 1, where n = 5. The sum of the outgoing transition probabilities from each
state is equal to 1, as stated in [31]. In other words,

n∑

i=1

pij = 1, for any j ∈ [1..n] (1)

Using Eq. (1) and the properties of Markov chains, we propose the Algo-
rithm 1 that generates test cases and ranks them based on the probability of

224 L. Rebelo et al.

Fig. 1. DTMC representing a software
model

M =

⎡
⎢⎢⎢⎢⎣

0 0.7 0 0.3 0
0 0.2 0 0.8 0
0 0.1 0 0.5 0.4
0 0 0 0 1.0

0.1 0 0.3 0.6 0

⎤
⎥⎥⎥⎥⎦

(2)

each sequence. To this end, two heuristics are introduced: (i) H1, which performs
the calculation using the product of the transition probabilities of a sequence;
and H2, which performs the calculation using the product of steady-state prob-
abilities of each state in a sequence. The method used to explore the FSM and
generate the test sequences is the random walk [34], however with a slight modifi-
cation, in what it considers the probabilities when choosing the next transition.
To complete a path on the FSM exploration, random walk requires an initial
and a final state. In the following we explain the main steps of the algorithm
considering the example shown in Fig. 1.

Algorithm 1. Markov chain for TCP

input: FSM: (list of states, transition matrix (TM), initial state, end states); stop criterion (SC)
output: two lists: i) ordered by arc probabilities, and ii) ordered by state probabilities

1: verify parameters(FSM) � check the input parameters
2: SP ← calculate steady probability(TM)
3: stop ← 0
4: while stop < SC do
5: seq arc, seq state = random walk(FSM,SP)
6: if seq arc not in list transitions then
7: add seq arc to list transitions
8: add seq state to list states
9: update stop
10: end if
11: end while
12: decrease ranking by arc probability(list transitions)
13: decrease ranking by state factor probability(list states)

1. Loading the Input Parameters. The input parameters of the proposed
algorithm are the FSM, composed by: Markov process transition matrix, state
names, initial and final states; and percentage of inclusion cases (i.e., the per-
centage of all possible sequences from a Markov chain model). This number will
be used as a stopping criterion for the algorithm, and thus, the algorithm will
be terminated when this amount of test cases is found. At the beginning of the
algorithm, there is a method that checks if the declaration was correctly made
(line 1), otherwise, the algorithm stops and outputs an error message. The com-
plete list of the files with the input parameters, as well as the algorithm, can be
found in our replication package: https://doi.org/10.5281/zenodo.7940360.
2. Calculating Steady-State Probability. Before starting random walk, the
steady-state probability is calculated (line 2). We found the stationary distribu-

https://doi.org/10.5281/zenodo.7940360

Prioritizing Test Cases with Markov Chains 225

tion of the Markov chain. To do this, we recall that the FSM must be an ergodic
chain (see Sect. 3.2).
3. Initialization of Variables. The first action of the while loop (line 4)
is the creation of structures that will store the sequences found throughout the
algorithm, as well the probability in each iteration. Two lists are created, namely:
a list of traversed arcs (list transitions) to calculate H1; and a list of traversed
states (list states) to calculate H2.
4. Stop Criterion. At the end of each iteration, the update stop (in line)
is performed. The calculation is executed as follows: let qk be the product of
all transition probabilities, from state i to state j denoted by pij , in the newest
sequence k added into the list of traversed arcs. Hence, qk is added to the variable
stop. This procedure is repeated while stop < SC. Otherwise, the random walk
stops. In other words,

qk =
∏

pij ,∀(i, j) ∈ k; i, j ∈ [1..n] (3)

stop =
∑

k

qk,∀k ∈ list transitions (4)

5. Ranking of Test Sequences. When the process of calculating heuristics
is completed, the ranking of test cases begins (see lines 12, 13). This ranking
is build upon the probabilities of each sequence, for H1 and H2, in descending
order, because the higher probability is related to a higher chance to occur.

Using the example in Fig. 1, we can verify the output of our algorithm. Table 1
shows the first test cases prioritized according to their probability, using both
H1 and H2. We can observe the travelled states of each sequence, and their
probabilities. Note that the same sequences were delivered by H1 and H2, but in
different order or priority. Also, the values of the probabilities are quite different
relating to the sequences of H1 and H2. This occurs because sequences delivered
by H1 use the transition probability, while those sequences delivered by H2 use
the steady-state probabilities, and the latter usually leads to much lower values.
Let us discuss more thoroughly the sequence ‘S0-S1-S3-S4’. Using H1 we have,
‘S0-S1’ × ‘S1-S3’ × ‘S3-S4’ = 0.7 × 0.8 × 1.0 = 0.56 = 56%. Using H2, be π
the steady-state probability of a state from a matrix M . So, we have π(S0) ×
π(S1) × π(S3) × π(S4) = 0.04158 × 0.051975 × 0.3659 × 0.4158 = 0.0003287955
→ 0.033%.

Table 1. List of the first test case sequences generated, revealing the sequences with
the highest priorities, for both H1 and H2.

H1 H2

Travelled states Probab Travelled states Probab.

S0-S1-S3-S4 56% S0-S3-S4 0.633%

S0-S3-S4 30% S0-S1-S3-S4 0.033%

S0-S1-S1-S3-S4 11.199% S0-S1-S1-S3-S4 0.000017%

Σ = 97.199% Σ = 0.666017%

226 L. Rebelo et al.

5 Experimental Analysis

The purpose of our experimentation is to assess the feasibility of the proposed
approach. We are interested in investigating the ability to prioritize test cases
for a bounded number of tests. In particular, we aim to answer the following
research question:

RQ: What is the feasibility of using Markov chains in test case generation and
prioritization?

In this section we present the application of the approach over three different
case studies, from distinct application domains. All examples were adopted from
the literature [1,8,30]. Note that some adaptations were made on the FSMs
when necessary, but without distorting the examples. For instance, each FSM
was assigned a random final state (if it did not have one) due to the use of the
random walk algorithm, which needs a final state as a stopping criterion. Besides,
when the final state has no transition, it was assigned to it a transition to the
initial state, even though we know that this transition will never be exercised,
as the algorithm stops when it reaches the final state. This is necessary to fulfill
the definition of ergodic chains shown in Sect. 3.2.

It is worth explaining that the stop criterion with the inclusion percentages
explained in Sect. 4 was not sufficient to run the experiments. This happens due
to a characteristic of the random walk algorithm. The sequence of probabilities
usually start quite high, but get smaller and smaller quickly; so it becomes very
expensive to reach a high probability inclusion like 90%. As the availability for
the laboratory machine was 24 h, we also used this restriction to run the experi-
ments. Therefore, the stop criterion was: reach the probability specified in Sect. 4
(which was 90%) or when running the experiment reaches a timeout set to 24 h.
The experiments were run on a Dell computer (Product Name: OptiPlex 5070),
Fedora Linux 35 Operating System, Kernel Version: 5.19.7-100.fc35.x86 64 (64-
bit), X11 Graphics Platform, Processors: 6 × Intel R©CoreTM i5-9500, CPU @
3.00 GHz, and 16 Gb RAM.

5.1 Metrics Definition

To assess the approach and analyze the results, we introduce some metrics,
defined as follows:

M1 – Number of test cases (N): this refers to the number of generated test
sequences. We also define as set N the set of all the generated test sequences.
This way, N is the cardinality of set N .

M2 – Time (T): this metric (in seconds) refers to the time for generating
the test cases (N), as well as for ordering them using either H1 and H2.

M3 – Usefulness - useful number of test cases (uN): in this metric
uN is defined as the number of test sequences, ranked by p, using one of the
following two criteria, and the choice is on whichever is greater:

1. all sequences, until all independent paths are covered, see metric M7;

Prioritizing Test Cases with Markov Chains 227

2. all sequences that have a probability p greater than or equal to max p/1000,
where max p denotes the highest sequence probability found in set N .

For instance, observing the example in Fig. 1, sequence ’S0-S1-S3-S4’ has the
highest probability considering H1, as can be seen in Table 1, which is max p =
56%. In this case, we consider all the sequences with probability greater than
or equal to 0.056%. Note that the total coverage of independent paths would be
enough to define this metric. Since this is a criterion that normally generates
very few sequences, we extend our metric to increase the size of the test suite, in
order to test more sequences. Hence, we focus on the paths (sequences) that are
most likely to be traversed (those that are up to 1k times less likely to happen
than the first sequence) while ensuring that all independent paths are covered
(i.e., 100% coverage of independent paths).

M4 – Efficiency (ε): it is defined as the ratio of the number of disregarded
test cases sequences (N - uN) for the number of generated test cases sequences
(N). We consider that the greater ε is, the better the result. This means that
with few test cases (uN) we are able to reach the coverage criterion (see metric
M7 - coverage) and point out the sequences of test cases that are more likely to
occur. In other terms,

ε =
N − uN

N
(5)

M5 – #states: the number of states in the model.
M6 – #transitions: the number of transitions in the model.
M7 – Coverage (Θ): the sequences generated to be traversed in order to

obtain complete coverage of a Control-Flow Graph (CFG), where each of these
paths can be interpreted as a test case representing independent paths. Even
though we are not working directly with a CFG, this criterion might be applied
to Markov chains, as they have a structure very similar to CFGs. To determine
the independent paths, the decision graph (or decision-to-decision (DD) path
graph), derived from CFGs, can be used [18,19]. DD path graph testing is “the
best known code-based testing method, incorporated in numerous commercial
tools” [15]. In other words, test cases are generated based on the condition that
they cover all independent paths of the FSM to assure the highest coverage.

5.2 Description of Case Studies

In this section, we present the three case studies chosen to assess the approach.
We describe the context of each one, showing their DTMC model along with their
respective transition matrices. Furthermore, for each case study, the achieved
steady-state probabilities as well as the first five test case sequences generated
are exhibited, reproducing the states traveled with their respective sequence
probability p, i.e., the sequences that have the highest probability to be traversed,
for both H1 and H2.

228 L. Rebelo et al.

Fig. 2. DTMC model for ATM, adapted
from [1]

CS1 =

⎡
⎢⎢⎢⎢⎣

0 0.2 0.3 0.5 0
0.2 0 0.4 0 0.4
0 0.6 0 0.2 0.2

0.5 0 0.1 0 0.4
0.6 0 0.4 0 0

⎤
⎥⎥⎥⎥⎦

(6)

Case Study I (CS I): Automated Teller Machine (ATM). Figure 2 repre-
sents the DTMC model of the classical ATM case study, where the ATM interacts
with a customer via a specific interface and communicates with the bank over an
appropriate communication link. There are several models describing the ATM
available in the literature. We constructed a simplified DTMC version for the
FSM presented in [1]. Once on the system interface (represented by start state),
the customer can choose among three options: withdrawal, deposit, and check
balance. The model consists of five states: Start, Withdraw, Check, Deposit, and
End. The Markov chain transition matrix CS1 for the model is shown in (6).

After applying the approach to this example, the steady-state probabilities
obtained are shown in Table 2 (on the left side). The table exhibits the steady-
state probabilities for all the case studies. Check is the state with the high-
est steady-state probability, i.e., the most active state, while state Deposit has
the smallest one, i.e., the least active state. Table 3 presents the first five test
sequences generated using H1 and H2. On the left, we see the sequences gen-
erated using H1, with the highest transition probability. On the right side, we
report the sequences generated using H2, using the steady-state probabilities to
rank the sequences. Still, we can observe the probabilities p of each sequence. It
is important to note that there is a significant difference in the values of the prob-
abilities, as each heuristic is using a different source to derive the probabilities
for the test sequences. The fact that the first sequence produced using H1 ‘Start-
Deposit-End’ has a probability p = 20% does not mean that this sequence is more
likely to occur or has high priority relating to the first sequence produced using
H2 ‘Start-Check-End’, which has probability p = 1%. The probability values are

Table 2. The steady-state probabilities for CS I, CS II, and CS III, respectively, sorted
in descending order.

CS I CS II CS III

State Steady-state probab. State Steady-state probab. State Steady-state probab.

Check 0.2346% Follower 0.4283% monitoring 0.3517%
Start 0.2302% Controller 0.1671% intrusionDetected 0.2282%
Withdraw 0.1868% Sensor 0.1671% initializing 0.1235%
End 0.1864% GUI 0.1616% alarm 0.1153%
Deposit 0.1620% Fail 0.0436% ready 0.0613%

End 0.0323% idle 0.0582%
policeNotified 0.0565%
sensorsLost 0.0035%
assistance 0.0018 %

Σ = 1.0% Σ = 1.0% Σ = 1.0%

Prioritizing Test Cases with Markov Chains 229

only comparable within sequences derived by the same heuristic. Noteworthy to
say that there is a strong intersection (80%) among the sequences, even though
using different strategies proposed in H1 and H2. The corresponding sequences
are labeled in grey in Table 3.

Table 3. List of the first test cases sequences generated for CS I, revealing the sequences
with the highest priorities, for both H1 and H2. Notice a strong intersection on the
results between the two heuristics.

H1 H2

Travelled states p Travelled states p

Start-Deposit-End 20% Start-Check-End 1%

Start-Withdraw-End 8% Start-Withdraw-End 0.8%

Start-Check-Withdraw-End 7.2% Start-Deposit-End 0.7%

Start-Check-End 6% Start-Check-Withdraw-End 0.19%

Start-Deposit-Start-Deposit-End 5% Start-Withdraw-Check-End 0.19%

Σ = 46.2% Σ = 2.88%

Case Study II (CS II): Robot GUI. This case study illustrates an example
of a Robot presented in [30]. The architecture is represented by Controller,
Sensor, Follower and GUI components. Transition probabilities are derived from
an operational profile [3]. The DTMC model can be seen in Fig. 3. The model
consists of six states (GUI, End, Fail, Follow, Control, Sensor), one initial state
(GUI) and two final states (End, Fail). We have adapted the model to explicitly
set the final states to End and Fail, and creating for each final state, a transition
to the initial state, thus to fulfill the specification of ergodic chains, see Sect. 3.2.
The Markov chain transition matrix CS2 for the model is shown in (7).

Applying the approach to this example, the steady-state probabilities
obtained for CS II are shown in Table 2 (on the middle). Follower is the most
active state, while state End is the least active. Table 4 presents the first five
sequences with the generated highest priority, while using H1 and H2. Similarly

Fig. 3. DTMC model for Robot GUI,
adapted from [30]

CS2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.79 0 0 0.01 0.2
0.2 0 0.39 0.39 0.02 0
0 0.9 0 0 0.1 0
0 0.9 0 0 0.1 0
1 0 0 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

230 L. Rebelo et al.

to the previous case study, we can notice that there is an intersection of 80%
among the sequences produced by H1 and H2, labeled in grey.

Table 4. List of the first test cases sequences generated for CS II, revealing the
sequences with the highest probabilities, for both H1 and H2. Notice a relevant inter-
section on the results between the two heuristics.

H1 H2

Travelled states p Travelled states p

GUI-End 20% GUI-Fail 0.705%

GUI-Follower-GUI-End 3.16% GUI-End 0.522%

GUI-Follower-Sensor-Fail 3.081% GUI-Follower-Fail 0.302%

GUI-Follower-Controller-Fail 3.081% GUI-Follower-Controller-Fail 0.0504%

GUI-Follower-Fail 1.58% GUI-Follower-Sensor-Fail 0.0504%

Σ = 30.9% Σ = 1.63%

Case Study III (CS III): Safe-Home System. This case study is a Cyber-
Physical System (CPS), namely Safe-Home, i.e., an open-source security software
adapted from [8]. It consists of an intrusion detection system to control alarms
and sensors that implement some home safety features. Figure 4 illustrates the
behavior of the system modeled as a DTMC and the transition matrix is illus-
trated in (8). We can notice that the model is composed of nine states and sev-
enteen transitions. First, there is a setup (composed of idle and ready states).
Then, there are three main states (initializing, monitoring, and alarm) which are
in charge of sensor initialization, detection, and alarm handling, respectively. If
an intrusion is detected, some actions must be done, e.g., calling the police.

Fig. 4. DTMC model for the Safe-Home, adapted from [8]

CS4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0.025 0.475 0.5 0 0 0 0 0
0 0 0 0.5 0.485 0.01 0 0 0.005
0 0 0 0.5 0 0 0.5 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0.5 0 0.01 0.49 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Prioritizing Test Cases with Markov Chains 231

Some adjustments were necessary also for this model since it was originally
represented in [8] as a Markov Decision Process (MDP) [26]. MDPs represent
a formalism for modeling systems exhibiting both probabilistic and nondeter-
ministic behavior. In this paper we focus on DTMCs, non determinism is not
managed. To handle this, we used the following strategy: whenever the sum of
the transition probabilities of each state exceeds 1, a probability is assigned as a
proportional value. As an example, the initializing state handed over three tran-
sitions with the following probabilities: a1=0.05; a2=0.95; a3=1. Considering
the normalised probabilities, the values assigned in the corresponding DTMC
are: a1=0.025; a2=0.475; a3=0.5. Thus, the system meets the requirements of
a DTMC, and we preserve the original transitions among system states. Besides,
final states assistance and policeNotified originally had an auto-transition with
probability 1 which we modified by changing the transitions to the initial state,
to fulfill the definition of ergodic chains.

Table 2 shows the steady-state probabilities when applying the approach (on
the right side). The monitoring state is the most active one while the state
assistance is the least one. Tables 5 and 6 present the first five test sequences
generated using H1 and H2, respectively. Notice that the intersection among the
sequences generated by H1 and H2 is 40%. Heuristic H2 presents more sequences
ending with state assistance. However, if we observe the transition probability
to achieve state assistance is p = 0.005%, which is very low when compared to
the other transition probabilities in Fig. 4. As strategy H1 is using the transition
probability to derive the sequences, the sequences going through this transition
have a lower chance to occur, therefore they are not among the first ones. The
overlap in the corresponding sequences is highlighted in grey in Tables 5 and 6.

Table 5. List of the first test cases sequences generated for CS III, revealing the highest
probabilities using H1.

Travelled states p

idle-ready-initializing-monitoring-intrusionDetected-alarm- 5.94%

-policeNotified

idle-ready-initializing-monitoring-monitoring-intrusionDetected-alarm- 2.97%

-policeNotified

idle-ready-initializing-initializing-monitoring-intrusionDetected-alarm- 2.82%

-policeNotified

idle-ready-initializing-monitoring-monitoring-monitoring- 1.49%

-intrusionDetected-alarm-policeNotified

idle-ready-initializing-monitoring-intrusionDetected-alarm- 1.49%

-intrusionDetected-alarm-policeNotified

Σ = 14.73%

5.3 Results and Analysis

Table 7 exhibits the metrics (see Sect. 5.1) for all the three case studies which
can be identified in the first column (CS). The second column reports the metric

232 L. Rebelo et al.

Table 6. List of the first test cases sequences generated for CS III, revealing the highest
probabilities using H2.

