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Dedicated to our colleague, teacher and
friend Professor Leonid Mikhailovich Zubov
on the occasion of his 80th birthday.



Preface

Leonid Mikhailovich Zubov was born on September 1, 1943, in Yarensk, a small
town near Arkhangelsk, Soviet Union. He graduated from the faculty of physics and
mechanics of Leningrad Polytechnical Institute (now Peter the Great St. Petersburg
Polytechnic University or simply Polytech). Later, Zubov became a Ph.D. student
under supervision of Prof. Anatoliy Lurie. In 1970, Zubov defended his thesis enti-
tled “Bifurcation of Equilibrium of a Nonlinear Elastic Solid” at Polytech. It is rather
interesting that at that time it was not so common to publish papers with supervisors,
so Zubov has no joint publications with Lurie. He published only single-authored
papers related to elastic stability and to variational principles in the nonlinear elas-
ticity. On the other hand, he was one of the first readers of Lurie’s book “Theory
of elasticity” published in 1970. Moreover, some of his results were included in the
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Fig. 1 Title page of Lurie’s
“Theory of elasticity” with
the dedication to Zubov by
the author

book. This fact is mentioned in the book, see also the Lurie’s dedication in Fig. 1.
Let us note that his paper on complementary energy in nonlinear elasticity Zubov
(1970) found a response in the literature, see, e.g., de Veubeke (1972); Christoffersen
(1973); Koiter (1973); Wempner (1980).

In 1970, Zubov moved to Rostov State University, Rostov on Don, in the depart-
ment of elasticity chaired by Prof. Iosif Vorovich. That time it was not possible for
him to stay in Leningrad. So it was a possibility to continue his research in a new
department. That time, it was not so easy to find a position in a good university. The
letter of recommendation from Prof. Lurie to Prof. Vorovich is given in Fig. 2 (in
Russian), where Lurie underlined Zubovs’s scientific and personal qualification. In
Rostov on Don Zubov continued his research in nonlinear elasticity, theory of shells
and started a new topic related to isolated and continuously distributed dislocations
and disclinations in solids. In 1986, Zubov defended his doctoral thesis (habilitation),
entitled Semi-inverse and variational methods in nonlinear elasticity, at Leningrad
State University (now St. Petersburg State University).

Working at Rostov State University (now Southern Federal University) Leonid
Zubov foundedhis school in nonlinear elasticity including simple andpolarmaterials,
nonlinear theory of shells. He has more than 20 Ph.D. students and two habilitated
doctors, see Eremeyev et al. (2014) for more details. He has published more than
120 papers in peer-reviewed journals and several monographs (Zubov, 1982, 1997;
Zubov and Karyakin, 2006; Eremeyev and Zubov, 2008, 2009; Zubov and Rudev,
2015).
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Fig. 2 Letter of recommendation from Prof Anatoliy Lurie to Prof. Iiosif Vorovich



x Preface

Last years Prof. Zubov provided research in the following topics:

• Continuum theory of dislocations;
• Mechanics of micropolar solids under finite deformations;
• Nonlinear elasticity for solids with prestressed parts;

(see Zubov and Karyakin (2022a,b, 2023); Goloveshkina and Zubov (2019, 2020,
2021); Zubov (2019, 2021); Zingerman et al. (2023)) and the references therein for
previous publications in the field.

This volume of the Advanced Structured Materials Series is devoted to current
research in continuum and structural mechanics. It is dedicated to our friend and
colleague, Prof. Leonid M. Zubov in occasion of his 80th birthday. With great plea-
sure that we—his colleagues and Friends—wish Professor Leonid M. Zubov many
more creative years of interesting and important research.

Magdeburg, Germany
Cagliari, Italy
July 2023

Holm Altenbach
Victor Eremeyev
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Chapter 1
On the Problem of Simulation
of Ice–Floater Interaction Through
Surface Waves

Andrei K. Abramian, Nikolay M. Bessonov, and Anastasia A. Chevrichkina

Abstract The paper studies an approach to numerical simulation of a semi-infinite
ice floe effect on floater dynamics. The authors have solved the problem numerically
in a 2D formulation. The ice floe is considered as a semi-infinite beamwith a bending
stiffness equal to the cylindrical bending stiffness of a plate. The behavior of a floater
under the actions of non-stationary and stationary harmonic moments is studied.
Water is simulated as an ideal, incompressible fluid, and its flow is irrotational.
The authors use nonlinear boundary conditions on the fluid-free surface. The values
of displacements and angles of rotation of the floater are found. It is found that
at non-stationary regimes maximum displacements and rotation angles of a floater
can exceed their values at stationary regimes. The authors have revealed some cases
when, at nonlinear conditions on a fluid-free surface, the pressure on a floater exceeds
the values under linear conditions. The influence of the flexural rigidity of the body
on the waves propagating in the system under consideration was studied.

Keywords Ice floe · Surface waves · Oscillation · Floater

1.1 Introduction

The operation of floating-type structures in the presence of ice floe in various loads
acting on structures has been studied in many papers. Historically, the first studies
were devoted to ships behavior near ice floe to ensure safe navigations (Kheisin 1967;
Li and Wu 2021; Li et al. 2021; Nelli et al. 2017). Currently, floating oil platforms
and nuclear power stations become the subject of research (Taylor and Ohkusu 2000;
Sturova 2002; Tkacheva 2005;Keijdener 2019). For the problem statement, a floating
structure is simulated as a rigid body (Nelli et al. 2017; Taylor and Ohkusu 2000;
Sturova 2002; Tkacheva 2005) or as a plate (beam) (Kheisin 1967; Li and Wu 2021;
Li et al. 2021; Keijdener 2019). Harmonic force (Li and Wu 2021; Li et al. 2021;
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Nelli et al. 2017; Taylor and Ohkusu 2000; Sturova 2002; Tkacheva 2005), external
forces moment (Keijdener 2019), and progressive waves (Li et al. 2021; Nelli et al.
2017; Taylor and Ohkusu 2000; Sturova 2002) are considered as external loads on a
floating object. Water is considered as an ideal incompressible heavy fluid, and the
ice floe as a plate floating on its surface. In papers (Kheisin 1967; Li andWu 2021; Li
et al. 2021; Nelli et al. 2017; Sturova 2002; Tkacheva 2005), the authors used linear
boundary conditions on the fluid surface. In Kheisin (1967), Li and Wu (2021), Li
et al. (2021), Nelli et al. (2017), Sturova (2002), Tkacheva (2005), various analytical
methods were applied to obtain solutions and, in Keijdener (2019), Keijdener et al.
(2017), Fox and Squire (1990) numerical methods were used. In the aforementioned
papers, the displacement dependencies (including the angle of rotation) of both the
floating body and the ice floe on the frequencies of the external forces and on the
spatial coordinate were found. The present paper considers questions that have not
been considered before for the best knowledge of the authors. One of the questions
is a floater and an ice floe behavior in a non-stationary regime. The results obtained
in this work reveal that the maximum displacements of a floater and an ice floe in the
non-stationary regime can be significantly greater than in the stationary regime. The
other question is the floater elasticity influence on the maximum displacements at
external moment applied to it. The authors also found parameters of the considered
system when nonlinear boundary conditions on the fluid surface are significant. In
the present paper, the authors are solving the problem using the numerical method.

1.2 The Problem Statement

Consider the problem of the ice–floater interaction through surface waves (see
Fig. 1.1).

The author simulates an ice floe as an elastic plate flowing an incompressible
fluid (Kheisin (1967)). The floater is considered as an elastic plate with cylindrical
rigidity much greater than that of ice. Elastic plates on the water surface are separated
by regions with free surfaces. The problem is studied in 2D formulation. The model
is assumed to be 2D, which implies that, the out-of-plane dimension of the floater is
much bigger than the distance l between the ice floe and the floater. In this regard,

Fig. 1.1 Layout of the ice
floe and the body simulating
the floating structure in the
calculated area
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instead of the equations of the plates, the equations of the beam type are used. The
cylindrical stiffness of the plate is taken as the bending stiffness of the beam. The
Cartesian coordinate system in the (x, y) plane is used. The water is considered
as an ideal, incompressible fluid, and its flow as irrotational (Kheisin (1967)). The
potential of fluid velocities � satisfies the Laplace equation in the region occupied
by the fluid:

�� = 0, (1.1)

∂�

∂t
+ |∇�|2

2
= − 1

ρ
p − gy, (1.2)

where p(x, y, t) is the fluid pressure, ρ is the fluid density, and g acceleration of
gravity.

Assume that here and below the pressure p is counted from the atmospheric
pressure. Below, we confine ourselves to small transversal oscillations of the ice
floe, thus the motion equation of the ice beam is

ρ1h
∂2w

∂t2
= −D

∂4w

∂x4
+ p + q, (1.3)

wherew(x, t) is vertical displacement of the surface from the equilibrium horizontal
position, ρ1, h are ice density and thickness, p(x, t) is the fluid pressure, q(x, t)
is the external load applied to the body, D = Eh3/(12(1 − ν2)) is the cylindrical
rigidity of the plate, and E, ν are Young’s modulus and Poisson’s ratio, respectively.
Note that the cylindrical stiffness of the plate is given as a variable along the water
surface D = D(x) and it equals to either the cylindrical stiffness of the ice or the
floating body. It can be taken on the fluid-free surface and it is small compared to
the cylindrical stiffness of ice. Similarly, the density ρ(x) and the thickness of the
beam h(x) are given as variables and equal to either the density and thickness of the
ice or the floater. On the free surface, it is much less than the ice parameters. Test
calculations have revealed that the ratio of the indicated quantities corresponding
to the surface of the water and ice should be on the order of 104 or less. As a test
problem, the problem of the dynamics of a single finite beam in contact with a basin
of finite depth and infinite length along the x coordinate was taken. The harmonic
moment (a couple of forces at the edges of the floater) is applied at the beam’s center.
This approach allows describing the ice beam, the free surface, and the floating body
by the general equation (1.3) with boundary conditions on the surface, bottom, and
side surfaces of the calculated region.
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1.3 Numerical Method

The equations describing the motions of the system have the form:

�� = 0, (1.4)

∂�

∂x
|x=0 = 0,

∂�

∂x
|x=Hx = 0,

∂�

∂y
|y=−Hy = 0,

∂�

∂y
|y=0 = dw

dt
, (1.5)

ρ1h
∂2w

∂t2
= −D

∂4w

∂x4
+ q − ρ

(
∂�

∂t
+ α

|∇�|2
2

)
− ρgw − μ

∂w

∂t
, (1.6)

∂w

∂x
|x=0 = 0, w|x=0 = 0,

∂w

∂x
|x=Hx = 0, w|x=Hx = 0, (1.7)

where Hx , and Hy are the width and depth of the calculated region, respectively.
The initial conditions are as follows:

�|t=0 = 0, w|t=0 = 0,
dw

dt
|t=0 = 0.

In the literature, the case of small surface displacement is usually considered, and it
is assumed that

d�

dt
≈ ∂�

∂t
. (1.8)

This study considers a more general, nonlinear case when

d�

dt
= ∂�

∂t
+ α

|∇�|2
2

. (1.9)

Here, α = 0 for the linear case, and α = 1 for the nonlinear case. The system
of equations (1.4)–(1.7) is solved numerically. A two-dimensional orthogonal non-
uniform grid I × J is introduced with steps �xi and �yi in x and y, respectively,
where i = 1, . . . I, j = 1, . . . J . To improve the accuracy of calculations, the grid
thickens along the x axis in the vicinity of the body ends and the edges of the ice floe,
it expands near the left and right sides of the computational domain. Vertically, the
grid thickens near the water surface. In real life, the size of the x region extends to
“infinity”. However, in numerical simulation one has to set these dimensions limited
although they are as far apart as possible. To move away the boundaries of the
computational domain without increasing the number of grid nodes, a non-uniform
grid is used with a gradually increasing step toward the boundaries of the domain.
However, starting from the moment equal to the time of the surface waves passage
to the boundaries of the computational domain and back, the solution begins to be
affected by the waves reflected from the boundaries of the domain. To reduce the
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influence of the reflection effect, damping boundary conditions were introduced at
the boundaries of the region, which damped the incoming waves. Such a numerical
technique has proven itself in practice and is often used to reduce the influence
of reflection from boundaries (Samarskiy and Nikolayev 1978; Potter 1973). To
introduce damping boundary conditions, the term −μ∂w/∂t is added to the right
side of Eq. (1.6), where μ is the coefficient of external damping. The experience of
test calculations in study theμ effect on the degree of the wave reflection from the
boundaries shows that the optimal solution reducing the effect of reflected waves by
85–95%, is to set μ on an area with a length of about 5% of the size of the entire
area. In the rest (central) part of the computational domain, the value of μ is set
equal to zero. Test calculations reveal that a very sharp change in the value of ţ does
not give the desired result, but, on the contrary, leads to the formation of additional
reflected waves at the boundary. As test calculations show, a smooth change of μ

from zero to 103 . . . 104 kg/(m2s) near the calculation domain boundary is optimum.
When calculating numerically, the system (1.4)–(1.7) is divided into two subsystems
(1.4), (1.5), and (1.6), (1.7), which were solved sequentially in two stages at each
time step. At each time step, the nodal values for the potential �n

i, j are calculated,
where n is the number of the time step. At the grid nodes corresponding to the fluid
surface, the deviations of the surface from the equilibrium horizontal positionwn

i are
determined. The sequence of calculations is as follows. Let the values potential �n

i,1

at all nodes and vertical deviations at near-surface nodes wn
i and wn−1

i are known
from the previous time step �t or taken from the initial conditions.

• Using the valueswn
i èwn−1

i , we find the velocities (dw/dt)n ≈ (wn
i − wn−1

i )/�t,
i = 1 . . . I at all surface nodes.

• The found values (dw/dt)n are substituted into the boundary condition (1.5), then
system (1.4), (1.5) is solved numerically and new values�n+1

i, j are found at all grid
nodes.

• Using the obtained values of�n+1
i, j and the values of�n

i, j , j taken from the previous
step time, the values (d�/dt)n+1 are calculated at all near-surface grid nodes using
difference approximations of relations (1.8) or (1.9).

• The obtained values (d�/dt)n+1 are substituted into equation (1.6), which is
solved numerically, and the values wn+1

i are found at all near-surface nodes. Then
the process is repeated.

The iterative method is used for solving the system (1.4) and (1.5) numerically).
To solve equation (1.6) the substitution M = ∂2w/∂x2 x2 is used. This allows
replacing equation (1.6)) of the fourth order in x , with the system of two second-
order equations. This system is approximated by a three-point implicit difference
scheme and solved using the matrix sweep method.
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1.4 Results

As ice is present on one side of the floater, the problem is not symmetric with respect
to the floater. The reflected waves only come from the left side of the floater, which
leads to the floater displacement and its rotation because of an asymmetric pressure.
The tangent of the floater rotation angle is calculated as the ratio of the difference in
the displacements of its ends to its length. This is true in the case of a large bending
rigidity of the floater. The displacement and rotation angle of the floater and ice are
calculated for the case when a couple of non-stationary harmonic forces are applied
in the center of the floater. It is given in the following form:

q = A sin(ωt)[δ(x − Hx/2 − l2/2) − δ(x − Hx/2 + l2/2)]H(t),

where A is the force amplitude, ω is the circular frequency of the force, δ(x) is the
delta function, floater is located in the center of basin with the width Hx , and H(t)
is the Heaviside function:

H(t) =
{
0 , t < 0
1 , t � 0

.

The forces and moment values are taken as in Keijdener (2019), which makes it
possible to compare the results obtained in Keijdener (2019) with the results of our
paper. The values of the main parameters are given in the Table1.1.

Figures1.2 and 1.3 show typical dependences of the maximum displacement of
a floater on the moment frequency at different ice thicknesses in unsteady and sta-
tionary regimes, respectively. In these calculations, the non-stationary regime is the
regime in which oscillations are established from the beginning of the countdown to
the moment of their stabilization. A stationary regime is a regime when the maxi-
mum oscillation amplitude does not change for at least 10 periods. All figures show
the maximum displacements or angles of rotation in stationary or non-stationary
regimes.

The dependencies are obtained for the distance from the ice edge to the floater
with L = 15 m. The dependence of the displacement of the right edge of the floater
on the frequency in Fig. 1.3 shows that there are frequency ranges in which the effect
of reflected waves on these movements is visible. The dependencies are obtained for
the distance from the ice edge to the floater with L = 15 m. The non-symmetry of the
problem leads to the fact that the displacements of the left edge of the body turn out
to be slightly smaller than the right one. The dependence of the displacement of the

Table 1.1 Values of physical parameters, geometry parameters of the basin and the floater. l2 is
the length of the floater, h2ρ2 is the product of the thickness and density of the floater

Hy , m Hx , m h, m ρ1, kg/m3 νice Eice , GPa h2ρ2,
kg/m2

l2, m

100 200 1 925 0.3 5 3218 30
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Fig. 1.2 Displacement of
the right edge of the floater
via the frequency of the
moment with an amplitude
of A = 294300 N/m in the
non-stationary regime for
different ice thicknesses h.
Line 1 − h = 0− no ice; line
2 − h = 0.1m; line
3 − h = 1m; line
4 − h = 10m

Fig. 1.3 Displacement of
the right edge of the floater
via the frequency of the
moment with an amplitude
of A = 294300 N/m in the
stationary regime for
different ice thicknesses h.
Line 1 − h = 0—no ice; line
2 − h = 0.1m; line
3 − h = 1m; line
4 − h = 10m

right edge of the floater on the frequency in Fig. 1.3 shows that there are frequency
ranges in which the effect of reflected waves on these movements is visible. The type
of fluid surface waves is shown in Fig. 1.4. As can be seen from the figure, an almost
stationary wave is formed in the space between the floater and the ice floe. In the
figure, it corresponds to sinusoidal structures. The red color in the figure corresponds
to large displacements, and blue to small ones. The graphs in Figs. 1.2 and 1.3 reveal
that it is important to take into account the non-stationary regime since the maximum
displacements in it exceed the maximum displacements in the stationary regime. It
should be noted that, with an increase in the ice thickness, the displacement of the
floater also increases. At the same time, calculations show that the displacements
of the ice edge decrease with the ice thickness increase due to the plate cylindrical
rigidity increase. The obtained results qualitatively coincide with the results obtained
in Nelli et al. (2017) for the case of a free-floating plate.

The results of the linear problem performed by the authors are in good agreement
with the results obtained in Keijdener (2019) with the help of the analytical method
of expansion in terms of vertical eigenmodes in the steady state for a harmonic
external excitation.Due to the good agreement between the values of the dependences
obtained by numerical and analytical methods, the solution obtained by analytical
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Fig. 1.4 Fluid surface waves
between floater and ice for
the moment with amplitude
A = 294300 N/m in the
stationary regime for ice
thicknesses h = 1m

Fig. 1.5 Fluid pressure on
the floater in the stationary
regime for different
amplitudes A,
when L = 10 m

formulas is not shown on the graphs. However, for some values of the parameters
of the considered system, it occurs that the nonlinear boundary conditions lead to a
difference from results obtained in the linear condition case. The fluid pressure on
the floater at linear and nonlinear conditions on the fluid surface is shown in Fig. 1.5
for L = 10 m and different values of amplitudes. The graphs in Fig. 1.5 show that,
for moment period T = 3s, the value of the fluid pressure in the nonlinear case is
greater than in the linear case.

At the same time, the authors did not find the differences in the values of the floater
maximum angle of rotation in the linear and nonlinear cases in the stationary regime
in the range of frequencies 0.6–1.3 rad/s, as the curves in Fig. 1.6 present. As can be
seen in Fig. 1.6, the maximum values of floater angle of rotation are larger when the
gap between it and ice floe is smaller. The graphs in Fig. 1.6 show that the ice has little
effect on the magnitude of the floater rotation angle up to the frequency ω = 0.55
rad/s. At frequencies greater than 0.55 rad/s, the effect of the ice is significant and
manifests itself, among other things, by resonant peaks. The ice effect on the rotation
angle is absent because of the reflected/incident wave interaction on the edge of the
ice. The work Fox and Squire (1990) shows that, when a low-frequency wave is
incident normal to the edge, its energy is transferred to a floating plate, while, in case
a high-frequency wave is incident, its energy is completely reflected into the fluid.
Figure1.6 presents a similar behavior at frequencies below 0.55 rad/s, the waves
are almost not reflected in this case. Non-propagating waves forming in the space
between the ice and the floater decay quickly along the coordinate and do not affect
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Fig. 1.6 Dependence of the
floater angle of rotation in
the linear and nonlinear
cases via the frequency of
the moment with A =250000
N/m in stationary regime.
Line 1 - α = 0, and
L = 15m; line 2 -α = 1 and
L = 15m;Line 3-α = 0, and
L = 1m; α = 1, and
L = 1m

it. Therefore, the propagating reflected surface waves are the main in the process of
a wave/floater interaction.

In contrast to the displacement behavior the angle of rotation dependence has
some differences: the resonant peaks are not so pronounced, with the exception of
one resonance. The nature of this resonance can be explained as follows. When the
floater oscillates, it loses energy in the form of radiated waves and some of this
energy is trapped in the gap between the floater and ice in the form of a standing
wave (Keijdener 2019). Within these frequency bands, the length of a surface wave
is approximately the same as gap length. Simultaneously, the amount of energy
transferring to the wave significantly increases the floater displacement. When the
reflected waves are in-phase with the vertical motions of the floater, resonance occurs
and the floater’s response increases. If the reflected waves are in anti-phase with the
floater, anti-resonance occurs and its response lowers. A couple of forces may create
such anti-resonances. The last consideration explains the absence of pronounced
resonant peaks at frequencies corresponding to displacement resonances. The authors
consider another factor presumably affecting the displacement of the ice and the
floater, namely, the floater’s cylindrical rigidity. The calculations revealed that the
floater cylindrical rigidity starts affecting themaximum displacements of both the ice
and the floater only if its value significantly decreases, by 1000 times compared with
the parameters of offshore structures selected in Keijdener (2019). Therefore, we can
consider the behavior of a real offshore structure in the problem under consideration
as the behavior of a rigid body in case we are interested in the maximum values of
the floater displacement only. At the same time, it should be noted that a change
in the floater rigidity leads to a change in the wave patterns of the system under
consideration. Figures1.7 and 1.8 show how the floater wave patterns change with a
change in the flexural rigidity of the floater. Figure1.7 corresponds to the cylindrical
stiffness D = 105 Nm, and Fig. 1.8 to the value D = 108 Nm. The red color in the
figure corresponds to large displacements, and the blue to small ones.
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Fig. 1.7 Floater waves
patterns for the cylindrical
stiffness D = 105 Nm

Fig. 1.8 Floater waves
patterns for the cylindrical
stiffness D = 108 Nm

1.5 Conclusion and Discussion

In the present paper, the authors propose an approach to the numerical solution of
the problem of studying the effect of an ice cover and fluid surface waves on floater
dynamics. Based on the numerical solution obtained, an analysis of the behavior
of floater displacements and floater rotation angles under the action of a harmonic
moment on the latter is carried out. It is shown that, in the non-stationary loading
regime, the values of maximum displacements and rotation angles of the floater can
differ significantly from the values determined in the stationary regime. It is shown
that for a number of parameters and at certain frequencies, the nonlinear boundary
conditions may lead to greater values of the fluid pressure acting on the floater
than in the linear formulation. The flexural rigidity of a floater begins to affect its
displacements and angles of rotation on a fluid surface at its values far from those
that floating offshore structures can have. At the same time, a change in the rigidity
of the body leads to a change in the wave patterns of the system under consideration.
It should be noted that such important factors as the three-dimensional formulation
of the problem, ice cover inhomogeneities (old ice inclusions, cavities filled with
brine, etc.), slush, and speed of its approaching the ice have not been considered yet.
The authors intend to take into account all these factors in their future works.
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Chapter 2
Identification and Verification of the Soil
Medium S. S. Grigoryan’s Model for Dry
Clay

Vladimir Vas. Balandin, Vladimir Vl. Balandin, Anatoly M. Bragov,
Leonid A. Igumnov, Aleksandr Yu. Konstantinov, and Vasily L. Kotov

Abstract Dynamic tests of dry clay were carried out to identify the parameters
of the soil medium model of S.S. Grigoryan. To study the dynamic compressive
strength under a uniaxial stress in the samples, the experiments were carried out
on a PG-20 setup that implements the classical SHPB method. The modified SHPB
methodwith a sample in a rigid holderwas used in tests under conditions close to one-
dimensional deformation. Based on the results of these experiments, the compressive
strength of clay was determined at various strain rates up to 1200 1/s. In experiments
with uniaxial deformation in the range of longitudinal stresses up to 400 MPa, strain
diagrams, compressibility curves, and pressure dependences of the yield stress were
obtained. The analysis of the results showed that the strain rate has practically no
effect on the course of the strain diagrams and compressibility curves of the studied
soil. The shear strength of the studied soil obeys the Mohr–Coulomb law both under
loading and unloading. Based on the results of the experiments, the parameters of
the mathematical model of S.S. Grigoryan for dry clay were obtained. Using this
model in the LS-Dyna software package, the process of sample deformation was
simulated under conditions corresponding to a real experiment. A good agreement
between numerical and experimental results is obtained. To verify the model of the
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soil environment, model experiments were carried out on the penetration of conical
tips into dry clay in a reversed formulation. Using this identified model in the LS-
Dyna software package, numerical simulation of penetration was carried out under
conditions similar to those carried out using the reversed experiment. Comparison of
the results of model and numerical experiments showed their satisfactory agreement
at a dry friction coefficient of 0.5.

Keywords Dry clay · Strain rate · Split Hopkinson pressure bar · Volumetric
compressibility · Identification · Verification · Penetration · Reversed experiment ·
Numerical simulation

2.1 Introduction

The study of the impact interaction of deformable and solid bodies with soil media is
of significant scientific and applied importance. Computational methods are widely
used to study the mechanisms of penetration into soils. These methods make it
possible to comprehensively simulate the processes of penetration into soil barriers.
To calculate the penetration into soil media, various software packages are widely
used: LS-Dyna, Ansys, Logos, Abaqus, etc. However, two problems arise, when
calculating the impact interaction. The first is the choice of models of the dynamic
behavior of interacting media and the identification of their parameters. The second
problem is the verification of the obtained numerical results by comparing them
with the experimental results. A wide range of experimental studies requires to solve
these problems. To select models and equip them with the necessary parameters,
a large number of experimental studies of the dynamic properties of soil media in
a wide range of strain rates and load amplitudes are required. Verification of the
calculation results requires experimental studies of the penetration of deformable
and solid bodies with the different shapes into soil media with various impact veloc-
ities. It should be noted that for a number of soil media, the dynamic properties
have been studied quite fully. In particular, for sand, using two complementary tech-
niques—a plane-wave impact experiment and a modified Kolsky method with tests
in a rigid cage, compressibility curves were obtained in a wide range of load ampli-
tudes (Lagunov and Stepanov 1963; Bragov et al. 2006; Bragov and Grushevskii
1993; Arlery et al. 2010; Bragov et al. 2008; Song et al. 2009; Martin et al. 2009,
2013; Chapman et al. 2006; Luo et al. 2014; Dianov et al. 1977), and its shear prop-
erties were studied (Bragov et al. 1994, 1996a, 2004). In these works, for a sandy
medium, the influence of humidity, granulometric composition on the parameters of
the shock adiabat, deformation diagrams, and shear resistance at high strain rates of
102–105 s–1 and load levels up to 5 GPa were studied. The data obtained make it
possible to equip mathematical models of sand deformation and accurately set their
parameters in a wide range of load changes depending on its initial physical and
mechanical characteristics of sand. A detailed review of experimental studies of the
dynamic properties of sand is given in Omidvar et al. (2012).
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Data on the deformation of clay soils under dynamic impacts are much less. In
Yang et al. (2017), in experiments using the Kolsky method (SHPB), deformation
diagrams were determined under uniaxial stress for clay samples. Clay samples were
preliminarily statically loaded at various levels up to 4 MPa. The experiments were
carried out at strain rates from 60 to 600 s−1. An increase in the dynamic strength of
the specimens and in the fracture strain with an increase in the strain rate and preload
was found. The authors of He et al. (2010) conducted a study of wet clay using
the SHPB method in the stress range up to 12 MPa. Based on the data obtained, the
parameters of the soil fluidity criterion in theMohr–Coulomb form are determined. In
Buharev et al. (1991 ), in the pressure range up to 3.5 GPa, the impact compressibility
of clay with different water content (0, 4.8, 7.5, and 10%) was studied. According to
the results of the experiments, the parameters of the shock adiabats were determined,
which turned out to be practically the same for differentwater contents in the samples.
In Li et al. (2018), plane-wave experiments were carried out to determine the shock
compressibility of loess, the density of which was 1.8 g/cm3, and the degree of
saturation with water was 22%. The shock adiabat was obtained at stress levels from
0.2 to 1.6 GPa. The paper Bragov et al. (1996b) presents the results of a dynamic
study by the Kolsky method for plasticine simulating wet clay soil. Diagrams of
deformation of samples in a rigid cage in the range of longitudinal stresses up to
150 MPa are obtained. The parameters of the Mohr–Coulomb equation for the yield
strength of plasticine are determined. In Bragov et al. (2002), the dynamic properties
of wet clay samples in a rigid holder were studied. The experiments were carried out
on anSHPBsetup in the rangeof longitudinal stresses up to 200MPa.Compressibility
curves and dependences of shear stresses on pressure in the Mohr–Coulomb form
are obtained. Plane-wave experiments were also carried out to determine the shock
adiabat of wet clay in the pressure range up to 2 GPa. An analysis of the above
results shows that the dynamic properties of clay at different moisture content have
not been studied enough, in particular, there are no data on the dynamic properties
of dry clay. An analysis of the above results shows that the dynamic properties of
clay at different moisture content have not been studied enough, in particular, there
are no data on the dynamic properties of dry clay.

As noted above, to solve the problem of verifying the model of the soil medium, it
is necessary to conduct experiments on the penetration of solid and deformable bodies
into the soil. The analysis performed showed that there are a fairly large number of
experimental results on the penetration into sand with different moisture content
(Balandin et al. 2016; Bragov et al. 2018; Omidvar et al. 2014). However, for clayey
soils, data on penetration are insufficient (Veldanov et al. 2011; Bivin et al. 1978,
1980, 1982; Buharev and Gandurin 1995; Buharev et al. 1991, 1995; Balandin et al.
2020; Dayal et al. 1980). Existing data on the penetration of solids into clayey soils
are limited mainly by experiments with a model medium–plasticine. In Veldanov
et al. (2011) experiments were carried out on the penetration of conical tips with
opening angles of 30° and 60° into a plasticine target in a direct formulation with the
velocity up to 200 m/s. An accelerometer placed on the penetrating body was used
to determine the penetration resistance force. In Bivin et al. (1978), the penetration
resistance forceswere determined for coneswith opening angles 2α equal to 30°, 60°,
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90°, 180° in the speed range up to 20m/s. It was noted that themaximum drag force is
achieved when the conical part of the striker is completely immersed and is a power-
law function of the impact velocity. In Bivin et al. (1980), the penetration of conical
impactors into plasticine was studied in the range of impact velocities of 30–300m/s.
Amethod was proposed for determining the maximum shear stresses τs arising in the
soil during the penetration of cones, according to the experimental dependences of the
maximum penetration depth on the impact velocity. It is assumed that the penetration
resistance force is determined only by the action of tangential stresses on the surface
of the penetrating body, and the velocity head (proportional to the square of the
velocity) can be neglected. In Bivin et al. (1982), based on the results of measuring
the final penetration depth of coneswith half-opening angles of 15°, 30°, 45°, and 90°
into plasticine, the parameters of the two-term penetration equation in the Poncelet
formwere determined. The experiments were carried out at impact velocities from 50
to 400m/s. Inworks (Buharev andGandurin 1995;Buharev et al. 1991, 1995), a study
was made of the penetration of conical impactors into plasticine. Experiments with
conical impactors (opening angle 2α= 30°)were carried out at impact velocities from
20 to 86 m/s. The resistance forces were measured in different stages of penetration
(non-stationary and quasi-stationary). Based on the data obtained, the dependences
of the resistance coefficient and the soil shear strength parameter on the velocity
in the two-term Poncelet equation were constructed. In Balandin et al. (2020), in
the reversed experiments, the penetration of a hemispherical head and cones with
different vertex angles into plasticine was studied. The impact velocities varied in
the range from 80 to 460 m/s. The maximum forces acting on the heads in the initial,
non-stationary section of penetration are determined. The maximum forces increase
according to a power law with an increase in the impact velocity. It should be noted
that plasticine models the behavior of water-saturated clay soil. There are practically
no experimental data on penetration for clay. It is worth noting the work (Dayal
et al. 1980), in which the forces acting on a cylindrical projectile with a conical tip
(cone opening angle 60°) were experimentally determined when it penetrated clay
in the range of impact velocities from 3 to 6.1 m/s. An analytical penetration model
was proposed that takes into account the shear strength of the soil and friction on the
surface of the projectile. Since the impact velocities were low, the soil was considered
incompressible. The obtained analytical dependencies were numerically integrated.
The authors noted good agreement between experimental and analytical results and
suggested that this technique may be suitable for determining shear strength from a
known impact velocity and maximum penetration depth. Experimental data on the
impact interaction of solids with dry clay targets are not available in the literature.
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2.2 Methods of Experimental Research

2.2.1 Dynamic Testing of Clay Under Uniaxial Stress

Since clay, unlike sand, has structural strength, to determine it, samples of dry clay
were tested using the Kolsky method (Split Hopkinson Pressure Bar, SHPB method)
under conditions of a uniaxial stress state (Kolsky 1949). In the mathematical model
of the SHPB method, a system of three bars is considered: two infinitely strong,
infinite and thin and one “soft” and very short (sample) between them (Fig. 2.1). It
is assumed that there is no wave dispersion and that the deformation is uniform over
the bar cross section. Lateral vibrations of the bar particles are neglected. In one of
the bars, a one-dimensional elastic wave εI (t) is generated, which propagates in the
bars at a speed C. Wave propagation in the bars is represented by the x ~ t diagram in
Fig. 2.1.When the wave reaches the sample, it is divided into two, since the materials
of the bar and the sample have different acoustic hardness ρC. The first wave εR(t) is
reflected back, and the second wave εT (t) passes through the sample and enters the
second (reference) bar. The sample experiences elastic–plastic deformation, while
the bars experience elastic deformation. The amplitudes and waveforms εR(t) and
εT (t) depend on the ratio of the acoustic stiffness of the bar and the sample and the
response of the sample material to the applied dynamic load. By registering these
elastic waves with the help of sensors and using the formulas proposed by H. Kolsky,
we can determine the time dependences of stress, strain, and strain rate in the sample.
Stresses, strain rate, and strain in the test sample were determined by the formulas:

εs(t) = C

L0

t∫

0

[
ε I (t) − εR(t) − εT (t)

] · dt, (2.1)

ε̇s(t) = C

L0
· (

ε I (t) − εR(t) − εT (t)
)
, (2.2)

σs(t) = P

As
= E A

2A0
S

[
ε I (t) + εR(t) + εT (t)

]
, (2.3)

where C is the speed of sound in the measuring bars, E is Young’s modulus of
the material of the bars, A is the cross-sectional area of the measuring bars, A0

S is
the initial cross-sectional area of the sample, εI , εR, εT are the deformations in the
incident, reflected and transmitted pulses in the measuring bars. Excluding time as
a parameter from the dependencies given above, it is possible to obtain deformation
diagramsσ(ε)with a knownhistory of the change in the strain rate. In the experiments,
measuring bars with a diameter of 20mm,made of D16T aluminum alloy, were used.
Bars had a length of 1500 mm. Strain gauges were glued on the surface of the bars in
the middle. Loading was carried out by impact of an aluminum bar 300 mm long and
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Fig. 2.1 Scheme of the Hopkinson Split Pressure Bar (SHPB) method and the pattern of wave
propagation in measuring bars. 1–impactor, 2–incident bar, 3 and 6–strain gauges, 4–sample, 5–
transmitting bar, 7–damper

19.8 mm in diameter on the end face of the incident bar. The striker was accelerated
to the required speed in the barrel of a gas gun with a caliber of 20 mm.

2.2.2 Modified Kolsky Method for Testing Ground Media

To carry out dynamic tests of the soil medium under conditions of uniaxial defor-
mation, the modified Kolsky method is used (Fig. 2.2) (Bragov et al. 1994, 1996a,
2004). The scheme of this method differs from the classical version of the Hopkinson
split bar method in that the sample is enclosed in a rigid holder during testing, which
limits its transverse deformation (Fig. 2.3). With the help of a gas gun with a caliber
of 20 mm a compression pulse εI was created in incident bar. When this pulse has
reached the soil sample and loads it, the first part of the pulse is reflected into the
rod as a reflected pulse εR and the second part is passed through the sample into the
second measuring bar as transmitted pulse εT . As a result of multiple reflection of
waves in the sample, its stress–strain state becomes homogeneous, in a time notice-
ably shorter than the load duration. Since the radial strain of the sample is prevented
by a rigid cage, and the radial strain is much less than the axial one, then after some
time an axisymmetric volumetric stress and a one-dimensional strain appears in the
sample.

Then the main components of the stress and strain tensors in the sample will have
the form:

σ1 = σx ; σ2 = σ3 = σr ; ε1 = εx ; ε2 = ε3 = 0
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Fig. 2.2 Scheme of a setup of the modified Split Hopkinson Pressure Bar method: 1–striker, 2–
incident bar, 3 and 6–strain gauges, 4–sample, 5–transmitting bar, 7–damper, 8–elastic cage

Fig. 2.3 Cage scheme

where σ x and εx are longitudinal stresses and strains, σ r are radial stresses. The axial
components of stress σ x(t), strain εx(t), and strain rate šx(t) in the sample are deter-
mined by registering strain pulses onmeasuring bars by strain gauges according to the
traditional formulas of the SHPB method (1–3). The value of the radial component
of the stress tensor can be obtained from solving the task of elastic deformation of a
thick-walled cylinder under internal pressure. The relationship between the internal
pressure Pi and the circumferential deformation of the casing εθ (t) has the form
(Bragov et al. 1994).

σr (t) = Pi (t) = 1

2R2
2

[
E

(
R2
1 − R2

2

)
εθ (t)

]
(2.4)

where E is Young’s modulus of the casing material, R1 and R2 are the outer and inner
radii of the cage, respectively. The internal pressure Pi, under the influence of which
the cage experiences small elastic deformations, are the desired radial stresses σ r .
Thus, according to the readings of strain gauges on the outer surface of the cage εθ (t),
it is possible to determine the radial stress component σ r(t) in the sample. Further,
from the obtained parametric dependences σ x(t), εx(t), šx(t), and σ r(t), after their
mutual synchronization, time is excluded as a parameter and a diagram of uniaxial
deformation of the sample σ x ~ εx and a history of change in the strain rate šx ~ εx
are constructed. The combination of two stress components in the sample, σ x(t) and
σ r(t), makes it possible to calculate the basic properties of the material under test.
The maximum shear stresses (shear resistance) will be on planes located at an angle
of 45° to the X-axis, and their values on these planes will be equal to

τ(t) = 1

2
[σx (t) − σr (t)] (2.5)
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The pressure P(t) in the sample is determined through the principal stresses as
follows:

P(t) = 1

3
[σx (t) + 2σr (t)] (2.6)

Volumetric deformation will be equal to

θ(t) = εx (t) (2.7)

Thus, this technique makes it possible to calculate the following properties of
the tested material: shear resistance τ (t), coefficient of lateral pressure (thrust) ξ (t),
pressure P(t) in the sample, volumetric deformation θ (t), stress intensity σ i(t), and
strain intensity εi(t). Therefore, the used version of the Kolsky method, in addition
to obtaining a diagram of uniaxial compression of a sample under conditions of
passive limitation of radial deformation, is used to obtain a curve of volumetric
compressibility P ~ θ and a dependence of shear resistance on pressure τ ~ P. In the
experiments, measuring bars with a diameter of 20 mm, made of steel with a yield
strength of more than 2 GPa, were used. The incident bar had a length of 1500 mm,
the transmitting bar had a length of 2900mm. Strain gaugeswere glued on the surface
of the incident bar at a distance of 810 mm from the sample, and on the transmitting
bar at a distance of 420 mm from the sample. Loading was carried out by impact of
a steel bar 300 mm long on the end face of the incident bar. A striker with a diameter
of 19.8 mm was accelerated to the required speed in the barrel of a gas gun with a
caliber of 20 mm. A pulse shaper made of annealed copper 0.8 mm thick was placed
on the impacted end of the measuring bar. This made it possible to obtain sufficiently
smooth leading and trailing edges of the incident pulse (Fig. 2.4). In Fig. 2.5, the
synchronized strain pulses in the measuring bars are given. It is clearly seen that the
sample is in a state close to homogeneous, since the strain values in the transmitted
pulse are almost equal to the sum of the strains in the incident and reflected pulses,
which indicates the equality of the forces acting on the sample from the incident and
transmitting bars at each moment of time.

2.2.3 The Reversed Experiment Technique

The reversed experiments were carried out on a PG-57 setup (Bragov et al. 2018;
Balandin et al. 2016). In these experiments, the resistance force was measured at
the initial stage of penetration. This method for measuring the force of resistance to
the penetration into the ground using a measuring bar is as follows. The container
filled with soil accelerates to the required speeds and strikes a head of the appropriate
shape, fixed on a measuring bar. The impact velocity and the material properties of
the bar must be such that plastic deformations do not occur in the bar. In this case, an
elastic strain impulse ε(t) is formed in the bar. The registration of this pulse makes
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Fig. 2.4 Impulses of strain in measuring bars (εI , εR, εT ) and in a holder (εΘ ) in experiment
No. 51. (εI is an incident impulse, εR is a reflected impulse, εT is a transmitted impulse, εΘ is a
circumferential impulse of strain in a cage)

Fig. 2.5 Synchronized
strain pulses in measuring
bars (εI , εR, εT ) in
experiment No. 51

it possible to determine the force F acting on the head when interacting with the
medium, according to the known relation F(t) = E ε(t) S, where E is the elastic
modulus of the bar, S is the area of its cross section. Thus, in this method, the task
of measuring forces is greatly simplified and is reduced to registering the elastic
strain impulse in the bar using strain gauges. The scheme of this technique is shown
in Fig. 2.6. In the proposed version of the reversed experiment, a 57 mm caliber
gas gun with a double-diaphragm shutter is used to accelerate a container with soil,
which makes it possible to obtain stable and easily controlled impact velocities in
the range from 50 to 500 m/s. The container is a cylinder made of polypropylene
filled with soil medium. The bottom of the container is glued to the cylindrical part.
The impact speed of the container was measured using two electro contact sensors
located in the holes of the barrel, drilled in front of its muzzle. To close the contacts of
the speed meter, an aluminum alloy ring was glued to the front edge of the container.
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Fig. 2.6 Scheme of the reversed experiment technique

The distance between the contacts and the time of their closing determines the speed
of the container before hitting the measuring bar.

A steel bar with a length of 1.5 m and a diameter of 12 mmwith a yield strength of
more than 600 MPa is used for measuring forces. The impact end of the measuring
bar had a conical shape with an angle at the top of 60°. The bar is located at a certain
distance from the muzzle of the barrel so that the impact occurs immediately after
the full departure of the container from the barrel. The support, on which the bar
is located, has adjusting supports, which allows to ensure the axisymmetric nature
of the interaction. The bar with its rear end rests against a special stop, preventing
its displacement and damping the impact energy. The impact occurs in a vacuum
chamber towhich the gunbarrel is attached and intowhich ameasuringbar is inserted.
The geometric dimensions of containers with clay samples are shown in Fig. 2.7.
The numbers indicate 1–clay sample, 2–polypropylene container, 3–fragment of a
measuring bar with a head.

Fig. 2.7 Geometric dimensions of the sample
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2.3 Sample Preparation Technique

Clay for testing was taken from a depth of 1 m in the Bogorodsky district of the
Nizhny Novgorod region. The clay was dried in air at room temperature for a long
time to completely remove moisture. Then pieces of dry clay were crushed to a
powder. To form samples, ground clay was mixed with water in an amount of 20%
by weight of the clay. The wet clay was thoroughly mixed to ensure uniformity. For
tests according to the SHPBmethod, clay samples weremolded in special cylindrical
holders (Fig. 2.8). A strictly defined mass of wet clay was placed in a holder between
two punches. Then the punches were brought as close as possible to obtain the
required volume of the sample. After forming the sample, the upper punch was
removed from the holder. Then the samples were dried in air until the added moisture
was completely removed. It should be noted that, upon evaporation of moisture, the
samples decreased in length and diameter. With complete evaporation of water, the
diameter of the samples was 16.5–16.7 mm, and the length was 12.5–12.6 mm. The
density of the samples was 1940–2000 kg/m3.

When tested according to the modified Kolsky method with a sample in a limiting
cage, samples about 10 mm long were formed the same method. When moisture
evaporated, the samples decreased in diameter; therefore, the diameter of the holder
for the formation of samples was chosen so that, with complete evaporation of water,
the diameter of the samples was 20.5 mm and corresponded to the inner diameter of
the cage for testing. The density of the samples was 1950–1980 kg/m3.

Clay specimens with high of 70 mmwere made for the reversed experiments. The
samples were molded in aluminum cylindrical containers with an inner diameter
of 54 mm. During the formation of the samples, the wet clay was compacted to
eliminate possible voids. Then these samples were removed from the container and
dried in air until the added moisture was completely removed. When the moisture
evaporated, the samples decreased in diameter. Finally, when the water completely
evaporated, the diameter of the samples was close to 50 mm and corresponded to the

Fig. 2.8 Scheme of the
device for forming the
sample
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inner diameter of the polypropylene test container. The density of the samples was
1940–1980 kg/m3.

2.4 Results of the Experimental Study

2.4.1 Results of Compression Tests According to the SHPB
Method

Studies of dry clay samples under uniaxial stresswere carried out using the traditional
Kolskymethod on a PG-20 setup. In the experiments, measuring bars with a diameter
of 20 mm, made of D16T aluminum alloy, were used. The bars had a length of
1500 mm. The strain gauges were glued on the surfaces of the bars in the middle
sections. Loading was carried out by impact of an aluminum bar 300 mm long and
19.8 mm in diameter on the end face of the incident bar. The striker was accelerated
to the required speed in the barrel of a gas gun with a caliber of 20 mm. Figure 2.9
shows synchronized pulses in measuring bars in experiment s668-26. It is clearly
seen that the sample is in a state close to homogeneous, since the strain values in
the transmitted pulse are almost equal to the difference of the strains in the incident
and reflected pulses, which indicates the equality of the forces acting on the sample
from the loading and supporting bars at eachmoment of time. The loading conditions
(strain rate) were varied by changing the impact speed. The experiments were carried
out at strain rates close to 600 s−1, 950 s−1, and 1250 s−1. Figure 2.10 shows a group
of diagrams obtained under similar conditions at strain rates of about 950 s−1 (top),
and the bottom of the same figure shows the dependence of the strain rate on strain. It
can be seen that the strain rates in the experiments are practically constant and close
to 950 1/s. Diagrams of deformation of dry clay demonstrate a fairly large scatter.
As the strain increases, the stress quickly reaches its maximum and then remains
almost constant. This behavior indicates plastic deformation of the sample material
after reaching a certain limiting stress. This stress corresponds to the yield strength
of the material and increases from 10 to 22 MPa with an increase in the strain rate
from 600 to 1250 s−1 (Fig. 2.11). At the end of the process, the destruction of the
sample material occurs, which is characterized by a drop in stress with increasing
strain.

2.4.2 Results of Modified SHPB Tests

Tests of dry clay under conditions close to uniaxial deformation were carried out
on a PG-20 setup using a modified SHPB technique with a sample in a bounding
cage. After complete drying, the samples were inserted into a cage with strain gauges
glued to the outer one to measure circumferential deformations εθ . The length of the
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Fig. 2.9 Synchronized
pulses (εI , εR, εT ) in
measuring bars in
experiment s668-26

working part of the holder was 10 mm, so the samples had a length close to the
length of the working part of the cage. The inner diameter of the holder was equal
to 20.5 mm, which provided a sufficiently small gap between the holder and the side
surface of the measuring bars. The outer diameter of cage was 35 mm. Since the
length of the specimens and the working part of the cage practically coincided, thin-
walled cylinders with a wall thickness of 1.85 mm (Fig. 2.12) and a length of 3 mm
were left at the edges of the cages to ensure the centering relative to the bars. As
shown in Bragov et al. (2004), these centering sleeves did not affect the measurement
results.

The sample was placed inside the working part of the cage. Then the sample was
pressed from both sideswithmeasuring bars to eliminate gaps. The experiments were
carried out under three loading modes, differing in the striker speed: ~ 20, 25, and
30 m/s. Correspondingly, the strain rate also differed: 1400, 1800, and 2500 s−1.
Five experiments were carried out for each loading mode. The parameters of the
tested samples and the conditions for the experiments are shown in Table 2.1.

According to the results of experiments using formulas (2.1–2.3), the dependences
on the time of longitudinal deformation, longitudinal stress, strain rate of the sample
were determined.According to formula (2.4), the radial stress in the samplewas deter-
mined as a function of time. These dependences were used to build strain diagrams,
strain rate versus strain, pressure versus strain, and shear strength versus pressure.
The pressure P and the shear stress τ were determined by formulas (2.5, 2.6). These
dependences for each loading mode were averaged to obtain average curves and
standard deviation. Strain diagrams were obtained in the stress range up to 400MPa.
An example of strain diagrams and dependences of strain rate on longitudinal strain,
obtained at impactor velocities close to 20 m/s, is shown in Fig. 2.13 (Zel’dovich
and Raizer, 2002). The abscissa shows the technical deformation. Comparison of
the obtained average diagrams of clay deformation for different loading modes is
shown in Fig. 2.14. It is clearly seen that the load branches of the obtained diagrams
practically coincide within the scatter of the experimental data, i.e., do not depend
on the strain rate, and the values of the achieved stresses and strains depend on the
amplitude of the applied load. The slope of the unloading branches of the diagrams is
close to linear for different experiments, and also does not depend on the strain rate.
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Fig. 2.10 Diagrams of dry clay deformation (top) and dependence of strain rate on strain at a strain
rate of about 950 1/s under uniaxial stress conditions

The load branch of the dependence true deformation - longitudinal stress can be
described by the expression (Zel’ dovich and Raizer, 2002)

σx = ρ0A2εx

(1 − Bεx )
2

where A and B are parameters of the shock adiabat written as D = A + BU (D is
the velocity of the shock wave, U is the mass velocity of matter behind the front).
The load branches of the diagrams are well approximated by this dependence with
the parameters A = 500 m/s, B = 1.9. The unloading branches of the diagrams have
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Fig. 2.11 Strain rate dependence of the flow stress of dry clay under uniaxial compression

Fig. 2.12 Measuring cage
design. 1–measuring bars,
2–working part of the cage,
3–sample of the soil
medium, 4–centering sleeves

a slope in the linear section, characterized by a modulus of 11,300 MPa. Since the
volumetric deformation practically coincides with the longitudinal deformation—
the difference is less than 2% of its value, then it is possible to construct a summary
compressibility curve in true deformations. The course of the curves characterizing
the dependence of pressure on volumetric deformation is also practically independent
of the strain rate (Fig. 2.15).

Of considerable interest is the determination of the shear properties of the soil
under study. For many soil media, the dependence of the yield strength on pressure
can be described by the Mohr–Coulomb relation. The dependences τ∼P determined
in the experiments for the loading mode with an impact speed of 25 m/s are shown
in Fig. 2.16. It is clearly seen that these dependencies have two different branches—
loading and unloading, which have different slopes. Average dependences of shear
strength τ on pressure P are shown in Fig. 2.17.
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Table 2.1 The conditions of experiments using modified SHPB method

Test no Density of clay,
g/sm3

Specimen
length, mm

Remaining
sample length,
mm

Impact
velocity, m/s

Maximum
strain rate, s−1

49 1,95 10,05 8,75 18,9 1470

51 1,96 10,05 8,7 19,4 1360

54 1,97 9,95 8,4 24,9 1710

55 1,98 9,9 8,4 24,9 1830

59 1,97 10,0 8,3 30,6 2630

61 1,98 9,95 8 30,3 2550

65 1,95 9,9 8,4 25,2 1910

66 1,95 9,7 8,1 24,6 1980

67 1,97 9,7 8,65 19,8 1380

68 1,96 9,7 8,4 19,8 1480

69 1,97 9,7 8,6 19,2 1520

70 1,98 9,7 − 30,8 2740

72 1,98 9,7 8,2 24,5 1920

73 1,98 9,7 8,2 24,5 2480

74 1,96 9,8 − 30,3 2480

The dependence of shear strength on pressure in the section of active load is
described by a linear function of the form τ = C + kP. At striker speeds of 20 and
25 m/s, C = 2.5 MPa, and k = 0.4, and at impact speeds of 30 m/s, C = 0.5 MPa,
and k = 0.38. The branches of the dependence τ∼P during unloading are also well
approximated by straight lines that have different slopes for different test modes.
At 20 m/s C = -–9 MPa, and k = 0.62. At 25 m/s C = -–5 MPa, and k = 0.58. At
30 m/s C = -–5 MPa, and k = 0.53.

2.4.3 Analysis of the Results of the Reversed Experiment

Several reversed experiments were carried out on the penetration of conical head to
verify the model of the soil medium. The head was a diameter of 12 mm. Container
with dry claywas accelerated up to impact velocities of about 200m/s. The conditions
for the experiments are given in Table 2.2. The dependences of the resistance forces
on time were obtained (Fig. 2.18). In the figure, the colored lines show the results of
repeated tests. The black line corresponds to the average value. Confidence intervals
with a probability of 0.95 are also shown. It can be noted that the increase in the
resistance force during the penetration of a cone with an angle of 2α = 60° occurs
along a curve close to a parabola. The maximum force during the penetration of the
cone is reached at a moment close to the moment of immersion of the base of the



2 Identification and Verification of the Soil Medium S. S. Grigoryan’s … 29

Fig. 2.13 Diagrams of deformation of clay samples at impact velocities of 20 m/s (a), the strain
rate of clay samples at an impact velocity of about 20 m/s (b)
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Fig. 2.14 Diagrams of strain of clay specimens at different impact velocities

Fig. 2.15 Dependence of pressure on volumetric deformation at various impact velocities
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Fig. 2.16 Shear stress versus pressure at an impact velocity of 25 m/s

Fig. 2.17 Dependence of shear stress on pressure at different impact velocities
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Table 2.2 The conditions of
reversed experiments № exp Density, kg/m3 Velocity, m/s Fmax, kN

657 1940 188 20,6

659 1970 201 20

660 1980 208 20,2

661 1970 210 19

Fig. 2.18 Time dependence of penetration resistance forces

cone. The maximum resistance forces in all the experiments performed are close.
After reaching the maximum, there is a gradual decrease in strength, because the
influence of the walls of container on the resistance force is small.

2.5 Numerical Simulation of Soil Sample Loading

2.5.1 Analysis of Experimental Results and Construction
of a Mathematical Model of Clay Soil Deformation

To model the behavior of clay, a constitutive relation in the form of Grigoryan’s
model was chosen (Grigoryan 1960). This model is widely used to model the
behavior of soft soil media under dynamic loads. Soft soil is considered as an
elastoplastic medium that exhibits nonlinear resistance to compression and shear
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(Bazhenov et al. 2014). In this model, to describe the nonlinear behavior of the soil
medium, it is necessary to specify the dependence of pressure on volumetric defor-
mation (or density), as well as the dependence of flow stress on pressure. In LS-
DYNA software, such a model is implemented as a material: MAT_SOIL_AND_
FOAM (LS-DYNA Keyword User’s Manual). This is a fairly simple model that is
recommended for describing soils, concretes, and foams. The volumetric compress-
ibility curve is shown schematically in Fig. 2.19. As part of the implementation
of the model in LS-DYNA, two options for the behavior of the material during
unloading are provided. In the first case, unloading occurs along the same curve
as the load (gray arrows in Fig. 2.19). In the second, unloading is performed in a
straight line, the slope of which is set by the modulus of all-round compression K.
In tension, the value of the maximum pressure is limited by the value of Pressure
Cutoff .

The pressure is considered positive when compressed. Volumetric deformation is
determined by the natural logarithm of the relative volume:

e = ln
V

V0

here V is the current volume, V0 is the initial volume. Curve P(e) is given as a tabular
function. The plastic behavior of the medium is described using the ideal plastic flow
function:

Fig. 2.19 Volumetric compressibility curve in the MAT_SOIL_AND_FOAM model
(LS-DYNA Keyword User’s Manual)
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φ = J2 − [
a0 + a1P + a2P

2
]

here J2 is the second invariant of the stress tensor deviator:

J2 = 1

2
si j si j

here sij are the components of the stress tensor deviator. On the flow surface:

J2 = 1

3
σ 2
Y

where σ Y is the flow stress in a uniaxial stress state. In this way:

σY = [
3
(
a0 + a1P + a2P

2
)]1/2

The considered model does not assume strain hardening. The plastic behavior
of the material is determined by the values of the material parameters a0, a1, a2.
Model identification for clay was carried out on the basis of data obtained during the
experimental determination of the dynamic compressibility of clay using a modifi-
cation of the Kolsky method described above. As a result of the experimental studies
performed, the dependences of pressure on volumetric deformation, as well as stress
intensity on pressure for three loading modes were obtained, which correspond to
striker velocities of 20, 25, and 30 m/s. The dependences of pressure on the loga-
rithm of the relative volume of the sample, grouped by loading modes, are shown
in Fig. 2.20. Good repeatability of the results of experiments carried out under the
same conditions is visible. At the indicated striker speeds, in the corresponding exper-
iments, axial strain rates of the order of 1200, 1500, and 2300 s−1, respectively, were
realized (Fig. 2.21).

Figure 2.22 shows the dependences of pressure on volumetric strain for three
loading modes. It can be noted that the nature of the bulk compressibility curves is
practically independent of the loading rate (left side of Fig. 2.22). It follows from
the presented data that the mechanical properties of clay do not depend on the strain
rate, but depend on the amplitude of the applied load, i.e., there is an exit to a single
dynamic curve. It should be noted that in the deformation diagrams, the unloading
curves differ significantly from the load ones. The load branches of the diagrams
are actually repeated for different load intensities. Only the maximum deformation
(and, accordingly, pressure) achieved in the test differs. At the highest strain rate,
maximum pressures of the order of 250 MPa arise in the sample. The dependences
of flow stress on pressure (right side of Fig. 2.22) in the loading area are practically
linear. The slope of these sections is practically independent of the loading rate. The
data shown in Fig. 2.22 was approximated to equip the MAT_SOIL_AND_FOAM
model with the necessary parameters and constants. The left side of the figure shows
the approximation of the volumetric compressibility curves by a tabular function.
The table function is presented in Table 2.3.
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Fig. 2.20 Dependences of pressure on the logarithm of relative volume for three loading modes

Fig. 2.21 Axial strain rates

Fig. 2.22 On the left−approximation of the volumetric compressibility curve, on the
right−approximation of the dependence of the flow stress on pressure
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Table 2.3 The dependence of pressure on volumetric strain

ln V
V0

0 −0.05 −0.1 −0.125 −0.15 −0.175 −0.2 −0.22

P, MPa 0 20 53 75 105 150 220 275

Unloading in the model under consideration is carried out in a straight line with
a given angle of inclination. The module of the unloading branch was determined
by approximating the experimental data (Fig. 2.22). The volumetric compression
modulus K during unloading was 11,383 MPa. The procedure for determining the
parameters of Grigoryan’s model based on the data of tests of soft soils in a bounding
cage is described in Dyanov and Kotov (2020). The parameters of the loading path
on the stress plane under conditions of a uniaxial deformed state can be obtained
analytically. The loading trajectory is formed by three segments. The first segment
corresponds to the plastic loading of the soil from zero in the initial state to the
maximum stress value determined by the amplitude of the load pulse. The second
segment corresponds to the elastic deformation of the soil at the initial stage of
unloading from the achieved state. The third segment is associated with the transi-
tion of the soil from the elastic to the plastic state. The slope of the first section is
related to the lateral pressure coefficient (determined experimentally), which in turn
is related to the coefficient in the linear dependence of the yield stress on pressure.
The dependence of flow stress on pressure is well described by a linear function
(Fig. 2.22, right).

σY = k · P + b = 0.81 · P

The slope of the first section of the loading trajectory:

K σ
I = dσr

dσx
= 1 − k/

3
1 + 2 · k/3

For k = 0.81, we get K σ
I = 0.474.

The slope of the second section (elastic) is determined by the formula, which at
G = β·k·K/2, where K and G are the volumetric and shear unloading moduli, will
have the form:

K σ
I I = K − 2G/

3
K + 4G/

3
= 1 − k · β

/
3

1 + 2 · k · β
/
3

where β is a numerical parameter determined experimentally. In the case of the tested
soil, the value β = 1.32 gives a good approximation of the experimental data on the
elastic section of the unloading branch (Fig. 2.23). Thus G = 6085 MPa, K σ

I I =
0.376.

