
Chapter 19
Dynamic Buckling of Functionally
Graded Plates and Shells Subjected
to Thermal Shock

Stanislav V. Levyakov

Abstract In this work, the nonlinear dynamic response of suddenly heated func-
tionally graded shells is studied through nonlinear transient analysis. To this end,
a triangular shell finite element with 15 degrees of freedom is developed using
the invariant-based approach and the concept of the surface of mass. Equations
of motion of the shell finite-element model are integrated numerically by the
Newmark method combined with iterative refinement of the solution using the
Newton–Raphson procedure. For each time increment, the transient temperature
field across the shell thickness is determined by iteratively solving the unsteady
heat-conduction equation taking into account temperature-dependent properties of
the material. The predicted temperature profile is used to compute the nodal thermal
loads and temperature-dependent stiffness characteristics of the shell element. The
proposed finite-element element formulation is validated against the available solu-
tions of dynamic problems of plates and shells. A number of examples are given to
demonstrate nonlinear capabilities of the proposed formulation and to estimate the
effect of dynamic thermal loading on buckling instability of FGM plates and shells.

Keywords Functionally graded material · Shells · Thermal shock · Unsteady heat
conduction · Nonlinear dynamic buckling · Finite-element modeling

19.1 Introduction

In various fields of engineering, structural members have to operate in thermal
environment characterized by elevated temperatures and high thermal gradients.
Aerospace technology and nuclear engineering are modern areas of engineering
where structures may be subjected to rapid surface heating, which leads to unsteady
heat conduction and high thermal stresses referred to as thermal shock. Thin-walled

S. V. Levyakov (B)
Department of Engineering Mathematics, Novosibirsk State Technical University, 630092
Novosibirsk, Russian Federation
e-mail: stan-levyakov@yandex.ru

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Altenbach and V. Eremeyev (eds.), Advances in Linear and Nonlinear Continuum
and Structural Mechanics, Advanced Structured Materials 198,
https://doi.org/10.1007/978-3-031-43210-1_19

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43210-1_19&domain=pdf
mailto:stan-levyakov@yandex.ru
https://doi.org/10.1007/978-3-031-43210-1_19


326 S. V. Levyakov

members subjected to thermal shock may experience large-amplitude motion and
even exhibit unstable behavior that affects the performance of the structure.

Boley (1956) was the first to provide theoretical analysis of thermally induced
vibrations of a thin beam subjected to step heating. Based on the linear beam bending
theory, he obtained the exact analytical solution governing forced lateral vibrations
caused by thermal moment that occurs due to transient non-uniform temperature
distribution through the beam cross-section. Jones (1966), Seibert and Rice (1973)
refined the solution of the problem by taking into account transverse shear effects
and rotary inertia. One of the earliest finite-element formulations for dynamic anal-
ysis of beams and plates under unsteady heat conduction was proposed by Mason
(1968). Stroud andMayers (1971) studied the effect of temperature-dependent mate-
rial properties on the dynamic response of a rapidly heated plate. It was shown that
neglect or even incomplete consideration of the temperature dependence can lead
to dangerously unconservative results. Das (1983) reported on vibrations of thin
polygonal plates subjected to thermal shock through the complex variable theory.
Irie and Yamada (1978) obtained analytical solution governing thermally induced
axisymmetric vibrations of circular and annular plates subjected to a sinusoidally
varying heat flux. Based on coupled equations of thermoelasticity, Al-Huniti et al.
(2003) studied small transient deflections of a thin simply supported rectangular plate
subjected to suddenly applied laser pulse of short duration. Nakajo and Hayashi
(1988) studied dynamic axisymmetric response of circular plates under thermal
impact by analytical and finite-element methods. They emphasized the significance
of geometric nonlinearity in the analysis of plates with immovable edge. The studies
mentioned above deal with homogeneous isotropic plates.

Tauchert (1989) investigated thermally induced vibrations of homogeneous
orthotropic rectangular plates having two parallel simply supported edges. Chang
et al. (1992) developed a finite element for linear analysis of thermally-induced
vibrations of shear deformable laminated plates under thermal impact. Based on the
finite-element results, they discussed the effect of boundary conditions and stacking
sequence of laminates on themagnitude of vibrations.Adams andBert (1999) studied
the effect of orthotropic mechanical and thermal properties of the material on small-
amplitude vibrations of a thin symmetrically laminated rectangular plate subjected to
a step heat flux. The transient stresses and displacements in a thin orthotropic cylin-
drical shell subjected to instantaneous thermal shock were discussed by Huan and
Wo (1980). Using the Donnel shell theory, Birman (1990) presented the analysis of
dynamic response of linear and geometrically nonlinear reinforced cylindrical shells
manufactured from composite materials. For various reinforcements, he evaluated
the critical temperature at which the shells exhibit dynamic buckling behavior.

There has been a renewed interest in the analysis of thermally induced vibrations
after the advent of functionally gradient materials (FGM) representing new class of
advanced composite materials. Owing to high thermal resistance, FGMs are used
in the design of structures operating under ultrahigh temperatures and large thermal
gradients. There exists a large body of literature on stresses, vibrations, and buckling
of mechanically and thermally loaded structural elements fabricated of FGMs. In
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what follows, we confine our review to those contributions that deal with thermally
induced vibrations of rapidly heated thin-walled structures.

Ma and Lee (2011) reported on small-amplitude lateral vibrations of a shear-
deformable FG beam about thermally bent configuration caused by uniform temper-
ature distribution. Based on the numerical solution of the governing equations, they
studied the effect of thermal load on the beam frequencies taking into account
temperature-dependent material properties. A more accurate approach based on
nonlinear transient analysis of FG beams was proposed by Ghiasian et al. (2014).
Nonlinear equations of motion were solved by the multi-term p-Ritz method
combined with the Newmark integration scheme in the time domain. The issue of
dynamic buckling of beams subjected to uniform rapid heating was briefly discussed
by Ghiasian et al. (2015) based on the Budiansky-Roth criterion. Using a finite-
element formulation,Malik andKadoli (2017, 2018) studied thermally inducedvibra-
tions of FG beams taking into account geometrical nonlinearity and temperature-
dependent properties of the material. Javani et al. (2019a) presented nonlinear
dynamic analysis of suddenly heated shallow circular arches. The governing differen-
tial equations based on the first-order shear deformation theory and strain–displace-
ment relations of the von Karman type were discretized and solved by the hybrid
generalized differential quadrature method combined with the Newmark time inte-
gration scheme.A similar approachwas used to investigate large-amplitude thermally
induced vibrations of annular sector plates (Javani et al. 2021) and circular plates
(Kiani and Eslami 2014; Javani et al. 2019b). Axisymmetric dynamic response of
suddenly heated shallow cylindrical and conical shells was studied in Esmaeili et al.
(2019); Javani et al. (2019c), respectively. Javani et al. (2020) and Taleb et al. (2022)
addressed the dynamic snap-through instability of shallow spherical caps.