Travelled states p

idle-ready-initializing-monitoring-assistance 2.728 × 10−7%

idle-ready-initializing-monitoring-intrusionDetected-alarm- 2.304 × 10−7%

-policeNotified

idle-ready-initializing-monitoring-monitoring-assistance 9.595 × 10−8%

idle-ready-initializing-monitoring-monitoring-intrusionDetected- 8.105 × 10−8%

-alarm-policeNotified

idle-ready-initializing-monitoring-monitoring-monitoring- 3.375 × 10−8%

-assistance

Σ = 7.14 × 10−7%

#states, followed by #transitions, T (in seconds), and stop criterion, defined in
Sect. 4 - see Eqs. (3) and (4) - and finally metric N . Then, we report Θ, uN , and
ε for H1 and for H2, whereas the last row of the table shows the simple arithmetic
mean (AVG) for each metric, considering all case studies. In the following we
argue on the results obtained for each case study.

CS I Analysis. The number of generated test sequences is N = 5008. CS
I requires little time to reach the stopping criterion (27.75 s), with inclusion
percentage achieving 95%. For H1, to calculate the usefulness let us first consider
the number of sequences to achieve coverage Θ. With the 17 first sequences
delivered by H1, all independent paths are covered, i.e., Θ = 17. Considering the
criterion of uN , probability max p/1000, 235 sequences have probability greater
than 0.02% (looking at Table 3, probability for sequence ‘Start-Deposit-End’ is
20%). As the metric states to choose the max of (Θ and max p/1000), we get the
value of uN = 235 (please see Sect. 5.1). This leads to an efficiency ε of 95.31%
and coverage of 100% of all independent paths. Considering H2, with the 11
first sequences delivered by H2, all independent paths are covered (Θ = 11)
and 94 sequences show a probability greater than 0.001%, i.e., uN = 94. This
originates an efficiency ε of 98.12% and coverage of 100%. For this case study,
H2 performed better than H1.

CS II Analysis. We can notice a large number of generated test cases (N
= 836,052), as well as the time for generating them, which consumed all the
available time (24 h or 86400 s) to achieve inclusion of 84.29%. The explanation
for this high time is the use of random walk algorithm to travel in the FSM.
More details are given at the beginning of Sect. 5. Concerning Θ, with the 12
first sequences delivered by H1 and with the first 9 sequences delivered by H2
all independent paths are covered. Even though N is a large number, for H1
we have usefulness uN = 316, i.e., 316 test sequences have probability greater
than 0.02%, producing an efficiency ε = 99.96%. For H2 uN = 94, i.e., 94
test sequences show a probability greater than 0.000007%, with an efficiency
ε = 99.99%. The coverage for both H1 and H2 is 100%. We can conclude that
for this case study, H2 performed barely better than H1.

Prioritizing Test Cases with Markov Chains 233

Table 7. Summary of the metrics for each case study.

H1 H2

CS #states #transitions T (s) Stop criterion N uN ε Θ uN ε Θ

I 5 14 27.75 95% 5008 235 95.31% 17 94 98.12% 11

II 6 13 86400 84.29% 836052 316 99.96% 12 94 99.99% 9

III 9 17 86400 83% 1224974 934 99.92% 258 298 99.98% 298

AVG 6.7 14.67 57609.25 87.43% 688678 495 98.4% 95.7 162 99.4% 106

CS III Analysis. This is the most complex case study, with 9 states and
17 transitions. We also notice a large number of test cases generated (N =
1,224,974). For H1, relating to Θ, with the 258 first sequences delivered all inde-
pendent paths are covered. Yet, 934 test sequences have a probability greater
than 0.006%, producing an efficiency ε = 99.92%. For H2, the first 114 test
sequences show a probability greater than 2.73 × 10−10%. This was the unique
result where considering the sequences probabilities (max p/1000) was not suf-
ficient to achieve full coverage Θ of the FSM. Thus, considering Θ, we have
uN = 298, and the last sequence of uN is ‘idle-ready-initializing-monitoring-
sensorsLost-initializing-monitoring-assistance’, with a probability of occurrence
= 4.17 × 10−11%. Therefore, uN = 298 produced an efficiency ε = 99.98%. The
ratio for both H1 and H2 are equivalent to those observed in the other case stud-
ies, hence demonstrating evidence that the approach is interesting when applied
to more complex models (i.e., including a substantial number of states and tran-
sitions). We can conclude that, for this case study, H2 performed better than
H1. We remind that the complete list of the models and results can be found in
our replication package: https://doi.org/10.5281/zenodo.7940360.

6 Discussion and Conclusion

To answer our research question, we present a preliminary investigation by con-
sidering three different Markov chain models, in distinct domains, and producing
test sequences through the random walk algorithm. We generate the test cases
and we reorder them within the suite using the probabilities of each test sequence
to perform the ranking. First, accumulating the transition probabilities of arcs
(H1), and then accumulating the steady-state probabilities of the states (H2).
Some metrics are defined, such as usefulness, efficiency, and coverage, among
others, to study the feasibility of the proposed approach. Considering the exam-
ples, efficiency was 98.4% for H1 and 99.4% for H2. On average, H2 performs
better than H1, considering all case studies. For instance, case study III (which
is the most complex scenario) shows a total of 1,224,974 test sequences, and the
useful number of sequences is reduced to 934 and 298, when applying H1 and
H2, respectively. Both heuristics lead to 100% of coverage (i.e., all independent
paths are wrapped). We think this is valuable, since the criterion of covering all
independent paths is robust, as it guarantees that all states and branches will

https://doi.org/10.5281/zenodo.7940360

234 L. Rebelo et al.

be tested at least once. Our experimental results indicate that Markov chains
are indeed suitable modeling abstractions for prioritizing test cases.

The soundness of probabilities reported in DTMC model is an open issue of
our approach. This largely depends on the knowledge of the software and its use,
and it may require agreement between the customers, the software developers,
and test team managers. We used a random walk to generate the test sequences,
but this criterion usually generates a large number of sequences and therefore it
might be expensive, hence directly impacting the computational time. Besides,
random walk requires a final state for the FSMs, which is not always straightfor-
ward to find in the case studies. As future work, we intend to complement our
research with a comparative analysis by adapting our algorithm with other test-
ing criteria to traverse the FSM, such as Switch Cover, Transition Tour, Breadth
First Search, Depth First Search, among others. Such criteria may influence the
metrics used in this study, and we are interested to quantify the variations.

To conclude, the achieved results are promising and pave the way for new
studies. However, further investigations are essential. Hence, a deeper investi-
gation of Markov chains and TCP is part of our research directions for future
work. We are interested to estimate the scalability of the approach while varying
the model size (i.e., increasing both the number of states and transitions). We
are aware that the requirement of Ergodic chains is quite strong. So, we plan
to replicate the study while considering different steady-state distributions, thus
to observe if efficiency deteriorates when the system is exposed to variegate dis-
tributions. Another limitation concerns the reliability, i.e., the failure detection
capability of the present approach has not been evaluated. Although we consider
the usage frequency of the software system, and there is evidence that the most
used parts tend to present more failures [3,17], this is an assumption that is cru-
cial to be addressed. In the next steps of our experiments, we plan to perform a
comparison with state-of-the-art approaches adopting other assumptions, thus
learning the pros and cons of our proposal.

Acknowledgements. This work has been partially funded by MUR PRIN 2017TWR-
CNB SEDUCE, and the PNRR MUR VITALITY (ECS00000041) Spoke 2 ASTRA -
Advanced Space Technologies and Research Alliance. The authors acknowledge the
support of the MUR (Italy) Department of Excellence 2023–2027 for GSSI.

References

1. SATM: Simple Automatic Teller Machine. https://slideplayer.com/slide/3835819/.
Accessed 4 Oct 2022

2. Barbosa, G., de Souza, É.F., dos Santos, L.B.R., da Silva, M., Balera, J.M.,
Vijaykumar, N.L.: A systematic literature review on prioritizing software test cases
using Markov chains. Inf. Softw. Technol. 147, 106902 (2022)

3. Bertolino, A., Miranda, B., Pietrantuono, R., Russo, S.: Adaptive coverage and
operational profile-based testing for reliability improvement. In: International Con-
ference on Software Engineering (ICSE), pp. 541–551 (2017)

4. Bohme, M., Pham, V.T., Roychoudhury, A.: Coverage-based Greybox fuzzing as
Markov chain. IEEE Trans. Software Eng. 45(5), 489–506 (2019)

https://slideplayer.com/slide/3835819/

Prioritizing Test Cases with Markov Chains 235

5. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. John Wiley & Sons (2006)

6. Brémaud, P.: Markov Chains: Gibbs fields, Monte Carlo Simulation, and Queues,
vol. 31. Springer, New York (2013). https://doi.org/10.1007/978-3-030-45982-6

7. Cai, K.Y.: Optimal software testing and adaptive software testing in the context
of software cybernetics. Inf. Softw. Technol. 44(14), 841–855 (2002)

8. Camilli, M., Gargantini, A., Scandurra, P., Trubiani, C.: Uncertainty-aware explo-
ration in model-based testing. In: IEEE Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 71–81 (2021)

9. Cruciani, E., Miranda, B., Verdecchia, R., Bertolino, A.: Scalable approaches for
test suite reduction. In: Proceedings of the International Conference on Software
Engineering (ICSE), pp. 419–429 (2019)

10. Devroey, X., et al.: Statistical prioritization for software product line testing: an
experience report. Softw. Syst. Model. 16(1), 153–171 (2015)

11. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family
of empirical studies. IEEE Trans. Software Eng. 28(2), 159–182 (2002)

12. Everett, G.D., McLeod Jr., R.: Software Testing. Testing Across the Entire (2007)
13. Ferreira, A.R.: Análise e Melhoria de Processos, p. 59 (2013)
14. Gagniuc, P.A.: Markov Chains: From Theory to Implementation and Experimen-

tation. Wiley (2017)
15. Jorgensen, P.C.: Software Testing: A Craftsman’s Approach. Auerbach Publica-

tions (2013)
16. Juntao, W., Mishima, N.: Development of resource efficiency index for electrical

and electronic equipment. Procedia CIRP 61, 275–280 (2017)
17. Kashyap, A., Holzer, T., Sarkani, S., Eveleigh, T.: Model based testing for software

systems: an application of Markov modulated Markov process. Int. J. Comput.
Appl. 46(14), 13–20 (2012)

18. Kaur, A., Goyal, S.: A genetic algorithm for regression test case prioritization using
code coverage. Int. J. Comput. Sci. Eng. 3(5), 1839–1847 (2011)

19. Konsaard, P., Ramingwong, L.: Total coverage based regression test case prioritiza-
tion using genetic algorithm. In: 2015 12th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Tech-
nology (ECTI-CON), pp. 1–6. IEEE (2015)

20. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84(8), 1090–1123 (1996)

21. Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A.: FAST approaches to scal-
able similarity-based test case prioritization. In: Proceedings of the International
Conference on Software Engineering (ICSE), pp. 222–232 (2018)

22. Morozov, A., Ding, K., Chen, T., Janschek, K.: Test suite prioritization for effi-
cient regression testing of model-based automotive software. In: 2017 International
Conference on Software Analysis, Testing and Evolution (SATE), pp. 20–29 (2017)

23. Muthyala, K., Naidu, R.: A novel approach to test suite reduction using data
mining approach. Indian J. Comput. Sci. Eng. 2(3), 500–505 (2011)

24. Ouriques, J.F.S., Cartaxo, E.G., Machado, P.D.: Test case prioritization techniques
for model-based testing: a replicated study. Software Qual. J. 26(4), 1451–1482
(2018)

25. Ozawa, M., Dohi, T., Okamura, H.: How do software metrics affect test case prioriti-
zation? In: Annual Computer Software and Applications Conference (COMPSAC),
vol. 01, pp. 245–250 (2018)

https://doi.org/10.1007/978-3-030-45982-6

236 L. Rebelo et al.

26. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley (2014)

27. Raiyani, A.G., Pandya, S.S.: Proritization technique for minimizing number of test
cases. Int. J. Softw. Eng. Res. Pract. 1, 3–9 (2011)

28. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester Univer-
sity Press, Manchester (1992)

29. Sayyari, F., Emadi, S.: Automated generation of software testing path based on
ant colony. In: 2015 International Congress on Technology, Communication and
Knowledge (ICTCK), pp. 435–440. IEEE, November 2015

30. Singh, L.K., Tripathi, A.K., Vinod, G.: Software reliability early prediction in
architectural design phase: overview and limitations. J. Softw. Eng. Appl. 4, 181–
186 (2011)

31. Tijms, H.C., Tijms, H.C.: Stochastic Models: An Algorithmic Approach, vol. 303.
Wiley, New York (1994)

32. Walton, G., Poore, J.: Measuring complexity and coverage of software specifica-
tions. Inf. Softw. Technol. 42(12), 859–872 (2000)

33. Whittaker, J.A., Thomason, M.G.: A Markov chain model for statistical software
testing. IEEE Trans. Software Eng. 20(10), 812–824 (1994)

34. Xuan, J., Jiang, H., Ren, Z., Hu, Y., Luo, Z.: A random walk based algorithm for
structural test case generation. In: The 2nd International Conference on Software
Engineering and Data Mining, pp. 583–588 (2010)

35. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verification Reliab. 22(2), 67–120 (2012)

36. Zhou, B., Okamura, H., Dohi, T.: Application of Markov chain Monte Carlo random
testing to test case prioritization in regression testing. IEICE Trans. Inf. Syst.
E95.D(9), 2219–2226 (2012)

Probabilistic Approach for Minimizing
Checking Sequences

for Non-deterministic FSMs

Natalia Kushik1(B), Nina Yevtushenko2, and Jorge López3

1 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Palaiseau, France
natalia.kushik@telecom-sudparis.eu

2 Ivannikov Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

evtushenko@ispras.ru
3 Airbus, Issy-Les-Moulineaux, France

jorge.lopez-c@airbus.com

Abstract. The paper is devoted to model based testing against prob-
abilistic FSMs. Differently from our prior work in 2021, we consider
checking sequences and possibilities of test suite minimization through
reducing the length of the resulting checking sequence. Given a level of
certainty P , we define a P -probably checking sequence under a white box
testing assumption and discuss how a suffix of an input sequence can be
omitted, such that the resulting sub-sequence is P -probably checking.
The specification and possible implementations are non-initialized, i.e.,
the assumption of ‘no reset’ is supported.

Keywords: Model Based Testing · Non-deterministic Finite State
Machines · Checking sequence · Probabilistic Approach

1 Introduction

Model based test generation strategies, and in particular, Finite State Machine
(FSM) test generation strategies are known to have guaranteed fault coverage
under certain assumptions. When an implementation under test (IUT) is non-
initialized, i.e., each implementation state can be initial, checking sequences are
often considered. A checking sequence represents therefore a test suite and often
consists of a combination of synchronizing/transfer sequences with the proper
distinguishing sequences for a specification and related fault domain.

In this work, we focus on non-deterministic FSMs as related specifica-
tions; the specification and implementations are non-initialized, possibly non-
deterministic machines, i.e., the ‘no strict reset’ assumption is supported. A
fault domain consists of the FSM implementations that are explicitly enumer-
ated, i.e., similar to [3,7], we consider a test derivation strategy under the white
box testing assumption. In our previous publication [4], we studied the possi-
bility of test suite minimization through the introduction of the probabilities to
the specification machine. Together with that, we introduced a new P -probably
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 237–243, 2023.
https://doi.org/10.1007/978-3-031-43240-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-43240-8_15

238 N. Kushik et al.

separability relation to be able to distinguish each faulty implementation from
the specification with a given level of certainty, P . We now extend this work by
taking away a number of assumptions. First of all, we allow all the machines
to be non-initialized and thus, we consider a test suite represented by a single
(checking) sequence. Secondly, as no reset can be applied during testing, we do
not minimize the test suite cardinality, instead we shorten the overall length of
the checking sequence, whenever possible. The latter is based on the introduc-
tion of P -probably separating sequences, a P -probably checking sequence and a
proper use of related transfer sequences.

The structure of the paper is as follows. Section 2 contains preliminaries. Non-
initialized probabilistic machines are introduced in Sect. 3, while the checking
sequence minimization strategy is presented in Sect. 4. Section 5 concludes the
paper.

2 Preliminaries

An FSM is a 4-tuple S = 〈S, I,O, hS〉 where S is a finite nonempty set of states, I
and O are finite input and output alphabets, and hS ⊆ S×I×O×S is a transition
relation. The FSM S is non-deterministic if for some pair (s, i) ∈ S × I, there
exist several pairs (o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS ; otherwise, the FSM
is deterministic. The FSM S is observable if for every two transitions (s, i, o, s1),
(s, i, o, s2) ∈ hS it holds that s1 = s2; otherwise, the FSM is non-observable.
The FSM S is complete if for every pair (s, i) ∈ S × I, there exists a transition
(s, i, o, s′) ∈ hS ; otherwise, the FSM is partial (partially specified). We hereafter
consider complete observable FSMs, if not stated otherwise.

A non-deterministic FSM S = 〈S, I,O, hS , pr〉 is probabilistic, when for each
non-deterministic transition (s, i, o, s′) ∈ hS , the function pr defines the probabil-
ity for the output o to be produced at state s under input i, pr : S × I × O −→
[0, 1]. For a non-deterministic FSM, the function pr is defined in such a way
that ∀s ∈ S ∀i ∈ I

∑
o∈O pr(s, i, o) = 1, and it is extended over input/output

sequences from (IO)∗. Given an input/output sequence α/β = (α′/β′).(i/o) and
a state s0, pr(s0, α, β) = pr(s0, α′, β′) ∗ pr(s, i, o), where s is the α′/β′-successor
of the state s0 of the specification FSM S; if the trace α′/β′ is not defined at
state s0 then pr(s0, α′, β′) = 0; pr(s, ε, ε) = 1.

In this paper, similar to our previous work [4], for test minimization, we
consider the following fault model 〈S, ∼=, FD〉, where S is complete possibly
non-deterministic observable FSM, ∼= is the non-separability relation, and all
the implementations from FD are explicitly enumerated, FD = {I1, I2, . . . , Ik}.
FSMs Ij and S are separable, (written Ij
∼= S), if there exists a separating
sequence α ∈ I∗ such that the sets of output reactions of Ij and S to α do not
intersect, i.e., out(Ij , α) ∩ out(S, α) = ∅. We are interested in exhaustive test
suites, such that each Ij ∈ FD that is separable with S can be detected by the
test suite. Moreover, we are interested in a test suite containing a single sequence
which is referred to as a checking sequence with respect to a corresponding fault
model. Therefore such checking sequence α should be able to detect all non-
conforming implementations, i.e., all the implementations of the fault domain
which are separable with the specification.

Probabilistic Checking Sequence Minimization for NFSMs 239

The main difference (with our previous work) and the main contribution of
this work is that we take away the assumption of having a designated initial
state, be that in the specification or in an implementation. Previously a P -
probably separating sequence was defined as follows: α ∈ I∗ is a P -probably
separating sequence for Ij and S, if

∑
β∈out(Ij ,α)∩out(S,α) pr(s0, α, β) ≤ 1 − P .

In the latter, pr(s0, α, β) was the probability to observe β when α is applied at
the initial state of the specification machine S. We further adapt this notion to
non-initialized FSMs S and Ij and explain how a checking sequence α can be
shortened for a given level P .