The third (plastic) section of the loading trajectory has a slope:
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Fig. 2.23 Approximation of
the trajectory of clay loading

K σ
I I I = 1 + k/

3
1 − 2 · k/

3

With a value of k = 0.81, we get K σ
I I I = 2.76. The approximation of the exper-

imental loading trajectory by the three-link model constructed in this way is shown
in Fig. 2.23.

It should be noted that this solution was obtained analytically for the case of one-
dimensional deformation of the sample. Since the holder in real experiments is pliable
and undergoes elastic deformations, the parameter β was determined by selection
when simulating the process of deformation of the sample in the bounding holder.
The value of the parameter obtained using the analytical solution was taken as the
initial approximation. The simulation scheme is described in detail below. Figure 2.24
illustrates the sample deformation trajectory in the axes σ x–σ r for different values
of the parameter β. It can be seen that the best agreement with the experimental data
is observed at β = 1.13, which corresponds to the unloading shear modulus G =
5200 MPa.

The coefficients of the MAT_SOIL_AND_FOAM model are defined as follows.

a0 = σ 2
0

3
= 75, a1 = 2 · k · σ 2

0

3
= 8.26, a2 = k2

3
= 0.2187

here σ 0 is the dynamic yield strength of clay, also determined using the classical
version of the Kolsky method for compression under uniaxial stress conditions. The
average value of this stress in the dynamic range of strain rates was about 15 MPa.
A complete set of model constants, presented as an input map of the LS-DYNA
software package, is shown in Fig. 2.25.
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Fig. 2.24 Determination of the parameter β, taking into account the compliance of the cage

Fig. 2.25 Clay model parameters for LS-DYNA

2.5.2 Results of Numerical Simulation of Sample
Compression in a Cage

Experiments on dynamic compression of clay samples in a bounding cage were
numerically reproduced using LS-DYNA software. Figure 2.26 shows a fragment
of the model: the area near the sample in the bounding cage. The numbers indicate
1–cage, 2–measuring bars, 3–sample. Geometric dimensions are given on the right
side of the figure. In the computational experiment, as well as in the full-scale test,
the length of the incident bar was 1.5 m and the length of the transmitting bar was
3 m. Since the measuring bars and the cage work in the elastic region, their behavior
was described by linear elasticMAT_ELASTICmodels. Model parameters are given
in Table 2.4.

As mentioned above, the behavior of the clay sample was described by the MAT_
SOIL_AND_FOAMmodel, the parameters of whichwere defined earlier (Fig. 2.25).
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Fig. 2.26 Fragment of the
model

Table 2.4 Model parameters for describing the behavior of measuring bars and cage

Density, kg/m3 Young’s module, MPa Poisson’s ratio

Measuring bars 8050 185,000 0.28

Cage 7850 210,000 0.28

Since the behavior of the material did not show a dependence on the strain rate, the
experiment was simulated with the maximum load amplitude (the impactor speed
was 30 m/s). As a load, a stress pulse acting on the end of the incident bar was
set. The shape of this pulse was determined from the incident strain pulse recorded
in the corresponding full-scale test using the formula: σ (t) = −E·εI (t) here E is the
modulus of elasticity of the measuring bar, εI (t) is the strain impulse registered in the
incident bar. The resulting time dependence of the stress pulse is shown in Fig. 2.27.

The problem was solved in an axisymmetric setting. An explicit scheme was
used to integrate the equations over time. Area-weighted axisymmetric Lagrangian
finite elements (type 14)were used to discretize the space. Figure 2.28(a-d) provides a
comparison of simulation results and experimental data The components of the stress
tensor in the computational cell corresponding to the samplewere determined numer-
ically. The blue lines in the figures correspond to the experimental data, the black

Fig. 2.27 The stress pulse
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  a     b   

  c     d   

Fig. 2.28 Comparison of simulation results and experimental data

lines are the simulation results. Fig. 28a compares pressure versus strain. Fig. 28b
shows the curves in the axial stress-radial stress axes. Fig. 28c and d compares the
time dependences of the axial and radial stresses in the specimen, respectively. In
general, it can be noted that the identified mathematical model based on the results
of the experiment allows quite accurately, both qualitatively and quantitatively, to
reproduce the main features (including nonlinear behavior) of the material under
study.

2.5.3 Numerical Simulation of the Reversed Experiment

For a more reliable verification of the parameters of the model of the soil and their
refinement, numerical simulation of the reversed experiment was carried out. The
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geometric formulation of the task corresponds to the experimental scheme shown in
Fig. 2.7. A sample 70 mm long and 50 mm in diameter was tested on a setup with
a measuring bar 12 mm in diameter. The samples were placed in a polypropylene
holder. In Fig. 2.7, the numbers indicate 1–sample, 2–container, and 3–fragment of
a measuring bar with a conical tip. The opening of the cone is 60 degrees. Sample
1 in container 2 is accelerated with a gas gun. In the simulated experiments, the
initial velocities of the sample are 200 m/s. The clay behavior was described by the
MAT_SOIL_AND_FOAMmodel with the parameters defined earlier. The behavior
of the material of the measuring bar was described by a linear elastic model (density
7850 kg/m3, Young’s modulus 210 GPa, Poisson’s ratio 0.28). The problem was
solved in an axisymmetric formulation. An explicit scheme was used to integrate
the equations over time. The discretization of the container and the measuring bar
was carried out by Lagrangian area-weighted axisymmetric finite elements (type 14).
Since large deformations occur in the clay sample during impact interaction with the
measuring bar, the integration of the equations for the sample was carried out in Euler
variables using the MMALE (Multi-material arbitrary Lagrange-Euler) setting. The
interaction of the Lagrangian and Euler parts was carried out using a special contact
CONSTRAINED_LAGRANGE_IN_SOLID. As in the experiments, the measuring
bar had a zero initial speed, and the parts of themodel representing the sample and the
container were given initial speeds equal to the throwing speed in the real test. The
Euler grid had the ability to move in space in the direction of the bar axis behind the
center of mass of the samplematerial (control chart ALE_REFERENCE_SYSTEM_
GROUP). This technique makes it possible to significantly save on computational
resources (there is no need to cover a large area of space with an Eulerian grid, it is
possible to cover only the area in the immediate vicinity of the sample) and improve
the accuracy of calculations, since there are fewer calculation errors that occur when
integrating the mass conservation equation when material flows from cell to cell.

Figure 2.29 shows the configuration of the computational domain at different
times in the computational experiment.

It is obvious that the force of resistance to the penetration of the head into the
clay depends on the coefficient of friction. In addition, as shown earlier, the values
of the yield strength of the material at zero confining pressure have a certain spread.
Since the value of the friction coefficient for dynamic contact is not exactly known,
calculations were carried out with different values of the friction coefficient (α =
0, 0.25, 0.5, 0.75, and 1). To assess the influence of the initial clay yield stress on
the simulation result, this value also varied from 15 to 25 MPa in the calculations.
Comparison of the time dependences of the resistance forces obtained in a real
experiment (black line) and computational experiments (colored lines, taking into
account the spread of values of the uniaxial tensile strength) is shown in Fig. 2.30. The
red lines show the dependences of the resistance forces obtained at a yield strength
of 15 MPa, green–at a value of 25 MPa.

Numerical simulation showed that an increase in the friction coefficient above
0.5 does not change the calculation of the penetration resistance force versus time.
At a friction coefficient close to 0.5, the values of the penetration resistance forces
measured in the experiment and those obtained in the computational experiment
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Fig. 2.29 The process of penetration of the bar with conical head into clay

Fig. 2.30 Calculation results for different friction coefficients (0, 0.25, 0.5)

turned out to be quite close: the loading sections, the maximum values of the force,
and the unloading sections up to a time of about 100 μs practically coincide, taking
into account the scatter of the characteristics of the material and experimental data.
It should be noted that the model used does not allow taking into account the effect
of strain rate on clay characteristics. Therefore, in the calculations, a certain average



2 Identification and Verification of the Soil Medium S. S. Grigoryan’s … 43

value was taken into account for the entire region of the material. In reality, different
zones of the sample are deformed at different rates, and the maximum rate of defor-
mation takes place in the zone of contact between the measuring bar and the sample.
For more realistic modeling, it is necessary to use a model that takes into account
the effect of the strain rate on the properties of the material, as well as experimen-
tally determine the rate dependence of the strength of the material under uniaxial
compression in a wider range of strain rates.

2.6 Conclusion

Using various versions of the Kolsky method, a study was made of the dynamic
deformation of dry clay soil. Based on the results of this study, the parameters of
the S.S. Grigoryan’s model were determined. To verify this model, reversed ballistic
experiments were carried out on the impact interaction of a dry clay barrier with a
conical head at an impact velocity of∼200 m/s. Numerical calculations were carried
out using the LS-Dyna. Comparison of the results of numerical and model experi-
ments has shown that they are quite close within 100 μs from the onset of impact
when the Coulomb friction coefficient of 0.5 is chosen in the calculations. Further,
the results of numerical calculations lie above the results of inverted experiments.
In our opinion, this phenomenon can be explained by the dependence of the initial
clay strength on the strain rate. The initial compressive strength of clay at strain
rates less than 1000 s−1 can be significantly less than 20 MPa, which will lead to
a decrease in the resistance force with a decrease in the penetration velocity and,
accordingly, the strain rate of the soil. In addition, it is possible that the coefficient of
dry friction is not constant, and also depends on the penetration velocity. Based on
the foregoing, it can be concluded that Grigoryan’s model of the soil medium with
experimentally determined parameters adequately describes the initial stage of the
impact interaction of the conical head with the dry clay barrier. To refine the model,
it is necessary to conduct additional studies of the effect of strain rate on the initial
compressive strength and take this dependence into account in the model of the soil
medium.
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Chapter 3
Models of Defectness Medium for Bodies
with Adhesion-Active Defective Surface

P. A. Belov and S. A. Lurie

Abstract The most general model of a coupled gradient and defective mediumwith
an adhesively active surface with gradient and defective properties (damage surface)
is formulated. The kinematic state in the volume of the body is determined by a
coupled system of 12 partial differential equations with respect to three components
of the displacement vector and 9 components of the incompatible free distortion
tensor. The presentedmodel includes, as special cases, the classical elasticity, Tupin’s
gradient models, the model of media with fields of Mindlin’s defects, and its known
special cases. The formulated continuum model of an adhesively active surface is
the basis for elaboration of the various adhesive interaction models on the surface of
a medium. In particular, the Murdoch–Gurtin model follows from the general model
for a defect-free non-gradient surface, and the Steigman–Ogden model is realized
for a defect-free gradient surface. It is shown that the proposed theory can be used
to model the mechanical properties of graphene and graphene-like 2D structures.

Keywords Gradient models · Defect fields · Mindlin’s model · Coupled
gradiented-defectness models · Damaged surfaces · Generalized adhesion model

3.1 Introduction

Development of modern models of the adhesive properties of solid deformable bod-
ies was probably initial justified by the need to adequately predict the effective
properties of inhomogeneous structures with a high density of phase boundaries
and composite materials with small-sized micro- and nanoinclusions (Duan et al.
2005, 2008; Altenbach et al. 2011; Wang et al. 2011; Huang and Wang 2013; Ere-
meyev 2016; Gurtin andMurdoch 1978). Further, the continuummodels of adhesion
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and interfaces and some of their applications are discussed to develop body surface
models that expand the understanding of the features of superficial interactions in
solid mechanics, which go beyond the well-known simplest models of surface inter-
actions in liquids, determined by surface tension (Murdoch 2005; Belov and Lurie
2007;Altenbach et al. 2010;Altenbach andMorozov 2013; Lurie et al. 2020;Mindlin
1965), etc. Initially, adhesion continuum theories were developed in the framework
of the classical theory of elasticity (Gurtin and Murdoch 1975a, b; Steigmann and
Ogden 1997, 1999; Belov and Lurie 2007; Altenbach et al. 2010; Altenbach and
Morozov 2013). So, for example, in the works (Belov and Lurie 2007; Lurie et al.
2020), a generalization of adhesionMurdoch–Gurtinmodelwas suggested.However,
in fact, at the same time, models of surface interactions were developed within the
framework of generalized models of elasticity. Here, it is necessary to note the early
work Mindlin (1965). Somewhat later, the works Yerofeyev and Sheshenina (2005),
Lurie et al. (2010), Lurie and Belov (2014), Lurie et al. (2016) appeared in which
models of adhesive interactions were developed for gradient theories of elasticity. It
can be explained by the fact that the elastic moduli of surface interactions take into
account scale effects and are of the order of length, while gradient models include
a small-scale parameter of the order of the square of length. Therefore, taking into
account the adhesive interfacial interactions for modeling of the effective properties
of materials with a micro-nanostructure is quite logical. Moreover, from a mathe-
matical point of view, models of surface interactions of the Gurtin–Murdoch type in
gradient elasticity lead to correct boundary value problems, in contrast to classical
elasticity. Despite the fact that models of media with fields of defects have received
significant development, there are actually no models related to the study of the sur-
face properties of such media. Obviously, there are interesting results of studies of
media and its surfaces with defects such as dislocations, disclinations, etc., leading
to discontinuity, which is given in Zubov (1997, 2011), Karyakin and Zubov (2011).
At the same time, it is recognized that the existence and interaction of individual
defects can be replaced by a field representation. The implementation of such an
approach, even within the framework of linear models, makes it possible to develop
the mechanics of media with fields of defects as a natural generalization of the classi-
cal mechanics of deformable media—continuum nanomechanics. However, defects
generally occur not only inside the body but also on its surface. The formation of a
surface with a given defectiveness is theoretically possible with the involvement of
various technologies for the physical and chemical processing of the original surface.
From a mathematical point of view, individual surface properties are determined by
various adhesive interactions on the surface (Belov and Lurie 2009, 2014). In con-
trast to the gradient properties inside the body, where non-classical modules differ
from the classical ones by the square of the length, adhesive modules differ by the
linear dimension of the length and higher (Lurie et al. 2016). As a result, the adhesion
interaction models may be more important for description of the effective properties
of heterogeneous materials than gradient models with multiscale effects. In addition,
we must take into account that adhesive properties are determined not by isotropic
property tensors, but by transversally isotropic ones. In this paper, the most general
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model of a gradient and defect medium bounded by an adhesively active surface with
gradient and defect properties is formulated.

3.2 Kinematic Models of Defectness Bodies with Active
Adhesion Surface

The general kinematic theory of defective media is presented in Belov and Lurie
(2009). Let us give the definitions of the main parameters which defined the kine-
matic models. The displacement vector Ri and the incompatible distortion tensor D2

i j
are taken as independent kinematic variables inside the body. By definition, incon-
sistent distortions cannot be represented as a gradient of some vector, in particular,
a displacement vector. Along with independent kinematic variables, the kinematic
model contains dependent kinematic variables D1

i j which are connected with dis-
placement field:

D1
i j = Ri, j . (3.1)

In addition, we define curvatures of two types. The first-type curvature D1
i jk is defined

as the gradient of the constrained distortion. The gradient of the free (incompatible)
distortion, let’s call the second-type curvature D2

i jk

D1
i jk = D1

i j,k = Ri, jk, (3.2)

D2
i jk = D2

i j,k (3.3)

Thus, the kinematic model contains the following kinematic variables: displacement
vector Ri ; tensors of the second rank which are distortions of two types, D1

i j and
D2

i j ; the tensors of the third rank which are defined as the distortion gradients of two
types, D1

i j,k and D2
i j,k . Incompatible distortion and curvature of the second type, D2

i j

and D2
i jk , are characteristics of the imperfection-defectiveness of the medium.

We assume that the considered kinematic variables Ri , Da
i j , D

a
i jk , and a = 1, 2

are defined as the kinematic model not only in body but also are kinematic variables
of two types on the surface of the body. Thus, the introduced variables, Ri , Da

i j , D
a
i jk ,

and a = 1, 2 are defined as not only in the volume but also on the surface. Variables
D2

i j , D
2
i jk on the surface are the tensor functions of two surface coordinates. In

particular, if the body surface has only “flat” defects, then the defect field on the
surface is determined by kinematic variables of the form D2

i j = D2
pqδ

∗
i pδ

∗
jq , D

2
i jk =

D2
pqrδ

∗
i pδ

∗
jqδ

∗
kr , where δ∗

i j = δi j − nin j and δ∗
i j n j = 0. Nevertheless, defectiveness

(D2
i j , D

2
i jk) can occur not only in the volume of the body but also on its surface.
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3.3 Force Model

The force model for any considered kinematic model is uniquely determined based
on the principle of possible displacements. For the kinematic model (3.1)–(3.3), we
have

δA −
∫

V

(σ a
i jδD

a
i j + σ a

i jkδD
a
i j,k) dV −

∫

F

(aai jδD
a
i j + aai jkδD

a
i j,k) dF = 0, (3.4)

where A = ∫
V (PV

i Ri + MV
i j D

2
i j ) dV + ∫

F (PF
i Ri + MF

i j D
2
i j ) dF is the work of the

external forces PV
i , PF

i and of the moments MV
i j , M

F
i j on independent kinematic

variables.
Note that, since the physical meaning of the force factors MV

i j , M
F
i j is difficult to

substantiate, we will further assume that MV
i j = MF

i j = 0.
We also omitted the expressions for external work on the surface of the body with

terms containing normal derivatives of displacements, since it is difficult to give
a physical meaning to the corresponding force factors. We consider only reversible
processes, so the linear variational form (3.4) is integrable.As a result, the volumeUV

and surface UF densities of potential energy are determined. Sufficient conditions
for the existence of these quantities are given by Green’s formulas:

σ a
i j = ∂UV

∂Da
i j

, a = 1, 2 (3.5)

σ a
i jk = ∂UV

∂Da
i j,k

, a = 1, 2. (3.6)

Two types of stresses σ a
i j and couple stresses σ a

i jk (see (3.5), (3.6)) determine the
force model of the process of deformation of an elastic body containing a defective
field.

The potential energy density of the surfaceUF determines the adhesion properties
of the body. The generalized Green’s formulas formulated for the surface F of the
body are sufficient conditions for the existence of the surface potential energy density:

aai j = ∂UF

∂Da
i j

, aai jk = ∂UF

∂Da
i j,k

, a = 1, 2. (3.7)

The adhesive properties of the surface of elastic bodies are characterized by surface
stresses and surface double stresses of two types aai j and a

a
i jk , a = 1, 2 (3.7).

The index equal to 1 in the kinematic and force factors determines the deformed
defectless state, while the kinematic variables and the corresponding force factors
with an index equal to 2 characterize the imperfection of the considered medium and
its surface.
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3.4 Physical Model

We introduce the following generalized physically linear isotropic model through
the definition of potential energy densities in the volume “V ”, on the surface “F”
and on the edges “S” and angular points “p” of the surface:

L = A − 1

2

∫

V

[C pq
i jmnD

p
i j D

q
mn + C pq

i jkmnl D
p
i jk D

q
mnl] dV −

−1

2

∫

F

[Apq
i jmnD

p
i j D

q
mn + 2Apq

i jmnl D
p
i j D

q
mnl + Apq

i jkmnl D
p
i jk D

q
mnl] dF −

−
∑ ∮

S

U S ds +
∑
p

U P , (3.8)

where C pq
i jmn , C

pq
i jkmnl are the tensors of generalized elastic moduli of the body and

Apq
i jmn , A

pq
i jmnl , A

pq
i jkmnl are the tensors elastic surface moduli which are defined the

adhesion properties of the surface.
The proposed version of the generalized model, in contrast to Mindlin’s and

Tupin’s models, is both a gradient model (D1
i j,k) and, at the same time, a model of

media with defect fields (D2
i j , D

2
i j,k) in which it is allowed to take into account

the connection of deformation fields with defect fields in the volume and on
the surface. The potential energy densities are the quadratic forms of their argu-
ments, taking into account the corresponding anisotropy: UV = UV (Dp

i j , D
p
i jn),

UF = UF (Dp
i j , D

p
i jqδ

∗
qk), U

s = Us(Dp
i j , D

p
i jnsn), U

P = U P(Dp
i j ), δi j is the Kro-

necker delta, δ∗
i j = (δi j − nin j ) is the “flat” Kronecker delta, defined on a smooth

surface of the body, ni and si are consequently the vector normal to the surface and
the vector tangent to the edge (co-normal) of the surface.

Note that in what follows we will assume that the surface is smooth, i.e., neglect
the potential energies of edges and corner points. Let’s write Hook’s equations for
stresses and double stresses in the body. Using (3.5)–(3.7), we find

σ
p
i j = C pq

i jmnD
q
mn, σ

p
i jk = C pq

i jkmnl D
q
mnl . (3.9)

The Green equations (3.5)–(3.7) and equation for the potential energy (3.8) lead
to the following definition of the adhesion stresses and adhesion double stresses
consequently:

a p
i j = Apq

i jmnD
q
mn + Apq

i jmnl D
q
mnl, a p

mnl = Apq
i jmnl D

q
i j + Apq

i jkmnl D
q
i jk . (3.10)

Generalized constitutive relations (3.9), (3.10) for force factors performing possible
work on kinematic variables characterizing the deformation fields D1

mn , D
1
mnl and

defect fields D2
mn , D

2
mnl , respectively, can be written in more detailed form:
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{
σ 1
i j = C11

i jmnD
1
mn + C12

i jmnD
2
mn,

σ 2
i j = C21

i jmnD
1
mn + C22

i jmnD
2
mn,

{
σ 1
i jk = C11

i jkmnl D
1
mnl + C12

i jkmnl D
2
mnl ,

σ 2
i jk = C21

i jkmnl D
1
mnl + C22

i jkmnl D
2
mnl ,

(3.11)
and

aai j = Aa1
i jmnD

1
mn + Aa2

i jmnD
2
mn + Aa1

i jmnl D
1
mnl + Aa2

i jmnl D
2
mnl , a = 1, 2,

aai jk = Aa1
mni jk D

1
mn + Aa2

mni jk D
2
mn + Aa1

mnli jk D
1
mnl + Aa2

mnli jk D
2
mnl, a = 1, 2.

(3.12)

3.5 Euler Equilibrium Equations and Spectrum
of Boundary Value Problems

Taking into account the equations of the generalized Hooke’s law (3.9)–(3.12), the
variational equation of the principle of possible displacements takes the form:

δL = δA −
∫

V

(σ
p
i j δD

p
i j + σ

p
i jkδD

p
i j,k)dV −

∫

F

(a p
i jδD

p
i j + a p

i jkδD
p
i j,k) dF = 0

(3.13)
We use integration by parts and in terms containing distortion gradients in the (3.13),
and take into account that distortion variations of the second type are independent
kinematic variables, and distortion variations of the first type can be integrated by
parts again. In the result, we can find the following variational equation:

δL =
∫

V

[(σ 1
i j − σ 1

i jk,k), j + PV
i ]δRi dV +

+
∫

F

{PF
i − (σ 1

i j − σ 1
i jk,k)n j + [σ 1

i jknk + (a1i j − a1i jk,rδ
∗
rk)],aδ∗

aj }δRi dF −

−
∫

F

[σ 1
i jkn j nk + (a1i j − a1i jk,rδ

∗
rk)n j + (a1i jknk),bδ

∗
bj ]δ(Ri,ana) dF −

−
∫

F

a1i jkn j nkδ(Ri,abnanb) dF −
∫

V

(σ 2
i j − σ 2

i jk,k)δD
2
i j dV −

−
∫

F

{[σ 2
i jknk + (a2i j − a2i jk,rδ

∗
rk)]δD2

i j + a2i jknkδ(D
2
i j,ana)} dF = 0. (3.14)

Variational equation (3.14) allows to write formally equilibrium equations (Euler
equations) of a defective gradient medium:
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{
σ 1
i j, j − σ 1

i jk, jk + PV
i = 0,

σ 2
i j − σ 2

i jk,k = 0
(3.15)

and, accordingly, the spectrum of boundary value problems, which is determined the
pairs of alternative boundary conditions:

∫

F

{PF
i − (σ 1

i j − σ 1
i jk,k)n j + [σ 1

i jknk + (a1i j − a1i jk,r δ
∗
rk)],aδ∗

aj }δRi dF = 0, (3.16)

∫

F

[σ 1
i jkn j nk + (a1i j − a1i jk,r δ

∗
rk)n j + (a1i jknk),bδ

∗
bj ]δ(Ri,ana) dF = 0, (3.17)

∫

F

a1i jkn j nkδ(Ri,abnanb) dF = 0, (3.18)

∫

F

[σ 2
i jknk + (a2i j − a2i jk,r δ

∗
rk)]δD2

i j dF = 0, (3.19)

∫

F

a2i jknkδ(D
2
i j,ana) dF = 0. (3.20)

Note that the real list of formal arguments in variations equations (3.14) in specific
problems can be smaller due to the fact that the kinematic variables in the body
volume and on the surface have different properties and must be consistent. For
example, in the case of a classical elastic body, only components of displacements
from the general list of arguments on the surface are kinematic variables on the
surface. Thus, the normal derivatives of the displacement vector components should
be excluded. This is done by concretizing the tensor of the adhesive modules. In this
case, the components of the displacement vector on the surface are functions of only
the coordinates of the surface and do not depend on the normal coordinate.

Using the equations of Hooke’s law (3.9) (or (3.11)), we can write the equilibrium
equations (3.15) in terms of the main kinematic variables:

C11
i jmn Rm,nj − C11

i jkmnl Rm,nl jk + C12
i jmn D

2
mn, j − C12

i jkmnl D
2
mn,l jk + PV

i = 0, (3.21)

C21
i jmn Rm,n − C21

i jkmnl Rm,nlk + C22
i jmn D

2
mn − C22

i jkmnl D
2
mn,lk = 0. (3.22)

Similarly, the boundary conditions (3.16)–(3.20) can also be rewritten in terms of
generalized variables using the constitutive relations (3.9), (3.10), (or (3.11 (3.12)).
Particular cases of equilibrium equations and boundary conditions can be obtained
from the general statement (3.14), (3.15) and (3.16)–(3.20) by removing the corre-
sponding tensors of the elastic moduli from the general list of physical constants in
the constitutive equations (3.9), (3.10). So, for example, equilibrium equations of
Tupin’s gradient elasticity can be obtained from (3.21), (3.22), if we accept C12

i jmn =
0, C12

i jkmnl = 0 and C2q
i jmn = C2q

i jkmnl = 0, q = 1, 2. The equilibrium equations of
Mindlin’s theory of defective media can be obtained from the equilibrium equations
of the generalized model (3.21), (3.22) if we take C11

i jkmnl = C12
i jkmnl = C21

i jkmnl = 0.
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3.6 On Structure of Tensors of Adhesion Elastic Moduli

The analysis of potential energy densities (3.7) allows us to formulate the proper-
ties of bulk modulus tensors and the properties of adhesion modulus tensors. The
most important are the properties that follow from the generalized Green’s formulas.
Indeed, from (3.5), (3.6) follows the symmetry of the tensors of modules of the fourth
and sixth ranks when the upper indices are interchanged, as well as pairs and triples
of indices, respectively:

C pq
i jmn = Cqp

mni j , C pq
i jkmnl = Cqp

mnli jk . (3.23)

Relations (3.23) are necessary conditions for the reversibility of deformation pro-
cesses inside the body for the proposed general model.

Similar symmetry properties are required to ensure potentiality conditions for
adhesive modules as well. The properties of tensors of adhesive modules of the
fourth and sixth ranks are determined from (3.7) as

Apq
i jmn = Aqp

mni j , Apq
i jkmnl = Aqp

mnli jk . (3.24)

Note that the properties of potentiality do not require additional symmetry properties
from tensors of the fifth rank. They have the same set of amplitude coefficients
(modules) but with different basis tensors.

Conditions (3.23) and (3.24) are not exhaustive for the adhesive moduli of elas-
ticity. They must satisfy additional symmetry properties that ensure the consistency
of boundary value problems. As an example, let us study the structure of tensors
of adhesive elastic properties that determine the possible adhesive properties of an
elastic body that obeys the hypotheses of the classical theory of elasticity.

There is a theorem.
The tensors of adhesive properties that determine the properties of the surface of

a classical elastic body must satisfy the following additional conditions:

1. Adhesive modules must ensure the independence of the components of the kine-
matic factors from the normal coordinate. These conditions in the sentence that
the symmetry conditions in terms of potentiality are satisfied are written as

A1q
i jmnn j = A1q

i jmnnn = 0,

A1q
i jkmnln j = A1q

i jkmnlnk = A1q
i jmnln j = A11

i jmnlnn = A1q
i jmnlnl = 0.

(3.25)

2. The following symmetry conditions must be satisfied for the tensor of adhesion
moduli:

A11
i jkmei jr nr = A11

i jmnlenlr nr = A11
i jmnlei jr nr . (3.26)

3. The conditions of symmetry of the adhesive double stresses with respect to the
last indices must be met
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A11
i jkmnlenlr nr = A21

i jkmnlenlr nr = 0, (3.27)

where ei jk is the Levi-Civita tensor.

Proving. The first part of the theorem is almost obvious—for the classical elastic-
ity the boundary kinematic conditions are set on the displacement vector. This also
requires the fulfillment of the first part of the theorem.

The second part of the theorem follows from the fact that an elastic body with
a symmetric stress tensor is considered. Then, in order to match the static conditions,
the symmetry properties of the adhesive stress tensor must also be satisfied.

The validity of the third part of the theorem follows from the assumption that there
is no field of defects at the boundary of the body. Hence, the generalized deformations
must be continuous as a function of the surface coordinates. Therefore, the conditions
of symmetry in the order of differentiation in the second derivatives of displacements
on the surfacemust be satisfied as necessary conditions for the continuity of the strain
tensor on the surface of the body. The theorem has been proven.

Potential energy densities in the volume and on the surface and the spectrum of
boundary value problems following from the Lagrange principle allow us to formu-
late (3.23), (3.24), and a fairly wide range of consequences of type (3.25)–(3.27) that
simplify the structure of adhesion modules.

The most important consequences are the following: for the classical model of
elasticity on the surface of themedium, the density of adhesive interactions should not
contain terms with the first and second normal derivatives of displacements, other-
wise the classical boundary value problem (3.16) will be redefined by the boundary
conditions (3.17) and (3.18) (see the theorem); similarly, for Tupin’s gradient model
of the medium, the potential energy density of adhesive interactions on the surface
of the medium should not contain terms with second normal derivatives of displace-
ments; otherwise, the corresponding boundary value problem (3.16), (3.17) will be
redefined by the boundary conditions (3.18).

For amodel of a defective medium, the density of adhesive interactions should not
contain terms with normal derivatives of incompatible distortions, since the compo-
nents of the incompatible distortion tensor must satisfy the homogeneous or inhomo-
geneous Helmholtz equation (second-order), which means that the boundary value
problem (3.19) will be redefined by the boundary conditions (3.20). Thus, the cho-
sen model of elastic properties inside the volume of the medium allows us to make
a conclusion about the adhesive properties of the surface that bounds this body.

As an example, taking into account conditions (3.24)–(3.27), we give a complete
list of conditions on the tensors of the elastic moduli (tensors of the fourth rank for
non-gradient models and tensors of the fifth and sixth ranks for gradient models).
These moduli are characterize adhesive interactions that can be implemented for a
body considered in the framework of classical elasticity:

for “classical” adhesion:

Apq
i jmn = Aqp

mni j (p, q = 1, 2), A11
i jmnn j = 0, A12

i jmnn j = 0, (3.28)
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for “gradient” adhesion:

A11
i jmnln j = 0, A11

i jmnlnn = 0, A11
i jmnlnl = 0, A11

i jmnlenlr nr = 0,

A12
i jmnln j = 0, A12

i jmnlnl = 0,

A21
i jmnlnn = 0, A21

i jmnlnl = 0, A21
i jmnlenlr nr = 0,

A22
i jmnlnl = 0

(3.29)

and
Apq
i jkmnl = Aqp

mnli jk (p, q = 1, 2),

A11
i jkmnln j = 0, A11

i jkmnlnk = 0, A11
i jkmnle jkr nr = 0,

A12
i jkmnln j = 0, A12

i jkmnlnk = 0, A12
i jkmnle jkr nr = 0,

A22
i jkmnlnl = 0

(3.30)

Similarly, additional conditions can be constructed for tensors that determine the
possible adhesive properties of the surface of a body considered in the framework of
Tupin’s gradient elasticity. It can be seen that these conditions for gradient elasticity
with a generally asymmetric stress tensor are written as the following relations:

for “classical” adhesion part of the model:

Apq
i jmn = Aqp

mni j{
A11
i jmnlnl = 0,

A11
i jmnlenlr = 0,

{
A12
i jmnlnl = 0,

A12
i jmnlenlr = 0,

{
A21
i jmnlnl = 0,

A21
i jmnlenlr = 0,

{
A22
i jmnlnl = 0

(3.31)
for “gradient” adhesion part of the model:

⎧⎪⎨
⎪⎩

A11
i jkmnlnk = 0,

A11
i jkmnle jkr = 0,

A11
i jkmnlenlr = 0,

{
A12
i jkmnlnk = 0,

A12
i jkmnle jkr = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A21
i jkmnlnk = 0,

A21
i jkmnlnn = 0,

A21
i jkmnlnl = 0,

A21
i jkmnlenlr nr = 0,

A22
i jkmnlnk = 0,

(3.32)
where ei jk is the Levi-Civita tensor.

Note that, in contrast to the restrictions on the adhesionmodulus tensor formulated
for the classical elastic body (3.28)–(3.30), the restrictions formulated for the gradient
model of the elastic body in the form of relations (3.31), (3.32) allow the presence of
normal derivatives of the displacement vector. At the same time, restrictions remain
that ensure the symmetry of the tensor of the adhesion moduli of elasticity defined
on the surface of the body.

In conclusion, we note that the potential energy density of adhesion
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2UF = A11
i jmn Ri, j Rm,n + 2A11

i jmnl Ri, j Rm,nl + A11
i jkmnl Ri, jk Rm,nl +

+2B12
i jmn Ri, j D2

mn + 2B12
i jmnl Ri, j D2

mn,l + 2B12
i jkmnl Ri, jk D2

mnl +
+A22

i jmnD
2
i j D

2
mn + 2A22

i jmnl D
2
i j D

2
mn,l + A22

i jkmnl D
2
i jk D

2
mnl

allowsus to propose aphysical interpretation for an arbitrary adhesively active surface
as an insertion into each other of four different surfaces:
– defectless, non-gradient surface (A11

i jmn Ri, j Rm,n);
– defectless, gradient surface (A11

i jkmnl Ri, jk Rm,nl);
– defective, non-gradient surface (A22

i jmnD
2
i j D

2
mn);

– defective, gradient surface (A22
i jkmnl D

2
i jk D

2
mnl).

The introduced surfaces interact with each other through the corresponding bilin-
ear terms, characterized by elastic moduli with different superscripts (p �= q).

Below, as a specific example, we will consider a model of a classical elastic body
with the most common admissible adhesively active defectless surface.

3.7 Classical Elastic Body with a Defectless Gradient
Surface

We assume that the classical theory of elasticity is valid in the volume of the body,
and the surface of the body is smooth and has no edges. The Lagrangian of such a
model has the form:

L = A −1

2

∫

V

C11
i jmn Ri, j Rm,n dV −

−1

2

∫

F

[A11
i jmn Ri, j Rm,n + 2A11

i jmnl Ri, j Rm,nl + A11
i jkmnl Ri, jk Rm,nl ] dF, (3.33)

where C11
i jmn = λδi jδmn + μ(δimδ jn + δinδ jm).

The fourth-rank adhesion tensor of moduli for a defect-free gradient surface (see
Appendix I) is a generalization of the Gurtin–Murdoch Model (see Gurtin and Mur-
doch 1975a, b, 1978; Murdoch 2005; Lurie et al. 2020):

A11
i jmn = λFδ∗

i jδ
∗
mn + μF (δ∗

imδ∗
jn + δ∗

inδ
∗
jm) + δFδ∗

jnninm, (3.34)

here λF = a111 , μF = (a112 + a113 )/2, δF = a118 .
Tensors of adhesion moduli of the fifth rank (Appendix II) and the sixth rank

(Appendix III) for a defectless gradient surface are written taking into account the
conditions (see Eqs. (3.30)–(3.32))as
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A11
i jmnl = b117 δ∗

i jδ
∗
nlnm + b118 (δ∗

inδ
∗
jlnm + δ∗

ilδ
∗
jnnm) + b1113δ

∗
jmδ∗

nlni +
+b1114(δ

∗
jnδ

∗
mlni + δ∗

jlδ
∗
mnni ) (3.35)

A11
i jkmnl = c1(δ

∗
i jδ

∗
knδ

∗
lm + δ∗

ikδ
∗
jnδ

∗
lm + δ∗

i jδ
∗
klδ

∗
mn + δ∗

ikδ
∗
jlδ

∗
mn) +

+c2(δ
∗
inδ

∗
kmδ∗

jl + δ∗
inδ

∗
klδ

∗
mj + δ∗

ilδ
∗
kmδ∗

nj + δ∗
ilδ

∗
knδ

∗
jm) +

+c3(δ
∗
i jδ

∗
kmδ∗

nl + δ∗
ikδ

∗
jmδ∗

nl + δ∗
inδ

∗
k jδ

∗
lm + δ∗

ilδ
∗
k jδ

∗
mn) +

+c4(δ
∗
imδ∗

knδ
∗
l j + δ∗

imδ∗
klδ

∗
jn) + c5δ

∗
imδ∗

k jδ
∗
nl +

+c6ninmδ∗
k jδ

∗
nl + c7ninmδ∗

knδ
∗
l j + c8ninmδ∗

klδ
∗
jn. (3.36)

Requirement of stationarity of Lagrangian (3.33) leads to the following variational
equality:

δL =
∫

M

(C11
i jmn Rm,n + PV

i )δRi dV +
∫

F

[PF
i − C11

i jmnn j Rm,n +

+A11
i jmn Rm,nj + (A11

i jmnl − A11
mni jl)Rm,nl j − A11

mnli jk Rm,nlk j ]δRi dF = 0. (3.37)

The variational statement (3.37), (3.35) and (3.36) shows that the equilibrium equa-
tions coincide with the classical ones, however, the boundary value problem has
changed. Under static boundary conditions, adhesion corrections appeared (with
variations in the components of the displacement vector on the surface of the body).
Let’s study themone by one.Weuse the following decomposition of the displacement
vector on the surface:

Ri = ri + Rni , ri = R jδ
∗
j i , R = R jn j (rini = 0)

where ri are components of displacement vector in the tangential directions to the
surface, and R is the normal component of the displacement vector.

A non-gradient, correction to the boundary conditions is given by the model of
“ideal” adhesion, Belov and Lurie (2007), Lurie et al. (2020):

A11
i jmn Rm,nj = (a112 + a113 )∇2ri/2 + (a111 + a112 /2 + a113 /2)rm,mi + a118 ni∇2R

(3.38)
In the general case, there is a correction to the boundary conditions, which, following
the above interpretation, is determined by the adhesion interaction between non-
gradient and gradient surfaces:

(A11
i jmnl − A11

mni jl)Rm,nl j = (b117 + 2b118 − b1113 + 2b1114)(∇2R,i − ni∇2r j, j ). (3.39)

Finally, the third adhesion correction in the boundary conditions is determined by
the gradient defectless adhesion model:

A11
mnli jk Rm,nlk j = 4(c1 + c2 + c3)∇2rm,mi + (2c4 + c5)∇2∇2ri +

+(c6 + c7 + c8)ni∇2∇2R. (3.40)
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Note that the corrections to the natural boundary conditions when varying the normal
displacement component give only terms in (3.38)–(3.40) containing convolution
with the normal. As a result, we obtain the following spectrum of boundary value
problems:

∫

F

[PF
i − μ(nnri,n + R,i ) + 2μF∇2ri/2 + (λF + μF )rm,mi +

+B∇2R,i + C1∇2rm,mi + C2∇2∇2ri ]δri dF = 0, (3.41)∫

F

[PF
i ni − (λRm,m + 2μnmnn Rm,n) +

+δF∇2R − B∇2r j, j + C3∇2∇2R]δR dF = 0, (3.42)

where B = b117 + 2b118 − b1113 + 2b1114, C1 = −4(c1 + c2 + c3), C2 = (2c4 + c5),
C3 = (c6 + c7 + c8).

In accordance with Eqs. (3.41) and (3.42), the adhesive properties of a defectless
surface are determined by seven adhesive moduli. For a non-gradient surface (bi =
ci = 0), the spectrum of boundary value problems is simplified and contains only
three adhesive moduli:

∫

F

[PF
i − μ(nnri,n + R,i ) + μF∇2ri + (λF + μF )rm,mi ]δri dF = 0, (3.43)

∫

F

[PF
i ni − (λF Rm,m + 2μFnmnn Rm,n) + δF∇2R]δR dF = 0. (3.44)

Boundary conditions (3.43) in tangential directions to the surface coincide with
the formulation obtained using the Murdoch–Gurtin model (Gurtin and Murdoch
1975a, b). At the same time, in the direction of the unit vector of the normal, the
boundary condition in the formulation of the Murdoch–Gurtin theory (δF = 0)
remains classical. In the presented generalized adhesion model (3.44), all three static
boundary conditions (3.43), (3.44)must contain adhesion corrections of non-gradient
adhesion with three adhesion moduli λF , μF , δF . Moreover, the modulus character-
izes the “flexural” rigidity of the body surface, which can probably be very important
for applications. As a result, the adhesive properties of a non-gradient surface are
determined by three adhesive modules, and only in the special case of the Murdoch–
Gurtin theory of adhesion—by two adhesion moduli λF , μF .

A similar situation takes place for a gradient surface model. The static bound-
ary condition (3.42) coincides with the formulation of the boundary conditions
constructed using the Steigman–Ogden model (Steigmann and Ogden 1997, 1999;
Eremeyev 2016), which is determined only by gradient moduli C3 = c6 + c7 + c8
(bi = 0). Under boundary conditions (3.41), with variations δri , i = 1, 2 along the
tangential directions of the surface, the Steigman–Ogden theory does not give adhe-
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sion corrections. In the generalized model formulated here, there are adhesion cor-
rections in all three static conditions.

The special interest is the problem of modeling the mechanical properties of
ultrathin graphene-type plates and similar 2D structures as the limiting case when,
V → 0 andμ → 0, λ → 0 (μ = λ = 0), i.e., there is no volume density of potential
energy (there is no volume). In accordance with (3.41) at or (3.42), we obtain the
graphene sheet equilibrium equations:

PF
i + μF∇2ri + (λF + δF )rm,mi + T2∇2∇2ri + T1∇2r j, j i + B∇2R,i = 0, (3.45)

PF
i ni − B∇2r j, j + δF∇2R + C3∇2∇2R = 0. (3.46)

It follows from (3.45), (3.46) that the properties of graphene-like 2D structures are
determined exclusively by adhesive properties. The number of physical modules is
seven. As can be seen, in the general case, the problem of tension–compression–shear
in the plane of a graphene sheet and the problem of bending are related. In the case,
B = 0, the system of the equilibrium equations and boundary value problem as all
are separated:

PF
i + μF∇2ri + (λF + δF )rm,mi + T2∇2∇2ri + T1∇2r j, j i = 0,

PF
i ni + δF∇2R + C3∇2∇2R = 0.

3.8 Elastic Non-gradient Defectness Body
with a Non-gradient Surface

Assume now that there are defect fields inside the elastic body and on its surface,
and, therefore, the list of kinematic variables includes distortions of both types. This
particular case allows us to give a physical interpretation of adhesive modules. The
Lagrangian of such a model has the form:

L = A − 1

2

∫

V

(C11
i jmn Ri, j Rm,n + 2C12

i jmn Ri, j D
2
mn + C22

i jmnD
2
i j D

2
mn) dV −

−1

2

∫

F

[A11
i jmn Ri, j Rm,n + 2A12

i jmn Ri, j D
2
mn + A22

i jmnD
2
i j D

2
mn] dF. (3.47)

Then using (3.47), the variational Lagrange equality is written as
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δL =
∫

V

[(C11
i jmn Rm,nj + C12

i jmnD
2
mn, j + PV

i )δRi

−(C12
i jmn Ri, j + C22

i jmnD
2
i j )δD

2
mn] dV +

+
∫

F

{[PF
i − (C11

i jmn Rm,n + C12
i jmnD

2
mn)n j

+(A11
i jmn Rm,n + A12

i jmnD
2
mn),pδ

∗
pj ]δRi +

−(A11
i jmn Rm,n + A12

i jmnD
2
mn)n jδ(Ri,pn p) −

−(A12
i jmn Ri, j + A22

i jmnD
2
i j )δD

2
mn} dF = 0. (3.48)

Following (3.48), we have the following equilibrium equations:

C11
i jmn Rm,nj + C12

i jmnD
2
mn, j + PV

i = 0, (3.49)

C12
i jmn Ri, j + C22

i jmnD
2
i j = 0. (3.50)

The system of equations (3.49), (3.50) allows you to explicitly, algebraically, find
free, incompatible distortions D2

rs through constrained distortions Ri, j

D2
pq = −C−22

pqmnC
12
i jmn Ri, j = cpqi j Ri, j , (3.51)

where C−22
pqmnC

22
i jmn = δi pδ jq and cpqi j = −C−22

pqmnC
12
i jmn .

Such a model will be called an algebraic model with respect to inconsistent, free
distortions D2

pq . We note that relations (3.51) can be considered as a generalization
of Aero–Kuvshinsky’s hypothesis, which was used for formulation of the moment
quasi-continuum model with an asymmetric stress tensor.

Using (3.51), one can eliminate free distortion tensor in (3.47) and represent the
considered model as a classical elastic continuum with elastic moduli damaged by
given defect fields:

L = A − 1

2

∫

V

[C11
abcd + 2C12

abmncmncd + C22
i jmnci jabcmncd ]Ra,b Rc,d dV −

−1

2

∫

F

[A11
abcd + 2A12

abmncmncd + A22
i jmnci jabcmncd ]Ra,b Rc,d dF =

= A − 1

2

∫

V

Ci jmn Ri, j Rm,ndV − 1

2

∫

F

Ai jmn Ri, j Rm,n dF, (3.52)

where Cabcd = C11
abcd + 2C12

abmncmncd + C22
i jmnci jabcmncd , Aabcd = A11

abcd + 2A12
abmn

cmncd + A22
i jmnci jabcmncd we will call tensors Tabcd , Aabcd as a moduli of elasticity,

“damaged” by the field of defects.
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Thus, the variational statement of a non-gradient medium with the field of defects
with a non-gradient surface coincides with the statement for the model of a defect-
less non-gradient medium bounded by a defect-free non-gradient surface, but with
damaged moduli.

3.9 Conclutions

Themost generalmodel of a gradient and defectivemediumwith an adhesively active
surface is formulated, which can also have defect fields andmay be considerd as a 2D
gradient media. It is shown that the formulated model contains, as special cases, the
defect-free non-gradient classical elasticity model, the Tupin gradient models, and
the coupled model, which is a gradient generalization of the Mindlin media model
with defect fields. The formulated model of surface interactions makes it possible
to obtain, in particular, well-known particular models of adhesive interactions: the
Murdoch–Gurtin model for a defect-free non-gradient surface, the Steigman–Ogden
model for a defect-free gradient surface, etc.

Appendix I

Let us indicate the structure of the fourth rank tensor for the general case when
an elastic body can be considered in terms of classical and gradient elasticity and
can contain defect fields. The body surface can also have defect fields. Tensors of
adhesion modules of the fourth rank have a structure in the form of expansion in
space of ten basis tensors of the fourth rank. In this case, the space of basis tensors
splits into a direct sum of three subspaces.

The first basis tensor is constructed as tensor product of two “flat” Kronecker
tensors with all possible index permutations

δ∗
i jδ

∗
mn; δ∗

imδ∗
jn; δ∗

inδ
∗
jm .

The second subspace of basis tensors is constructed as a tensor product of the
“flat” Kronecker tensor and two unit vectors of the surface normal with all possible
permutations of indices: δ∗

i j nmnn; δ∗
imn jnn; δ∗

inn j nm ; δ∗
jmninn; δ∗

jnninm ; δ∗
mnnin j .

The third subspace consists of a single basis tensor, constructed as the tensor
product of the four unit vectors of the normal to the surface:

nin jnmnn.

The decomposition of any tensor of adhesive properties of the surface of the fourth
rank has the form:
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Apq
i jmn = a pq

1 δ∗
i jδ

∗
mn + a pq

2 δ∗
imδ∗

jn + a pq
3 δ∗

inδ
∗
jm +

+a pq
4 δ∗

i j nmnn + a pq
5 δ∗

imn jnn + a pq
6 δ∗

inn j nm + a pq
7 δ∗

jmninn +
+a pq

8 δ∗
jnninm + a pq

9 δ∗
mnnin j + a pq

10 nin jnmnn. (I.1)

The potentiality conditions lead to (3.26) a reduction in the number of modules
from ten to eight:

Apq
i jmn − Aqp

mni j = (a pq
1 − aqp1 )δ∗

mnδ
∗
i j + (a pq

2 − aqp2 )δ∗
imδ∗

jn + (a pq
3 − aqp3 )δ∗

inδ
∗
jm +

+(a pq
4 − aqp9 )(δ∗

i j nmnn − δ∗
mnnin j ) + (a pq

5 − aqp5 )δ∗
imn jnn +

+(a pq
6 − aqp7 )(δ∗

inn j nm − δ∗
jmninn) +

+(a pq
8 − aqp8 )δ∗

jnninm + (a pq
10 − aqp10 )nin jnmnn = 0. (I.2)

In the result, we have

Apq
i jmn = (a pq

1 + aqp1 )δ∗
i jδ

∗
mn/2 + (a pq

2 + aqp2 )δ∗
imδ∗

jn/2 + (a pq
3 + aqp3 )δ∗

inδ
∗
jm/2 +

+(a pq
9 + aqp9 )(δ∗

i j nmnn + δ∗
mnnin j )/2 +

+(a pq
7 + aqp7 )(δ∗

inn j nm + δ∗
jmninn)/2 +

+(a pq
5 + aqp5 )δ∗

imn jnn/2 + (a pq
8 + aqp8 )δ∗

jnninm/2 +
+(a pq

10 + aqp10 )nin jnmnn/2. (I.3)

For a gradient elastic body (Tupin’s model), the adhesion properties of the surface
are not limited by anything. The tensor is reduced to the form:

A11
i jmn = a111 δ∗

i jδ
∗
mn + (a112 + a113 )(δ∗

inδ
∗
jm + δ∗

imδ∗
jn)/2 +

+a119 (δ∗
i j nmnn + δ∗

mnnin j ) + a117 (δ∗
inn j nm + δ∗

jmninn) +
+a115 δ∗

imn jnn + a118 δ∗
jnninm + a1110nin jnmnn. (I.4)

Then the tensor A12
i jmn has form

A12
i jmn = A21

i jmn =
= (a121 + a211 )δ∗

i jδ
∗
mn/2 + (a122 + a212 + a123 + a213 )(δ∗

imδ∗
jn + δ∗

inδ
∗
jm)/4 +

+(a129 + a219 )(δ∗
i j nmnn + δ∗

mnnin j )/2 +
+(a127 + a217 )(δ∗

inn j nm + δ∗
jmninn)/2 +

+(a125 + a215 )δ∗
imn jnn/2 + (a128 + a218 )δ∗

jnninm/2 + (a1210 +
+a2110)nin jnmnn/2. (I.5)
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Tensor A22
i jmn is

A22
i jmn = a221 δ∗

i jδ
∗
mn + (a222 + a223 )(δ∗

inδ
∗
jm + δ∗

imδ∗
jn)/2 +

+a229 (δ∗
i j nmnn + δ∗

mnnin j ) + a227 (δ∗
inn j nm + δ∗

jmninn) +
+a225 δ∗

imn jnn + a228 δ∗
jnninm + a2210nin jnmnn. (I.6)

For a classical elastic body, the potential energy density of adhesion should not
contain normal derivatives of displacements. The adhesive properties of the surface
are limited by the conditions A11

i jmnn j = 0, A12
i jmnn j = 0. Then we can find

A11
i jmn = a111 δ∗

i jδ
∗
mn + (a112 + a113 )(δ∗

imδ∗
jn + δ∗

inδ
∗
jm)/2 + a118 δ∗

jnninm,

A12
i jmn = a121 δ∗

i jδ
∗
mn + (a122 + a212 + a123 + a213 )(δ∗

imδ∗
jn + δ∗

inδ
∗
jm)/4 + a128 δ∗

jnninm,

A21
i jmn = a121 δ∗

i jδ
∗
mn + (a212 + a122 + a213 + a123 )(δ∗

imδ∗
jn + δ∗

inδ
∗
jm)/4 + a128 δ∗

jnninm,

A22
i jmn = a221 δ∗

i jδ
∗
mn + (a222 + a223 )(δ∗

imδ∗
jn + δ∗

inδ
∗
jm)/2 + a228 δ∗

jnninm .

Appendix II

We can write the following general form for tensors of the fifth rank:

Apq
i jmnl = bpq

1 δ∗
i jδ

∗
mnnl + bpq

2 δ∗
imδ∗

jnnl + bpq
3 δ∗

inδ
∗
jmnl +

+bpq
4 δ∗

i jδ
∗
mlnn + bpq

5 δ∗
imδ∗

jlnn + bpq
6 δ∗

ilδ
∗
jmnn +

+bpq
7 δ∗

i jδ
∗
nlnm + bpq

8 δ∗
inδ

∗
jlnm + bpq

9 δ∗
ilδ

∗
jnnm +

+bpq
10 δ∗

imδ∗
nln j + bpq

11 δ∗
inδ

∗
mln j + bpq

12 δ∗
ilδ

∗
mnn j +

+bpq
13 δ∗

jmδ∗
nlni + bpq

14 δ∗
jnδ

∗
mlni + bpq

15 δ∗
jlδ

∗
mnni +

+bpq
16 δ∗

i j nmnnnl + bpq
17 δ∗

imn jnnnl + bpq
18 δ∗

inn j nmnl + bpq
19 δ∗

iln j nmnn +
+bpq

20 δ∗
jmninnnl + bpq

21 δ∗
jnninmnl + bpq

22 δ∗
jlni nmnn +

+bpq
23 δ∗

mnnin jnl + bpq
24 δ∗

mlnin jnn + bpq
25 δ∗

nlnin jnm +
+bpq

26 nin jnmnnnl . (II.1)

The space of basis tensors for the tensor of adhesion moduli of the fifth rank
decomposes into a direct sum of three subspaces. The first basis subspace is

⎧⎨
⎩

δ∗
i jδ

∗
mnnl

δ∗
imδ∗

jnnl
δ∗
inδ

∗
jmnl

⎧⎨
⎩

δ∗
i jδ

∗
mlnn

δ∗
imδ∗

jlnn
δ∗
ilδ

∗
jmnn

⎧⎨
⎩

δ∗
i jδ

∗
nlnm

δ∗
inδ

∗
jlnm

δ∗
ilδ

∗
jnnm

⎧⎨
⎩

δ∗
imδ∗

nln j

δ∗
inδ

∗
mln j

δ∗
ilδ

∗
mnn j

⎧⎨
⎩

δ∗
jmδ∗

nlni
δ∗
jnδ

∗
mlni

δ∗
jlδ

∗
mnni

The second basis tensor is written as
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⎧⎪⎪⎨
⎪⎪⎩

δ∗
i j nmnnnl

δ∗
imn jnnnl

δ∗
inn j nmnl

δ∗
iln j nmnn

⎧⎪⎪⎨
⎪⎪⎩

δ∗
jmninnnl

δ∗
jnninmnl

δ∗
jlni nmnn

⎧⎪⎪⎨
⎪⎪⎩ δ∗

mnnin jnl
δ∗
mlnin jnn

⎧⎪⎪⎨
⎪⎪⎩

δ∗
nlnin jnm

The third subspace consists of one tensor:

nin jnmnnnl .

Assume now that the deformed body is considered as non-gradient elastic body.
Thus, one should introduce the condition

Apq
i jmnlnl = 0 (II.2)

Then, using (II.1), (II.2) we can find:

Apq
i jmnl = bpq

4 δ∗
i j δ

∗
mlnn + bpq

5 δ∗
imδ∗

jl nn + bpq
6 δ∗

ilδ
∗
jmnn +

+bpq
7 δ∗

i j δ
∗
nlnm + bpq

8 δ∗
inδ

∗
jl nm + bpq

9 δ∗
ilδ

∗
jnnm +

+bpq
10 δ∗

imδ∗
nln j + bpq

11 δ∗
inδ

∗
mln j + bpq

12 δ∗
ilδ

∗
mnn j +

+bpq
13 δ∗

jmδ∗
nlni + bpq

14 δ∗
jnδ

∗
mlni + bpq

15 δ∗
jlδ

∗
mnni +

+bpq
19 δ∗

il n j nmnn + bpq
22 δ∗

jl ni nmnn + bpq
24 δ∗

mlni n j nn + bpq
25 δ∗

nlni n j nm . (II.3)

In the result, we can establish the final structure of all tensors Apq
i jmnl (p, q = 1, 2).

Taking into account (II.2) and (II.3), we find for tensor A11
i jmnl :

A11
i jmnl = b117 δ∗

i jδ
∗
nlnm + (b118 + b119 )(δ∗

inδ
∗
jlnm + δ∗

ilδ
∗
jnnm)/2 +

+b1113δ
∗
jmδ∗

nlni + (b1114 + b1115)(δ
∗
jnδ

∗
mlni + δ∗

jlδ
∗
mnni )/2.

The tensors A12
i jmnl and A21

i jmnl using (II.2) can be written as

A12
i jmnl = b124 δ∗

i jδ
∗
mlnn + (b125 + b126 )(δ∗

imδ∗
jlnn + δ∗

ilδ
∗
jmnn)/2 +

+b127 δ∗
i jδ

∗
nlnm + (b128 + b129 )(δ∗

inδ
∗
jlnm + δ∗

ilδ
∗
jnnm)/2 +

+b1213δ
∗
jmδ∗

nlni + b1214δ
∗
jnδ

∗
mlni + b1215δ

∗
jlδ

∗
mnni + b1222δ

∗
jlni nmnn

A21
i jmnl = b214 δ∗

i jδ
∗
mlnn + b215 δ∗

imδ∗
jlnn + b216 δ∗

ilδ
∗
jmnn +

+b217 δ∗
i jδ

∗
nlnm + b218 δ∗

inδ
∗
jlnm + b219 δ∗

ilδ
∗
jnnm +

+b2110δ
∗
imδ∗

nln j + b2111δ
∗
inδ

∗
mln j + b2112δ

∗
ilδ

∗
mnn j +

+b2113δ
∗
jmδ∗

nlni + b2114δ
∗
jnδ

∗
mlni + b2115δ

∗
jlδ

∗
mnni +

+b2119δ
∗
iln j nmnn + b2122δ

∗
jlni nmnn + b2124δ

∗
mlnin jnn + b2125δ

∗
nlnin jnm .
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The tensor A22
i jmnl retains its structure

A22
i jmnl = b224 δ∗

i jδ
∗
mlnn + b225 δ∗

imδ∗
jlnn + b226 δ∗

ilδ
∗
jmnn +

+b227 δ∗
i jδ

∗
nlnm + b228 δ∗

inδ
∗
jlnm + b229 δ∗

ilδ
∗
jnnm +

+b2210δ
∗
imδ∗

nln j + b2211δ
∗
inδ

∗
mln j + b2212δ

∗
ilδ

∗
mnn j +

+b2213δ
∗
jmδ∗

nlni + b2214δ
∗
jnδ

∗
mlni + b2215δ

∗
jlδ

∗
mnni +

+b2219δ
∗
iln j nmnn + b2222δ

∗
jlni nmnn + b2224δ

∗
mlnin jnn + b2225δ

∗
nlnin j nm .