Prakash et al. (2007) employed a finite-element procedure to investigate nonlinear
dynamic buckling of shear-flexible FG spherical caps subjected to step heating.
Zhang et al. (2019) dealt with axisymmetric dynamic thermal buckling of annular
plates with small initial geometric imperfections. The governing equations based
on the classical plate theory were solved by expanding the deflections in power
series and integrating numerically in the time domain. Zhang et al. (2015) examined
the effect of grading material properties on axisymmetric transient displacements of
rapidly heated thin cylindrical shells by the differential quadrature method. Dynamic
thermal buckling of geometrically perfect cylindrical shells was studied by Zhang
et al. (2020) using the symplectic method. Pandey and Pradyumna (2018) proposed
a finite-element formulation for transient stress analysis of FGM plates and panels
based on the higher-order layerwise theory. Using a 20-node solid finite element,
Czechowski (2015) studied dynamic buckling of a clamped rectangular plate FGM
plate subjected to thermal heat flux loading of short duration.

The dynamic response of rapidly heated thin-walled structures made of FGMs
represents a relatively new area of investigation. As can be seen from the existing
literature, only a limited number of works have so far been reported on thermally
induced nonlinear vibrations and dynamic buckling of suddenly heated plates and
shells. The available results are confined to circular plates and shallow shells of
revolution undergoing axisymmetric deformations. The effect of initial geometric
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imperfections, which play an important role in the dynamic buckling behavior, has
been discussed only briefly.

It is of interest to examine the dynamic stability of suddenly heated FGM shells
through nonlinear transient analysis, which appears to be the most realistic approach
to the problem. Transient analysis of nonlinear shells can be efficiently carried out
using time marching schemes combined with iterative determination of deformed
configuration at each time increment. Among available numerical approaches, the
finite element method is one of the most successful and powerful tools. Typically, a
finite-element model of a shell of relatively simple geometry involves thousands and
even more solution variables to be operated on. Hence, much computer memory and
time is required to repeatedly solve large system of equations governing dynamic
response of the model. In most cases, the computational process is very time-
consuming even for the current state-of-the-art computers. It is therefore of impor-
tance to develop effective numerical techniques that would allow one to reduce
computational effort while providing reasonable accuracy in the calculations.

Our goal in this work is to develop a computationally-effective finite-element
formulation for geometrically nonlinear analysis of thermally induced motion
of functionally graded shells. To this end, we revisit the formulation reported
in Levyakov and Kuznetsov (2011, 2014) to take into account inertia forces,
thermal loads due to unsteady heat conduction, and temperature-dependent material
properties.

19.2 Material Properties

We consider a shell made of a functionally graded material consisting of metal
and ceramic constituents. The material properties are assumed to be graded in the
thickness direction according to the power law (Shen 2009)

P(z, T ) = Pm(T ) + [Pc(T ) − Pm(T )](0.5 + z/h)n

(−h/2 ≤ z ≤ h/2) (19.1)

where P denotes mechanical or thermal property of the material (Young’s modulus,
Poisson’s ratio, coefficient of linear thermal expansion, etc.), T is the current temper-
ature, h is the shell thickness, z is the distancemeasured from the shellmiddle surface,
subscriptsm and c refer to metal and ceramic phases, respectively, and n is a positive
constant referred to as the grading index.

Dependence of material properties on temperature is commonly described by the
power law

Pi = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3), (i = c,m) (19.2)

where P−1, P0, . . . , P3 are coefficients determined for each constituent material.



19 Dynamic Buckling of Functionally Graded Plates and Shells Subjected … 329

19.3 Temperature Distribution

We consider non-steady one-dimensional problem of heat transfer through the
thickness of a shell with temperature dependent material properties, assuming that
heat transfer does not depend on a deformed configuration of the shell. The one-
dimensional Fourier-Biot heat conduction equation to be solved for the temperature
field T = T (z, t) is given by

(κT ′)′ − ρcpṪ = 0

0 ≤ t, −h/2 ≤ z ≤ h/2 (19.3.1)

where κ = κ(z, T ) is the thermal conductivity, ρ = ρ(z) is the density of the
material, cp = cp(z, T ) is the specific heat capacity, and prime and superposed
dot denote partial derivatives with respect to the transverse coordinate z and time t ,
respectively. Since the temperature profile varies with time, the material properties
mentioned above are functions of z and t .

The initial condition is assumed to be

T (z, 0) = Tre f (19.3.2)

where Tref is the reference temperature at which the shell is stress free. We confine
our attention to the following three types of thermal boundary conditions:

T (−h/2, t) = f (t)

T (h/2, t) = f (t) (19.3.3)

T (−h/2, t) = Tref

T (h/2, t) = f (t) (19.3.4)

T ′(−h/2, t) = 0

T (h/2, t) = f (t) (19.3.5)

in which f (t) is a prescribed boundary temperature.
The two common representations of the thermal shock are given by

f (t) = �T · H(t) (19.3.6)
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f (t) = �T (1 − e−σ t ), σ > 0 (19.3.7)

where H(t) is the Heaviside unit step function and σ is the loading parameter.
Because of inhomogeneous structure of the material and temperature-dependent

properties, the solution of the heat-conduction problem (19.3.1)–(19.3.5) by analyt-
ical methods encounters serious mathematical difficulties. To solve the problem, we
employ thefinite-elementmethodwith step-by-step computations in the timedomain.
Equation (19.3.1) is multiplied by a test function and then integrated to obtain the
variational form of the problem. We divide the shell thickness into elements of equal
length �z and assume that the material properties κ , ρ, and cp are constant within
each element.

Following the standard approximation procedure (see, e.g. (Zienkiewicz and
Morgan 1983) and (Reddy 2004)), we use piecewise linear test functions and inte-
grate over z. As a result, we arrive at a system of nonlinear ordinary differential
equations, which can be converted to matrix form

K(T )T + R(T )Ṫ = 0 (19.3.8)

where T is the vector representing nodal temperatures, K and R are tridiagonal
symmetric matrices depending on the nodal temperatures.