3 Non-initialized Probabilistic FSMs

In this section, we define the probability of an output sequence to appear as a
reaction to a given input sequence, when the machine can start at any initial
state. We avoid going through the determinization procedure for that matter, i.e.,
obtaining an initialized equivalent, not to encounter potential state explosion.

Given a non-initialized probabilistic specification FSM S = 〈S, I,O, hS , pr〉,
S = {s1, s2, . . . , sn}, and an input/output pair i/o, pr(S, i, o) =
1
n

∑
s∈S pr(s, i, o). The latter assumes that the probability p for S to start

in state si is the same as in any other state sj ∈ S. In other words, press-
ing a ‘reset’ button does not bring any certainty concerning the initial state
of the machine. Assume now that for a state sj , j ∈ {1, . . . , n}, a proba-
bility pj is given, for the machine S to start in this state (sj), in this case
pr(S, i, o) =

∑n
j=1 pj ∗pr(sj , i, o) for an input/output pair i/o. For a given input

i, it holds that
∑

o∈O

∑n
j=1 pj ∗ pr(sj , i, o) = 1.

As an example of a non-initialized probabilistic FSM, consider the machine
in Fig. 1 (similar to that one in [4]). Consider an input/output pair i1/o1, for
p1 = 0.8, and p2 = p3 = 0.1, it holds that pr(S, i1, o1) = 0.74.

As usual, we extend the behavior of the probabilistic machine over
input/output sequences from (IO)∗. Given an input/output sequence α/β =
(α′/β′).(i/o), the probability of the non-initialized S to produce β on α is
pr(S, α, β) =

∑n
j=1 pj ∗ pr(sj , α, β). For example, for the FSM in Fig. 1,

pr(S, i1i1, o1o2) = 0.096.
We are interested in a checking sequence α that delivers a P-probably exhaus-

tive test suite for a given specification S and a set of its potential implementa-
tions {I1, I2, . . . , Ik}. The P -probably separability is therefore adjusted for non-
initialized machines. Input sequence α ∈ I∗ is a P -probably separating sequence
for Ij and S, if

∑
β∈out(Ij ,α)∩out(S,α) pr(S, α, β) ≤ 1 − P . Note that out(Ij , α)

(out(S, α)) is the union of all output reactions β on the sequence α that can be
obtained at any initial state of Ij (S).

An interesting question arises about the probability distribution for initial
states of implementation FSMs. In this paper, we assume that all the states can
be initial with the same probability. If this assumption is not supported then
the formula for defining a P -probably separating sequence for the specification
and such implementation should be modified, accordingly.

240 N. Kushik et al.

Fig. 1. An example probabilistic FSM S

Coming back to the same example of S, let us consider an implementation
I1 ∈ FD in Fig. 2. According to the above definition the sequence α = i2i2i1i1i1
is a 0.9-probably separating sequence for I1 and S (Fig. 1).

Fig. 2. An implementation FSM I1 ∈ FD

A sequence α is P -probably checking for the fault model 〈S,∼=, FD =
{I1, I2, . . . , Ik}〉, if this sequence P -probably separates each implementation Ij ,
j ∈ {1, . . . , k}, from the specification S.

4 Minimizing a Checking Sequence with a Level
of P -Exhaustiveness

Assume that a sequence α is a checking sequence for the fault model FM =
〈S,∼=, FD = {I1, I2, . . . , Ik}〉. Given a level P of certainty, the question arises:
can we shorten α in such a way that the resulting sequence would be P -
probably checking for 〈S,∼=, FD = {I1, I2, . . . , Ik}〉 ? We conjecture the fol-
lowing: non-initialized implementations can be hard to test as in the checking

Probabilistic Checking Sequence Minimization for NFSMs 241

sequence a transfer to a known state of the implementation, is implicitly used
or even explicitly included during its derivation (see some related works on the
checking sequence derivation, for example in [1,2,5,6]). We therefore propose
the following: before the application of the sequence α or its shorter preamble
α′, one can apply a synchronizing sequence SS with further verification that
the sequence SS.α′ is P -probably checking for FM1. Note however, that the
sequence SS should be synchronizing for all the implementations I1, I2, . . . , Ik,
and this sequence can be derived for a single FSM which is the direct sum of
Ij , j ∈ {1, . . . , k}. The latter contains all the transitions of each implementation
Ij and thus, its synchronizing sequence is also one for each Ij , j ∈ {1, . . . , k}.
Note that if implementations are non-initialized but deterministic then such a
sequence can be efficiently computed [8] (in polynomial time, if the number of
mutants k is polynomial too w.r.t. n, for the corresponding automaton where
the outputs are omitted).

As an example of the proposed strategy, consider again the FSM S in Fig. 1,
and the FD = {I1, I2, I3}. I1 is shown in Fig. 2, while I2 and I3 in Fig. 3
and Fig. 4, respectively. Note that the sequence α = i1i1i2i2i1i1i2i1i2i2 is a
checking sequence for 〈S,∼=, FD = {I1, I2, I3}〉. The direct sum for the three
implementations possesses a synchronizing sequence SS = i2i2; indeed, each of
the implementations has the same SS, which can be checked by direct inspection.
We append this SS as a prefix to α and start cutting its suffix. For P = 0.8,
one can cut 8 inputs in the resulting sequence, i.e., SS.α′ = i2i2i1i1 is 0.8-
probably checking sequence and it is six inputs shorter than the initial α. This
approach can be therefore applied iteratively, until the level P of exhaustiveness
is respected.

Fig. 3. An implementation FSM I2 ∈ FD

The following suggestions for deriving a shorter checking sequence can be
made based on the considered example. First of all, the use of proper final state
identification sequences such as homing and synchronizing sequences, can help
1 Such checking is needed to assure that SS.α′ is P -probably separating for each

implementation Ij , j ∈ {1, . . . , k}, and S.

242 N. Kushik et al.

Fig. 4. An implementation FSM I3 ∈ FD

to derive a shorter checking sequence with the given level of certainty. Secondly,
when deriving a checking sequence it seems to be worth considering a determin-
istic projection of the specification where transitions and the initial state have
the highest probability. In a deterministic projection only one transition is left at
each state for every input. Finally, if all the implementations are deterministic
it is worth introducing another conformance probabilistic relation such as for
example, the P -probably reduction when the behavior of an implementation is
P -probably included in that of the specification, for a given level of certainty P .
All these challenging issues should be studied in details in the future.

5 Conclusion

In this paper, we presented a probabilistic approach for minimizing the length
of a checking sequence, probably keeping a given level of its exhaustiveness. It
is a continuation of the paper [4], where only initialized machines (specification
and its implementations) were considered. An interesting direction would be to
combine both approaches, when some of the test sequences could be regrouped
together, i.e., building a P -probably checking sequence for a subset of implemen-
tations.

There are many possibilities for future work, we state some of these future
directions. We did not discuss any P -probably checking sequence derivation sce-
narios in detail, assuming that a starting sequence to be shortened is given. At
the same time, we did not consider any other testing assumptions nor other
conformance relations. Finally, experimental evaluations need to be performed
to see how often the approach brings good practical results.

References

1. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proceedings of
Symposium on Switching Circuit Theory and Logical Design, pp. 95–110 (1964)

Probabilistic Checking Sequence Minimization for NFSMs 243

2. Jourdan, G., Ural, H., Yenigün, H.: Reduced checking sequences using unreliable
reset. Inf. Process. Lett. 115(5), 532–535 (2015). https://doi.org/10.1016/j.ipl.2015.
01.002

3. Kushik, N., Yevtushenko, N., Cavalli, A.R.: On testing against partial non-
observable specifications. In: 9th International Conference on the Quality of Infor-
mation and Communications Technology, QUATIC 2014, Guimaraes, Portugal, 23–
26 September 2014, pp. 230–233. IEEE Computer Society (2014). https://doi.org/
10.1109/QUATIC.2014.38

4. Kushik, N., Yevtushenko, N., López, J.: Testing against non-deterministic FSMs: a
probabilistic approach for test suite minimization. In: Clark, D., Menéndez, H.D.,
Cavalli, A.R. (eds.) Testing Software and Systems - 33rd IFIP WG 6.1 International
Conference, ICTSS 2021, London, UK, 10–12 November 2021, Proceedings. LNCS,
vol. 13045, pp. 55–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-
04673-5 4

5. Nguena Timo, O., Petrenko, A., Ramesh, S.: Checking sequence generation for sym-
bolic input/output FSMs by constraint solving. In: Fischer, B., Uustalu, T. (eds.)
ICTAC 2018. LNCS, vol. 11187, pp. 354–375. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02508-3 19

6. Petrenko, A., Yevtushenko, N.: Conformance tests as checking experiments for par-
tial nondeterministic FSM. In: Formal Approaches to Software Testing, 5th Inter-
national Workshop, FATES 2005, Edinburgh, UK, 11 July 2005, Revised Selected
Papers, pp. 118–133 (2005). https://doi.org/10.1007/11759744 9

7. Poage, J.F., McCluskey, E.J.: Derivation of optimum test sequencies for sequential
machines. In: 1964 Proceedings of the Fifth Annual Symposium on Switching Circuit
Theory and Logical Design, pp. 121–132 (1964). https://doi.org/10.1109/SWCT.
1964.7

8. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

https://doi.org/10.1016/j.ipl.2015.01.002
https://doi.org/10.1016/j.ipl.2015.01.002
https://doi.org/10.1109/QUATIC.2014.38
https://doi.org/10.1109/QUATIC.2014.38
https://doi.org/10.1007/978-3-031-04673-5_4
https://doi.org/10.1007/978-3-031-04673-5_4
https://doi.org/10.1007/978-3-030-02508-3_19
https://doi.org/10.1007/978-3-030-02508-3_19
https://doi.org/10.1007/11759744_9
https://doi.org/10.1109/SWCT.1964.7
https://doi.org/10.1109/SWCT.1964.7
https://doi.org/10.1007/978-3-540-88282-4_4

AI and Smart Contracts Testing

Applying Pairwise Combinatorial Testing
to Large Language Model Testing

Bernhard Garn, Ludwig Kampel(B), Manuel Leithner, Berina Celic,
Ceren Çulha, Irene Hiess, Klaus Kieseberg, Marlene Koelbing,

Dominik-Philip Schreiber, Michael Wagner, Christoph Wech, Jovan Zivanovic,
and Dimitris E. Simos

MATRIS Research Group, SBA Research, 1040 Vienna, Austria
{matris,lkampel}@sba-research.org

Abstract. In this paper, we report on applying combinatorial testing
to large language models (LLMs) testing. Our aim is to pioneer the usage
of combinatorial testing to be used in the realm of LLMs, e.g. for the
generation of additional training or test data. We first describe how to
create an input parameter model for the input of an LLM. Based on a
given original sentence, we derive new sentences by replacing words with
synonyms according to a combinatorial test set, leading to a specified
level of coverage over synonyms while attaining an efficient diversifica-
tion. Assuming that the semantics of the original sentence are retained
in the derived sentences, we construct a test oracle based on existing
annotations. In an experimental evaluation, we apply generated pairwise
sentence test sets from the BoolQ benchmark set [4] against two LLMs
(T5 [12] and LLaMa [15]). Having automated our approach for test sen-
tence generation, as well as their execution and analysis, our experimen-
tal evaluations demonstrate the applicability of pairwise combinatorial
testing methods to LLMs.

Keywords: large language models · combinatorial testing

1 Introduction

Recent progresses in research and development of artificial intelligence (AI) sys-
tems seem to have yielded a breakthrough in the capabilities of large language
models (LLMs) to engage in human-like conversations. Such AI systems currently
attain broad attention throughout society, being highly discussed in research, fre-
quently covered by the media and subject to political discussions. The increasing
capabilities and improved performance of AI systems often come at the cost of
added model complexity, which also requires increased efforts for learning. The
resulting financial and environmental costs as approximated in Strubell et al. [14]
are significant. For example, training the base version of BERT [14] requires a

B. Garn, L. Kampel, M. Leithner—Equally contributing first authors.

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 247–256, 2023.
https://doi.org/10.1007/978-3-031-43240-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-43240-8_16

248 B. Garn et al.

CO2 emission of 650 kg and expenses of $3751 to $12571. Such numbers empha-
size the high costs and large data sets required for training and testing modern
AI models. To address these issues, researchers are working towards generat-
ing such data sets automatically, particularly in the domain of natural language
processing (NLP) (cf. Bowman et al. [1]). Especially when testing for semantic
consistency of LLMs, it is extremely challenging to cover all possible variations
of formulations of input queries as also mentioned in [8]. Aside from pure training
of AI systems, there is a need for the development of appropriate (automated)
testing and quality assurance measures [17]. In light of these developments and
needs, we investigate the use of combinatorial testing (CT) for the testing of
LLMs, with the aim of establishing this combinatorial coverage based test set
generation method for automated test set augmentation and diversification.

A Brief Overview of Combinatorial Testing. CT is an established black box
testing methodology for testing a system under test (SUT) against undesired
effects of interactions of its parameters. The essential two pre-requisites for the
application of CT are, first, the existence of an input parameter model (IPM) [6]
of the SUT, which models the SUT’s input by means of finitely many parameters
that can take on finitely many values. Second, a testing oracle is required, which
is – conceptually speaking – a method to distinguish failing tests, those that
trigger faulty behavior of the SUT, from passing tests, those that do not. The key
idea of CT is to use optimized test sets in which any combination of t parameter-
values appears in at least one test. Such test sets are called combinatorial or
t-way test sets. The parameter t is also referred to as the (interaction) strength.
Pairwise testing, i.e. CT with interaction strength t = 2, is likely the most
prominent instance of CT. A thorough introduction to CT is provided by Kuhn
et al. [10], while a survey on CT is given by Nie and Leung [11].

Fig. 1. Overview of a generic CT process [6].

In this paper, we present how the CT process (see Fig. 1) can be instantiated
in order to be applied for the testing of LLMs. Our approach takes as input
a sentence, e.g. a question from an existing training data set, and allows us
to diversify the input to a chosen degree of coverage by deriving additional test
sentences according to a combinatorial test set. Thereby our focus is to maintain
the semantics of the sentence, such that a potential existing correct or expected
answer is also valid for all of the derived sentences.

In particular, the contributions of our work are as follows:

1. An approach to construct an input parameter model (IPM) from a sentence
which is given as input to an LLM;

Applying Pairwise CT to LLM Testing 249

2. A method to derive a combinatorial test set based on a given sentence and a
covering array (CA);

3. An initial experimental evaluation, where we use pairwise combinatorial test-
ing against two SUTs.

This Paper is Structured as Follows. In Sect. 2, we review related work on the
testing of LLMs. In Sect. 3, we give a general description of our approach for
applying CT to the testing of LLMs, and illustrate it by means of a running
example. In Sect. 4 we give an outline of our initial experimentation. Finally,
in Sect. 5, we briefly discuss potential threats to validity of this work before we
summarize the paper and mention some ideas for future work in Sect. 6.

2 Related Work

The approach of mutating input sentences to a LLM while preserving the mean-
ing or sentiment has recently garnered attention. The work by Gardner et al. [5]
proposes the generation of contrast sets from standard test sets for supervised
learning by manually perturbing the test instances, leading to a more accu-
rate and comprehensive assessment of a model’s linguistic capabilities. Similarly,
Khashabi et al. [9] propose a novel method for generating training datasets by
applying human based natural perturbations to a small scale seed dataset. In con-
trast to these works, the approach presented in this paper uses an automated
way for extending test or training data.

Ruane et al. [13] put forward a framework for using divergent input exam-
ples, generated by altering a textual user utterance while still maintaining the
original intent, for testing the quality of conversational agents. In a continua-
tion, Guichard et al. [7] propose and evaluate an approach with regard to the
utilization of paraphrases. They generate divergent input examples by process-
ing the input data through lexical substitutions, i.e. replacing words with their
synonyms, using the Oxford Thesaurus for the retrieval of synonyms.

Bozic [2] proposes a metamorphic testing approach for chatbot testing mak-
ing use of an ontology. The method presented in our work can be used for deriving
tests for such a metamorphic testing approach.

3 Instantiating the Combinatorial Testing Process
for Testing of LLMs

In this section, we describe the application of the CT process to LLM testing.
To briefly outline our approach, we start from a given sentence, e.g. from a
training or evaluation set for LLMs. Interpreting each word of the given sentence
as a parameter of an IPM, we generate from it several derived sentences by
replacing words with synonyms according to a combinatorial test set. The derived
sentences can later be submitted to an LLM. Provided annotations of the original
sentence, such as a true/false assignment to a statement or a correct answer

250 B. Garn et al.

to a question, are reused for the derived sentences. Subsequently, they can be
used by a test oracle to assess the LLM’s responses to the derived sentences. An
outline of our approach is given by Fig. 2 and elucidated in this section.

Fig. 2. An overview of the proposed testing approach. CT dependent steps are colored
in red, LLM specific steps are colored in gray. (Color figure online)

3.1 A Combinatorial Sentence Model via an IPM

Bridging concepts from LLMs and CT, our key idea is that a given original
sentence (a statement or question from a benchmark) gives rise to an IPM, by
regarding each word in the sentence as a parameter and its synonyms as the
corresponding parameter-values. For each word, we create a list of synonyms
with at most vmax elements to avoid an uncontrolled size of the IPM, where
the original word appears as the first element. It is also possible to consider no
synonyms for a specific word, which means to consider the word itself as its only
synonym, leading to a parameter in the IPM with only one value. Conceptually,
our proposed approach is independent from the way how and from where these
synonyms are selected.

The derivation of the IPM is summarized in the following procedural steps:

Step 1 : Select an original sentence (e.g., from a given benchmark set).
Step 2 : Each word of the sentence gives rise to one parameter of the IPM.
Step 3 : For each word of the sentence, create a list of synonyms:

– each synonym serves as one parameter value of the corresponding param-
eter in the IPM;

– the length of the list of synonyms reflects the parameter domain size and
is bounded by vmax;

– ensure that the original word appears as first element in the list.

Example 1. We illustrate the steps of our approach by means of a (running)
example, where we consider the following concrete original sentence, which is
the 23rd question of the training set in the BoolQ benchmark [4]:

“can you drink alcohol in public in denmark”.

This sentence consists of eight words, and hence the corresponding IPM has eight
parameters. We set the maximal number of considered synonyms vmax to three,
and further for the words ‘can’, ‘you’ and ‘ in’ we select themselves as their only
synonyms. Table 1 shows the considered synonyms for each word of this sentence.
The corresponding parameters p1, . . . , p8 can take 1, 1, 3, 3, 1, 3, 1 and 3 values,
respectively. We emphasize again that the first value of each parameter is equal
to the corresponding word in the original sentence.