Appendix III

The space of basis tensors of the sixth rank decomposes into a direct sum of four
subspaces:

Ai jkmnl = A∗∗∗
i jkmnl + A∗∗

i jkmnl + A∗
i jkmnl + A◦

i jkmnl . (III.1)

These subspaces are defined in an obvious way and have the following structure:
first subspace

⎧⎨
⎩

δ∗
i jδ

∗
kmδ∗

nl

δ∗
i jδ

∗
knδ

∗
lm

δ∗
i jδ

∗
klδ

∗
mn

⎧⎨
⎩

δ∗
ikδ

∗
jmδ∗

nl

δ∗
ikδ

∗
jnδ

∗
lm

δ∗
ikδ

∗
jlδ

∗
mn

⎧⎨
⎩

δ∗
imδ∗

k jδ
∗
nl

δ∗
imδ∗

knδ
∗
l j

δ∗
imδ∗

klδ
∗
jn

⎧⎨
⎩

δ∗
inδ

∗
kmδ∗

jl

δ∗
inδ

∗
k jδ

∗
lm

δ∗
inδ

∗
klδ

∗
mj

⎧⎨
⎩

δ∗
ilδ

∗
kmδ∗

nj

δ∗
ilδ

∗
knδ

∗
jm

δ∗
ilδ

∗
k jδ

∗
mn

– second subspace

⎧⎨
⎩
nin jδ

∗
kmδ∗

nl
nin jδ

∗
knδ

∗
lm

nin jδ
∗
klδ

∗
mn

⎧⎨
⎩
ninkδ∗

jmδ∗
nl

ninkδ∗
jnδ

∗
lm

ninkδ∗
jlδ

∗
mn

⎧⎨
⎩
ninmδ∗

k jδ
∗
nl

ninmδ∗
knδ

∗
l j

ni nmδ∗
klδ

∗
jn

⎧⎨
⎩
ninnδ∗

kmδ∗
jl

ni nnδ∗
k jδ

∗
lm

ninnδ∗
klδ

∗
mj

⎧⎨
⎩
ninlδ∗

kmδ∗
nj

ninlδ∗
knδ

∗
jm

ninlδ∗
k jδ

∗
mn⎧⎨

⎩
nnnlδ∗

i jδ
∗
km

nnnlδ∗
ikδ

∗
mj

nnnlδ∗
imδ∗

jk

⎧⎨
⎩
n jnkδ∗

imδ∗
nl

n j nkδ∗
inδ

∗
lm

n jnkδ∗
ilδ

∗
mn

⎧⎨
⎩
n jnmδ∗

ikδ
∗
nl

n j nmδ∗
inδ

∗
lk

n j nmδ∗
ilδ

∗
kn

⎧⎨
⎩
n jnnδ∗

kiδ
∗
ml

n jnnδ∗
kmδ∗

li
n j nnδ∗

klδ
∗
im

⎧⎨
⎩
n jnlδ∗

kmδ∗
in

n j nlδ∗
kiδ

∗
mn

n jnlδ∗
knδ

∗
mi⎧⎨

⎩
nmnnδ∗

i jδ
∗
kl

nmnnδ∗
ikδ

∗
l j

nmnnδ∗
ilδ

∗
jk

⎧⎨
⎩
nmnlδ∗

i jδ
∗
kn

nmnlδ∗
ikδ

∗
nj

nmnlδ∗
inδ

∗
jk

⎧⎨
⎩
nknmδ∗

i jδ
∗
nl

nknmδ∗
inδ

∗
l j

nknmδ∗
ilδ

∗
jn

⎧⎨
⎩
nknnδ∗

i jδ
∗
ml

nknnδ∗
imδ∗

l j

nknnδ∗
ilδ

∗
jm

⎧⎨
⎩
nknlδ∗

j iδ
∗
mn

nknlδ∗
jmδ∗

ni

nknlδ∗
jnδ

∗
im

– third subspace

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ∗
i j nknmnnnl

δ∗
ikn j nmnnnl

δ∗
imnkn j nnnl

δ∗
innknmn j nl

δ∗
il nknmnnn j

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ∗
jkni nmnnnl

δ∗
jmnkni nnnl

δ∗
jnnknmni nl

δ∗
jl nknmnnni

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ∗
kmn j ni nnnl

δ∗
knn j nmni nl

δ∗
kln j nmnnni

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩ δ∗

mnn j nkni nl
δ∗
mln j nknnni

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ∗
nln j nknmni
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– fourth subspace contains a single basis tensor:

nin jnknmnnnl .

Let’s find the tensor moduli for the classical elasticity body. Using the constraints
(3.30), including the symmetry properties of potentiality (Ai jkmnl = Amnli jk), the
number of basis tensors in the first subspace is reduced to five and in the second
basis subspace to three:

A∗∗∗
i jkmnl = c1(δ

∗
i jδ

∗
knδ

∗
lm + δ∗

ikδ
∗
jnδ

∗
lm + δ∗

i jδ
∗
klδ

∗
mn + δ∗

ikδ
∗
jlδ

∗
mn) +

+c2(δ
∗
inδ

∗
kmδ∗

jl + δ∗
inδ

∗
klδ

∗
mj + δ∗

ilδ
∗
kmδ∗

nj + δ∗
ilδ

∗
knδ

∗
jm) +

+c3(δ
∗
i jδ

∗
kmδ∗

nl + δ∗
ikδ

∗
jmδ∗

nl + δ∗
inδ

∗
k jδ

∗
lm + δ∗

ilδ
∗
k jδ

∗
mn) +

+c4(δ
∗
imδ∗

knδ
∗
l j + δ∗

imδ∗
klδ

∗
jn) +

+c5δ
∗
imδ∗

k jδ
∗
nl .

A∗∗
i jkmnl = g1ninmδ∗

k jδ
∗
nl + g2ninmδ∗

knδ
∗
l j + g3ninmδ∗

klδ
∗
jn.

Using (3.30) including the reversibility of the deformation process, one can verify
that the third and fourth subspaces are empty:

A∗
i jkmnl ≡ 0, A◦

i jkmnl = 0.

In the result, we can find the final relations for the gradient elastic moduli:

Ai jkmnl = c1(δ
∗
i jδ

∗
knδ

∗
lm + δ∗

ikδ
∗
jnδ

∗
lm + δ∗

i jδ
∗
klδ

∗
mn + δ∗

ikδ
∗
jlδ

∗
mn) +

+c2(δ
∗
inδ

∗
kmδ∗

jl + δ∗
inδ

∗
klδ

∗
mj + δ∗

ilδ
∗
kmδ∗

nj + δ∗
ilδ

∗
knδ

∗
jm) +

+c3(δ
∗
i jδ

∗
kmδ∗

nl + δ∗
ikδ

∗
jmδ∗

nl + δ∗
inδ

∗
k jδ

∗
lm + δ∗

ilδ
∗
k jδ

∗
mn) +

+c4(δ
∗
imδ∗

knδ
∗
l j + δ∗

imδ∗
klδ

∗
jn) + c5δ

∗
imδ∗

k jδ
∗
nl +

+c6ninmδ∗
k jδ

∗
nl + c7ninmδ∗

knδ
∗
l j + c8ninmδ∗

klδ
∗
jn.
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Chapter 4
On the Issue of the Stress
in Incompressible and Rigid Media:
Numerical Modeling

N. Bessonov and Y. Litvinova

Abstract We evaluate issues related to the calculation of stresses in incompressible
medium. Several examples of numerical modeling of the behavior of a classical
Newtonian liquid are assessed, and the solution to the problem in miscible liquids in
the presence of the Korteweg effect is studied. The problem of determining stresses
in a absolutely solid (rigid) body is considered also. Examples are given.

4.1 Introduction

The model of an absolutely solid of perfectly rigid (or rigid for short) body is used
in analytical mechanics when solving dynamic problems. But, analytical mechanics
does not allow looking inside a rigid body and solving the problemof finding stresses.
On the other hand, the theory of elasticity studies the stresses in elastic bodies in
detail, but rarely does anyone ask the question of whether it is possible to determine
the stresses in an absolutely solid body from the standpoint of the theory of elasticity.

It is a traditional opinion that for a rigid material, the stress is completely unde-
termined (Truesdell and Noll 1965). This idea arises also from the observation that
no constitutive relation connecting the stress to the motion is necessary to determine
the motion of a rigid body, unlike what happens for deformable continua.

We could find only a few articles devoted to the study of a rigid body from the
point of view of the theory of elasticity. For example, the question of the limiting
transition from an elastic to a rigid body was investigated in Grioni (1983), Roger
and Gianni (2004). Here is an overview of this issue and a short bibliography in the
articles.
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An Internet search for an answer to a question “is there and if there is, is it possible
to find stresses in an absolutely solid body” gave two answers—the first one is: “What
you are asking is not physical,” and the second one is: “If the stiffness is infinite and
the strain is zero, then the stress is mathematically indeterminate.”

An absolutely solid body is a model concept of classical mechanics, denoting a
set of material points, the distances between which are preserved in the process of
any movements made by this body. In other words, an absolutely solid body not only
does not change its shape but also keeps the distribution of mass inside unchanged.

In this article, we do not discuss the fundamental aspects of these problems in
detail. Our goal is to consider this problem from the point of view of numerical
modeling.

Themodel of an incompressible media can be considered as the part, or as the first
approximation to themodel of a perfectly rigid body. A large section of hydrodynam-
ics deals with the description of the behavior of incompressible liquids. In Sect. 4.2
of the article, examples of the numerical solution of problems in the hydrodynamics
of incompressible liquids are considered.

In Sect. 4.3, the possibility of determining stresses in a rigid body is described.

4.2 Modeling of Incompressible Liquids Flow

4.2.1 Newtonian Liquid

Let us consider how the problem of numerical modeling of incompressible media in
hydrodynamics is solved, on the example of amodel of an incompressible Newtonian
viscous liquid (Fletcher 2006; Hirsch 2007; Roache 1998 and more). The restriction
to incompressible flow introduces the computational difficulty that the continuity
equation contains only velocity components, and there is no obvious link with the
pressure as there is for compressible flow through the density ρ.

The equations of motion of an incompressible viscous liquid (Navie–Stokes equa-
tions) in nondimensional form for the 2D case are

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t + ∂uu

∂x + ∂vu
∂y = − ∂p

∂x + 1
Re

(
∂2u
∂x2 + ∂2u

∂y2

)

∂v
∂t + ∂uv

∂x + ∂vv
∂y = − ∂p

∂y + 1
Re

(
∂2v
∂x2 + ∂2v

∂y2

)

∂u
∂x + ∂v

∂y = 0,

(4.1)

where u, v are the velocity components; Re is Reynolds numbers; t is the time; p is
the pressure; and x, y are the space coordinates.

Two broad approaches to computing incompressible flow are available. First, the
source (or elementary) variables, (u, v, p) in two dimensions, are used and special
procedures are introduced to handle the continuity equation. The extension to three
spatial dimensions creates no additional difficulty. Second, in two dimensions the
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explicit treatment of the continuity equation can be avoided by introducing the stream
function. In addition, the introduction of a transport equation for the vorticity leads
to the stream function vorticity formulation. The extension of this formulation to
three dimensions is not straightforward, since a three-dimensional stream function
is not available (Fletcher 2006).

In the article Bessonov and Koleshko (1988), we use an approach based on the use
of source variables. To solve the discretized equations, we use the iterative alternative
direction implicit method similar to Hirsch (2007), Yanenko (1967). Consider the
finite-difference equations approximating the system (4.1) in the compact form:

�( f ) = 0, (4.2)

where the finite-difference operator � includes also the discretization of the time
derivative, the components of the vector f include (u, v, p). Suppose that the initial
distribution for f is given. It can be the initial condition or the values at the previous
time step. The numerical method is based on the following iterative procedure. Let us
introduce a parameter τ playing the role of the step of pseudo-time in the iterations
and denote by k the iteration number.

First of all, we determine the residual ξ k at every node of the mesh

step 1: ξ k = τ�( f k). (4.3)

For the boundary nodes, ξ k is found from the boundary conditions. For example, the
boundary condition f k = const implies to ξ k = 0.

For 2D problem, we split � into two parts, �1 and �2

� = �1 + �2. (4.4)

At the following steps, we find the values ξ k+1/2 and ξ k+1 from the equations:

step 2:
ξ k+1/2 − ξ k

τ
= �1(ξ

k+1/2), (4.5)

step 3:
ξ k+1 − ξ k+1/2

τ
= �2(ξ

k+1), (4.6)

Finally, we find
step 4: f k+1 = f k + ξ k+1. (4.7)

We continue to do steps 1–4while ξ k/τ (i.e.�( f k) (4.3)) becomes sufficiently small.
The method is quite flexible when choosing �1 and �2 and the fulfillment of the

condition in the general case is not necessary, although it is very useful. It is easy to
see that if you put �1 and �2 to zero, then steps 2 and 3 are excluded and steps 1
and 4 lead to the simplest explicit scheme:
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f k+1 − f k

τ
= �( f k). (4.8)

The most rational option is when �1 and �2 are one-dimensional finite-difference
operators in spatial directions �1 contains differences in direction only x and �2—
only in the direction y. Exclude from (4.5) and (4.6) ξ k+1/2,

(I − τ�1)(I − τ�2)ξ
k+1 = ξ k, (4.9)

where I is the unit operator, or

(I − τ� + τ 2�1�2)ξ
k+1 = ξ k . (4.10)

From (4.10) and (4.7), the following equation can be obtained:

f k+1 − f k

τ
= �( f k+1) + O(τ 2). (4.11)

The ratio (4.11) corresponds to the accuracy O(τ 2) to completely implicit scheme:

f k+1 − f k

τ
= �( f k+1). (4.12)

Implicit scheme places much less demands on values τ . Unlike (4.12), the com-
putational circuit (4.3)–(4.7) is economical, i.e., the number of required arithmetic
operations at each iteration is proportional to the number of mesh nodes.

The application of the method (4.3)–(4.7) for solution of system (4.1) follow to:
Step 1:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ k
u = τv

(
−( u

k−un

�t + ∂ukuk

∂x + ∂vkuk

∂y ) − ∂pk

∂x + 1
Re (

∂2uk

∂x2 + ∂2uk

∂y2 )
)

ξ k
v = τv

(
−( vk−vn

�t + ∂ukvk

∂x + ∂vkvk

∂y ) − ∂pk

∂y + 1
Re (

∂2vk

∂x2 + ∂2vk

∂y2 )
)

ξ k
p = −τp

(
∂uk

∂x + ∂vk

∂y

)
,

(4.13)

where un, vn, pn were defined in the previous step in time, uk = un, vk = vn, pk =
pn at k = 0, �t is the time steps, and τv, τp are the pseudo-time steps.

Step 2:

⎧
⎪⎪⎨

⎪⎪⎩

ξ
k+1/2
u −ξ k

u
τv

= − 1
2

ξ
k+1/2
u

�t − ∂ukξ k+1/2
u

∂x − ∂ξ
k+1/2
p

∂x + 1
Re

∂2ξ
k+1/2
u

∂x2

ξ
k+1/2
v −ξ k

v

τv
= − 1

2
ξ
k+1/2
v

�t − ∂ukξ k+1/2
v

∂x + 1
Re

∂2ξ
k+1/2
v

∂x2

ξ
k+1/2
p −ξ k

p

τp
= − ∂ξ

k+1/2
u

∂x .

(4.14)
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Substitution ξ
k+1/2
p from the last equation of system (4.14) to the first equation

allows to decouple these equations, and solve them sequentially. For this reason, the
step 2 can be converted to the next form:

⎧
⎪⎪⎨

⎪⎪⎩

ξ
k+1/2
u −ξ k

u
τv

= − 1
2

ξ
k+1/2
u

�t − ∂ukξ k+1/2
u

∂x − ∂ξ k
p

∂x + (
1
Re + τp

)
∂2ξ

k+1/2
u

∂x2

ξ
k+1/2
v −ξ k

v

τv
= − 1

2
ξ
k+1/2
v

�t − ∂ukξ k+1/2
v

∂x + 1
Re

∂2ξ
k+1/2
v

∂x2

ξ
k+1/2
p = ξ k

p − τp
∂ξ

k+1/2
u

∂x .

(4.15)

With that remark, step 3 can be written as
Step 3:

⎧
⎪⎪⎨

⎪⎪⎩

ξ k+1
u −ξ

k+1/2
u

τ
= − 1

2
ξ k+1
u
�t − ∂vkξ k+1

u
∂y + 1

Re
∂2ξ k+1

u
∂y2

ξ k+1
v −ξ

k+1/2
v

τ
= − 1

2
ξ k+1
v

�t − ∂vkξ k+1
v

∂y − ∂ξ
k+1/2
p

∂y + (
1
Re + τp

) ∂2ξ k+1
v

∂y2

ξ k+1
p = ξ

k+1/2
p − τp

∂ξ k+1
v

∂y ,

(4.16)

Step 4:
uk+1 = uk + ξ k+1

u ,

vk+1 = vk + ξ k+1
v ,

pk+1 = pk + ξ k+1
p .

For Reynolds numbers Re above the critical value, a spontaneous unsteadiness
appears, under the form of a periodic vortex shedding. This can be explained as
follows Hirsch (2007): the backflow areas form a symmetrical pattern. The viscous
boundary layers are the regions with the high vorticity. At the separation points of the
upper and lower parts of the obstacle, the vortices are equal and have opposite signs,
such that a symmetrical flow pattern arises. When the vortex intensities increase, a
small perturbation, which would give the upper vortex, for instance, a slightly larger
value than the lower one, that would influence the flow on the lower part and attract
the lower vortex. This breaks the symmetry with the consequence that the upper
vortex is not balanced anymore by the lower one of the opposite sign. This vortex is
then convected by the flow away from the cylinder surface, leaving the lower vortex
as the dominating one. This lower vortex attracts the flow to the lower side and after
being at his turn convected by the flow away from the surface, handles back the
dominating role to the upper vortex. This results in a periodic motion, known as the
periodic von Karman street of shed vortices.

To illustrate the numerical method described above, this section presents the
results of simulations of von Karman street flowing around a flat barrier. The prob-
lem was solved in a nondimensional form (4.1). Initial data: 2D channel, its height
equal 1, and length equal 5, Re = 1000. A unit velocity profile was set at the inlet,
boundary conditions ∂u/∂x = ∂v/∂x = 0 were set at the outlet.



74 N. Bessonov and Y. Litvinova

Fig. 4.1 A von Karman
vortex street and streamlines
of the flow around a flat
barrier. a t = t0, b
t = t0 + 0.3, c t = t0 + 0.6,
d t = t0 + 0.9, e
t = t0 + 1.2

Fig. 4.2 A von Karman
vortex street and distribution
of the div v in the flow
around a flat barrier. a t = t0,
b t = t0 + 0.3, c
t = t0 + 0.6, d t = t0 + 0.9,
e t = t0 + 1.2

The dimensionless time t0 required for the formation of a stable von Karman
track was equal or more than 100 dimensionless time units. Then, for every 1.2
dimensionless time unit, a new vortex is formed behind the barrier and the process
repeats itself, dimensionless time step between slides equal 0.3. The streamlines
corresponding to this are shown in Fig. 4.1. A distribution of the div v in shown in
the Fig. 4.2. As can be seen from the Fig. 4.2, the value of div v characterizing the
incompressibility condition does not exceed 2 · 10−12.



4 On the Issue of the Stress in Incompressible and Rigid Media: Numerical Modeling 75

4.2.2 Convection Induced by Korteweg Stresses in Miscible
Liquids

Numerical simulation of the flow of a more complex model of a viscous incom-
pressible liquid, was considered in articles Bessonov et al. (2004), Bessonov (2008),
Pojman et al. (2009). The model includes The Navier–Stokes equations with an
additional term, the Korteweg stress term arising from non-local interactions in the
fluid (Korteweg 1901). The problem formulated in a Lagrangian form that is better
adapted to describe the numerical method based on Lagrangian mesh:

∇ · v = 0, (4.17)

ρ
dv
dt

= ∇ · (σ + K), (4.18)

ρ
dc

dt
= ∇ · (D∇c), (4.19)

ρcp
dT

dt
= ∇ · (λ∇T ), (4.20)

where σ = −pI + μ(∇v + v∇) is the viscous stress tensor; K = k[(∇c · ∇c)I +
(∇c∇c] is the Korteweg stress tensor; v is the velocity; ρ is the density; c the compo-
sition, i.e., the functionwhich changes between 0 and 1 such that c = 0 corresponds to
one liquid and c = 1 to the other; D is the diffusion coefficient; cp is the heat capacity;
T is the nondimensional temperature; λ is thermal conductivity; p is the pressure;
μ is the dynamic viscosity; k is the Korteweg coefficient depends of the c and T
(Bessonov et al. 2004; Bessonov 2008; Pojman et al. 2009); a · b is the scalar prod-
uct; ab is a dyadic product; I is the unit tensor; d(...)/dt = ∂(...)/∂t + ∇ · (v(...)).

For numerical simulations of the problem (4.17)–(4.20), the finite-volumemethod
was applied. We use an adaptive nonorthogonal Lagrangian mesh I × J (i = 1, . . . ,
I, j = 1, . . . , J ). Its fragment is shown in Fig. 4.3.

Each cell of the mesh (ABCD in Fig. 4.3) consists of two triangular elements
(ABC and ACD). The direction of the cell diagonal alternates in the neighboring
cell.

Fig. 4.3 A fragment of the
mesh. The control volume
VA is gray
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The structure of the equations suggests defining the velocity, the composition, and
the temperature at the nodes of the mesh (nodal variables), and the component of the
stress tensors σ and K are defined inside the triangular elements. Equation (4.17) is
also solved at triangular elements.

For each node of the mesh, we introduce a control volume as a polyhedron with
the sides passing through the middle points of the sides and diagonals of the cells.
In Fig. 4.3, the control volume VA is shown for the node A.

We integrate the Eqs. (4.18)–(4.20) over each control volume. We have for the
node A:

ρ
d

dt

∫

VA

v dV =
∫

SA

n · (−pI + μ(∇v + v∇) + k[(∇c · ∇c)I + (∇c∇c)])n+1 dS,

(4.21)

ρ
d

dt

∫

VA

c dV =
∫

SA

Dn · ∇cn+1 dS, (4.22)

ρ
d

dt

∫

VA

cpT dV =
∫

SA

λn · ∇T n+1 dS, (4.23)

where SA is a boundary of a VA; n is an external normal to SA; and n is the number
of the time step. Note that the flux terms in the right-hand sides of (4.21)–(4.23) are
taken implicitly in time.

The left-hand sides of the Eqs. (4.21)–(4.23) are approximated as follows:

ρ
d

dt

∫

VA

v dV ≈ ρ
vn+1
A − vnA

�t

∑

i

Vi , (4.24)

ρ
d

dt

∫

VA

c dV ≈ ρ
cn+1
A − cnA

�t

∑

i

Vi , (4.25)

ρ
d

dt

∫

VA

cpT dV ≈ ρ
T n+1
A − T n

A

�t

∑

i

Vi cp, (4.26)

where
∑

i is a sum over all triangles in the control volume VA (obviously
∑

i Vi ≡
VA).

The integrals in the right-hand sides of the Eqs. (4.21)–(4.23) are taken over the
surfaces of control volumes. To compute these, we need to know the components of
the stress tensors and the components of the temperature and concentration gradients.
In what follows, we will use a discretization of ∇c,∇T,∇ · v, and ∇v in triangular
elements. For the sake of brevity, we introduce the notation:
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∇ � 	, (4.27)

where 	 is the 2D vector or scalar nodal variable; � denotes a distributive operation
admissible for 	. We use a linear interpolation of the nodal variable 	 inside each
triangle ABC (Bessonov and Song 2001):

	 = A · r + b, (4.28)

where r = inxn, (summation convention over dummy subscript is used); ii are the
unit vectors (i = 1, 2); and A and b are parameters of interpolation. Types of A (2D
tensor or 2D vector) and b (2D vector or scalar) depend from type of 	 (vector or
scalar) reciprocally.

Substituting (4.28) in (4.27) gives

∇ � 	 = in � ∂(A · imxm + b)

∂xn
= in � (A · in). (4.29)

For the vertices of the triangle ABC, we can write

⎧
⎨

⎩

	A = A · rA + b
	B = A · rB + b
	C = A · rC + b

, (4.30)

or {
	1 = A · r1
	2 = A · r2 , (4.31)

where	1 = 	B − 	A,	2 = 	C − 	A, r1 = rB − rA, r2 = rC − rA. From (4.31),
we obtain that

A = 	mrm . (4.32)

The vectors r1, r2 and r1, r2 are called reciprocal vectors. It is known that rk ·
rm = δkm and rm · rm = rm · rm = I, where δkm is the Kronecker delta symbol. For
Cartesian coordinates r1, r2 can be written in the form:

r1 = 1

D

∣
∣
∣
∣
i1 i2
r21 r22

∣
∣
∣
∣ , r2 = 1

D

∣
∣
∣
∣
r11 r12
i1 i2

∣
∣
∣
∣ , D =

∣
∣
∣
∣
r11 r12
r21 r22

∣
∣
∣
∣ . (4.33)

Substituting (4.32) in (4.33), we obtain finite-difference approximation for ∇ �
	:

∇ � 	 ≈ rm � 	m, (4.34)

or, explicitly
∇ � 	 ≈ r1 � 	1 + r2 � 	2. (4.35)
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The discretization off ∇ � 	 in (4.35) given in the triangle ABC is a linear combi-
nation of the differences of its values at the vertices.

In particular, for the orthogonal Cartesian mesh, the formula (4.35) looks like

∇ � 	 ≈ i1 � 	B − 	A

�x
+ i2 � 	C − 	A

�y
, (4.36)

where �x = xB − xA, �y = yB − yA. We emphasize that similar to the case of the
orthogonal mesh (4.36) the differences of nodal values in (4.35) are taken along the
mesh lines. It will allow us to use for the nonorthpgonal mesh the same algorithms
as for the orthogonal mesh.

Let us define the approximation of the integrals in the right-hand sides of the
equations (4.21)–(4.23) over the interval FE at the boundary SA. The outward normal
vector to it has the form:

n = r1

|r1| . (4.37)

Using (4.35) and (4.37), we can obtain the finite-difference approximation of the
right-hand sides of the equations (4.21)–(4.23) over FE. For example, we obtain the
following approximation for (4.23):

∫

FE

λn · ∇T dS = 1

2
λr1 · (r1T1 + r2T2). (4.38)

Approximationof the integrals in right-hand sides of (4.21) and (4.22) canbeobtained
similarly.

Taking into account (4.35), we can represent the approximation of the continuity
equation (4.17) in the form:

∇ · v = r1 · v1 + r2 · v2, (4.39)

where v1 = vB − vA, v2 = vC − vA.
For the solution of the discretized equations, we use the iterative method (see

Sect. 4.2.1). In Bessonov et al. (2004), Bessonov (2008), the numerical simulations
of the system (4.18)–(4.20) in the rectangular domain with the plane transition was
done (Fig. 4.4).

The no-slip boundary conditions for the velocity and the no-flux boundary con-
ditions for the concentration were considered.

The stream function field and the numerical mesh (with each second mesh line)
are shown in Fig. 4.4b and c. There is one vortex from each side of the transition
zone with the upper vortex being essentially weaker than the lower one because of
the viscosity dependence on c. The deformation of the numerical mesh in the lower
part of the domain is stronger than in the upper part because the liquid velocity there
is larger.
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Fig. 4.4 a Computational
domain and initial
composition configuration; b
steam function and shape of
Lagrangian mesh at time =
1000 s

This sample provides an example of numerical modeling of an incompressible
viscous liquid, taking into account the Korteweg effects and using a Lagrangian
mesh.

4.3 Rigid Body

The question of finding stresses in the absolutely solid (rigid) body was discussed in
literature (Roger and Gianni 2004; Grioni 1983), and more. They relied on the idea
that the concept of a rigid body, although different from the concept of an elastic body,
it is possible to imagine the development of the former as the limit of the sequence
of the latter. In this article, we will try to approach the solution to the problem from
the point of view of numerical simulation and numerical experimentation.

The model of a rigid body is used in analytical mechanics when solving dynamic
problems that do not include the problem of finding stresses. An absolutely solid
body is an ideal structure obtained as the limit of deformable bodies. The determining
relation between binding stresses and displacements is not necessary to determine
the motion of a solid, unlike deformable continuous media.

In elastic body mechanics, the incompressible condition is used, for example, for
the simulation of rubber-like bodies, for which the incompressible condition deter-
mines the immutability of the volume, but the shear deformations remain. A large
section of hydrodynamics is engaged in describing the behavior of incompressible
liquids.

Consider an equation of momentum and constitutive relation for the elastic body
(Hooke’s low):

∇ · σ = 0,

p = −K (∇ · u), (4.40)

S =G (∇u + u∇ − 2/3I(∇ · u)) ,
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where σ = −pI + S;u is the displacement. Let stress be given on a part of the outer
boundary of the body σ ∗.

Let us write the system in dimensionless form. Introduce the scales as follow: [L]
is for length, [U ] is for displacement, and [|σ ∗|] is for stress. Substituting the scales
in (4.40), we obtain dimensionless equations

∇ · σ = 0,

p = − K [U ]
[L][|σ ∗|] (∇ · u), (4.41)

S = G[U ]
[L][|σ ∗|] (∇u + u∇ − 2/3I(∇ · u)) .

Here and below, the notation for dimensionless quantities (for simplicity) is
retained.

Let [U ] = [L][|σ ∗|]/K , then Eqs. (4.41) are rewritten in the form:

∇ · σ = 0,

p = −∇ · u, (4.42)

S = G

K
(∇u + u∇ − 2/3I(∇ · u)) .

In continuum mechanics, incompressibility is represented by the equation:

∇ · v = 0 (4.43)

for hydrodynamics (incompressible liquid) and

∇ · u = 0 (4.44)

for incompressible elastic media. Thus, the system (4.42) can be rewritten for an
incompressible elastic media in the form:

∇ · σ = 0,

∇ · u = 0, (4.45)

S = G

K
(∇u + u∇ − 2/3I(∇ · u)) .

In this article, we propose to do the next step and define a rigid body as

∇ · σ = 0,

∇ · u = 0, (4.46)

∇u + u∇ − 2/3I(∇ · u) = 0.



4 On the Issue of the Stress in Incompressible and Rigid Media: Numerical Modeling 81

In other words, in addition to the incompressibility condition (4.45) second equation,
the condition associated with the unchanged shape of a body is introduced (4.46) in
the third equation.

Let us ask the question: does there exist a nontrivial solution of system (4.46)
such that the conditions

u ≡ 0, σ �= 0 (4.47)

are satisfied? To answer this question, we have done several numerical experiments.
For the solution of the system (4.46), we applied the next explicit method. Let uk ,

pk , Sk , are an initial estimates of u, p, S for k = 0, where k is a number of interation.
Step 1:

ξ k
u = −τu(∇ · σ k),

ξ k
p = −τp(∇ · uk),

ξ k
S = τS

(∇uk + uk∇ − 2/3I(∇ · uk)
)
,

max

(
|ξku |
τu

,
|ξkp|
τp

,
|ξkS |
τS

)

< ε → yes → uk , pk , Sk are the solution of (46) → ST OP

↓

no

↓

Step 2:
uk+1 = ξ k

u,

pk+1 = pk + ξ k
p,

Sk+1 = Sk + ξ k
S,

Go to Step 1.

Here, τu , τS , and τp are an iteration parameters; ε is a small parameter.
Numerical calculations were carried out with double precision. The value ε was

chosen equal to 10−16...10−18 or less.
Consider the results of the numerical simulations.
First example: cylinder under compressive load. The simulation was done in

cylindrical coordinates (R, z) (axisymmetric formulation of the problem). The length
and diameter of the cylinder are equal to 1. The cylinder is mounted on a rigid base



82 N. Bessonov and Y. Litvinova

Fig. 4.5 Rigid cylinder. aDistribution of the pressure p,bDistribution of the displacementmodulus
|u|. τu = 10−6, τp = 2, τS = 1

with the possibility of slipping. A normal component of stress tensor equal to 1 and
applied to a region with a radius of 0.5 (Fig. 4.5).

As a result of the simulations, a non-trivial solution was obtained for all compo-
nents of stress tensor σ , with the complete absence of displacements in the entire
computational domain. Figure4.5 illustrates a distribution of pressure (Fig. 4.5a) and
a modulus of displacement |u| (Fig. 4.5b) for a loaded cylinder. As can be seen from
the figure, the displacement values in thewhole body are equal to or less than∼10−18.

Such values correspond to zero for the range of numerical values of the quantities
involved in the calculation and calculations with double precision.

The numerical experiments show that the results of modeling do not depend on
the values of τu and depend on the ratio τS/τp. Different values of this ratio lead
to a different distribution of stresses in the body (the displacement values remained
below the given small value ε always).

For comparison, a numerical simulation of the same problem was done based on
the system (4.42) (elastic body) using the explicit numerical scheme and the next
method:

Step 1:
ξ k
u = −τ(∇ · σ k),

ξ k
p = −∇ · uk,

ξ k
S = G

K

(∇uk + uk∇ − 2/3I(∇ · uk)
)
,

max(|ξ k
u |/τ) < ε → yes → uk, pk,Sk are the solution of (42) → ST OP

↓

no
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Fig. 4.6 Solid cylinder. aDistribution of the pressure p,bDistribution of the displacementmodulus
|u|. τ = 10−6, K = 2, G = 1

↓

Step 2:
uk+1 = uk + ξ k

u,

pk+1 = ξ k
p,

Sk+1 = ξ k
S,

Go to Step 1.

Here, τ is an iteration parameter.
Figure4.6 illustrates a distribution of pressure (Fig. 4.6a) and modulus of dis-

placement |u| (Fig. 4.6b) at the cylinder for G/K = 0.5.
We can see that the distributions of pressure in rigid (Fig. 4.5a) and solid (Fig. 4.6a)

cylinders are identical. Calculations show that the values of other components of the
stress tensor completely coincide.

In contrast, as can be seen from the comparison of (Fig. 4.5b) and (Fig. 4.6b), the
distribution of displacement is completely different.

Second sample: I-beam and channel under compressive load (Fig. 4.7). The height
and width of the I-beam are equal to 1 and 1 correspondingly. The height and width
of the channel are equal to 1 and 0.5 correspondingly. The thickness of their walls
equals 0.1. An external normal stress equal to 1 is applied to the top surfaces of the
I-beam and channel. Their bottom is mounted on a rigid base with the possibility of
slipping.

The simulation was done for Cartesian coordinates (x , y) (2D case, displacement
along z axis equal to zero).
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Fig. 4.7 a Distribution of the pressure p in a rigid I-beam, b Distribution of the displacement
modulus |u| in a rigid I-beam. c Distribution of the pressure p in a rigid channel, d Distribution of
the displacement modulus |u| in a rigid channel. τu = 10−6, τp = 2, τS = 1

Figure4.7 shows a distribution of pressure in a rigid I-beam (Fig. 4.7a) and in a
rigid channel (Fig. 4.7b). The highest values of pressure are observed at the junctions
of the shelf and the wall. The pressure field of the I-beam is symmetrical.

As in the previous example, the calculations showed the complete coincidence
of the components of the stress tensors calculated according to the model of a rigid
body (4.46) and the model of an elastic body (4.42) provided that τS/τp = G/K .

The conclusion about the displacements is exactly the same as in the previous
example. They are vanishingly small (Fig. 4.7b and d), respectively.

Conclusion. Numerical experiments have shown that stresses in a rigid body can
be found, but this problem is ambiguous.

An unambiguous relationship between the stresses in the rigid body and the ratio
of the iterative parameters of the numerical algorithm was found.

A correspondence between the ratio of these iterative parameters and the ratio of
the elastic moduli of an elastic body is established.
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Chapter 5
Numerical Estimation of Resistivity
Contribution Tensor of a Concave Pore
Embedded in a Transversely Isotropic
Matrix

Kou Du, Long Cheng, Jean-François Barthélémy, Igor Sevostianov,
Albert Giraud, and Ayodele Adessina

Abstract In this work, we focus on the effect of non-ellipsoidal concave pore on
thermal conduction properties of porous media with an infinite transversely isotropic
matrix. This effect is described by the resistivity contribution tensors that will be
computed via the Finite Elements (FE)-based numerical homogenization. The FE
computations will be carried out with some adapted and bounded boundary con-
ditions that are formulated as dependent of the Green function and its gradient for
the three-dimensional Poisson’s equation in infinite anisotropic medium. It allows
to incorporate the matrix anisotropy and the correction of the bias induced by the
bounded character of the mesh domain. The boundary conditions are constructed and
applied in such a way that they accelerate the convergence of numerical computa-
tions, and therefore preserve the accuracy of estimations. This is proved after several
appropriate assessment and validation by comparing its predictions, in some partic-
ular cases, with analytical results and some available numerical ones. Finally, the
effect of the pore concavity as well as that of the matrix anisotropy on the resistivity
contribution tensor are quantitatively illustrated.
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5.1 Introduction

The resistivity contribution tensor has been introduced by Sevostianov andKachanov
(2002) in the context of the cross-property connection between elastic and conductive
properties of heterogeneous materials. They have also reported the fact that inclusion
shapes affect the elasticity and the conductivity differently.

Recently, an adapted boundary conditions-based numerical method has been pro-
posed by Adessina et al. (2017) dedicated to the numerical resolution of the arbi-
trary shaped inhomogeneity problem, which induces in practice less expensive time-
consuming costs. The resulting estimations can be found to converge for a relatively
small matrix domain and the process is shown to be less time-consuming by holding
a sufficiently accurate precision. The corrected boundary conditions in this method
depend on the elastic properties of the matrix and the method, initially formulated
for isotropic matrix only, is extended in the recent work Du et al. (2020) in the case of
a transversely isotropic matrix. Application to the diffusion properties of materials
with complex microstructures and isotropic matrix is carried out by Adessina et al.
(2020). The present work focuses on the conductivity properties of the anisotropic
porous materials by estimating the contribution tensor of the concave pore inho-
mogeneity surrounded by a transversely isotropic matrix. Specifically, superspheri-
cal and axisymmetric superspheroidal pores will be particularly considered, whose
geometries are respectively described as (Figs. 5.1 and 5.2):

• superspheroidal pore

| x1
a

|2p + | x2
a

|2p + | x3
ςa

|2p = 1 (5.1)

p = 0.3

a

a

a

e1

e2

e3

p = 0.5

a

a

a

e1

e2

e3

Fig. 5.1 Superspherical pore (relation (5.1) with ς = 1)
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a

a

e1

e3

p = 1

0.5

0.3

0.2

Fig. 5.2 2D representation in diametral plane of a 3D axisymmetrical superspheroidal pore, with
ς = 1 and symmetry axis x3

• axisymmetrical superspheroidal pore

(
x21 + x22

a2

)p

+ | x3
ςa

|2p = 1 (5.2)

p, ς , and a respectively denote non-dimensional concavity parameter, aspect ratio,
and semi-lengths in plane 0x1x2. Theses shapes are convex in the range p > 0.5 and
concave for p < 0.5. Both shapes degenerate into a spheroid when p = 1. In what
follows we will only consider ς = 1 and a = 1, the first shape is then a supersphere
of unit semi-lengths on xi axes, and the second shape obtained by a rotation about
symmetry axis x3. Supersphere and axisymmetrical superspheroid coincide with
sphere in the case p = 1 but strongly differ in the limiting case p → 0.

This paper is organized as follows. In Sect. 5.2, the classical concerned problem
with an infinite transversely isotropic matrix is reformulated for an inhomogeneity
embedded in a finite one by introducing the Green tensor-based correction of bound-
ary conditions. It is then applied in Sect. 5.3 to the reformulation of the contribution
tensors. Next, an adapted boundary conditions-based numerical framework is pro-
posed by adopting the numerical homogenizationmethod, which is also assessed and
validated by comparing its predictions with some analytical and available numerical
results to systematically justify its efficiency and accuracy with respect to the pore
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concavity and the material anisotropy. The whole procedure leads to some numer-
ical estimations, as presented in Sect. 5.5, in the cases of the superspheroidal and
superspherical voids planted in the transversely isotropic matrix. Particular attention
should be paid to the significant combined effect of the material anisotropy and the
shape of pore especially when it is concave. We finally present some concluding
remarks in Sect. 5.6.

5.2 Green Function-Based Correction of Boundary
Conditions

We consider an infinite domain� comprising an inhomogeneity E of arbitrary shape
surrounded by a matrix. The matrix is thermally conductive obeying the Fourier law:

σ = −λ · ε (5.3)

where σ, λ, and ε respectively denote the heat flux vector, the thermal conductivity
tensor, and thermal gradient with T being the temperature field. Assuming that the
infinite domain � is submitted to remote Hashin-type boundary condition:

T (x) ∼‖x‖→∞
E · x (5.4)

with T (x) being the temperature field at the position x and E denoting the remote
homogeneous thermal gradient, the above mentioned problem is described as

(P)unbounded

⎧⎪⎪⎨
⎪⎪⎩

div
(
σ(x)

) = 0 (x ∈ �)

σ(x) = −λ(x) · ε(x) (x ∈ �)

ε = gradT (x ∈ �)

T (x) = E .x (x ∈ ∂�)

(5.5)

Borrowing ideas fromAdessina et al. (2017) (see alsoDu et al. 2020), the temperature
solution of Eq. (5.5) can be calculated as

T (x) = E · x +
∫

x ′∈E
gradG0(x − x ′) · p(x ′) d�x ′ (5.6)

with the polarization vector (Ammari and Kang 2007):

p(x) = − [
λ(x) − λ0

] · ε(x) (5.7)

which is non-zero only in the inhomogeneity E , and the Green function G0 for the
three-dimensional Poisson equation of the infinitemediumwith thermal conductivity



5 Numerical Estimation of Resistivity Contribution Tensor … 91

λ0. The expression of G0 as well as its gradient gradG0 are briefly recalled in
Appendix A. Note that the first term in the r.h.s. of Eq. (5.6) represents the remote
temperature field and the second one corresponds to the disturbance caused by the
inhomogeneity. We perform an approximation by assuming at the remote location
of x ′ (i.e., || x ||�|| x ′ || ) that

G0(x − x ′) ∼‖x‖→∞
G0(x) ∀x ′ ∈ E (5.8)

Eq. (5.6) can then be rewritten as

T (x) = E · x+ | E | gradG0(x) · P (5.9)

in which P is the average polarization vector inside the inhomogeneity, reading as

P =
〈
p
〉E = 1

| E |
∫

x ′∈E
p(x ′) d�x ′ = 1

| E |
∫
x ′∈E

−λ(x ′) · ε(x ′) d�x ′

︸ ︷︷ ︸
〈σ〉E

(5.10)

+λ0 ·
[

1

| E |
∫
x ′∈E

ε(x ′) d�x ′

]
︸ ︷︷ ︸

〈ε〉E
(5.11)

hence
P = 〈

σ
〉E + λ0 · 〈

ε
〉E

(5.12)

with
〈
σ
〉E

and
〈
ε
〉E

being the averages heat flux and thermal gradient vector of the
inhomogeneity, respectively.

In this context, it is crucial to remark that a careful attention should be paid on the
approximation given by Eq. (5.8) which is theoretically true when || x ||�|| x ′ ||. In
fact, by developing the Taylor expansion of the remote temperature at x , the higher
order of the asymptotic behavior (i.e., E · x) may lack of accuracy. Nevertheless,
in the perspective of the FE computations, it is convenient to define an appropriate
finite mesh scale that we will show in the next sections this approximation delivers
very accurate results and thus is used here as well.

Based on Eq. (5.9), the approach of the corrected boundary conditions consist in
reformulating the Eshelby like problem Eq. (5.5) into the one on a finite domain D,
which can be expediently written as

(P)bounded

⎧⎪⎪⎨
⎪⎪⎩

div
(
σ(x)

) = 0 (D)

σ(x) = −λ(x) · ε(x) (D)

ε = grad T (D)

T (x) = E · x + |E | gradG0(x) · P (∂D)

(5.13)
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At this point, it is emphasized that the following developments do not require any
limitation on the material symmetry of the matrix nor on the shape or content of the
inhomogeneity, see for instance (Du et al. 2020) in the context of linear anisotropic
elasticity. Due to the linearity of Eq. (5.13), it can be considered as the superposition
of two elementary linear thermal problems with different boundary conditions: one
is composed by the remote Hashin-type boundary condition T (x) = E · x , denoted
as the (P)Ebounded problem:

(P)Ebounded

⎧⎪⎪⎨
⎪⎪⎩

div
(
σ(x)

) = 0 (D)

σ(x) = −λ(x) · ε(x) (D)

ε = grad T (D)

T (x) = E · x (∂D)

(5.14)

and according to the polarization field, another one depends on the gradient of the
Green function gradG0, named as the (P)Pbounded problem

(P)Pbounded

⎧⎪⎪⎨
⎪⎪⎩

div
(
σ(x)

) = 0 (D)

σ(x) = −λ(x) · ε(x) (D)

ε = grad T (D)

T (x) = |E | gradG0(x) · P (∂D)

(5.15)

A direct consequence from the resolution of Eqs. (5.14) and (5.15) is that

〈
ε
〉E = AE · E,

〈
σ
〉E = −BE · E (5.16)

〈
ε
〉P = Ap · P,

〈
σ
〉P = −Bp · P (5.17)

where
〈
ε
〉E

,
〈
ε
〉P

,
〈
σ
〉E

and
〈
σ
〉P

respectively denote the average thermal gradient and
heat flux vectors over the inhomogeneity, and AE , AP , BE , and BP are the second-
order concentration tensors.

By taking into account the linearity of Eqs. (5.13)–(5.15) and combining
Eqs. (5.16) and (5.17), one has

{ 〈
ε
〉E = AE · E + Ap · P〈

σ
〉E = −BE · E − Bp · P (5.18)

Next, substituting expression (5.18) in (5.11) renders

P = D · E (5.19)

where
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D = (
i + Bp − λ0 · Ap

)−1 · (
λ0 · AE − BE

)
(5.20)

with i being the second order identity tensor. At this stage, it is a simple matter to
combine Eqs. (5.18)–(5.20) to finally establish the main result of this section:

{ 〈
ε
〉E = AE

0 · E, AE
0 = AE + Ap · D〈

σ
〉E = −BE

0 · E, BE
0 = BE + Bp · D

(5.21)

where AE
0 and BE

0 denote respectively the average thermal gradient and heat flux
concentration tensors of the bounded problem Eq. (5.13).

5.3 Conductivity and Resistivity Contribution Tensors

We closely followed in this section the presentation of property contribution tensors
given in Kachanov and Sevostianov (2018) and recalled in recent paper (Du et al.
2020) devoted to elastic problem. Still in the context of linear conduction law, the
extra thermal gradient (denoted by�ε) and heat flux vector (denoted by�σ) induced
by the presence of inhomogeneity can be calculated in the dilute scheme as

�ε = − f HE
0 · �, �σ = − f NE

0 · E with f = | E |
| � | (5.22)

where f denotes the volume fraction of the inhomogeneity and, HE
0 and NE

0 are both
symmetric second rank tensors called the resistivity and conductivity contribution
tensors, respectively1.Moreover, the consistency laws ensuring that� and E are also
the average heat flux and thermal gradient vectors within a representative elementary
volume (REV):

� = (1 − f )〈σ〉matrix + f 〈σ〉E (5.23)

E = (1 − f )〈ε〉matrix + f 〈ε〉E (5.24)

As matrix being homogeneous, by applying the Fourier Law, the average heat flux
of the matrix can be written as

〈σ〉matrix = −λ0 · 〈ε〉matrix = 1

1 − f

(−λ0 · E + f λ0 · 〈ε〉E)
(5.25)

Combining Eqs. (5.23) and (5.25), one has

� = (1 − f )〈σ〉matrix + f 〈σ〉E = −λ0 · E + f λ0 · 〈ε〉E + f 〈σ〉E (5.26)

1 The property contribution tensors then turn into conductivity N and resistivity H contribution
tensors in contrast with the elasticity, the reader is referred for instance to Du et al. (2020).



94 K. Du et al.

and then
� = −λ0 · E + f

(〈σ〉E + λ0 · 〈ε〉E)
︸ ︷︷ ︸

�σ

(5.27)

By taking into account the polarization vector P inside the inhomogeneity E given
in relation Eq. (5.11), consistency equation rewrites

� = −λ0 · E + f P︸︷︷︸
�σ

(5.28)

Comparison with relation Eqs. (5.22) and (5.19) allows to obtain a new expression of
the conductivity contribution tensor NE

0 which is approximated here by D uniquely:

NE
0 = −D = −(

i + Bp − λ0 · Ap
)−1 · (

λ0 · AE − BE
)

(5.29)

The contribution tensors HE
0 and NE

0 of a given inhomogeneity of any shape are
interrelated as follows Sevostianov et al. (2008):

HE
0 = −r0 · NE

0 · r0, NE
0 = −λ0 · HE

0 · λ0 (5.30)

5.3.1 Case of Homogeneous Inhomogeneity

In the case of a homogeneous material with thermal conductivity tensor λ(x) =
λE in the inhomogeneity x ∈ E , by applying the Fourier Law on average heat flux

and thermal gradient
〈
σ
〉E = −λE · 〈

ε
〉E
, the partial concentration tensors have the

following relations:

BE = λE · AE , BP = λE · AP (5.31)

It follows that Eq.(5.29) becomes

NE
0 = −D = [

(λE − λ0)
−1 + AP

]−1 · AE (5.32)

By using relations (5.22–5.27), one has

�σ = f
(〈

σ
〉E + λ0 · 〈

ε
〉E)

= − f NE
0 · E (5.33)

and consequently

〈
σ
〉E + λ0 · 〈

ε
〉E = −NE

0 · E (5.34)
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and then combining with the Fourier law, the average thermal gradient is derived in
the form:

〈
ε
〉E = (λE − λ0)

−1 · NE
0 · E (5.35)

Finally, we get the following connection between the concentration and contribution
tensors by comparing to relation (5.21):

AE
0 = (λE − λ0)

−1 · NE
0 , BE

0 = λE · AE
0 (5.36)

So that the concentration and contribution tensors can be calculated from each other.
Note that the particular consideration of the perfectly insulating inhomogeneity

λE → 0 leads to the fact that the heat flux concentration tensors BE and BP both
vanish. In practical applications, pore inhomogeneities fully saturated by dry air can
be approximated, in a first approach, by the limiting case of the perfectly insulating
inhomogeneity, due to the low thermal conductivity of dry air compared to most of
solids constituting geomaterials. Consequently, the conductivity contribution tensor
NE

0 (see Eq. (5.32)) and the resistivity contribution tensor HE
0 can be simplified as

NE
0 = (−r0 + AP

)−1 · AE , HE
0 = r0 · (

r0 − AP
)−1 · AE · r0 (5.37)

And average thermal gradient concentration tensorAE
0 may be deduced from relation

Eq. (5.36)

AE
0 = −r0 · NE

0 = r0 · (
r0 − AP

)−1 · AE (5.38)

In the case of an infinity conductivity inhomogeneityλE → ∞, the thermal gradient
concentration tensors AE and AP both vanish. Equation (5.29) becomes

NE
0 = −D = (

i + Bp
)−1 · BE (5.39)

and the dual resistivity contribution tensor becomes

HE
0 = −r0 · (

i + Bp
)−1 · BE · r0 (5.40)

and the thermal gradient concentration tensor AE
0 vanishes.

5.3.2 Case of Ellipsoidal Inhomogeneity

For a general isolated ellipsoidal inclusion, the conductivity NE
0 and resistivity HE

0
contribution tensors have explicit forms in terms of Hill polarization tensors:
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NE
0 = [

PE
0 + (λE − λ0)

−1]−1
, HE

0 = [
QE

0 + (rE − r0)−1
]−1

(5.41)

where QE
0 and PE

0 are Hill polarization tensors. Their analytical expressions are
available for inclusion in spheroidal shape (ellipsoid of revolution) embedded in a
transversely isotropic matrix (see Appendix B).

The thermal gradient concentration tensor AE
0 is then derived:

AE
0 = [

i + PE
0 · (λE − λ0)

]−1
(5.42)

And analytical contribution tensors can be obtained by Eq. (5.36) which will be
further compared to the numerical results to validate the methodology.

5.4 Numerical Framework of the Resistivity Contribution
Tensor Estimate

In this section, the focus is on the numerical procedure for the computation of the
resistivity contribution tensors HE

0 . In order to simplify the notation, we drop the
subscript 0 and the superscript E with the understanding that Hi j represents the
components of HE

0 . Moreover, for the sake of keeping this work focused and concise,
we especially consider here the inhomogeneity in the case of individual and perfectly
insulating pore (denoted also by E) implemented in the center of a cubically bounded
REV D with a transversely isotropic matrix2 DM = D\E . Different shapes of the
pore, in particular the non-ellipsoidal concave ones, will be considered whose 3D
geometries, as shown in Fig. 5.3, are realized by adopting a user-defined Matlab
script. Note that directions of the symmetry between the matrix anisotropy and that
of the pore are both aligned on the axis e3.

Moreover, the REV is meshed by use of the software Netgen (Schöberl 1997)
with quadratic 3D thermal elements (DC3D10) that are compatible with the Finite
Elements computations via Abaqus/Standard software (Smith 2009). An example in
the case of superspherical pore with p = 0.4 is shown in Fig. 5.4. As discussed in
Sect. 5.3, such a (P)bounded problem (e.g., Eq. (5.13)) can be decoupled into (P)Ebounded
and (P)Pbounded (e.g., Eqs. (5.14) and (5.15)). Hence, the simulation procedure will
be simultaneously carried out in two groups that due to the transversely anisotropy,
each of them requires two computations. More specifically,

• for (P)Ebounded problem, temperature loading T E with boundary thermal gradient
respectively along e1 and e3:

T E = Ei xi , E = E0 e1 or E = E0 e3 (5.43)

2 It is important to emphasize that the proposed approach can be applied to any form of the bounded
media and any type of matrix anisotropy.
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(a) (b) (c)

(d)

Fig. 5.3 Geometries of different representative models: a superspherical pore p = 0.4; b super-
spheroidal pore p = 0.4; c spherical pore p = 1.0; d aligned penny shaped crack

Fig. 5.4 Mesh of the
superspherical pore with the
concavity p = 0.4 in the
center of cuboid matrix

• for (P)
p
bounded problem, temperature loading T P with boundary polarization vector

respectively along e1 and e3:

T P = |E | ∂G

∂xi
Pi , P = P0 e1 or P = P0 e3 (5.44)
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5.4.1 Numerical Homogenization Method

As the considered media being defined in a finite domain (i.e., porous media), the
numerical homogenization method is adopted for the estimation of the resistivity
contribution tensor HE

0 . Following Eq. (5.37), the resistivity concentration tensors
AE and AP will be firstly computed. The consistency laws ensure that the subjected
macroscopic thermal gradients are also the average ones, one has

〈
ε
〉E
D = E = (1 − f )

〈
ε
〉E
DM

+ f
〈
ε
〉E
E〈

ε
〉P
D = (1 − f )

〈
ε
〉P
DM

+ f
〈
ε
〉P
E

(5.45)

where
〈
ε
〉E
D and

〈
ε
〉P
D denote the subjected macroscopic thermal gradient respectively

for the (P)Ebounded and (P)Pbounded problems,
〈
ε
〉E
E ,

〈
ε
〉P
E ,

〈
ε
〉E
DM

, and
〈
ε
〉P
DM

are the cor-
responding average thermal gradient in the porous phase and those in the matrix
one.

Note that in Eq. (5.45), the macroscopic thermal gradient
〈
ε
〉E
D of the (P)Ebounded

problem is known as predefined, while
〈
ε
〉P
D of the (P)Pbounded problem should be

calculated. Following the Gauss theorem, the latter one can be obtained as an integral
over the external boundary ∂D :

〈εi 〉PD = 1

| D |
M∑
m=1

(
T Pni

)(m)
S(m) (5.46)

whereM is the total number of the surface elements, T P denotes the nodal temper-
ature of integration points, S(m) is the area of the m-th one, and ni defines the unit
normal of the outer surfaces.

Since the pore is insulated, the heat flux in the porous phase vanishes (i.e.,
〈
σ
〉E
E =〈

σ
〉P
E = 0), it follows that

〈σi 〉DM
= 〈σi 〉D = 1

| DM |
N∑
n=1

(σi )
(n) V n (5.47)

with N being the total number of the volume elements and V (n) giving the volume
of the n-th one.

Following Fourier’s Laws, 〈εi 〉EDM
and 〈εi 〉PDM

can then be calculated through

〈εi 〉DM
= −ri j · 〈σi 〉DM

Having in hand the above computed quantities, the average thermal gradient fields
in the porous phase are expressed as
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〈
ε
〉E
E = E − (1 − f )

〈
ε
〉E
DM

f

〈
ε
〉P
E =

〈
ε
〉P
D − (1 − f )

〈
ε
〉P
DM

f

(5.48)

The concentration and contribution tensors can then be computed by Eqs. (5.21)
and (5.37).Due to the transversely isotropy, both of themhave3non-zero components
which are A11 = A22, A33, H11 = H22, H33 in the present study.

5.4.2 Assessment and Validation of the Proposed Numerical
Procedure

In this section, the proposed numerical procedure will be assessed and validated by
comparing its predictions of the resistivity contribution tensor HE

0 with some ana-
lytical and numerical results in literature. To this end, a preliminary step aiming at
defining an appropriate scale of the bounded REV will be first carried out. It will be
accomplished by studying the accuracy and the efficiency of the proposed numerical
procedure in the case of a spherical pore planted in an isotropic matrix. Next, we will
systematically consider the superspherical pores embedded in an isotropic matrix as
well as the spheroidal ones surrounded by a transversely isotropic matrix to respec-
tively justify its accuracy on the concavity of the pores and that on the anisotropy of
the matrix material.

5.4.2.1 Spherical Pore in Isotropic Matrix

Let us consider a spherical pore of radius a embedded in the center of a cubic REV
with side length 2L . By varying the so-called scale ratio a/L , the same mesh of each
geometry with fixed a/L will be separately subjected to the corrected boundary con-
ditions and the uncorrected ones (i.e., classical Hashin-type boundary conditions).
Due to the symmetry of the problem, only one independent component of resis-
tivity contribution tensor H11 is numerically computed that will be next compared
to the corresponding analytical solution Eq. (B9). The relative errors are displayed
in Fig. 5.5. It can be observed that the computation convergence with the corrected
boundary conditions occurs and stabilizes even when a/L � 3 with an excellent
accuracy that the relative errors are around the value of 10−4. Whereas it seems like
that those obtained from the classical modeling just begin stabilize when the scale
ratio a/L is much bigger (e.g., a/L ≥ 10) and present important relative errors with
respect to the former ones. This can be interpreted as, on one hand the corrections
of the boundary conditions allow to accelerate the numerical convergence without
degrading the computation accuracy, on the other hand when the scale ratio a/L is
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Fig. 5.5 Relative errors of H11 with respect to the analytical results for the spherical pore embedded
in an isotropic matrix for different scale ratios a/L ∈ [3, 10]

sufficiently big, the representative bounded model tends to be an infinite one such
that the correction of the boundary conditions is hence less efficient or might be use-
less in the numerical modeling. By considering the computation results as illustrated
in Fig. 5.5, we adopt in an ad-hoc manner the scale ratio a/L = 8 in the next part
of this work. This is of course an approximation but will be shown as sufficiently
accurate in the following numerical estimations.

5.4.2.2 Superspheroidal Pore in Isotropic Matrix

Table5.1 displays the numerical results of the resistivity contribution tensor for the
superspheroidal pores surrounded by an isotropic matrix as well as their comparisons
with the numerical results obtained by Sevostianov et al. (2016). Different geometries
andmeshes are realized by varying the value of the concavity parameter p ∈ [0.2, 1].
We pay our first attention to the particular case with p = 1 (i.e., spherical pore). It
can be observed that, by comparing with the computations of Sevostianov et al.
(2016), the FEM results obtained in this work present much smaller relative errors
with respect to the analytical ones (i.e., H11 = H33 = 1.5). Moreover, the relative
error of the FEM results with respect to those of Sevostianov et al. (2016) is shown
to be increased as we decrease the concavity parameter p toward the limit value of
0. This difference becomes much significant and cannot be ignored especially for
the estimation of H11 in the case of the concave pores (i.e., p < 0.5). In addition to
the corrected boundary conditions that accelerate the computation convergence and
preserve the accuracy of estimations, this might also be due to the fact that, as shown
in Fig. 5.4, the meshes realized in this work are sufficiently refined in the transition
zone between the matrix and porous phases that allows to reduce the effect of the
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Table 5.1 Numerical estimations for Hi j for the superspheroidal pore embedded in isotropic host
matrix with respect to Sevostianov et al. (2016)

p HFEM
11 HFEM

33 H (2016)
11

1
H (2016)
33

1
R.E .(H11)

2

(%)
R.E .(H33)

2

(%)

0.2 1.4027 14.8636 2.0247 15.1972 44.345 2.244

0.25 1.3486 6.4986 1.7156 6.6319 27.212 2.052

0.3 1.3655 3.8970 1.6400 3.9392 20.102 1.083

0.35 1.3900 2.8087 1.5486 2.8234 11.412 0.522

0.4 1.4108 2.2794 1.5290 2.2896 8.377 0.450

0.5 1.4410 1.8303 1.5063 1.8322 4.528 0.106

0.7 1.4750 1.5828 1.5091 1.5880 2.310 0.330

1 1.4998 1.4998 1.5012 1.4963 0.095 0.238

13 1.5 1.5 1.5 1.5

R.E. 4 (%) 0.012 0.012 0.083 0.250
1Numerical results obtained in Sevostianov et al. (2016)
2 Relative error of FEM results with respect to those of Sevostianov et al. (2016)
3 Theory
4 Relative error of FEM results with respect to the analytical one for p = 1

geometric singularity as much as possible3. In return, it reveals that the numerical
estimations obtained in the present work from the proposed numerical procedure and
the refined meshes can be considered as accurate and precise in the case of isotropic
matrix.