Let the time domain be represented by a sequence of finite elements of length
�t . Within the n-th time element, the temperature field can be approximated by the
linear shape functions

T = TnN1 + Tn+1N2

N1 = 1 − (t − tn)/�t

N2 = (t − tn)/�t (19.3.9)

where tn < t < tn+1.
Using the weighted residual method to solve Eqs. (19.3.8), we require that the

equations be satisfied at collocation points t = tn + τ�t (0 < τ < 1). After
integration of the equations, we obtain

(τ�tKn+τ + Rn+τ )Tn+1 + ((1 − τ)�tKn+τ − Rn+τ )Tn = 0 (19.3.10)

where Kn+τ = K(Tn+τ ), Rn+τ = R(Tn+τ ), and Tn+τ = (1 − τ)Tn + τTn+1.
The matrices Kn+τ and Rn+τ are assembled from the elemental matrices

Kn+τ
e = 1

�z
κτ+n

(
1 −1

−1 1

)
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Rn+τ
e = 1

6�z
ρcn+τ

p

(
2 1
1 2

)
(19.3.11)

where the material properties are calculated at the point zη = (1 − η)ze + ηze+1

(0 < η < 1) within the element at instant t = tn + τ�t .
Temperature at which the material properties are evaluated is given by

T n+τ
η = (1 − τ)(1 − η)T n

e + (1 − τ)ηT n
e+1 + τ(1 − η)T n+1

e + τηT n+1
e+1 (19.3.12)

In the computations, we set τ = η = 1/2, which gives errors of O(�t2) and
O(�z2) in determining the temperature profile. To solve Eqs. (19.3.10), we use the
iterative Newton–Raphson procedure assuming the Hessian to be constant at each
time step. The computation scheme is given by

(τ�tKn+τ
(i) + Rn+τ

(i) )δTn+1
(i) + (τ�tKn+τ

(i) + Rn+τ
(i) )Tn+1

(i) +

+((1 − τ)�tKn+τ
(i) − Rn+τ

(i) )Tn = 0 (19.3.13)

Tn+1
(i+1) = Tn+1

(i) + δTn+1
(i)

where δT is the increment in the nodal temperatures and subscript i enumerates
iterations in the time domain.

19.4 Shell Finite Element Formulation

We develop a shell finite element formulation for nonlinear dynamic analysis of
FGMshells using the invariant-based approach proposed in Levyakov andKuznetsov
(2011); Levyakov and Kuznetsov 2014). We recall some basic statements of the
approach.

19.4.1 Invariant Representations

Given two tensorsumn andvmn (m, n = 1, 2) referred toCartesian systemof reference
ξ1Oξ2, the combined invariant is defined as

Iuv = 1

2
empenqumnvpq (19.4.1)
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where emp is the permutation tensor with the components e11 = e22 = 0, e12 =
−e21 = 1 and summation is performed over dummy indices unless otherwise
specified.

It is worth noting that Eq. (19.4.1) implies the well-known results. Namely, setting
vmn = 2δmn (δmn being the Kronecker delta) and vmn = umn , from Eq. (19.4.1) we,
respectively, obtain the first and second invariants of the tensor umn

Iu = u11 + u22

Iuu = u11u22 − u212 (19.4.2)

When dealing with a triangular domain, it is reasonable to introduce three natural
coordinates γi (i = 1, 2, 3) defined by three directions along the triangle’s edges
(see Fig. 19.1). Then the tensor umn can be represented by three natural components
ui (i = 1, 2, 3) determined in the three directions (no summation over i).

ui = αmniumn (19.4.3)

αmni = λmiλni , λmi = 1
li
(ξmk − ξmj ), (m, n = 1, 2; i, j, k = 1, 2, 3),

where ξmk is them-th coordinate of the k-th vertex, li is the length of the side opposite
to the i-th vertex, and the subscripts i , j , and k obey the rule of cyclic permutation.

Using matrix notation, the invariants (19.4.1) and (19.4.2) can be written in terms
of the natural components as

Iu = uTτ, Iuu = uT
(
aaT − ρ

)
u, Iuv = uT

(
aaT − ρ

)
v (19.4.4)

Fig. 19.1 Natural
coordinates of a triangular
element
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u = {
u1, u2, u3

}T
, v = {

v1, v2, v3
}T

, a = {
a1, a2, a3

}T
, τ =

2
{
a1(a − 2a1), a2(a − 2a2), a3(a − 2a3)

}T
, ρ = diag(2a21, 2a22, 2a23),

� = (l pl p)2 − 2l2pl
2
p, ap = (l p)2√

�
(no summation over p),

a = lq lq√
�

(p, q= 1, 2, 3),

where superscript T is a transpose of the matrix.

19.5 Reference Surface

To formulate kinematic relations of the finite element, we use the surface of mass as
a reference surface whose position is given by

zR =
h/2∫

−h/2

ρzdz

⎛
⎜⎝

h/2∫
−h/2

ρdz

⎞
⎟⎠

−1

(19.4.5)

where ρ = ρ(z) is the density of the material.
The concept of the surface of mass is adopted here to decouple translations and

rotations in the expression for the kinetic energy of FGM shell with non-uniform
distribution of material properties across the thickness.

Under the assumptions of the first-order shear deformation theory, the position
vectors of a material particle of the shell in the initial and deformed configurations
are, respectively, written as

rz = r + (z − zR)d, r∗z = r∗ + (z − zR)d∗ (19.4.6)

where r is the position vector of the surface of mass, d is the unit vector (director)
normal to the undeformed middle surface, and the asterisk denotes variables that
refer to a deformed state of the shell.

19.5.1 Kinematics of the Shell Element

A three-node triangular finite element proposed in Levyakov and Kuznetsov (2011);
Levyakov and Kuznetsov 2014) is modified in the present work to incorporate inertia
effects. The element geometry is determined by three nodal position vectors ri , r j ,
and rk and three nodal directors di , d j , and dk normal to the reference surface in the
undeformed state (see Fig. 19.2). We note that the three nodes and adjoined directors
constitute a kinematic group which plays an important role in the formulation of the
shell element.
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Fig. 19.2 Shell element and nodal degrees of freedom

In accordance with the first-order shear deformation theory of plates and shells,
the directors are not necessarily normal to the surface but do not change in length.
The element possesses 5 degrees of freedom (DOF) per node: three translations in
the coordinate directions and two rotations of the nodal director. A total number of
DOFs is equal to 15, which represent 9 straining modes and 6 rigid-body modes of
motion.

Possible changes in the position and configuration of the element are characterized
by the vector of generalized coordinates

δqe = [
δqT

1 , δqT
2 , δqT

3

]
T , δqT

n = [
δx∗

1n, δx∗
2n, δx∗

3n, δω1n, δω2n
]

(n = 1, 2, 3)
(19.4.7)

where x∗
mn are the components of the nodal position vector r∗

n in a deformed state
and ωmn are the components of the rotation vector of the nodal director d∗

n .

19.5.2 Strain Energy

Using the assumptions of the first-order shear deformation theory,wewrite the strains
of the heated shell as

Smn = εmn + (z − zR)κmn − α(T − Tre f )

Sm3 = γm3 (m, n = 1, 2) (19.4.8)
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where εmn and κmn are the membrane strains and curvature changes of the refer-
ence surface z = zR , respectively, α = α(z, T ) is the coefficient of linear thermal
expansion, and γ13 and γ23 are the transverse shear strains.