Applying Pairwise CT to LLM Testing 251

Table 1. The selected synonyms largely maintain the questions’ semantics.

p1 p2 p3 p4 p5 p6 p7 p8

can you drink alcohol in public in denmark

drinking alcoholic drink populace kingdom of denmark

booze alcoholic beverage world danmark

3.2 Generation of t-Way Sentence Test Sets

We use an IPM as described above to generate a combinatorial test set that
achieves coverage of all t-way combinations of synonyms for a specified interac-
tion strength t. For practical applications, there exist dedicated CT tools, such
as CAgen [16], which take an IPM as an input and return a combinatorial test
set of the desired interaction strength t. Each row of the returned (abstract)
combinatorial test set then represents a derived sentence and hence corresponds
to one (abstract) test case. The fact that the first element of each synonym list is
the original word, together with the properties of the CAgen tool, has the result
that the first derived sentence in the combinatorial test set is equivalent to the
original sentence. Collectively, all derived sentences in a generated combinatorial
test set have the property that every combination of t synonyms for different t
words appears within at least one of them.

Example 1. (continued) The IPM depicted in Table 1 can now be used to
generate the pairwise combinatorial test set given in Table 2 derived from the
example sentence. The columns headed by p1, . . . p8 represent the parameters,
respectively the words, and each row q1, . . . , q9 represents one test case, i.e. a
derived sentence. Altogether, these derived sentences achieve full 2-way cover-
age, i.e. they have the property that any pair of two synonyms for two different
words appears together in at least one of the derived sentences. To illustrate
this pairwise coverage property, consider the parameters p4 and p8, for which
we can verify that each pair in the Cartesian product {alcohol, alcoholic drink,
alcoholic beverage}×{denmark, kingdom of denmark, danmark} appears in at
least one of the tests q1, . . . , q9. Taking the pair (booze, kingdom of denmark),
i.e. the synonym booze for the original word drink and the synonym kingdom

of denmark for the original word denmark, we find it in the derived sentence q7.
Similarly, the remaining pairwise coverage requirements can be verified.

252 B. Garn et al.

Table 2. A pairwise combinatorial test set for the question “can you drink alcohol in
public in denmark” and its corresponding IPM with eight parameters. It consists of
nine derived sentences. The original sentence appears as q1.

p1 p2 p3 p4 p5 p6 p7 p8

q1 can you drink alcohol in public in denmark

q2 can you drink alcoholic drink in populace in kingdom of denmark

q3 can you drink alcoholic beverage in world in danmark

q4 can you drinking alcohol in populace in danmark

q5 can you drinking alcoholic drink in world in denmark

q6 can you drinking alcoholic beverage in public in kingdom of denmark

q7 can you booze alcohol in world in kingdom of denmark

q8 can you booze alcoholic drink in public in danmark

q9 can you booze alcoholic beverage in populace in denmark

3.3 Sentence Test Set Translation and Execution

The generated combinatorial test sets now serve as a basis for test execution
against LLMs. Each sentence given as a row of a combinatorial test set is trans-
lated to one test case, i.e. one query to an LLM. In order to obtain executable
test cases from the derived sentences that yield a processable response, adequate
prompt design is required; in this step, modifications are applied to the prompt
in order to evoke a Boolean answer (cf. Brown et al. [3] for an exploration of
this topic). The generated executable test case (i.e., the derived sentence com-
bined with an appropriate prompt) is submitted together with potential further
configuration values to an LLM.

Example 1. (continued) We translate the first derived sentence, i.e. test case
q1 in Table 2, to an executable test case. For the sentence “ can you drink alcohol
in public in denmark”, we add a prompt specific to the LLM LLaMa to obtain
an executable test case, which yields:

can you drink alcohol in public in denmark. the boolean (1)
answer to this question is

3.4 Test Oracle

Under the assumption that synonym replacement preserves the semantics of a
sentence, the meaning of the derived sentences in a combinatorial sentence test
set should also be equal to the meaning of the original sentence. Making use of
this assumption, we can create a test oracle for the derived sentences based on
an annotation for the original sentence, in case it is available.

For the specific case where the original sentence is a Boolean question with
its corresponding annotation given by a true/false assignment, consider an

Applying Pairwise CT to LLM Testing 253

executable test case obtained from a combinatorial sentence test set derived from
this original Boolean question. When submitted against an LLM, we expect the
LLM to deal with the truth content of the test sentence, and therefore, it should
be possible to categorize its response into one of the three classes true, false
and undefined. This categorization can be obtained by textual post-processing
using keywords in the returned response. The test oracle then compares the
assigned category with the given annotation of the original Boolean question:
if the category of the response is equal to the true/false annotation of the
original Boolean question, the test oracle decides this derived sentence to be a
passing test, otherwise it is a failing test.

Example 1. (continued) The response of LLaMa to the prompt given in (1),
is:

can you drink alcohol in public in denmark? The boolean (2)
answer to this question is ~Ać

After removing the prompt (1) from (2), the remaining part “~Ać” is trans-
formed to the empty string via the post-processing. Hence, the response is clas-
sified as undefined. To give another example, consider the response obtained
after executing the test case obtained from the derived sentence q2 of Table 2:

can you drink alcoholic drink in populace in kingdom of (3)

denmark? The boolean answer to this question is ? yes

After removing the prompt (1) from the response (3), the remaining response
“ ? yes” is classified as true.

4 Outline of Experimental Evaluation

In order to conduct our experimental evaluation, we automated the process of
applying CT to LLMs in an extensible testing pipeline that is open to additional
LLMs, benchmark sets as well as test oracles. We applied our approach to all
9, 427 questions in the train.jsonl file from the BoolQ benchmark set, generat-
ing pairwise combinatorial sentence test sets for each of them. Subsequently, we
executed all derived questions from all combinatorial sentence test sets (90, 976
sentences in total) against the two SUTs T51 [12] and LLaMa [15], which was
sourced via the LLaMa Cpp Port2. The results are documented in Table 3.

To outline the results of our experimental evaluation, first, both LLMs are
not very accurate, and second, this is independent from the sentence sets. To
elaborate, the high percentage of undefined responses by T5 (see column U in
the lower part of Table 3) shows that it is difficult to steer T5 towards giving

1 https://huggingface.co/docs/transformers/model doc/t5v1.1, accessed on 2023-05-
03.

2 https://github.com/ggerganov/llama.cpp, accessed on 2023-05-03.

https://huggingface.co/docs/transformers/model_doc/t5v1.1
https://github.com/ggerganov/llama.cpp

254 B. Garn et al.

Boolean answers reliably. Considering that roughly 62% of the original questions
of the BoolQ dataset are annotated as true, and the remaining 38% as false,
this explains the low accuracy achieved by T5 in our experimental evaluation.
Hence, this LLM exhibits a very low accuracy of only 2.02% for our set of derived
sentences and 2.76% for the set of original sentences. In contrast, the settings of
the LLaMa model together with the applied post-fix mostly yielded responses
classifiable as Boolean value. Nevertheless, the accuracy is only 47.45% and
45.75% for original and derived sentence sets, respectively, which is close to a
random fair coin flip for a Boolean classification task.

Overall, it seems that the performance of the two LLMs was not meaning-
fully impacted by our derived sentences, since the accuracy values do not differ
by more than 2% in each category. This could suggest that our combinatorial
generation approach was successful in generating more sentences from a given
set, without reducing its quality. However, the fact that the accuracy of both
LLMs for the original sentences was either very low for T5, and close to that of
a fair coin flip for LLaMa, relativizes this observation.

5 Lessons Learned and Threats to Validity

Throughout our experimental evaluation, we encountered a variety of issues in
connection with the use of synonyms. The most significant one is that replacing
a word with a synonym can alter the meaning of the original sentence. Assessing
the suitability of synonyms coming from (external) synonym databases is not
trivial and goes beyond the scope of this work. We have tried to mitigate this
threat by choosing at most three words from a synonym list. Finally, the small
number and low accuracy of the considered sample SUTs does not allow for a
general evaluation of our approach. However, the primary focus of this work is

Table 3. Confusion (actual/predicted) values (top) and performance results (bottom)
of all models by test set, given in percent. Where the acronyms stand respectively for
T = true, F = false, U = undefined, AWUP = accuracy without undefined predictions,
ACA = average of combinatorial test set accuracies.

SUT sentences T/U T/T T/F F/U F/T F/F

T5 original 59.44 2.76 0.12 36.20 1.49 0.00

derived 60.05 1.98 0.10 36.73 1.10 0.04

LLAMA original 32.88 20.34 9.09 18.37 14.56 4.75

derived 32.85 19.58 9.71 19.40 12.91 5.56

SUT sentences acc T F U AWUP ACA

T5 original 2.76 4.24 0.12 95.64 63.26 -

derived 2.02 3.07 0.14 96.78 62.68 2.15

LLAMA original 47.45 51.26 34.90 13.84 55.07 -

derived 45.75 52.25 32.48 15.27 54.00 45.45

Applying Pairwise CT to LLM Testing 255

to propose a CT method for testing LLMs and we consider a larger evaluation
as part of future work.

6 Summary and Future Work

In this work, we proposed an approach for the application of combinatorial
testing to LLMs. Based on a set of original questions designed to benchmark
an LLM’s capabilities and a dictionary of synonyms, we derive an IPM for each
original question that allows us to diversify the input to a chosen pairwise degree
of coverage. Our experimental evaluation suggest that the accuracy of responses
roughly stays on par with those returned for the original test set. However, some
test sentences may be impacted by issues related to the use of synonyms.

In order to address such issues, in our future efforts we want to improve the
quality of the lists of synonyms, e.g. by querying the SUT itself. Furthermore
we want to consider other testing oracles that can handle non-Boolean test sen-
tences, as well as to investigate our method in a larger experimental evaluation
featuring more LLMs.

Acknowledgements. SBA Research (SBA-K1) is a COMET Center within the
COMET – Competence Centers for Excellent Technologies Programme and funded by
BMK, BMAW, and the federal state of Vienna. The COMET Programme is managed
by FFG. Moreover, this work was performed partly under the following financial assis-
tance award 70NANB21H124 from U.S. Department of Commerce, National Institute
of Standards and Technology.

References

1. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus
for learning natural language inference. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 632–642 (2015)

2. Božić, J.: Ontology-based metamorphic testing for chatbots. Softw. Qual. J. 30(1),
227–251 (2022)

3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., et al.:
Language Models are Few-Shot Learners. In: Advance in Neural Information Pro-
ceedings Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020)

4. Clark, C., Lee, K., Chang, M.W., Kwiatkowski, T., Collins, M., Toutanova, K.:
BoolQ: exploring the surprising difficulty of natural yes/no questions. In: Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol 1. pp. 2924–2936
(2019)

5. Gardner, M., Artzi, Y., Basmov, V., Berant, J., Bogin, B., Chen, S., et al.: Eval-
uating models’ local decision boundaries via contrast sets. In: Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 1307–1323 (2020)

6. Grindal, M., Offutt, J.: Input parameter modeling for combination strategies. In:
Proceedings of the 25th Conference on IASTED International Multi-Conference:
Software Engineering, pp. 255–260. SE 2007, ACTA Press, Anaheim, CA, USA
(2007)

256 B. Garn et al.

7. Guichard, J., Ruane, E., Smith, R., Bean, D., Ventresque, A.: Assessing the robust-
ness of conversational agents using paraphrases. In: 2019 IEEE International Con-
ference On Artificial Intelligence Testing (AITest), pp. 55–62 (2019)

8. Jang, M., Lukasiewicz, T.: Consistency analysis of chatgpt. arXiv preprint
arXiv:2303.06273 (2023). https://doi.org/10.48550/arXiv.2303.06273

9. Khashabi, D., Khot, T., Sabharwal, A.: More bang for your buck: natural pertur-
bation for robust question answering. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 163–170 (2020)

10. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series,
Taylor & Francis Group, CRC Press, Boca Raton, Florida (2013)

11. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
1–29 (2011). https://doi.org/10.1145/1883612.1883618

12. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al.: Explor-
ing the limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res. 21(1), 5485–5551 (2020)

13. Ruane, E., Faure, T., Smith, R., Bean, D., Carson-Berndsen, J., Ventresque, A.:
BoTest: a framework to test the quality of conversational agents using divergent
input examples. In: Proceedings of the 23rd International Conference on Intelligent
User Interfaces Companion. IUI 20118 Companion, ACM, New York, NY, USA
(2018)

14. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in NLP. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 3645–3650

15. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix,
T., et al.: Llama: open and efficient foundation language models. Preprint
arXiv:2302.13971 (2023). https://doi.org/10.48550/arXiv.2302.13971

16. Wagner, M., Kleine, K., Simos, D.E., Kuhn, R., Kacker, R.: CAGEN: a fast combi-
natorial test generation tool with support for constraints and higher-index arrays.
In: 2020 IEEE International Conference on Software Testing, Verification and Val-
idation Workshops (ICSTW), pp. 191–200 (2020)

17. Wotawa, F.: On the use of available testing methods for verification & validation
of AI-based software and systems. In: CEUR Workshop Proceedings 2808 (2021)

http://arxiv.org/abs/2303.06273
https://doi.org/10.48550/arXiv.2303.06273
https://doi.org/10.1145/1883612.1883618
http://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2302.13971

CATANA: Replay Testing
for the Ethereum Blockchain

Morena Barboni1(B) , Guglielmo De Angelis2 , Andrea Morichetta1 ,
and Andrea Polini1

1 University of Camerino, Camerino, Italy
morena.barboni@unicam.it

2 IASI CNR, Rome, Italy

Abstract. Blockchain technology is increasingly being adopted in var-
ious domains where the immutability of recorded information can fos-
ter trust among stakeholders. However, upgradeability mechanisms such
as the proxy pattern permit modifying the terms encoded by a Smart
Contract even after its deployment. Ensuring that such changes do not
impact previous users is of paramount importance. This paper introduces
CATANA, a replay testing approach for proxy-based Ethereum applica-
tions. Experiments conducted on real-world projects demonstrate the
viability of using the public history of transactions to evaluate new ver-
sions of a deployed contract and perform more reliable upgrades.

Keywords: Replay Testing · Smart Contract · Upgrade · Proxy
Pattern · Ethereum · Software Testing

1 Introduction

One of the most notable features of blockchain technologies is the capability
of storing data so that it cannot be modified in any practical way. Ethereum
stands out for its support of smart contracts, tamper-proof programs that can
be deployed and executed on the blockchain. This feature allows users to engage
with decentralized applications (DApps) more confidently, as they can trust that
no one will make arbitrary modifications to the underlying logic. Smart contract
immutability, however, is a double-edged sword: it fosters integrity and trust, but
it also prevents direct bug fixes and feature updates. To overcome this limitation,
developers rely on smart contract upgradeability mechanisms, among which the
proxy pattern is the most popular [4,17]. The proxy pattern permits to upgrade
the logic associated with a proxy smart contract even after its deployment, bring-
ing about numerous advantages and various concerns. Even a minor change, such
as reordering variables, can disrupt compatibility between two different versions
of the implementation [15]. Additionally, other smart contracts (or even off-
chain software) that rely on upgradeable systems might encounter compatibility
issues when the underlying logic is replaced. Thoroughly testing new contract
versions before deployment is crucial to prevent such scenarios. Replay testing
is a technique that leverages recorded interactions between the users and the
c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 257–265, 2023.
https://doi.org/10.1007/978-3-031-43240-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_17&domain=pdf
http://orcid.org/0000-0002-1281-4058
http://orcid.org/0000-0002-1076-0076
http://orcid.org/0000-0003-1738-9043
http://orcid.org/0000-0002-2840-7561
https://doi.org/10.1007/978-3-031-43240-8_17

258 M. Barboni et al.

system under test to generate replayable test scripts, and is often used to sup-
port regression testing activities [3,10,12,13]. In conventional systems, capturing
execution traces can be intrusive and introduce performance overhead. Public
blockchains offer a significant advantage by permanently and publicly recording
all operations (i.e., transactions) executed by their users. Despite this, the pub-
lic history of transaction was only leveraged for inspection [11], monitoring [5]
and test case generation purposes [20]. In this work, we propose the first replay
testing approach for proxy-based upgradeable smart contracts. Specifically, we
analyze possible complexities and opportunities connected to the Ethereum envi-
ronment, and we implement the proposed solution in the CATANA (Contract
Assessment through TrANsaction replAy) tool. The rest of this paper is struc-
tured as follows: in Sect. 2 we provide background about replay testing and
smart contracts. Section 3 describes the proposed replay approach, while Sect. 4
presents the experimental evaluation. Related work is reported in Sect. 5, while
in Sect. 6 we draw conclusions and identify areas for further research.

2 Background

Ethereum Smart Contracts and Upgradeability. Ethereum is a public blockchain
platform that supports the execution of self-enforcing programs called Smart
Contracts. These enable the creation of decentralized applications (DApps) for
various domains, from gaming to finance. Each contract resides at a unique
address on the blockchain comprising executable code, storage data, and a bal-
ance. Users can interact with the contract functions by issuing transactions,
with the resulting state changes permanently recorded in the ledger. The source
code of a contract is immutable, meaning that its terms cannot be changed after
deployment. This property promotes integrity and trust, but it also limits the
ability to fix bugs and vulnerabilities. While deploying a new contract is an
option, it can be complex and costly as it requires migrating the old contract’s
state and redirecting users to the new address. In recent years, upgradability
mechanisms gained popularity in mainstream projects1, enabling the release of
patches and new features over time. However, upgrading a smart contract is a
delicate activity that necessitates caution to avoid breaking previous function-
alities or introducing new issues (e.g., the Compound Finance upgrade bug2).

The proxy pattern has gained significant attention among existing upgradabil-
ity mechanisms due to its effectiveness and simple design. A comprehensive study
on smart contract upgradeability [17] reveals widespread adoption of proxy-based
projects on the main chain, with 1.4 million proxy contracts employed in 8,225
upgradeable systems. The proxy pattern aims to decouple the storage of a smart
contract from its logic. Users interact with the proxy contract, which maintains
the relevant storage data and balance of the DApp, along with a reference to
a specific logic contract. The proxy automatically redirects transactions to the
referenced logic contract using delegatecall, a low-level Ethereum function
1 https://blog.openzeppelin.com/the-state-of-smart-contract-upgrades.
2 https://protos.com/compound-finance-upgrade-bug-freezes-830m-in-crypto.

https://blog.openzeppelin.com/the-state-of-smart-contract-upgrades
https://protos.com/compound-finance-upgrade-bug-freezes-830m-in-crypto

CATANA: Replay Testing for the Ethereum Blockchain 259

that executes the logic of the called contract within the context of its caller.
This ensures that any operations performed by the logic contract only impact
the state of the proxy. Consequently, the logic contract can be replaced without
redeploying the proxy or incurring costly state migrations. Proxy contracts also
include an upgrade function that allows changing the referenced implementa-
tion address. This function is typically integrated into the proxy with appro-
priate access control mechanisms to prevent unauthorized users from initiating
upgrades.

Replay Testing. Replay testing is a technique used to verify system behavior by
replaying captured inputs, and it foresees two main phases: The Capture phase
records interactions between users and the system under test (e.g., the input
and output values of each function call). In the Replay phase, the collected
data is transformed into test scripts and executed to detect unexpected system
behaviors. This approach has found widespread use in testing web [14], mobile
[3,8], and IoT devices [6]. However, real traffic can also be recorded for regression
testing purposes [3,10,12,13], ensuring that software products evolve without
negatively impacting users. Using real traffic is a very appealing solution as it
enables the automatic generation of tests without in-depth system knowledge.
Moreover, tests generated from real-world input can be extremely effective as
they reflect real usage scenarios observed in production.