Table5.2 shows the numerical estimation of the resistivity contribution tensor for
the superspherical pores surrounded by an isotropic matrix as well as its comparison
with respect to that obtained by Chen (2016a). It is worthy to mention that, unlike
the superspheroid pores that present the axisymmetry, the superspherical ones are
symmetric in all of the three principal directions. Consequently, only H11 is displayed
inTable5.2 since its three principal components are identical (i.e., H11 = H22 = H33)
and, according to the boundary conditions, the deviatoric ones are all null (i.e.,
Hi j = 0 if i �= j). Once again, it can be observed that the FE computation realized
in the present work is much more rigorous especially when the pore is concave (i.e.,
p < 0.5).

In order to understand better the aforementioned conclusion, as the super-
spheroidal pore tends to be a penny crack crossed by a perpendicular needle along
the symmetry axis x3 when the concavity p → 0, we show in Table5.3 the compar-
ison between the FEM computations in a limiting case with p = 0.2, the associated
results of Sevostianov et al. (2016) and the analytical ones of an aligned penny crack
embedded in the isotropic host matrix. The geometry of the latter one is approxi-
mated by considering a very small thickness e such that e/L = 0.002 (see Fig. 5.3d)
and the corresponding analytical solution can be calculated from Eq. (B10) with the

3 For more details on the mesh information, readers are referred to Appendix C and the Table B.2
of Sevostianov et al. (2016).
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Table 5.2 Numerical estimations of H11 for the superspherical pore embedded in isotropic host
matrix with respect to Chen (2016a)

p HFEM
11 HChen

11
1

HR.E .
11

2
(%)

0.2 3.9379 2.8465 27.715

0.25 2.6193 2.1166 19.191

0.3 2.0892 1.7603 15.743

0.35 1.8385 1.6689 9.226

0.4 1.7065 1.6421 3.776

0.5 1.5856 1.5719 0.860

1 1.4999 1.5111 0.749

3 1.5531 1.5588 0.369

13 1.5000 1.5000

R.E.4 (%) 0.008 0.740
1 Chen (2016a)
2 Relative error of numerical H11 with respect to Chen (2016a)
3 Theory
4 Relative error of FEM results with respect to the analytical one for p = 1

Table 5.3 Numerical estimations for Hi j for the crack embedded in isotropic host matrix with
respect to the analytical results

Models Theory FE crack Fig.
5.3d

FE superspheroid
p = 0.2

Ref.
superspheroid1

H11 0 0.0015 0.0598 0.0863

H33 0.6366 0.6403 0.6336 0.6478

Relative Error
H33

NA 0.582% 0.483% 1.751%

1 Normalized results of Superspheroidal case with p = 0.2 in Sevostianov et al. (2016)

anisotropy parameter ν = 1. It is convenient to note here that the obtained resistivity
contribution tensor is normalized by the volume fraction V crack

V sphere to avoid the volume
effect.. According to the comparison, although a good agreement can be observed
among all of the three numerical results and the analytical one, the FE computation
obtained from the proposed numerical model presents a very small relative error than
the one calculated by Sevostianov et al. (2016).

5.4.2.3 Spherical Pore in Transversely Isotropic Matrix

This section deals with the assessment and validation of the numerical procedure by
paying particular attention to the matrix anisotropy. In this light, we switch off the
effect of the concavity parameter p by considering that the pore is in a spherical form
and the matrix is transversely isotropic. Note once again that the proposed numerical
procedure can also be applied to any type of anisotropy, which probably requires
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Table 5.4 Numerical estimations for Hi j for the spherical pore embedded in transversely isotropic
host matrix (κ ∈ [0.1, 10]) with respect to the analytical results
κ HFEM

11 HFEM
33 Htheory

11 Htheory
33 HR.E .

11
1
(%) HR.E .

33 (%)

0.1 12.1317 2.8453 12.1322 2.8450 0.004 0.013

0.2 6.4179 2.2625 6.4184 2.2626 0.007 0.005

0.5 2.7985 1.7518 2.7988 1.7519 0.008 0.008

0.8 1.8333 1.5710 1.8335 1.5712 0.008 0.008

1 1.4999 1.4999 1.5000 1.5000 0.008 0.008

2 0.8022 1.3269 0.8023 1.3271 0.008 0.008

5 0.3467 1.1813 0.3468 1.1813 0.008 0.008

8 0.2238 1.1321 0.2239 1.1322 0.008 0.008

10 0.1815 1.1133 0.1815 1.1134 0.008 0.008
1 Relative error of numerical H11 with respect to analytical one

supplementary simulations and is not further pursued here. Table5.4 shows the FE
computation by varying the anisotropy parameter of the matrix κ = λ1

0/λ
3
0 in the

interval κ ∈ [0.1, 10] as well as its comparison with respect to the analytical results
(see for instance Sects. 5.3.2 and Appendix B). A very good agreement can be found
and the relative errors are shown to be minor. It justifies that the accuracy of the
proposed numerical method is unaffected by the matrix anisotropy.

5.5 Numerical Estimation in the Case of Concave Pore
Embedded in Transversely Isotropic Matrix

In this section, we propose to carry out the study of the resistivity contribution
tensor HE

0 in the case of transversely isotropic matrix comprising concave pore to
understand inmore detail their combined effect. This will be carried out by separately
varying the anisotropy parameter of the matrix, denoted by κ, and the concavity one
p of the concave pores (i.e., superspheroidal and superspherical pores) that will
both be defined in relatively large intervals such as κ ∈ [0.1, 10] and p ∈ [0.2, 5].
Again, we restrict the study, particularly in the superspheroidal cases which verify
the symmetry of revolution, to the assumption that the directions of the symmetry
between the matrix anisotropy and that of the pore are aligned on the same direction
e3 (see for instance Fig. 5.3a and b).

In return, for the FE computations, two non-zero and independent components of
HE

0 (i.e., H11 and H33) will be computed. This is achieved by the proposed numerical
procedure thatwas described inSect. 5.4 byfixing the scale ratio of theREVa/L = 8.
For the sake of prediction accuracy, the numerical computation will be carried out
based on the sufficiently refinedmeshes, forwhich the numbers of nodes and elements
are detailed in Appendix C.
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Specifically, Sect. 5.5.1 investigates first the predictions in the case of superspher-
ical pores. As expected, the combined effect of the matrix anisotropy and that of the
pore concavity is quantitatively obtained. This effect on the response of the resistivity
contribution tensor is also clearly illustrated in the p − κ − Hi j spaces. In the remain-
ing Sect. 5.5.2, similar study is realized for the superspheroidal pore embedded in
the transversely isotropic matrix.

5.5.1 Superspherical Pore in Transversely Isotropic Matrix

Tables5.5 and 5.6 respectively summarize the numerical estimations of H11 and H33

for the superspherical pores. First of all, it can be found that, by fixing the concavity
parameter p, their predictions increase with the decrease of the anisotropy parameter
κ. A second very interesting result, observed in any case of a fixed value κ, is that
the influence of the concavity parameter p is not monotone. More specifically, the
predictions of H11 and those of H33 both increase with the decrease of the concavity
when p ∈ [0.2, 1], in which this dependence becomes more significant especially
when the pore is concave (i.e., p < 0.5). While this effect becomes opposite when
the pore is severely convex (i.e., p ∈ [1, 5]). Similar observations were done in the
numerical study ofChen (2016b), albeit for an isotropicmatrix.Moreover, we present
in Tables5.5 and 5.6 the comparison between the numerical estimations of spherical
pores p = 1 with the corresponding theoretical results. An excellent agreement can
be found with the relative error being around 10−5 that could indirectly justify the
accuracy of the proposed numerical model.

For completeness, Figs. 5.6 and 5.7 illustrate clearly the combined effect of the
matrix anisotropy κ and the concavity parameter p. Each of their influences is also
projected in the planes κ − Hi j and p − Hi j , respectively. As discussed before, these
effects are found to be much significant when the pore is concave with an important
anisotropy of the matrix.4 Specifically, in Fig. 5.6, we observe that the prediction of
H11 presents a more important evolution and a slower subsequent saturation in the
plane κ − H11 than that in the plane p − H11, which quantitatively and qualitatively
reveals that the effect of the matrix anisotropy κ seems to be more important than
that of the pore concavity p on the component H11. However, unlike the previous
observation, Fig. 5.7 illustrates that the matrix anisotropy plays an important role
in the estimation of the component H33, which is, as expected, logical due to the
colinearity between the geometrical symmetry and the one of the matrix anisotropy.

4 It is worthy to emphasize that the so-called important anisotropy is defined in the present work
with a small value of κ and in the direction of e3, which is aligned with the symmetry of the concave
pore.
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19

Fig. 5.6 Numerical estimation of H11 for the superspherical pore embedded in transversely
isotropic corrected model with different concavity parameters p ∈ [0.2, 5] and anisotropic degrees
of matrix κ ∈ [0.1, 10]

20

Fig. 5.7 Numerical estimation of H33 for the superspherical pore embedded in transversely
isotropic corrected model with different concavity parameters p ∈ [0.2, 5] and anisotropic degrees
of matrix κ ∈ [0.1, 10]
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Table 5.5 Numerical estimation of H11 for the superspherical pore embedded in transversely
isotropic corrected model with different concavity parameters p ∈ [0.2, 5] and anisotropic degrees
of matrix κ ∈ [0.1, 10]

H11 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 22.9617 13.5471 6.7398 4.6880 3.9382 2.2709 1.0697 0.7186 0.5932

0.25 16.3178 9.3695 4.5467 3.1314 2.6193 1.4907 0.6896 0.4586 0.3767

0.3 13.9588 7.8041 3.6846 2.5097 2.0892 1.1727 0.5332 0.3514 0.2875

0.35 13.0014 7.1289 3.2891 2.2181 1.8385 1.0192 0.4564 0.2987 0.2435

0.4 12.5620 6.8031 3.0872 2.0660 1.7066 0.9369 0.4148 0.2700 0.2196

0.45 12.3382 6.6320 2.9761 1.9807 1.6320 0.8897 0.3908 0.2535 0.2059

0.5 12.2135 6.5328 2.9086 1.9278 1.5856 0.8600 0.3758 0.2432 0.1974

0.6 12.1030 6.4402 2.8420 1.8749 1.5388 0.8301 0.3610 0.2333 0.1892

0.7 12.0720 6.4059 2.8122 1.8499 1.5163 0.8152 0.3536 0.2284 0.1852

0.8 12.0769 6.3984 2.7999 1.8383 1.5055 0.8076 0.3498 0.2259 0.1831

0.9 12.0997 6.4046 2.7967 1.8339 1.5010 0.8038 0.3478 0.2245 0.1820

1 12.1317 6.4179 2.7985 1.8333 1.4999 0.8022 0.3467 0.2238 0.1815

1.5 12.3122 6.5087 2.8297 1.8496 1.5115 0.8057 0.3472 0.2240 0.1816

2 12.4641 6.5907 2.8633 1.8702 1.5276 0.8131 0.3498 0.2255 0.1828

2.5 12.5826 6.6559 2.8912 1.8877 1.5416 0.8199 0.3523 0.2271 0.1841

3 12.6751 6.7071 2.9136 1.9020 1.5531 0.8256 0.3545 0.2284 0.1851

4 12.8083 6.7815 2.9465 1.9232 1.5702 0.8342 0.3579 0.2305 0.1868

5 12.8961 6.8316 2.9690 1.9378 1.5820 0.8402 0.3603 0.2320 0.1879

1theory 12.1322 6.4184 2.7988 1.8335 1.5000 0.8023 0.3468 0.2239 0.1815

R.E.1 0.004% 0.007% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008%
1 Relative error of numerical H11 with respect to analytical one for p = 1

5.5.2 Superspheroidal Pore in Transversely Isotropic Matrix

In this section, we investigate the combined effect of the concavity of the super-
spheroidal pore and the matrix anisotropy on the resistivity contribution tensor HE

0 ,
whose non-zero and independent components H11 and H33 are computed and summa-
rized in Tables5.7 and 5.8, respectively. Similar to the previous superspherical case
discussed in Sect. 5.5.1, the estimations of both H11 and H33 components increase
with the decrease of the anisotropy parameter κ and, present a non-monotone evo-
lution due to the effect of the concavity parameter p. Even this non-monotonicity
is so slight that can be neglected, it is worthy to note here that, unlike the super-
spherical pores discussed before, it occurs when the pore is “extremely concave”
(e.g., p � 0.3) for the component H11 and when the pore is “very severely convex”
for H33 (e.g., p � 3). A possible interpretation is that, unlike the superspherical
cases, the superspheroidal pores present a symmetry of revolution that is colinear



5 Numerical Estimation of Resistivity Contribution Tensor … 107

Table 5.6 Numerical estimation of H33 for the superspherical pore embedded in transversely
isotropic corrected model with different concavity parameters p ∈ [0.2, 5] and anisotropic degrees
of matrix κ ∈ [0.1, 10]

H33 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 11.5639 8.2715 5.3713 4.3437 3.9396 2.9602 2.1411 1.8668 1.7623

0.25 7.3694 5.3032 3.4967 2.8651 2.6193 2.0332 1.5619 1.4109 1.3545

0.3 5.5813 4.0483 2.7219 2.2652 2.0893 1.6765 1.3552 1.2551 1.2182

0.35 4.6424 3.4034 2.3392 1.9770 1.8386 1.5170 1.2699 1.1933 1.1650

0.4 4.0904 3.0316 2.1281 1.8229 1.7066 1.4368 1.2290 1.1639 1.1398

0.45 3.7383 2.8009 2.0038 1.7347 1.6321 1.3930 1.2069 1.1480 1.1261

0.5 3.4728 2.6374 1.9223 1.6789 1.5855 1.3664 1.1937 1.1386 1.1181

0.6 3.2161 2.4739 1.8399 1.6227 1.5388 1.3403 1.1811 1.1297 1.1104

0.7 3.0550 2.3784 1.7962 1.5946 1.5163 1.3292 1.1768 1.1270 1.1083

0.8 2.9553 2.3215 1.7723 1.5805 1.5055 1.3253 1.1766 1.1274 1.1087

0.9 2.8900 2.2857 1.7590 1.5737 1.5010 1.3251 1.1784 1.1293 1.1107

1 2.8453 2.2625 1.7518 1.5710 1.4999 1.3269 1.1813 1.1321 1.1133

1.5 2.7528 2.2223 1.7498 1.5793 1.5115 1.3442 1.1989 1.1483 1.1287

2 2.7321 2.2212 1.7619 1.5945 1.5276 1.3612 1.2143 1.1623 1.1418

2.5 2.7304 2.2283 1.7746 1.6083 1.5416 1.3750 1.2264 1.1733 1.1522

3 2.7342 2.2368 1.7857 1.6198 1.5531 1.3859 1.2360 1.1819 1.1604

4 2.7459 2.2523 1.8031 1.6371 1.5702 1.4019 1.2497 1.1943 1.1723

5 2.7548 2.2640 1.8154 1.6492 1.5820 1.4127 1.2590 1.2027 1.1801

1theory 2.8450 2.2626 1.7519 1.5712 1.5000 1.3271 1.1813 1.1322 1.1134

R.E.1 0.013% 0.005% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008%
1 Relative error of numerical H33 with respect to analytical one for p = 1

with the direction of the matrix anisotropy, which induces an augmentation of the
macroscopic anisotropic response of the REV in the direction of e3.

Figures5.8 and 5.9 show the evolution of the Hi j components on the concavity
parameter p and the one of the matrix anisotropy κ, As same as the superspherical
cases, it can also be finally concluded that both of them significantly affect the
resistivity contribution tensor HE

0 .

5.6 Concluding Remarks

In the present work, we have numerically evaluated the resistivity contribution ten-
sor of the concave pore inhomogeneity embedded in a transversely isotropic matrix.
This has been realized by use of an original developed numerical homogenization
method complying with the adapted boundary conditions-basedmethod recently for-
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Fig. 5.8 Numerical estimation of H11 for the superspheroidal pore embedded in transversely
isotropic corrected model with different concavity parameters p ∈ [0.2, 5] and anisotropic degrees
of matrix κ ∈ [0.1, 10]

Fig. 5.9 Numerical estimation of H33 for the superspheroidal pore embedded in transversely
isotropic corrected model with different concavity parameters p ∈ [0.2, 5] and anisotropic degrees
of matrix κ ∈ [0.1, 10]
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Table 5.7 Numerical estimation of H11 for the superspheroidal pore embedded in transversely
isotropic corrected model with different concavity parameters p ∈ [0.2, 5] and anisotropic degrees
of matrix κ ∈ [0.1, 10]

H11 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 12.3240 6.3573 2.6783 1.7264 1.4027 0.7377 0.3163 0.2048 0.1665

0.25 11.4445 5.9539 2.5443 1.6534 1.3486 0.7174 0.3112 0.2022 0.1646

0.3 11.3603 5.9383 2.5587 1.6705 1.3655 0.7308 0.3184 0.2069 0.1684

0.35 11.4181 5.9869 2.5934 1.6982 1.3900 0.7463 0.3257 0.2115 0.1720

0.4 11.4928 6.0393 2.6253 1.7222 1.4108 0.7590 0.3313 0.2150 0.1747

0.45 11.5676 6.0882 2.6526 1.7420 1.4276 0.7687 0.3354 0.2175 0.1767

0.5 11.6357 6.1325 2.6758 1.7581 1.4410 0.7761 0.3384 0.2193 0.1781

0.6 11.7629 6.2106 2.7132 1.7827 1.4610 0.7862 0.3423 0.2216 0.1798

0.7 11.8747 6.2762 2.7420 1.8005 1.4750 0.7926 0.3444 0.2228 0.1807

0.8 11.9718 6.3311 2.7647 1.8140 1.4854 0.7968 0.3456 0.2234 0.1812

0.9 12.0565 6.3777 2.7832 1.8247 1.4934 0.7999 0.3463 0.2237 0.1814

1 12.1309 6.4176 2.7984 1.8333 1.4998 0.8022 0.3467 0.2238 0.1815

1.5 12.3902 6.5533 2.8482 1.8605 1.5197 0.8086 0.3473 0.2237 0.1812

2 12.5480 6.6335 2.8767 1.8758 1.5308 0.8121 0.3475 0.2235 0.1810

2.5 12.6529 6.6863 2.8953 1.8859 1.5382 0.8144 0.3477 0.2234 0.1808

3 12.7291 6.7246 2.9090 1.8934 1.5437 0.8162 0.3479 0.2234 0.1807

4 12.8302 6.7753 2.9272 1.9035 1.5511 0.8188 0.3483 0.2234 0.1807

5 12.8947 6.8078 2.9390 1.9101 1.5560 0.8206 0.3486 0.2235 0.1807

11 12.1322 6.4184 2.7988 1.8335 1.5000 0.8023 0.3468 0.2239 0.1815

R.E.2 0.011% 0.012% 0.012% 0.012% 0.012% 0.012% 0.013% 0.014% 0.014%
1 Theory
2 Relative error of numerical H11 with respect to analytical one for p = 1

mulated by Adessina et al. (2017) (see also Du et al. 2020). The proposed numerical
procedure was carried out for a bounded representative elementary volume and is
shown to be efficient and accurate in the numerical modeling. By paying particular
attentions to the pore concavity and the matrix anisotropy, a major contribution of
this work is found as the sufficiently exact computation results and analysis that illus-
trate their significant effect on the thermal conductivity properties. Specifically, the
adapted boundary conditions-basedmethodwas extended in the context of thematrix
anisotropy thanks to the Green function and its gradients applied in the correction of
the boundary conditions. The numerical homogenization method has been utilized
in the proposed numerical procedure that has been firstly assessed and validated by
comparing its predictions with the analytical and existing analytical and numerical
results in particular cases. It is then used to the investigate the effect of the pore
concavity on different transversely isotropic matrix from the quantitative estimates
of the resistivity contribution tensor, which was found to be of critical importance
especially in the case of concave pores.
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Table 5.8 Numerical estimation of H33 for the superspheroidal pore embedded in transversely
isotropic corrected model with different parameters p ∈ [0.2, 5] and anisotropic degrees of matrix
κ ∈ [0.1, 10]

H33 κ

p 0.1 0.2 0.5 0.8 1 2 5 8 10

0.2 46.6772 33.0741 20.9710 16.6040 14.8636 10.5488 6.7387 5.3793 4.8420

0.25 20.0777 14.2620 9.0958 7.2373 6.4986 4.6769 3.0961 2.5473 2.3345

0.3 11.6980 8.3431 5.3758 4.3159 3.8970 2.8752 2.0155 1.7295 1.6214

0.35 8.0643 5.7939 3.7938 3.0862 2.8087 2.1410 1.5982 1.4244 1.3598

0.4 6.1965 4.4925 3.0029 2.4820 2.2794 1.7979 1.4158 1.2955 1.2510

0.45 5.1157 3.7483 2.5636 2.1535 1.9949 1.6207 1.3258 1.2326 1.1980

0.5 4.4280 3.2872 2.3012 1.9614 1.8303 1.5207 1.2753 1.1970 1.1677

0.6 3.6805 2.7923 2.0280 1.7644 1.6623 1.4199 1.2245 1.1611 1.1373

0.7 3.2956 2.5447 1.8958 1.6704 1.5827 1.3728 1.2011 1.1448 1.1235

0.8 3.0741 2.4047 1.8229 1.6194 1.5398 1.3481 1.1895 1.1369 1.1169

0.9 2.9359 2.3185 1.7793 1.5894 1.5148 1.3345 1.1838 1.1333 1.1141

1 2.8450 2.2623 1.7517 1.5710 1.4998 1.3269 1.1812 1.1321 1.1133

1.5 2.6565 2.1541 1.7061 1.5446 1.4805 1.3224 1.1854 1.1379 1.1194

2 2.6107 2.1336 1.7047 1.5487 1.4864 1.3317 1.1958 1.1478 1.1290

2.5 2.5980 2.1326 1.7115 1.5574 1.4957 1.3418 1.2052 1.1565 1.1373

3 2.5978 2.1373 1.7197 1.5664 1.5048 1.3509 1.2133 1.1639 1.1443

4 2.6048 2.1495 1.7343 1.5812 1.5196 1.3648 1.2255 1.1749 1.1548

5 2.6141 2.1604 1.7457 1.5923 1.5304 1.3748 1.2340 1.1827 1.1622

11 2.8450 2.2626 1.7519 1.5712 1.5000 1.3271 1.1813 1.1322 1.1134

R.E.2 0.001% 0.011% 0.012% 0.012% 0.012% 0.012% 0.012% 0.012% 0.013%
1 Theory
2 Relative error of numerical H33 with respect to analytical one for p = 1

Finally, the proposed numerical method is able to deal with any general anisotropy
of the matrix material but such a study has not been attempted here for the sake of
keeping the work focused and concise. In the perspective point of view, it is clear
from the previous simulations that the effective properties such as those predicted
from semi-analytical homogenization models could be further developed.

Acknowledgements This paper puts an end to a work carried out in collaboration with our late
friend, Professor Igor Sevostianov, and is dedicated to his memory.
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Appendix A Three-Dimensional Green Function
for Poisson’s Equation in Infinite Anisotropic
Medium

As shown previously, the corrected boundary condition Eq. (5.13) relies on the gradi-
ent of Green function. It is worthy to recall that the three-dimensional Green function
G0

(
x
)
for Poisson’s equation in infinite anisotropic medium could be analytically

calculated by

G0
(
x
) = − 1

4π
√
det(λ0)

1√
x · (

λ0)−1 · x
(A1)

and its gradient vector is

gradG0 (
x
) = (λ0)

−1 · x
4π

√
det(λ0)

[
x · (λ0)

−1 · x]3/2 (A2)

The expanded formula for gradGi
0 component writes

gradGi
0 = 1

4π
√

λ1
0λ

2
0λ

3
0

xi
λi
0

1(
x21
λ1
0
+ x22

λ2
0
+ x23

λ3
0

)3/2 (A3)

where λ1
0, λ

2
0, and λ3

0 are the three conductivity parameters of anisotropic matrix.
In particular isotropic case which means λi

0 = λ0 (i = 1, 3), the equations
Eqs. (A1)–(A2) reduce to

G0
(
x
) = − 1

4π λ0

1∥∥x∥∥ , gradG
0

(
x
) = 1

4π λ0

x∥∥x∥∥2 (A4)

Appendix B Hill Polarization Tensor and Resistivity
Contribution Tensor of a Spheroidal Inclusion
Aligned in a Transversely Isotropic Host
Matrix

One considers a transversely isotropic matrix of conductivity tensor λ0 (n denotes
unit vector on the symmetry axis, in this paper n = e3):

λ0 = λ0
(
ν2 iT + iN

)
, iN = n ⊗ n, iT = i − iN (B5)



112 K. Du et al.

The Hill polarization tensor PE
0 of an spheroidal inclusion aligned in the directions

of a transversely isotropic matrix (i.e., spheroid and matrix have the same symmetry
axis) writes

PE
0 = g(νγ)

ν2λ0
iT + 1 − 2 g(νγ)

λ0
iN (B6)

where γ is the aspect ratio of radius and with shape function g(ξ) (see Barthélémy
2008; Giraud et al. 2019)

g(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
1 + 1

ξ2 − 1

(
1 − ξ√

1 − ξ2
arctan

(√
1 − ξ2

ξ

)))
if ξ < 1

1

3
if ξ = 1

1

2

(
1 + 1

ξ2 − 1

(
1 − ξ

2
√

ξ2 − 1
ln

(
ξ + √

ξ2 − 1

ξ − √
ξ2 − 1

)))
if ξ > 1

(B7)

By inserting (B6) into (5.41) and with the relationship (5.30), resistivity contribution
tensor HE

0 of an insulating λE = 0 aligned spheroidal pore writes

HE
0 = 1

ν2λ0 (1 − g(νγ))
iT + 1

2λ0 g(νγ)
iN (B8)

and the particular case of the spherical pore γ = 1 embedded in an isotropic matrix
ν = 1 is recovered

HE
0 = 3

2λ0
i (B9)

For the limiting case of an aligned penny shaped crack embedded in a TI matrix, the
resistivity contribution tensor writes

HE
0 = 2

π λ0 ν
iN (B10)

Appendix C Information of Meshes for the FEM
Computations in the Case of Cubic Model
Containing Concave Pore

We provide in TablesC1 and C2 the mesh information during the FEM computation
for cubically bounded representative elementary volume containing respectively the
superspheroidal and the superspherical pore. The displayed numbers of nodes and
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Table C1 Number of nodes and elements in the meshes of the cubic models comprising different
superspheroid pores
p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

Num.
N.[1]

5580080 5062346 4246894 3412606 3777016 1965376 1272710 2049212 2125594

Num.
E.[2]

3949744 3243744 2958504 2289744 2575736 1377480 843280 1361640 1419840

p 0.8 0.9 1 1.5 2 2.5 3 4 5

Num. N. 1047473 1716790 798157 2284278 2724190 2072024 2233528 2422684 2668330

Num. E. 1177376 1146672 545358 1531896 1823384 1395296 1501464 1629936 1801512

Number of nodes
Number of elements

Table C2 Number of nodes and elements in the meshes of the cubic models comprising different
superspherical pores
p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.7

Num. N. 4829072 2859018 3539342 3025846 3087712 2166076 1029954 1893940 2447226

Num. E. 3260176 1924360 2473320 2020488 2049608 1437104 762880 1309424 1716608

p 0.8 0.9 1 1.5 2 2.5 3 4 5

Num. N 2487370 2288388 682512 1079731 2769712 2789860 3094708 1281679 749678

Num. E. 1716568 1579872 481944 739903 1866728 1883248 2091464 889557 505988

those of 3D quadratic elements show that each mesh is well refined for the corre-
sponding computations to obtain a precision of computation as accurate as possible.
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Chapter 6
Effective Thermal Conductivity
of Transversely Isotropic Materials
with Concave Pores

Kou Du, Long Cheng, Jean-François Barthélémy, Igor Sevostianov,
Albert Giraud, and Ayodele Adessina

Abstract The aim of this paper is to extend recent elastic work to thermal problem.
In the first part of the paper, approximate relations for the resistivity contribution ten-
sor of pores of two reference shapes, supersphere and axisymmetrical superspheroid,
are developed on the basis of 3D Finite Element Modelling, presented in the com-
panion paper, and known exact solutions for the limiting cases of spherical pores. In
the second part application to effective elastic coefficients of transversely isotropic
materials such as clay rocks, in the frame of homogenization theory, is presented to
illustrate the impact of concavity parameter on overall properties.

Keywords Concave shape · Supersphere · Superspheroid · Resistivity
contribution tensor · Effective thermal properties · Transversely isotropic matrix

6.1 Introduction

In the present paper, we analyse the effect of the concavity of pores on the overall
thermal properties of a porous material with transversely isotropic solid phase. For
this goal, we use three homogenization techniques: Non-interaction approximation,
Mori-Tanaka-Benveniste andMaxwell schemes. Both of them are based on the solu-
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tion for a single inhomogeneity problem and can be easily formulated for ellipsoidal
inhomogeneities using Eshelby results (Eshelby 1961; Wu 1966).

Effective conductivity tensor of heterogeneous transversely isotropic materials
has been extensively studied in the frame of multiscale homogenization method, by
using single inclusion approach and considering inclusions of ellipsoidal shapes.
See among many others (Giraud et al. 2007, 2019) for application to electrical and
thermal conductivity of transversely isotropic mudstone rocks, and in Barthélémy
(2008) for the case of an arbitrarily oriented ellipsoidal inhomogeneity embedded
in an orthotropic matrix (application to conductivity of cracked porous anisotropic
materials are presented).

By usingmultipole expansion of perturbation fields of inhomogeneities in terms of
ellipsoidal harmonics, a full-field semi-analytical solution has been obtained for the
conductivity problem of a composite with anisotropic matrix and arbitrarily oriented
anisotropic ellipsoidal inhomogeneities in Kushch et al. (2017) (see also applications
to conductivity in Kushch 2013; Kushch and Sevostianov 2014).

Experimental characterization and multiscale modelling of effective thermal con-
ductivity of heterogeneous transversely isotropic porous material such as fired clay
bricks have been recently investigated in Kiefer et al. (2020), Buchner et al. (2021),
Tian et al. (2019). Transversely isotropic host matrix is taken into account and
assumption of ellipsoidal shapes is considered for inclusion phases.

In the frame of single inclusion homogenization approach, by using property
contribution tensors (Kachanov and Sevostianov 2018), effect of concavity of 3D
inclusions on effective properties (elastic coefficients and conductivity) of isotropic
composites have been studied inGiraud et al. (2015), Chen et al. (2015, 2017), Sevos-
tianov et al. (2016), Trofimov et al. (2018), Markov et al. (2020). It has been recently
extended to the case of a transversely isotropic matrix in Du et al. (2020, 2021) for
the elastic problem. Recent theoretical and numerical (3D full field) modelling of
elastic properties and thermal conductivity of isotropic cracked porous media, by
multiscale homogenization, have been presented in Meynard et al. (2022) (see also
Meynard 2019 for experimental characterizations and microstructural observations).

The objective of the present paper is to extend the approach to the conduction
problem, in transversely isotropic composites with pores of concave 3D shapes,
embedded in a transversely isotropic matrix. We use the recent numerical results
presented in companion paper (Du et al. 2022) where resistivity contribution tensors
of concave pores in a transversely isotropic material are obtained.

6.2 Resistivity Contribution Tensor of a Concave Pore

Refer to Appendix A for background on tensors and property contribution tensors.
Superspheroidal and axisymmetrical superspheroidal shapes are definedby following
implicit equations (Figs. 6.1 and 6.2):
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Fig. 6.1 Superspherical pore (relation (6.1) with ς = 1)
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0.2

Fig. 6.2 2D representation in diametral plane of a 3D axisymmetrical superspheroidal pore, with
ς = 1 and symmetry axis x3
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• superspheroidal pore

| x1
a

|2p + | x2
a

|2p + | x3
ςa

|2p = 1 (6.1)

• axisymmetrical superspheroidal pore

(
x21 + x22

a2

)p

+ | x3
ςa

|2p = 1 (6.2)

p, ς and a respectively denote non-dimensional concavity parameter, aspect ratio
and semi-lengths in plane 0x1x2. These shapes are convex in the range p > 0.5
and concave for p < 0.5. Both shapes degenerate into a spheroid when p = 1. In
what follows we will only consider ς = 1 and a = 1, the first shape is then a super-
sphere of unit semi-lengths on xi axes, and the second shape obtained by a rotation
about symmetry axis x3. Supersphere and axisymmetrical superspheroid coincide
with sphere in the case p = 1 but strongly differ in the limiting case p → 0. For
thermal conductivity problem, the resistivity contribution tensorsHE

0 have two inde-
pendent thermal coefficients: HE

11 and H
E
33. Components of the resistivity contribution

tensors of superspheroidal and axisymmetric superspheroidal pores embedded in a
transversely isotropic material have been calculated by using Finite Element Method
(FEM) and detailed numerical results are given in companion paper (Du et al. 2022).
In the next section, we approximate these results analytically and then use it to esti-
mate overall thermal properties of transversely isotropic matrix containing multiple
concave pores, in the frame of single inclusion homogenization approach.

6.3 Approximation Formula for Resistivity Contribution
Tensor of a Superspherical or Axisymmetrical
Superspheroidal Pore Embedded in a Transversely
Isotropic Host Matrix

We investigate in this section the extension to transverse isotropy of approximation
formula for the resistivity contribution tensor of 3D pores of particular shapes pre-
viously presented. We restrict the study to the case of pores aligned in the direction
of the host TI matrix and the two major parameters are the concavity parameter p
characterizing the shape and the anisotropic ratio of the thermal conductivity tensor

of the host TI matrix κ = λ0
1

λ0
3
.



6 Effective Thermal Conductivity of Transversely Isotropic Materials … 119

6.3.1 Volume and Surface Area of Superspherical
and Axisymmetrical Superspheroidal Pores

Approximation formula may be obtained by using basic geometric information
related to the considered reference shapes, supersphere and axisymmetrical super-
spheroid, defined in relations (6.1–6.2), with aspect ratio ς = 1 and a = 1. These
information are volume, total surface area and corresponding volumes write (�
denotes Euler Gamma function, see Trofimov et al. 2018; Du et al. 2021 for details)

V se(p) = 2

3

(
�

[
1
2p

])3

p2 �
[

3
2p

] , V so(p) = 4π

3

�
(
1+2p
2p

)
�

(
1
p

)

�
(

3
2p

) (6.3)

where superscripts se and so respectively refer to supersphere and superspheroid,
p denotes the concavity parameter. Except for some particular values of concavity
parameter (p = 1

4 ,
1
2 , 1), the total surface area needs to be calculated by numerical

integration. As in Du et al. (2021), we use the surface area of the supersphere Ase(p)
and the surface area Aso(p) of the axisymmetrical superspheroid is given by the
single integral accounting symmetry of revolution

Aso(p) =
1∫

0

(
1 − x2p

) 1
2p

(
1 + x−2(1+2p)

(
1 − x2p

) 1−2p
p

) 1
2

dx (6.4)

6.3.2 Approximation Formula for Superspherical Pore

We restrict this study to the range 0.2 ≤ p ≤ 1.0 and 0.1 ≤ κ ≤ 10. It allows to study
concavity effect in a large extent (p < 0.5) avoiding needle type shape singularity
when p → 0. Anisotropic ratio 0.1 ≤ κ ≤ 10 allows to take into account a wide
range of transversely anisotropic materials, in particular many natural and man-
madematerials (sedimentary rocks, laminated composites, undirectional fibre-matrix
composites, clay bricks, wood, biomaterials as dentin, etc.).

On the basis of Trofimov et al. (2018), we propose approximation formula

H se
i i (κ, p) = Ase(p)/

(
V se(p)

)2/3
Asphere/

(
V sphere

)2/3 f sei i (κ, p) H
sphere
i i , no sum over i, i ∈ [1, 3] (6.5)

where sphere denotes spherical case (particular case when p = 1). Semi-analytical
approximations using the limiting cases of sphere p = 1may be used for components
H11 and H33 (with x3 symmetry axis of TI matrix ). Functions f sei i (κ, p) are given in
Eq. (6.6) by fitting the numerical results. They are piecewise functions in polynomial
forms related to both variables κ and p. The polynomial coefficients of f se11 and f se33
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Table 6.1 Maximal relative errors of approximate results compared to FEM results, ‖(H Approx
ii −

HFEM
ii )/HFEM

ii

Hse
11 Hse

33 Hso
11 Hso

33

0.877% 0.796% 0.500% 1.675%

are presented in TableB1 with different piecewise ranges of κ and p.

f sei i (κ, p) = L(i)
00 + L(i)

10 κ + L(i)
01 p + L(i)

20 κ2 + L(i)
11 κp + L(i)

02 p2

+L(i)
30 κ3 + L(i)

21 κ2 p + L(i)
12 κp2 + L(i)

03 p3

+L(i)
40 κ4 + L(i)

31 κ3 p + L(i)
22 κ2 p2 + L(i)

13 κp3 + L(i)
04 p4

no sum over i, i ∈ [1, 3]
(6.6)

Comparisons between approximate relation Eq. (6.5) and finite element results
are presented in Fig. 6.3. Maximal relative errors of approximate results compared
to FEM results of superspherical pore are given in Table 6.1, and they are lower than
0.9%.

6.3.3 Approximation Formula for Axisymmetrical
Supersheroidal Pore

Similar approximation formula Eq. (6.7) is proposed for components H11 and H33
of axisymmetrical superspheroidal pore (with x3 symmetry axis of axisymmetrical
superspheroid and TI matrix).

H so
i i (κ, p) = Aso(p)/

(
V so(p)

)2/3
Asphere/

(
V sphere

)2/3 f soi i (κ, p) H
sphere
i i , no sum over i, i ∈ [1, 3] (6.7)

where sphere denotes spherical case (particular case when p = 1). Functions
f soi i (κ, p) are the same formula as Eq. (6.6). The polynomial coefficients of f so11 and
f so33 are presented in TableB2 with different piecewise ranges of κ and p. Compar-
isons between approximate relation Eq. (6.7) and finite element results are presented
in Fig. 6.4. Maximal relative errors of approximate results compared to FEM results
are given in Table6.1, and they are lower than 1.7%.
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Fig. 6.3 The 2 independent components Hse
11 and Hse

33 of the resistivity contribution tensor of a
superspherical pore embedded in TI matrix, as a function of concavity parameter p and anisotropic
ratio of host matrix κ. Comparison between FEM results (star points) and approximate relations
(plain surface)

6.4 Evaluation of the Effective Thermal Properties
of Materials with Transversely Isotropic Matrices

In this section, we calculate effective thermal properties using three homogenization
techniques: Non-Interaction Approximation, Mori Tanaka-Benveniste and Maxwell
schemes (respectively referred with superscriptsNIA,MTB andMX), see Benveniste
1987; Kachanov and Sevostianov 2018)
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Fig. 6.4 The 2 independent components Hso
11 and Hso

33 of the resistivity contribution tensor of a
superspheroidal pore embedded in TI matrix, as a function of concavity parameter p and anisotropic
ratio of host matrix κ. Comparison between FEM results (star points) and approximate relations
(plain surface)

rNIA = r0 + ϕrE0 , rMTB = r0 + ϕ

1 − ϕ
rE0 , rMX = r0 +

[
1

ϕ

[
rE0

]−1 − Q�
0

]−1

(6.8)

where ϕ denotes the porosity. Q�
0 denotes the Hill tensor of the effective inclusion

of the Maxwell scheme, which is supposed of spheroidal shape (with aspect ratio γe)
and aligned with the directions of the TI host matrix. Q�

0 is related to the strain Hill
tensor P�

0 by the relation:

Q�
0 = λ0 · (

i − P�
0 · λ0

)
(6.9)
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where λ0 denotes the conductivity tensor of matrix. The porosity of clay matrix ϕ
(denoted f Ip in Giraud et al. 2008) is approximately comprised in the rangeϕ ≤ 0.30
for the sensitivity analysis.

6.4.1 Comparisons with Oblate Spheroidal Pores of Same
Volume

Effective thermal coefficientsλMTB
1 andλMTB

3 obtainedwithMori-Tanaka-Benveniste
(MTB) approximation of an aligned distribution of superspherical pores and axisym-
metrical superspheroidal pores are respectively presented in Figs. 6.5, 6.6 and 6.7.
Approximation formulae Eqs. 6.5–6.7 deduced from FEM are compared to approxi-
mation of resistivity contribution tensor of an oblate spheroidal pore of same volume
(and same semi-axes lengths) Eq. (6.10):

Hi j (p) ≈ H spheroid
i j (γ(p)), 0.2 ≤ p ≤ 1 (6.10)

where aspect ratio γ(p) of an oblate spheroidal pore of same volume (and semi
axes) than a superspherical and an axisymmetrical superspheroidal pore of concavity
parameter p are respectively given by

• superspherical pore:

γ(p) = V se(p)

V sphere
= 1

2 π

(
�

[
1
2p

])3

p2 �
[

3
2p

] (6.11)

• axisymmetrical superspheroidal pore:

γ(p) = V so(p)

V sphere
=

�
(
1+2p
2p

)
�

(
1
p

)

�
(

3
2p

) (6.12)

This comparison allows to underline a shape effect, and more precisely concavity
effect on the effective thermal conductivities. It may be noticed that

• both the anisotropic ratio of host matrix κ and concavity parameter p have signif-
icant importance when estimating effective thermal coefficients λMTB

1 and λMTB
3

obtained with Mori-Tanaka-Benveniste (MTB) approximation of axisymmetric
superspheroidal pores are presented in Figs. 6.6–6.7. Approximation formula
Eq.6.7 deduced from FEM are compared to approximation of resistivity con-
tribution tensor of an oblate spheroidal pore of same volume (and same semi-axes
lengths) Eqs. (6.10) and (6.12). properties and it is impossible to match effect of
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Fig. 6.5 Effective conductivity λMTB
1 and λMTB

3 as a function of porosity ϕ, MTB approximation,
comparison between approximation formula Eq. (6.5) (plain lines) and oblate spheroid with same
volume Eq. (6.10) (dashed lines)

concave pores by oblate spheroidal pores. It’s not possible to separate effect of
anisotropy from the effect of concavity.

• as expected, this concavity effect is different on normal and transverse conductivity
and depends on the shape (supersphere and axisymmetrical superspheroid). The
approximation of the pore shape by an oblate spheroid of same volume (and great
semi-axis) could be relevant only for the transverse component in the case of the
axisymmetrical shape and it is significantly irrelevant for the supersphere in the
concave range. It may be emphasized that the limiting case p → 0 (we only con-
sider, due to numerical singularity, p > 0.2), is strongly different between these
two shapes, the supersphere which respects cubic symmetry, tend to three perpen-
dicular needles of unit semi length whereas the axisymmetrical superspheroids
tend to an unit disc cross by a needle of unit semi length on symmetry axis. In
the case of axisymmetrical shape, the effect of central needle becomes negligible
compared to the unit disc. Both limiting cases of oblate spheroids when aspect
ratio tends to zero on the one hand, and axisymmetrical superspheroid when p
tends to zero on the other hand, coincide.
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Fig. 6.6 Effective conductivity λMTB
1 and λMTB

3 as a function of porosity ϕ, MTB approximation,
comparison between approximation formula Eq. (6.5) (plain lines) and oblate spheroid with same
volume Eq. (6.10) (dashed lines)

• as porosity ϕ increases, effective conductivity gradually decreases. This is obvi-
ously expected because the thermal conductivity of insulating inhomogeneities
tends to be zero. The increase in volume proportion of inhomogeneities will
increase its impact.

• changes in variables κ and p have a greater impact on effective normal ther-
mal conductivity λMTB

3 than transverse λMTB
1 thermal conductivity, in the case of

the axisymmetrical spheroidal pore, and not for the superspherical pore. It must
be emphasized that for practical applications to many anisotropic materials, the
supersphere is certainly more realistic than the axisymmetrical shape, as it may
approximately represents concave shapes filling the space between grains of con-
vex shape.
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Fig. 6.7 Effective conductivity λMTB
1 and λMTB

3 as a function of porosity ϕ, MTB approximation,
comparison between approximation formula (plain lines) and oblate spheroid with same volume
Eq. (6.10) (dashed lines)

6.4.2 Comparison of MTB, NIA and Maxwell
Homogenization Schemes

Effective thermal conductivity obtained with (NIA) approximation for aligned
axisymmetrical superspheroidal pores and randomly oriented superspherical pores
in the transverse plane are presented in Fig. 6.8. Obtained effective porous material
is transversely isotropic with same symmetry axis than matrix.

It may be observed that

• effects of these two shapes on thermal effective properties are strongly different
in the concave range 0.2 < p < 0.5. It is expected that the supersphere tends to
three orthogonal needles (with zero volume and zero surface) when p tends to
zero, whereas the axisymmetrical superspheroid tends to a circular crack with one
central orthogonal needle (the latter has zero volume but non-zero surface).

• a significant anisotropic degree in the case of aligned axisymmetrical super-
spheroidal pores, in the limit p → 0, it is similar to an aligned distribution of
penny shaped cracks in TI matrix.
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Fig. 6.8 Effective conductivity λNIA
1 and λNIA

3 as a function of porosity ϕ, NIA approximation,
with constant anisotropic ratio of hostmatrixκ = 0.2 or concavity parameter p = 0.35.Comparison
between superspherical pores (plain lines) and axisymmetric superspheroidal pores (dashed lines)

Effective thermal properties predicted by Maxwell, MTB, NIA are presented in
Fig. 6.9 for respectively for superspherical pores randomly oriented in transverse
plane and axisymmetrical superspheroidal. The shape of the effective inclusion of
theMaxwell scheme is still an open issue when host matrix is anisotropic (see Sevos-
tianov 2014; Giraud et al. 2019; Sevostianov et al. 2019). The sensitivity study on
the shape of the effective inclusion and oblate spheroid of aspect ratio γe = 0.5 − 1
confirms that it is a parameter of major importance.
Compared to experimental data investigated in Giraud et al. (2007), and relative to
transversely isotropic shale type rocks, anisotropic ratio κ = 2 is the most represen-
tative (and more generally one has 1 ≤ κ).
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Fig. 6.9 Effective thermal conductivities as a function of porosity ϕ (plain lines: super-
sphere, dashed lines: axisymmetrical superspheroid), with different approximations, with constant
anisotropic ratio of host matrix κ = 0.2, 2 and fixed concavity parameter p = 0.35

6.5 Concluding Remarks

In the presentwork, effective conductivity of aTImaterial containing aligned concave
pores is discussed. Compared to previous studies on the subject, the novelty is the
account of transverse isotropy of the host matrix. Two sources of overall anisotropy
may be distinguished, matrix on the one hand, and pores on the other hand. Non-
interaction approximation, Mori-Tanaka-Benveniste and Maxwell homogenization
schemes have been considered by using explicit analytical representation of the resis-
tivity contribution tensor for a single pore. These tensorswere calculated for the set of
superspherical and axisymmetrical superspheroidal pores with concavity parameter
p in the range 0.2 ≤ p ≤ 1 which covers both concave (0.2 ≤ p < 0.5) and convex
shapes (0.5 ≤ p ≤ 1) using FEM. Analytical approximations of the resistivity con-
tribution tensor in terms of the pore concavity parameter p and of the anisotropic
ratio κ of matrix conductivity tensor have been proposed. Similar to the elastic case,
respectively numerical and analytical solutions for octahedron (p = 0.5) and sphere
(p = 1) are used as a reference to built analytical approximations of the resistivity
contribution tensor. An extensive sensitive study on the anisotropic degree of matrix
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conductivity tensor is performed to cover a wide range ofmaterials (for application to
thermal conductivity) and accuracy of this approximation is better than 1.7% for all
the tensor components. We show that the concavity parameter is the most important
geometrical shape factor affecting the overall thermal conductivity.
Among the future extensions of this work one may cite:

• more complex and realistic orientation distributions could be considered and not
only the aligned case investigated in this paper. It would need to solve numerically
the problem of the arbitrarily oriented pore inclusion embedded in an orthotropic
matrix.

• influence of pore interaction in TI matrix on overall thermal conductivity could be
studied by comparing to full field modellings, which remains a challenging task
for such 3D complex concave shapes

• the methodology could apply to inclusions of 3D shapes defined or not by implicit
or parametric equations, perspectives are open as property contribution tensors
may be numerically computed by using FEM (and then approximate relations
could be developed differently)

Acknowledgements This paper puts an end to a work carried out in collaboration with our late
friend, Professor Igor Sevostianov, and is dedicated to his memory.

Appendix A Background on Property Contribution
Tensors

Property contribution tensors are used inmicromechanics to describe the contribution
of a single inhomogeneity to the property of interest (Kachanov and Sevostianov
2018). The average strain, over representative volume | � |, can be represented as a
sum

ε = r0 : � + �ε (A1)

where r0 where is the resistivity tensor of the matrix and � is uniform remotely
applied heat flux vector. Thematerial is assumed to be linear; hence, the extra thermal
gradient�ε due to presence of an inhomogeneity E is a linear function of the applied
heat flux vector

�ε = f HE
0 : �, with f = | E |

| � | (A2)

where | E | is the pore volume and HE
0 is second-rank resistivity contribution tensor

of the pore. The HE
0 tensor is determined by the shape and size of the inhomo-

geneity, as well as properties of the matrix and of the inhomogeneity material. This
tensor is also affected by conductive interactions. In the non-interaction approx-
imation, it is taken by treating the inhomogeneities as isolated ones. In the case
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of multiple inhomogeneities, the extra strain produced by m-th inhomogeneity is
�ε(m) = f (m) HE(m)

0 : � so that the extra thermal resistivity due to all the inhomo-
geneities is given by

�ε =
[∑

f (m) HE(m)
0

]
: � (A3)

Formula (A3) highlights the fundamental importance of the resistivity contribution
tensors: these tensors have to be summed up and averaged in the context of the
effective conductive properties. The sum∑

f (m) HE(m)
0 (A4)

properly reflects compliance contributions of individual inhomogeneities and consti-
tutes the general microstructural parameters in whose terms the effective compliance
should be expressed. The conductivity contribution tensor denoted respectively by
NE

0 allows to calculate the extra heat flux vector induced by the presence of the
inhomogeneity in a dilute situation such that

�σ = − f NE
0 · E (A5)

where E is the remotely applied thermal gradient vector. We recall that the average
concentration tensors AE

0 and BE
0 are defined as

〈
ε
〉E = AE

0 · E,
〈
σ
〉E = −BE

0 · E (A6)

with

AE
0 = (λE − λ0)

−1 · NE
0 , BE

0 = λE · AE
0 (A7)

In the general case of non-ellipsoidal shapes, contribution and concentration tensors
related to an inhomogeneity need to be calculated numerically. HE

0 and NE
0 can be

interrelated as
HE

0 = −r0 · NE
0 · r0, NE

0 = −λ0 · HE
0 · λ0 (A8)

In the case of a homogeneous inhomogeneity one has

AE
0 = (λE − λ0)

−1 · NE
0 , BE

0 = λE · AE
0 (A9)

Appendix A.1 Case of an Ellipsoidal Homogeneous
Inhomogeneity

The ellipsoidal homogeneous inhomogeneity is of particular interest in the present
since analytical expressions of contribution and concentration tensors are available
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and can then further be compared to the numerical ones to validate the methodology
presented to calculate property contribution tensors and concentration tensors. In the
particular case of an ellipsoidal inhomogeneity E embedded in an infinite matrix
0 of conductivity λ0 and resistivity r0 tensors, resistivity HE

0 and conductivity NE
0

contribution tensors write (see Kachanov and Sevostianov 2018 for details):

HE
0 = [

(rE − r0)−1 + QE
0

]−1
, NE

0 = [
(λE − λ0)

−1 + PE
0

]−1 (A10)

where PE
0 and QE

0 denote the second order Hill’s tensors of the inhomogeneity.
Thermal gradient concentration tensor of the ellipsoidal inhomogeneity writes

AE
0 = [

i + PE
0 : (λE − λ0)

]−1
(A11)

The Hill polarization tensor and resistivity contribution tensor of a spheroidal inclu-
sion aligned in a transversely isotropic host matrix is detailed below. See Giraud et al.
(2019),Barthélémy (2008) for the complete solution of arbitrarily oriented ellipsoidal
inhomogeneity embedded in an orthotropic matrix. One considers a transversely
isotropic matrix of conductivity tensor λ0 (n denotes unit vector on the symmetry
axis, in this paper n = e3)

λ0 = λ0
(
ν2 iT + iN

)
, iN = n ⊗ n, iT = i − iN (A12)

The Hill polarization tensor PE
0 of a spheroidal inclusion aligned in the directions of

a transversely isotropic matrix (spheroid and matrix have the same symmetry axis)
writes

PE
0 = g(νγ)

ν2λ0
iT + 1 − 2 g(νγ)

λ0
iN (A13)

with shape function g(ξ) (see Barthélémy 2008; Giraud et al. 2019)

g(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
1 + 1

ξ2 − 1

(
1 − ξ√

1 − ξ2
arctan

(√
1 − ξ2

ξ

)))
if ξ < 1

1

3
if ξ = 1

1

2

(
1 + 1

ξ2 − 1

(
1 − ξ

2
√

ξ2 − 1
ln

(
ξ + √

ξ2 − 1

ξ − √
ξ2 − 1

)))
if ξ > 1

(A14)

Resistivity contribution tensor HE
0 of an insulating λE = 0 aligned spheroidal pore

writes

HE
0 = 1

ν2λ0 (1 − g(νγ))
iT + 1

2λ0 g(νγ)
iN (A15)
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and the limiting case of the spherical pore γ = 1 embedded in an isotropic matrix
ν = 1 is recovered

HE
0 = 3

2λ0
i (A16)

Resistivity contribution tensor of an aligned penny shaped crack embedded in a TI
matrix writes

HE
0 = 2

π λ0 ν
iN (A17)

Appendix B Numerical Results for Approximation
Formula of Resistivity Contribution Tensors

Finite element results of a superspherical pore embedded in a TI matrix are given in
table 4 of paper Du et al. (2020), and recalled in TableB1.

Finite element results of an axisymmetrical superspheroidal pore embedded in a
TI matrix are given in table 3 of paper Du et al. (2020) and recalled in TableB2.

Table B1 Coefficients of piecewise functions f se11 and f se33 of superspherical pore

coef f se11 f se33
κ ∈ [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10]
p ∈ [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0] [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0]
L(i)
00 0.87508 1.02996 −0.29380 −0.04144 1.55862 1.42940 0.44977 −0.14596

L(i)
10 0.92838 0.08748 0.25650 0.02001 −1.16012 −0.22928 −0.89815 −0.03549

L(i)
01 −7.76403 −7.14286 4.02037 3.34072 −7.43012 −9.26201 2.55206 3.83896

L(i)
20 −1.10309 −0.00979 −0.07315 −0.00095 1.38766 0.03786 0.38652 0.00165

L(i)
11 −1.59432 −0.16284 −0.43345 −0.03018 −0.42393 0.42521 1.29267 0.05476

L(i)
02 35.38743 31.16683 −4.24305 −3.60753 30.86098 38.22527 −3.34516 −4.29555

L(i)
30 0.44168 0.00042 0 0 −0.66622 −0.00310 0 0

L(i)
21 2.46194 0.01608 0.07852 0.00099 −0.25478 −0.04060 −0.40081 −0.00174

L(i)
12 −1.28934 −0.00314 0.17175 0.00977 3.12396 −0.19939 −0.37989 −0.01839

L(i)
03 −53.72084 −47.14355 1.51744 1.30895 −48.63572 −59.63922 1.34169 1.60178

L(i)
40 0 0 0 0 0 0.00010 0 0

L(i)
31 −0.86332 −0.00063 0 0 0.60461 0.00147 0 0

L(i)
22 −0.73579 −0.00210 0 0 −1.80085 0.01061 0 0

L(i)
13 2.30732 0.08566 0 0 −0.39836 −0.04774 0 0

L(i)
04 27.48389 24.38060 0 0 25.72938 32.79942 0 0
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Table B2 Coefficients of piecewise functions f so11 and f so33 of axisymmetrical superspheroidal pore

coef f so11 f so33
κ ∈ [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10] [0.1, 1.0] [1.0, 10]
p ∈ [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0] [0.2, 0.5] [0.2, 0.5] [0.5, 1.0] [0.5, 1.0]
L(i)
00 0.26483 0.31506 −0.25095 −0.33687 19.00314 11.76301 4.33631 1.29115

L(i)
10 −0.00238 −0.01251 −0.05148 0.00924 −11.92622 −1.45203 −4.57413 −0.31561

L(i)
01 −4.87821 −5.68135 3.96451 4.28190 −141.94940 −84.24440 −10.88093 0.41270

L(i)
20 0.01106 0.00069 0.02711 −0.00055 8.97971 0.17599 3.30432 0.02697

L(i)
11 −0.47228 0.06239 0.11204 −0.00771 49.14392 5.02357 10.33640 0.71128

L(i)
02 36.00467 39.01536 −4.30156 −4.67035 463.93148 268.14315 14.16878 −2.63909

L(i)
30 0 0 0 0 −3.17077 −0.01212 −1.08391 −0.00095

L(i)
21 0.11231 −0.00302 −0.02921 0.00054 −22.09062 −0.30483 −4.87185 −0.03998

L(i)
12 1.47851 −0.05392 −0.05868 −0.00141 −80.78645 −6.96489 −7.98576 −0.54316

L(i)
03 −70.65161 −74.94268 1.58820 1.72562 −704.18395 −394.21125 −8.68698 3.02476

L(i)
40 0 0 0 0 0 0.00034 0 0

L(i)
31 0 0 0 0 5.51144 0.00850 1.14473 0.00102

L(i)
22 −0.21038 0.00223 0 0 12.74062 0.16059 1.47231 0.01196

L(i)
13 −1.15256 −0.00330 0 0 51.70313 3.68239 2.26321 0.15184

L(i)
04 45.74778 47.86995 0 0 407.85909 221.70354 2.05902 −1.09374
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Chapter 7
A Constitutive Model for Non-linear
Basic Creep of Plain Concrete

Johanna Eisenträger and Holm Altenbach

Abstract It is well known that plain concrete suffers from creep under sustained
loads. Although various constitutive models have been proposed in the last years,
these approaches are often restricted to linear creep of concrete at low load levels,
face difficulties regarding multiaxial stress and deformation states, or involve a large
number of parameters. The current contribution aims at closing this gap and presents
a new robust modelling approach for the non-linear basic creep of plain concrete.
Coupled non-linear evolution equations are formulated with respect to the creep
strain and a backstress variable, which allows for the consideration of hardening
effects. Both uniaxial and multiaxial stress conditions are taken into account, and
the Drucker-Prager equivalent stress is utilized. Material parameters are determined
based on compressive and tensile creep tests. Furthermore, the model is verified
against an additional set of creep tests, which demonstrates that the proposed concept
provides an accurate prediction for basic creep of concrete. Thereby, the concept is
applicable for loads up to 70% of the short-term strength, while requiring a relatively
low number of material parameters.

7.1 Introduction

7.1.1 Creep in Concrete: Phenomenon and Experiments

If concrete is subjected to sustained loads, creep deformations occur in the long term.
According to Neville (1995), creep describes the increase of deformations over time
under a sustained load. A creep-related phenomenon is relaxation, i.e., stress maxima
in a component decrease under constant strain. While one usually aims at keeping
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Creep curve for uniaxial compression of concrete according to (1995)
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Creep curve for uniaxial compression of concrete cylinder under sustained load of
95% of short-term strength, cf. and (2005)
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Fig. 7.1 Typical creep curves for concrete: different creep mechanisms in concrete under sustained
compressive loads, cf. Neville (1995) (top), and creep curve for uniaxial compression of concrete
cylinder under sustained load of 95% of short-term strength; cf. Papa and Taliercio (2005) (bottom)

creep strains at a minimum, relaxation can extend the lifetime of components in
some cases, e.g., by reducing stresses in a component due to restrained shrinkage;
cf. Bissonnette and Pigeon (1995). Typical creep tests under sustained compressive
loads result in a creep curve, as depicted in Fig. 7.1. As an instantaneous reaction
to the applied load, concrete exhibits elastic deformations followed by a continuous
growthof strain over time.Note that the increase in creep strain is highest directly after
applying the load such that approximately 70–80% of the entire creep deformation
occurs within the first six months after loading (Gu et al. 2016). While the creep
strain increases continuously, the change in creep deformation with time, i.e., the
creep rate, decreases.

As depicted in the top picture of Fig. 7.1, one distinguishes basic creep, i.e., creep
without a change in moisture content, and drying creep, i.e., creep with changing
moisture content (Neville 1995). Creep in concrete is primarily based on microstruc-
tural processes in the cement paste since the deformations of aggregates are negli-
gible. According to Bažant and Jirásek (2018), drying creep is due to the diffusion
of water from pores, which increases local stress concentrations in the cement paste
such that atomic bonds break, resulting in macroscopic deformations of concrete.
At stress levels below 40% of the short-term compressive strength, concrete exhibits
basic creep since atomic bands break and reconnect at highly stressed points in the
hydrated cement paste. Under higher loads, basic creep is predominantly based on
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the formation and growth of micro-cracks in the cement paste. Based on these com-
plex microstructural processes, the influence of several macroscopic parameters on
creep of concrete can be explained, for instance, the increase of creep strains under
increasing stresses and temperatures as well as higher water-to-cement ratios. Fur-
thermore, environmental factors during cement hydration, such as air humidity and
temperature, exert a significant influence on the creep strength of concrete.