The strain energy density of the shell can be expressed in terms of invariants as

�V = 1

2

E

1 − ν2

(
I 2S − 2(1 − ν)ISS + 1 − ν

2
I�

)
(19.4.9)

where IS and ISS are the first and second invariants of the strain tensor Smn , respec-
tively, I� is the first invariant of the tensor �mn = Sm3Sn3, E = E(z, T ) is Young’s
modulus, and ν = ν(z, T ) is Poisson’s ratio of the material. The invariants appearing
in Eq. (19.4.8) are determined using the template Eqs. (19.4.2) or (19.4.3).

SubstitutingEqs. (19.4.7) intoEq. (19.4.8) and integrating over the shell thickness,
we obtain the strain energy

� = 1
2

¨

A

(B1 I
2
ε − 2B2 Iεε + D1 I

2
κ − 2D2 Iκκ+

2G1 Iε Iκ − 4G2 Iεκ + C� I� − 2NT Iε − 2MT Iκ + 2α0)d A

(19.4.10)

where

(B1,G1, D1) =
h
2∫

− h
2

(
1, z − zR, (z − zR)2

) E

1 − ν2
dz (19.4.11)

(B2,G2, D2) =
h
2∫

− h
2

(
1, z − zR, (z − zR)2

) E

1 + ν
dz (19.4.12)

(NT , MT ) =
h
2∫

− h
2

(1, z − zR)
E

1 − ν
α(T − Tre f )dz (19.4.13)

C� = k

h
2∫

− h
2

Gdz

α0 =
h
2∫

− h
2

E

1 − ν
α2(T − Tref )

2dz (19.4.14)
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Here A is the area of the shellmiddle surface,G = 0.5E/(1+ν) is the shearmodulus,
k is the shear correction factor introduced to account for non-uniform distribution of
transverse shear stresses in the thickness direction.

Since the material properties are functions of the coordinate z and time t , the
integrals in Eqs. (19.4.11)–(19.4.14) can be evaluated by numerical methods only.
We employ the trapezoidal rule for this purpose.

Using Eqs. (19.4.3), we express the strain energy (19.4.9) of the triangular element
in terms of the natural components of the strain tensors

�e = 1
2

¨

Ae

{εT [B1ττT − 2B2(aaT − ρ)]ε + κT [D1ττT − 2D2(aaT − ρ)]κ+

2εT [G1ττ T − 2G2(aaT − ρ)]κ + C�τT� − 2τT (NT ε + MT κ) + 2α0}d Ae

(19.4.15)

where εT = {
ε1, ε2, ε3

}T
, κT = {

κ1, κ2, κ3
}T

,�T = {
�1, �2, �3

}T
are vectors

of the natural strains, and Ae is the element area computed by the formula Ae = 1
4

√
�,

in which � is computed using Eqs. (19.4.4).
Using approximations of the natural strains considered in Levyakov and

Kuznetsov (2011), after integration over the element area in Eq. (19.4.14), we obtain
the strain energy of the element.

�e = 1

2
uTKu − uTP + α0Ae (19.4.16)

where u is the 9 × 1 vector of the generalized elastic strains,K is the 9 × 9 stiffness
matrix, P is the 9 × 1 vector of thermal loads (for detailed derivation, the reader is
referred to Levyakov and Kuznetsov (2011)).

To formulate algorithm for determining the deformed configuration of the shell,
it is necessary to find the first and second variations of the strain energy.

δ�e = gTe δqe

δ2�e = δqT
e Heδqe (19.4.17)

where is ge andHe the gradient and the Hessian of the element, respectively, and δqe
is given by Eq. (19.4.7).
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19.5.3 Kinetic Energy

Using Eq. (19.4.6) and taking into account Eq. (19.4.5), we write the kinetic energy
of the shell element

Te = 1

2

¨

A

(I0ṙ
∗2 + I2ḋ∗2)d Ae

(I0, I2) =
h/2∫

−h/2

(1, (z − zR)2)ρdz (19.4.18)

We determine the mass matrix of the triangular finite element using the direct
mass lumping. Assuming that nodal contribution of the mass distribution over the
element is proportional to the angle at the node, we obtain the 15× 15 diagonal mass
matrix

Me = diag(μT
1 , μT

2 , μT
3 )

μT
i = Ae(αi/π){I0, I0, I0, I2, I2} (19.4.19)

where αi is the angle at the i-th vertex of the element. In what follows, we ignore
the terms I2 representing rotary inertia.

Assuming that rotary inertia I2 is of minor significance compared to translational
inertia I0, we set I2 = 0.

19.6 Finite-Element Equations of Motion and Solution
Method

The equations of motion of the shell finite-element model can be obtained using
Hamilton’s principle

δ

t2∫
t1

∑
e

(Te − �e) dt = 0 (19.5.1)

where t1 and t2 are instants of time and summation is performed over the finite
elements.

Substituting expressions for the strain energy (19.4.15) and the kinetic energy
(19.4.16) of the element intoEq. (19.5.1) and integrating byparts,we obtain nonlinear
equations of motion
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Mq̈ + Cq̇ + g = 0 (19.5.2)

in which M, C, g, and q are the mass matrix, the damping matrix, the gradient, and
the vector of the generalized coordinates of the strain energy of the finite-element
assemblage, respectively.

To integrate Eqs. (19.5.2) in the time domain, we employ Newmark’s implicit
scheme. At each moment t + �t , where �t is the time increment, solution of the
dynamic equations is found iteratively using the Newton–Raphson procedure:

(
Ht+�t

(p) + a1M + a4C
)
δqt+�t

(p+1) = −gt+�t
(p) − (a1M + a4C)

(
qt+�t

(p) − qt
)
+

(19.5.3)

+(a2M − a5C)q̇t + (a3M − a6C)q̈t ,

a1 = 1
α�t2 , a2 = 1

α�t , a3 = 1−2α
2α , a4 = β

α�t , a5 = 1 − α
β
, a6 =

(
1 − β

2α

)
�t ,

where H is the Hessian of the finite-element model of the shell, δq is the increment
in the vector of generalized coordinates, the subscript p enumerates iterations, and
α and β are the parameters taken to be equal to 1/4 and 1/2, respectively (Bathe and
Wilson 1976). The procedure for computing the gradient and Hessian of the shell
element can be found in Levyakov and Kuznetsov (2011).