3 Methodology

Consider a DApp comprising a Proxy contract P and a logic contract L1 deployed
on the Ethereum Mainnet. At some point, L1 must be upgraded to version L2 to
improve some functionalities or to fix some bugs. With replay testing we aim to
ensure that, when L1 is upgraded to L2, the transactions that were executed on
L1 give the same output on L2. In a Proxy-based project a logic contract executes
in the context of its proxy, with the latter holding the state. Therefore, to replay
any historical transaction t on the upgraded contract, we must synchronize P ’s
state with the state observed on the main network right before the execution
of t. To achieve this we can fork the Mainnet right before the execution of t,
switch the logic contract used by P with its upgraded version, and replay the
transaction without worrying about state set-ups. In the following, we present
the methodology implemented in the CATANA tool.

1) Retrieving the transactions To run replay testing we must retrieve the
set of transactions T that were run on P while it referenced the logic contract
L1. These can be easily obtained using the Etherscan API. Each returned object
includes all the fields required for replaying a transaction (e.g., the invoked
method, its input data, and the sender address), except for its historical output.
For each transaction t ∈ T to be replayed, we must then repeat steps 2–5.

260 M. Barboni et al.

2) Forking the main network To replay a transaction t ∈ T , we must
retrieve the block b that includes t, and fork the main network at block b − 1.
This forking capability is provided by the Ganache3 Ethereum simulator, which
allows us to locally copy the Ethereum Mainnet starting from a specified block
number, without the need to download the entire blockchain. When a past
state, such as a smart contract, is required but not available locally, Ganache
dynamically retrieves it from an external source, eliminating the need for mock-
ing contract dependencies. Moreover, this tool allows us to impersonate any
account on the main network, enabling the successful replay of transactions sent
from different addresses. In our proposed approach, we create a new fork using
the following script: ganache --fork --fork.blockNumber <blockNumber>
-u <addressList>. Here, blockNumber is the block b − 1 prior to the one
including t, while addressList specifies all the addresses that must be unlocked
for replaying the transaction (i.e., the sender of t, and the addresses used for
deployment and upgrade operations).

3) Executing the transaction on the original logic contract Once the
main network is forked, we proceed to execute transaction t on Proxy P , which
still references logic contract L1. This step has two purposes: 1) ensuring that
the transaction can be successfully replayed on the original logic contract, and 2)
building a test oracle. To run the tests we use Truffle4 a popular testing frame-
work for Ethereum. The defined test script takes t as input and executes two
parametric test methods, T1 and T2, on the forked network. Listing 1.1 shows
an excerpt of T1, which aims to run t on L1 and build the test oracle. To replay
tests on any project, we require the interface of the proxy P (line 1) and its logic
contract L1 (line 2). After retrieving the transaction to be replayed, we decode
its input using the ABI (Application Binary Interface) of L1 (line 9). To interact
with L1, we create an abstraction of the contract using the Mainnet address of
its proxy (line 10). At this point we can replay t (line 12) by calling P from
the original sender’s address, using the decoded method name, parameters, and
value (i.e., the amount of transferred funds). Note that we use call() instead of
issuing a normal transaction to prevent persisting state changes after the con-
tract execution. In this way we can use the same, unaffected fork for subsequent
operations. Most importantly, using call() permits us to observe the return
value regardless of whether the invoked method is read-only or not (i.e., it is
marked as view or pure). The output of this call serves as a test oracle.

Listing 1.1. Test method T1

1 const Delegator = a r t i f a c t s . r e qu i r e (c on f i g . De legator) ;
2 const Delegate = a r t i f a c t s . r e qu i r e (c on f i g . Delegate) ;
3 . . .
4 describe (‘ ‘ Replay ’ ’ , () => {
5 const tx = JSON. parse (p roce s s . env . npm conf ig tx) ;
6 . . .
7 i t (‘ ‘ should rep lay tx on L1 ’ ’ , async () => {
8 . . .

3 Ganache: https://trufflesuite.com/ganache.
4 Truffle: https://trufflesuite.com/docs/truffle,.

https://trufflesuite.com/ganache
https://trufflesuite.com/docs/truffle

CATANA: Replay Testing for the Ethereum Blockchain 261

9 const decodedInput = decoder . decodeData (tx . input) ;
10 const proxy = await Delegate . at (c on f i g . DelegatorAddr) ;
11 . . .
12 const o r i g i n a lC a l l = await proxy [decodedInput . method] . c a l l (. . .

replayValues , { from : tx . from , value : tx . va lue }) ;
13 }) ;
14 })

4) Upgrading the logic contract The fourth step involves deploying the
new logic contract L2 on the fork and upgrading the Proxy P to use L2 as
its implementation. Listing 1.2 shows the test method T2 responsible for these
operations. First, L2 is deployed on the fork (line 2). Its address is then passed as
an argument to the upgrade function of P to change its referenced logic contract.
In reality, the upgrade process is often more complex and governed by a voting
protocol. However, this process can generally be bypassed during replay testing
by impersonating a proxy administrator. Finally, the upgrade method of P is
called to update its logic contract to L2 (line 6). Note that in this case we issue
a transaction to persist the state changes on the fork.

Listing 1.2. Upgrading the logic contract
1 i t (‘ ‘ should s u c c e s s f u l l y rep lay tx on L2 ’ ’ , async () => {
2 const l og icV2 = await Delegate .new({ from : c on f i g . DelegateDeployer }) ;
3

4 l et proxy = await Delegator . at (c on f i g . De legator) ;
5

6 const txSetImplementat ion = proxy [c on f i g . upgradeFunc] (log icV2 .
address , { from : c on f i g . DelegatorAdmin }) ;

7 . . .
8 }) ;

5) Replaying the transaction on the upgraded logic contract At this
point, we are ready to replay the transaction on the upgraded implementation
of P . This step is very straightforward, as we repeat the same call to the proxy
described in Sect. 3, and we check if its outcome is consistent with the oracle.

4 Experimental Evaluation

The objective of this study is understanding whether using historical transac-
tion data is a viable solution to perform regression testing on smart contract
upgrades. To this end, we must evaluate: 1) how many transactions CATANA
can successfully replay on the original contract L1, among the ones stored in
the blockchain, and 2) whether CATANA can detect inconsistent behaviors when
replaying the same transactions on the upgraded contract L2. To find viable sub-
jects we manually searched among Mainnet contracts targeted by recent transac-
tions on the Etherscan explorer, and selected those that respected the following
criteria: 1) the project must include a proxy contract P whose logic contract L1

was upgraded to L2 at some point; 2) The smart contracts must be verified so
that we can access their source code; 3) P must feature a reasonable number of
transactions to be replayed on L2. The resulting projects are: 1) Compound Pro-
tocol5 a DApp for supplying and borrowing assets on Ethereum, 2) USD Coin:
5 Compound Protocol: https://compound.finance/developers.

https://compound.finance/developers

262 M. Barboni et al.

an asset that is commonly deployed in decentralized finance (DeFi) protocols,
3) Land Registry and 4) Estate Registry : two sets of smart contracts for keeping
track of the land parcels and estates available in the Decentraland6 metaverse.
For each project, Table 1 reports the address of its proxy P , and the address of
the two most recent versions of its logic contract, L1 and L2. Generally, Ether-
scan only keeps track of the current logic address used by a proxy. Therefore,
to retrieve L1, we either queried the proxy from a pre-upgrade network fork, or
we analysed the event logs emitted during the upgrade operation. Clearly, such
procedure is not needed for the original developers, as they have direct refer-
ences to the two versions of the contract. We then retrieved all the transactions
addressed to P while it was using L1, to replay them on the next version L2. Due
to the high volume of transactions and associated replay costs, we fed the last
1000 (successful) transactions to CATANA. For each transaction t in the sample,
the tool ran the two subsequent tests, T1 and T2, described in Sect. 3. All the
experiments in this work were run on a virtual machine with an Intel Xeon(R)
E-2226G CPU @ 3.40 GHz, and 4 GB of RAM, running on Ubuntu 20.04 LTS.

Table 1. Experimental Subjects

Project Proxy P Logic L1 Logic L2

Compound Protocol CErc20Delegator
0x5d3a536E4D6DbD6114c

c1Ead35777bAB948E3643

CErc20Delegate
0xa035b9e130F2B1AedC

733eEFb1C67Ba4c503491F

CErc20Delegate
0x3363bae2fc44da742df

13cd3ee94b6bb868ea376

USD Coin FiatTokenProxy
0xA0b86991c6218b36c1d

19D4a2e9Eb0cE3606eB48

FiatTokenV2
0xB7277a6e95992041568

D9391D09d0122023778A2

FiatTokenV2 1
0xa2327a938Febf5FEC13

baCFb16Ae10EcBc4cbDCF

Land Registry LANDProxy
0xF87E31492Faf9A91B02

Ee0dEAAd50d51d56D5d4d

LANDRegistry
0xA57E126B341B18c262a

D25B86bb4F65b5e2AdE45

LANDRegistry
0x554BB6488bA95537735

9bED16b84Ed0822679CDC

Estate Registry AdminUpgrad.Proxy
0x959e104E1a4dB6317fA

58F8295F586e1A978c297

EstateRegistry
0x0A820C4e3a9c8D89c9a

3E78DfE993b3885b229Fa

EstateRegistry
0x1784Ef41af86e97f8D2

8aFe95b573a24aEDa966e

For each project, Table 2 shows the percentage of transactions (%Tx) that
succeeded on T1 and T2, failed on T1, and failed on T2. As it can be observed, T1
passed 98,8% of the time, meaning that CATANA can successfully replay most
of the transactions contained in the blockchain as they are. The remaining
1,2% failed during T1 due to an incorrect setup of the fork. Currently, Ganache
allows us to copy the state of the main chain at a given block, but not after a
specific transaction. To replay a transaction t originally included in block b, we
can fork the blockchain at block b − 1. Clearly, this fork lacks the state changes
caused by the transactions in block b, including those that might indirectly affect
the outcome of t. If the test fails on the original smart contract version, we cannot
reliably obtain an oracle value. One solution would be executing all the missing
transactions to bring the fork in the correct state. However, this can be costly
due to the possibly high number of unrelated transactions in each block. In the
6 Decentraland: https://decentraland.org/.

https://decentraland.org/

CATANA: Replay Testing for the Ethereum Blockchain 263

general case, we judge it more reasonable to just discard the failing transactions.
From Table 2 we can observe that most transactions (98,6%) produced the
same output before and after the contract upgrade. This is not surprising,
as the experimental subjects are main network releases, which undergo exten-
sive testing prior to deployment. However, 8 transactions that were successfully
replayed on Compound Protocol’s L1 generated a different output after the
implementation was switched to L2. To determine the cause of failure we ana-
lyzed these transactions in relation to the modifications introduced during the
upgrade. We found out that the invoked methods always produced an error code
on L1, but caused the same transactions to revert on L2. Further examination of
the two contracts confirmed that the discrepancy is due to a modification in the
error-handling mechanisms of the smart contract, and not to a possible issue in
the reproduction of the environment made by CATANA. On average, replaying
1000 transactions on each project required ∼9,7 h. Replay tests are more time-
expensive than regular ones, as CATANA must set up the fork and retrieve past
state information for each transaction to be replayed. However, combining test
parallelization and appropriate transaction selection strategies can help to sig-
nificantly reduce costs. Overall, the experimental data confirm the possibility of
leveraging historical transactions to perform regression testing on proxy-based
smart contracts. Indeed, CATANA was able to successfully replay most transac-
tions without issues, and it also detected inconsistent behaviours resulting from
a real upgrade.

5 Related Work

Replay Testing. Replay testing has been extensively studied in various
domains, including web [14], IoT [6], and mobile applications [3,8]. This tech-
nique was employed for regression testing, ensuring the correctness of evolving
programs. Previous research has explored mutable replay approaches [13] to tol-
erate valid variations caused by security updates and addressed the issue of
replay test breakages during regression activities [10,12]. In the blockchain field,
the recording capabilities of the ledger were leveraged for monitoring [5], trans-
parency evaluation [11], and test case generation [20] purposes, but never for
regression testing of evolving smart contracts.

Blockchain Testing. Releasing reliable smart contract code is a primary con-
cern for industry professionals working with blockchain. To date, developers can
rely on a range of static and dynamic analysis tools (e.g., Slither [7], Echidna
[9]) for disclosing faults and removing code smells. EVMPatch [16] is a frame-
work that fixes faulty contracts while maintaining functional equivalence, mit-
igating compatibility issues. Solidity-specific mutation testing approaches were
also proposed to improve the fault-detection capabilities of smart contract test
suites (e.g., SuMo [1], ReSuMo [2]). Several works do not specifically target
smart contracts, but rather build test cases for the whole DApp [18], or detect
bugs stemming from the bad synchronization between on-chain and off-chain
components [19].

264 M. Barboni et al.

Table 2. Results of replay testing

Project T1 outcome T2 outcome %Tx

Compound Protocol � � 94,6

× – 4,6

� × 0,8

USD Coin � � 99,9

× – 0,1

� × 0

Land Registry � � 100

× – 0

� × 0

Estate Registry � � 99,8

× – 0,2

� × 0

6 Conclusions and Future Work

In this work, we proposed the usage of historical blockchain transactions to
enable replay testing of upgradeable Ethereum smart contracts using the Proxy
pattern. By replaying past transactions, we can verify the consistency of a revised
smart contract with its pre-upgrade version deployed on the Ethereum Main-
net. We implemented our approach in the CATANA tool and conducted evalu-
ations on four real-world smart contract projects. The results were promising,
with CATANA successfully replaying ∼98,6% of the collected transactions on
the original smart contract version. Only a few invocations failed due to impre-
cise state-setting resulting from the block-level fork granularity. Furthermore, we
identified eight transactions that produced different outcomes after the contract
was upgraded. This highlights the potential of CATANA to detect disruptive
upgrades and promote the release of more reliable code. Future work should
focus on improving the effectiveness of CATANA by checking the events logged
by the smart contract during its execution. Indeed, only observing the output
values of a contract invocation might limit the detection of inconsistent behav-
iors. Additionally, the tool should be enhanced with a mechanism for identifying
and replaying relevant missing transactions after a fork, so that any historical
transaction could be transformed into a test. Lastly, exploring efficient trans-
action selection strategies, considering the specific changes introduced by the
upgrade, is crucial for accelerating the testing process.

CATANA: Replay Testing for the Ethereum Blockchain 265

References

1. Barboni, M., Morichetta, A., Polini, A.: Sumo: A mutation testing approach and
tool for the Ethereum blockchain. J. Syst. Softw. 193, 111445 (2022)

2. Barboni, M., Morichetta, A., Polini, A., Casoni, F.: ReSuMo: a regression strategy
and tool for mutation testing of solidity smart contracts. Softw. Q. J. (2023).
https://doi.org/10.1007/s11219-023-09637-1

3. Bernaschina, C., Fedorov, R., Frajberg, D., Fraternali, P.: A framework for regres-
sion testing of outdoor mobile applications. In: Proceedings of MOBILESOFT, pp.
179–181 (2017)

4. Bui, V.C., Wen, S., Yu, J., Xia, X., Haghighi, M.S., Xiang, Y.: Evaluating upgrad-
able smart contract. In: Proceedings of Blockchain, pp. 252–256 (2021)

5. Cook, T., Latham, A., Lee, J.H.: Dappguard : active monitoring and defense for
solidity smart contracts. https://courses.csail.mit.edu/6.857/2017/project/23.pdf
(2017)

6. Fang, K., Yan, G.: Iotreplay: troubleshooting cots IoT devices with record and
replay. In: Proceedings of SEC, pp. 193–205 (2020)

7. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: Proceedings of WETSEB, pp. 8–15 (2019)

8. Feng, S., Chen, C.: Gifdroid: automated replay of visual bug reports for android
apps. In: Proceedings of ICSE, pp. 1045–1057 (2022)

9. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable,
and fast fuzzing for smart contracts. In: Proceedings of ISSTA, ACM (2020)

10. Hammoudi, M., Rothermel, G., Tonella, P.: Why do record/replay tests of web
applications break? In: Proceedings of ICST, pp. 180–190 (2016)

11. Hartel, P., van Staalduinen, M.: Truffle tests for free-replaying Ethereum smart
contracts for transparency. arXiv preprint arXiv:1907.09208 (2019)

12. Imtiaz, J., Iqbal, M.Z., khan, M.U.: An automated model-based approach to repair
test suites of evolving web applications. J. Syst. Softw. 171, 110841 (2021)

13. Kravets, I., Tsafrir, D.: Feasibility of mutable replay for automated regression
testing of security updates. In: Proceedings of RESoLVE (2012)

14. Long, Z., Wu, G., Chen, X., Chen, W., Wei, J.: Webrr: self-replay enhanced robust
record/replay for web application testing. In: Proceedings of ESEC/FSE, pp. 1498–
1508 (2020)

15. Meisami, S., Bodell III, W.E.: A comprehensive survey of upgradeable smart con-
tract patterns. arXiv preprint arXiv:2304.03405 (2023)

16. Rodler, M., Li, W., Karame, G.O., Davi, L.: {EVMPatch}: timely and automated
patching of ethereum smart contracts. In: Proceedings of USENIX Security, pp.
1289–1306 (2021)

17. Salehi, M., Clark, J., Mannan, M.: Not so immutable: upgradeability of smart
contracts on Ethereum. arXiv preprint arXiv:2206.00716 (2022)

18. Wu, Z., et al.: Kaya: a testing framework for blockchain-based decentralized appli-
cations. In: Proceedings of ICSME, pp. 826–829 (2020)

19. Zhang, W., Wei, L., Li, S., Liu, Y., Cheung, S.C.: Darcher: detecting on-chain-
off-chain synchronization bugs in decentralized applications. In: Proceedings of
ESEC/FSE, pp. 553–565 (2021)

20. Zhou, T., Liu, K., Li, L., Liu, Z., Klein, J., Bissyandé, T.F.: Smartgift: learning to
generate practical inputs for testing smart contracts. In: Proceedings of ICSME,
pp. 23–34 (2021)

https://doi.org/10.1007/s11219-023-09637-1
https://courses.csail.mit.edu/6.857/2017/project/23.pdf
http://arxiv.org/abs/1907.09208
http://arxiv.org/abs/2304.03405
http://arxiv.org/abs/2206.00716

GResilience: Trading Off Between
the Greenness and the Resilience

of Collaborative AI Systems

Diaeddin Rimawi1(B) , Antonio Liotta1 , Marco Todescato2 ,
and Barbara Russo1

1 Free University of Bozen-Bolzano, Faculty of Engineering, Bolzano 39100, Italy
{drimawi,antonio.liotta,barbara.russo}@unibz.it

2 Fraunhofer Italia, Bolzano 39100, Italy
marco.todescato@fraunhofer.it

Abstract. A Collaborative Artificial Intelligence System (CAIS) works
with humans in a shared environment to achieve a common goal. To
recover from a disruptive event that degrades its performance and ensures
its resilience, a CAIS may then need to perform a set of actions either
by the system, by the humans, or collaboratively together. As for any
other system, recovery actions may cause energy adverse effects due to
the additional required energy. Therefore, it is of paramount importance
to understand which of the above actions can better trade-off between
resilience and greenness. In this in-progress work, we propose an app-
roach to automatically evaluate CAIS recovery actions for their ability
to trade-off between the resilience and greenness of the system. We have
also designed an experiment protocol and its application to a real CAIS
demonstrator. Our approach aims to attack the problem from two per-
spectives: as a one-agent decision problem through optimization, which
takes the decision based on the score of resilience and greenness, and
as a two-agent decision problem through game theory, which takes the
decision based on the payoff computed for resilience and greenness as
two players of a cooperative game.