Next, let us discuss the different creep stages based on the creep curve shown
in the bottom diagram of Fig. 7.1. The experimental data from Papa and Taliercio
(2005) refers to a uniaxial compressive creep test under a very high stress level which
is equivalent to 95% of the short-term compressive strength. Three different stages,
marked with I, II, and III in Fig. 7.1, are identified: primary, secondary, and tertiary
creep. During primary creep, the strain starts to increase with time, whereas the
strain rate decreases until a constant minimum value is attained. This point marks
the onset of the secondary stage, where the creep rate is constant. Under very high
loads, i.e., above 70% of the compressive strength, tertiary creep can be observed.
Due to an unstable development of micro-cracks, the strain rate increases until the
failure of the specimen (Ren et al. 2020). It is worth noting that creep in concrete
is often classified according to the load level. At loads below 40% of the short-term
compressive strength, creep in concrete is linear, i.e., the amount of creep strain
is proportional to the stress. For loads between 40 and 70% of the compressive
strength, creep in concrete becomes non-linear and is primarily based on the growth
and development of micro-cracks. Nevertheless, at these load levels, only primary
and secondary creep occur, whereas tertiary creep is only observed for loads higher
than 70% of the compressive strength (Ren et al. 2020).

Particularly for uniaxial creep of concrete under compression, a broad range of
experimental results is available; cf., for example, Ross (1958), Roll (1964), Atrushi
(2003), Ruiz et al. (2007), Ranaivomanana et al. (2013), Hamed (2015), and Charpin
et al. (2018). Since concrete is a quasi-brittle material, conducting tensile creep tests
requires more effort than applying compressive loads. Nevertheless, corresponding
data has been published aswell, e.g., Domone (1974), Bissonnette andPigeon (1995),
Kovler (1995), Kovler et al. (1999), Østergaard et al. (2001), Atrushi (2003), and
Ranaivomanana et al. (2013). In contrast, experimental creep data for biaxial and
triaxial stress states is rare; cf. Charpin et al. (2018), Liang and Wei (2019) for
biaxial and Jordaan and Illston (1969), Kennedy (1975), and Kim et al. (2005) for
triaxial stress states.

Among those experimental results, Roll (1964), Ruiz et al. (2007), Atrushi (2003),
Ranaivomanana et al. (2013), and Hamed (2015) consider high loads such that non-
linear creep occurs. Particularly high load levels of 80 and 90% of the compressive
strength are chosen in Ruiz et al. (2007) for uniaxial compressive creep tests. The
authors conclude that non-linear creep strains result from micro-cracking and also
observe a tertiary creep stage. By using uniaxial compressive creep tests as well, it
is found in Ranaivomanana et al. (2013) that non-linear creep starts at load levels
between 30–50% of the short-term compressive strength. Note that although service
load levels for most concrete structures are low such that creep strains are linear to
the stress level, higher stresses occur in certain applications, such as dams, retaining
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walls, columns, arches, containment vessels, cooling towers, prestressed concrete
members, and reinforced concrete structures with high-strength steel (Hamed 2015).
Additionally, short-termhigh loads can occur, e.g., the passing of a heavy load vehicle
over a bridge. This local and temporary overload influences indirectly the creep
behaviour by accelerating the growth of micro-cracks (Bockhold and Stangenberg
2004). Consequently, in these cases, non-linear creep has to be taken into account.

Furthermore, Ostergaard et al. have found that the age of loading is crucial par-
ticularly for tensile creep, i.e., tensile creep strains are very high when concrete is
loadedwithin 24h aftermixing. If specimens are loaded after three days, tensile creep
is significantly reduced, and the concrete mix exhibits a higher stiffness (Østergaard
et al. 2001). Moreover, according to Charpin et al. (2018), the long-term evolution
of basic creep follows a logarithmic trend over time, what has been concluded after
conducting a long-term creep test over 12years. Another interesting aspect is the
multiaxial behaviour of concrete. Although the majority of concrete structures, such
as slabs, columns, shell, and thin-walled structures, are usually subjected to multi-
axial stress conditions, particularly due to restrained shrinkage deformation (Liang
and Wei 2019), the experimental database for multiaxial creep tests of concrete is
very limited. According to Liang andWei (2019), biaxial creep is significantly lower
than uniaxial creep, and the stress state is a key factor affecting the creep property of
concrete. Furthermore, it has been found that Poisson’s ratio does not change signifi-
cantly during creep tests (Jordaan and Illston 1969; Charpin et al. 2018). In addition,
Poisson’s ratio is neither influenced by time nor by the stress state (Kennedy 1975;
Kim et al. 2005). It is also worth pointing out that volumetric and deviatoric creep
are both independent processes (Jordaan and Illston 1969).

7.1.2 Constitutive Models for Non-linear Basic Creep
in Concrete

The current section provides a short review about constitutive models for non-linear
basic creep in concrete. Modelling non-linear creep in concrete poses several chal-
lenges, such as the non-linear stress-strain relation in compression, the interaction
with cracks in tension, or stress-dependent creep characteristics at high load levels
(Hamed 2014). In contrast, relatively simple approaches, mainly based on linear
viscoelasticity, are usually used to account for linear creep in concrete. Since vari-
ous papers about linear creep in concrete have been published already, and a large
number of constitutive models has been formulated, cf. Bažant and Jirásek (2018),
the current review focuses on non-linear creep of concrete. Up to the present day,
various constitutive models for non-linear creep in concrete have been formulated,
either restricted to uniaxial stress states, cf. Carol and Murcia (1989), Bažant and
Jirásek (1993), Bažant (2001), Barpi and Valente (2002), Ruiz et al. (2007), Fan
et al. (2013), Hamed (2014), and Yu et al. (2020), or including multiaxial stress
states, cf. Argyris et al. (1977), de Borst (1987), Papa and Taliercio (1996), Bažant
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et al. (1997), Mazzotti and Savoia (2003), Bockhold and Stangenberg (2004), Papa
and Taliercio (2005), Challamel et al. (2005), Contrafatto and Cuomo (2006), Bock-
hold (2007), Luzio (2009), Dutra et al. (2010), Gernay et al. (2013), Kindrachuk
et al. (2015), Sellier et al. (2016), Bažant and Jirásek (2018), Boumakis et al. (2018),
Huang et al. (2019), and Ren et al. (2020). Interestingly, Bažant identified already in
2001 the modelling of non-linear multiaxial creep at high stresses as an important
direction for future research; cf. Bažant (2001).

The earliest and also simplest models for creep in concrete are based on linear
viscoelasticity; cf., e.g., Argyris et al. (1977), Bažant (2001), Dutra et al. (2010),
Fan et al. (2013), and Bažant and Jirásek (2018). Usually, these approaches make
use of rheological systems, cf. Altenbach and Eisenträger (2021), Palmov (1998),
Reiner (1960), and Giesekus (1994), such as Maxwell (Fan et al. 2013) or Kelvin
chains (Argyris et al. 1977; Dutra et al. 2010; Bažant and Jirásek 2018), and derive
the corresponding compliance functions. One of the earliest attempts to extend these
linear viscoelastic models to non-linear creep was presented by Carol and Murcia
in 1989 (1989). The authors formulated an incremental model based on an ageing
Maxwell chain, which accounts for non-linear compressive creep of concrete and
reduces to a linear viscoelastic model at low stress levels. Another frequently used
approach to extend viscoelastic models to non-linear creep is the introduction of a
stress-dependent creep coefficient, as done for example in Ruiz et al. (2007) and
Hamed (2014). In Ruiz et al. (2007), non-linear creep and failure of concrete under
sustained compression are simulated based on the affinity hypothesis, which states
that linear and non-linear creep strains are related through the ratio of the applied
stress level to the short-term compressive strength. Alternatively, Hamed makes use
of a generalized Maxwell model in combination with a modified principle of super-
position and a stress-dependent creep coefficient to account for non-linear creep of
concrete (Hamed 2014).While models based on linear viscoelasticity are straightfor-
ward to formulate and usually require a limited number of material parameters, these
approaches suffer from two drawbacks: First, viscoelastic models with compliance
functions do not allow for the consideration of load cycles or the description of the
non-linear behaviour under higher loads (Bockhold and Stangenberg 2004). Second,
it is stated in Ren et al. (2020) that the extension based on stress-dependent creep
coefficient is not suitable for multiaxial stress states.

Due to the limitations given above, alternative formulations have been proposed.
In the literature, a few attempts based on fracture mechanics can be found; cf.,
for instance, Bažant and Jirásek (1993) and Barpi and Valente (2002). In Bažant and
Jirásek (1993), the framework of linear elastic fracturemechanics is utilized tomodel
non-linear creep in concrete, rock, and other quasi-brittle materials by replacing
the elastic constants by linear viscoelastic operators. Barpi and Valente couple a
viscoelastic rheological model with a fictitious (cohesive) crack model to account
for creep and fracture in concrete (Barpi and Valente 2002). Another important group
of constitutivemodels for non-linear creep of concrete is based on themicroprestress-
solidification (MPS) theory (Bažant et al. 1997; Mazzotti and Savoia 2003; Yu et al.
2020). Within this theory, the age dependence of concrete compliance is assumed to
result from changes in the composition of the concrete mix, i.e., the concentrations
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of constituents change, while the properties of the constituents themselves remain
constant. Ageing of concrete is modelled based on two mechanisms: the relaxation
of the microprestress and the volume growth of hydration products. Mazzotti and
Savoia formulate a creep damagemodel based on a non-linearMPS theory (Mazzotti
and Savoia 2003), while in Yu et al. (2020), theMPS approach is modified to account
for the size effect in drying creep and to improve the description of the influence of
humidity on transient thermal creep. Note that two drawbacks of the MPS theory
are pointed out in Bockhold (2007): on the one hand, material non-linearities are
accounted for based on an artificial extension of the formulation. On the other hand,
the consideration of multiaxial stress and strain states is problematic.

By far, the largest group of constitutive models for non-linear creep of concrete,
formulated particularly within the last twenty years, combines rheological models
from viscoelasticity with approaches from classical plasticity theory and continuum
damage mechanics (CDM). Typical representatives for these models are presented
in de Borst (1987), Papa and Taliercio (1996), Papa and Taliercio (2005), Bockhold
and Stangenberg (2004), Bockhold (2007), Challamel et al. (2005), Contrafatto and
Cuomo (2006), Luzio (2009), Gernay et al. (2013), Kindrachuk et al. (2015), Huang
et al. (2019), and Ren et al. (2020). These concepts usually consist of three parts:
rheological systems such as Maxwell (de Borst 1987; Papa and Taliercio 2005;
Luzio 2009) or Kelvin chains (Papa and Taliercio 2005; Bockhold 2007) to account
for time-dependent creep deformation, a yield criterion and flow rule coupled with
hardening variables to describe instantaneous plastic strains, and damage variables.
For modelling plastic strains, the Drucker-Prager yield criterion is frequently applied
for concrete, as done for instance in Bockhold and Stangenberg (2004), Bockhold
(2007), Gernay et al. (2013), and Kindrachuk et al. (2015). Since the behaviour of
concrete in tension differs significantly from the behaviour in compression, many
formulations incorporate theRankine yield criterion for the tensile regime of concrete
(Bockhold and Stangenberg 2004; Bockhold 2007; Gernay et al. 2013). In addition,
isotropic hardening variables are usually integrated into the constitutive models as
well in order to allow for a refined representation of the evolution of inelastic strains
(de Borst 1987; Bockhold and Stangenberg 2004; Bockhold 2007; Contrafatto and
Cuomo 2006; Gernay et al. 2013; Kindrachuk et al. 2015; Huang et al. 2019). Note
that in Gernay et al. (2013) and Huang et al. (2019) separate isotropic hardening
variables for tension and compression are introduced in order to account for the
anisotropic behaviour of concrete.

A variety of concepts is used by these constitutive models to account for dam-
age. Most approaches make use of CDM since it represents a powerful modelling
technique for concrete where deterioration is due to many micro-cracks (Kindrachuk
et al. 2015). Thus, a phenomenological smeared crack approach is chosen to model
damage in concrete, which is often interpreted as the time-dependent deterioration
of the material characteristics. Various constitutive models introduce scalar damage
variables as internal variables and formulate evolution equations, which is originally
based on Kachanov’s damage model (Kachanov 1958). Note that the formulations
based on Kachanov’s approach usually make use of Lemaitre and Chaboche’s effec-
tive stress concept (Lemaitre 1996, 1971). To include internal damage variables into
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a constitutive model, basically three different approaches are available, depending
on the type of damage variable (Altenbach et al. 1990): scalar damage variables
(Papa and Taliercio 1996; Challamel et al. 2005; Contrafatto and Cuomo 2006; Kin-
drachuk et al. 2015), second-order damage tensors (Papa and Taliercio 1996, 2005),
and fourth-order damage tensors (de Borst 1987; Bockhold and Stangenberg 2004;
Bockhold 2007; Gernay et al. 2013; Ren et al. 2020). Note that it is also possible to
define damage tensors of eighth order, as explained inMurakami (2012)—a complex
and, consequently, rarely applied approach. In contrast to Contrafatto and Cuomo
(2006), where two separate scalar damage variables are introduced for tension and
compression, most constitutive models with scalar damage variables only employ a
single damage variable both for tension and compression for the sake of simplicity. It
is also worth pointing out that although some approaches, such as the ones presented
in Gernay et al. (2013), Ren et al. (2020), initially make use of fourth-order damage
tensors, these tensors are only based on two scalar damage variables for tension and
compression. Challamel et al. point out that isotropic damagemodels based on scalar
variables face severe limitations since the dilatancy phenomenon, i.e., the inelastic
volumetric expansion of concrete under compression, cannot be taken into account
(Challamel et al. 2005). Furthermore, it is criticized in Papa and Taliercio (1996) that
isotropic damage models are not able to account for damage-induced anisotropy. For
this reason, the authors utilize a scalar variable for volumetric damage as well as
two damage tensors of second order for tension and compression. On the other hand,
various drawbacks of damage tensors and advantages of scalar damage variables are
discussed in Contrafatto and Cuomo (2006), Gernay et al. (2013). First, isotropic
damage variables help to overcome convergence problems when implementing non-
isotropic damage models. Second, flow rules of anisotropic damage models with
damage tensors are often established on an empirical basis. Third, scalar damage
variables are often sufficient unless rapidly rotating stress states are present. Further-
more, the lack of experimental data on damage evolution of concrete under complex
stress states also motivates the use of scalar damage variables.

In addition to the previously discussed constitutive models, two recent formula-
tions are worth mentioning as well. First, Sellier et al. introduce a complex multi-
mechanism model based on poro-mechanics to simulate non-linear basic creep and
drying creep considering multiaxial loading states (Sellier et al. 2016). Second, a
multi-physics model including hydration, moisture, and heat transport is proposed
in Boumakis et al. (2018). The authors introduce a discrete element framework based
on the lattice discrete particle method. This approach includes the MPS theory to
account for ageing viscoelasticity. Since different mechanisms, such as long-term
creep or fracturing rate-dependence, need to be calibrated independently, the model
requires a large number of different experimental tests, which might be a practical
limitation of the formulation, as it is also pointed out in Boumakis et al. (2018).
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7.1.3 Aim and Structure of the Current Contribution

The discussion in the previous two sections has shown that a variety of constitutive
models for creep of concrete has already been proposed. However, many of the
existing approaches focus only on linear creep of concrete, face difficulties with
respect to multiaxial stress and deformation states or involve a large number of
parameters, which makes the parameter identification cumbersome. Consequently,
the paper at hand aims at closing this gap by presenting a robust constitutive model
for the non-linear basic creep of plain concrete. The model should have the following
features:

• predict primary and secondary basic creep of plain concrete in a robust and accurate
manner,

• account for the time-dependency of parameters due to the hardening of concrete,
• suitable for loads up to 70% of the short-term strength of concrete,
• applicable to multiaxial stress and strain states, and
• involve a low number of parameters.

In the following section, the proposed approach is discussed, whereby we start by
presenting the governing equations in one-dimensional form in Sect. 7.2.1. This is
succeeded by a description of the calibration procedure in Sect. 7.2.2 and the trans-
formation of the governing equations to three dimensions in Sect. 7.2.3. Finally,
the calibrated model is verified against additional creep tests from the literature in
Sect. 7.2.4. The paper concludes with a summary and an outlook on future work in
Sect. 7.3.

7.2 Constitutive Model for Non-linear Basic Creep
of Concrete

This section introduces a novel constitutive model for non-linear basic creep of
plain concrete. First, the governing equations are discussed in a one-dimensional
form. Then, the model is calibrated based on uniaxial creep tests, i.e., all material
parameters are determined. In Sect. 7.2.3, the constitutive model is referred to three-
dimensional stress and strain states, which is followed by a verification against a
different set of creep tests in Sect. 7.2.4.

7.2.1 Governing Equations in One Dimension

First, let us introduce the governing equations of the constitutive model in one-
dimensional form since the calibration is also based on uniaxial material tests.
Hooke’s law for linear elasticity holds such that the stress σ depends linearly on
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the elastic strain εel:
σ = Eεel (7.1)

with Young’s modulus E . The strains are split additively into the corresponding
elastic and inelastic parts:

ε = εel + εin. (7.2)

As discussed in Sect. 7.1.1, creep tests with specimens made from plain concrete
prove that concrete exhibits primary and secondary creep both under tensile and com-
pressive loads; cf., e.g., Hamed (2015), Domone (1974). Subjected to higher loads,
concrete also shows a tertiary creep stage; cf. Papa and Taliercio (2005). However,
since these load levels are not of practical relevance, the current model will focus
only on primary and secondary creep. To account for the decrease of the strain rate
during the primary creep stage, a kinematic hardeningmodel involving the backstress
β is adopted from Naumenko et al. (2011), Naumenko and Altenbach (2016), and
Eisenträger (2018). The following evolution equations hold for the inelastic strain
εin and the backstress:

ε̇in = sgn (σ − β) fσ (|σ − β|) − ∂

∂t

(
β

E

)
, (7.3)

β̇ = 1

E
Ėβ + E

α

1 − α

(
ε̇in − β

β�

∣∣ε̇in∣∣
)

, (7.4)

where the dot �̇ = ∂�
∂t denotes the partial derivative with respect to time. Note that

the backstress is similar to the one introduced by Armstrong and Frederick (1966), as
demonstrated inNaumenko et al. (2011). Furthermore, fσ denotes the stress response
function, and α as well as β� are two stress-dependent material parameters.

The last term in Eq. (7.3) describes the change in backstress and Young’s modulus
with respect to the time t . While this term is usually neglected when using the
constitutive model to describe the behaviour of metals, cf. Eisenträger (2018), it is
crucial to take this term into account for concrete due to the time-dependence of
Young’s modulus while concrete hardens (Gilbert and Ranzi 2011). By evaluating
the last term in Eq. (7.3) and exploiting Eq. (7.4), Eq. (7.3) is transformed as follows:

ε̇in + α

1 − α

(
1 − β

β�

sgn
∣∣ε̇in∣∣

)
ε̇in = sgn (σ − β) fσ (|σ − β|) . (7.5)

Finally, the evolution of Young’s modulus during the hydration of concrete is
described by the following equation extracted from Gilbert and Ranzi (2011):

E (t) = E28

[
exp

[
C1

(
1 −

√
C2

t − t0

)]]C3

, (7.6)
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where E28 denotes Young’s modulus of concrete at an age of 28 d, and C1, C2, C3,
and t0 are further material parameters. The time derivative of Young’s modulus is
obtained as follows:

Ė (t) = 1

2
E (t)C1

√
C2C3 (t − t0)

−1.5 . (7.7)

7.2.2 Calibration

Due to the limited availability of experimental data, the constitutive model is first
calibrated in its one-dimensional form based on both compressive and tensile creep
tests. Afterwards, the one-dimensional equations are referred to multiaxial stress and
strain states by introducing equivalent stress and strain measures.

The calibration of the one-dimensional creep model is based on the uniax-
ial compressive and tensile creep tests presented in Hamed (2015) and Domone
(1974), respectively. For the compressive creep tests, cylindrical specimens made
from plain concrete (water/cement ratio = 0.54) are loaded at an age of 64 d, con-
sidering four different stress levels, i.e., 30, 50, 60, and 70% of the compressive
strength fc =−36MPa at the age of loading. Young’s modulus and the short-term
compressive strength at 28 d are given as E28 = 26700MPa and f 28c =−32MPa
(Hamed 2015). In addition, experimental data sets for tensile creep tests are extracted
fromDomone (1974) because these creep tests with specimens made from plain con-
crete are conducted at similar relative load levels, i.e., 25, 40, 55, 65, and 70% of the
short-term strength f 28t = 2.12MPa. Furthermore, the water/cement ratio (0.55) of
the concrete mixture is similar to the mixture used for the compressive creep tests
in Hamed (2015). Note that the tensile creep tests are conducted at an age of 28 d.

Calibrating the creepmodel closely follows the procedure presented inEisenträger
(2018) and Eisenträger et al. (2018). In the first step, the stress response function fσ
is found, which is based on the initial state of deformation. At the very beginning of a
creep test, the influence of hardening is negligible (β ≈ 0, α ≈ 0) such that Eq. (7.5)
can be simplified as follows:

ε̇ininit ≈ sgn (σ ) fσ (|σ |) . (7.8)

Thus, the initial inelastic strain rate ε̇ininit is determined for every creep test, both in
tension and compression, as described in Eisenträger (2018) and Eisenträger et al.
(2018). The resulting data is represented by red points in Fig. 7.2, whereby the upper
diagram displays the absolute value of the initial inelastic strain rate depending on the
absolute stress values for all compressive creep tests. The lower diagram summarizes
the equivalent results for the tensile creep tests. Figure7.2 also demonstrates that the
experimental data is approximated with high accuracy by the power law function
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Fig. 7.2 Initial inelastic strain rates ε̇ininit versus stress σ for compressive and tensile creep tests

fσ (|σ |) = A

( |σ |
σ0

)n

(7.9)

with the material parameters A, σ0, and n. The following values for these param-
eters are obtained via the optimization procedure described in Eisenträger (2018):
At =3.009 × 10−9 s−1, Ac = 5.317 × 10−10 s−1, σ0t =2.000MPa, σ0c =
10.000MPa, nt = 2.775, nc = 2.115, while the subscripts�t and�c indicate whether
the parameter is valid for tension or compression, respectively.

In addition to the stress response function, the parameters α and β� must be deter-
mined. Both parameters describe the evolution of kinematic hardening, taking place
particularly during the primary creep stage, and they are obtained via a parameter
sensitivity study. Thereby, the tensile and compressive creep tests are simulated with
the constitutive model by solving the system of equations, i.e., Eqs. (7.1), (7.2),
(7.4), and (7.5), numerically with Matlab’s solver ode45, which is based upon an
explicit Runge-Kutta method (The MathWorks, Inc. 2021). For the simulation, the
stress is prescribed as constant external load σ = σ̄ , and both the inelastic strain and
the backstress are set to zero at the beginning of a creep test, i.e., εin (t = tstart) =0
and β (t = tstart) =0. To obtain suitable values for β� and α, both parameters are var-
ied systematically, and the obtained creep curves are compared to the experimental
results by using the following error Δεin in inelastic strain which is defined based
on the L2 norm:
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Δεin =

√√√√√√√√

tend∫
tstart

[
εinexp (t) − εinnum (t)

]2
dt

tend∫
tstart

[
εinexp (t)

]2
dt

. (7.10)

The subscript �exp denotes the experimental data, while the subscript �num refers to
Matlab’s results. Furthermore, the integrals with respect to time are computed via the
trapezoidal rule, and tstart and tend are the start and end time of the individual creep
test. An overall error measure for all tensile or compressive creep tests is obtained as
mean average of the errors in inelastic strain of the individual creep tests in tension
or compression, respectively. Then, values for the parameters α and β�, which result
in a minimal error in inelastic strain for all tests, are found and interpolated with the
following functions to obtain the stress dependence:

α (|σ |) = A1

(
2

1 + exp (−A2 |σ |) − 1

)

+ A3

(
2

1 + exp (−A4 (|σ | − A5))
− 1

)
+ A6, (7.11)

β� (|σ |) = B1 + B2 |σ | . (7.12)

In Eqs. (7.11) and (7.12), the parameters A1, A2, A3, A4, A5, A6, B1, and B2 are intro-
duced. Note that the actual values of these parameters differ depending on the type
of loading, as can be seen from Table7.1, which provides an overview of all mate-
rial parameters used in the one-dimensional formulation of the constitutive model
for basic creep of plain concrete. The parameters C1, C2, C3, and t0 are adopted
from Gilbert and Ranzi (2011), and the value for Young’s modulus at an age of 28 d
is taken from Hamed (2015).

Finally, both the compressive and tensile creep tests are simulated with the con-
stitutive model, applying the found set of parameters and functions. The results are
summarized in Fig. 7.3, whereby the top diagram contains the compressive creep
tests and the lower diagram displays the results of the tensile tests. Note that the
experimental results are depicted as solid black lines, whereas dashed red lines are
used for the results of simulation. It becomes obvious that the constitutive model pro-
vides an accurate approximation of the compressive creep tests and a good-quality
approximation of the tensile creep tests with slightly higher deviations compared to
the compressive tests. This effect can partly be explained by the higher scatter of
the tensile creep tests, as becomes obvious in Fig. 7.2. While the initial creep rates
in compression can be fitted by the stress response function with high accuracy, the
data resulting from the tensile creep tests shows larger deviations from the power
law stress response function.
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Table 7.1 Material parameters in the one-dimensional constitutive model for basic creep of plain
concrete

Variable Value Value
(compression)

Value (tension) Unit

C1 0.380 − − −
C2 28.000 − − d

C3 0.500 − − −
t0 0.000 − − s

E28 26700.000 − − MPa

A − 5.317 × 10−10 3.009 × 10−9 s−1

σ0 − 10.000 2.000 MPa

n − 2.115 2.775 −
B1 − 12.400 0.000 MPa

B2 − 0.488 0.882 −
A1 − 0.000 1.000 −
A2 − 0.000 2.300 MPa−1

A3 − 0.000 −0.250 −
A4 − 0.000 5.000 MPa−1

A5 − 0.000 1.320 MPa

A6 − 0.360 −0.240 −

Fig. 7.3 Inelastic strain εin versus time t for creep tests. Compressive creep tests (top) with
experimental data from Hamed (2015) and tensile creep tests (bottom) with experimental data
from Domone (1974)
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7.2.3 Governing Equations in Three Dimensions

To allow for the consideration of complex structures and loading scenarios, the
current section extends the constitutive model presented as a one-dimensional for-
mulation in Sect. 7.2.1 to multiaxial stress and strain states. This is primarily done
by transforming the governing equations of the uniaxial model into a tensor notation
and introducing adequate equivalent stress and strain measures. For plain concrete,
the Drucker-Prager equivalent stress (Drucker and Prager 1952) is frequently used
because it accounts for the influence of the deviatoric as well as hydrostatic stresses
and has been proven to provide an accurate description for biaxial stress and strain
states (Bockhold 2005). The Drucker-Prager equivalent stress is defined as follows
Drucker and Prager (1952):

σeq = γ

[
μtr (σ ) +

√
1

2
σ ′ : σ ′

]
(7.13)

with the biaxiality parameter μ and the abbreviation γ =
(

1√
3

− μ
)−1

. Note that

the parameter μ accounts for the influence of biaxial stresses and is obtained based
on numerical tests in Krätzig and Pölling (2004) as μ= 0.050, which is adopted by
the current paper. Furthermore, the variable σ denotes the Cauchy stress tensor, and
tr (�) represents the trace operator. The deviatoric part of a second-order tensor is
marked by the prime �′ =� − 1

3 tr (�) I with the identity tensor I = ei ⊗ ei with
respect to an orthonormal vector basis {ei }. In Eq. (7.13), the double scalar product
has been introduced which is defined via A : B = Akl Blk for the two second-order
tensors A = Aklek ⊗ el and B = Bmnem ⊗ en . Note that wemake use of the Einstein
summation convention.

As a next step, Eq. (7.1), i.e., Hooke’s law for isotropic elasticity, is formulated
for three dimensions:

σ = K εelV I + 2Gεel′ (7.14)

with the elastic strain tensor εel, the volumetric strain εV = tr (ε), as well as the
bulk and shear modulus K and G, respectively. For three-dimensional elasticity, two
independent material parameters are required. We make use of Poisson’s ratio and
assume that it is constant over time, i.e., ν =0.2, as proposed in Aili et al. (2016).
Then, the shear and bulk moduli are obtained as follows based on the time-dependent
function of Young’s modulus in Eq. (7.6) and Poisson’s ratio:

G (t) = E (t)

2 (1 + ν)
, (7.15)

K (t) = E (t)

3 (1 − 2ν)
. (7.16)

Equation (7.14) can also be rewritten as follows:
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σ = C : εel (7.17)

by introducing the elastic stiffness tetrad:

C = 1

3
(3K − 2G) I ⊗ I + 2GI, (7.18)

wherebyI = 1
2

(
ei ⊗ e j ⊗ e j ⊗ ei + ei ⊗ e j ⊗ ei ⊗ e j

)
is the symmetric unit tetrad.

The split of strains into the elastic and inelastic parts, cf. Eq. (7.2), is obtained as
follows after introducing the tensor of inelastic strains εin:

ε = εel + εin. (7.19)

Additionally, the evolution equation for the inelastic strain, cf. Eq. (7.5), is trans-
formed as follows by introducing the equivalent Drucker-Prager stress σeq, the back-
stress tensor β, and the effective stress tensor σ̃ = σ − β:

ε̇in = γ fσ
(
σ̃eq

) [
μI + [

1 − α
(
σeq

)]
J̃2σ̃

′ + γα
(
σeq

)
2β�

(
σeq

) β ′
]

. (7.20)

Note that the following abbreviation has been used in Eq. (7.20):

J̃2 =
(
2

√
1

2
σ̃ ′ : σ̃ ′

)−1

. (7.21)

Furthermore, the equivalent effective stress σ̃eq is used in Eq. (7.20) and defined in
analogy to Eq. (7.13):

σ̃eq = γ

[
μtr (σ̃ ) +

√
1

2
σ̃ ′ : σ̃ ′

]
. (7.22)

The evolution equation for the backstress, cf. Eq. (7.4), is referred to three-
dimensional stress and strain states, too:

β̇ = Ġ

G
β ′ + K̇

3K
tr (β) I + α

(
σeq

)
1 − α

(
σeq

)
[
2G

(
ε̇in

)′ + K tr
(
ε̇in

)
I

−γ fσ
(
σ̃eq

) (
3KμI + γG

β�

(
σeq

)β ′
)]

. (7.23)

Note that in three dimensions, the equivalent stress measures are used as arguments
for the stress response function fσ as well as the parameters α and β�. The original
functions according to Eqs. (7.9), (7.11), and (7.12) are not changed.
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The three-dimensional formulation of the constitutive model makes use of the
material parameters determined in Sect. 7.2.2; cf. Table7.1. In the one-dimensional
formulationof themodel, someparameters varydependingon the typeof loading, i.e.,
whether tension or compression occurs. For three-dimensional loading scenarios, the
following criterion to distinguish tension and compression is suggested inContrafatto
and Cuomo (2006):

tr
(
εel) < 0 ⇒ compression, (7.24)

tr
(
εel

)
> 0 ⇒ tension. (7.25)

7.2.4 Verification of the Constitutive Approach

To verify the calibrated constitutive model, an additional set of experiments, i.e.,
the compressive creep tests from Roll (1964), is simulated. Creep tests at four
different compressive load levels, i.e., σ̄ = {20%, 35%, 50%, 65%} f 28c , are con-
ducted at an age of 28 d. The compressive strength and Young’s modulus account for
f 28c =−42MPa and E28 =21500MPa, respectively. Figure7.4 displays the obtained
creep curves, i.e., the absolute value of the inelastic strain dependingon time,whereby
the experimental results marked as dots and dashed lines represent the simulation

Fig. 7.4 Inelastic strain εin versus time t for compressive creep tests (experimental data from Roll
1964)
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results. Note that Roll (1964) provides only limited information such that the experi-
mental data is restricted to a low amount of data points. Nevertheless, it becomes evi-
dent that the constitutive model provides an adequate description of the experimental
creep curves, and that the verification of the calibrated model has been successful.
The lower the stress level, the more accurate the approximation by the constitutive
model. However, it must be pointed out that creep of concrete varies to a high degree
depending on the used mixture, the age at loading, the load level, curing conditions,
etc. Therefore, it is highly recommended to apply utmost caution when using the cal-
ibrated model for other concrete mixes under varying conditions. In many cases, the
constitutive model at hand must be recalibrated using different experimental results
obtained with the same concrete mixture under similar conditions.

7.3 Summary and Outlook

The contribution at hand presents a constitutive model for non-linear basic creep of
plain concrete. The governing equations are first formulated in one-dimensional form
since material parameters are determined in a calibration procedure against uniaxial
tensile and compressive creep tests from the literature. Coupled non-linear evolution
equations are formulated with respect to the creep strain and a backstress variable,
which allows for the consideration of kinematic hardening effects. To extend the
analysis to complex structures, the constitutive model is referred to multiaxial stress
and deformation states by applying a tensor notation and introducing the Drucker-
Prager equivalent stress concept.

It has been demonstrated that the constitutive model is able to predict primary
and secondary basic creep of plain concrete with high accuracy for loads up to 70%
of the short-term strength. This holds both for tensile and compressive loading. The
verification against an additional set of creep tests from the literature confirms the
robustness of the developed approach, which involves a relatively low total number
of material parameters.

The authors aim at implementing the constitutive model into a numerical frame-
work such that the analysis of complex structures under realistic boundary conditions
is feasible. Nowadays, plain concrete is rarely usedwithout any reinforcement, which
is why one has to consider both prestressed concrete (with continuous reinforcement)
and short-fibre reinforced concrete. The numerical analysis of these structures poses
several challenges. In previous analyses, cf. e.g., Zhang et al. (2020), Ya et al. (2023),
the scaled boundaryfinite elementmethod (SBFEM)has been identified as a powerful
tool to simulate the behaviour of these structures and materials. The implementation
of the presented constitutive model into the SBFEM can be realized in two different
ways: either directly into an SBFEM code, as done for example in Eisenträger et al.
(2020), or by implementing the constitutive model as a User Material (UMAT) sub-
routine into the commercial FE code Abaqus. Within the latter approach, the UMAT
is combined with the User Element (UEL) presented in Ya et al. (2021, 2023). This
would also allow for the consideration of fibre-pullout and damage.
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Chapter 8
On Tensile Instability of Elastic
Structures with Elastic Sliders
of Different Stiffness

Vadim V. Eremeev and Polina A. Lapina

Abstract We analyze interesting phenomena of elastic instability under tension. For
example, such an instability relates to neck formations in thin rods. It can also be
observed in systems with sliders. Here we discuss a response of a one-dimensional
elastic structure with sliders having different stiffness. As a result of multiple buck-
lings, we get a softening regime under tension.

Keywords Bifurcation · Stability · Slider · Instability under tension

8.1 Introduction

Nowadays the interest is growing to new microstructured or architectured materials
such as beam-lattice materials. They may demonstrate interesting unusual behavior
such as instability under tension. Indeed, the most known is buckling behavior under
compression. Some elastic structures with observed instability under tension were
discussed by Zaccaria et al. (2011), Bertoldi et al. (2017), Bigoni et al. (2018),
Eremeyev and Turco (2020), Chróścielewski et al. (2020). The peculiarity of the
latter structures consists of the existence of particular elements called sliders. Possible
sliding brings a certain nonlinearity and further bifurcations. Let us note that sliding
plays a crucial role also in other microstructured materials such as masonries, see,
e.g., Rios et al. (2022a); Rios et al. (2022b).

Here we modify the model proposed by Chróścielewski et al. (2020), Eremeyev
and Turco (2020) in order to have multiple sliders of different shear stiffness. The
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structure under consideration consists of n elements (elementary cells). Each cell
consists of two elastic bars of the same length and stiffness and a slider. The latter
possesses a shear stiffness.

The chapter is organized as follows. First, we discuss the tension of an elementary
cell. The loading diagram is plotted and a critical force is determined. Thenwediscuss
a system of n parallel connected elementary cells.We assume that all elastic bars have
the same stiffness whereas the shear stiffnesses of sliders are different, in general.
As a result, we obtain a force-displacement diagram for this system.

8.2 Elementary Cell Under Tension

Following Chróścielewski et al. (2020), Eremeyev and Turco (2020), let us consider
the tension of an elastic structure shown in Fig. 8.1. It consists of two elastic bars
connected through a slider. The latter consists of two rigid bars and has a shear
spring that prevents the free sliding of these bars. The upper elastic bar is loaded
by tensile dead force P , whereas the second bar is fixed at the end. For this system,
we have two kinematical descriptors, elongation λ = l − l0 and the angle of slider
rotation φ. So the cell has two degrees of freedom, translational and rotational ones.
This structure can exhibit so-called rotation instability related to the appearance of
a rotational mode of deformation.

In the following, we use a variational approach. The total potential energy has the
form

h

l

l0

0

a)

h

l

l

b)

P

l

l

c)

P

h
d φ

Fig. 8.1 Elementary cell with slider: a reference placement; b current placement without rotation;
c current placement with rotation
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E = U − V,

where U is an elastic energy, whereas V is the potential of external loads. U and V
are given by the following formulae

U = 2Ub +Us, V = Pu, u = L − L0, L0 = 2l0 + h, L = 2l + d,

Ub = 1

2
Cλ2, λ = l − l0, d = h

cosφ
− h,

Us = 1

2
kγ 2, γ = h tan φ.

Hereinafter C is the stiffness of the bars, u is the displacement of the upper end, l
and l0 are lengths of the bars in reference and current placements, respectively, k is
the stiffness of a shear spring. In addition, h is the distance between the faces of the
slider. Note that we assume that h is constant during deformation. As a result, we
have the formula

E = Cλ2 + 1

2
kh2 tan2 φ − P

(
2λ + h

cosφ
− h

)
. (8.1)

Equilibrium equations follow from the stationarity conditions

∂E

∂λ
=2Cλ − 2P = 0, (8.2)

∂E

∂φ
=h sin φ

cos2 φ

[
kh

cosφ
− P

]
= 0. (8.3)

Obviously, Eqs. (8.2) and (8.3) have two solutions. The first one is trivial and relates
to straight configuration shown in Fig. 8.1b. It is given by

λ = P/C, φ = 0.

The second one is non-trivial and corresponds to so-called rotational instability, see
Chróścielewski et al. (2020). It is given by the formulae

λ = P

C
, P = kh

cosφ
.

We can show that the second solution is energetically preferable.
For the first solution, we have the following P − u dependence

P = C

2
u, (8.4)

whereas the second solution results in the formula
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P

u

P*

0

Fig. 8.2 Force–displacement diagram with bifurcation point at P = P∗

P = C

2 + C/k
u − h

1 + C/2k
. (8.5)

The force–displacement diagram is given in Fig. 8.2. The second solution exists if and
only if P > P∗ ≡ kh. It is shown in red in Fig. 8.2, whereas the primary solution
corresponds to the blue line which starts at the origin of the coordinate system.
Obviously, we have a bifurcation here and P∗ is a critical force.

8.3 Multiple Bifurcations

Let us now consider a system of n cells such as shown in Fig. 8.3. Here only vertical
displacements are assumed. For simplicity, we assume that all elastic bars have the
same stiffness C , whereas shear springs are different in stiffness. Without loss of
generality, we assume that they are ordered as follows

k1 ≤ k2 . . . ≤ kn.

The elastic energy U became a sum

U =
n∑

i=1

Cλ2
i + 1

2

n∑
i=1

kih
2 tan2 φi , (8.6)

whereas the work of external force has the same form V = Pu with u given by
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P

Fig. 8.3 Structure with n elementary cells. Here n = 12

u = 2λi + h

cosφi
− h, i = 1, . . . , n.

So this system has n + 1 degrees of freedom, for example, u and φi can be chosen as
for λi we have the relation λi = u/2 + h/2 − h/2cosφi . As a result, the stationarity
conditions of the total potential energy take the form

∂E

∂u
=

n∑
i=1

2Cλi
∂λi

∂u
− P

=
n∑

i=1

C

2

[
u + h − h

cosφi

]
− P = 0, (8.7)

∂E

∂φi
≡ ∂U

∂φi
=

n∑
j=1

2Cλ j
∂λ j

∂φi
+ h2ki tan φi

1

cos2 φi

= − Ch

[
u + h − h

cosφi

]
sin φi

cos2 φi
+ h2ki

sin φi

cos3 φi
= 0. (8.8)

As in the previous case we have the primary solution in the form

P = n
C

2
u, φi = 0, i = 1, . . . , n, (8.9)

and a series of non-trivial solutions with φi �= 0 given by

P =
n∑

i=1

C

2

[
u + h − h

cosφi

]
, (8.10)

H sin φi

cos2 φi

[
hki

cosφi
− C(u + h) + Ch

cosφi

]
= 0, i = 1, . . . , n. (8.11)

The last equation results in more simple dependence
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h

cosφi
= C

C + ki
(u + h). (8.12)

From (8.12) it follows that a solution exists when the following inequality is fulfilled

u

h
≥ ki

C
. (8.13)

This means that in the range u < k1/C there exists only the primary solution. In the
range

hk1
C

≤ u <
hk2
C

we have two solutions, the primary and secondary ones. Finally, for u > hkn/C we
have n + 1 solutions.

The effective stiffness of the structure under consideration depends on the chosen
solution. For the primary solution, it is a stiffness of n parallel bars. So we have

S0 = nC

2
. (8.14)

For the second solution, we get

S1 = (n − 1)
C

2
+ C

2

k1
C + k1

, (8.15)

for the tertiary solution we obtain

S2 = (n − 2)
C

2
+ C

2

k1
C + k1

+ C

2

k2
C + k2

. (8.16)

Finally, it becomes

Sn = C

2

n∑
i=1

ki
C + ki

. (8.17)

Obviously, the effective stiffness parameters are ordered as follows

Sn < Sn−1 < . . . < S2 < S1 < S0. (8.18)

So consequent bucklings result in the softening of the structure.
The corresponding force–displacement graph is shown in Fig. 8.4. Here u∗

i =
hki/C . u∗

i is the abscissa of intersections of lines Pi−1(u) and Pi (u). As any new
solution is energetically preferable, the force–displacement curve became a broken
line shown in Fig. 8.5.

So one can see that sliding brings a softening in tension. Let us also note that
similar behavior for a system of parallel bars one can obtain considering elastoplas-
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Fig. 8.4 Force–displacement diagram with bifurcation points at P = P∗
i . Here only six points are

shown

Fig. 8.5 Resulting force–displacement diagram
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tic behavior. Indeed, in the case of elastoplasticity with hardening an elastoplastic
bar exhibits a behavior similar to that given in Fig. 8.2. So a system of parallel
elastoplastic bars may have the same behavior as in Fig. 8.5. Similar and even more
complex behavior one can observe in media with damage, see, e.g., Lemaitre (1992,
pp. 90–94). Unlike these structures, here we have a pure elastic regime.

8.4 Conclusions

We presented a one-dimensional elastic structure that consists of n elements. Each
element consists of two elastic bars connected through a slider with shear stiffness.
Considering a range of shear stiffness we obtained a loading diagramwith a softening
part. Note that for n → ∞ we have an almost smooth transition regime related to a
cascade of bifurcations.

The discussed above model could be also extended for more complex structures
with a dominant shear response such as some beam-lattice materials or elastic net-
works. Nowadays, the beam-lattice materials and elastic networks lie on the cut-
ting edge of mechanics of materials, see, e.g., Fleck et al. (2010), Picu (2022)
and the reference therein. Often these materials were modeled within generalized
models of continuum such as strain gradient (Berkache et al. 2017; dell’Isola and
Steigmann 2020) or micropolar (Dos Reis and Ganghoffer 2012; Eremeyev et al.
2013; Eremeyev 2019; Eremeyev and Reccia 2022; Molnár and Blal 2023) and
micromorphic media (Neff and Forest 2007; Hütter 2019; Biswas et al. 2020). So
one may expect various regimes of instability such as discussed here buckling due
to sliding.

Let us note that the analysis of instabilities under tension is closely related to
the scientific interests of Prof. Leonid M. Zubov, to whom this chapter is devoted.
He provided such an analysis using methods of the three-dimensional nonlinear
elasticity, see, e.g., Zubov and Rudev (1994, 1996), Lastenko and Zubov (2002),
Zubov and Lastenko (2004), Zubov and Sheidakov (2005, 2007) and related works
from Rostov’s school of mechanics (Sheidakov 2007; Eremeyev et al. 2007).

Acknowledgements The second author acknowledges the support by the Russian Sciencebreak
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Chapter 9
On Ellipticity in Nonlinear Elasticity

Victor A. Eremeyev

Abstract In this note we discuss ellipticity properties in elastic media under finite
deformations. Ellipticity could be considered as an additional so-called constitutive
inequality. The loss of ellipticity may indicate material instabilities, so its analysis
constitutes an important problem in material modelling. Here we briefly recall some
definitions of ellipticity and discuss their consequences in nonlinear elasticity of
simple and non-simple elastic media.

Keywords Ellipticity · Nonlinear elasticity · Generalized media

9.1 Introduction

According to Truesdell (1966), Truesdell and Noll (2004) the formulation of con-
stitutive equations is a crucial problem of continuum mechanics. In order to restrict
the possible forms of constitutive relations some general principles were proposed
such as the principle of material frame indifference, determinism, local action, and
some others. In addition to the latters, in the literature several constitutive inequalities
were discussed, see Truesdell and Noll (2004), Ogden (1997), Lurie (1990). Among
them, ellipticity of equilibrium equations plays an important role. For example, Hill
(1962) and Rice (1976) considered the loss of ellipticity as a possible criterion of
material instability. Moreover, for simple elastic materials it can be proven that the
infinitesimal stability, i.e. positive definiteness of the second variation of a total
energy functional, implies the weak form of the strong ellipticity condition called
the Hadamard inequality (Ogden 1997; Lurie 1990). So the Hadamard inequality is a
necessary condition of infinitesimal instability. Converse statement can be proved for
affine deformations of a homogeneous solid and for Dirichlet’s boundary conditions.
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In the mathematical literature there exist various definitions of ellipticity such as
ordinary or Petrowsky ellipticity (Petrowsky 1939), strong ellipticity (Vishik 1951;
Nirenberg 1955), Douglis–Nirenberg ellipticity (Douglis and Nirenberg 1955), and
some others, see Volevich (1965), Egorov and Shubin (1998), Agranovich (1997).
Ellipticity provides such properties as a regularity of solutions and well-posedness
of the problems under consideration.

The aim of this note is to bring attention to ellipticity conditions in nonlinear
elasticity. The chapter is organized as follows. First, we briefly recall definitions of
ordinary and strong ellipticity in Cauchy-type nonlinear elasticity. In addition we
give an example of the Douglis–Nirenberg ellipticity considering incompressible
elasticity. We also mention ellipticity within implicit elasticity. Finally, we discuss
ellipticity conditions in higher-order models of continua and media with enhanced
kinematics.

9.2 Cauchy Nonlinear Elasticity

Governing equations of nonlinear elasticity consists of the Lagrangian equilibrium
equations (Lurie 1990)

∇ · P + ρf = 0, (9.1)

and constitutive relations
P = P(F), F = ∇x. (9.2)

Here P is the first Piola–Kirchhoff stress tensor, ∇ is the 3D nabla-operator, · is the
dot product, ρ is a mass density in a reference placement, f is a mass force vector,
F is the deformation gradient, and x is a position vector in a current placement. Let
us note that hereinafter we use the direct tensor calculus as in Wilson (1901), Lurie
(1990), Simmonds (1994), Eremeyev et al. (2018a).

Equations (9.1) and (9.2) constitute a nonlinear system of partial differential
equations (PDEs) of the first order with respect to P and x. Substituting (9.2) into
(9.1) we get a system of PDEs of second order with respect to x

∇ · P(∇x) + ρf = 0. (9.3)

We call (9.3) ordinary elliptic or strongly elliptic if the following inequalities are
fulfilled, respectively,

detQ(k) �= 0, ∀ k �= 0, (9.4)

a · Q(k) · a ≥ Ca · ak · k, ∀ a,k, (9.5)

where C is a positive constant independent on k and a, whereas k and a are arbitrary
vectors. Q(k) is called acoustic tensor and can be determined through the formula
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a · Q(k) · a = (k ⊗ a) : dP
dF

: (k ⊗ a), (9.6)

where ⊗ and : are the dyadic and double dot products, respectively. Obviously,
the strong ellipticity implies the ordinary ellipticity. Note that these inequalities are
point-wise, i.e. they may depend on the position vector X in a reference placement.
Moreover, they depend on deformations, i.e. on F, in general. As result, ellipticity
conditions (9.4) and (9.5) may restrict admissible deformations. Violation of (9.4)
and (9.5) is not forbidden,in general, but this situation may indicate some material
instabilities, strain localization, appearance of non-smooth solutions.

From themathematical point of viewQ(k) is the principal symbol of the linearized
equilibrium equations. It can be derived considering higher-order derivatives, i.e. the
second ones in the case of simple materials.

For the Green-type elasticity, i.e. for hyper-elastic materials, there is a strain
energy density W = W (F) such that

P = dW

dF
, (9.7)

so (9.6) takes the form

a · Q(k) · a = (k ⊗ a) : d
2 W

dF2
: (k ⊗ a). (9.8)

Inequalities (9.4) and (9.5) can be relatively easily checked in the case of small
deformations for isotropic solids. They reduce to the inequalities

μ �= 0, λ + 2μ �= 0, (9.9)

and
μ > 0, λ + 2μ > 0, (9.10)

respectively. Here λ and μ are Lamé elastic moduli. The case of anisotropic mate-
rials is much more complex even in the case of small strains, see e.g. Zubov and
Rudev (2016a, b), where for 19 classes of anisotropic materials the strong ellipticity
conditions were reduced to sets of elementary inequalities in terms of elastic moduli.

For finite deformations the analysis of ellipticity conditions is a certain challenge.
Some results are summarized in Ogden (1997), Lurie (1990), see also more recent
papers by Horgan and Saccomandi (2005), Merodio and Ogden (2005a, b, c), Quin-
tanilla and Saccomandi (2009), Soldatos (2012), Soldatos et al. (2021), Merodio and
Ogden (2023) and the references therein.
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9.3 Incompressible Materials

Incompressibility is very often used as a constraint for rubber-like materials and
biological tissues (Ogden 1997; Lurie 1990; Holzapfel and Ogden 2006). For these
materials the governing equations have the form

∇ · PE − ∇ p · F−T + ρf = 0, PE = PE (F), F = ∇x, (9.11)

det F ≡ det∇x = 1. (9.12)

Here the stress tensor is determined through deformations up to a hydrostatic part.
So we have to introduce a pressure function p as a response to constraint (9.12). In
fact, p is a Lagrange multiplier related to (9.12).

In this casewe have a system of PDEswith respect to x and p, which have different
order of differentiation. So the standard definition of ellipticity should be modified
accordingly. Here the Douglis–Nirenberg ellipticity can be applied as in the case
of incompressible fluids, see Volevich (1965), Hayes and Horgan (1974). Omitting
mathematical details we came to the following principal symbol

QI (k) =
(

Q(k) −ik · F−T

ik · F−T 0

)
, (9.13)

whereQ is given by (9.6) withP = PE , i = √−1. TheDouglis–Nirenberg ellipticity
condition consists of the inequality

detQI �= 0, ∀ k �= 0. (9.14)

Zee and Sternberg (1983) obtained the same inequality analyzing propagation of
acceleration waves.

9.4 Implicit Elasticity

Another form of governing equations of elastic materials called implicit elasticity
was proposed by Rajagopal (2007, 2010, 2011). Within this approach stresses and
strains are related through an implicit relation such as

K(F,P) = 0. (9.15)

Here K is a given tensor-valued function. Another incremental form of (9.15) was
discussed in Rajagopal and Srinivasa (2007). The strong ellipticity in the form of
inequality (9.5) was analyzed in Mai and Walton (2015b), where the theorem on
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implicit functions was applied. Monotonicity of implicit constitutive relations was
studied by Mai and Walton (2015a).

9.5 Strain Gradient Elasticity

For generalizedmedia such as gradient elastic continua andmicropolar or micromor-
phic media, ellipticity properties play a similar role as in classic nonlinear elasticity,
in general. Let us briefly recall definitions of ordinary and strong ellipticity for the
strain gradient elasticity. Within the strain gradient model Lagrangian equilibrium
equations and constitutive relations have the form Bertram (2023), Bertram and For-
est (2020), Eremeyev et al. (2018a)

∇ · T + ρf = 0, T = P − ∇ · P2 (9.16)

P = P(F,G), P2 = P2(F,G), G = ∇F, (9.17)

where T is the first Piola–Kirchhoff total stress tensor, P2 is the first Piola–Kirchhoff
hyper-stress third-order tensor, andG is the second deformation gradient. Equations
(9.16) constitute a system of nonlinear PDEs of the fourth order.

The principal symbol of (9.16) is given by the formula

a · QSG(k) · a = (k ⊗ k ⊗ a)
...
dP2

dG

...(k ⊗ k ⊗ a), (9.18)

where
... stands for the triple dot product. As a result, the ordinary ellipticity is given

by
detQSG(k) �= 0, ∀ k �= 0, (9.19)

whereas the strong ellipticity takes the form

a · QSG(k) · a ≥ Ca · a(k · k)2, ∀ a,k, (9.20)

where again C is a positive constant independent on a and k. Obviously, inequalities
(9.19) and (9.20) imply constraints only on the dependence on the seconddeformation
gradient. As in the case of simple materials the strong ellipticity is essential for
existence of solutions (Mareno and Healey 2006).

Unlike the case of simple materials the relations between ellipticity and mate-
rial instability is more complex. This analysis was provided in Eremeyev (2021),
Eremeyev and Reccia (2022b). It was shown that the infinitesimal stability implies
the weak for of strong ellipticity condition. On the other hand, the strong elliptic-
ity does not guarantee stability. It requires additional constitutive inequalities for
constitutive relations. In general, strain gradient elasticity can be treated as a gradi-
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ent regularization of constitutive relations of simple materials after loss of ellipticity.
Similar analysis of the strong ellipticity and infinitesimal instability was extended for
third-order (Eremeyev 2022, 2023b) and nth-order (Eremeyev 2023d) strain gradient
elasticity, where sufficient conditions of stability were formulated.

Within the linear Toupin–Mindlin strain gradient model of isotropic elastic solids
ellipticity results in a few elementary inequalities for higher order elastic moduli
(Eremeyev and Lazar 2022), whereas there are no requirements for Lamé’s moduli.
Considering existence and uniqueness of weak solutions of the linear boundary-value
problem with the Dirichlet’s boundary conditions, two constraints for μ and λ are
also formulated. The latters take the form of inequalities (Eremeyev 2023c)

μ > −c1, λ + 2μ > −c2, (9.21)

where positive constants c1 and c2 are size-dependent. Moreover, exact bounds
depend also on the spatial dimension of the problem under consideration, see Ere-
meyev (2023b) for an one-dimensional case.

Considering strain gradient models it is worth to mention gradient incomplete
models such as couple-stress theory, which neither elliptic nor strongly elliptic,
see Gourgiotis and Bigoni (2016a, b), Eremeyev et al. (2023), where also some
regularizations towards elliptic systems were proposed. Extensive studies of the
loss of ellipticity and material instabilities were provided by Gourgiotis and Bigoni
(2016a, b), Bigoni and Gourgiotis (2016), Gourgiotis and Bigoni (2017). Another
gradient incomplete model, called dilatational strain gradient elasticity, is also not
elliptic, see Eremeyev (2023a), but it can be transformed into a Douglis–Nirenberg
elliptic system of PDEs.

Finally, let us mention gradient incomplete models which appear as a continuum
models of beam-lattice metamaterials (dell’Isola and Steigmann 2020; dell’Isola
et al. 2019; Rahali et al. 2015). From the mathematical point of view these models
may be not elliptic in a standard sense, but some of them belong to the class of
hypoelliptic systems (Eremeyev et al. 2018b).

9.6 Media with Enhanced Kinematics

Mathematical theory of elliptic PDEs can be also applied to other generalized media.
Ellipticity conditions were studied for materials with additional kinematical fields
such as micropolar and micromorphic media. Within the micropolar elasticity ellip-
ticity and acceleration waves were studied in Eremeyev (2005). The analysis was
extended to thermoelastic materials in Altenbach et al. (2010). The loss of ellipticity
in micropolar media and related problems such as strain localization, wave prop-
agation, instabilities, and transition to plasticity were considered by Lakes (2018),
Lakes (2021), Steinmann and Willam (1991), Passarella et al. (2011), De Borst
(1991), De Borst et al. (1993), De Borst and Muhlhaus (1992), Dietsche et al.
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(1993), Hasanyan and Waas (2018), Russo et al. (2020). Ellipticity condition for
elastic micropolar fluids was introduced in Yeremeyev and Zubov (1999).

For micromorphic media ellipticity conditions and related conditions of propa-
gation of acceleration waves were analyzed in Eremeyev et al. (2018c). Comparison
of micromorphic and strain gradient continue from the point of view of ellipticity
conditions was provided in Eremeyev and Reccia (2022a), where some similarities
and differences were underlined.

Strong ellipticity in materials with voids was discussed in Chiriţă and Ghiba
(2010).

9.7 Conclusion

We discussed ellipticity conditions such as ordinary and strong ellipticity, the
Douglis–Nirenberg ellipticity consideringCauchy continua and their generalizations.
Among the latter we consider strain gradient elasticity and media with additional
kinematical descriptors.

Let us note that this brief review reflects some of the interests of Prof. Leonid
M. Zubov, to whom it is devoted. In fact, he and his coworkers paid attention to
the analysis of ellipticity within linear (Zubov and Rudev 2016a, b) and nonlinear
elasticity (Zubov and Rudev 1992, 1995, 2011), shell theory (Eremeyev and Zubov
2007),micropolar hydrodynamics (Yeremeyev andZubov1999).Recently the results
on ellipticity of anisotropic materials were summarized in Zubov and Rudev (2015).
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Chapter 10
Nonlinear Bending of Circular Beam
with Distributed Dislocations

Evgeniya V. Goloveshkina

Abstract A plane problem of the nonlinear theory of elasticity on pure bending
of a circular beam in the form of a sector of a hollow circular cylinder containing
continuously distributed straight edge dislocations, specified by the tensor field of
dislocation density, is considered. The beam is loaded at the ends with a bending
moment, the curved edges are stress-free. The boundary conditions at the ends of
the beam are fulfilled in the integral sense of Saint-Venant. Within the framework
of the model of a compressible semi-linear material, an exact solution is found. An
explicit formula is obtained for the bending moment depending on the curvature of
the deformed beam. The influence of dislocations on stresses and external bending
moment is analyzed.

Keywords Nonlinear elasticity · Pure bending · Hollow circular cylinder · Edge
dislocations · Semi-linear material · Exact solution

10.1 Introduction

Taking into account the physical imperfections of the material makes it possible to
more adequately describe the behavior of a nonlinearly elastic body. In this work,
such imperfections of the crystal structure as dislocations are taken into account.
Dislocation models can be used both in the presence of dislocations and to describe
other defects in crystalline bodies and features of their deformation (Gutkin and
Ovid’ko 2004; Clayton 2011; Maugin 2013), for example, discontinuous stress and
strain fields (Zhbanova and Zubov 2016). When the number of dislocations in a body
is large enough, their continuous distribution, characterized by the dislocation density
tensor, is used, and the continuum theory of dislocations (Kondo 1952; Kröner 1960;
Bilby et al. 1955; Eshelby 1956; Berdichevsky and Sedov 1967; Goloveshkina and
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Zubov 2019; Derezin and Zubov 2011; Clayton 2011; Teodosiu 2013; Le and Stumpf
1996) is used to model the behavior of such a body. In this paper, in the framework
of this theory, we study the plane deformation of a pure bending of an elastic body
that has the shape of a sector of a hollow circular cylinder.

This work takes into account the nonlinearity factor due to large deformations and
therefore uses the nonlinear theory of elasticity.Anumber of solutions to problems for
nonlinear elastic bodies with isolated dislocations and disclinations were obtained by
Professor L.M.Zubov in his book (Zubov1997). Physical and geometric nonlinearity
must often be taken into account for such a type of deformation as bending. Large
deformations occur, for example, during strong bending of elastic-plastic bodies, and
to describe their behavior under conditions of active loading, it is advisable to use
the model of a nonlinearly elastic material. The problem of nonlinear bending of an
elastic body with dislocations was first considered in Zelenina and Zubov (2009). In
the work (Zelenina and Zubov 2013), within the framework of the nonlinear theory,
the plane deformation of a rectangular beam made of a semi-linear material with
edge dislocations was studied. Without taking into account dislocations, the problem
of the nonlinear theory of elasticity of pure bending of a circular beam was studied
in Zubov and Popov (2007), where an exact solution was found for the model of a
semi-linear material.

