
Chapter 13
Inflation of Hyperelastic Curved Tubes

Alexey M. Kolesnikov

Abstract This paper dealswith the problemof inflation of curved thin-walled hyper-
elastic tubes. Nonlinear elastic membrane theory and the Fung model of material are
used. Tubes with elliptic cross-sections are considered. The influence of internal
pressure on tube curvature and the shape of its cross-section is investigated.
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13.1 Introduction

Thin-walled straight and curved tubes are a structural element of many technical
systems and living objects, such as vessel walls, pipelines, pneumatic structures,
soft robots and devices. They are often loaded by internal pressure. A straight tube
of constant thickness under internal pressure remains a straight tube with deformed
cross-section and length. Inflation leads to change a cross-section and curvature of
tube. This effect is widely used in Bourdon pressure tubes (Feodos’ev 1949).

At present, two directions of research can be distinguished in the inflation prob-
lem of a curved tube. In the first case, nonlinearity of the displacement problem is
taken into account, but the linear strain theory is used Feodos’ev (1949), Levyakov
(1997). In the second case, nonlinearity of displacements and strains is considered.
In the framework of membrane theory, such a problem is presented in Kolesnikov
(2011a), Kolesnikov (2015). This approach is valid for thin-walled tubes of hypere-
lastic material at large strains.
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The tube inflation problem is a special case of the more general problem of
pure bending of a tube under internal pressure, Libai and Simmonds (1988), Zubov
(2001). For straight tubes, this problem has been studied in Koga (1972), Haseganu
and Steigmann (1994), Haughton and McKay (1996) and Kolesnikov and Zubov
(2009). The curved tubes are considered in Kolesnikov (2011b), Levyakov (2017)
and Kolesnikov et al. (2019). The works show that the internal pressure increases
the bending stiffness of the tube.

Studies of inflation of curved thin-walled tubes made of hyperelastic material
are presented in Kolesnikov (2011a), Kolesnikov (2015). In Kolesnikov (2011a),
circular cross-section tubes made of Mooney–Rivlin and neo-Hookean material are
considered. It is shown that the tube unbends under inflation. That is, the curvature of
the centre line decreases. In Kolesnikov (2015), the tubes of neo-Hookean material
with elliptical cross-section are investigated. It is shown that at the beginning of
inflation the cross-section of the tube tends to a circular shape. Depending on the ratio
of the semi-axes, the tube is either bent or unbent. After the cross-section becomes
close to circular, the tube unbends under inflation. A peculiarity of the behaviour of
the neo-Hookean material is its instability under biaxial tension. This appears, for
example, in straight or curved tube inflation as the existence of two different shapes
of the tube corresponding to the same pressure. And also the pressure has amaximum
on the curve “pressure–cross-sectional radius”.

In this paper, we consider the inflation problem of curved thin-walled tubes of con-
stant thickness made of Fung material. The problem is solved within the framework
of the nonlinear theory of elastic membranes. The aim of this work is to investigate
the influence of the cross-section shape and the material parameters of the tube on its
behaviour under the internal pressure. The monitored parameters are the curvature
of the centre line and the average radius of the cross-section.

13.2 Inflation of Pressurized Curved Tube

In this paper, we will base on the previously presented mathematical model of inflat-
ing of a curvilinear thin-walled tube (Kolesnikov 2015), which is a special case of
pure bending of an inflated curvilinear tube (Kolesnikov et al. 2019). In this section,
we give the basic relations of this model.

In the initial state, the membrane surface is defined by the following equations:

r = x1(s)i1 + x2(s)e2, s ∈ [0; S], t ∈ [0; T ].
e2 = i2 cosβt + i3 sin βt, e3 = −i2 sin βt + i3 cosβt .
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The membrane remains a curvilinear tube with changed curvature and cross-
section under internal pressure. Its surface can be described as Libai and Simmonds
(1988), Zubov (2001)

R = X1(s)i1 + X2(s)E2,

E2 = i2 cos Bt + i3 sin Bt, E3 = −i2 sin Bt + i3 cos Bt .
(13.1)

Here, B is the unknown new curvature of the central axis, and X1(s) and X2(s) are
unknown functions describing the cross-section of the inflated tube.

Let’s introduce the principal stretch ratios of elongation λ1, λ2 and the angle of
the tangent to the cross-section ψ:
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The equilibrium equations of the membrane in this case can be written in the form
Kolesnikov (2015), Kolesnikov et al. (2019)

X ′
1(s) = √
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The principal stress resultants in the membrane are determined by the equations

L1 = h

λ2

∂W

∂λ1
, L2 = h

λ1

∂W

∂λ2
. (13.7)

We assume that the cross-section of the tube is closed. The boundary conditions
for the unknown functions at the points s = 0, S are their periodicity. The boundary
conditions at the ends (t = 0, T ) of the tube are satisfied in the integral sense. In this
problem, the resultant force and the resultant couple of the stresses in the membrane
and the internal pressure are equal to zero:
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S∫
0

√
G11L2ds − ξ� = 0, (13.8)

S∫
0

√
G11L2(X2 − XC2)ds = 0. (13.9)

Here X2C is the centre of mass of the area bounded by the membrane contour in
the cross-sectional plane. For a given potential energy function of deformation, the
static problem of an elastic membrane is reduced to the boundary value problem for
the system of ordinary differential equations (13.3)–(13.6) with parameter B. The
boundary value problem is solved numerically by the shooting method.