Keywords: Greenness · Resilience · GResilience · Collaborative AI
Systems · Optimization · Game Theory

1 Introduction

A Collaborative Artificial Intelligence System (CAIS) is an example of a Cyber
Physical System that works together with humans in a shared environment to
achieve a common goal, [1]. The collaboration between humans and AI compo-
nents poses specific challenges for a CAIS to be resilient (i.e., recover from a
disruptive event that causes performance degradation) as disruptive events can
be caused or have effects on humans. Therefore, it is of paramount importance to
define suitable recovery strategies to automatically support the decision-making
process in case of disruptive events affecting CAISs. A recovery strategy typically

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 266–273, 2023.
https://doi.org/10.1007/978-3-031-43240-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_18&domain=pdf
http://orcid.org/0000-0003-3791-399X
http://orcid.org/0000-0002-2773-4421
http://orcid.org/0000-0003-1449-5692
http://orcid.org/0000-0003-3737-9264
https://doi.org/10.1007/978-3-031-43240-8_18

GResilience: Trading off Between the Greenness and the Resilience of CAIS 267

detects the performance degradation (detection), then defines mitigation actions
(mitigation), and finally, restores the system to an acceptable performance state
(recovery), [2]. Recovering from a disruptive event may require additional energy
consumption, which, in turn, may increase the CAIS energy adverse effects, such
as CO2 footprint, [6,9]. The efficient usage of energy with minimizing adverse
effects is called greenness, [6].

In this in-progress work, we are interested in the relation between two prop-
erties of a CAIS: resilience and greenness. In particular, we aim to support the
decision-making process to trade-off between them. Specifically, we introduce
the approach GResilience1 to select automatically recovery action(s) that finds
the best trade-off between greenness and resilience while restoring the CAIS ser-
vices to an acceptable performance state. Our approach formulates the trade-off
decision in two ways: i) as a one-agent decision through optimization, and ii)
as a multi-agent decision through game theory. In the former case, the deci-
sion is taken by selecting actions(s) and optimizing measures of resilience and
greenness. While in the latter, actions are selected through a multi-participant
game in which the measures of resilience and greenness define the payoff for the
actions.

Finally, we plan to apply our approach to a CAIS demonstrator available at
our laboratory. The demonstrator is a robotic arm that is equipped with an AI
component and performs activities for in-production systems. To this aim, we
have devised an experimental protocol that we present in the next sections.

In summary, we aim to understand the relationship between resilience and
greenness and discuss the one-agent and the multi-agent methods in case of
CAISs. To achieve this goal, this study poses the following research questions:

– RQ1: Is the optimization model a valuable solution for automatizing the
decision-making process that finds a trade-off between the greenness and
resilience in CAISs?

– RQ2: Is the game theory model a valuable solution for automatizing the
decision-making process that finds a trade-off between the greenness and
resilience in CAISs?

– RQ3: What are the major differences between the optimization model and
the game theory model solutions?

The rest of this paper discusses the related work (Sect. 2), our approach and
experiment protocol to the trade-off between resilience and greenness (GRe-
silience) along with our demonstrator CAIS (Sect. 3), and finally our conclusion
and future work (Sect. 4).

2 Related Work

For what concerns our work, we see the following topics as relevant: i) resilience,
ii) greenness, iii) multi-objective optimization, and iv) game theory.
1 The name GResilience comes from joining the two words, green and resilience. The

name is inspired by the “eco–greslient” technique used in [7] study.

268 D. Rimawi et al.

Resilience. Studies are categorized into two classes depending on the model
type they use, [5]. The first category addresses quantitative models that discuss
structure-based models and define computational metrics, whereas the second
category addresses qualitative studies that are more concerned about conceptual
frameworks. Henry et al. [4] define a generic quantitative approach that uses a
function of time to model the resilience process, while Speranza et al. [11] propose
a social-ecological framework to address policies’ effectiveness to build livelihood
resilience.

Greenness. Studies have analysed greenness in two ways, technical and non-
technical. Pandey et al. [8] discuss making Google Tensor Processing Unit
resilient against activating sequences error in the systolic array considering a low-
voltage operation, which ensures less energy adverse effects, while Rodriguez et
al. [10] focuses on the business and financial aspect to identify the right location
for a green infrastructure component of a sewer system.

Multi-objective Optimization. These techniques help create a simple math-
ematical representation of problems that have multiple objectives, [3]. Several
studies have used scalarization optimization techniques to trade off between
different system properties [7]. Mohammed et al. [7] create the eco-gresilient
model to build an economical, green, resilient supply chain network. It uses
a three-objectives-optimization model (economical, green, resilient) to find the
right number of facilities to be built in each supply network section. Multi-
objective optimization helps find a solution that trades off multiple objectives
and it uses one agent that combines the conflicting weighted objectives to find
the final solution, [3].

Finally, Game Theory searches for strategies (Nash equilibrium) that help
the players gain the best payoffs for their interests, [9,12]. Thus, the problem
is framed as a multi-agent game for which each agent has a preferred action to
achieve a common goal such as the game of “The Battle of Sexes”, [12]. The
players of the game will try to choose the action that maximizes their payoff.
When choosing this action is done independently leads to a mixed strategy Nash
equilibrium (MSNE), [9,12].

3 Approach - GResilience

GResilience is our empirical approach to support the decision-making process
and trade-off between greenness and resilience after a disruptive event. The app-
roach provides one or more agents with the measurements required to take the
decision and select the recovery action that best balance between the two prop-
erties. The approach is applied to CAIS in which the AI component learns from
human movements. GResilience monitors and controls the collaboration between
the human and the AI component to support the decision-making process after
disruptive events. The core common component of the GResilience approach is
the measurement framework for resilience and greenness. The framework is then
used by two techniques to trade-off between greenness and resilience: optimiza-
tion and game theory. While the former is typically used for trading off between

GResilience: Trading off Between the Greenness and the Resilience of CAIS 269

non-functional properties of a system [7], the latter, to the best of our knowl-
edge, is novel in such context. The use of one or the other depends on the type
of problem the decision-maker needs to solve. The goal of each technique is to
select a recovery action after the disruptive event to return to an acceptable
performance state. Recovery actions are categorized into two classes: i) general
actions that are derived from a system or environment policies, and ii) actions
defined by the decision maker.

In Fig. 1 we describe the resilience process from two perspectives. Figure 1 (A)
describes the performance behavior of the running system over time, while,
Fig. 1 (B), illustrates the GResilience approach state diagram based on such
resilience process. In Fig. 1 (A), the process starts at a steady state and faces a
disruptive event at te that may transition to a disruptive state at td. During the
disruptive state, the system starts the recovery process and selects a recovery
action to move to an acceptable recovery state at tr. In Fig. 1 (B), the system
starts at a steady state and remains in the same state if there is no performance
degradation. When a performance degradation occurs, the system moves to a
disruptive state, where it either recovers by default system actions or policies, or
it moves to the trade-off state. The trade-off state invokes the GResilience model
(optimization or game theory) to select the action that finds the best trade-off
between greenness and resilience. As an example in Fig. 1 (B), we illustrate two
actions: a1) that targets a learning state, and a2) that targets anoperating state
of the AI component. From either state, the performance recovery enters in the
measuring state looping between one state and the measurement state until the
system reaches an acceptable performance (recovered state).

Disruptive State

Steady
State

Recovered
State

System

Disruption

Sy
ste

m
Rec

ov
ery

System
Performance

Timet0
te td ta tr

Original Steady
State

Transition
State

Transition
State

Performance
Degradation

Steady
State

Other Actions
or Policies

Disruptive
State

Recovered
State

No Performance
Degradation

Check
PerformanceLearning

State

Operating
State

a1

a2

Acceptable
Performance

Measuring
State

Not
Recovered

Check
Performance

(A) (B)

Trade-off
State

Recovery
Actions

Fig. 1. System’s Performance States (A) Resilience performance evolution, (B) GRe-
silience State Diagram

The GResilience framework includes three attributes, one attribute to mea-
sure the system resilience and the other two to measure the CAIS greenness.

270 D. Rimawi et al.

Table 1. The GResilience Game General Payoff Matrix

PgPgPg

PrPrPr a1(p)a1(p)a1(p) a2(1 − p)a2(1 − p)a2(1 − p) Pr Expected PayoffPr Expected PayoffPr Expected Payoff

a1(q)a1(q)a1(q) P 2
r (a1), P

2
g (a1) P 1

r (a1), P
1
g (a2) pP 2

r (a1) + (1 − p)P 1
r (a1)

a2(1 − q)a2(1 − q)a2(1 − q) P 1
r (a2), P

1
g (a1) P 2

r (a2), P
2
g (a2) pP 1

r (a2) + (1 − p)P 2
r (a2)

Pg Expected PayoffPg Expected PayoffPg Expected Payoff qP 2
g (a1) + (1 − q)P 1

g (a1) qP 1
g (a2) + (1 − q)P 2

g (a2)

The first attribute is the estimated run time (Et), which represents the action
running time. The other two attributes are the estimated CO2 footprint (ECO2)
to emit by the action, and the human labor cost (H), which is the number of
human’s interactions needed by the action. It is worth noticing here that human
energy and financial factors are not considered in the framework and will be a
matter of future investigation. The measures are then used by each of the two
techniques as in the following.

Optimization. The optimization technique uses one agent and the weighted sum
model (WSM) [7] to trade-off between greenness and resilience by combining the
three attributes and define a global score for each action. Equation (1) shows the
global score of the action a (S(a)), where wT , wH , and wCO2 are the weights of
the attributes (run time, human labor, and CO2 footprint). ε is the confidence
level of the AI component model (ε ∈ [0, 1]): the higher the value the more
we trust the AI to continue operating. Thus, ε multiplies the inverse of the
resilience measure, and 1 − ε multiplies the inverse of the greenness measures.
Each resulting measure is then normalized (N()). Finally, we search the weights’
values that maximize S(a).

S(a) = wT · ε · N(E−1
t) + (1 − ε) · {wH · N(H) + wCO2 · N(E−1

CO2
)} (1)

Game Theory. In the game theory technique, we leverage “The Battle of Sexes”
[12] and define our game The GResilience Game. The GResilience Game is played
by two agents: Pg and Pr. Pg aims to make the system green by minimizing the
CO2 footprint by being more dependent on the human whereas Pr aims to make
the system resilient by minimizing the running time. Both players share the same
goal of recovering the system so they need to adopt a strategy to recover the
system and achieve both players’ goals. The payoff matrix of the GResilience
Game has the same form as in “The Battle of Sexes”, Table 1. This table shows
two Pure Strategies Nash Equilibria (PSNE) where both players choose the same
action and a Mixed Strategy Nash Equilibrium (MSNE) based on the probability
of each player’s action, [9,12]. Equation (2) shows the expressions to find the Pr

and Pg payoffs, where α is the matching factor that is 1 in case the players land
on different actions and 2 in case of PSNE.

Pα
r (a) = ε · α · E−1

t , Pα
g (a) = (1 − ε) · α · H−1 · E−1

CO2
(2)

In the MSNE, Pr chooses a1 with probability q and a2 with probability 1 − q,
while Pg chooses a1 with probability p and a2 with probability 1 − p, which

GResilience: Trading off Between the Greenness and the Resilience of CAIS 271

results to the expected payoff described in Table 1. Thus, to find the probability
q (resp. p) with MSNE, we equal the expected payoffs of Pg (resp. Pr) for a1

and a2 and solve the resulting equation for q (resp. p).

Experiments Protocol. We plan a series of experiments in three stages, i)
setup, ii) iterative execution and data collection, and iii) data analysis. During
the setup stage, we need to understand the disruptive events that might occur,
and what are the feasible actions to recover from one of these events. As illus-
trated by Fig. 1 (B), GResilience wraps the system to detect the performance
degradation in the second stage, and for each trading off technique, we collect
the number of iterations to recover, the performance at the start and the end of
each iteration, the selected action per iteration, and the values of the resilience
and greenness attributes per iteration. Finally, by analyzing the collected data,
we can understand for which disruptive event a technique is a valuable solution
to automatize the decision-making process, and what are the major differences
between them.

Demonstrator. Our CAIS demonstrator “CORAL”2 is a collaborative robot
arm learning from demonstrations. Figure 2 shows the robotic arm, (where 1, 3,
and 4 represent the arm and its controllers) that works with the human (6) to
classify objects moving on the conveyor belt (2) based on their colors. In addi-
tion to object color learning, CORAL learns background subtraction, object
detection, and human movement. CORAL has two vision sensors, one through
a Kinect (5) that monitors human movement, and a second above a conveyor
belt that moves objects to be classified. Losing the lights that support the vision
sensors or having another human in the vision range may disrupt CORAL abil-
ity to classify the objects and drop or wrongly classify them. Thus, CORAL
requires more time to learn the objects with the faded environmental light and
this consumes additional energy. We will apply our approach to CORAL under
different disruptive events.

Fig. 2. Collaborative Robot Learning from Demonstrations (CORAL)

2 CORAL is developed by Fraunhofer Italia Research in the context of ARENA Lab.

272 D. Rimawi et al.

4 Conclusion and Future Work

This in-progress work proposes an approach to support the decision-making pro-
cess to recover from a disruptive event that has caused performance degradation
and control the energy adverse effects at the same time. To this aim, we have
defined a set of measures for resilience and greenness and two techniques lever-
aging optimization and game theory respectively. The techniques automate the
selection process of the recovery actions by measuring the trade-off between the
greenness and the resilience capability of CAIS. The first technique evaluates
each action separately using an optimization model (WSM), whereas the sec-
ond technique evaluates greenness and resilience payoffs by selecting an action
through a game theory model leveraging “The Battle of Sexes”. To verify our
approach, we designed experiments to test our techniques on our CAIS demon-
strator. In our future work, we plan to run experiments on CORAL. This will
help us understand the relationship between resilience and greenness for CAIS
and eventually extend our approach to test CAIS for other non-functional prop-
erties. In addition, we plan to extend our techniques with reinforcement learning,
to incorporate a rewarding mechanism in the optimization and game theory tech-
niques. Moreover, we plan to reconsider further human attributes as for example
human energy and financial costs.

References

1. Camilli, M., et al.: Risk-driven compliance assurance for collaborative AI systems:
a vision paper. In: Dalpiaz, F., Spoletini, P. (eds.) REFSQ 2021. LNCS, vol. 12685,
pp. 123–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73128-1 9

2. Colabianchi, S., Costantino, F., Gravio, G.D., Nonino, F., Patriarca, R.: Discussing
resilience in the context of cyber physical systems. Comput. Ind. Eng. 160, 107534
(2021)

3. Gunantara, N.: A review of multi-objective optimization: methods and its appli-
cations. Cogent Eng. 5(1), 1502242 (2018)

4. Henry, D., Ramirez-Marquez, J.E.: Generic metrics and quantitative approaches
for system resilience as a function of time. Reliab. Eng. Syst. Safety 99, 114–122
(2012)

5. Hosseini, S., Barker, K., Ramirez-Marquez, J.E.: A review of definitions and mea-
sures of system resilience. Reliab. Eng. Syst. Saf. 145, 47–61 (2016)

6. Kharchenko, V., Illiashenko, O.: Concepts of green IT engineering: taxonomy, prin-
ciples and implementation. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J.
(eds.) Green IT Engineering: Concepts, Models, Complex Systems Architectures.
SSDC, vol. 74, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-44162-7 1

7. Mohammed, A., Harris, I., Nujoom, R.: Eco-Gresilient: Coalescing ingredient of
economic, green and resilience in supply chain network design. In: Parlier, G.H.,
Liberatore, F., Demange, M. (eds.) Proceedings of the 7th International Conference
on Operations Research and Enterprise Systems, ICORES 2018, Funchal, Madeira
- Portugal, January 24–26, 2018, pp. 201–208. SciTePress (2018)

https://doi.org/10.1007/978-3-030-73128-1_9
https://doi.org/10.1007/978-3-319-44162-7_1
https://doi.org/10.1007/978-3-319-44162-7_1

GResilience: Trading off Between the Greenness and the Resilience of CAIS 273

8. Pandey, P., Basu, P., Chakraborty, K., Roy, S.: GreenTPU: predictive design
paradigm for improving timing error resilience of a near-threshold tensor processing
unit. IEEE Trans. Very Large Scale Integr. Syst. 28(7), 1557–1566 (2020)

9. Rimawi, D.: Green resilience of cyber-physical systems. In: 2022 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 105–
109. IEEE (2022)

10. Rodriguez, M., Fu, G., Butler, D.: Green infrastructures and their impact on
resilience: spatial interactions in centralized sewer systems. In: Kar, B., Ye, X.,
Mohebbi, S., Fu, G. (eds.) ARIC@SIGSPATIAL 2020: Proceedings of the 3rd ACM
SIGSPATIAL International Workshop on Advances in Resilient and Intelligent
Cities, Seattle, WA, 3 November, 2020, pp. 49–57. ACM (2020)

11. Speranza, C.I., Wiesmann, U., Rist, S.: An indicator framework for assessing
livelihood resilience in the context of social-ecological dynamics. Global Environ.
Change. 28, 109–119 (2014)

12. Stowe, C.J., Gilpatric, S.M.: Cheating and enforcement in asymmetric rank-order
tournaments. Southern Econ. J. 77(1), 1–14 (2010)

Testing Quality of Training in QoE-Aware
SFC Orchestration Based on DRL

Approach

Mohamed Escheikh1, Wiem Taktak1(B), and Kamel Barkaoui2

1 Syscom Laboratory, ENIT, University of Tunis El Manar, Tunis, Tunisia
{mohamed.escheikh,wiem.taktak}@enit.utm.tn

2 Cedric Laboratory, Paris, France
kamel.barkaoui@cnam.fr

Abstract. In this paper, we propose a Deep Reinforcement Learn-
ing (DRL) approach to optimize a learning policy for Service Function
Chaining (SFC) orchestration based on maximizing Quality of Expe-
rience (QoE) while meeting Quality of Service (QoS) requirements in
Software Defined Networking (SDN)/Network Functions Virtualization
(NFV) environments. We adopt an incremental orchestration strategy
suitable to online setting and enabling to investigate SFC orchestration
by processing each incoming SFC request as a multi-step DRL prob-
lem. DRL implementation is achieved using Deep Q-Networks (DQNs)
variant referred to as Double DQN. We particularly focus on evaluat-
ing performance and robustness of the DRL agent during training phase
by investigating and testing the quality of training. In this regard, we
define a testing metric monitoring the performance of the DRL agent
and quantified by a QoE threshold score to reach on average during the
last 100 runs of the training phase. We show through numerical results
how DRL agent behaves during training phase and how it attempts to
reach for different network scales a predefined average QoE threshold
score. We highlight also network scalability effect on achieving a suitable
performance-convergence trade-off.