The problem of bending a beam with dislocations, considered in this paper, is
reduced to a nonlinear boundary value problem for an ordinary differential equation.
In this case, the differential equations of equilibrium and incompatibility in the
volume of the body are fulfilled exactly. The boundary conditions on the curvilinear
boundaries of the beam are also exactly satisfied. The boundary conditions at the
ends of the beam are fulfilled approximately, in the integral sense of Saint-Venant.
After solving the formulated one-dimensional boundary value problem for a given
dislocation density, themoment becomes a known function of the bending parameter.
The dependence of the moment on the bending parameter is a load diagram for a
curved beam in nonlinear bending, which can be used to determine the value of the
bending parameter for a given value of the external moment.

In the work, a bending parameter is found at which the beam bends without the
appearance of stresses and without the application of an external bending moment.
Such a deformation is called a quasi-solid state. The spherically symmetric quasi-
solid state of a sphere with dislocations is considered in the paper Goloveshkina and
Zubov (2018). The bending of a rectangular beam without the appearance of stresses
is considered in Zelenina and Zubov (2013).

In this work, within the framework of the model of a compressible harmonic
(semi-linear) material, an exact solution to the problem of nonlinear bending of a
curved beam is found, and the effect of dislocations on the resulting stresses and
external bending moment is also studied.
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10.2 Input Relations

The system of equations describing the nonlinear deformation of an elastic bodywith
distributed dislocations consists of Lurie (1990), Zubov (2004, 2011) incompatibility
equations

rot F = α, (10.1)

equilibrium equations
div D = 0, (10.2)

and constitutive relations

D = dW

dF
, W = W (F), G = F · FT . (10.3)

Here, F is the distortion tensor, D is the asymmetric Piola stress tensor, also called
the first Piola–Kirchhoff stress tensor,G is the metric tensor, also called the Cauchy
strain measure,W is the specific strain energy, and α is the dislocation density tensor
satisfying the solenoidality requirement:

div α = 0 . (10.4)

The gradient, curl, and divergence operations (Lurie 1990; Lebedev et al. 2010)
used in this paper are defined by the formulas:

grad � = rs ⊗ ∂�

∂qs
, curl � = rs × ∂�

∂qs
,

div � = rs · ∂�

∂qs
, rs = ik

∂qk

∂xs
(s, k = 1, 2, 3) .

(10.5)

In (10.5), xk are the Cartesian coordinates of the reference configuration of the elastic
body, ik are the coordinate vectors corresponding to them, qs are some curvilinear
Lagrangian coordinates, � is an arbitrary differentiable tensor field of any order.
In (10.2), an assumption was made about the possibility of neglecting the action of
body forces.

If there are no dislocations in the body, i.e., α ≡ 0, then the distortion tensor is
called the deformation gradient and Zubov (1997) is expressed asF = grad R, where
R = Xk ik is the radius vector of a point of the body in the deformed configuration
and Xk are the Cartesian coordinates of the deformed state. For α �= 0, the vector
field R(qs) does not exist.

In what follows, the elastic material will be considered isotropic. In this case, the
specific energy is some function of the G tensor invariants:
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W (G) = W (I1, I2, I3), (10.6)

I1 = trG, I2 = 1

2

(
tr2 G − trG2

)
, I3 = det G = (det F)2 ,

and the Piola stress tensor is expressed as follows Zubov and Karyakin (2006)

D = (τ1 + I1τ2)F − τ2G · F + I3τ3F−T, (10.7)

τk(I1, I2, I3) = ∂W

∂ Ik
; F−T �

(
FT

)−1 = (
F−1

)T
.

In the nonlinear theory of elasticity, models of isotropic materials are also used,
in which the specific energy is given as a function of the invariants of the stretch
tensor U, which is a positive definite square root of the metric tensor G:

W (G) = W (J1, J2, J3) ,

J1 = trU, J2 = 1

2

(
tr2 U − trU2

)
, J3 = det U,

U = (
F · FT

)1/2
.

(10.8)

Based on (10.3) and (10.8), a representation of the Piola stress tensor is derived

D =
(

∂W

∂ J1
+ J1

∂W

∂ J2

)
A − ∂W

∂ J2
F + J3

∂W

∂ J3
F−T, (10.9)

A = U−1 · F,

where A is the rotation tensor. The positive definite symmetric tensor U and the
proper orthogonal tensor A form a polar decomposition of the distortion tensor

F = U · A . (10.10)

10.3 Pure Bending of Circular Beam

Let us consider a plane deformation of an elastic body having the shape of a sector of a
hollow circular cylinder in the reference configuration. The body occupies the region
r1 ≤ r ≤ r0, 0 ≤ ϕ ≤ ϕ0, 0 ≤ z ≤ l, where r , ϕ, and z are the cylindrical coordinates
of the reference configuration. Since the deformation occurs in the z = const plane,
the size of l does not matter.

This circular beam is loaded at the ends ϕ = 0 and ϕ = ϕ0 with a bendingmoment
M (Fig. 10.1). Surfaces r = r0 and r = r1 are free from external load.
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Fig. 10.1 Loading a beam
with a bending moment M

Let us introduce the unit vectors

er = i1 cosϕ + i2 sin ϕ, eϕ = −i1 sin ϕ + i2 cosϕ,

eR = i1 cosκϕ + i2 sinκϕ, eΦ = −i1 sinκϕ + i2 cosκϕ .
(10.11)

The positive constant κ will be called the bending parameter. The vectors er , eϕ , and
i3 form an orthonormal basis. Another orthonormal basis is the vectors eR , eΦ , and
i3.

Let us assume that the dislocation density tensor is given as follows:

α = β(r)i3 ⊗ eΦ . (10.12)

The expression (10.12) satisfies the solenoidality condition (10.4) for any function
β(r) and describes the distribution of straight edge dislocations with the z axis.

The solution of the system of equations (10.1)–(10.3) of the nonlinear theory of
dislocations will be sought in the form:

F = F1(r)er ⊗ eR + F2(r)eϕ ⊗ eΦ + i3 ⊗ i3 . (10.13)

The physically realizable deformation of a continuous medium at each point must
satisfy the condition det F > 0. This requirement will be satisfied if the desired
solution is subject to the inequalities

F1(r) > 0, F2(r) > 0 . (10.14)

Based on (10.13), the metric tensor and its invariants are determined as

G = F2
1 er ⊗ er + F2

2 eϕ ⊗ eϕ + i3 ⊗ i3,

I1 = F2
1 + F2

2 + 1, I2 = F2
1 + F2

2 + F2
1 F

2
2 , I3 = F2

1 F
2
2 .

(10.15)

By virtue of (10.13) and (10.14), the stretch tensor and its invariants have the
form:

U = F1er ⊗ er + F2eϕ ⊗ eϕ + i3 ⊗ i3,

J1 = F1 + F2 + 1, I2 = F1F2 + F1 + F2, I3 = F1F2 .
(10.16)

The rotation tensor defined using (10.10), unlike the F, G, and U tensors, does
not depend on the r coordinate and is written as
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A = er ⊗ eR + eϕ ⊗ eΦ + i3 ⊗ i3 . (10.17)

The (10.17) expression allowsus tofindout the geometricmeaningof theκ param-
eter. Indeed, using the formulas (10.11), we transform the representation (10.17) to
the form:

A = (i1 ⊗ i1 + i2 ⊗ i2) cos [(κ − 1)ϕ] + (i1 ⊗ i2 − i2 ⊗ i1) sin [(κ − 1)ϕ] + i3 ⊗ i3 .

(10.18)
According to the well-known properties of proper orthogonal tensors Zubov and
Karyakin (2006), the tensor (10.18) describes a rotation around the vector i3 by
an angle (κ − 1)ϕ. This means that the beam section ϕ = const rotates around an
axis parallel to the z axis, and the angle of rotation is proportional to the angular
distance of the given section from the section ϕ = 0. In addition to rotation, the
section ϕ = const experiences tension–compression in the radial direction.

It follows from (10.7), (10.9), (10.13), (10.15)–(10.17) that in an isotropic homo-
geneous body under the considered deformation, the Piola stress tensor is described
by the expression:

D = D1(r)er ⊗ eR + D2(r)eϕ ⊗ eΦ + D3i3 ⊗ i3 . (10.19)

By virtue of (10.11) and (10.19), the vector equilibrium equation (10.2) reduces to a
single scalar equation:

dD1

dr
+ D1 − κD2

r
= 0 . (10.20)

Based on (10.11)–(10.13), the tensor incompatibility equation (10.1) is also reduced
to one scalar relation:

dF2

dr
+ F2 − κF1

r
= β(r) . (10.21)

From (10.21), we find

F1 = 1

κ

d

dr
(r F2) − rβ(r)

κ

. (10.22)

Using the constitutive relations (10.7) or (10.9), the stresses D1 and D2 can be
expressed as nonlinear functions of F1 and F2. Substituting these expressions into
the equilibrium equation (10.20) and using (10.22), we arrive at a nonlinear ordinary
differential equation of the second order with respect to the function F2(r). The
boundary conditions for this equation are the requirements of unloaded curved edges
of the beam:

D1(r1) = 0, D2(r0) = 0 . (10.23)

The density of edge dislocationsβ(r) is considered to be a known (given) function.
Thus, due to the substitution (10.13), the problem of bending an elastic curved

beam with dislocations is reduced to a nonlinear boundary value problem for an
ordinary differential equation. In this case, the differential equations of equilibrium



10 Nonlinear Bending of Circular Beam with Distributed Dislocations 181

and incompatibility in the volume of the body are fulfilled exactly. The boundary
conditions on the curvilinear boundaries of the beam r = r1 and r = r0 are also
exactly satisfied. The boundary conditions at the ends of the beam ϕ = 0 and ϕ = ϕ0

can be satisfied approximately, in the integral sense of Saint-Venant.
The consequence of the equilibrium equation (10.20) is the equality:

D2 = 1

κ

d

dr
(r D1) . (10.24)

We integrate the relation (10.24) over the variable r and take into account the
boundary conditions (10.23). Get

r0∫

r1

D2 dr = 0 . (10.25)

Since, according to (10.19) eϕ · D = D2eΦ , the relation (10.25) means that the
principal vector of forces acting in any section of the beam ϕ = const is equal to zero.
Thus, the implementation of the obtained solution on the deformation of a curved
flat beam requires applying only bending moments to the ends of the beam ϕ = 0
and ϕ = ϕ0, the vectors of which have the direction of the vector i3.

To calculate the value of the bending moment, let’s compare the solution obtained
above with the solution to the problem of pure bending of a circular beam that does
not contain distributed dislocations (Zubov and Popov 2007). In the absence of
distributed dislocations, there is a field of displacement of body particles. Therefore,
the deformation canbedescribed as a dependenceof the spatial (Eulerian) coordinates
on the material (Lagrangian) coordinates. If we denote cylindrical Euler coordinates
by R, Φ, and Z , then the deformation of a pure bending of a sector of a circular ring
is written as Zubov and Popov (2007)

R = R(r), Φ = κϕ, Z = z . (10.26)

The distortion tensor defined according to (10.26) is

F = grad R = dR

dr
er ⊗ eR + κR

r
eϕ ⊗ eΦ + i3 ⊗ i3, (10.27)

i.e.

F1(r) = dR

dr
, F2(r) = κR

r
. (10.28)

It is easy to check that the functions (10.28) satisfy the equation (10.21) with zero
right side, i.e. in the absence of distributed dislocations.

Since the principal vector of forces acting in an arbitrary azimuth section of the
beam is equal to zero, the principal moment M does not depend on the reduction
point. Therefore, the principal moment in the last section ϕ = ϕ0 will be equal to
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M =
r0∫

r1

R × D2eΦ dr =
r0∫

r1

ReR × D2eΦ dr = M i3, (10.29)

where M denotes the magnitude of the bending moment

M =
r0∫

r1

R(r)D2(r) dr . (10.30)

Based on (10.28), the formula (10.30) can be rewritten as

M =
r0∫

r1

r

κ

F2(r)D2(r) dr . (10.31)

In the presence of distributed dislocations, the formula (10.30) is inapplicable,
since the function R(r) does not exist. Therefore, the bending moment for a beam
with dislocations should be calculated using the formula (10.31).

After solving the one-dimensional boundary value problem formulated above for
a given dislocation density β(r), the moment M becomes, according to (10.31), a
known function of the bending parameter κ. Dependence M(κ) is a curved beam
loading diagram for nonlinear bending. Using this diagram, one can, in particular,
determine the value of the parameter κ for a given value of the external moment M .

10.4 Exact Solution for Harmonic Material

As amodel of an elastic compressible body,we take a harmonic (semi-linear)material
(John 1960; Lurie 1990; Ogden 1997), whose specific energy has the expression

W = μν

1 − 2ν
(J1 − 3)2 + μ(J 2

1 − 2J1 − 2J2 + 3) . (10.32)

In the region of small deformations, this model transforms into Hooke’s law for an
isotropic body with shear modulus μ and Poisson’s ratio ν. The constitutive relation
for the Piola stress tensor based on (10.9) and (10.32) is written as

D = 2μ

1 − 2ν
(ν J1 − 1 − ν)A + 2μF . (10.33)

As applied to the bending problem, from (10.13), (10.16), (10.17), and (10.19),
we obtain
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D1 = 2μ

1 − 2ν
[(1 − ν)F1 + νF2 − 1], D2 = 2μ

1 − 2ν
[νF1 + (1 − ν)F2 − 1],

D3 = 2μν

1 − 2ν
[F1 + F2 − 2] .

(10.34)
For this material, it is more convenient to reduce the bending problem to an equa-

tion with respect to the function D1(r), rather than with respect to the function F2(r).
Let us reverse the relations (10.34), i.e., let us express the distortion components in
terms of stresses

F1 = 1 + 1

2μ
[(1 − ν)D1 − νD2], F2 = 1 + 1

2μ
[−νD1 + (1 − ν)D2] . (10.35)

Let’s express D2 in terms of D1 using the formula (10.24), then the distortion
components according to (10.35) will be represented in terms of the function D1(r)
and its derivative. Substituting these representations into the incompatibility equation
(10.21), we obtain a differential equation with respect to D1(r):

d2D1

dr2
+ 3

r

dD1

dr
+ 1 − κ

2

r2
D1 = γ (r), (10.36)

γ (r) � 2μκ

(1 − ν)r2
[rβ(r) + κ − 1] .

The solution of the equation (10.36) that satisfies the boundary conditions (10.23)
has the form:

D1(r) = rκ−1

2κ

r∫

r1

ρ2−κγ (ρ)dρ − r−κ−1

2κ

r∫

r1

ρ2+κγ (ρ)dρ + C1r
κ−1 + C2r

−κ−1,

(10.37)

C1 = rκ

0

2κ(r2κ

0 − r2κ

1 )

⎡

⎣r−κ

0

r0∫

r1

ρ2+κγ (ρ)dρ − rκ

0

r0∫

r1

ρ2−κγ (ρ)dρ

⎤

⎦ ,

C2 = −r2κ

1 C1 .

The stress D2(r) and the distortion components F1(r) and F2(r) are determined
from the found solution (10.37) using formulas (10.24) and (10.35). Thus, the solution
to the problem of strong bending of a circular beam in a closed form is found in the
case when the density of edge dislocations is an arbitrary function of the radial
coordinate. This solution, in particular, makes it possible to construct a loading
diagram for the beam M(κ) according to the formula (10.31).

As an example, consider the case when β(r) = β0r−1, β0 = const. Then the
expression for the stress D1 will be as follows:
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D1(r) = 2μκ(β0 + κ − 1)

(1 − ν)(κ2 − 1)

⎡

⎣

(
r−κ−1
0 − r−κ−1

1

)
rκ−1 +

(
rκ−1
1 − rκ−1

0

)
r−κ−1

r−κ−1
0 rκ−1

1 − rκ−1
0 r−κ−1

1

− 1

⎤

⎦ .

(10.38)

It can be seen from (10.24), (10.35), and (10.38) that for β0 + κ − 1 = 0 all
stresses are equal to zero, and the distortion tensor is properly orthogonal: F = A.
This is an example of a quasi-solid state (Zelenina and Zubov 2013; Goloveshkina
andZubov 2018) of a bodywith dislocations.An elastic beam is bentwith the bending
parameter κ = 1 − β0 without the appearance of stresses and the application of an
external bending moment.

10.5 Numerical Analysis

We refer the radial coordinate to the outer radius, that is, we will have r0 = 1, the
stresses to the material constant μ, and the moment to the value μr20 , having μ = 1;
let ν = 0.3.

Consider the dislocation density β(r) = β0/r . For a thick beam r1 = 0.5, as the
bending parameter κ increases, the difference between the moments M at different
dislocation density parameters β0 decreases (Fig. 10.2), which, as can be shown,
does not perform for a thin beam r1 = 0.9. There are such values of the bending
parameter at which the values of the external bending moment in the presence of
dislocations coincide with the moment in the absence of dislocations. For a negative
dislocation density parameter at a given moment, there are two solutions for the
bending parameter (Fig. 10.2).

In Figs. 10.3 and 10.4 for a thick beam, as well as in Figs. 10.5 and 10.6 in the
case of a thin beam, for a given dislocation density parameter β0 = −0.2, stresses D1

and D2 are presented for different bending parameters κ. Inside the beam, there is a
surface r = r∗ on which there is no stress D2 for any bending parameter. An increase
in the bending parameter can lead to both a decrease in stresses and an increase in
them.

At a fixed bending parameter for different dislocation density parameters, the
stresses are shown in Figs. 10.7 and 10.8 at κ = 0.8. Negative dislocation densities
can either increase stresses (e.g., κ = 0.1, κ = 0.8) or decrease (e.g., at κ = 2).

Figures10.7 and10.8 show the casewhen thebeam is bentwith the bendingparam-
eter κ = 1 − β0 without stress and without applying an external bending moment
(κ = 0.8).

The results for a thin beam r1 = 0.9 in the cases of dislocation densities β(r) =
β0/r and β(r) = β0 coincide with high accuracy.

Figures10.9, 10.10, and 10.11 for a thick beam r1 = 0.5 compare the results in
the cases β(r) = β0/r and β(r) = β0. With the same bending parameter, the value
of the moment at a positive dislocation density is smaller for β(r) = β0, except for a
small range of κ values, and vice versa for a negative one. It can be shown that, for
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Fig. 10.2 Bending moment M for different dislocation parameters β0, thick beam r1 = 0.5, and
β(r) = β0/r

Fig. 10.3 Stress D1 on a ground with normal eR for different bending parameters κ, thick beam
r1 = 0.5, β(r) = β0/r , and β0 = −0.2
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Fig. 10.4 Stress D2 on a ground with normal eΦ for different bending parameters κ, thick beam
r1 = 0.5, β(r) = β0/r , and β0 = −0.2

Fig. 10.5 Stress D1 on a ground with normal eR for different bending parameters κ, thin beam
r1 = 0.9, β(r) = β0/r , and β0 = −0.2
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Fig. 10.6 Stress D2 on a ground with normal eΦ for different bending parameters κ, thin beam
r1 = 0.9, β(r) = β0/r , and β0 = −0.2

Fig. 10.7 Stress D1 on a ground with normal eR for different dislocation parameters β0, thin beam
r1 = 0.9, β(r) = β0/r , and κ = 0.8
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Fig. 10.8 Stress D2 on a ground with normal eΦ for different dislocation parameters β0, thin beam
r1 = 0.9, β(r) = β0/r , and κ = 0.8

Fig. 10.9 Bending moment M for different dislocation parameters β0, comparison of densities
β = β0/r and β = β0, thick beam r1 = 0.5, β(r) = β0
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Fig. 10.10 Stress D1 on a ground with normal eR for different dislocation parameters β0, compar-
ison of densities β = β0/r and β = β0, thick beam r1 = 0.5, κ = 0.8

Fig. 10.11 Stress D2 on a ground with normal eΦ for different dislocation parameters β0, compar-
ison of densities β = β0/r and β = β0, thick beam r1 = 0.5, κ = 0.8
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β(r) = β0, the stress D1 is less for κ = 0.1 and greater in absolute value for κ = 2,
for κ = 0.8, the differences are insignificant; the stress D2 is less for κ = 0.1 and
κ = 0.8, but greater for κ = 2. For positive dislocation densities, the stresses D1

and D2 for the case β(r) = β0 are greater, and at negative densities, they are less at
κ = 0.1 and κ = 0.8 (Figs. 10.10 and 10.11), and vice versa, as can be shown for
κ = 2.

10.6 Conclusion

Within the framework of the nonlinear theory of dislocations, the problem of plane
deformation of a pure bending of an elastic body in the form of a sector of a hollow
circular cylinder with edge dislocations is solved. The original problem is reduced
to a nonlinear boundary value problem for an ordinary differential equation. The
differential equations of equilibrium and incompatibility in the volume of the body
are fulfilled exactly. The boundary conditions on the curvilinear boundaries of the
beam are satisfied exactly, and the boundary conditions on the ends of the beam
are satisfied in the integral sense of Saint-Venant. After solving the formulated one-
dimensional boundary value problem for a given dislocation density, the moment
becomes a known function of the bending parameter. The density of edge dislocations
is an arbitrary function of the radial coordinate. The dependence of the moment
on the bending parameter is a loading diagram that determines the value of the
bending parameter for a given value of the external moment. A quasi-solid state
has been found, that is, a bending parameter has been obtained, at which the beam
bends without the appearance of stresses and the application of an external bending
moment. An exact solution is found for a compressible semi-linear material. The
effect of dislocations on arising stresses and bending moment has been studied.
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Chapter 11
Equilibrium Stability of Nonlinearly
Elastic Cylindrical Tube with Distributed
Dislocations Under Axial Compression

Evgeniya V. Goloveshkina

Abstract The problem of equilibrium stability of a nonlinearly elastic hollow cir-
cular cylinder under axial compression is considered. The cylinder contains contin-
uously distributed edge dislocations specified by the tensor field of the dislocation
density. The distribution of dislocations is axisymmetric. The unperturbed state is
described by a system of nonlinear ordinary differential equations. In the study of
stability, the bifurcation method is used to search for equilibrium positions that dif-
fer little from the unperturbed state. The critical values of the longitudinal force for
thin-walled and thick-walled cylinders made of a compressible semi-linear material
(John’s model), at which the equilibrium bifurcation occurs, are determined. The
buckling modes are investigated. The effect of dislocations on the loss of stability is
analyzed.

Keywords Nonlinear elasticity · Equilibrium bifurcation · Hollow circular
cylinder · Edge dislocations · Semi-linear material · Quasi-displacements

11.1 Introduction

The paper considers the stability under axial compression of a nonlinearly elastic
cylinder. In the framework of the three-dimensional nonlinear theory of elasticity, the
stability of elastic bodies that allow large deformations is considered, for example,
in works (Green and Adkins 1960; Ogden 1997; Lurie 2005; Zubov andMoiseyenko
1983; Zubov 1997; Zelenin and Zubov 1985; Sensenig 1964; Biot 1965; Fu and
Ogden 1999; Guz 1999). Instability under tensile stresses (Zubov and Rudev 1993;
Ericksen 1975; Spector 1984; Haughton and Ogden 1979a; Zubov and Rudev 1996;
Lastenko and Zubov 2002) is also a problem in which an elastic body in a subcritical
state experiences large deformations. In Zubov and Sheidakov (2008), on the basis
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of three-dimensional nonlinear elasticity, the stability of a hollow circular infinite
cylinder is studied under three-parameter loading: axial tension, torsion, and inflation.
The instability of a stretched hollow cylinder inflated by internal pressure is studied
in Haughton and Ogden (1979a, b), Chen and Haughton (2003). The effect of torsion
on the stability of a solid circular cylinder under stretching is analyzed in Zubov and
Sheydakov (2005). Non-adjacent bending equilibrium forms are also considered in
the problems of the nonlinear theory, that is, the supercritical behavior of shells,when,
at low load levels, a sharp drop in load occurs after a change in the initial unperturbed
equilibrium form. Some problems on the postcritical behavior of three-dimensional
elastic bodies are considered in Zelenin and Zubov (1985, 1987, 1988).

In addition to the buckling of a thick-walled tube, the paper also studies the
buckling of a thin shell. This solution can serve as a substantiation of the solution for
a thick-walled tube, since in the absence of dislocations the results are in agreement
with the theory of shells. Problems on the stability of the equilibrium of shells
are considered in Singer et al. (2002), Samuelson and Eggwertz (1992), Grigolyuk
and Kabanov (1978), Tovstik and Smirnov (2002), Timoshenko and Gere (1963),
Volmir (1967), Tvergaard (1976), Budiansky and Hutchinson (1979), Haughton and
Moiseyenko (2001).

To adequately describe the behavior of a nonlinear elastic body, one should take
into account such factors as inhomogeneity, fluidity of the material, geometric, and
physical imperfections. We study buckling phenomenon for an elastic body, tak-
ing into account microstructure defects in the form of dislocations. The nonlinear
continuum theory of dislocations used in this paper, based on the works (Kondo
1952; Kröner 1960; Bilby et al. 1955; Berdichevsky and Sedov 1967; Eshelby
1956; Berdichevsky and Sedov 1967; Goloveshkina and Zubov 2019), was devel-
oped in the works (Derezin and Zubov 2011; Clayton 2011; Teodosiu 2013; Le and
Stumpf 1996). Problems of stability of three-dimensional elastic bodies, taking into
account distributed dislocations, are poorly covered in the literature. The stability of a
nonlinearly elastic ball was studied in Goloveshkina and Zubov (2020). Professor
Zubov L.M. in his monograph (Zubov 1997) obtained a number of solutions to prob-
lems for three-dimensional elastic bodieswith isolated dislocations and disclinations,
including stability problems.

In this paper, to determine the critical value of the parameter, which can be used
to calculate the critical force, the bifurcation method (static Euler method) is used
Lurie (2005, 1990),Ogden (1997),Green andAdkins (1960), Zubov andMoiseyenko
(1983), Zelenin and Zubov (1985). According to the method, the critical load is con-
sidered to be the smallest load at which an adjacent form of equilibrium is statically
possible, infinitely close to the original one. The stability analysis is reduced to solv-
ing a homogeneous boundary value problem linearized in the vicinity of the ground
state. A necessary condition for the correctness of the bifurcation method is the
conservatism of external loads.

After the separation of variables in the linearized boundary value problem, we
arrive at two second-order linear differential equationswith two boundary conditions.
By solving a homogeneous linear boundary value problem, the minimum compres-
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sion value is determined at which the cylinder loses its stability for the first time. We
study how the dislocation density affects the buckling of a cylindrical body.

11.2 Input Relations

The system of equations describing large deformations of an elastic medium includes
(Lurie 1990) equilibrium equations for stresses (without taking into account body
forces)

div D = 0, (11.1)

constitutive equations for the material

D = dW (C)

dC
, (11.2)

and geometric relations
C = grad R. (11.3)

Here, D is the Piola asymmetric stress tensor (the first Piola–Kirchhoff stress ten-
sor), C is the deformation gradient, W is the specific strain energy, R = R(qs) is
the radius vector of body points in the deformed state, and qs (s = 1, 2, 3) are some
curvilinear Lagrangian coordinates related to the Cartesian coordinates of the refer-
ence configuration x1, x2, x3 by the relations qs = qs(x1, x2, x3). The operations of
gradient and divergence (Lurie 1990; Lebedev et al. 2010) in curvilinear coordinates
of the reference configuration of the body are defined by the expressions:

grad � = rn ⊗ ∂�

∂qn
, div � = rn · ∂�

∂qn
, rn = ik

∂qn

∂xk
,

where � is an arbitrary differentiable tensor field of any order, ik is a constant
orthonormal basis of Cartesian coordinates.

If dislocations with a tensor density α are distributed in a body, then the vector
field R(qs) does not exist and the geometric relations (11.3) are replaced by the
incompatibility equation: (Zubov 2004, 2011)

rot C = α, (11.4)

where the α tensor must satisfy the solenoidality condition

div α = 0. (11.5)

In this case, the C tensor is called the distortion tensor. The physical meaning of the
dislocation density is that the α tensor field flux through any surface is equal to the
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total Burgers vector of all dislocations crossing this surface (Nye 1953; Vakulenko
1991; Landau and Lifshitz 1975).

The complete system of equilibrium equations for a nonlinearly elastic body with
distributed dislocations contains the tensor distortion fieldC as an unknown function.

11.3 Unperturbed State: Cylindrical Tube with Distributed
Dislocations

In the reference configuration of a medium, we introduce cylindrical coordinates r ,
ϕ, and z, related to the Cartesian coordinates by the relations

x1 = r cosϕ, x2 = r sinϕ, x3 = z.

Consider an elastic body in the form of a hollow circular cylinder with an outer radius
r0, an inner radius r1, and an axis parallel to the vector i3. As a vector basis, we will
use the orts er , eϕ, i3, which are directed along the tangents to the coordinate lines.
There are relations

er = i1 cosϕ + i2 sinϕ, eϕ = −i1 sinϕ + i2 cosϕ.

Let us assume that the dislocation density tensor is given as

α = αr (r)er ⊗ er + αϕ(r)eϕ ⊗ eϕ + αzϕ(r)i3 ⊗ eϕ + αz(r)i3 ⊗ i3. (11.6)

The functionsαr (r),αϕ(r), andαz(r) are the scalar densities of screw dislocations in
the radial, azimuthal, and axial directions, respectively, and the functionαzϕ(r) is the
scalar density of edge dislocations. Taking into account the condition of solenoidality
(11.5) of the dislocation density tensor, we obtain the following equation:

αϕ = d

dr
(rαr ). (11.7)

This implies that the solenoidality condition does not impose restrictions on the
functions αzϕ(r) and αz(r).

The tensor field of distortion is found in the form

C0 = Cr (r)er ⊗ er + Cϕ(r)eϕ ⊗ eϕ + Cϕz(r)eϕ ⊗ i3 + Czϕ(r)i3 ⊗ eϕ + λi3 ⊗ i3,
(11.8)

where λ is a real value.
By virtue of (11.6) and (11.8), the tensor incompatibility equation (11.4) is

reduced to a system of ordinary differential equations:
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Czϕ = −rαr ,
dCzϕ

dr
= −αϕ, (11.9)

d

dr
(rCϕz) = rαz, (11.10)

dCϕ

dr
+ Cϕ − Cr

r
= αzϕ. (11.11)

In (11.9), the first equation determines the distortion component Czϕ, and the second
equation is a consequence of the first one and the solenoidality condition (11.7).
Integrating the equation (11.10), we find the distortion component

Cϕz(r) = 1

r

r∫

r1

αz(r
′)dr ′ + b

2πr
. (11.12)

Here, b is the length of the Burgers vector of an isolated screw dislocation that can
be contained in a hollow cylinder (Zubov 1997). The function Cr (r) is expressed in
terms of Cϕ(r) using (11.11):

Cr = d

dr
(rCϕ) − rαzϕ. (11.13)

Thus, after the fulfillment of the incompatibility equations, only the Cϕ distortion
remains an unknown function, to find which one should refer to the equilibrium
equations (11.1).

Taking into account the isotropy of the function W of tensor arguments, it can be
shown Zubov and Karyakin (2006), Eremeyev et al. (2018) that for a homogeneous
medium, the stresses do not depend on the coordinates ϕ and z. Using the formulas
(11.8), we obtain the stress tensor

D0 = Dr (r)er ⊗ er + Dϕ(r)eϕ ⊗ eϕ + Dϕz(r)eϕ ⊗ i3
+Dzϕ(r)i3 ⊗ eϕ + Dz(r)i3 ⊗ i3.

Then the vector equilibrium equation (11.1) is reduced to the scalar equation

dDr

dr
+ Dr − Dϕ

r
= 0. (11.14)

If the cylindrical tube is not loaded along the side surfaces r = r0 and r = r1, then
the boundary conditions for the equation (11.14) will be as follows:

Dr (r0) = 0, (11.15)

Dr (r1) = 0. (11.16)

For a given multiplicity of longitudinal elongation λ, one can determine the resulting
longitudinal force
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Q = 2π

r0∫

r1

Dz(r)rdr (11.17)

applied to the ends of the tube.
So, the problem of large deformations of a cylindrical tube with distributed dislo-

cations (11.6) is reduced to a nonlinear boundary value problem (11.14)–(11.16) for
an ordinary differential equation. The unknown function in this problem is Cϕ(r).

11.4 Distribution of Straight Edge Dislocations

Consider the equilibrium of the cylindrical tube in the case when

αr = αϕ = αz = 0, b = 0.

Then the dislocation density tensor takes the form

α = αzϕ(r)i3 ⊗ eϕ

and describes the distribution of edge dislocations whose axes are parallel to the
cylinder axis i3. The scalar dislocation density αzϕ(r) is an arbitrary function. From
(11.9) and (11.12), it follows that the distortion tensor will be

C0 = Cr (r)er ⊗ er + Cϕ(r)eϕ ⊗ eϕ + λi3 ⊗ i3. (11.18)

Then the Piola stress tensor D, due to the constitutive relations of the material
(11.2), takes the form

D0 = Dr (r)er ⊗ er + Dϕ(r)eϕ ⊗ eϕ + Dz(r)i3 ⊗ i3. (11.19)

The equilibrium equation (11.14), taking into account the expression for distortion
Cr (11.13), serves to determine the function Cϕ.

11.5 Exact Solution for Unperturbed State

As a specific model of an elastic material, we consider an isotropic semi-linear
material (John’s model) (John 1960; Lurie 1990; Ogden 1997), which corresponds
to a function of the specific strain energy of the form

W = μν

1 − 2ν
tr2 (U − E) + μ tr (U − E)2 . (11.20)



11 Equilibrium Stability of Nonlinearly Elastic Cylindrical Tube with Distributed … 199

Here,E is the unit tensor,μ and ν are thematerial constants. In the small strain region,
the semi-linear material follows Hooke’s law with a shear modulus μ and a Poisson’s
ratio ν.U is the positive definite stretch tensor andA is the proper orthogonal rotation
tensor (Lurie 2005) from the polar decompositionC = U · A of the distortion tensor.

The stress tensor (11.2) for such a specific energy (11.20) has the representation

D = 2μ

1 − 2ν
(ν tr U − 1 − ν)A + 2μC. (11.21)

In the equilibrium problem for a tube with straight edge dislocations based on
(11.18) and (11.21), taking into account (11.19) and U = C (since A = E in the
polar decomposition C = U · A), we obtain representations of stresses in terms of
distortions:

Dr = 2μ

1 − 2ν

[
(1 − ν)Cr + ν(Cϕ + λ) − 1 − ν

]
,

Dϕ = 2μ

1 − 2ν

[
νCr + (1 − ν)Cϕ + νλ − (1 + ν)

]
,

Dz = 2μ

1 − 2ν

[
νCr + νCϕ + (1 − ν)λ − (1 + ν)

]
.

(11.22)

By means of (11.22), we express distortions in stresses Dr and Dϕ:

Cr = 1 − ν

2μ
Dr − ν

2μ
Dϕ + 1 + ν − νλ,

Cϕ = − ν

2μ
Dr + 1 − ν

2μ
Dϕ + 1 + ν − νλ.

(11.23)

We express the stress Dϕ in terms of Dr using the equilibrium equation (11.14)
and assuming that the mass forces are absent:

Dϕ = d

dr
(r Dr ). (11.24)

Substituting the relations (11.23) into the incompatibility equation (11.13) and
taking (11.24) into account, we arrive at a differential equation with respect to the
function Dr (r):

r2
d2Dr

dr2
+ 3r

dDr

dr
= h(r), h(r) ≡ 2μ

1 − ν
rαzϕ(r), (11.25)

the solution of which has the form

Dr (r) = 1

2

r∫

r1

ρh(ρ)dρ − 1

2r2

r∫

r1

ρ3 h(ρ)dρ + A + B

r2
.
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The constants A and B are found from the boundary condition (11.16) and look like

A = − B

r21
, B = −2μ

(1 − 2ν)(r−2
0 − r−2

1 ) − 2r−2
0 (1 − ν)

[
1 + ν − νλ − Cϕ(r0)

+r−2
0 (1 − ν)

2μ

r0∫

r1

ρ3 h(ρ)dρ + 1 − 2ν

4μ

⎛
⎝

r0∫

r1

ρh(ρ)dρ − r−2
0

r0∫

r1

ρ3 h(ρ)dρ

⎞
⎠

⎤
⎦ .

The constantCϕ(r0) is determined from the boundary condition (11.15). The quantity
Cϕ should be expressed in terms of Dr using (11.23) and (11.24):

Cϕ = 1 − ν

2μ

rdDr

dr
+ 1 − 2ν

2μ
Dr + 1 + ν − νλ.

11.6 Linearized Boundary Value Problem

The stability of the equilibrium of a nonlinearly elastic body can be studied using the
static Euler method. It consists of determining the loading parameters under which
the linearized boundary value problem has nontrivial solutions. A small deformation
is imposed on the unperturbed (subcritical) state, and possible forms of equilibrium
are determined.

Perturbed equilibrium equations should be derived by linearization of equilibrium
equations (11.1), constitutive relations (11.2), and incompatibility equations (11.4),
since if there are distributed dislocations in the body, the positions of the particles of
the body cannot be found (the vector field R(qs) does not exist).

To implement the linearization, we set

D = D0 + ηḊ + O
(
η2

)
, Ḋ = d

dη
D (C0 + ηL)

∣∣∣∣
η=0

,

C = C0 + ηL + O
(
η2

)
,

where the subscript 0 marks the quantities related to the subcritical state. Leaving in
these relations only terms of the first order with respect to η, we obtain the linearized
equilibrium equation (11.1)

div Ḋ = 0. (11.26)

Assuming that the dislocation density tensor remains unchanged upon transition to
a perturbed equilibrium state, from (11.4), we obtain the linearized incompatibility
equation

rot L = 0,

the general solution of which can be represented as Zubov and Karyakin (2006)
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L = grad w. (11.27)

Here, w is a differentiable vector field, called the quasi-displacement field.
In what follows, we confine ourselves to searching for axisymmetric solutions of

the linearized problem when there is no dependence on ϕ. With an axisymmetric
loss of stability, waves occur along z. Therefore, the quasi-displacement w will be
sought as a vector field in the plane defined by the coordinates r and z (radial and
additional displacements), i.e.

w = u(r, z)er + w(r, z)ez . (11.28)

Consider the finite deformation of a cylinder, for which the distortion tensor has
the form

C = Cϕeϕ ⊗ eϕ + Czez ⊗ ez + Crzer ⊗ ez + Czrez ⊗ er + Crer ⊗ er . (11.29)

The components of this tensor do not depend on the ϕ coordinate. Therefore, taking
into account the relation

C = U · A, (11.30)

we obtain the stretch and rotation tensors

U = Uϕeϕ ⊗ eϕ +Uzez ⊗ ez +Urzer ⊗ ez +Uzrez ⊗ er +Urer ⊗ er ,

A = (ez ⊗ er − er ⊗ ez) sinχ + (ez ⊗ ez + er ⊗ er ) cosχ + eϕ ⊗ eϕ. (11.31)

The geometric meaning of the formula (11.31) is that the elementary volumes of the
cylinder rotate through the angle χ(r, z) around the vector eϕ.

Since the tensor U is symmetric, then

C · AT = A · CT. (11.32)

Using (11.29), (11.31), and (11.32), we get the equation for determining the
angle χ

(Czr − Crz) cosχ = (Cz + Cr ) sinχ,

the solution of which is a pair of functions

cosχ = ± s√
s2 + t2

, sinχ = ± t√
s2 + t2

, (11.33)

s = Cz + Cr , t = Czr − Crz .

Here, the signs of the functions are taken either both upper or both lower. The sign is
chosen according to the requirement that the tensorU be positive definite, expressed
by the inequality
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(Czez ⊗ ez + Crzer ⊗ ez + Czrez ⊗ er + Crer ⊗ er ) � A > 0.

This condition is satisfied by a pair of solutions from (11.33) with a plus sign, i.e.,

cosχ = s√
s2 + t2

, sinχ = t√
s2 + t2

. (11.34)

Taking (11.34) into account, we write the rotation tensor

A = eϕ ⊗ eϕ + s√
s2 + t2

(ez ⊗ ez + er ⊗ er ) + t√
s2 + t2

(ez ⊗ er − er ⊗ ez)

(11.35)
and the components of the stretch tensor

Uϕ = Cϕ,

Uz = sCz + tCzr√
s2 + t2

, Ur = sCr − tCrz√
s2 + t2

,

Uzr = Urz = CzCrz + CrCzr√
s2 + t2

.

Since the unperturbed state is axisymmetric (no rotations, movement along the
radial coordinate), then

A0 = E. (11.36)

Therefore, the linearized stress tensor for a semi-linear material given by the consti-
tutive relations (11.21) has the form

Ḋ = 2μ

1 − 2ν
(ν tr U0 − 1 − ν) Ȧ + 2μ

1 − 2ν

(
ν tr U̇

)
E + 2μL. (11.37)

By (11.36), the Ȧ tensor is antisymmetric. This can be shown by differentiating the
expression for the rotation tensor (11.35) with respect to η and taking into account
that t0 = 0 (because C0

zr = C0
r z = 0). Therefore, the linearized rotation tensor has

the representation

Ȧ = ṫ

s0
(ez ⊗ er − er ⊗ ez) = Lzr − Lrz

C0
z + C0

r

(ez ⊗ er − er ⊗ ez) .

Let us prove an auxiliary equality

tr U̇ = tr L. (11.38)

To do this, we substitute as the stretch tensor its expression in terms of the distortion
and rotation tensors according to (11.30) and differentiate with respect to the η
parameter:
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tr U̇ = [
tr

(
C · AT

)]· = tr
(
L · AT

0

) + tr
(
C0 · ȦT

)
.

Since tr
(
C0 · ȦT

) = 0 due to the symmetry of the tensorC0 and the antisymmetry of
the tensor Ȧ and (11.36) holds, then we obtain the fulfillment of the relation (11.38).

Because the equality (11.36) is valid, as well as U0 = C0 · A0
T, then

U0 = C0.

Therefore, we have linearized constitutive relations (11.37) in the form

Ḋ = 2μ

1 − 2ν
(ν trC0 − 1 − ν)

Lzr − Lrz

C0
z + C0

r

(ez ⊗ er − er ⊗ ez)

+ 2μ

1 − 2ν
(ν trL)E + 2μL. (11.39)

Here, C0 is given by the formula (11.18), and the components of the linearized
distortion tensor are determined according to the representation of this tensor

L = ∂u(r, z)

∂r
er ⊗ er + u(r, z)

r
eϕ ⊗ eϕ + ∂w(r, z)

∂r
er ⊗ ez + ∂w(r, z)

∂z
ez ⊗ ez

+ ∂u(r, z)

∂z
ez ⊗ er , (11.40)

obtained taking into account (11.27) and (11.28).
Substituting the linearized stress tensor Ḋ (11.39) into the linearized equilibrium

equation (11.26), we obtain two equations for functions depending on the variables
r and z.

The solution of the boundary value problem for the quasi-displacement vector w
will be sought in the form Lurie (2005)

u(r, z) = U (r) sin
πnz

l
, w(r, z) = W (r) cos

πnz

l
, n = 0, 1, 2, .... (11.41)

Here, l is the length of a cylinder, n is a number of half-waves along the length of a
cylinder along which buckling occurs.

Substitution (11.41) allows you to separate the variable z in the linearized equa-
tions (11.26), (11.39), and (11.40).

As a result, we obtain the equilibrium equations
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ν

1 − 2ν

(
U

′′ + U ′

r
− U

r2
− πn

l
W ′

)
+U

′′ + 1

r

(
U ′ − U

r

)

+
[
ν

(
Cr + Cϕ + λ

) − 1 − ν
]
πn

(1 − 2ν)(λ + Cr )l

(
W ′ − πn

l
U

)
− π2n2

l2
U = 0, (11.42)

1

1 − 2ν

[
ν(C

′
r + C ′

ϕ)

λ + Cr

(
W ′ − πn

l
U

)

+ν
(
Cr + Cϕ + λ

) − 1 − ν

(λ + Cr )2

[
(λ + Cr )

(
W

′′ − πn

l
U ′

)
− C ′

r

(
W ′ − πn

l
U

)]]

+ W
′′ + 1

r

[
ν

(
Cr + Cϕ + λ

) − 1 − ν

(1 − 2ν)(λ + Cr )

(
W ′ − πn

l
U

)
+ W ′

]

+ νπn

(1 − 2ν)l

(
U ′ + U

r
− πn

l
W

)
− π2n2

l2
W = 0 (11.43)

and boundary conditions in the absence of lateral load

ν

1 − 2ν

(
U ′ − U

r
− πn

l
W +U ′

)
= 0, (11.44)

[
ν

(
Cr + Cϕ + λ

) − 1 − ν
]

(1 − 2ν)(λ + Cr )

(
W ′ − πn

l
U

)
+ W ′ = 0. (11.45)

In the relations (11.42)–(11.45), the prime denotes derivatives with respect to r .
Thus, the linearized problem for a cylinder with dislocations consists of a homo-
geneous system of two second-order ordinary linear differential equations (11.42)
and (11.43) with respect to the functions U (r) and W (r) and boundary conditions
(11.44) and (11.45). The homogeneous linear problem (11.42)–(11.45) was solved
numerically. When a cylinder loses its stability, a buckling form is realized with the
number n, which corresponds to the minimum of the axial elongation 1 − λ. The
longitudinal critical force is determined in terms of the elongation multiplicity λ
using the formula (11.17).

11.7 Buckling Analysis

The cases of a thin shell (r1 = 0.95r0) and a thick-walled tube (r1 = 0.5r0) are
considered. In what follows, the coordinate r will be assumed to be dimensionless,
referred to the outer radius r0, so that r1 ≤ r ≤ 1. Dimensionless stresses will be
referred to the constantμ,which at small strains has themeaningof the shearmodulus.
Let ν = 0.3, l = 10. The dislocation density is considered as β(r) = β0rκ , κ = 2
and κ = −1.
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Fig. 11.1 Relationship between the elongation multiplicity λ and the dislocation density parameter
β0, thick-walled tube, κ = −1

A thick-walled tube r1 = 0.5r0 (Fig. 11.1) loses stability for the first time at n =
10, while a thin shell r1 = 0.95r0 (Fig. 11.2) loses stability for the first time at n = 26.
For κ = 2, the elongation multiplicity differs insignificantly from the elongation
multiplicity in the case of κ = −1, and this difference is the smaller, the smaller the
parameterβ0. For example, forβ0 = 1 in a thin shell forκ = 2,wehaveλ = 0.96976,
and forκ = −1,we haveλ = 0.96978. In a thick-walled tubewithβ0 = 1 forκ = 2,
we have λ = 0.6862, and for κ = −1, we have λ = 0.6993.

A critical resulting longitudinal force for a thick-walled tube and a thin shell
is shown in Figs. 11.3 and 11.4. As the dislocation density increases, the critical
force decreases in absolute value. For the case of the absence of dislocations, the
results of this work are found to correspond with the results of the theory of shells
Grigolyuk andKabanov (1978). For example, for a shell r1 = 0.95r0, the longitudinal
force Q = −0.0243 found by us corresponds to the longitudinal force Q = −0.0241
found by the theory of shells.

Consider the density of dislocations with κ = 2. Figures11.5 and 11.6 show
that there are cylindrical surfaces inside the cylinder on which the buckling mode
amplitudesU (along the vector er ) andW (along the vector ez) do not depend on the
dislocation density. It can be shown that, for a thin shell, this is true for the amplitude
U and is violated for the amplitudeW . On the inner surface of a thick-walled tube and
a thin shell, the amplitudeU increases with an increase in the dislocation density, and
on the outer surface—it decreases. As the dislocation density increases, the amplitude
W decreases on the outer surface, increases in absolute value on the inner surface,
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Fig. 11.2 Relationship between the elongation multiplicity λ and the dislocation density parameter
β0, thin shell, κ = −1

and, as it moves from the inner surface to the outer, first increases, then decreases,
and then increases again.

In the case when κ = −1, there is one cylindrical surface inside the thick-walled
tube, on which the amplitude of the buckling modeU (Fig. 11.7) does not depend on
the dislocation density, and two surfaces, on which the amplitudeW (Fig. 11.8) does
not depend on the dislocation density: closer to the body boundary is the one closer
to the outer surface of the cylinder. TheU buckling mode amplitude with increasing
dislocation density decreases in absolute value on the outer surface and increases on
the inner surface. With an increase in the dislocation density, the W buckling mode
amplitude increases in absolute value on the inner surface, then, when moving from
the inner surface to the outer surface, decreases in absolute value, and then increases,
and decreases on the outer surface.

In a thin cylindrical shell with a distribution of dislocations with κ = −1, the
U buckling mode amplitude (Fig. 11.9; the curves for β0 = 0.4 and β0 = 1 are the
same) is distributed over the thickness evenly. According to Fig. 11.10, an increase
in the dislocation density can either decrease or increase the W buckling mode
amplitude (the curves for β0 = 0.4 and β0 = 1 coincide). In addition, there is a
cylindrical surface inside the shell, on which the buckling mode amplitude is zero
for any dislocation density.



11 Equilibrium Stability of Nonlinearly Elastic Cylindrical Tube with Distributed … 207

Fig. 11.3 Critical force, thick-walled tube, n = 10

Fig. 11.4 Critical force, thin shell, n = 26
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Fig. 11.5 Buckling mode amplitude along er , thick-walled tube, κ = 2, n = 10

Fig. 11.6 Buckling mode amplitude along ez , thick-walled tube, κ = 2, n = 10
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Fig. 11.7 Buckling mode amplitude along er , thick-walled tube, κ = −1, n = 10

Fig. 11.8 Buckling mode amplitude along ez , thick-walled tube, κ = −1, n = 10
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Fig. 11.9 Buckling mode amplitude along er , thin shell, κ = −1, n = 26

Fig. 11.10 Buckling mode amplitude along ez , thin shell, κ = −1, n = 26
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11.8 Conclusion

In this paper, we have studied the problem of equilibrium stability of an elastic hol-
low cylinder made of a semi-linear material, containing distributed dislocations. The
problem is solved in the framework of the nonlinear three-dimensional theory of
elasticity, taking into account continuously distributed dislocations. The distribution
of edge dislocations, characterized by the scalar density of dislocations (an arbitrary
function of the radial coordinate), is considered. The subcritical state of the cylinder
is described by the exact solution. The critical values of the elongation multiplicity,
which is used to determine the critical force, are found by solving a linearized homo-
geneous boundary value problem, which is obtained by linearizing the equilibrium
equations, incompatibility equations, constitutive relations, and boundary conditions.
Using a special substitution, the variables in the system of linear partial differential
equations are separated. The resulting linear homogeneous boundary value problem
for a system of ordinary differential equations is solved numerically. The cases of a
thick-walled tube and a thin shell are considered. The effect of dislocations on the
loss of stability is analyzed. In particular, it has been established that the presence
of dislocations can both decrease and increase the critical force at which buckling
occurs. It is shown that there is a dislocation density inversely proportional to the
radius at which one of the buckling mode amplitudes in a thin shell is equal to zero.
It has also been found that cylindrical surfaces can exist in a cylinder, on which the
buckling mode amplitudes do not depend on the dislocation density.

Acknowledgements The reported study was funded by the Russian Science Foundation, project
number 23-21-00123, https://rscf.ru/en/project/23-21-00123/.
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Chapter 12
Simple Problems of Mechanical
Equilibrium Applicable to the Synthesis
and Modification of Materials

Anna G. Knyazeva

Abstract The paper presents examples of mechanical equilibrium problems that
are used to characterize the stress–strain state of objects under conditions of surface
treatment of materials and synthesis of coatings and allow constructing appropriate
coupled models. In some practically interesting cases, solutions of coupled mechan-
ical equilibrium problems are reduced to the solution of systems of linear equations,
which is convenient both for constructing analytical evaluations and for numerical
realization of coupled models, which is used by different authors in the physical and
materials science literature. Examples of problems on the equilibrium of a three-layer
plate under conditions of isothermal formation of transient diffusion zones and under
conditions of isothermal annealing with simultaneous application of a mechanical
load are described. The basic equations for the description of solid-phase combustion
under flat stressed and flat deformed conditions and the basic equations for controlled
synthesis of material on a substrate are presented. The possibilities of plate theory for
description of synthesis of coating on a substrate are analyzed. The coupled equations
of heat conduction and bending of a two-layer plate have been constructed taking
into account the difference in the averaging approaches in heat conduction theory and
in plate theory. Applications include modeling of transition zone formation under
isothermal conditions, synthesis of materials in 3D technologies.
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12.1 Introduction

It is no secret that composites attract attention with their properties different from
those of their constituents, and sometimes exceeding them (Zheng et al. 2022;
Shehryar et al. 2021; Koyanagi et al. 2018). They include layer composites with
different properties, structure, and periodicity of layers. Quite many publications
are devoted to modeling their behavior under thermomechanical loading conditions
and calculating their effective properties. However, the formation of structure and
properties occurs precisely in the process of creating composites. The simulation of
the corresponding phenomena is paid little attention undeservedly.

In the technologies for obtaining layered materials or composites, including 3D
technologies (Sun et al. 2023; You et al. 2023), both dissimilar (Fig. 12.1a) and
identical materials (Fig. 12.1b) can be combined, special compositions can be used
for their joining, which themselves undergo various transformations (Fig. 12.1c),
which leads to a complex multilevel structure in the process of creating composites.
Material bonding and synthesis of coatings can be carried out in air, in an oxidizing
or inert atmosphere, in a vacuum; using external dynamic or static loading; can be
controlled by an external energy source, etc. For example, if a laser or electron beam
is expanded in line (and there is high-frequency scanning across the entire width of
the sample), then processes in the thin surface layer and/or at the material-coating
interface will be of interest in coating synthesis or surface treatment (Fig. 12.2a). In
Laminated Object Manufacturing (LOM) technologies (Fig. 12.2b) or (Fig. 12.2c),
the result will depend on both the applied load and the thermokinetic processes
at the interfaces and structural transformations in the bonding composition (which
depend on both temperature and stress). In all these cases, the chemical and phase
composition, the structure of the interlayers and transition zones, and, consequently,
the effective properties of the resulting composites will depend not only on the
materials used, but also on the accompanying physical and chemical processes, the
dynamics of which are different under different conditions.

The study of such objects in mechanics and physics uses different approaches.
When building coupledmodels of synthesis, joining, and processing ofmaterials, it is
necessary to take into account the features of each particular technology individually.
This is useful for identifying qualitative regularities that are sometimes impossible

a b c

Fig. 12.1 Conditional schemes of joining materials in different technologies: a joining dissimilar
materials; b joining the same materials c joining dissimilar materials using adhesives
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a b c

Fig. 12.2 Synthesis and joining of materials controlled by external action: a synthesis of coatings
controlled by a moving heat source; b bonding of layers in LOM-technology; c Roll bonding
technology scheme

to grasp with commercial packages. Below there are examples of simple equilib-
rium problems that are used or can be used in modeling of processes of materials
modification and synthesis of composites.

12.2 Equilibrium Problems

Example 1 Let it be required to study the stress–strain state of a plate consisting of
three layers with thicknesses hA, hB, and hC (Fig. 12.1a). We denote the properties
of the layers by the indices “A”, “B”, and “C”, respectively. In one of the plates (for
example, the central one) chemical reactions or phase transitions may take place, the
consequence of which may be a new phase composition (Chashchina and Knyazeva
2005, 2006). In the other situation, duringhomogeneous heating, diffusion interaction
between the layers with the formation of diffusion zones is possible (Knyazeva et al.
2001, 2013). According to the Duhamel-Neumann relations for isotropic materials,
we have

σi j = 2μεi j + δi j [λεkk − Kω] (12.1)

or

σi j = 2
E

2(1 + v)
εi j + δi j

[
Ev

(1 − 2v)(1 + v)
εkk − E

3(1 − 2v)
ω

]
,

where I, j = x, y, z; λ, μ−Lamé coefficients, K = λ + 2
3μ−the bulk compression

modulus, linked to the technical characteristics (elastic modulus E and Poisson’s
coefficient v) by the relations

K = E

3(1 − 2v)
, λ = Ev

(1 + v)(1 − 2v)
, μ = E

2(1 + v)
(12.2)
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δij-Kronecker delta

{
δi j = 1, if i = j;
δi j = 0, if i �= j,

ω is generally a function of concentration and temperature:

ω = 3

[
αT (T − T0) +

n∑
k=1

αk(Ck − Ck0)

]
, (12.3)

αT is linear thermal expansion coefficient; αk are the coefficients of concentration
expansion; index «0» relates to non-deformed state; n is a number of components
(elements and compounds).

The properties of each layer are generally different.
Under the conditions of uniform along-surface heating or isothermal annealing

(Boley et al. 1960) of a thin composite plate, it is logical to assume that the angular
deformations and shear stresses are zero, while the remaining ones change only in
the direction of the axis perpendicular to the plate surface. In addition, the stresses
in this direction are also zero, σzz = 0. So we have

εzz = εzz(z), εyy = εxx = ε(z),

σyy = σxx = σ(z).
(12.4)

The shape of the plate in this case does not matter.
In this case, the equilibrium equations are fulfilled identically and do not allow

us to find the components of the stress tensor. Therefore, it is necessary to involve
the equations of deformation compatibility condition, of which in the described
conditions two identical equations remain for εyy and εxx :

∂2ε

∂z2
= 0; ε = εyy = εxx . (12.5)

The solution of Eq. (12.2) is

ε = F1z + F2, (12.6)

where F1 and F2 are integration constants to be found.
From the Duhamel-Neiman relations (12.1), we find

εzz = 1

λ + 2μ
[Kω − 2λε] ≡ 1

3

1 + v

1 − v
ω − 2v

1 − v
ε (12.7)

and
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σ = −ω

3

E

1 − v
+ E

1 − v
(F1z + F2). (12.8)

Hence, for a composite plate whose properties and composition change along the
coordinate, we have

for 0 ≤ x < hA:

εA
zz = 1

3

1 + vA

1 − vA
ωA − 2vA

1 − vA
(F1z + F2);

σ A = −ωA

3

EA

1 − vA
+ EA

1 − vA
(F1z + F2);

εA = F1z + F2;

for hA ≤ x < hA + hB :

εB
zz = 1

3

1 + vB
1 − vB

ωB − 2vB
1 − vB

(F1z + F2);

σ B = −ωB

3

EB

1 − vB
+ EB

1 − vB
(F1z + F2);

εB = F1z + F2;

and for hA + hB ≤ x < hA + hB + hC :

εCzz = 1

3

1 + vC
1 − vC

ωC − 2vC
1 − vC

(F1z + F2);

σC = −ωC

3

EC

1 − vC
+ EC

1 − vC
(F1z + F2);

εC = F1z + F2.

It remains to find the integration constants.
For a free unfixed homogeneous plate, the resultant force along the plate contour

and the resultant moment of forces relative to the center of mass are zero (Boley et al.
1960). This is reflected by the equations:

h/ 2∫
−h/ 2

σ(z)dz = 0,

h/ 2∫
−h/ 2

σ(z)zdz = 0. (12.9)

The stress σ acts perpendicular to the plate contour in the plane xy, h is the plate
thickness. The center of mass is in the median plane of the plate (Fig. 12.3a).

If we move the origin of coordinates to the left by h
/
2, then instead of (9) we

write
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a b c

Fig. 12.3 Geometry problem 1

h∫
0

σ

(
z − h

2

)
dz = 0,

h∫
0

σ

(
z − h

2

)
·
(
z − h

2

)
dz = 0. (12.10)

For the three-layer plate (Fig. 12.3), we have

hA+hB+hC∫
0

σ(z − z∗)dz = 0,

hA+hB+hC∫
0

σ(z − z∗) · (z − z∗)dz = 0 (12.11)

where z∗−the position of the center of mass of the composite plate with respect to
the plane z = 0. If necessary, this value can be easily calculated from the ratio

〈ρ〉z∗ = ρAz
∗
A + ρBz

∗
B + ρC z

∗
C

or

z∗ = ρA
hA
2 + ρB

(
hA + hB

2

) + ρC
(
hA + hB + hC

2

)
ρAhA + ρBhB + ρChC

(hA + hB + hC).

Substituting the found expressions for the stresses in (12.9), we find an equation
system for determining the integration constants
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−
hA+hB+hC∫

0

ω(z, t)

3

E

1 − v
dz + F1

hA+hB+hC∫
0

E

1 − v
zdz + F2

hA+hB+hC∫
0

E

1 − v
dz = 0,

−
hA+hB+hC∫

0

ω(z, t)

3

E

1 − v
(z − z∗)dz + F1

hA+hB+hC∫
0

E

1 − v
z(z − z∗)dz + F2

hA+hB+hC∫
0

E

1 − v
(z − z∗)dz = 0.

If the properties do not depend on concentrations and coordinates, all but two
integrals involving the function ω(z, t) are easily taken, and the system of equations
is solved without difficulty.