After the increment δqt+�t
(p) has been found from Eqs. (5.3), we update the nodal

vectors using the formulas

r∗(p+1)
s = r∗(p)

s + δr∗(p)
s (19.5.4)

d∗(p+1)
s = c(p)

1 d∗(p)
s + c(p)

2

(
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1s δω
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2s δω
(p)
2s

)
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ms

[
c(p)
2 d∗(p)

s + c(p)
3

(
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1s δω
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2s δω
(p)
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)]

δω(p)
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(
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(p)2
2s

)1/ 2

c(p)
1 = cos δω(p)

s , c(p)
2 = sin δω

(p)
s

δω
(p)
s

, c(p)
3 = 1 − cos δω

(p)
s

δω
(p)2
s

where t∗1s and t∗2s are two auxiliary unit vectors normal to the director d∗
s .

After the solution of Eqs. (19.5.2) has been found with a required accuracy, the
nodal velocities and accelerations at each time step are computed using formulas
(Bathe and Wilson 1976)

q̈t+�t = a1qt+�t − a1qt − a2q̇t − a3q̈ (19.5.5)
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q̇t+�t = a4qt+�t − a4qt + a5q̇t + a6q̈t

19.7 Evaluation of Dynamic Buckling

After thermal shock of magnitude �T is applied to a surface of a shell, the stress
resultants NT and MT (see Eqs. (19.4.12)) increase monotonically with time due to
heat transfer through the wall thickness. The rate at which the thermal loads increase
depends on the (1) magnitude of thermal shock, (2) material properties, (3) wall
thickness, and (4) thermal boundary conditions. If the shell is restrained against
thermal expansion, thermally induced compressive stresses can result in buckling.
As the stresses reach the critical level, the shell jumps to oscillations about new
equilibrium configuration. Volmir (1967) proposed the following simple criterion
for dynamic buckling of plates and shells: given the time history of deflection at
a certain characteristic point of the shell, the critical time is defined as a moment
of the highest buckling rate, which corresponds to the inflection point on the time-
deflection curve. In the general case, however, this approach is difficult to implement,
since the location of the characteristic point is not known in advance. For this reason,
to investigate dynamic buckling, we use the time history of the kinetic energy rather
than deflection at a single point.

It is well known that initial geometric imperfections unavoidable in real structures
play an important role in the stability of thin plates and shells. In the nonlinear analysis
of imperfection-sensitive thin-walled structure, the dynamic buckling instability is
interpreted as rapid development of the initial deflections under the time-dependent
loads. Since the amplitude and pattern of deviation from ideal geometric shape are
random, it is common practice to assume that the initial imperfection is similar in
shape to eigenmodes obtained from the static buckling analysis.

19.8 Numerical Results and Discussion

The sample problems considered belowdealwith FGMplates and shells composed of
silicon nitride Si3N4 (ceramic phase) and SUS304 stainless steel (metal phase) unless
otherwise specified. Mechanical and physical properties of the phases are listed in
Tables 19.1 and 19.2 (see, e.g. (Shen 2009)). Temperature-dependent properties are
taken into account unless otherwise specified.

In all the problems, transient analysis of the structures is performed under zero
initial conditions. To determine temperature distribution across the wall thickness,
we use a uniform mesh of 200 elements of equal size.
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Table 19.1 Temperature-dependent properties of Si3N4

Property Dimension P0 P−1 P1 P2 P3

Ec Pa 348.43 × 109 0 −3.07 × 10–4 2.16 × 10–7 −8.946 ×
10–11

νc – 0.24 0 0 0 0

αc K−1 5.8723 × 10–6 0 9.095 × 10–4 0 0

κc W(mK)−1 13.723 0 −1.032 × 10–3 5.466 × 10–7 −7.876 ×
10–11

cpc J/(kgK) 555.11 0 1.016 × 10–3 2.92 × 10–7 −1.67 ×
10–10

ρc kg/m3 2370 0 0 0 0

Table 19.2 Temperature-dependent properties of SUS304

Property Dimension P0 P−1 P1 P2 P3

Em Pa 201.04 × 109 0 3.079 × 10–4 −6.534 × 10–7 0

νm – 0.3262 0 −2.002 × 10–4 3.797 × 10–7 0

αm K−1 12.33 × 10–6 0 8.086 × 10–4 0 0

κm W(mK)−1 15.379 0 −1.264 × 10–3 2.092 × 10–6 −7.223 ×
10–10

cpm J/(kgK) 496.56 0 −1.151 × 10–3 1.636 × 10–6 −5.863 ×
10–10

ρm kg/m3 8166 0 0 0 0

19.8.1 Comparison Studies

In this section, the present finite-element formulation formulation is validated by
considering free vibration and transient problems for which analytical or numerical
solutions are available in the literature.

19.8.1.1 Free Vibration of FGM Shells

The first example is free small-amplitude vibrations of a circular cylindrical panel
of square plan form. The outer surface of the panel is ceramic rich and the inner
surface is metal rich. The properties of the material are determined at the reference
temperature Tre f = 300 K . The grading index in Eq. (19.2.1) is set equal to n = 2.
The geometric parameters are: wall thickness h = 0.01 m, side length a = 10h,
radius of the middle surface R = 10a, and subtended angle θ = 0.05.

The aim is to verify the mass matrix of the proposed shell element. We determine
free-vibration frequencies ω of the shells with fully clamped and simply supported
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Table 19.3 Frequency parameter λ of the FGM cylindrical panel for n = 2

Boundary
conditions

Mode
number

Present solution Zhao et al.
(2009)

ANSYS

8 × 8 16 × 16 32 × 32 15 × 15 24 × 24

1 40.078 40.556 40.670 40.670 41.166

CCCC 2 75.731 77.359 77.705 76.823 79.046

3 75.820 77.443 77.788 76.885 79.136

1 23.692 23.711 23.609 − 23.884

SSSS 2 55.562 56.117 56.086 − 56.758

3 55.718 56.268 56.238 − 56.970

immovable boundary contour. Table 19.3 lists the nondimensional frequency param-
eter λ = (ωa2/h)

√
12(1 − ν2

m)ρm/Em computed for the first three vibration modes
using uniform union-jack meshes. The computation results agree well with the
numerical solution obtained by the element-free kp-Ritz method (Zhao et al. 2009)
and with the finite-element solution obtained by the ANSYS software where the
grading properties of the material were modeled using the Shell181 multilayered
element.

19.8.1.2 Dynamic Response of an Isotropic Beam to Thermal Shock

The second example deals with thermally-induced vibrations of a simply supported
isotropic beam made of the Si3N4 material, which corresponds to n = 0 in
Eq. (19.2.1). The length, thickness, and width of the beam are l = 1 m, h = 0.01 m,
and b = 0.1 m, respectively. The upper surface of the beam is exposed to step
temperature rise �T = 100 K, whereas the lower surface is kept at a reference
temperature of 300 K (see Eqs. (19.3.4) and (19.3.6)).