Keywords: Learning Quality · DRL · SDN/NFV · SFC Orchestration

1 Introduction

In the last few years, the two disruptive technologies SDN and NFV have revo-
lutionized the way networks are designed, deployed, and managed. SDN enables
the separation of the control and data planes, allowing network administrators to
centrally manage and program the network [3]. NFV, on the other hand, allows
Network Functions (NFs) to be implemented as Virtualized Network Functions
(VNFs) that can be deployed on commodity hardware [9]. SFC is a network-
ing concept that delivers customized Network Services (NSs) by directing traffic
through a chain organized in a specific sequence of NFs that need to be exe-
cuted in a specific order to achieve a specific outcome. It can be used to enforce

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 274–288, 2023.
https://doi.org/10.1007/978-3-031-43240-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43240-8_19&domain=pdf
https://doi.org/10.1007/978-3-031-43240-8_19

Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL 275

security policies, implement traffic steering, and provide QoS guarantees [4].
SDN and NFV whenever combined together, bring significant benefits to SFC
orchestration, including flexibility, simplified management, resource efficiency,
scalability, optimization, and faster service innovation. Modeling SFC orchestra-
tion in SDN/NFV environments with DRL is a promising approach that could
enable more efficient and effective network management, particularly in complex
and dynamic environments where traditional approaches may not be sufficient.
However, there are still many challenges that need to be addressed, such as
designing appropriate reward functions and ensuring scalability and robustness.

DRL is a type of Machine Learning (ML) that enables an agent to learn how
to make decisions by interacting with an environment composed with a Physical
Substrate Network (PSN) processing each incoming SFC request according to
an incremental strategy [2]. The environment provides feedback in the form of
rewards or penalties based on agent’s actions. If the agent successfully places and
chains the VNFs to achieve a specific performance metric, it receives a reward,
otherwise, it receives a penalty. The DRL algorithm then uses this feedback to
update the agent’s policy, which determines the agent’s actions. The policy is
updated to maximize the expected future rewards. In this paper, we investi-
gate quality testing of SFC orchestration problem in SDN/NFV environments.
The problem is defined as a DRL problem where the agent is responsible for
orchestrating VNFs placement and chaining to achieve a specific goal related to
maximizing QoE while meeting QoS requirements.

Testing in online DRL is essential to ensure that the agent performs well and
to profit from benefits concerning:

– Performance evaluation, where the environment is dynamic and unpre-
dictable. This helps also to validate that the agent can learn and adapt to
changing conditions and still perform well.

– Robustness enhancement, through handling unexpected situations by
exposing the agent to a variety of scenarios to identify any weaknesses in
the agent’s learning process and refine the algorithm accordingly.

– Scalability evaluation, as the number of network devices (PSN nodes, PSN
links) the complexity of the deployment environment increases as well. Online
testing can help ensuring that the agent can handle this increased complexity
without compromising performance.

In this paper, we adopt DRL approach to formulate SFC orchestration prob-
lem maximizing QoE while meeting QoS requirements in SDN/NFV environ-
ment. Along the DRL process we focus on training, testing and evaluation phases
and we investigate agent behavior and how it strives to achieve suitable trade-
off between performing good learning quality (corresponding to a near-optimal
policy) during testing while converging in a reasonable time. The rest of this
paper is organized as follows: we address, in Sect. 2, the RL and DRL process
including the different phases of training, testing and evaluation. We detail, in
this same section, why it is important to find a suitable performance-convergence
trade-off. In Sect. 3, we describe next DQN and its variant, Double DQN, used
in this paper to implement the DRL approach. In Sect. 4, we investigate the

276 M. Escheikh et al.

DRL approach used for SFC orchestration in SDN/NFV environments and we
particularly detail the reward design. We devote, Sect. 5, to numerical results
and performance evaluation before concluding this paper in Sect. 6.

2 Reinforcement Learning

RL [14] is a ML area where a software agent tries to acquire knowledge and to
learn progressively how to behave and to achieve a complex objective (a goal)
based on continuous interaction between an Artificial Intelligence (AI) system
and its dynamic, unknown and ever changing environment without any human
involvement and without explicit instructions. This learning is based on feedback
received for its past actions and is acquired by performing a series of decisions
or actions through trial and error methods. The goal of learning is to train an
agent to fulfill a task and to maximize the cumulative reward based on feedback
generated for respective actions.

2.1 RL Agent

The RL agent involves two main components referred to as a policy and a learn-
ing algorithm.

– The policy is a (stochastic or deterministic) rule leveraged by an agent to
perform decision making actions. It is formalized as a mapping function that
selects a feasible action for a problem based on observations from the environ-
ment. Typically, DRL [2] trains a Deep Neural Networks (DNNs) with tun-
able hyper-parameters, to approximate the optimal policy and/or the optimal
value functions;

– The learning algorithm belongs usually to a class of learning methods (model-
free or model-based) and consists of a loss function and an optimization tech-
nique. It aims to find an optimal policy that maximizes cumulative reward
(called return) over time by continuously updating policy parameters based
on performed actions, made observations, and perceived reward from envi-
ronment.

2.2 Training (Learning), Testing and Evaluation in RL

In RL, learning refers to the process of training an agent to make optimal deci-
sions in a given environment through trial and error. Testing and evaluation are
the processes of evaluating performance of the trained agent and assessing how
well it has learned to make optimal decisions.

Training in RL. In RL, training (a.k.a learning) aims to find optimal (or near-
optimal) policy or value function that can maximize the expected cumulative
reward of an agent over time through using RL algorithms, such as Q-learning.

Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL 277

The goal of training is to improve the agent’s performance over time by find-
ing an optimal or near-optimal policy that maximizes the expected cumulative
reward. For this purpose, the training process evolves over time by iteratively
updating the Q-values using Bellman equation [6], until converging to an opti-
mal Q-function. This update rule is repeated for each state-action pair the agent
encounters during training, until the Q-values converge to the optimal values. In
DRL, a Neural Network (NN) is used to approximate Q-values or policy func-
tion. The NN is trained to change its attributes (such as weights and learning
rate) in order to reduce the losses and obtain faster results. The weights of the
NN are updated iteratively using back-propagation, which computes the gradi-
ent of the loss function with respect to the weights. This gradient is then used
to update the weights in the direction that minimizes the loss function, such
as the mean squared error between the predicted Q-values and the target Q-
values. This update rule is repeated for each batch of training samples, until
the NN converges to an optimal policy or value function. The convergence of
the training process depends on various factors, such as the complexity of the
problem, the quality of the training data, and the choice of DRL algorithm and
hyper-parameters.

Testing and Evaluation in RL. Once the agent has learned a policy, it can
be tested on a new set of data to evaluate its performance. Testing can be done
by running the agent in the environment and measuring its cumulative reward
or success rate over a certain number of episodes. The goal of testing is to assess
how well the agent has learned to make optimal decisions and to identify areas
where it may need further improvements. The testing stage involves evaluating
the agent’s performance on a separate set of test runs, which are generated by the
same environment but are not used for training. The goal of testing is to measure
the generalization performance of the agent and to identify potential over-fitting
or under-fitting issues. Evaluation is the process of assessing the quality of the
agent’s learned policy. It evaluates the agent’s performance on a specific task
or benchmark, which is often used to compare the performance of different RL
algorithms or agents. The goal of evaluation is to provide a standardized and
objective measure of the agent’s performance and to identify potential strengths
and weaknesses. One common evaluation method is to use performance metrics
such as average reward, success rate, or convergence rate to compare the agent’s
performance to that of other agents or benchmarks. The goal of evaluation is to
ensure that the agent’s learned policy is effective and reliable in making optimal
decisions in the environment. In practice, the testing and evaluation stages are
often combined into a single process and the evaluation phase can actually occur
during the training phase. This process can be repeated multiple times using
different sets of test runs to obtain a more comprehensive assessment of the
agent’s performance. During learning (or training), the optimal policy may be
unreachable and in such context we attempt to find a near-optimal solution. The
evaluation phase is needed to verify whether learned policy to solve actual real-
world problem is good enough before deploying RL algorithm. The evaluation

278 M. Escheikh et al.

phase assesses quality of the learned policy and how much reward the agent
obtains if it follows that policy. So, a typical metric that can be used to assess
the quality of the policy is to plot the cumulative reward as a function of the
number of runs. DRL algorithm is considered dominates another if its plot is
consistently above the other. Moreover, assessment may cover the generalization
of the learned policy by evaluating it in different (but similar) environments
to the training environment. Whereas during training, the goal is to find the
optimal policy, the evaluation phase aims to assess the quality of the learned
policy (or RL algorithm). Notice that evaluation may be performed in online
scenario during training phase. So in online DRL, there is only a learning or
training phase and no a separate testing or evaluation phase.

Online Evaluation in DRL. In DRL, online evaluation of the learning phase
refers to the process of evaluating the performance of the learning algorithm as
it interacts with its environment in real-time. The goal of online evaluation is to
monitor the learning process and identify any issues or areas for improvement as
they arise. There are several approaches to online evaluation in RL, including:

1. Monitoring the reward signal: The reward signal is a critical component
of RL, as it guides the learning algorithm towards optimal behavior. By moni-
toring the reward signal over time, we can get a sense of how well the learning
algorithm is performing.

2. Tracking performance metrics: Such as the average episode length, the
number of episodes required to converge, or the average reward per episode.
These metrics can help us identify areas where the learning algorithm is strug-
gling and make adjustments accordingly.

3. Visualizing the learning process: In order to understand the learning
process in RL, we can use plots, graphs, or animations to visualize the learning
algorithm’s behavior over time, making it easier to identify patterns and
trends.

2.3 Convergence-Performance Trade-Off in Training RL Algorithms

Convergence refers to the process of an RL agent’s policy and value function
improving over time as it receives more experience or data. Convergence effi-
ciency of RL algorithms refers to how quickly the agent’s policy and value func-
tion converge to optimal or near-optimal performance. It can be affected by
various factors such as the algorithm used, the complexity of the environment,
the amount of data available, and the hyper-parameters chosen. In practice, RL
algorithm is considered to converge when the learning curve gets flat and no
longer increases. A ML model reaches convergence when it achieves a state dur-
ing training in which loss settles to within an error range around the final value.
In other words, a model converges when additional training will not improve the
model. The convergence-performance trade-off in training RL algorithms refers
to the compromise between how quickly RL agent learns and how well it learns.
Typically, a faster learning agent will sacrifice some of its learning performance

Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL 279

in exchange for speed, and a slower learning agent will sacrifice speed to achieve
better learning performance.

3 DRL Implementation via Double DQN

Double DQN is a variant of DQN. In the rest of this section, we describe first
DQN principle and we detail, next, Double DQN concept and related improve-
ments.

3.1 DQN

Unlike Q-learning where a table is used explicitly represent the Q-value function,
DQN [11], as a DRL algorithm, extends this representation by approximating Q-
value function by a NNs using DNNs [13]. DQN uses a parameterized Q-function
Q(s, a; θ) ≈ Q(s, a) where, θ represents the DNN parameters. By training DNN
with gradient descent instead of the Q-Learning iterative update process, DQN
aims to minimize a loss function at iteration i:

Li(θi) = Es,a,r,s′ [(yDQN
i − Q(s, a; θi))2] (1)

This extension enables more scalability by handling higher dimensional state
spaces and allows to solve more complex decision-making problems.

The DQN tackles the instability caused by using function approximation by
leveraging two innovative techniques: experience replay and target Q-networks.
Experience replay allows to break the correlation between consecutive experience
tuples and stabilizes the training process. This is achieved by storing a history of
experiences in a buffer and by randomly sampling from the buffer during training
[10]. On the other hand, the target Q-network is a copy of the main Q-network
that is used to generate the training targets. DQN uses a frozen target network
to generate the target Q-values, used to update the main network. By freezing
the target network, DQN attempts to improve stability of the training targets
by decoupling them from the parameters being updated and prevent over-fitting
[11]. Freezing concerns the target network parameters Q(s′, a′; θ−) for a fixed
number of iterations while updating the online network Q(s, a; θi) by gradient
descent to minimize the loss function. The specific gradient update is given as
follows:

∇θi
Li(θi) = Es,a,r,s′ [(yDQN

i − Q(s, a; θi))∇θi
Q(s, a; θi)] (2)

Given the state s′, reward r, discount factor γ, DQN computes the target Q-value
yDQN

i as follows:
yDQN

i = r + γmaxa′Q(s′, a′; θ−) (3)

where θ− represents the parameters (weights) of a fixed and separate target
network.

Despite the advantages of DQN, it is known to be computationally expensive
algorithm and may require a large amount of training data. It may also suffer

280 M. Escheikh et al.

from instability during training due to the network’s weights oscillations, which
can negatively affect the convergence of the algorithm to an optimal solution.
The major challenge is to find suitable performance-convergence compromise
while computing NNs.

3.2 Double DQN

In practice, DQN often overestimates Q-values, leading to sub-optimal policies
[8]. This actually happens because the algorithm uses the same network to esti-
mate both the target and behavior policies, and this can result in an overestima-
tion bias. To address this issue and in order to provide more accurate Q-value
estimates and to improve the stability and performance, a DQN variant referred
to as Double DQN [15] is proposed. Its approach consists in decoupling the action
selection and action evaluation (Q-value estimation) steps while computing the
target Q-value (Eq.(4)).

yDoubleDQN
i = r + γQ(s′, argmaxa′Q(s′, a′; θi); θ−) (4)

Action selection is fulfilled using the current Q-network with weights θ while
action evaluation is accomplished using DQN’s target Q-network, with weights
θ−. Decoupling is achieved by using two separate NNs. The first one (i.e., the
“online network”) selects the action, while the second network (i.e., the “tar-
get network”) evaluates the Q-value of the selected action. During the learning
process, the weights of the target network are periodically updated to match
those of the online network. On the other hand Double DQN algorithm uses a
loss function that combines the Q-value of the selected action from the online
network and the Q-value of the same action from the target networks.

4 DRL Approach for SFC Orchestration in SDN/NFV
Environments

4.1 SFC Orchestration

SFC orchestration is an important concept in modern networking and is critical
to the successful deployment and management and execution of NFs in SFC. It
enables network administrators to create customized NS tailored to their specific
requirements. It involves in our case study VNFs placement and chaining to maxi-
mize QoE while meeting QoS requirements. SFC orchestration is commonly done
through a central controller that communicates with network devices to manage
VNFs placement and chaining. The controller uses policy-based decision-making
to determine the appropriate VNFs to select and order in which they need to be
executed. SFC orchestration process typically involves different steps. The first
one concerns the design of Service Function Forwarding Graph (SFFG) to specify
the sequence of NFs. The second step involves, based on SFFG, VNF selection
and placement in PSN to check the proper execution of SFC. The next step
covers traffic steering through SFC to ensure that it follows the prescribed path.

Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL 281

Hence, the last step deals with service function monitoring to ensure that SFC
is functioning correctly and to detect any potential issues. On the other hand,
automating SFC deployment in SDN/NFV environments involves using tools
and techniques to automate the process of creating, configuring, and deploying
NFs to create SFC. Among these tools SDN network controllers are essential
and are commonly used to achieve Controller-based automation of SFC deploy-
ment. The controller can automatically configure NFs and route traffic through
SFC based on policy and service requirements. This approach can simplify the
deployment process and reduce the risk of human error. Also SFC orchestra-
tion technique may be leveraged to automate the management of SFCs, such as
scaling, upgrading, and monitoring. Lastly virtualization enables creating VNFs
that can be deployed on Virtual Machines (VMs) or containers and greatly facil-
itates deployment automation of NFs, as virtual resources. By automating SFC
deployment, network operators can reduce time and effort required to deploy
and manage NFs, and ensure efficient delivery of NS. Also, optimizing SFC in
SDN/NFV environments involves balancing various factors such as QoE, service
requirements, available resources, network topology and QoS parameters.

4.2 SFC Orchestration Based on DRL Approach

The key steps involved SFC orchestration process based on a DRL approach
concerns defining the state space. In our case study it includes information about
available resources in the PSN, the SFC request, network topology. It involves
also specifying action space including selecting which NFs to deploy, where to
deploy them, and how to configure them. Another step concerns designing the
reward function to provide feedback to the agent on the quality of its actions.
In the case of SFC deployment, the reward function can be based on QoE of
NS delivered through the SFC, as well as the QoS constraints that need to be
met. The goal is to maximize QoE while meeting QoS constraints. Finally the
last step concerns training the agent by using a DRL algorithm such as DQN
or its variants to enable the agent to learn to optimize its actions to maximize
the cumulative reward over time. By using DRL to optimize automation of SFC
deployment in SDN/NFV environments, network operators can reduce time and
effort required to deploy and manage NFs, while ensuring the efficient delivery
of NS.

4.3 Reward Design

In this paper we adopt similar problem formulation given in [1], and we briefly
describe in the rest of this subsection reward function used by DRL agent to
take actions that maximize user’s satisfaction while meeting QoS requirements.
Indeed, designing an effective reward function is a challenging task, and the spe-
cific form of the function will depend on application or service being optimized.
In this regard, the reward function is designed by balancing the trade-off between
maximizing QoE while meeting QoS constraints, to ensure that RL agent learns
to take actions leading to good user experience.

282 M. Escheikh et al.

RQoE−QoS =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if (c1)

QoEsfc, if (c2)

QoEsfc − P req
sfc , if (c3)

P = 10, otherwise

(5a)
(5b)
(5c)
(5d)

where c1, c2, c3 are logical conditions defined as follows:

– c1: vnfi (i ∈ [1...N − 1]) ∈ rn is successfully deployed
– c2: vnfN ∈ req is successfully deployed and QoSt

sfc = QoSt
req , t ∈ {1, 2, .., L}

– c3: vnfN ∈ req is successfully deployed and QoSt
sfc �= QoSt

req , t ∈ {1, 2, .., L}

P req
sfc (Eq.(6)) [5]: expresses QoS constraints penalty as follows:

P req
sfc = P · e

−
√∑L

t=1 ‖QoSt
sfc−QoSt

req‖2

(6)

Relationships between QoE and measurable QoS parameters: Measur-
ing QoE versus QoS is a complex task that requires careful consideration of the
specific application or service being evaluated and the user’s individual prefer-
ences. Different methods may be more appropriate depending on context, and
the ultimate goal is to optimize the user’s experience while meeting the neces-
sary QoS requirements. From a service provider or network operator perspective
there is an imperative need to apprehend the relationships between QoE and
measurable QoS parameters. This is mainly achieved in literature through two
different generic and quantitative formula laws. The first one proposed by Fiedler
et al. [7] and based on an exponential function called IQX hypothesis to express
relationship between QoE and QoS degradation. The objective of such formula is
to capture correlations between network-level traffic features and user perceived
QoE. The second one, proposed by Weber-Fechner Law (WFL) [12] relies on a
logarithmic relationships between relative quality changes in network QoS and
user QoE. We use a mixture of the above models to define QoE gain used in
designing the reward function. QoE (Eq.(7)) [7,12] specifies reward obtained in
response to successful SFC deployment.