If the properties cannot be considered constant over the thickness of the plate
(for example, they are different in different materials, and, moreover, depend on the
composition changing with time), it is convenient to present the system of equations
for determining the integration constants as follows:

−N + F1β + F2α = 0,

−(M − z∗N ) + F1(γ − z∗β) + F2(β − z∗α) = 0,
(12.12)

where

N = 1
3

[
hA∫
0

ωA(z, t) EA
1−vA

dz +
hA+hB∫
hA

ωB(z, t) EB
1−vB

dz +
hA+hB+hC∫
hA+hB

ωC (z, t) EC
1−vC

dz

]
,

M = 1
3

[
hA∫
0

ωA(z, t)z EA
1−vA

dz +
hA+hB∫
hA

ωB(z, t)z EB
1−vB

dz +
hA+hB+hC∫
hA+hB

ωC (z, t)z EC
1−vC

dz

]
,

α =
hA∫
0

EA
1−vA

dz +
hA+hB∫
hA

EB
1−vB

dz +
hA+hB+hC∫
hA+hB

EC
1−vC

dz,

β =
hA∫
0

EA
1−vA

zdz +
hA+hB∫
hA

EB
1−vB

zdz +
hA+hB+hC∫
hA+hB

EC
1−vC

zdz,

γ =
hA∫
0

EA
1−vA

z2dz +
hA+hB∫
hA

EB
1−vB

z2dz +
hA+hB+hC∫
hA+hB

EC
1−vC

z2dz.

The solution to the system of Eqs. (12.12) is

F1 = Nβ − Mα

β2 − γα
, F2 = −Nγ − Mβ

β2 − γα

and does not include the coordinate of the center of inertia. The solution of the
thermokinetic problem is immediately in the required coordinate system.
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A similar simple approach is used in various applied problems for objects of
different geometry. For example, in Yang (2005) the stress distribution in a thin plate
during boron diffusion in polycrystalline silicon is illustrated. In (Lee et al. 2000;
Wang et al. 2002), the mutual influence of diffusion and stresses in a hollow cylinder
is investigated. The authors investigated two variants of diffusion into the hollow
cylinder at a constant stress level on the surface and at a constant surface potential
and came to the conclusion that the character of stress influence is the same in both
cases. In the paper (Pascalis 2022), the solution of the problem on diffusion saturation
of some element of an isotropic sphere is presented. The spherically symmetric
problem in the presence of volumetric reaction is presented in Hu et al. (2020).
Stresses accompanying the diffusion process in the spherical geometry are calculated
in Mikolaichuk and Knyazeva (2010) for different variants of arrangement of layers
and so on.

Example 2 If the plate is under constant load (e.g., stretched in the direction of the
0Y axis), the average stress in z will also satisfy the loading conditions:

〈σxx 〉 = 1

h

h∫
0

σxx (x, y, z)dz;
〈
σyy

〉 = 1

h

h∫
0

σyy(x, y, z)dz;

〈
τxy

〉 = 1

h

h∫
0

τxy(x, y, z)dz

(12.13)

where h = hA + hB + hC .
Stresses σxx and σyy , and also strains εyy and εxx will not equivalent.
In (Mikolaichuk and Knyazeva 2010; Knyazeva and Mikolaichuk 2011; Miko-

laychuk et al. 2012), the loading conditions are formulated as follows:

〈
σyy

〉 = P; 〈σxx 〉 = 0. (12.14)

If only the stresses in the diffusion zone far from the plate edges are of interest
for the study, the problem again becomes one-dimensional. Expressions for strains
εyy �= εxx take the form

εxx = F1z + F2;
εyy = F3z + F4;

To find the four integration constants we use the conditions
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1

h

h∫
0

σxx (z)dz = 0; 1
h

h∫
0

σyy(z)dz = P;

1

h

h∫
0

σxx (z)zdz = 0; 1
h

h∫
0

σyy(z)zdz = 0.

The values τxy and εxy in this approximation turn equal to zero.
From the Duhamel-Neiman relations, we find

εkk = (F1 + F3)z + (F2 + F4) + εzz;
εzz = − λ

λ + 2μ
[(F1 + F3)z + (F2 + F4)] + K

λ + 2μ
ω;

σxx = 2μ

λ + 2μ
[λ(F3z + F4) + 2(λ + μ)(F1z + F2) − Kω];

σyy = 2μ

λ + 2μ
[λ(F1z + F2) + 2(λ + μ)(F3z + F4) − Kω].

(12.15)

Consequently, we come to a system of linear algebraic equations

M1F1 + N1F2 + M2F3 + N2F4 −  = 0;
M2F1 + N2F2 + M1F3 + N1F4 −  = Ph;
XF1 + M1F2 + Y F3 + M2F4 − � = 0;
Y F1 + M2F2 + XF3 + M1F4 − � = 0,

(12.16)

where

M1 =
h∫

0

4μ(λ + μ)

λ + 2μ
zdz; M2 =

h∫
0

2μλ

λ + 2μ
zdz

N1 =
h∫

0

4μ(λ + μ)

λ + 2μ
dz; N2 =

h∫
0

2μλ

λ + 2μ
dz

X =
h∫

0

4μ(λ + μ)

λ + 2μ
z2dz; Y =

h∫
0

2μλ

λ + 2μ
z2dz

 =
h∫

0

2μK

λ + 2μ
ωdz;� =

h∫
0

2μK

λ + 2μ
ωzdz.

All integrals are a function of the z coordinate.
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Despite the presence of the same coefficients in (12.16), its solution turns out to
be cumbersome and is not presented here.

If the formation of diffusion zones between materials is provided by diffusion
of one of the components (for example, from the middle layer), then one equation
for flux (and one diffusion equation for each layer) will be required to solve the
diffusion problem. According to thermodynamic theory, the equation for diffusant
flux in one-dimensional problem (Knyazeva 2005, 2003) has the form

Ji = −D∗ f (ηi )
∂ηi

∂z
+ Biηi

∂σ
(i)
kk

∂z
, (12.17)

where Bi = αi
D∗m
ρi RT

is transfer coefficient under stress action; ηi is diffusant concen-
tration in i layer; i = A, B,CD∗ is self-diffusion coefficient; m is diffussant molar
mass; ρi is layer density; αi is the concentration expansion coefficient; R is universal
gas constant.

Using (12.15), we find

σ
(i)
kk = kμi Ki

λi + 2μi

[
(F1 + F3)z + (F2 + F4) − 2

3
ωi

]
,

where ωi = 3αi (ηi − ηi0).
If the properties within the layers can be considered unchanged, then

Ji = −
[
D∗ f (ηi ) + 2αi Biηi

kμi Ki

λi + 2μi

]
∂ηi

∂z
+ Biηi

kμi Ki

λi + 2μi
(F1 + F3). (12.18)

Thus, the coupling of diffusion and mechanical processes manifests itself through
a change in the effective diffusion coefficient (the second summand in brackets at the
concentration derivative) and the appearance of additional convective transport (the
second summand in (12.18)). When solving a particular problem, it is worth paying
attention to the possibility of changing the diffusion transfer rate due to stress work
(Mikolaichuk and Knyazeva xxxx).

Example 3 Asomewhat different approach canbeusedwhen analyzing the influence
of the stress–strain state on the dynamics of chemical transformations, for example,
when synthesizing a coating on a substrate (Fig. 12.2a) or when synthesizingmaterial
in a layer between two inert plates (Fig. 12.1a, b). In the first case, we can assume that
the reaction layer, loosely located on the substrate, is in a plane stress state, σzz = 0.

In this case

σzz = σxy = σxz = σyz = 0;
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∣∣∣∣∣∣
εxx εxy 0
εyx εyy 0
0 0 εzz

∣∣∣∣∣∣.

In the second case (Fig. 1a, b) –

εzz = 0.

This will be a planar deformation for which

εzz = εxz = εzx = εyz = εzy = 0

and

∣∣∣∣∣∣
σxx σxy 0
σyx σyy 0
0 0 σzz

∣∣∣∣∣∣.

Here σzz and εzz are the components of stress and strain tensor in 0Z axis direction.
If we assume that the substrate on which the thin powder layer is located is also

thin, and in the second variant the thickness of the bounding plate is also small,
then in the simplest approximation we can assume that all the quantities we will
use in the theoretical description of the synthesis process do not depend on the z
coordinate. This applies both to the components of the stress and strain tensors and
to the temperature, concentrations, and rates of chemical reactions. Then to describe
the synthesis process in a flat layer, we have a two-dimensional heat conduction
equation

ρcε

∂T

∂t
= λT

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ Wch + Wext − H − 3KαT T

∂εkk

∂t
(12.19)

with boundary and initial conditions

t = 0 : T = T0;
y = 0 : ∂T

/
∂y = 0

(12.20)

x = 0, ∞ : ∂T
/

∂x = 0,

y → ∞ : ∂T
/

∂y = 0,
(12.21)

where T−is the temperature; ρ−is the density; cε−is the heat capacity at constant
strains; λT−is the thermal conductivity coefficient; Wch−is summary chemical heat
release, Wext−is the external heat source; H = αe f f (T − T0) + σ0ε0

(
T 4 − T 4

w

)
;

the first term in H describes the heat losses in a substrate, to the surrounding mate-
rial layers, and/or to the environment (αe f f −is effective heat transfer coefficient in
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Newton’s law); the second term describes the heat loss from the plate surface due to
thermal radiation according to the Stefan-Boltzmann law, σ0−Stephen-Boltzmann
constant, ε0−degree of blackness, Tw−is the vacuum chamber wall temperature).
The other designations are the same as above. For physicochemical processes occur-
ring in the solid phase, powder melting and porosity change (if we are talking about
the synthesis of material in the powder layer) in the first approximation obviously
can be not considered.

In the case of one total reaction, we add the kinetics equation to the thermal
conductivity equation:

dη

dt
= k0(1 − η) exp

(
− Ea

RT

)
= �(T, η), (12.22)

where η−is a conversion level, Ea−is activation energy for chemical reaction; k0−is
pre-exponential factor.

Then

Wch = Qch�(T, η),

where Qch−is the heat release of summary chemical reaction.
The function (3) in the Duhamel-Neiman relation takes the form

ω = 3[αT (T − T0) + αC(η − η0)].

The reaction can be activated not only by changing the temperature (internal
energy), but also by performing work. This is answered by another exponential law,
which leads to a more complex heat release function (Knyazeva 1993)

�(T, η) = k0(1 − η) exp

(
− Ea + kσ�

RT

)
,

where�−is stress work; coefficient kσ reflects the fact that this work, like activation
energy, must be calculated per mole.

In the approximation of small deformations, we need two equations of motion.

∂σxx

∂x
+ ∂σxy

∂y
= ρ

∂2ux

∂t2
;

∂σyx

∂x
+ ∂σyy

∂y
= ρ

∂2uy

∂t2
,

where ux , uy are displacement vector components in the XY plane.
The equations of motion can be rewritten through deformations. Then in the case

of a plane stress state we find
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2μ

λ + 2μ

∂2

∂x2
[
2(λ + μ)εxx + λεyy − Kω

] + μ

(
∂2εxx

∂y2
+ ∂2εyy

∂x2

)
= ρ

∂2εxx

∂t2
;

(12.23)

μ

(
∂2εxx

∂y2
+ ∂2εyy

∂x2

)
+ 2μ

λ + 2μ

∂2

∂y2
[
2(λ + μ)εyy + λεxx − Kω

] = ρ
∂2εyy

∂t2
.

In this case, there is the εzz deformation:

εzz = − 1

λ + 2μ

[
λ
(
εxx + εyy

) − Kω
]
.

In the case of planar deformation εzz = 0 and the equations are slightly different
from (23)

∂2

∂x2
[
(λ + 2μ)εxx + λεyy − Kω

] + μ

(
∂2εxx

∂y2
+ ∂2εyy

∂x2

)
= ρ

∂2εxx

∂t2
;

μ

(
∂2εxx

∂y2
+ ∂2εyy

∂x2

)
+ ∂2

∂y2
[
(λ + 2μ)εyy + λεxx − Kω

] = ρ
∂2εyy

∂t2
.

(12.24)

For the shear component of the stress tensor in any case we obtain

∂2σxy

∂x∂y
= 2μ

∂2εxy

∂x∂y
= 2μ

1

2

∂2

∂x∂y

(
∂ux

∂y
+ ∂uy

∂x

)
= μ

(
∂2εxx

∂y2
+ ∂2εyy

∂x2

)
. (12.25)

The work is calculated by the formula:

� = −(
σxxεxx + σyyεyy + 2σxyεxy

)
.

If we now assume that the planar reaction front moves to the right with velocity
Vn , we come to one-dimensional problems for both situations, including the heat
conduction equation of the form

cερ

[
∂T

∂t
− Vn

∂T

∂x

]
= λT

∂2T

∂x2
+ Wch − αe f f (T − T0)

− 3KαT T

(
∂εkk

∂t
− Vn

∂εkk

∂x

)

and systems of motion equations, respectively, for the plane stress state

2μ

λ + 2μ

∂2

∂x2
[2(λ + μ)εxx − Kω] = ρ

[
∂2εxx

∂t2
− 2Vn

∂2εxx

∂t∂x
+ V 2

n

∂2εxx

∂x2

]

μ
∂2εyy

∂x2
= ρ

[
∂2εyy

∂t2
− 2Vn

∂2εyy

∂t∂x
+ V 2

n

∂2εyy

∂x2

]
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and for the plane deformed state

∂2

∂x2
[(λ + 2μ)εxx − Kω] = ρ

[
∂2εxx

∂t2
− 2Vn

∂2εxx

∂t∂x
+ V 2

n

∂2εxx

∂x2

]
.

μ
∂2εyy

∂x2
= ρ

[
∂2εyy

∂t2
− 2Vn

∂2εyy

∂t∂x
+ V 2

n

∂2εyy

∂x2

]
.

As a result, for the stationary reaction wave, we find

−cερVn
dT

dx
= λT

d2T

dx2
+ Wch − αe f f (T − T0) + 3KαT T Vn

dεkk

dx
(12.26)

εyy = Ax + B,

where A, B are integration constants, which can be found from the additional
condition that forces and moments along the plate contour are equal to zero.

For the two considered cases, we have

dεkk

dx
= − 2λγ1 − ρV 2

n

(λ + μ)2γ1 − ρV 2
n

γ1K

2μ

dω

dx
+ Aγ1,

where γ1 = 2μ
λ+2μ ,

and

dεkk

dx
= A + K

(λ + 2μ) − ρV 2
n

dω

dx
= A + K

/
(λ + 2μ)

1 − ρV 2
n

/
(λ + 2μ)

dω

dx
.

For large plates, the value of A is small and can be neglected, which makes the
solution much easier.

This is the approach used in Timokhin and Knyazeva (1996); Knyazeva and
Sorokova 2006; Knyazeva and Dyukarev 1995) in constructing coupled models
of solid-phase combustion, and in Knyazeva 2010a; Knyazeva 2010b) in studying
the stability of the reaction front to mechanical perturbations. In (Knyazeva and
Kryukova 2022), within the framework of the same approach, a coupled model of
composite synthesis was presented under the condition of two total reactions, one
of which corresponds to the formation of reinforcing particles and the other to the
formation of the matrix. The process was controlled by laser radiation.

Example 4 If it is necessary in the synthesis model of the composite coating to take
into account the properties of the substrate or surrounding layers, there are variants.

We will proceed from the three-dimensional equations of heat conduction and
equations of motion:
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cερ
dT

dt
= λT

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
+ Wch + Wext − 3KαT T

dεkk

dt
. (12.27)

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
= ρ

dVx

dt
;

∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
= ρ

dVy

dt
;

∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
= ρ

dVz

dt
.

(12.28)

Here Vx , Vy , Vz are velocity vector components:

dεxx

dt
= ∂Vx

∂x
; dεyy

dt
= ∂Vy

∂y
; dεxy

dt
= 1

2

(
∂Vx

∂y
+ ∂Vy

∂x

)
, etc.

In the general case, the continuity equation is also required.
The effective properties of the layers are considered to be unchanged.
These equations are valid for media with any rheological properties. In the case

of viscous media, another term related to energy dissipation will appear in the heat
transfer equation.

Let us integrate Eqs. (12.1), (12.27), and (12.28) over the thickness of the substrate
(S) and the layer in which the reactions take place (R). We assume that heat losses
by different mechanisms are possible on the outer surface, and the lower surface is
thermally insulated. We consider the properties of the layers to be unchanged. There
is no external mechanical load. As a result, we obtain

[
(cερ)ShS + (cερ)RhR

]dT
dt

= [
λT,ShS + λT,RhR

](∂2T

∂x2
+ ∂2T

∂y2

)

+hRWch +
hS+hR∫
0

Wextdz − 3
[
KSαT,ShS + KRαT,RhR

]
T
dεkk

dt
;

(12.29)

(hS + hR)

(
∂σxx

∂x
+ ∂σxy

∂y

)
= (ρShS + ρRhR)

dVx

dt
; (12.30)

(hS + hR)

(
∂σyx

∂x
+ ∂σyy

∂y

)
= (ρShS + ρRhR)

dVy

dt
;

σi j = 2(μShS + μRhR)εi j + [(λShS + λRhR)εkk − (KShS〈ωS〉 + KRhR〈ωR〉)].
(12.31)

Since the layers are thin in total, we have a planar stress state. Then for the
average stresses and strains over the thickness of the layers, the relations similar to
the previous version will be fulfilled. We have
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(cερ)e f f
dT

dt
= λT,e f f

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ hR

hS + hR
Wch + Wext,e f f

hS + hR

− 3(KαT )e f f T
dεkk

dt

∂σxx

∂x
+ ∂σxy

∂y
= ρe f f

dVx

dt
;

∂σyx

∂x
+ ∂σyy

∂y
= ρe f f

dVy

dt

and

σxx = 2μe f f εxx + [
λe f f εkk − 〈Kω〉],

σyy = 2μe f f εyy + [
λe f f εkk − 〈Kω〉],

0 = 2μe f f εzz + [
λe f f εkk − 〈Kω〉],

σxy = 2μe f f εxy,

where

ρe f f = ρShS + ρRhR

hS + hR
, (cερ)e f f = (cερ)ShS + (cερ)RhR

hS + hR
;

λT,e f f = λT,ShS + λT,RhR

hS + hR
; (KαT )e f f = KSαT,ShS + KRαT,RhR

hS + hR
;

〈Kω〉 = (KShSωS + KRhRωR)

hS + hR
,

ωS = 3αT,S(T − T0); ωR = 3αT,R(T − T0) + ωch .

The second summand in last expression depends on the type andmethod of solving
the kinetic problem.

Then the procedure is similar to the previous one. We write the equations of
motion through deformations. We neglect the forces of inertia and assume that the
laser or electron beam is deployed in a line. In this case, all quantities do not depend
on the y-coordinate. As a result, we arrive at the equilibrium equations:

2μe f f

λe f f + 2μe f f

∂2

∂x2
[
2
(
λe f f + μe f f

)
εxx − 〈Kω〉] = 0;

μe f f
∂2εyy

∂x2
= 0,

from which it follows that
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εxx = 〈Kω〉
2
(
λe f f + μe f f

) + Ax + B

and
εyy = Cx + D.
Then we find the remaining values.

εzz = − λe f f(
λe f f + 2μe f f

)(
εyy + εxx

) + 〈Kω〉(
λe f f + 2μe f f

) ;

σxx = 2γ1
(
λe f f + μe f f

)
(Ax + B) + γ1λe f f (Cx + D);

σyy = 2γ1
(
λe f f + μe f f

)
(Cx + D) + γ1λe f f (Ax + B) − μe f f

λe f f + μe f f
〈Kw〉,

where γ1 = 2μe f f

(λe f f +2μe f f )
.

The conditions for finding the integration constants are written in the form.

L∫
0

σxxdx = 0;
L∫

0

σyydx = 0;
L∫

0

σxx xdx = 0;
L∫

0

σyy xdx = 0,

where L is the size of the plate in the direction of the 0X axis. We do not give the
system of linear equations and its cumbersome solution. But let us note that since all
sub-integral functions are finite, the integrals of the form

1

L2

(
λe f f + 2μe f f

)·
2
(
λe f f + μe f f

)
L∫

0

〈Kw〉dx;

1

L3

(
λe f f + 2μe f f

)·
2
(
λe f f + μe f f

)
L∫

0

〈Kw〉xdx

decrease rapidly with increasing plate length. In this simplest case, the system of
equations with respect to integration constants will have only a trivial solution and

εxx = 〈Kω〉
2
(
λe f f + μe f f

) ;

εyy = 0;

εzz = − λe f f(
λe f f + 2μe f f

)εxx + 〈Kω〉(
λe f f + 2μe f f

) ;
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σxx = 0;

σyy = −γ1

(
λe f f + 2μe f f

)
2
(
λe f f + μe f f

) 〈Kω〉.

As a result, the one-dimensional heat conduction equation associated with
deformations takes the form

(cερ)e f f
dT

dt
= λT,e f f

∂2T

∂x2
+ hR

hS + hR
Wch + Wext,e f f

hS + hR

− 3(KαT )e f f T

2
(
λe f f + μe f f

) d〈Kω〉
dt

. (12.32)

It was shown in Sorokova and Knyazeva (2010) that the coupling of processes of
different nature can serve as a source of additional instabilities in the propagation of
the reaction front.

The equilibrium problem can also be solved in stresses, as in Knyazeva and
Kryukova (2022).

Example 5 Problems 3 and 4 did not take into account plate bending, which can
occur in the case of inhomogeneous heating, a moving local heat source, and a
propagating reaction front, where the composition and temperature change. In order
to take into account in the models of synthesis of layered composites and coatings
the change in shape of individual layers and the product as a whole, plate theory can
be used. There are quite a few thermomechanical models of plates and shells in the
literature. However, in pure form, their applicability to our problems is not obvious.
Attempts to apply them to non-uniform temperature conditions encountered in the
literature raise many questions.

The impossibility of constructing a unified theory of plates and shells equally well
applicable to allmaterials and types of stress–strain states arementioned, for example,
in the two-part review (Galinsh 1970, 1967). Without aiming to give an overview of
all the theories known to date, of which there is an enormous accumulation, here are
some examples.

The classical Kirchhoff theory (which is described in detail in almost all textbooks
and monographs) is based on the hypothesis of invariability of the normal to the
midline surface. The median surface is treated as a neutral layer, which bends but
does not experience linear and shear deformations. The displacements of points
distant from the middle plane by distance z are represented in the form.

uz(x, y, z) = zφx ,

vz(x, y, z) = zφy,

w = w0(x, y).

(12.33)
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In Kirchhoff’s theory, the angles of rotation φx and φy , the normal to the deformed
plane with respect to the axis Z are defined as the derivatives of the transverse
defection w0:

φx = −∂w0

∂x
, φy = −∂w0

∂y
, φy = −∂w0

∂y
. (12.34)

If we take into account the displacements of the middle plane u0, v0, instead of
(33) we have (Birger 1992; Sokolnikoff and Sokolnikoff 1939):

uz(x, y, z) = u0(x, y) + zφx ,

vz(x, y, z) = v0(x, y) + zφy,

w = w0(x, y).

(12.35)

The theory of thin plates uses the flat stress approximation, according to which

σzz = 0; τzx = 0; τzy = 0.

Then, using elastic relations, joint deformation condition and equilibrium equa-
tions, the equations for the force function and for the deflection are derived. Vari-
ants of the theory of thermoelastic plates are considered in Sokolnikoff and Sokol-
nikoff (1939), and in the book (Birger 1992) in the defining relations, besides
thermal, there are additional deformations, which are related by phase and structural
transformations.

Note that in the literature there are variants of linear and nonlinear theories for
small deflections and deformations

εx = ∂u0
∂x

− z
∂2w0

∂x2
;

εy = ∂v0
∂y

− z
∂2w0

∂y2
;

γxy = ∂u0
∂y

+ ∂v0
∂x

− 2z
∂2w0

∂x∂y

(12.36)

and for large deflections, when the deformation determinations at points at a distance
z from the midplane are used (Donnel 1982; Timoshenko and Woinovsky-Krieger
1959) in the form
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εx = ∂u0
∂x

+ 1

2

(
∂w0

∂x

)2

− z
∂2w0

∂x2
;

εy = ∂v0
∂y

+ 1

2

(
∂w0

∂y

)2

− z
∂2w0

∂y2
;

γxy = ∂u0
∂y

+ ∂v0
∂x

+ ∂w0

∂x

∂w0

∂y
− 2z

∂2w0

∂x∂y
.

In Mindlin’s theory (Mindlin 1951) (or in the so-called First Order Shear Defor-
mation Plate Theory−FSDT), rotations φx and φy along with deflection w0 are the
main (primary) variables for which the solving equations are formulated. The FSDT
theory is the basis, for example, of themodel (Kanase et al. 2015), where each layer is
characterized by its own structure. According to different authors, first-order theory
requires the introduction of correction coefficients (Pai 1995). High-order theories
(Galinsh 1970, 1967) proceed from the preliminary setting of some of the quanti-
ties (e.g., the displacement vector components) in the form of finite series containing
approximating functions and parameters, the physicalmeaning ofwhich is not always
clear (Reddy 1984; Rohwer et al. 2001; Ferreira et al. 2011; Talha and Singh 2010;
Kant and Shiyekar 2013; Tran et al. 2017; Naik and Sayyad 2019). Some of them are
found in the course of problem-solving. If we are talking about multilayered plates or
layered composites, the number of unknown parameters increases with the number
of layers (except for some theories).

In (Joshan et al. 2017), for example, the thermomechanical behavior of layered
composite plates is investigated. The model is based on the inverse hyperbolic shear
deformation theory (Grover et al. 2013), in which

uz(x, y, z) = u0(x, y) − z
∂w0

∂x
+ f (z)θx ,

vz(x, y, z) = v0(x, y) − z
∂w0

∂y
+ f (z)θy,

w = w0(x, y)

f (z) = sinh−1
(
r z
n

) + z, θx , θy are shear rotations; n is number of layers; , r are
some parameters. The temperature distribution is specified as a function containing
linear and nonlinear terms in z.

Thermoelastic theories for multilayer composite plates (Karama et al. 2009;
Sayyad et al. 2016) contain exponential functions along the z coordinate (perpendic-
ular to the middle plane) in the definition of displacements in order to account for
shear deformation. In the second of these, the temperature is assumed to be distributed
linearly or nonlinearly along the thickness. However, the possible temperature distri-
bution in the (x, y) plane is not analyzed. The trigonometric shear strain theory is
used in Sandhya and Yuwaraj (2021). A review of some nonlinear and high-order
theories is presented in Xu et al. (2010).
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Three-dimensional thermoelastic analysis of simply supported rectangular plates
with variable thicknesses subjected to thermomechanical loads was investigated in
Xu et al. (2010). A variable thickness plate of functionally graded material also
appears in Amiri et al. (2022). The thermal steady-state load is given in the form
of a temperature difference between the upper and lower surfaces of the plate. It
is assumed that the mechanical properties of the plate change linearly along the
thickness depending on the volume content in the ceramic and metal layers, which
appears in themodel in the setting of the variable stiffness. Third-order theory is used.
A three-dimensional problem for an orthotropic functionally graded rectangular plate
assuming an arbitrary distribution of properties along the plate thickness is studied
in Liu and Zhong (2011). A number of nonlocal theories are known (Aghababaei
and Reddy 2009; Lu et al. 2007, 2019), etc.

Thus, in all publications, the stationary temperature distribution is specified, either
found from the solution of the stationary problem or specified as an approxima-
tion of some three-dimensional distribution. However, in modern technologies for
synthesizing coatings or surface treatment of materials, the temperature distribution
is heterogeneous and depends on the type of heat source, its velocity, and trajec-
tory along the treated surface. On the one hand, one can simply move to solving
three-dimensional problems, which entails new problems. On the other hand, for
both qualitative and quantitative analysis, it is useful to use simplifications based
on physical considerations that will allow the use of well-developed analytical and
numerical methods (Birger 1992; Donnel 1982; Mindlin 1951; Wang et al. 2000;
Lukasevich 1982; Vinson 1989), etc.

As in problems 3, 4, we will be interested in changes in temperature and compo-
sition in a thin coating located on a thin substrate, which allowed us to introduce
an average over the total thickness of the object of temperature and effective prop-
erties. Since the characteristic times for thermal and mechanical processes differ by
orders of magnitude, in the mechanical equilibrium problem time is considered to be
a parameter: the thermokinetic part of the problem remains non-stationary and the
mechanical part is considered in the quasi-static formulation (however, there are no
fundamental problems for setting a completely non-stationary problem).

In the present work, we restrict ourselves to the Kirchhoff approximation.
Then

εxx = −z
∂2w0

∂x2
, εyy = −z

∂2w0

∂y2
,

γxy = 2εxy = −2z
∂2w0

∂x∂y
.

We assume that the effective mechanical properties of the materials may depend
on the temperature (and the properties of the upper layer changewith the change in the
composition), and that the relationship between the effective Lamé coefficients and
the effective technical characteristics remains the same. Then the averagedDuhamel-
Neiman relations presented above for the flat stress state will take the form (we omit
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the index “e f f ” for simplicity):

σxx = E

1 − v2
[
εxx + vεyy

] − 1 − 2v

1 − v
〈Kω〉,

σyy = E

1 − v2
[
εyy + vεxx

] − 1 − 2v

1 − v
〈Kω〉,

σxy = E

2(1 + v)
γxy,

εzz = 1 + v

1 − v

1 − 2v

E
〈Kω〉 − v

1 − v

(
εxx + εyy

)
.

Or for a point at distance z from the midline, we find

σxx = − E

1 − v2
z

[
∂2w0

∂x2
+ v

∂2w0

∂y2

]
− 1 − 2v

1 − v
〈Kω〉z,

σyy = − E

1 − v2
z

[
∂2w0

∂y2
+ v

∂2w0

∂x2

]
− 1 − 2v

1 − v
〈Kω〉z,

(12.37)

σxy = − E

(1 + v)
z
∂2w0

∂x∂y
,

εzz = 1 + v

1 − v

1 − 2v

E
〈Kω〉z + v

1 − ν
z

(
∂2w0

∂x2
+ ∂2w0

∂y2

)
.

We find the first invariant of the strain tensor

εkk = 1 + v

1 − v

1 − 2v

E
〈Kω〉z − 1 − 2v

1 − v
z

(
∂2w0

∂x2
+ ∂2w0

∂y2

)

and then determine its thickness average

〈εkk〉 = 1

h

h∫
0

εkkdz = 1 + ν

1 − ν

1 − 2v

E

h∫
0

〈Kω〉zdz

− 1 − 2ν

1 − ν

hS + hR

2

(
∂2w0

∂x2
+ ∂2w0

∂y2

)
. (12.38)

In the heat conduction problem, it is logical to assume

〈Kω〉z = 〈Kω〉.

As a result, the thermal conductivity equation coupled with deflections takes the
form



12 Simple Problems of Mechanical Equilibrium Applicable … 237

(cερ)e f f
∂T

∂t
= λT,e f f

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ hR

hS + hR
Wch + Wext,e f f

hS + hR
−

−3(KαT )e f f T
∂

∂t

[
1 + v

1 − v

1 − 2v

E
〈Kω〉 − 1 − 2v

1 − v

hs + hR

2

(
∂2w0

∂x2
+ ∂2w0

∂y2

)]
.

(12.39)

There is a peculiarity in the plate deflection problem.
The equilibrium equation for the Kirchhoff plate following from the principle of

virtual displacements (Wang et al. 2000; Lukasevich 1982) has the form

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ q = 0, (12.40)

where the moments are defined as follows

Mxx =
h/ 2∫

−h/ 2

σxx zdz; Myy =
h/ 2∫

−h/ 2

σyyzdz; Mxy =
h/ 2∫

−h/ 2

σxy zdz.

Substitute σxx from (37) into MxxMxx

Mxx =
h/ 2∫

−h/ 2

[
− E

1 − v2
z

(
∂2w0

∂x2
+ v

∂2w0

∂y2

)
− 1 − 2v

1 − v
〈Kω〉z

]
zdz

= − E

1 − v2

(
∂2w0

∂x2
+ v

∂2w0

∂y2

) h/ 2∫
−h/ 2

z2dz − 1 − 2v

1 − v

h/ 2∫
−h/ 2

〈Kω〉z zdz. (12.41)

If, as in the thermal problem, we take 〈Kω〉z = 〈Kω〉, then the second integral
in (41) will be equal to zero, i.e., the dependence of temperature on the coordinate z
in the plate theory is fundamental. This should be “taken into account” in 〈Kω〉z . In
static conditions for thin plates, between the surface temperatures of which there is
a difference, the distribution can always be approximated by a straight line segment,
which is used in many theories (Birger 1992; Lukasevich 1982). Since in the thermal
part of the problem the mean section temperature and the mean composition are
determined, and the last really changes only in the upper layer (the effect of changes
in composition on temperature is taken into account in the thermal conductivity
equation by weighting factors; the corresponding deformations are included also
with weighting factors), then for the considered simplest approximation it will not
be a big mistake to take in (40)

〈Kω〉z ≈ 〈Kω〉0 + z

h
〈Kω〉 ≈ 〈Kω〉0 + z

h

(KShSωS + KRhRωR)

hS + hR
(12.42)
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where the form of the first term (depending only on x,y) does not matter for this
approximation.

Because

(KShSωS + KRhRωR)

hS + hR
= (KTαT )e f f (T − T0) + KRhR

hS + hR
ωch,

so from (41) we find

Mxx = −D

(
∂2w0

∂x2
+ v

∂2w0

∂y2

)

− 1 − 2ν

1 − ν

h3

12

[
(KTαT )e f f (T − T0) + KRhR

hS + hR
ωch

]
.

Similarly

Myy = −D
(

∂2w0
∂y2 + v ∂2w0

∂x2

)
− 1−2v

1−v
h3

12

[
(KTαT )e f f (T − T0) + KRhR

hS+hR
ωch

]
.

The remaining value does not change externally.

Mxy = −(1 − v)D
∂2w0

∂x∂y
.

Here

D = E

1 − v2
h3

12
≡ Eef f

1 − v2e f f

h3

12

is cylindrical rigidity;
h = hS + hR .

Substitute these expressions into (40) and come to the equation for deflection:

∂2

∂x2

[
D

(
∂2w0

∂x2
+ v

∂2w0

∂y2

)]
+ ∂2

∂y2

[
D

(
∂2w0

∂y2
+ v

∂2w0

∂x2

)]

+2
∂2

∂x∂y

(
(1 − v)D

∂2w0

∂x∂y

)
=

= q − ∂2

∂x2
[A(T − T0) + Bωch] − ∂2

∂y2
[A(T − T0) + Bωch],

(12.43)

where

A = 1 − 2v

1 − v

h3

12
(KTαT )e f f ; B = 1 − 2v

1 − v

h3

12

KRhR

hS + hR
.

The obtained coupled nonlinear Eqs. (12.39) and (12.43) together with the system
of equations of chemical kinetics require numerical methods. However, it is probable
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that under some assumptions (for example, such as in problems 3 and 4) analytical
estimates will be possible.

12.3 Conclusion

Thus, the simple mechanical equilibrium problems presented in the article allow
the construction of related models of some technological processes. In particular, the
model of composite synthesis on a substrate takes into account not only the properties
of layers and peculiarities of process control in laser technology, but also possible
ways of influence of accompanying stresses on the dynamics of the process. Models
for the synthesis of new materials using different variants of mechanical equilibrium
problems are not presented in this paper, but references to existing publications give
an idea of the possibilities of the physical approach. Generalization of the model on
the basis of plate theory allows modification of the equations taking into account
deflections. Consistent application of the theory leads to more complex expressions
than those used in the formal approach (Manthena and Kedar 2019; Deshmukh
et al. 2014). More rigorous generalizations are possible, taking into account the
nature of the contact between the layers, changes in thermophysical properties with
temperature and composition, and changes in the size of the reaction layer based on
different popular theories (Maji and Mahato 2022; Altenbach et al. 2020) If melting
in local areas needs to be taken into account, viscoelastic medium models will be
required. Such models have applications to the creation of three-dimensional objects
in modern 3D technologies; synthesis of multilayer and gradient coatings; synthesis
of layered composites, etc. More complex situations arise in technologies where
the process is controlled both by external heating together with the application of
a moving or stationary mechanical load. When studying the stress–strain state and
stability of the processes of creating thin-walled structures in 3D technologies, it
may be necessary to involve non-classical shell models (Zubov and Eremeev 2003;
Altenbach andEremeev 2009; Sarkisyan 2011;Annin andVolchkov 2016). However,
the construction of related models on their basis is a nontrivial task.
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Chapter 13
Inflation of Hyperelastic Curved Tubes

Alexey M. Kolesnikov

Abstract This paper dealswith the problemof inflation of curved thin-walled hyper-
elastic tubes. Nonlinear elastic membrane theory and the Fung model of material are
used. Tubes with elliptic cross-sections are considered. The influence of internal
pressure on tube curvature and the shape of its cross-section is investigated.

Keywords Membrane · Nonlinear · Elastic · Curved tube · Pipe · Inflation · Torus

13.1 Introduction

Thin-walled straight and curved tubes are a structural element of many technical
systems and living objects, such as vessel walls, pipelines, pneumatic structures,
soft robots and devices. They are often loaded by internal pressure. A straight tube
of constant thickness under internal pressure remains a straight tube with deformed
cross-section and length. Inflation leads to change a cross-section and curvature of
tube. This effect is widely used in Bourdon pressure tubes (Feodos’ev 1949).

At present, two directions of research can be distinguished in the inflation prob-
lem of a curved tube. In the first case, nonlinearity of the displacement problem is
taken into account, but the linear strain theory is used Feodos’ev (1949), Levyakov
(1997). In the second case, nonlinearity of displacements and strains is considered.
In the framework of membrane theory, such a problem is presented in Kolesnikov
(2011a), Kolesnikov (2015). This approach is valid for thin-walled tubes of hypere-
lastic material at large strains.
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The tube inflation problem is a special case of the more general problem of
pure bending of a tube under internal pressure, Libai and Simmonds (1988), Zubov
(2001). For straight tubes, this problem has been studied in Koga (1972), Haseganu
and Steigmann (1994), Haughton and McKay (1996) and Kolesnikov and Zubov
(2009). The curved tubes are considered in Kolesnikov (2011b), Levyakov (2017)
and Kolesnikov et al. (2019). The works show that the internal pressure increases
the bending stiffness of the tube.

Studies of inflation of curved thin-walled tubes made of hyperelastic material
are presented in Kolesnikov (2011a), Kolesnikov (2015). In Kolesnikov (2011a),
circular cross-section tubes made of Mooney–Rivlin and neo-Hookean material are
considered. It is shown that the tube unbends under inflation. That is, the curvature of
the centre line decreases. In Kolesnikov (2015), the tubes of neo-Hookean material
with elliptical cross-section are investigated. It is shown that at the beginning of
inflation the cross-section of the tube tends to a circular shape. Depending on the ratio
of the semi-axes, the tube is either bent or unbent. After the cross-section becomes
close to circular, the tube unbends under inflation. A peculiarity of the behaviour of
the neo-Hookean material is its instability under biaxial tension. This appears, for
example, in straight or curved tube inflation as the existence of two different shapes
of the tube corresponding to the same pressure. And also the pressure has amaximum
on the curve “pressure–cross-sectional radius”.

In this paper, we consider the inflation problem of curved thin-walled tubes of con-
stant thickness made of Fung material. The problem is solved within the framework
of the nonlinear theory of elastic membranes. The aim of this work is to investigate
the influence of the cross-section shape and the material parameters of the tube on its
behaviour under the internal pressure. The monitored parameters are the curvature
of the centre line and the average radius of the cross-section.

13.2 Inflation of Pressurized Curved Tube

In this paper, we will base on the previously presented mathematical model of inflat-
ing of a curvilinear thin-walled tube (Kolesnikov 2015), which is a special case of
pure bending of an inflated curvilinear tube (Kolesnikov et al. 2019). In this section,
we give the basic relations of this model.

In the initial state, the membrane surface is defined by the following equations:

r = x1(s)i1 + x2(s)e2, s ∈ [0; S], t ∈ [0; T ].
e2 = i2 cosβt + i3 sin βt, e3 = −i2 sin βt + i3 cosβt .



13 Inflation of Hyperelastic Curved Tubes 247

The membrane remains a curvilinear tube with changed curvature and cross-
section under internal pressure. Its surface can be described as Libai and Simmonds
(1988), Zubov (2001)

R = X1(s)i1 + X2(s)E2,

E2 = i2 cos Bt + i3 sin Bt, E3 = −i2 sin Bt + i3 cos Bt .
(13.1)

Here, B is the unknown new curvature of the central axis, and X1(s) and X2(s) are
unknown functions describing the cross-section of the inflated tube.

Let’s introduce the principal stretch ratios of elongation λ1, λ2 and the angle of
the tangent to the cross-section ψ:

λ1(s) =
√

X ′
1
2 + X ′

2
2

x ′
1
2 + x ′

2
2 , λ2(s) =

√
B2X2

2

β2x22
, tanψ(s) = X ′

2

X ′
1

. (13.2)

The equilibrium equations of the membrane in this case can be written in the form
Kolesnikov (2015), Kolesnikov et al. (2019)

X ′
1(s) = √

g11λ1 cosψ, X ′
2(s) = √

g11λ1 sinψ, (13.3)
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h
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g11λ1λ2. (13.6)

The principal stress resultants in the membrane are determined by the equations

L1 = h

λ2

∂W

∂λ1
, L2 = h

λ1

∂W

∂λ2
. (13.7)

We assume that the cross-section of the tube is closed. The boundary conditions
for the unknown functions at the points s = 0, S are their periodicity. The boundary
conditions at the ends (t = 0, T ) of the tube are satisfied in the integral sense. In this
problem, the resultant force and the resultant couple of the stresses in the membrane
and the internal pressure are equal to zero:
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S∫
0

√
G11L2ds − ξ� = 0, (13.8)

S∫
0

√
G11L2(X2 − XC2)ds = 0. (13.9)

Here X2C is the centre of mass of the area bounded by the membrane contour in
the cross-sectional plane. For a given potential energy function of deformation, the
static problem of an elastic membrane is reduced to the boundary value problem for
the system of ordinary differential equations (13.3)–(13.6) with parameter B. The
boundary value problem is solved numerically by the shooting method.

13.3 Results

In this paper, we consider a tubemade from incompressible Fungmaterial. The strain
energy function is given as

W = μ

2γ

(
eγ(I1−3) − 1

)
, I1 = λ2

1 + λ2
2 + 1

λ2
1λ

2
2

. (13.10)

A correct choice of dimensionless parameters will give results independent of the
material parameter μ. Below results will be presented for the material parameter
γ = 5, 0.2 and 0.05. Also, for comparison, some results will be presented for the
neo-Hookean material, including those from Kolesnikov (2015).

We assume that the thickness h = 0.001 is constant and that the cross-section of
the curved tube is elliptical and defined by the equations

x1(s) = r1 sin s, x2(s) = β−1 − r2 cos(s), s ∈ [0; 2π].

Also we assume that T = π/(2β).
Next we consider the curved tube with the curvature of the central axis β = 0.1.

The cross-sectional dimensions r1 and r2 are given in Table13.1. The number in
the first line corresponds to the curve number in Figs. 13.1, 13.2, 13.3, 13.4, 13.5,
13.6, 13.7, 13.8 and 13.9. As will be shown below, the shape of the cross-section
has a significant influence on the deformation of the curved tube. During inflation,
the curved tube bends or unbends in the plane e2e3. The tube 5 has a circular cross-
section. The cross-section of the tubes 1–4 is an ellipse extended along the axis i1 and
flattened along the axis e2. For the tubes 6–9, the cross-section is elongated along
the e2-axis and flattened along the i1-axis.

To present the results, we introduce a dimensionless pressure p∗ and a relative
curvature B∗ as follows:
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Table 13.1 The cross-section parameters

N 1 2 3 4 5 6 7 8 9

r1 1.9 1.7 1.5 1.3 1 0.7 0.5 0.3 0.1

r2 0.1 0.3 0.5 0.7 1 1.3 1.5 1.7 1.9

p∗ = ξr0
μh

, B∗ = B

β
.

In addition, we introduce dimensionless parameters characterizing the deformed
cross-section

R1 = max

{
2X1(s)

r1 + r2
, s ∈ [0;π]

}
, (13.11)

R2 = X2(π) − X2(0)

r1 + r2
, R0 = R1 + R2

r1 + r2
. (13.12)

The deformed cross-section is not an ellipse.However, we can correspond parameters
R1 and R2 to the semi-axes r1 and r2 of the initial elliptical cross-section. The
parameter R0 will be called the mean radius of the deformed cross-section. In the
present work, we consider the undeformed cross-sections such that their mean radii
are 1, as can be seen from Table13.1.

In this work, we investigate the effect of the material parameter γ and the elliptical
cross-section on the curvature of the inflated tube B and the mean radius of cross-
section R0. Figures13.1, 13.2 and 13.3 show the relationship between the curvature
of central axis B∗ and pressure p∗. The solid lines correspond to the results for the
Fung material with parameter γ = 5, 0.2 and 0.05, respectively. The dotted lines
correspond to the results for the neo-Hookean material. The curve numbers in the
figures correspond to the column numbers in Table13.1.

Up to a certain pressure p∗, the “curvature–pressure” curves for the tubes made
of Fung material coincide with one for the tubes made of neo-Hookean material. At
γ = 5, the magnitude of this pressure p∗ ≈ 0.4, at γ = 0.2 – p∗ ≈ 0.5, at γ = 0.05 –
p∗ ≈ 0.6. The tube 5 with a circular cross-section gradually unbends under pressure
increasing, i.e. the curvature decreases. For the tubes 1–4, for which r1 > r2, the
curvature first decreases dramatically, i.e. the tubes unbend sharply under the internal
pressure. The greater the ratio r1/r2, the more the tube unbends. The curvature then
continues to decrease, but at a much slower rate. For the tubes 6–9, for which r1 < r2,
the curvature first increases dramatically, that is, the tubes bend sharply under the
internal pressure. The smaller the ratio r1/r2, the more the tube bends. Then the
curvature begins to slowly decrease, i.e. the tube begins to unbend.

Further, the behaviour of a tube made of Fung material depends on the material
parameter γ and differs significantly from that for neo-Hookean tube. At γ = 5
(Fig. 13.1) for pressures p∗ > 0.4, the curvature slowly monotonically decreases
with increasing pressure. At γ = 0.2 (Fig. 13.2) for pressures p∗ > 0.5 the curvature
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Fig. 13.1 The pressure p∗ versus the curvature B∗ (γ = 5)
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Fig. 13.2 The pressure p∗ versus the curvature B∗ (γ = 0.2)

first decreases, reaching a minimum, then slowly increases with increasing pressure.
At γ = 0.05 (Fig. 13.3) for pressures p∗ > 0.6 the curve “curvature–pressure” has a
loop and a self-intersection point, after which the curvature increases with increasing
pressure.

The change in curvature of the tube is related to the deformation of its cross-
section. As it is shown in Kolesnikov (2015) that for a curvilinear tube of neo-
Hookeanmaterial, for r1 ∈ [0.5, 1.5] and r2 ∈ [0.5, 1.5] the deviation from a circular
shape is less than 5% at p∗ > 0.01. Figures13.4, 13.5 and 13.6 show the relationship
between the ratio of characteristic cross-sectional dimensions R1/R2 and the pressure
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Fig. 13.3 The pressure p∗ versus the curvature B∗ (γ = 0.05)
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Fig. 13.4 The pressure p∗ versus the ratio R1/R2 (γ = 5)

p∗. As we can see from the figures, the ratio of the characteristic dimensions of the
cross-section tends rapidly towards 1. That is, the shape of the deformed cross-section
of the curved tube tends to be circular. The elliptical cross-section flattened along the
axis e2 (the tubes 1–4) tends the circular shape faster than the cross-section flattened
along the axis i1 (the tubes 6–9).

Since the cross-section of the inflated tube is close to circular, let us consider the
relationship between the average radius R0 and pressure p∗ shown in Figs. 13.7, 13.8
and 13.9. The solid black lines show the dependence R0–p∗ for the tubes made of
Fung material at r1 ≤ r2, and the solid grey lines correspond to r1 > r2. The thin
dotted lines show the dependences of the mean radius for curvilinear tubes of neo-
Hookean material. The thick grey dashed line in Figs. 13.7, 13.8 and 13.9, coinciding
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Fig. 13.5 The pressure p∗ versus the ratio R1/R2 (γ = 0.2)
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Fig. 13.6 The pressure p∗ versus the ratio R1/R2 (γ = 0.05)

with the line 5, shows the relation between the radius of a straight tube (cylindrical
membrane) and the pressure. That is, for circular curved tubes, a small curvature (in
this work, the initial curvature β = 0.1) has little effect on the deformation of the
cross-section.

At the start of inflation, the change in the mean radius depends on the ratio
r1/r2. For the tubes 1–4 with the elliptical cross-section flattened along the axis e2
(r1 > r2) the mean radius increases sharply, then the curve “mean radius–curvature”
becomes similar to the relationship for the tube 5 with circular cross-section, but
with a rightward shift (grey curves in Figs. 13.7, 13.8 and 13.9). The more r1/r2
differs from one, the greater the amount of shift. For the tubes 6–9 with the elliptical
cross-section flattened along the axis i1 (r1 < r2), the dependence of the mean radius
R0 on pressure p∗ decreases at the beginning of inflation (black curves in Fig. 13.7,
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Fig. 13.7 The pressure p∗ versus the average radius R0 (γ = 5)

13.8 and 13.9), then it starts increasing with increasing pressure. For tubes where
r1/r2 = r2/r1, the curves R0–p∗ become very close at p∗ > 0.1. At γ = 0.05, the
dependence of the mean radius R0 has a descending region and a local minimum, as
we can see in Fig. 13.9.

We note that for very small pressures and hence deformations we failed to obtain
a numerical solution of the nonlinear differential equations, so for the tubes 1–4 and
6–9 in Figs. 13.1, 13.2 and 13.3 the curves do not start from point B∗ = 1, and in
Figs. 13.7, 13.8 and 13.9 the curves do not start from point R0 = 1, which would cor-
respond to the undeformed state of the tubes. Besides, for the tube 6–9 (Figs. 13.7,
13.8 and 13.9), the dependence R0–p∗ should have a sharp growth at very low pres-
sures (p∗ < 0.01) and reach a local maximum. After that the mean radius decreases,
which has already been calculated numerically. We note that at very low pressures
and hence deformations, the use of the membrane theory becomes incorrect, as the
influence of the bending stiffness will be significant. In addition, at the beginning of
inflation of curved tubes, areas of compression are formed in their, which quickly
disappear with increasing pressure, as shown in Kolesnikov (2015). The inflation
of curved tubes within small deformations has been previously investigated, e.g. by
Feodos’ev (1949), Levyakov (1997). The effects of a significant change in curvature
of a curved tube with a flattened cross-section is used in manometers (the Bourdon
tube) (Feodos’ev 1949; Levyakov 1997).

Figures13.10 and 13.11 show how the tube deforms during inflation using the
tubes 9 and 1 as examples, respectively. The curves p∗–B∗ show in the figures, on
which the points Pm

k (k = 1, 9, m = 1, . . . , 7) are marked and the corresponding
shapes of the longitudinal and cross-sections are shown. The grey lines show the
initial shapes for comparison.



254 A. M. Kolesnikov

p∗

1

0.5

R01 1.5 2 2.5

R01 1.1 1.2

p∗

0.02

0.04

9765
4 3

1

Fig. 13.8 The pressure p∗ versus the average radius R0 (γ = 0.2)
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Fig. 13.9 The pressure p∗ versus the average radius R0 (γ = 0.05)

The points Pm
k (k = 1, 9, m = 1, . . . , 7) corresponding to the shapes shown in

Figs. 13.10 and 13.11 are marked in Fig. 13.9. As we can see from Fig. 13.9, the
points P3

1,9 correspond to the local maximum pressure, after which the mean radius
increases as the internal pressure decreases. The points P5

1,9 correspond to the local
minimum of the curves R0–p∗.
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Fig. 13.10 Planform and cross-sectional views of a deformed tube 9 (γ = 0.05)

13.4 Conclusions

In this work, we consider the problem of an initially curved thin-walled tube made of
hyperelastic material. Due to the small thickness and predominantly tensile stresses,
the bending stiffness of the tube walls is neglected and the nonlinear theory of elas-
tic membranes is used. The mechanical properties of the hyperelastic material are
described by the Fung strain energy function.

A straight tube changes cross-section and length under inflation. A curved tube
additionally changes the curvature. A tube made of neo-Hookean material has a
specific behaviour. There is a maximum internal pressure after which the cross-
section radius increases under the pressure decreases. This is usually associated
with unstable of the tube (Gonçalves et al. 2008; Pearce and Fu 2010; Zubov and
Karyakin 2011; Guo et al. 2016; Wang et al. 2019). For the curved tube made of the
neo-Hookean material, the mean radius shows the same behaviour. Additionally, the
curvature of the tube is reduced.
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Fig. 13.11 Planform and cross-sectional views of a deformed tube 1 (γ = 0.05)

The elliptical cross-section of a thin-walled curved tube tends to circular shape
when inflated. But as long as the pressures are small and they are not yet completely
circular, the behaviour of the tubes is very different for different elliptical shapes.
Some tubes are sharply unbent, other tubes are bent. This is a well-known effect,
in particular used for pressure measurement with Bourdon tubes (Feodos’ev 1949;
Levyakov 1997). But for thin-walled highly elastic tubes, rather quickly the cross-
section becomes circular, as shown in this paper and in Kolesnikov (2015). Further,
as the pressure increases, the behaviour of the tubes becomes similar to that of
a tube with a circular cross-section. Their mean radius increases and the curvature
decreases (for the neo-Hookean tubes). The difference in the initial shift of the curves
“curvature–pressure” to one side or the other depends on the ratio of the semi-axes
of the initial elliptical cross-section.

The Fung material has two material parameters. One parameter can be excluded
by the introduction of dimensionless parameters, and the other parameter denoted
as γ cannot be excluded. Up to a certain value of pressure and deformation, a tube
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made of Fung material has a behaviour similar to the neo-Hookean tube. As the
pressure increases, its behaviour begins to differ. The curvature–pressure relation
exhibits three possible behaviours depending on the value of γ: monotonic decrease
in curvature, decrease and then increase in curvature (for small γ); existence of a
loop (for even smaller γ).

The change in curvature is associated with a change in the cross-section. For
pressures that are not very small, the monotonicity of the “curvature–pressure” curve
corresponds to the constant sign of the curvature of the “mean radius–pressure” curve.
For the nonmonotonic “curvature–pressure” curve, the sign of the curvature of the
“mean radius–pressure” curve changes, but the curvature itself remains monotonic.
For the “curvature–pressure” curve that has a loop, the “mean radius–pressure” curve
not only changes the sign of the curvature, but also ceases to be monotonically
increasing. The local maximum and minimum on the “radius–pressure” curve is a
known fact for straight tubes (Pearce and Fu 2010; Zubov and Karyakin 2011; Wang
et al. 2019). This is usually associated with structural instability. According to the
theory, the tube jumps from the maximum to the second ascending branch of the
curve. In experiments, this is due to local bulging. When the cross-section of the
tube increases locally and sharply. And then this extension is extended to the entire
tube (Gonçalves et al. 2008; Guo et al. 2016; Wang et al. 2019). For the curved tube,
the mechanisms appear to be the same. From the point of local maximum pressure,
there will be a transition to the second ascending branch of the solution with an
abrupt change in cross-section and curvature.
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Chapter 14
Analysis of the Homogenization Problem
for Nonlinear Corrugated Plate

Alexander G. Kolpakov and Sergei I. Rakin

Abstract The numerical results of calculating the average stiffness of corrugated
plates are given. The calculations are based on the transition from the three-
dimensional (3-D) problem of the periodicity cells of the averaging theory to the
corresponding two-dimensional (2-D) problem. We consider a physically linear-
geometrically non-linear model at the microlevel and demonstrate this and find that
the geometric nonlinearity at the microlevel is transformed into a physical (material)
nonlinearity at the macrolevel.

Keywords Corrugated plate · Elasticity theory · Homogenization · Periodicity
cell · Dimension reduction · Effective stiffnesses · Local stress/strain state ·
Nonlinearity

14.1 Introduction

The problem of computation of the homogenized (effective, macroscopic, etc. (Sab
2015; Dvorak 2013; Sanchez-Palencia 1980)) stiffness of corrugated plate attracted
attention of numerous researchers for a long time. In (Sanchez-Palencia 1980), the
beginning of the study is referred to 1923 (Huber 1923) and it is noted an existence
of extensive literature on the subject. The use in modern engineering structures of
corrugated plates and plateswith corrugated core (Xia et al. 2012;Buannic et al. 2003;
Talbi et al. 2009; Bartolozzi et al. 2013) gives additional stimulus for the studying
the problem. The progress in the analysis of corrugated plates was made on the basis
of shell theory (Andrianov et al. 1998; Lee and Yu 2011) and the homogenization
theory (Caillerie 1984; Kohn and Vogelius 1984; Kalamkarov and Kolpakov 1997;
Levinski 1995; Buannic et al. 2003; Kolpakov 2010).
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Our homogenization analysis is based on the observation that three-dimensional
corrugated plate is a cylinder and the 3-D periodicity cell problems of the homog-
enization theory for it can be reduced to 2-D problems on the cross-section of the
periodicity cell. It makes possible numerical computation of the effective stiffnesses
of the corrugated plate and the local strain/stress state in the plate with high accuracy.

Previously, a transition to a problem on the cross-section of plate was done in
Annin et al. (2017); Kolpakov and Rakin 2016) for linear elasticity problem.

14.2 Statement of the Problem and Dimension Reduction

Consider a corrugated plate of periodic structure. The plate occupies a cylindrical
domain with generatrix L perpendicularly 2-D domain S (the cross-section of the
plate), see. Fig. 14.1. Denote the periodicity cell of the plate by εP (drawn in bold
in Fig. 14.1), where ε means the characteristic size of the periodicity cell (ε is also
the characteristic thickness of the corrugated plate “in whole”, do not confuse ε with
the thickness of the plate εh, see Fig. 14.1).

We assume that L is parallel to the axis Oy1, then the periodicity cell εP =
[0, 1] × εP0, where εP0 is the periodicity cell of the cross-section S.

If ε is small in comparison with the size of the plate, the plate may be substituted
by a flat plate possessing so-called effective stiffness, see (Caillerie 1984; Kohn and
Vogelius 1984; Kalamkarov and Kolpakov 1997).

14.2.1 Periodicity Cell Problem

To compute the effective stiffness, we use the homogenization method developed for
linear plates originally in Caillerie (1984); Kohn and Vogelius 1984) and modified
for the non-linear plates later (Hornung et al. 2014; Kalamkarov et al. 2017). In
accordance with the homogenization method, we introduce the “fast” variables y =
x/ε (Sanchez-Palencia 1980) and the problems on the periodicity cell P = [0, 1] ×
P0 (see Fig. 14.2), that have the form: find function NABv(y) as solution of the

Fig. 14.1 Corrugated plate
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Fig. 14.2 Periodicity cell (top) and its cross-section (bottom) in the “fast” variables y = x/ε (online
version in color)

boundary-value problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σi j = 0 in P,

σi j n j = 0 in �,

σi j = ai jklekl,

ei j = 1/2
(
N ABCD
i, j + N ABCD

j, i + N ABCD
n,i N ABCD

n, j

)

NABCD(y) − eAB − ρCD y3 periodic in y1, y2 ∈ S.

(14.1)

Here � is the free (lateral) surface of the periodicity cell; S is the projection of
periodicity cell onto the Oy1y2-plane, see Fig. 14.2; ai jkl–elastic constants; n–the
outer vector-normal. Latin indices take the values 1, 2, 3; in (14.1) A and B take the
values 1 and 2; μ and v take the values 0 and 1.

We consider the platesmade of isotropicmaterial, in this case the elastic constants.

ai jkl = Eν0

(1 + ν0)(1 − 2ν0)
δi jδkl + E

2(1 + ν0)
(δikδ jl + δilδ jk)

where E and v0 are Young’s modulus and Poisson ratio (Love 1929) (we use notation
v0 in order to distinguish this from the index v, traditionally used in the periodicity
cell problem (Caillerie 1984; Kohn and Vogelius 1984; Kalamkarov and Kolpakov
1997)).