13.3 Results

In this paper, we consider a tubemade from incompressible Fungmaterial. The strain
energy function is given as

W = μ
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2

. (13.10)

A correct choice of dimensionless parameters will give results independent of the
material parameter μ. Below results will be presented for the material parameter
γ = 5, 0.2 and 0.05. Also, for comparison, some results will be presented for the
neo-Hookean material, including those from Kolesnikov (2015).

We assume that the thickness h = 0.001 is constant and that the cross-section of
the curved tube is elliptical and defined by the equations

x1(s) = r1 sin s, x2(s) = β−1 − r2 cos(s), s ∈ [0; 2π].

Also we assume that T = π/(2β).
Next we consider the curved tube with the curvature of the central axis β = 0.1.

The cross-sectional dimensions r1 and r2 are given in Table13.1. The number in
the first line corresponds to the curve number in Figs. 13.1, 13.2, 13.3, 13.4, 13.5,
13.6, 13.7, 13.8 and 13.9. As will be shown below, the shape of the cross-section
has a significant influence on the deformation of the curved tube. During inflation,
the curved tube bends or unbends in the plane e2e3. The tube 5 has a circular cross-
section. The cross-section of the tubes 1–4 is an ellipse extended along the axis i1 and
flattened along the axis e2. For the tubes 6–9, the cross-section is elongated along
the e2-axis and flattened along the i1-axis.

To present the results, we introduce a dimensionless pressure p∗ and a relative
curvature B∗ as follows:
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Table 13.1 The cross-section parameters

N 1 2 3 4 5 6 7 8 9

r1 1.9 1.7 1.5 1.3 1 0.7 0.5 0.3 0.1

r2 0.1 0.3 0.5 0.7 1 1.3 1.5 1.7 1.9

p∗ = ξr0
μh

, B∗ = B

β
.

In addition, we introduce dimensionless parameters characterizing the deformed
cross-section

R1 = max

{
2X1(s)

r1 + r2
, s ∈ [0;π]

}
, (13.11)

R2 = X2(π) − X2(0)

r1 + r2
, R0 = R1 + R2

r1 + r2
. (13.12)

The deformed cross-section is not an ellipse.However, we can correspond parameters
R1 and R2 to the semi-axes r1 and r2 of the initial elliptical cross-section. The
parameter R0 will be called the mean radius of the deformed cross-section. In the
present work, we consider the undeformed cross-sections such that their mean radii
are 1, as can be seen from Table13.1.

In this work, we investigate the effect of the material parameter γ and the elliptical
cross-section on the curvature of the inflated tube B and the mean radius of cross-
section R0. Figures13.1, 13.2 and 13.3 show the relationship between the curvature
of central axis B∗ and pressure p∗. The solid lines correspond to the results for the
Fung material with parameter γ = 5, 0.2 and 0.05, respectively. The dotted lines
correspond to the results for the neo-Hookean material. The curve numbers in the
figures correspond to the column numbers in Table13.1.

Up to a certain pressure p∗, the “curvature–pressure” curves for the tubes made
of Fung material coincide with one for the tubes made of neo-Hookean material. At
γ = 5, the magnitude of this pressure p∗ ≈ 0.4, at γ = 0.2 – p∗ ≈ 0.5, at γ = 0.05 –
p∗ ≈ 0.6. The tube 5 with a circular cross-section gradually unbends under pressure
increasing, i.e. the curvature decreases. For the tubes 1–4, for which r1 > r2, the
curvature first decreases dramatically, i.e. the tubes unbend sharply under the internal
pressure. The greater the ratio r1/r2, the more the tube unbends. The curvature then
continues to decrease, but at a much slower rate. For the tubes 6–9, for which r1 < r2,
the curvature first increases dramatically, that is, the tubes bend sharply under the
internal pressure. The smaller the ratio r1/r2, the more the tube bends. Then the
curvature begins to slowly decrease, i.e. the tube begins to unbend.