QoEsfc =
K∑

t=1

wt × QoEt
sfc −

L∑

t=K+1

wt × QoEt
sfc (7)

where:
QoEt

sfc = γp × log(αp × qost
sfc + βp) + θp, t ∈ {1, 2, .., k} (8)

QoEt
sfc = γn × e(αn×qost

sfc+βn) + θn, t ∈ {k + 1, k + 2, .., L} (9)

5 Simulation Results

We investigate, in this section, the DRL agent learning process and we test qual-
ity of learning using QoE Threshold Score (QoETh_Sc). The training process is
observed along one episode of 20000 runs. We explore the DRL agent behavior

Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL 283

for different levels of learning to be achieved where each learning level is quanti-
fied by a QoETh_Sc to be reached on average in the last 100 runs of the training
phase. We proceed by progressively and incrementally increasing QoETh_Sc and
we intend to see for each experience how this factor impacts agent behavior in
terms of performance and convergence speed. In other words, we explore how
DRL agent attempts to reach better learning quality as close as possible to the
optimal (or near-optimal) solution.

Main Assumptions: For the DRL agent a cycle of state-action-reward corre-
sponds to one step and each incoming SFC request involves 5 steps or actions.
The training curve describes the evolution of the agent training process along
one episode. It represents the reward’s trend for each run of the episode. The
training curve is plotted by associating to each run the corresponding average
accumulated reward of 100 SFC requests. The training phase may be stopped
prematurely (before the end of an episode) whenever DRL agent’s performance
is considered satisfactory enough. Satisfaction is attained whenever a predefined
score quantifying the quality of learning is reached. As soon as the training phase
is finished, the environment is reset to its initial state and another episode is ini-
tiated by the agent. Such process allows the agent to learn from its experience
along every episode and uses data incrementally gathered as a knowledge to
improve its performance in the following episodes.

We aim through different experiences to get closer to the best reachable
learning quality in a reasonable period of time. In other terms we intend to find
for the DRL agent through such approach a suitable performance-convergence
trade-off. We investigate three scenarios. For each scenario, we fix QoETh_Sc

and we increase progressively the PSN scale (we consider different PSN scales
(5, 10, 15)). This is achieved by increasing the number of nodes (M) in the PSN.
Notice that the PSN is assumed composed of M nodes with limited capacities
fully interconnected. We intentionally choose an episode with a large duration
(20000 runs) to allow the agent to reach during the testing phase the desired
performance (QoETh_Sc level).

In Fig. 1 (resp. Figure 2) QoETh_Sc is fixed to 2500 (resp. 2550) whereas in
Fig. 3 QoETh_Sc is fixed to 2600. Notice that for a fixed QoETh_Sc, increasing
the PSN scale may during exploration, both enhance opportunities for the agent
to obtain better rewards but also may increase the risk to be penalized. This
justifies the mixed results obtained in the three figures where increasing the
PSN scale (for fixed QoETh_Sc) does not necessarily lead to longer training.
We choose QoETh_Sc values (2500 (Fig. 1), 2550 (Fig. 2), 2600 (Fig. 3)) to reach
relatively good performance but also allowing to converge before an episode
ends. Such choice justifies the need to find suitable performance-convergence
trade-off along the training phase. From another perspective, we attempt to
apprehend another facet of the agent behavior and its capacity to achieve a good
performance-convergence trade-off by considering PSN scale with fixed size (for
example M = 5) and by progressively increasing QoETh_Sc from 2500 to 2600.
Indeed, on one hand, for example, rising QoETh_Sc from 2500 (Fig. 1a) to 2550
(Fig. 2a) yields a decrease of the required number of runs, to attain the desired

284 M. Escheikh et al.

Fig. 1. QoE score vs number of runs (QoETh_Sc = 2500)

Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL 285

Fig. 2. QoE score vs number of runs (QoETh_Sc = 2550)

286 M. Escheikh et al.

Fig. 3. QoE score vs number of runs (QoETh_Sc = 2600)

Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL 287

QoETh_Sc, from 16000 to 6000. Conversely, rising QoETh_Sc value from 2550
(Fig. 2a) to 2600 (Fig. 3a) increases the required number of runs, to improve
the desired QoETh_Sc, from 6000 to 17500. Such behavior may be explained
by the following arguments. Along a training phase, the agent learns through
trial and error and tries alternates in a probabilistic manner according to ε-
greedy algorithm between exploration and exploitation. In a nutshell, due to the
stochastic nature of the training process, the required time to train the agent for
the same scenario may be longer or shorter depending on experience. We believe
that the above explanation fully justifies the agent trend for different QoETh_Sc.

Notice also that in DRL, the learning phase is of stochastic nature given that
agent’s actions are often based on probability distributions, rather than deter-
ministic rules. The stochasticity arises from the fact that the agent’s policy is
often based on a probability distribution over actions, rather than a determinis-
tic mapping from states to actions. This means that the agent may take different
actions in the same state, depending on probabilities assigned to each action.
Additionally, rewards received by the agent may also be stochastic, as they may
depend on random events in the environment. This stochasticity allows agent
to explore different actions and learn from experience. However, it also intro-
duces additional complexity, as the agent must learn to balance exploration and
exploitation in order to maximize its long-term rewards. This complexity leads
to uncertainty about agent’s capacity to attain the desired quality within one
episode.

6 Conclusion

Testing and evaluation of the quality of learning in DRL is critical for ensuring
the generalization of learned policies and to assess their robustness, In this paper,
we proposed an investigation of testing and evaluation of learning phase of the
Double DQN agent through testing its capacity to learn a near-optimal policy
to achieve SFC orchestration maximizing QoE while meeting QoS requirements
of PSN in SDN/NFV environments. By evaluating the performance of DRL
agent, we attempt to identify areas where the agent under-performs in specific
scenarios and how modifying the related parameters to achieve the best quality of
training enabling suitable performance-convergence trade-off. Trough numerical
investigations, we particularly explore the impact of modifying progressively
quality of learning (quantified by a QoE score) and the scale of the network
(PSN) on achieving a good compromise between performance and convergence.
We show that increasing these parameters often leads to mitigated results and
we provide detailed explanations of this behavior based on the stochastic nature
of the DRL process. In future works, we intend to make further explorations
about other parameters, hyper-parameters and DRL algorithms (DQN variants)
that may impact DRL agent behavior and the achieved performance-convergence
trade-off during testing in learning phase.

288 M. Escheikh et al.

References

1. Escheikh, M., Taktak, W.: Online QoS/QoE-driven SFC Orchestration Leveraging
a DRL Approach in SDN/NFV Enabled Networks, April 2023. (submitted to Soft
Computing)

2. Arulkumaran, K., et al.: Deep reinforcement learning: a brief survey. IEEE Signal
Process. Mag. 34(6), 26–38 (2017)

3. Benzekki, K., El Fergougui, A., Elalaoui, A.E.: Software-defined networking (SDN):
a survey. Secur. Commun. Netw. 9(18), 5803–5833 (2016)

4. Bhamare, D., et al.: A survey on service function chaining. J. Netw. Comput. Appl.
75, 138–155 (2016)

5. Chen, X., et al.: Reinforcement learning-based QoS/QoE-aware service function
chaining in software-driven 5G slices. Trans. Emerg. Telecommun. Technol. 29(11),
e3477 (2018)

6. Chen, J., Chen, J., Zhang, H.: DRL-QOR: deep reinforcement learning-based
QoS/QoE-aware adaptive online orchestration in NFV-enabled networks. IEEE
Trans. Netw. Serv. Manage. 18(2), 1758–1774 (2021)

7. Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between
quality of experience and quality of service. IEEE Netw. 24(2), 36–41 (2010)

8. Hasselt, H.: Double q-learning. In: Advances in Neural Information Processing
Systems, vol. 23 (2010)

9. Herrera, J.G., Botero, J.F.: Resource allocation in NFV: a comprehensive survey.
IEEE Trans. Netw. Serv. Manage. 13(3), 518–532 (2016)

10. Lin, L.-J.: RL for Robots Using Neural Networks. Carnegie Mellon University,
Pittsburgh (1992)

11. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

12. Reichl, P., et al.: The logarithmic nature of QoE and the role of the Weber-Fechner
law in QoE assessment. In: 2010 IEEE International Conference on Communica-
tions. IEEE (2010)

13. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy,
applications and research directions. SN Comput. Sci. 2(6), 420 (2021)

14. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
Press, Cambridge (1998)

15. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30. No. 1 (2016)

Author Index

A
Akat, Özge 73
Angelis, Guglielmo De 257
Ardito, Luca 115
Arisholm, Erik 21

B
Balera, J. 179
Barboni, Morena 257
Barbosa, G. 179
Barbosa, Gerson 219
Barkaoui, Kamel 274
Behjati, Razieh 21
Berkenbrock, Gian 219
Brosch, Nicole 40
Brüning, Felix 183

C
Celic, Berina 247
Chen, Zhongyan 160
Coppola, Riccardo 115
Çulha, Ceren 247

E
Ebersold, Sophie 126
Embury, Suzanne M. 160
Endo, André 219
Enoiu, Eduard Paul 143
Esber, Jameel 143
Escheikh, Mohamed 274

F
Feldt, Robert 143

G
Garn, Bernhard 247
Gay, Gregory 97, 143
Gleirscher, Mario 183

H
Hiess, Irene 247
Hryszko, Jarosław 80
Huang, Li 52
Huang, Wen-ling 183

I
Istanbuly, Dia 97

J
Jehaj, Ledio 40

K
Kampel, Ludwig 247
Kieseberg, Klaus 247
Koelbing, Marlene 247
Krafczyk, Niklas 183
Kushik, Natalia 237

L
Leithner, Manuel 247
Liotta, Antonio 266
López, Jorge 237

M
Marchetto, Alessandro 3
Messe, Nan 126
Meyer, Bertrand 52
Mnich, Michał 80
Morichetta, Andrea 257

N
Nigmatullin, Ildar 126

O
Oriol, Manuel 52

P
Peleska, Jan 183
Polini, Andrea 257

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Bonfanti et al. (Eds.): ICTSS 2023, LNCS 14131, pp. 289–290, 2023.
https://doi.org/10.1007/978-3-031-43240-8

https://doi.org/10.1007/978-3-031-43240-8

290 Author Index

R
Rebelo, L. 179
Rebelo, Luciana 219
Rimawi, Diaeddin 266
Roman, Adam 80
Russo, Barbara 266

S
Sachtleben, Robert 183
Sadovykh, Andrey 126
Schreiber, Dominik-Philip 247
Silva, M. 179
Silva, Marlon 219
Simos, Dimitris E. 247
Souza, É. 179
Souza, Érica 219
Sözer, Hasan 73

T
Taktak, Wiem 274
Tan, Chao 21
Todescato, Marco 266

Torchiano, Marco 115
Tretmans, Jan 202
Trubiani, Catia 219

V
van Arragon, Lars 202
van Cuyck, Gijs 202
Vigo, Markel 160
Vijaykumar, N. 179
Vijaykumar, Nandamudi 219

W
Wagner, Michael 247
Wech, Christoph 247
Wotawa, Franz 40

Y
Yevtushenko, Nina 237

Z
Zimmer, Max 97
Zivanovic, Jovan 247

	 Preface
	 Organization
	 Failure Analysis in CPS Simulink Models (Keynotes)
	 Contents
	Test Case Generation
	A Rapid Review on Fuzz Security Testing for Software Protocol Implementations
	1 Introduction
	2 Related Works
	3 Rapid Review
	3.1 Research Questions
	3.2 Data Source and Search Strategy
	3.3 Analysis Criteria
	3.4 Limitations of the Study

	4 Results
	5 Final Remarks
	References

	Enhancing Synthetic Test Data Generation with Language Models Using a More Expressive Domain-Specific Language
	1 Introduction
	2 Case Study
	2.1 Abstract Data Model
	2.2 Conceptual Model of Event Generator and Event Specification

	3 Domain Specific Language Design and Comparison
	3.1 Domain Specific Formal Language - Steve132
	3.2 Domain Specifical Language - Steveflex
	3.3 Historical Dimension in Expressiveness
	3.4 Higher Information Capacity

	4 Evaluation Framework
	5 Experiment, Result and Comparison
	5.1 Result and Comparison
	5.2 Experimental Setup

	6 Related Work
	7 Conclusion
	A Steve132 constraints
	B Steveflex constraints
	References

	On the Evaluation of Photometric Stereo Applications Testing Using Image Modifications
	1 Introduction
	2 The System Under Test
	3 Experiments
	4 Conclusions
	References

	Seeding Contradiction: A Fast Method for Generating Full-Coverage Test Suites
	1 Overview
	2 The Method
	2.1 Falsifying a Code Block
	2.2 Block Variables

	3 Correctness
	3.1 Definitions and Assumptions
	3.2 Proof of Correctness
	3.3 Correctness in Practice

	4 Implementation
	5 Evaluation and Comparison with Dynamic Techniques
	5.1 Comparison Criteria and Overview of the Results
	5.2 Detailed Results

	6 Limitations and Threats to Validity
	7 Related Work
	8 Conclusions and Future Work
	References

	Test Automation and Design
	Automated Testing of Systems of Systems
	1 Introduction
	2 Related Work
	3 The Approach and Implementation
	4 Motivating Example from the Industry
	5 Conclusion and Future Work
	References

	Empirical Verification of TQED - A New Test Design Heuristic Technique
	1 Introduction
	2 TQED and Effectiveness of Test Design Techniques
	3 TQED Model
	4 Experiment
	5 Conclusions
	References

	How Do Different Types of Testing Goals Affect Test Case Design?
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	4.1 Population and Sampling
	4.2 Data Collection
	4.3 Data Analysis

	5 Results and Discussion
	5.1 Goals and Goal Importance
	5.2 Quantitative Relationship Between Goal Types and Tests
	5.3 Influence of Goals on Test Design

	6 Threats to Validity
	7 Conclusion
	References

	Multi-device, Robust, and Integrated Android GUI Testing: A Conceptual Framework
	1 Introduction
	2 Mobile GUI Testing: State of the Art and Practice
	3 Conceptualization of the GEM Framework
	3.1 Test Generation and Translation
	3.2 Test Execution
	3.3 Test Maintenance and Repair

	4 Discussion
	5 Call to Action
	6 Conclusions
	References

	RQCODE: Security Requirements Formalization with Testing
	1 Introduction
	1.1 Importance of Security by Design
	1.2 Importance of Security Testing

	2 Related Work
	3 The ReQuirements as CODE Approach (RQCODE)
	3.1 RQCODE Definition and Concepts
	3.2 RQCODE Example
	3.3 Use Case of Security Technology Implementation Guide

	4 Discussion
	4.1 Background Needed
	4.2 Security Testing

	5 Conclusion and Future Work
	References

	Understanding Problem Solving in Software Testing: An Exploration of Tester Routines and Behavior
	1 Introduction
	2 Background and Related Work
	3 Method
	3.1 Survey Development
	3.2 Survey Population and Sampling
	3.3 Thematic Analysis

	4 Results and Discussions
	4.1 Survey Results
	4.2 The Extended Problem Solving Model

	5 Discussion
	5.1 Threats to Validity

	6 Conclusions
	References

	Who Is Afraid of Test Smells? Assessing Technical Debt from Developer Actions
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 The Evaluation Context
	3.2 Mean Time to Removal
	3.3 Data Collection
	3.4 Data Analysis

	4 Results and Discussion
	4.1 Under-Represented Test Smells
	4.2 Rapidly Removed Test Smells
	4.3 Slowly Removed Test Smells
	4.4 Mid Range Test Smells

	5 Threats to Validity
	6 Conclusions and Future Work
	References

	Model Based Testing
	A Systematic Literature Review on Prioritizing Software Test Cases Using Markov Chains
	1 Extended Abstract
	References

	Complete Property-Oriented Module Testing
	1 Introduction
	2 Theoretical Foundations
	2.1 Black Box Checking
	2.2 Equivalence Class Construction for SFSM

	3 Optimisation of the Test Method
	4 Tool Support: libfsmtest and libsfsmtest
	5 Experiments
	6 Conclusion
	References

	Compositionality in Model-Based Testing
	1 Introduction
	2 Preliminaries
	3 Motivating Example: A Parking System
	4 Mutual Acceptance
	5 Compositionalility for Uioco
	6 The Parking System Revisited
	7 Component Substitution and Diagnosis
	8 Related Work
	9 Future Work
	10 Conclusion
	References

	Prioritizing Test Cases with Markov Chains: A Preliminary Investigation
	1 Introduction
	2 Related Work
	3 Background
	3.1 Test Case Prioritization
	3.2 Markov Chains

	4 Markov Chains Applied in TCP
	5 Experimental Analysis
	5.1 Metrics Definition
	5.2 Description of Case Studies
	5.3 Results and Analysis

	6 Discussion and Conclusion
	References

	Probabilistic Approach for Minimizing Checking Sequences for Non-deterministic FSMs
	1 Introduction
	2 Preliminaries
	3 Non-initialized Probabilistic FSMs
	4 Minimizing a Checking Sequence with a Level of P-Exhaustiveness
	5 Conclusion
	References

	AI and Smart Contracts Testing
	Applying Pairwise Combinatorial Testing to Large Language Model Testing
	1 Introduction
	2 Related Work
	3 Instantiating the Combinatorial Testing Process for Testing of LLMs
	3.1 A Combinatorial Sentence Model via an IPM
	3.2 Generation of t-Way Sentence Test Sets
	3.3 Sentence Test Set Translation and Execution
	3.4 Test Oracle

	4 Outline of Experimental Evaluation
	5 Lessons Learned and Threats to Validity
	6 Summary and Future Work
	References

	CATANA: Replay Testing for the Ethereum Blockchain
	1 Introduction
	2 Background
	3 Methodology
	4 Experimental Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	GResilience: Trading Off Between the Greenness and the Resilience of Collaborative AI Systems*-1pc
	1 Introduction
	2 Related Work
	3 Approach - GResilience
	4 Conclusion and Future Work
	References

	Testing Quality of Training in QoE-Aware SFC Orchestration Based on DRL Approach*-1pc
	1 Introduction
	2 Reinforcement Learning
	2.1 RL Agent
	2.2 Training (Learning), Testing and Evaluation in RL
	2.3 Convergence-Performance Trade-Off in Training RL Algorithms

	3 DRL Implementation via Double DQN
	3.1 DQN
	3.2 Double DQN

	4 DRL Approach for SFC Orchestration in SDN/NFV Environments
	4.1 SFC Orchestration
	4.2 SFC Orchestration Based on DRL Approach
	4.3 Reward Design

	5 Simulation Results
	6 Conclusion
	References

	Author Index