For small-amplitude vibrations, the dynamic response of the beam with
temperature-independent properties can be predicted using the analytical solution.

w =
∞∑

m=1,3,5...

αm(t) sin
mπx

l
− MT

2D
(x2 − lx) (19.7.1)

αm(t) = 8l2bEαh2�T

Dπ5m3

∞∑
k=2,4,6...

1

k2
e−γk t − (ωm/γk) sinωmt − cosωmt

1 + (ωm/γk)2

MT = bEαh2�T

(
1

12
− 2

π2

∞∑
k=2,4,6...

1

k2
e−γk t

)

γk = κ

cpρ

(
kπ

h

)2

, ωm = (mπ/ l)2
√
D/I , D = Ebh3

12
, I = ρbh
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Fig. 19.3 Time history of the midspan deflection for the simply supported isotropic beam

where w is the lateral deflection and x is the axial coordinate.
The finite-element solution predicting dynamic response of the beamwas obtained

using the following data: a 4 × 40 uniform union-jack mesh with 320 elements, and
the time increment in the Newmark integration scheme �t = 10−4 s.

The midspan deflection wc versus time is shown in Fig. 19.2. The finite-element
results agree favorably with the linear analytical solution (19.7.1) in the case where
the end supports are allowed to move in the axial direction. For axially immovable
supports, the linear solution fails to predict the beam response adequately because
of geometrically nonlinear effects. It is seen from Fig. 19.2 that the frequency of
vibrations increases due to the additional constraints at the beam ends.

19.8.1.3 Dynamic Response of a Circular Plate to Thermal Shock

The third example is the thermally induced vibrations of a simply supported FGM
circular plate with immovable edge. The upper surface of the plate is exposed to
step temperature rise �T = 10 K , whereas the lower surface is kept at a reference
temperature of 300 K (see Eqs. (19.3.4) and (19.3.6)). The radius and thickness of
the plate are a = 0.080 m and h = 0.001 m, respectively.

To determine the dynamic axisymmetric deflections of the plate, we consider a
quarter of the plate using the following data: number of elements N = 16 and the
time increment in the Newmark integration scheme �t = 0.5 × 10−4 s.

The predicted central deflection wc versus time is shown in Fig. 19.3 for the
grading index n = 5. The finite-element results are very close to the solution of Kiani
and Eslami (2014) obtained by the Ritz method with simple polynomial functions.

19.8.1.4 Snap-Through of a Shallow Spherical Cap

The next example deals with the snap-through instability of a suddenly heated
isotropic spherical cap with immovable simply supported edge. This problem has
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Fig. 19.4 Time history of the central deflection of the simply supported circular FGM plate

recently been considered by Javani et al. (Javani et al. 2020). Given the wall thickness
h, the geometry of the cap is determined by two nondimensional parameters

λ = √
12

Rθ2

h
, μ = 2

√
12

Rθ

h

where R is the radius of curvature and θ is the half opening angle.
The cap is made of the SUS304 steel with temperature-independent properties.

The inner surface of the cap is suddenly heated, whereas the outer surface is kept
at the reference temperature (see Eqs. (19.3.4) and (19.3.6)). Under these loading
conditions, the cap can jump to inverted position. Assuming that axisymmetric defor-
mation occurs, we consider a quarter of the cap and impose symmetry conditions
along two radial directions. In Fig. 19.5, we plot time histories of the normalized
central deflection w/ f for h = 1 mm, λ = 1.7 and μ = 150, where f = Rθ2/2
is the rise of the cap. Using the model consisting of 400 elements, we found that
snap-through instability occurs if 68.6K < �T < 68.65K . The same range was
obtained using a finer mesh consisting of 1 600 elements. The present results agree
well with the calculation results of Javani et al. (Javani et al. 2020) who found that
the critical temperature rise lies in the range 68.25 K < �T < 68.5 K.

19.8.1.5 Large Thermal Displacements of an FGM Plate

Now we verify nonlinear capabilities of the proposed finite-element model in the
dynamic analysis of large displacements and rotations. To this end, we consider
thermal finite bending of a cantilevered thin narrow plate of length L = 1 m, width
b = L/80, and thickness h = L/200. The grading index of the FGM is n = 1.
The plate is heated according to Eqs. (3.4) and (3.7), where �T = 1 880 K. Due
to the increasing thermal bending moment MT , the plate is rolled up into a circular
cylindrical shape. The computation results are shown in Fig. 19.6 for two heating
rates determined by parameters σ = 1 s−1 (slow heating) and σ = 10 s−1 (rapid
heating) that enter Eq. (3.7). It is seen that, for slow heating, the plate is bent nearly
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Fig. 19.5 Time history of the central deflection of the simply supported spherical cap

statically performing small-amplitude oscillations about the deformed configuration.
With time, the plate tends to assume closed circular shape (see Fig. 19.7), where the
tip displacements approach their limiting values, i.e. u/L → 1 and w/L → 0. As
a reference solution, we take the analytical solution based on the beam model and
steady-state temperature distribution over the plate (Levyakov and Kuznetsov 2014).
Using this solution, one finds that the temperature rise required to roll the plate into
a closed circle is �T = 1 814 K, which is 3.5% lower than the above-mentioned
magnitude. A slightly stiffer response of the present finite-element model compared
to the beam model can be attributed to the fact that under non-uniform heating the
plate is deformed into a doubly curved surface rather than into a cylindrical surface.
The effect of Poisson’s ratio on the dynamic thermal deflections was found to be of
little significance. It is seen from Fig. 19.6 that under rapid heating, the pure thermal
bending is accompanied by finite-amplitude oscillations. The solution obtained for
20× 2 mesh agrees with that obtained for finer 80× 2 mesh, the difference becomes
noticeable after approximately 1 s. Deformed configurations of the rapidly heated
plate are shown in Fig. 19.7. The effect of the time increment on accuracy of the
solution is demonstrated by Table 19.4.