Further, the behaviour of a tube made of Fung material depends on the material
parameter γ and differs significantly from that for neo-Hookean tube. At γ = 5
(Fig. 13.1) for pressures p∗ > 0.4, the curvature slowly monotonically decreases
with increasing pressure. At γ = 0.2 (Fig. 13.2) for pressures p∗ > 0.5 the curvature
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Fig. 13.1 The pressure p∗ versus the curvature B∗ (γ = 5)
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Fig. 13.2 The pressure p∗ versus the curvature B∗ (γ = 0.2)

first decreases, reaching a minimum, then slowly increases with increasing pressure.
At γ = 0.05 (Fig. 13.3) for pressures p∗ > 0.6 the curve “curvature–pressure” has a
loop and a self-intersection point, after which the curvature increases with increasing
pressure.

The change in curvature of the tube is related to the deformation of its cross-
section. As it is shown in Kolesnikov (2015) that for a curvilinear tube of neo-
Hookeanmaterial, for r1 ∈ [0.5, 1.5] and r2 ∈ [0.5, 1.5] the deviation from a circular
shape is less than 5% at p∗ > 0.01. Figures13.4, 13.5 and 13.6 show the relationship
between the ratio of characteristic cross-sectional dimensions R1/R2 and the pressure
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Fig. 13.3 The pressure p∗ versus the curvature B∗ (γ = 0.05)
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Fig. 13.4 The pressure p∗ versus the ratio R1/R2 (γ = 5)

p∗. As we can see from the figures, the ratio of the characteristic dimensions of the
cross-section tends rapidly towards 1. That is, the shape of the deformed cross-section
of the curved tube tends to be circular. The elliptical cross-section flattened along the
axis e2 (the tubes 1–4) tends the circular shape faster than the cross-section flattened
along the axis i1 (the tubes 6–9).

Since the cross-section of the inflated tube is close to circular, let us consider the
relationship between the average radius R0 and pressure p∗ shown in Figs. 13.7, 13.8
and 13.9. The solid black lines show the dependence R0–p∗ for the tubes made of
Fung material at r1 ≤ r2, and the solid grey lines correspond to r1 > r2. The thin
dotted lines show the dependences of the mean radius for curvilinear tubes of neo-
Hookean material. The thick grey dashed line in Figs. 13.7, 13.8 and 13.9, coinciding
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Fig. 13.5 The pressure p∗ versus the ratio R1/R2 (γ = 0.2)
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Fig. 13.6 The pressure p∗ versus the ratio R1/R2 (γ = 0.05)

with the line 5, shows the relation between the radius of a straight tube (cylindrical
membrane) and the pressure. That is, for circular curved tubes, a small curvature (in
this work, the initial curvature β = 0.1) has little effect on the deformation of the
cross-section.

At the start of inflation, the change in the mean radius depends on the ratio
r1/r2. For the tubes 1–4 with the elliptical cross-section flattened along the axis e2
(r1 > r2) the mean radius increases sharply, then the curve “mean radius–curvature”
becomes similar to the relationship for the tube 5 with circular cross-section, but
with a rightward shift (grey curves in Figs. 13.7, 13.8 and 13.9). The more r1/r2
differs from one, the greater the amount of shift. For the tubes 6–9 with the elliptical
cross-section flattened along the axis i1 (r1 < r2), the dependence of the mean radius
R0 on pressure p∗ decreases at the beginning of inflation (black curves in Fig. 13.7,
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Fig. 13.7 The pressure p∗ versus the average radius R0 (γ = 5)

13.8 and 13.9), then it starts increasing with increasing pressure. For tubes where
r1/r2 = r2/r1, the curves R0–p∗ become very close at p∗ > 0.1. At γ = 0.05, the
dependence of the mean radius R0 has a descending region and a local minimum, as
we can see in Fig. 13.9.

We note that for very small pressures and hence deformations we failed to obtain
a numerical solution of the nonlinear differential equations, so for the tubes 1–4 and
6–9 in Figs. 13.1, 13.2 and 13.3 the curves do not start from point B∗ = 1, and in
Figs. 13.7, 13.8 and 13.9 the curves do not start from point R0 = 1, which would cor-
respond to the undeformed state of the tubes. Besides, for the tube 6–9 (Figs. 13.7,
13.8 and 13.9), the dependence R0–p∗ should have a sharp growth at very low pres-
sures (p∗ < 0.01) and reach a local maximum. After that the mean radius decreases,
which has already been calculated numerically. We note that at very low pressures
and hence deformations, the use of the membrane theory becomes incorrect, as the
influence of the bending stiffness will be significant. In addition, at the beginning of
inflation of curved tubes, areas of compression are formed in their, which quickly
disappear with increasing pressure, as shown in Kolesnikov (2015). The inflation
of curved tubes within small deformations has been previously investigated, e.g. by
Feodos’ev (1949), Levyakov (1997). The effects of a significant change in curvature
of a curved tube with a flattened cross-section is used in manometers (the Bourdon
tube) (Feodos’ev 1949; Levyakov 1997).