Fig. 19.6 Time histories of the tip displacements of the cantilevered FGM plate
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Fig. 19.7 Equilibrium
configurations of the
cantilevered plate under
rapid heating (80 × 2 mesh)

Table 19.4 Convergence study of the thermal bending of a rapidly heated cantilevered plate

t, s �t , s u/L w/L T , J �, N·m
0.5 1.0 × 10–3 1.183040 0.3738415 0.2408254 0.3547774 × 103

0.5 × 10–3 1.182904 0.3740037 0.2376331 0.3547818 × 103

0.25 × 10–3 1.182890 0.3740629 0.2367167 0.3547828 × 103

1 1.0 × 10–3 1.107099 0.8054594 × 10–1 0.3501693 0.1925129 × 103

0.5 × 10–3 1.106922 0.8062025 × 10–1 0.3339732 0.1925309 × 103

0.25 × 10–3 1.106802 0.8066291 × 10–1 0.3301827 0.1925350D × 103

2 1.0 × 10–3 0.9783874 0.6896778 × 10–2 0.8386965 0.6026749 × 102

0.5 × 10–3 0.9876465 0.6889352 × 10–2 0.6100725 0.5948815 × 102

0.25 × 10–3 0.9874587 0.6621523 × 10–2 0.5892913 0.5950926 × 102

3 1.0 × 10–3 diverges at t = 2.1 s

0.5 × 10–3 0.9944956 0.9535049 × 10–2 1.626111 0.3034419 × 102

0.25 × 10–3 0.9932212 0.9230670 × 10–2 1.590626 0.3038009 × 102

4 1.0 × 10–3 diverges at t = 2.1 s

0.5 × 10–3 1.060673 0.9872496 × 10–2 0.7590779 0.2422324 × 102

0.25 × 10–3 1.058927 0.1021280 × 10–1 0.8333617 0.2414937 × 102

19.8.2 Dynamic Thermal Buckling of a Clamped
Rectangular Plate

We consider a fully clamped rectangular FGM plate of length a = 0.3 m, width
b = 0.15 m, and thickness h = 0.001 m. It is assumed that initial geometrical
imperfection is of the form.
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w0 =
∑
m,k

Amkϕm(x/a)ϕk(y/b) (19.7.2)

where ϕm(x) is them-th eigenfunction governing the vibrationmode of the clamped–
clamped beam and Amk represents amplitude of the imperfection mode. The
eigenfunctions are normalized to unity.

We study nonlinear dynamic instability of the plate under thermal shock using the
following discretization parameters: a uniform 32 × 16 union-jack mesh with 1 024
elements and the time increment�t = 0.5×10−4 s. In thermal boundary conditions
(19.3.3), (19.3.4), and (19.3.5), the loading function f (t) is given by Eq. (19.3.6).

At the initial stage of heat transfer, the plate remains undisturbed. If themagnitude
of thermal shock �T is high enough, the compressive stresses rapidly develop and
reach the critical level. At this moment, the plate jumps to oscillations about new
configuration. Figure 19.8 shows timehistories of the deflection at point A(a/2; b/4)
for three types of thermal boundary conditions and for different magnitudes of
thermal shock �T . The curves were obtained for n = 1 and nonzero coefficients
A11 = A12 = 10−2h in Eq. (19.7.2).

Decreasing the magnitude of thermal shock �T leads to slower thermal loading.
As a result, the critical time necessary for the plate to buckle increases and the
amplitude of postbuckling vibrations becomes less and less pronounced. This result
suggests that in the limit as t → ∞, where steady-state temperature distribution
is reached, the plate exhibits static buckling. It follows that the critical temperature
rise �Tcr can be determined from the static buckling problem under steady-state
temperature distribution.

In Fig. 19.8, the dark circles mark the critical moments where the kinetic energy
of the plate reaches the first pronounced maximum. Given a magnitude of thermal
shock �T > �Tcr , the shortest critical time occurs if the top and bottom surfaces
are heated simultaneously (see Eqs. (19.3.3)). Comparing Figs. 8b and c, we infer
that the curves obtained under thermal boundary conditions (3.4) and (3.5) differ
only slightly.

In Fig. 19.9, we show normalized deflections of the plate subjected to thermal
boundary conditions (19.3.4) for �T = 100 K. The effect of the antisymmetric
mode of imperfection A12 shows up only at the onset of buckling. After the critical
moment t > 0.005 s, its effect vanishes and the plate oscillates about a doubly
symmetric bent configuration.

It is of interest to estimate the effect of the rate of thermal loading on the dynamic
buckling instability. Confining our attention thermal boundary conditions (19.3.4),
we compute the dynamic load factor (DLF) using formula

DLF = Ndyn
T,cr

N stat
T,cr

(19.7.3)

where Ndyn
T,cr is the stress resultant at the critical moment and Nstat

T,cr is the critical stress
resultant obtained from the solution of the corresponding static buckling problem
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(a)

(b)

(c)

Fig. 19.8 Time histories of the deflection of the clamped rectangular FGM plate: a response under
thermal boundary conditions (19.3.3); b response under thermal boundary conditions (19.3.4);
c response under thermal boundary conditions (19.3.5).

under steady-state temperature distribution. The computation results are summarized
in Table 19.5. It is seen that the dynamic buckling resistance of the plate increases
as the grading index n and the magnitude of thermal shock �T increase. This effect
can be attributed to inertia forces.
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Fig. 19.9 Contour plots of the normalized deflections w/h of the rectangular plate

Table 19.5 Effect of thermal loading on the dynamic buckling of the clamped rectangular plate

n Steady-state solution �T/�T stat
cr

�T stat
cr , K Nstat

T,cr , kN 1.5 2 5 10

DLF

0.2 26.84 45.20 1.021 1.067 1.41 2.114

0.5 23.97 42.43 1.024 1.080 1.415 2.140

1 21.52 40.23 1.020 1.082 1.414 2.140

5 17.35 37.10 1.031 1.101 1.434 2.136

10 16.15 35.85 1.042 1.108 1.469 2.203

19.8.3 Dynamic Buckling of a Shallow Cylindrical Panel

We consider a shallow cylindrical panel whose boundary contour is simply supported
and immovable. Dimensions of the panel are: radius of curvature R = 1 m, wall
thickness h, half opening angle θ = 0.1, and length l = 0.2 m (see Fig. 19.10).

Fig. 19.10 Geometry of a shallow cylindrical panel
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The initial imperfection is assumed to be of the form

w0 =
∑
m,k

Amk sin
mπx

a
sin

kπy

l
(19.7.4)

where m and k are the half-wave numbers in the coordinate directions. We consider
two panels whose thicknesses are 0.5 mm and 1 mm. For h = 0.5 mm, the only
nonzero coefficients in Eq. (7.3) are A2,2 = −A3,2 = h/100. For h = 1 mm, we set
A2,1 = −A2,3 = −h/100, the remaining coefficients being zero. The imperfection
shapes are roughly similar to the bucklingmode shapes obtained by solving the corre-
sponding static buckling problem under the steady-state temperature distribution
across the thickness.

Using a uniform 32 × 32 mesh and setting �t = 3× 10−5 s, we study dynamics
of the cylindrical panel under thermal boundary condition (3.4), in which the loading
function f (t) is given by Eq. (3.7) and σ = 102 s−1.

Figure 19.11 shows time histories of the normalized central deflection wC/h
and kinetic energy of thin cylindrical panel with h = 0.5 mm and n = 1. Contour
plots of the normalized deflections are shown in Fig. 19.12. The first maximum of the
kinetic energy occurs at t = 0.01695 s, where deformation of the panel changes from
symmetric to asymmetric mode. The second, more pronounced maximum occurs at
t = 0.0269 s, which is the evidence of the buckling mode switching. We note that,
in contrast to plates, dynamic buckling of the panels occurs deeply in the region of
large deflections. The results presented in Fig. 19.12 agree with the results obtained
by static nonlinear analysis of the panel under static thermal loading (Levyakov and
Kuznetsov 2014).

To estimate the effect of dynamic thermal loading on the buckling instability
of the panel, we compute the dynamic load factor defined by Eq. (19.7.3). The
calculation results obtained under thermal boundary conditions (3.4) are summarized
in Table 19.6. It is seen from the results that the buckling resistance of the panel

Fig. 19.11 Time histories of deflection and kinetic energy of thin cylindrical panel of thickness
h = 0.5 mm under �T = 250 K
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Fig. 19.12 Contour plots of the normalized deflections w/h of thin cylindrical panel

Table 19.6 Effect of dynamic thermal loading on buckling resistance of the simply supported
cylindrical panel

h, mm n Steady-state solution �T/�T stat
cr

�T stat
cr , K Nstat

T,cr , kN 1.2 1.5 2.0

DLF

0.5 0.2 138.74 121.9 1.07 1.16 1.28

0.5 123.35 112.4 1.07 1.09 1.34

1 110.99 105.8 1.07 1.17 1.34

5 98.169 105.5 1.08 1.19 1.39

10 97.60 108.6 1.09 1.21 1.42

1.0 0.2 411.65 797.3 1.09 1.24 1.51

0.5 375.29 735.3 1.09 1.23 1.54

1 344.68 690.8 1.08 1.22 1.57

5 321.45 702.1 1.11 1.25 1.66

10 329.54 740.3 1.13 1.40 1.69

slightly increases with the magnitude of thermal shock �T and index n. This effect
can be attributed to lateral inertia.

19.8.4 Buckling of Simply Supported Cylindrical Shells

Finally, we consider a closed cylindrical shell of radius R = 0.4 m, length L =√
3/5m, andwall thickness h = 0.001m.Theouter surface of the shell is ceramic rich

and the inner surface is metal rich. The edges are simply supported and immovable.
The shell is meshed into 5 120 elements obtained by dividing the cylindrical surface
into 160 segments in the circumferential direction and into 16 segments in the axial
direction.

We assume that initial imperfection is of the form
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w0 = A0(w01 + w02 + w03) (19.6.6)

where A0/h = 10−2 andw01,w02, andw03 are thefirst three bucklingmodes obtained
from the nonlinear static analysis of the shell subjected to uniform temperature rise.
Fourier series approximations of the buckling modes are given by

w01 = sin 17φ
9∑

k=1,3,...

ak sin
kπ z

L

w02 = sin 18φ
9∑

k=1,3,...

bk sin
kπ z

L
(19.6.7)

w03 = sin 16φ
10∑

k=2,4,...
ck sin kπ z

L ,

where a1 = 0.270, a3 = 1.0, a5 = 0.061, a7 = −0.315, a9 = −0.136, b1 = 0.188,
b3 = 1.0, b5 = 0.071, b7 = −0.372, b9 = −0.171, c2 = 1.0, c4 = 0.398,
c6 = −0.165, c8 = −0.270, c10 = −0.047.

The nonlinear transient simulation was performed under thermal shock governed
byEqs. (19.3.4) and (19.3.7), inwhichσ = 103s−1. Figure 19.13 shows timehistories
of the axial reaction force F and kinetic energy T for the shell with grading index
n = 1. It is seen that, due to unsteady heat conduction, the reaction force increases
from zero and, after reaching a maximum, drops by approximately 45%. As the
critical time, we take the moment at which the reaction force reaches a maximum.

Figure 19.14 shows deformed configurations of the shell computed for the
moments marked by circles in Fig. 19.13. In the prebuckling state, the shell
swells axisymmetrically near the immovable edges. In the postbuckling regime, the
deflection pattern rapidly changes exhibiting no symmetry.

Fig. 19.13 Axial reaction force versus time for the simply supported cylindrical FGM shell with
grading index n = 1
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Fig. 19.14 Deformed configurations of the cylindrical FGM shell for states marked in Fig. 19.13
(deflection is magnified by a factor of 10)

Table 19.7 Effect of dynamic thermal loading on buckling resistance of the simply supported
cylindrical shell

n Steady-state solution �T/�T stat
cr

�T stat
cr , K Nstat

T,cr , kN F, kN 1.2 1.5 2.0 3.0

DLF

0.2 271.3 500.7 770.5 0.919 0.931 0.970 1.021

1 236.2 462.6 686.1 0.917 0.941 0.978 1.046

5 200.5 434.1 615.7 0.924 0.947 0.996 1.068

Table 19.7 lists the dynamic load factor computed for various values of the grading
index n. In contrast to the plates and shallow shells considered above, the dynamic
load factor is less than unity. This can be attributed to high sensitivity of closed
cylindrical shell to (1) initial imperfections introduced in the dynamic analysis and
(2) time history of the stresses that develop under unsteady heat transfer through the
shell thickness.

The critical time and buckling resistance increase with the grading index of the
material since higher content of the ceramic phase results in higher stiffness of the
FGM shell and lower rate of heat transfer through the shell thickness.

19.9 Concluding Remarks

A finite-element formulation has been proposed for nonlinear dynamic analysis of
functionally graded plates and shells subjected to thermal shock.A triangular element
with 15 degrees of freedom has been developed using the invariant-based approach
and the concept of the surface of mass. Among the computational advantages of the
shell finite element are (1) small number of degrees of freedom, (2) exact repre-
sentation of six rigid body modes, and (3) compact and closed-form formulas for
computing the gradient and Hessian, which are used to formulate the equations of
motion. Performance of the element has been tested in several problems and good
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agreement has been reported between the calculation results and solutions available
in the open literature.

A nonlinear analysis of transient response of suddenly heated plates and shells
fabricated of functionally graded materials has been performed. Based on the
numerical results, the following conclusions can be drawn:

(1) sudden heating of thin plates and shells leads to nonlinear vibrations and, under
certain conditions, to dynamic buckling instability;

(2) plates and shells with restrained edges exhibit dynamic buckling provided the
magnitude of thermal shock is higher than the critical temperature rise obtained
from the corresponding static buckling analysis under steady-state temperature
distribution;

(3) the critical buckling time at which dynamic buckling occurs decreases with an
increase in the magnitude of thermal shock;

(4) the dynamic load factor increases with the magnitude of thermal shock;
(5) higher content of ceramic phase of the material tends to increase buckling

resistance of FGM plates and shells.
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