Figures13.10 and 13.11 show how the tube deforms during inflation using the
tubes 9 and 1 as examples, respectively. The curves p∗–B∗ show in the figures, on
which the points Pm

k (k = 1, 9, m = 1, . . . , 7) are marked and the corresponding
shapes of the longitudinal and cross-sections are shown. The grey lines show the
initial shapes for comparison.
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Fig. 13.8 The pressure p∗ versus the average radius R0 (γ = 0.2)

p∗

1

0.5

R01 2 3 R01 1.1 1.2

p∗

0.02

0.04

9

76 5
4 3

1

P1
1,9

P1
1

P1
9

P2
1,9

P3
1,9

P4
1,9

P5
1,9

P6
1,9

P7
1,9

Fig. 13.9 The pressure p∗ versus the average radius R0 (γ = 0.05)

The points Pm
k (k = 1, 9, m = 1, . . . , 7) corresponding to the shapes shown in

Figs. 13.10 and 13.11 are marked in Fig. 13.9. As we can see from Fig. 13.9, the
points P3

1,9 correspond to the local maximum pressure, after which the mean radius
increases as the internal pressure decreases. The points P5

1,9 correspond to the local
minimum of the curves R0–p∗.
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Fig. 13.10 Planform and cross-sectional views of a deformed tube 9 (γ = 0.05)

13.4 Conclusions

In this work, we consider the problem of an initially curved thin-walled tube made of
hyperelastic material. Due to the small thickness and predominantly tensile stresses,
the bending stiffness of the tube walls is neglected and the nonlinear theory of elas-
tic membranes is used. The mechanical properties of the hyperelastic material are
described by the Fung strain energy function.

A straight tube changes cross-section and length under inflation. A curved tube
additionally changes the curvature. A tube made of neo-Hookean material has a
specific behaviour. There is a maximum internal pressure after which the cross-
section radius increases under the pressure decreases. This is usually associated
with unstable of the tube (Gonçalves et al. 2008; Pearce and Fu 2010; Zubov and
Karyakin 2011; Guo et al. 2016; Wang et al. 2019). For the curved tube made of the
neo-Hookean material, the mean radius shows the same behaviour. Additionally, the
curvature of the tube is reduced.
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Fig. 13.11 Planform and cross-sectional views of a deformed tube 1 (γ = 0.05)

The elliptical cross-section of a thin-walled curved tube tends to circular shape
when inflated. But as long as the pressures are small and they are not yet completely
circular, the behaviour of the tubes is very different for different elliptical shapes.
Some tubes are sharply unbent, other tubes are bent. This is a well-known effect,
in particular used for pressure measurement with Bourdon tubes (Feodos’ev 1949;
Levyakov 1997). But for thin-walled highly elastic tubes, rather quickly the cross-
section becomes circular, as shown in this paper and in Kolesnikov (2015). Further,
as the pressure increases, the behaviour of the tubes becomes similar to that of
a tube with a circular cross-section. Their mean radius increases and the curvature
decreases (for the neo-Hookean tubes). The difference in the initial shift of the curves
“curvature–pressure” to one side or the other depends on the ratio of the semi-axes
of the initial elliptical cross-section.

The Fung material has two material parameters. One parameter can be excluded
by the introduction of dimensionless parameters, and the other parameter denoted
as γ cannot be excluded. Up to a certain value of pressure and deformation, a tube
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made of Fung material has a behaviour similar to the neo-Hookean tube. As the
pressure increases, its behaviour begins to differ. The curvature–pressure relation
exhibits three possible behaviours depending on the value of γ: monotonic decrease
in curvature, decrease and then increase in curvature (for small γ); existence of a
loop (for even smaller γ).

The change in curvature is associated with a change in the cross-section. For
pressures that are not very small, the monotonicity of the “curvature–pressure” curve
corresponds to the constant sign of the curvature of the “mean radius–pressure” curve.
For the nonmonotonic “curvature–pressure” curve, the sign of the curvature of the
“mean radius–pressure” curve changes, but the curvature itself remains monotonic.
For the “curvature–pressure” curve that has a loop, the “mean radius–pressure” curve
not only changes the sign of the curvature, but also ceases to be monotonically
increasing. The local maximum and minimum on the “radius–pressure” curve is a
known fact for straight tubes (Pearce and Fu 2010; Zubov and Karyakin 2011; Wang
et al. 2019). This is usually associated with structural instability. According to the
theory, the tube jumps from the maximum to the second ascending branch of the
curve. In experiments, this is due to local bulging. When the cross-section of the
tube increases locally and sharply. And then this extension is extended to the entire
tube (Gonçalves et al. 2008; Guo et al. 2016; Wang et al. 2019). For the curved tube,
the mechanisms appear to be the same. From the point of local maximum pressure,
there will be a transition to the second ascending branch of the solution with an
abrupt change in cross-section and curvature.
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