We solve the physically linear and geometrically non-linear problem, i.e., we
assume that Young’s modulus E and the Poisson ratio v0 do not depend on the local
deformations eloci j = 1/2(ui, j + u j,i + un,i un, j ). Having solved problem (14.1), we
compute the elastic energy of the periodicity cell E(eAB, ρCD). The corresponding
homogenized governing equations of the plate are
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σAB = D0
ABCD(eAB, ρAB)eCD + D1

ABCD(eAB, ρAB)ρCD = 1

|S| · ∂E

∂eAB
(eAB, ρCD)

MAB = D1
ABCD (eAB, ρAB)eCD + D2

ABCD(eAB, ρAB)ρCD = 1

|S| · ∂E

∂ρAB
(eAB, ρCD)

(14.2)

where |S| means the area of S, see Fig. 14.2.
In (14.2), eAB andρCD are the homogenized (overall,macroscopic) in-plane defor-

mations and curvatures of the plate considered a 2-D object. Eq. (14.2) introduces the
homogenized in-plane stiffnesses D0

ABCD , and the homogenized bending stiffnesses
D2

ABCD . The homogenized non-symmetric stiffnesses D1
ABCD are zero for plates of

symmetric structure, in particular, for sinusoidal corrugated plate.
It is waiting that the homogenized stiffnesses D0

ABCD and D2
ABCD are non-linear

functions of eAB andρCD . Remind that the original problem (14.1) is physically linear
and the geometric non-linear. If the homogenized stiffnesses D0

ABCD and D2
ABCD

really occurs non-linear functions of eAB and ρCD , as it is waiting, it will means that
we meet the effect of the transmission of the geometric nonlinearity into physical
nonlinearity. Note that the effect of transmission of the geometric nonlinearity into
physical nonlinearity as a result of homogenization was early reported in Kolpakov
and Rakin (2010) for laminated bodies.

14.2.2 Dimension Reduction for the Periodicity Cell Problem

We assume that the elastic constants have the form ai jkl(y2, y3)—do not depend on
the variable y1. This condition is satisfied by plates made of homogeneous mate-
rials (ai jkl = const in this case) and plates made of several homogeneous plates
(ai jkl(y2, y3) is piecewise-constant function in this case).

In this case, problem (14.1) can be reduced to 2-D problems on the cross-section
P0 of the periodicity cell.

It means that NABv(y) does not depend on y1: NABv(y) = NABv(y2, y3). Then the
periodicity cell problem (14.1) takes the form (in (14.3) δ, κ = 2, 3; i, k = 1, 2, 3;
A,B,C,D = 1, 2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σαβ,β = 0 in P,

σαβnβ = 0 on �,

σαβ = aαβγ δ(y)eγ δ,

eαβ = 1/2(NABCD
α,β + NABCD

β,α + NABCD
η,β NABCD

η,α )

NABCD(y) − eAB − ρCD y3 periodic in y1, y2 ∈ S.

(14.3)
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14.3 Numerical Computations

We consider the corrugation of sinusoidal profile with period T = 2L = 0.64 m,
see Fig. 14.2. Plate thickness of the corrugation is 0.04 m. Material characteristics of
the material of the plate: Young’s modulus E = 3 · 1010 Pa, Poisson ratio v0 = 0.2.
ANSYS FEM (Thompson and Thompson 2017) software was used in computations.
The finite elements PLANE42 and PLANE182 were used. The number of finite
elements was about 3000.

14.3.1 Overall In-Plane Deformation

In-plane deformation is described by the problem (14.1) with ρCD = 0. We consider
the tension of the plate in the direction 22. Itmeans that in (14.1) e22 �= 0, e33 = 0.We
solved the geometrically non-linear problem (14.1) for values of the overall tension
U in the range from 0.01 to 0.26 (from 1 to 26%). The deformed corrugation for
several U is displayed in Figs. 14.3, 14.4, 14.5, 14.6 and 14.7. The scale and the
colors in Figs. 14.3, 14.4, 14.5, 14.6 and 14.7 demonstrate the local von Mises stress
in the plate.

For each value of the displacementU , elastic energy E(U ) of the deformed corru-
gationwas computedbyusing theANSYSoption “Strain energy”SENE (Thompson
and Thompson 2017). The computed energy values are presented in Table 14.1. The
overall in-plane strain e11 was computed in accordance with 1-D formula for non-
linear theory (Love 1929). By using the strain energy and SENE overall in-plane
strain e11, we determine the overall in-plane stiffness D0

1111(e11) from the equality.

Fig. 14.3 Corrugation deformation corresponding to tension with U = 2%T
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Fig. 14.4 Corrugation deformation corresponding to tension with U = 10%T

Fig. 14.5 Tension corresponding to e11 = U = 2%T 16%

SEN E = 1

2
D0

1111(e11)e
2
11 2L

The computed values of D0
1111(e11) are presented in Table 14.1. The in-plane

stiffness D0
1111(0) = 1,130E + 7. In the last line of Table 14.1, ratio r = D0

1111(e11)
D0

1111(0)
is

presented.
Recall that we consider physically linear elastic material and geometrically non-

linear deformations. It is possible to consider a physically non-linear material. In
this paper, we would like to pay attention to the phenomenon of transition of the
geometric nonlinearity at microlevel into physical nonlinearity at macrolevel. This
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Fig. 14.6 Corrugation deformation corresponding to tension with U = 20%T

Fig. 14.7 Corrugation deformation corresponding to tension with U = 24%T

is more pronounced if the material of the plate is physically linear. For this reason,
we do not consider the physically non-linear material in this paper.

14.3.2 Strength of the Corrugated Plates

In Figs. 14.3, 14.4, 14.5, 14.6 and 14.7, we see that the maximum von Mises stress
take place in the top of corrugation. As a consequence, we predict the failure of
corrugated plates in the top of corrugation. Figure 14.8 presents a photo of failure of
roofing slate. The crack in Fig. 14.8 has shapes close to right-lines and it is located
at the top of the corrugation. It gives argument in the favor of our prediction. In Song
et al. (2022), one can find an example of such a crack in a metal corrugated pipe.
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Fig. 14.8 Cracks in roofing
slate

14.3.3 Transition of the Geometric Nonlinearity
at Microlevel into Physical Nonlinearity at Macrolevel

Table 14.1 presents energy of the periodicity cell of corrugated plate for e12 = e22 =
0, ρCD = 0 and various (the axial tension along Ox-axis). The homogenized in-plane
stiffness is computed by using formulas (14.2).

It is seen from Table 14.1 and Fig. 14.9 that the homogenized in-plane stiffness
D0

1111 is essentially non-linear functions of the in-plane homogenized strain e11. It
means that the effect of the transition of the geometric nonlinearity into physical
nonlinearity as a result of homogenization really takes place for corrugated plates.
Recall that in our computations the material of the plate is linear with constant
Young’s modulus and Poisson ratio. The nonlinearity of the homogenized in-plane
stiffness D0

1111 is the result of the geometrical nonlinearity in the problem under
consideration.

Fig. 14.9 The homogenized
in-plane stiffness D0

1111(e11)
as function of the
homogenized strain e11
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14.3.4 Overall Bending Deformation. Bending Deformation
is Described by the Problem (1) with eαβ = 0

We consider the bending of the plate in the plane Oy2y3 perpendicular to the gener-
atrix of the corrugation. It means that in (14.1) and (14.2) eαβ = 0 and ρ22 �= 0. We
solved the geometrically non-linear problem (14.1) for values of the overall curvature
ρ22 in the range from 0.3 to 3.1. The deformed corrugation for various curvatures is
displayed in Figs. 14.10 and 14.11. The scale and the colors in Figs. 14.10 and 14.11
demonstrate the local von Mises stress.

For every overall curvature, the elastic energy (ANSYS option “Strain energy”
SENE) of corrugation was computed by using the corresponding option of ANSYS.
The computed values of the energy are presented in Table 14.2.

The distribution of the local von Mises stress in Figs. 14.10 and 14.11 look very
similar to the distribution of the vonMises stress in a linear plate subjected to bending
(Kolpakov and Kolpakov 2020). Nevertheless, the analysis of the data in Table 14.2
shows that the elastic energies in Table 14.2 differ from the corresponding values for
the linear plate. The difference is not so strong like in the case of in-plane tension.
Nevertheless, the effect of transition of the geometric nonlinearity into physical
nonlinearity is clearly seen for the bending, too.

By using the strain energy SENE and overall curvature ρ11, we determine the
overall in-plane stiffness D2

1111(ρ11) from the equality

SEN E = 1

2
D2

1111(ρ11)ρ
2
11 2L

The exact formulas for the stiffnesses of linear corrugated plates may be found
in Ye et al. (2014); Kolpakov and Kolpakov 2020, 2014). In this paper, we do not

Fig. 14.10 Corrugation deformation corresponding to bending with ρ11 = 0.3
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Fig. 14.11 Corrugation deformation corresponding to bending with ρ11 = 1.6

Table 14.2 The homogenized in-plane stiffness D2
1111(e11) as function of the overall curvature ρ11

ρ11 0,3 0,6 0,9 1,3 1,6 1,9 2,2 2,5 2,8 3,1

SENE 125 505 1151 2081 3322 4909 6890 9322 12,296 15,892

D2
1111(ρ11) 25,700 25,890 26,200 26,640 27,220 27,930 28,800 29,830 31,090 32,550

r 1,03 1,03 1,05 1,06 1,09 1,12 1,15 1,19 1,24 1,30

discuss the unsymmetrical (out of plane) stiffnesses D1
ABCD(eAB, ρAB). The general

relations between the in-plane, the out-of-plane and the bending stiffnesses in linear
plate may be found in Kolpakov (2010); Kolpakov (2007).

The computed values of D2
1111(ρ11) are presented in Table 14.2. The bending

stiffness D2
1111(0) = 25,034. In Table 14.2, r = D2

1111(ρ11)

D2
1111(0)

.

Fig. 14.12 The
homogenized in-plane
stiffness D0

1111(e11) as
function of the curvature ρ11
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14.4 Conclusion

Numerical analysis of the homogenized stiffnesses of a corrugated plate shows that
the result of homogenization is the effect of the transition of geometric nonlinearity
at the microlevel into physical (material) nonlinearity at the macrolevel. This effect
is strong for the overall planar tension of the corrugated plate, and less pronounced,
but still significant, for the overall bending.

For the case of non-linear deformation, as well as for linear deformation, the
weakest point of the corrugated plate is the top of the corrugation.
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Chapter 15
Analysis of the Nanoindentation Results
Using the Graded Coatings Information
System

Leonid I. Krenev, Evgeniy V. Sadyrin, Andrey L. Nikolaev,
and Sergei M. Aizikovich

Abstract The Graded Coatings information system is designed to construct solu-
tions to a number of mixed axisymmetric boundary value problems in the theory of
elasticity and thermoelasticity for continuously inhomogeneous coatings of complex
structure. It can also be used to analyze the results of calculations and field exper-
iments. The work with the information system is illustrated by the analysis of the
nanoindentation results of coatings on silicon substrates obtained using pulsed laser
sputtering.

15.1 Introduction

Zinc oxide is a promising semiconductor and piezoelectric material with a direct
wide band gap (3.37 eV at room temperature) and a high exciton binding energy (60
meV) (Nikolaev et al. 2022). In recent years, ZnO nanostructures such as nanowires,
nanorods, nanobelts, and coatings have attracted a lot of attention from various
research groups (Ke et al. 2012; Liu et al. 2013) due to their unique physical proper-
ties and possible applications in nanoscale devices. ZnO nanostructures can be used
as sensors (Nikolaev et al. 2019), photodetectors (Zhilin et al. 2014; Liu et al. 2019),
devices based on surface acoustic waves (Karapetyan et al. 2022), actuators, displays
and other NEMS elements as catalysts (Eremeyev 2016), in solar cells (Alhammadi
et al. 2019),medical devices (Shetti et al. 2019), etc. ZnOnanostructures and coatings
can be obtained using magnetron sputtering (Gao and Li 2004; Ellmer 2000), molec-
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ular beam epitaxy (Chen et al. 1998; Look et al. 2002), sol-gel technology (Znaidi
2010; Hasnidawani et al. 2016), etc. However, the most flexible method is pulsed
laser deposition (Jin et al. 2000; Nikolaev et al. 2021). Due to its widespread use in
numerous industries, it is critical to correctly measure the mechanical properties of
ZnO nanostructures (Vasiliev et al. 2018).

Over the past 50years, the development of measuring technology has made it
possible to widely use nanoindentation, that is, precision local force action on the
material and registration of indenter displacement in the nanometer range (Golovin
2008; Fischer-Cripps and Nicholson 2004).

In their classic papers, Oliver and Pharr (1992, 2004) proposed a method for ana-
lyzing the results of indentation using the Berkovich indenter. This technique makes
it possible to determine Young’s modulus of a homogeneous sample based on the
analysis of the indentation stiffness (the derivative of the load by the indentation
depth) at the maximum indentation depth (Li and Bhushan 2002). In this case, the
dependence of the contact area on the indentation depth is determined from cali-
bration experiments on reference samples with previously known properties such as
fused silica and sapphire.

When determining the mechanical properties of the coating, the international
standard (ISO 2016) indicates that the thickness of the test sample should be large
enough (or the indentation depth should be small enough) so that the influence of the
substrate on the measurement result is small (Bull 2005). The thickness of the test
sample must exceed the indentation depth at least 10 times or 3 times the diameter
of the indentation area. When testing coatings, the thickness of the coating should
be considered as the thickness of the test sample (Bouzakis et al. 2002). However, at
low indentation depths, it is impossible to ensure high accuracy and repeatability of
measurements (Saha and Nix 2002; Zhu et al. 2022).

To solve the problem of determining the properties of the coating and substrate,
different authors mainly use numerical methods, for example, the finite element
method (FEM) (Kot et al. 2013; Karimpour et al. 2013; Bouzakis et al. 2022).

Under the guidance of S. M. Aizikovich (Aizikovich et al. 2002, 2008; Krenev
et al. 2015), an original numerical-analytical method for solving mixed static prob-
lems of the theory of elasticity and thermoelasticity for a continuously inhomo-
geneous half-space by depth with forces and sources specified on the surface was
developed. Using this method in the Graded Coatings information system, it is pos-
sible to process experimental data, obtain the dependence of Young’s modulus on
the width of the contact area and, knowing the thickness of the coating, estimate the
value of its Young’s modulus.

In this paper, the results of nanoindentation of ZnO coatings of different thick-
nesses deposited on Si(001) substrates were analyzed.
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15.2 Materials and Methods

The solution of mixed axisymmetric problems for indentation of a continuously
inhomogeneous half-space is reduced to solving systems of dual integral equations,
the kernel transforms of which are approximated by a quadratic rational expression.
A dual integral equation with such a kernel has an exact analytical solution. When
constructing kernel transforms of integral equations, the Hankel transform is used,
and the systemof ordinary differential equationswith functional coefficients is solved
numerically.

For practical application of the developed methods of numerical and analytical
solution of a wide range of mixed and unmixed boundary problems of axisymmet-
ric static theory of thermoelasticity, taking into account an arbitrary combination of
laws of change of thermomechanical properties (Young’s modulus, Poisson’s ratio,
thermal conductivity coefficient and coefficient of linear expansion), a set of pro-
grams in Fortran has been developed. The initial data for the calculation are formed
in the form of a set of text files that contain tables of the values of the laws of
inhomogeneous changes in thermomechanical properties, a description of the types
of impacts (distributed pressure, various stamps, temperature or heat flow), a set of
design parameters that affect the accuracy and time of calculation.

To preserve the results of calculations and carry out their multiparametric analysis
in the future, as well as visualization of the stress-strain state of an inhomogeneous
coating and its thermomechanical characteristics, a database has been developed that
has been created and maintained in the PostgreSQL DBMS. The database stores the
results of calculations, preceded by key attributes containing the task code and the
code of the descriptor of the calculated information. In addition, there are fields for
storing information about the ratio of the coating thickness to the radius of the coat-
ing impact zone, the radius and depth of the calculated points, and the calculated
characteristics themselves. To process the results of experiments, the database stores
descriptions of the types of indentors, a directory of materials, To carry out a mul-
tiparametric description of the materials under study with a list of properties of the
substrate and layers, a module has been developed that allows creation of analytical
queries to the database and visualization of the results using the Gnuplot package.

The web interface of the Graded Coatings information system is developed in
Python using the Django library. The working version of the site is supported by the
Apache server with the mod_wsgi module. The website is available at http://109.
195.227.87:8090. The design of the site assumes the possibility to get acquainted
with the description of the purpose of the IP and the list of tasks to be solved without
registration. When registering, the user gets access to the main modes of the system,
while, for the convenience of the user, samples of descriptions of the laws of changing
the properties of coatings, impacts, coating themselves, and other objects are copied
to the user. The site menu is shown in Fig. 15.1.

The first item is the informational one, the rest are interactive forms that allow you
to work with lists of objects stored in the database. The “Theory” section presents
a list of the laws of property change; a list of impacts (the punch introduction, the

http://109.195.227.87:8090
http://109.195.227.87:8090


276 L. I. Krenev et al.

Fig. 15.1 The main page of the website “Graded coatings”. The “Service” mode is available for
the administrator

growth of disc cracks, etc.); a list of various coatings; list of additional calculation
parameters; list of calculation tasks with indication of specific coatings, impacts and
additional parameters; lists of laws of inhomogeneity, coatings, impacts contain-
ing graphical thumbnails that help the user navigate when choosing. Each item in
the list includes the “Edit” and “Delete” buttons, and there is an “Add” item in the
header of the table. Thus, the user has the ability to add, modify, and delete any
objects. In addition, there is a button “Add a copy”, with its help it facilitates the
creation of complex objects that differ little from the previous ones. The “Experi-
ment” mode is designed to process the results of nanoindentation. The lists “Types
of indentors” and “Materials Directory” contain common entries for the information
system, which cannot be deleted or changed, but the user can make his or her own
entries. The list of “Materials under study” allows one to describe the structure of
the coating. When working with the “Research results” item, the user specifies a
specific indenter and the material under study and must submit archived directories
with “force-displacement-time” files for processing. The files must be in text format
or in the original “.idr” format. Data processing is carried out using the Oliver-Pharr
method. All parameters are editable. As a result, a table with calculated characteris-
tics for all experiments grouped by source files is displayed. The user can withdraw
individual experiments or files from consideration and recalculate the result. For a
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Fig. 15.2 Measurement of the thickness of the ZnO coating with a thickness of 650nm (a, b) and
430nm (c, d) using SEM

real experimental study, samples of ZnO coatings on Si (001) substrates obtained by
pulsed laser sputtering were selected. The coating thickness was measured using a
Crossbeam 340 scanning electron microscope (SEM, Carl Zeiss Microscopy Gmbh,
Germany) using an Everhart-Thornley detector and an accelerating voltage of 1.5
kV. To do this, a cross-section was made in the coating by means of a focused ion
beam (Fig. 15.2).

To assess the mechanical properties of the coating, a series of nanoindentation
experiments were carried out on the Nanotest 600 Platform 3 (Micro Materials, UK)
unit using a Berkovich diamond indenter. To evaluate the properties of ZnO coatings,
a series of 12 indentations with an increasing force from 1 to 200mNwere performed
at a distance of at least 5 diameters of the indentation sites from each other, while the
corresponding maximum indentation depth varied from 30nm to 955nm. The value
of Poisson’s ratio ZnO was assumed to be v = 0.25.

15.3 Results and Discussion

With the help of the Graded Coatings information system, using the example of the
analysis of the results of indentation of Si substrates and ZnO coatings described
earlier, Young’s modulus of coatings was calculated. Figure15.3 shows the results of
determining Young’s modulus for homogeneous silicon and silicon coated with zinc
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Fig. 15.3 Change in the calculatedYoung’smodulus Si, Si+650nmZnandSi+430nmZnOdepend-
ing on the radius of the calculated contact area

oxide with a thickness of 430nm and 650nm, depending on the calculated radius of
the contact area.

In the “Theory” and “Calculations”mode, it is possible to set a series of calculation
parameters. Using them, a series of calculations was carried out for the ratio of the
coating modules to the substrate module from 1/5 to 5, with a change in the ratio of
the radius of the contact area to the coating thickness from 0 to 4. The results are
shown in Fig. 15.4.

The table of calculation results shown on the graph is embedded in the calculation
module of the “Research Results” mode. Understanding the coating thickness and
Young’s modulus of the substrate, one can estimate Young’s modulus of the coating
for each experiment. Figure15.5 shows the results of calculating Young’s modulus
of coatings with a thickness of 650nm and 430nm, depending on the ratio of the
radius of the contact area to the coating thickness. Despite the large spread at the
beginning of the diagram, it can be assumed that Young’s ZnO modulus is 250 GPa.

Figure15.6 compares the theoretical curves of Young’s modulus of the coating-
substrate system and the results of nanoindentation. It is possible to note a good
coincidence of the results in the area of a small spread of experimental data.



15 Analysis of the Nanoindentation Results Using the Graded … 279

Fig. 15.4 Diagrams of the stiffness behavior for a series of relations of Young’s modulus of the
coating and the substrate

Fig. 15.5 The result of the evaluation of Young’s modulus of ZnO
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Fig. 15.6 Comparison of theoretical and experimental data with the value of Young’s modulus
ZnO equal to 250 GPa

15.4 Conclusion

The paper presents a brief description of the information system Graded Coatings,
designed to construct solutions to mixed axisymmetric boundary problems of elas-
ticity and thermoelasticity for continuously inhomogeneous coatings of complex
structure, as well as to analyze the results of calculations and experimental data.
The capabilities of the system in the analysis of experimental data are demonstrated.
Based on the results of nanoindentation, the values of Young’s modulus (250 GPa)
of two ZnO coatings (430nm and 650nm) obtained by pulsed laser sputtering on Si
(001) substrateswere determined. The usage of the systemmay be further extended to
other types of materials of the complex structure with the varying by depth mechan-
ical characteristics such as artificial (Liu et al. 2021; Dubey et al. 2020) and natural
(Zelentsov et al. 2023; Sadyrin 2022; Sadyrin et al. 2021) biomaterials.
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Chapter 16
On the Influence of Transversal Isotropy
on the Exact Solution of a Problem
of Imposing Finite Deformations
in a Composite Nonlinear Elastic Slab
with Prestressed Layers

Vladimir A. Levin, Konstantin M. Zingerman, and Anton E. Belkin

Abstract The paper presents a mathematical statement and obtains an exact ana-
lytical solution to the problem of the theory of finite deformations imposition on
the equilibrium of a composite plate made by joining cylindrical layers of nonlinear
elastic incompressible transversally isotropic materials. Initially unstressed layers
go through two stages of deformation. The first stage corresponds to straightening
and joining the layers. The second stage corresponds to the stretching of the formed
single plate. Expressions for the stresses in the slab in the final state are obtained
and restrictions on the directions of transversal isotropy are revealed, under which
the exact analytical solution of the problem can be obtained.
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16.1 Introduction

One of the most important and relevant sections of solid mechanics is the theory
of finite deformations. This branch of mechanics deals with such motions of bodies
in which the deformations of the particles are large enough so that the assumptions
inherent in the theory of small deformations, for example, the principle of linear
superposition, were not applicable. Accounting for nonlinear effects associated with
the finiteness of deformations is important in formulating the constitutive relations
of continuum mechanics (Truesdell 1972; Lurie 1990).

The development of research in the field of finite deformations is the theory of
multiple imposition of finite deformations, designed to model the deformation of
bodies in several stages, when finite deformations occur in the body at each stage.

Many works are devoted to problems related to the repeated imposition of large
deformations on bodies that are not linearly elastic.

In Levin (1998), the main constitutive relations and boundary value problems of
the theory of multiple imposition of large deformations of elastic and viscoelastic
materials are presented. Another class of problems of the imposition of additional
finite deformations is solved by Levin and Zingerman (1998). In this work, the
elastic interaction of holes,micropores, and narrow slots (cracks) introduced (arising)
sequentially or simultaneously in preloaded bodies at finite deformations is analyzed.

It is of large importance to find exact analytical solutions to problems in the theory
of superposition of large deformations (Zingerman et al. 2022). Among the prob-
lems for which exact solutions are obtained is the problem of tension-compression
of a composite slab obtained by joining pre-deformed layers, which initially have
the shape of sectors of hollow circular cylinders. For a special class of micropolar
physically linear compressible isotropic elastic materials, the exact analytical solu-
tion of this problem was found in Levin et al. (2021). For incompressible isotropic
nonlinear elastic materials whose mechanical properties are described by the Treloar
(neo-Hookean) potential (Treloar 1975), the solution to this problem was obtained
in Levin et al. (2020). In this article, a solution to a similar problem in a slightly
different formulation is obtained. In contrast to Levin et al. (2020, 2021), where the
axes of the sectors of circular cylinders in the initial state are mutually orthogonal,
in this article it is assumed that these axes are parallel. The solution is obtained for
incompressible transversally isotropic nonlinear elastic materials. The constitutive
relations proposed in Merodio and Ogden (2002, 2005) are used.

In the work Levin et al. (2015), a method and algorithm for numerical evaluation
of the effective mechanical properties of rubber-cord compositions are developed,
taking into account finite deformations and low compressibility of rubber. The work
Levin et al. (2018) is devoted to the model of a compressible orthotropic nonlinear
elastic material, for which a number of exact analytical solutions are possible at large
deformations. Using this model of elastic materials, an exact solution to the problem
of bending a composite beam with pre-deformed layers under large deformations is
obtained. The solution was obtained using the theory of superposition of large defor-
mations. Numerical results are shown. Nonlinear effects and anisotropy effects are
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investigated. The article Levin et al. (2014) deals with the static problem of torsion of
a cylinder made of incompressible nonlinear elastic materials under large deforma-
tions. The cylinder contains a central round cylindrical inclusion, initially twisted,
and stretched (or compressed) along the axis and fastened to a non-deformable outer
hollow cylinder.

16.2 Description of the Initial Configuration and Problem
Statement

The deformable elastic bodies considered in the problem are M cylindrical incom-
pressible transversally isotropic layers, numbered from 1 to M and each equipped
with its own cylindrical coordinate system (ri , ϕi , zi ), where i is the layer number.
Layer Si in its coordinate system in the initial configuration is described as a set:

Si = {(ri , ϕi , zi )}

where

rs i ≤ ri ≤ r f i ,

ϕs i ≤ ϕi ≤ ϕ f i ,

zs i ≤ zi ≤ z f i ,

rs i , r f i , ϕs i , ϕ f i , zs i , z f i are the given boundary values that determine the layer
size for each coordinate. Each layer is associated with a rectangular Cartesian coor-
dinate system (xi , yi , zi ), that is associated with the cylindrical coordinate system
by relations:

xi = ricosϕi , yi = ri sinϕi , zi = zi (16.1)

Thematerial of each i th layer is transversely isotropic, its properties are described
by the constitutive relation (Merodio and Ogden 2002, 2005)

Ti = μiFi+2μiγi (Ai ·Ai − 1)Ai ⊗ Ai−pi I (16.2)

where I is unit tensor; μi and γi are material constants; Ti—true stress tensor;
Pi—deformation gradient; Fi = Pi · Pi

T—the Finger deformation measure; pi—the
Lagrange multiplier; ⊗—tensor product.
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VectorAi = Pi ·A0
i determines thedirectionof transversal isotropy in thedeformed

state, and vector A0
i determines the direction of transversal isotropy in the initial

(undeformed) state (Merodio and Ogden 2002, 2005). In other words, vector A0
i is

directed perpendicular to the isotropy surfaces. In a cylindrical coordinate system
(ri , ϕi , zi ) vector A0

i can be written as

A0
i = Ar ier+Aϕ ieϕ+Aε iez (16.3)

One of the goals of work is to clarify the restrictions imposed on the components
of the vector A0

i , under which an exact analytical solution of the problem can be
obtained.

Layers go through three states—initial, intermediate, and final. The transition
from the initial state to the intermediate state and from the intermediate to the final
state are, respectively, the first and second stages (phases) of deformation. At the
first stage, all cylindrical layers are unbent in such a way that their outer and inner
boundaries become flat. At the same time, the layers are connected, forming a single
composite slab in the intermediate state. At the second stage, an additional defor-
mation is applied. The composite plate is subjected to tension-compression in two
directions, orthogonal to the direction of connection of the initial layers. A more
detailed description of the stages of deformation is given below when listing the
equations included in the mathematical formulation of the problem.

In what follows, the gradients of initial, additional, and total deformation are
denoted by Pinit

i , Padd
i , Pfin

i , respectively. For the remaining tensors in equation (2)
related to the intermediate configuration, the designation “int” is used; for tensors
related to the final configuration—the designation “fin” is used.

The goal of the solution is to calculate the components of the stress tensor in the
final state.

16.3 Mathematical Statement of the Problem

Let us present the mathematical formulation of the problem, which includes the
following equations describing the deformation of the layers at both stages:

The equations describing the motion of layers for the first and second stages of
deformation, respectively:

x = ui (ri ) , y = τiϕi , z = αi zi (16.4)

X = U (x) = Ui (ri ) ,Y = β1y, Z = β2z (16.5)

where τi , αi are the given constants of the first stage of deformation (i is the layer
number); β1, β2 are given constants of the second stage of deformation; ui , U , Ui

are unknown functions.
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Deformation gradient expression (Truesdell 1972; Levin 1998) for the first and
second stages of deformation, respectively:

Pinit
i =

⎛
⎜⎝

∂x
∂xi

∂x
∂yi

∂x
∂zi

∂y
∂xi

∂y
∂yi

∂y
∂zi

∂z
∂xi

∂z
∂yi

∂z
∂zi

⎞
⎟⎠ Pfin

i = Padd
i · Pinit

i =
⎛
⎜⎝

∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z

⎞
⎟⎠ · Pinit

i , (16.6)

Incompressibility constraint for the first and second stages of deformation, respec-
tively:

detPinit
i = 1, detPadd

i = 1 (16.7)

Boundary conditions for gluing layers for the first and second stages of deforma-
tion, respectively:

u1 (rs1) = 0 (16.8)

ui−1
(
r f i−1

) = ui (rs i ) , i = 2, . . . , M (16.9)

U1 (rs1) = 0 (16.10)

Ui−1
(
r f i−1

) = Ui (rs i ) , i = 2, . . . , M (16.11)

Constitutive relation for intermediate and final states:

Tint
i = μiFint

i +2μiγi
(
Aint
i ·Aint

i − 1
)
Aint
i ⊗Aint

i −pi I (16.12)

Tfin
i = μiFfin

i +2μiγi
(
Afin
i ·Afin

i − 1
)
Afin
i ⊗Afin

i −pi I (16.13)

Finit
i = Pinit

i · (
Pinit
i

)T
, Ffin

i = Pfin
i · (

Pfin
i

)T
, (16.14)

Change in the direction of the vector characterizing the transversal isotropy after
the initial and additional deformation:

Ainit
i = Pinit

i · Ai , Afin
i = Padd

i · Ainit
i (16.15)

Equilibrium equation for intermediate and final states:
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∇ int · Tint
i = 0,∇fin · Tfin

i = 0, (16.16)

Boundary conditions for intermediate and final states:

Nint · Tint
1 ‖x=u1(rs 1)

= 0,Nfin · Tfin1‖
X=U1(rs 1)

= 0, (16.17)

Nint · TintM‖
x=uM(r f M)

= 0,Nfin · TfinM‖
X=UM(r f M)

= 0, (16.18)

Nint · Tinti−1‖
x=ui−1(r f i−1)

= Nint · Tinti‖
x=ui (rs i )

, i = 2, . . . , M − 1 (16.19)

Nfin · Tfni−1‖
X=Ui−1(r f i−1)

= Nfin · Tfini‖
X=Ui (rs i )

, i = 2, . . . , M − 1 (16.20)

16.4 Determining the Coordinates of the Points
of the Layers in the Intermediate and Final
Configurations

The deformation gradient Pinit
i , based on the first formula (16.6), is written as follows

Pinit
i =

⎛
⎝
u′
i (ri ) cosϕi u′

i (ri ) sinϕ
(i) 0

− τi sinϕi

ri
τi cosϕi

ri
0

0 0 αi

⎞
⎠ (16.21)

where u
′
i (ri ) = dui (ri )

dri
.

Then the first equation (16.7) takes the form of an ordinary linear differential
equation of the first order:

u
′
i (ri ) = ri

αiτi
(16.22)

For i = 1, equation (16.22) is supplemented with the initial condition (16.8), for
i > 1—with condition (16.9). The solution of the Cauchy problem (16.22), (16.8)
and (16.9) allows us to determine the radial deformation function at the first stage

u1 (r1) = (r1)
2 − (rs1)

2

2α1τ1
(16.23)
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ui (ri ) = (ri )
2 − (rs1)

2

2αiτi
+ ui−1

(
rs i−1

)
, i = 2, . . . , M (16.24)

The deformation gradient Padd
i , based on the second formula (16.6), is written as

follows:

Padd
i =

⎛
⎝U ′

i (ri )
(
u′
i (ri )

)−1
0 0

0 β1 0
0 0 β2

⎞
⎠ (16.25)

where U
′
i (ri ) = dUi (ri )

dri
.

Then the second equation (16.7) takes the form of an ordinary linear differential
equation of the first order:

U
′
i (ri ) = u′

i (ri )

β1β2
(16.26)

For i = 1, equation (16.26) is supplemented with the initial condition (16.10), for
i > 1—with condition (16.11). The solution of the Cauchy problem (16.26), (16.10)
and (16.11) allows us to determine the radial deformation function at the second
stage:

U1 (r1) = (r1)
2 − (rs1)

2

2α1τ1β1β2
(16.27)

Ui (ri ) = (ri )
2 − (rs1)

2

2αiτiβ1β2
+Ui−1

(
rs i−1

)
, i = 2, . . . , M (16.28)

16.5 Transformation of the Transversal Isotropy Vector

Using the first formula (16.15), one can obtain expressions for the components of
the transversal isotropy vector in the intermediate state:

Aint
i = Ar iu

′
i (ri ) ix+

Aϕ iτi

ri
iy+Aziαi iz (16.29)

Similarly, using the second formula (16.15), one can obtain expressions for the
components of the transversal isotropy vector in the final state:

Afin
i = Ar iU

′
i (ri ) ix+ Aϕ iβ1τi

ri
iy+Aziβ2αi iz (16.30)
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The vectors ix , iy , iz are the orts of the rectangular Cartesian coordinate sys-
tem. Representations (16.29) and (16.30) allow us to calculate Ainit

i ·Aint
i , Aint

i ⊗Aint
i ,

Afin
i ·Afin

i , Afin
i ⊗Afin

i . For example, the tensor Afin
i ⊗Afin

i has the following form:
⎛
⎜⎜⎝

A2
r i

(
U ′

i (ri )
)2 Ar i Aϕ iβ1τi f ′

i (ri )
ri

Ar i Aziβ2αi u′
i (ri )

Ar i Aϕ iβ1τi f ′
i (ri )

ri

A2
ϕ i

β2
1 τ

2
i

r2i

Aϕ i Az iβ1β2αi τi

ri

Ar i Aziβ2αi u′
i (ri )

Aϕ i Az iβ1β2αi τi

ri
A2
z iβ

2
2α

2
i

⎞
⎟⎟⎠

The tensors Ainit
i ⊗Ainit

i , Afin
i ⊗Afin

i are among the terms that make up Tint
i and

Tfin
i . In addition, expressions (16.12) and (16.13) for these stress tensors include the

tensors Finit
i and Ffin

i , which will be diagonal. In particular,

Finit
i =

⎛
⎜⎝

[
u′
i (ri )

]2
0 0

0
(

τi
ri

)2
0

0 0 αi
2

⎞
⎟⎠ (16.31)

The components of the tensors Finit
i and Ffin

i depend only on ri . If we consider the
dependence of these tensors on the coordinates in the intermediate or final states,
then they will depend only on x or X , respectively. In addition, if we assume that
the Lagrange multiplier depends only on x or X , respectively, then the stresses will
depend only on this coordinate. In this case, it follows from the equilibrium equations
and boundary conditions that the shear stresses

(
Tfin
i

)
XY

,
(
Tfin
i

)
XZ

are equal to zero.
Therefore, either Ar i or one of the components Aϕ i , Azi must be zero. If the shear
stress

(
Tfin
i

)
Y Z is also zero, then only one of the components of the vector A0

i is
non-zero.

16.6 Stress Determination

Calculating the deformation gradient Pfin
i = Padd

i · Pinit
i and substituting (16.27),

(16.28) and (16.31) into (16.22), as well as applying the second condition (16.16),
we determine the components of the stress tensor:
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(
Tfin
i

)
XX = 0(

Tfin
i

)
YY = μiβ

2
1 τ

2
i

r2i
+ 2μiγi A2

ϕ i
β2
1 τ

2
i

r2i

(
A2
r i

(
U ′

i (ri )
)2+ A2

ϕ i
β2
1 τ

2
i

r2i
+

+A2
z iβ

2
2α

2
i − 1

) − μi
(
U ′

i (ri )
)2−2μiγi A2

r i

(
A2
r i

(
U ′

i (ri )
)2+

+ A2
ϕ i

β2
1 τ

2
i

r2i
+A2

z iβ
2
2α

2
i − 1

) (
U ′

i (ri )
)2

(
Tfin
i

)
Z Z = α2

i μi+2A2
z iα

2
i μiγi

(
A2
r i

(
U ′

i (ri )
)2+ A2

ϕ i
τ 2
i

r2i
+

+A2
z iα

2
i − 1

) − μi
(
U ′

i (ri )
)2−2μiγi A2

r i

(
A2
r i

(
U ′

i (ri )
)2+

+ A2
ϕ i

τ 2
i

r2i
+A2

z iα
2
i

) (
U ′

i (ri )
)2

(16.32)

Formulas (16.32) make it possible to calculate all non-zero components of the
stress tensor in each layer in the final state.

16.7 Numerical Calculations

The algorithm for solving the problem given above is implemented as a program
written using theMaple computer algebra system. Below are the results of numerical
studies performed using the written program, in the form of graphs. These graphs
demonstrate the difference in the resulting stresses depending on the nature of the
transversal isotropy of the material.

The dependences of the stresses (Tfin
i )YY
μ1

and (Tfin
i )Z Z
μ1

of the first layer in the final
state on the coordinate r1 in the initial state are shown on Figs. 16.1 and 16.2, respec-
tively. These dependences are presented for various types of transversal isotropy
of the material (solid line corresponds to Ar 1 = 1; dotted line—Aϕ1 = 1; dashed

Fig. 16.1
(
Tfin
i

)
YY

μ1
in the final state on the coordinate in the initial state for various types of transversal

isotropy
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Fig. 16.2
(
Tfin
i

)
Z Z

μ1
in thefinal state on the coordinate in the initial state for various types of transversal

isotropy

line—Az1 = 1). The inner radius of the layer in the initial state is taken equal to 0.5,
the outer one is equal to 1. Parameters α1 = 1, τ1 = 1, 7, β1 = 1, 5, β2 = 1, 5.

16.8 Conclusion

The paper presents a mathematical formulation of the problem of imposing finite
deformations on cylindrical layersmade of incompressible nonlinear elastic transver-
sally isotropic materials. The main steps of the analytical solution of the problem
are described. The restrictions on the directions of transversal isotropy are analyzed
those permit one to obtain exact analytical solution of the problem. The obtained
results can be further used for the computation of effective properties of composite
nonlinear-elastic plates with initial stresses (Altenbach and Eremeyev 2010).
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Abstract The paper investigates nonlinear effects found in the exact analytical solu-
tion of problem of multiple superimposition of large tensile-compressive and torsion
strains for a sequentially formedmultilayer cylinder, each layer of which is made of a
hypoelastic incompressiblematerial. After attaching each layer, tension-compression
and torsion of the composite cylinder are performed. The material of each layer con-
stituting the cylinder is characterized by a constitutive relationship, including the
objective corotational derivative of Jaumann or Dienes. Based on the description
of the formation and deformation of the cylinder, a mathematical statement of the
problem is given and the main steps of its analytical solution are described. Some
numerical results are given. The presence of the Poynting effect is demonstrated.
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17.1 Introduction

This work is devoted to the construction and study of an analytical solution to the
problem of the theory of multiple superimposition of large deformations on the
stage-by-stage quasi-static tension-compression and torsion of a multilayer hypoe-
lastic cylinder manufactured by sequentially attaching layers. Several configurations
(states) of a composite cylinder are considered; the transition from the previous con-
figuration to the next corresponds to the attachment of a new layer to the cylinder,
followed by tension-compression and torsion.

Works Truesdell (1972), Lurie (1990), Green and Adkins (1960) are devoted
to general formulations of problems in the mechanics of a deformable solid body
under large deformations and analytical methods for solving these problems. State-
ments and methods for solving problems of multiple imposition of large strains in
deformable solids are given in Levin (1998), Levin and Zingerman (2008, 2009).
Problems of torsion of nonlinearly elastic cylinders under large deformations were
studied in Zubov and Bogachkova (1995), Zubov (2006). Joint torsion and tension-
compression of a composite nonlinearly elastic rod with a circular cross-section with
a pre-deformed inclusionwas studied in Levin et al. (2013, 2014) in the framework of
the theory of superposition of large deformations. In Levin et al. (2014), the influence
of preliminary deformation on the manifestation of the Poynting effect (Truesdell
1972; Poynting 1909) was revealed and it was found that in the absence of an axial
force, both tension and compression of the rod are possible, depending on the pre-
liminary deformation. The solution of a similar problem for a multilayer nonlinearly
elastic rod was obtained in Zingerman et al. (2022).

It is of interest to generalize the approach to the study of the imposition of large
strains in torsion and tension-compression of a composite rod, proposed in Levin
et al. (2013, 2014), Zingerman et al. (2022), to the case of inelastic materials. In
particular, hypoelasticity models are one of the classes of inelastic materials (Trues-
dell 1972; Green and Adkins 1960; Brovko et al. 2009). In Ovchinnikova (2020),
an exact analytical solution was obtained for the quasi-static problem of torsion
of a circular cylinder made of an isotropic incompressible hypoelastic material. In
Levin et al. (2022), based on the theory of multiple superposition of large strains, the
quasi-static problem of joint torsion and tension-compression of a two-layer circular
cylinder made of an isotropic incompressible hypoelastic material with a prelimi-
narily deformed inclusion was solved. In this article, the solution obtained in Levin
et al. (2022) is generalized to the case of an arbitrary number of layers and one of
the versions of the Poynting effect is studied.

17.2 Formulation of the Problem

The process considered in the problem includes N stages (the set of stages is dis-
crete, that is, continuous processes are not considered). Each stage corresponds to a
cylindrical layer, these layers are sequentially attached to the inner cylinder (which is
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conventionally considered the first layer). The total number of layers is thus the same
as the number of steps, hereinafter referred to as deformation steps. The moment of
time corresponding to the beginning of the deformation stage with the number j is
denoted by t ( j−1), and the moment of time corresponding to the end of this stage is
denoted by t ( j). The beginning of the deformation process t (0) = 0. At the moment
t ( j−1) the cylinder (obtained at the previous stages) is supplemented with a new j th
layer, and its inner radius r̃ j, j must coincide with the outer radius R̃ j, j−1 previous
layer. Further, during the j th stage, the cylinder is subjected to tension-compression
and torsion, deforming as a whole.

The entire cylinder as a whole during the j th stage of deformation is supplied with
rectangular Cartesian and cylindrical coordinate systems, connected at each moment
of time by the relations: ⎧

⎨

⎩

x ( j) = r ( j)cosϕ( j)

y( j) = r ( j)sinϕ( j)

z( j) = z( j)
(17.1)

The coordinates of the particles of the cylinder during the j th stage of deformation
are related to the coordinates of these particles in the previous state as follows:

⎧
⎨

⎩

r ( j) = λ j · r ( j−1)

ϕ( j) = ϕ( j−1) + α j

z( j) = z( j−1) · λ−2
j

(17.2)

where λ j is the characteristic of radial deformation (multiplicity of elongation);
α j = k j z( j−1); k j is the characteristic of torsional deformation. Equation (17.2) auto-
matically ensure the fulfillment of the incompressibility condition. The following
notation will be used:

� j,i = λiλi+1 . . . λ j−1λ j

To characterize the deformation of the i th layer during the j th stage, the defor-
mation gradient is used:

⎧
⎨

⎩

Ψ j,i = ∂(x ( j),y( j),z( j))
∂(x ( j−1),y( j−1),z( j−1))

, i = j

Ψ j,i = Ψ j−1,i · ∂(x ( j),y( j),z( j))
∂(x ( j−1),y( j−1),z( j−1))

, i > j
(17.3)

The compound cylinder material is hypoelastic. The constitutive relation describ-
ing the mechanical behavior of the hypoelastic material for the i th layer during the
j th stage of deformation is written below

{
D

(
S j,i

) = 2GiC j,i

σ j,i = S j,i + p j,iE
(17.4)
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where E is the metric tensor, σ j,i is the true Cauchy stress tensor, S j,i is the stress
deviator, D is the objective derivative (Jaumann or Dienes) with respect to time,C j,i

is the strain rate tensor, Gi—shear modulus, p j,i—pressure.

C j,i = 1

2

(
∂Ψ j,i

∂t
· Ψ j,i

−1 +
(

∂Ψ j,i

∂t
· Ψ j,i

−1

)T
)

(17.5)

The objective derivatives of Jaumann and Dienes (Truesdell 1972; Dienes 1979)
are defined by the following expression:

D
(
S j,i

) = ∂S j,i

∂t
− B j,i · S j,i + S j,i · B j,i (17.6)

where for the case of the Jaumann derivative the tensor B j,i is defined as

B j,i = 1

2

(
∂Ψ j,i

∂t
· Ψ j,i

−1 −
(

∂Ψ j,i

∂t
· Ψ j,i

−1

)T
)

(17.7)

for the case of the Dienes derivative, the tensor B j,i is defined differently:

B j,i = ∂A j,i

∂t
· A j,i

T (17.8)

where A j,i is the rotation tensor in the polar decomposition of the deformation
gradient Ψ j,i .

The mathematical statement of the problem is supplemented by the equilibrium
equations of layer i at the j th stage:

∂
((
S j,i

)

11 + p j,i
)

∂r ( j−1)
+

(
S j,i

)

11 − (
S j,i

)

22

r ( j−1)
= 0 (17.9)

The problem statement also includes the initial conditions at the j th stage

S j,i = 0, t = 0, j = 1 (17.10)

S j,i‖t=t ( j−1) = S j,i‖t=t ( j−1) , j > 1 (17.11)

and boundary conditions at the boundary of layer i with layer i + 1 during the j th
stage of deformation:

⎧
⎨

⎩

((
S j,i

)

11 + p j,i
) ‖

r (i−1)= R̃ j,i

j,i

= 0 , i = j
((
S j,i

)

11 + p j,i
) ‖

r (i−1)= R̃ j,i
� j,i

= ((
S j,i

)

11 + p j,i+1
) ‖

r (i−1)= r̃ j,i+1
� j,i+1

, i �= j
(17.12)
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Equations and conditions (17.2)–(17.11) constitute the mathematical formulation
of the problem. The desired value is the stress tensor σ j,i .

17.3 The Algorithm for Problem Solving

Deformation gradient (17.3)–(17.4) using formulas (17.1)–(17.2) can be written in
the form

Ψ j,i =
⎛

⎜
⎝

� j,i cos
(
α j,i

) −� j,i sin
(
α j,i

) −� j,i k j,i r ( j−1)sin
(
ϕi−1 + α j,i

)

� j,i sin
(
α j,i

)
� j,i cos

(
α j,i

)
� j,i k j,i r ( j−1)cos

(
ϕi−1 + α j,i

)

0 0 1

(� j,i)
2

⎞

⎟
⎠

(17.13)
where

α j,i = αi + αi+1 + · · · + α j−1 + α j

k j,i = ki + ki+1 + · · · + k j−1 + k j
(
� j−1,i−1

)2

The algorithm for solving the problem includes the following steps:
Step 1. For each layer i in each state j ≥ i , the deformation gradients j,i are

calculated.
Step 2. For each layer i in each state j ≥ i , C j,i are calculated, formulas for the

objective derivative D
(
S j,i

)
considered in this problem are substituted.

Step 3. In each state j = 1 . . . N , the deviator of the Cauchy stress tensor S j,i is
calculated for each layer i ≤ j by solving the Cauchy problem (17.6), (17.10).

Step 4. Calculate p j,i by solving the Cauchy problem (17.9), (17.11).
Step 5. The Cauchy stress tensor is calculated using formula (17.4).

17.4 Detection of the Poynting Effect in Numerical Analysis

The analytical solution of the problem was implemented using a program developed
in Maple. The program made it possible to carry out a number of numerical studies
and discover the Poynting effect in the case of gradual deformation of a compound
cylinder.

The graphs in Fig. 17.1 show the dependence of the axial force on the deformation
parameter α2 of the second layer for a composite cylinder consisting of N = 3 layers.
Thematerial of the layers is hypoelastic, and theDienes derivative is used as an objec-
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Fig. 17.1 Dependence of the axial force on the deformation parameter λ2 of the second layer (out
of three) for the case of the Dienes derivative

tive derivative. The input data for particular cases of the problem for which graphs are
constructed are as follows: k1 = k2 = Ckt2; Ck = 1s−2; R̃1,0 = 1 m; R̃2,1 = 1, 1 m;
R̃3,2 = 1, 2 m; t1 = 1 s; t2 = 2 s; λ1 = λ2 = λ3 = 1.

For solid plot, the deformation parameters are α1 = 1
R̃1,0

, α3 = −0,3
R̃3,2

. For scatter

graph, the deformation parameters are α1 = 1,5
R̃1,0

, α3 = −0,5
R̃3,2

. For dotted graph, the

deformation parameters are α1 = 1,9
R̃1,0

, α3 = −0,7
R̃3,2

. The values of these parameters are

chosen in such a way that the lines are clearly distinguished on the graph.
Graphs in Fig. 17.1 make it possible to observe the Poynting effect in a compound

cylinder. This effect manifests itself in the presence of an axial force in the absence
of deformation in the axial direction. At the same time, it was demonstrated that
the value of the axial force depends on the parameters that determine the torsional
deformation. Theobtained results can be further generalized formodels ofmicropolar
inelasticity (Altenbach and Eremeyev 2014).

17.5 Conclusion

In this work, the problem of stage-by-stage tension-compression and torsional defor-
mations of a body, which is a composite cylinder, is posed. A feature of the problem
is taking into account the sequence of manufacturing the body, in each configuration
supplemented with new elements.

A mathematical formulation of the problem is presented, including equations and
boundary and initial conditions. The statement is considered in two versions—for the
case of the Jaumann and Dienes derivatives. An algorithm is described that makes it
possible to obtain an exact analytical solution.
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To implement the algorithm, a program was developed, the use of which made
it possible to detect the Poynting effect for the gradual deformation of a compound
cylinder.
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Chapter 18
Numerical Solution of Stress
Concentration Problems
in Elastic-Plastic Bodies Under
the Superposition of Finite Deformations

Vladimir A. Levin, Konstantin M. Zingerman, and Kirill Yu Krapivin

Abstract This paper deals with numerical simulations of the elasto-plastic behav-
ior of isotropic materials undergoing large deformations. The attention is focused
on the state of stress and strain of previously loaded elasto-plastic bodies with holes
originating in them. The problem statement and solution are based on the theory of
repeatedly imposed large deformations within the framework of hyperelastic plastic-
ity. The problem-solving is based on the finite-element and spectral-element meth-
ods. The validity of the model was tested on two test problems, and it was found that
the numerical results were in good agreement either with the exact solution or with
experimental data. Another two problems are strain localization problems in media
with step-by-step exclusion of geometrical parts. These problems are characterized
by the origination of localized shear bands (slip lines). It is shown that a new family
of slip lines is originated at each step of deformation. This is the qualitative effect
related with multiple superpositions of finite strains.

Keywords Superimposed finite strains · Finite strain plasticity · Hyperelasticity ·
Hyporelasticity · Finite elements · Spectral elements · Shear bands
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Nomenclature

· is the sign of tensor contraction,
: is the sign of double tensor contraction,
I is the second-rank identity tensor.

Notation for the case when deformations are not
superimposed

0∇ is a gradient operator in coordinates of the initial state;
0
� is a boundary of a body in the initial (undeformed) state;

n is a normal to
0
�;

N is a normal to the deformed boundary;
u is a displacement vector;
v is a velocity vector;
L is a velocity gradient;
ω is a vorticity tensor;
d is the rate of deformation tensor;
F is the deformation gradient;
J is the relative volume variation;
C = FT · F is the right Cauchy–Green deformation tensor;
b = F · FT is the left Cauchy–Green deformation tensor;
σ is the Cauchy stress tensor;
� is the second Piola–Kirchhoff stress tensor;
� is a stress measure governing plasticity (yielding function);
D is a material tangent (fourth order tensor);

Notation of the theory of repeatedly superimposed large
deformations

n∇ is a gradient operator in coordinates of the n-state;
n
R is the position vector of a particle in the nth state;
n
� is a boundary of a body in the n-state;
un+1 is a displacement vector defining the transition from the nth

state to the (n + 1)th state;
Fm,n is the deformation gradient in transition from the mth state to

the nth state;
Jm,n is the relative volume variation in transition from themth state

to the nth state;
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Cm,n = FT
m,n · Fm,n is a tensor defining the strains associated with the transition

of a body from the mth state to the n-th state (C0,1 = C is the
right Cauchy–Green deformation tensor);

bm,n = Fm,n · FT
m,n is a tensor defining the strains associated with the transition

of a body from the m-th state to the n-th state (b0,1 = b is the
left Cauchy–Green deformation tensor);

σ 0,n is the Cauchy stress tensor for the n-th state;
m
�0,n+1 is the second Piola–Kirchhoff stress tensor in the base of the

m-th state under transition from the initial state to the (n + 1)-
th state; at m = 0, this tensor is the second Piola–Kirchhoff
stress tensor;

18.1 Introduction

Often in problems of mechanical engineering, it is necessary to simulate the pro-
cesses of the stress–strain state when changing the geometric shape, layer-by-layer
addition of material, removal or addition of inclusions, for example, this occurs in
technologies of additively manufactured materials. It is also worth considering sig-
nificant loads, for example, when exposed to high temperatures, causing irreversible
plastic deformations in the material. Under these conditions, it is necessary to resort
to the theory of finite elastic-plastic deformations.

Previously, the problem was formulated using the theory of superimposed large
deformations in elastic and viscoelastic bodies (Levin 1987, 1998)

The scope of this work is to revisit constitutive equations of finite strain elasto-
plasticity and to extend the previous solutions in the field of nonlinear elasticity
(Levin et al. 2013; Levin and Zingerman 2008) to the plastic domain.

Despite the fact that there is no consensus on themost favorable final elastic-plastic
kinematics, the developed numerical algorithmsmainly focused on the following two
approaches: Rate-additive hypoelastic plasticity (Hibbitt et al. 1970; McMeeking
and Rice 1975; Nemat-Nasser 1979, 1982 and others); Multiplicative hyperelastic
plasticity (Simo and Ortiz 1985; Simo 1988a, b; Simo and Hughes 1998; Lee 1969,
1981; Fish and Shek 2000 and others)

In this paper isotropic material is considered within the framework of multi-
plicative hyperelastic plasticity. The validity of the model will be examined for the
following four problems: (a) necking; (b) expansion of an elasto-plastic thick-walled
cylinder for which the exact solution has been reported in Hill (1998); (c) (d) strain
localization problems in media with step-by-step exclusion of geometrical parts.

Note that strain localization (shear banding) is a plastic instability in large defor-
mation of solids where the flow becomes concentrated in narrow layers (Yadav and
Sagapuram2020).Another formsof instability are considered, for example, byZubov
and Sheidakov (2007); Eremeyev (2021).
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18.2 The Statement of the Problems of Nonlinear
Elastoplasticity at Large Deformations

18.2.1 The Equilibrium Equation and Boundary Conditions

The equilibrium equation is written in the form

0∇ ·[J−1� · F] = 0, (18.1)

where
0∇ is a gradient operator in coordinates of the initial state; J is the relative

volume variation;� is the second Piola–Kirchhoff stress tensor;F is the deformation
gradient.

The boundary conditions are

n · �| 0
�

= PJF−1 · FT −1
, (18.2)

where
0
� is a boundary of a body in the initial (undeformed) state, n is a normal to

this boundary, P = PN is a pressure vector at the boundary, and N is a normal to the
deformed boundary.

The relation between the second Piola–Kirchhoff stress tensor � and the Cauchy
stress tensor σ is

� = JF−1 · σ · FT −1
. (18.3)

18.2.2 Kinematic Relations

The mapping ϕ : � ∈ R3 → ω ∈ R3 matches the vector X ∈ � of each material
point in the initial coordinate system to the vector x ∈ ω in the new coordinate
system: x = ϕ(X).

The deformation gradient is defined as Lurie (1990)

F(X) = ∂ϕ(X)

∂X
(18.4)

The relative volume variation is

J = det F, F = I + 0∇u = (I − ∇u)−1 , (18.5)

where I is an identity tensor.
E = 1

2 (C − I)—Green–Largange strain tensor, e = 1
2

(
I − b−1

)
—Euler–

Almansi strain tensor.
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The multiplicative decomposition of deformation gradient:

F = Fe Fp (18.6)

From here it follows directly
be = FCp−1

FT . (18.7)

Velocity gradient
L = ∇xv = ḞF−1 (18.8)

The straightforward differentiation of the above formula gives the additive decom-
position of velocity gradient:

L = Le + FeLpFe−1 (18.9)

Rate of deformation tensor:

d = 1

2

(
L + LT

)
(18.10)

Skew-symmetric part is called the spin, or vorticity tensor

ω = 1

2

(
L − LT

)
(18.11)

Hence, the Lie derivative of the left Cauchy–Green elastic deformation tensor is
written in terms of the right Cauchy–Green plastic deformation tensor

Lvbe = F
{ ∂

∂t
F−1beF−T

}
FT

= FĊp−1
FT .

(18.12)

18.3 Constitutive Equations of Elasto-Plasticity

18.3.1 Hypo-elastic Plasticity

The model of hypoelastic plasticity is based on the additive decomposition of the
strain rate tensor into elastic and plastic parts

d = de + dp. (18.13)

Hyper elasto-plastic material models take the form:
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◦
	 = De

(
d − dp

)

= Dep d,
(18.14)

where
◦
	 denotes any objective stress rate.

Closed-formexpressions for various rates—including the Jaumann rate, theTrues-
dell rate, and the Green–Naghdi rate—have been derived by Moss (1984)

Lie derivative of stress

Lvσ = σ̇ − Lσ − σLT (18.15)

The Jaumann–Zaremba stress rate

�
σ = σ̇ − ωσ − σωT (18.16)

dp = γ̇
∂�(σ )

∂σ
, (18.17)

18.3.2 Hyperelastic Plasticity

Hyperelastic material models are a type of constitutive model for ideally elastic
material for which the stress–strain relationship derives from a strain energy density
function W . The Cauchy stress in elastic domain is given by

σ = 1

J

∂W

∂Fe
· FeT (18.18)

The hyperelastic model is based on the existence of a function W and multiplicative
decomposition (18.6).

The associated flow law is considered

−Lvbe = γ̇
∂�(σ )

∂σ
be, (18.19)

which, together with the complementarity condition

� ≤ 0, γ̇ ≥ 0, γ̇� = 0, (18.20)

consistency condition
�̇ = 0 (18.21)
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and equation (18.12), following the radial return algorithm, gives an explicit expres-
sion for the consistent elastic-plastic tangent tensor Dep. As in the infinitesimal-
deformation, the use of consistent (algorithmic) tangent moduli is essential in order
to achieve a quadratic rate of asymptotic convergence within Newton’s iterations.

18.4 Problem Statement of the Theory of Repeatedly
Superimposed Large Deformations

18.4.1 Modeling the Origin of Holes

The origination of holes is described as follows Levin (1987, 1998). Initial strains
take place in a body due to the action of external forces. The body passes to the first
intermediate state.

Then a closed surface is outlined in a body (the future boundary of the first hole).
A part of the body limited by this surface is mentally removed, and its effect on
the remaining part is replaced with the forces distributed along this surface. Then,
the forces are changed “immediately” (in particular, reduced to zero). As a result,
additional finite strains originate in the body. These strains are superimposed on the
initial ones. The shape of the boundary surface also varies. The body passes to the
second intermediate state.

After that, the second surface is outlined in the body, and the second hole originates
in the same way. New additional strains and stresses are brought about in the body
and are superimposed on the existing ones. The shape of holes also varies. The body
passes to the next state.

The origin of the next holes can be described similarly.

18.4.2 Mathematical Problem Statement

According to the theory of superimposed large deformations (Levin 1987, 1998),
the states of the body are numbered from 0 to N .

Consider the mathematical problem statement of transition from the nth state to
the (n + 1)th (current) state. The problem is formulated in coordinates of the nth
state.

The equilibrium equation is written in the form

n∇ ·[(J0,n)−1 n
�0,n+1 ·Fn,n+1] = 0, (18.22)

The boundary conditions are
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[ n
N · n

�n,n+1

]
n
�

= P · J0,n+1[Fn,n+1]−1 · [FT
n,n+1]−1

, (18.23)

where
n
� is a boundary of a body in coordinates of the nth state (including the

boundary of the hole originating in this state),
n
N is a normal to this boundary, and

Pn+1 = P
n
N is a pressure vector at the boundary.

The relation between the second Piola–Kirchhoff stress tensor in the base of the
mth state

m
�0,n+1 and the total true stress tensor σ 0,n+1 is

0
�0,n+1= J0,n+1[F0,n+1]−1 · σ 0,n+1 · [FT

0,n+1]−1
. (18.24)

The relation between the second Piola–Kirchhoff stress tensors in the bases of
different states is

l
�0,n+1= Fm,l ·

m
�0,n+1 ·FT

m,l . (18.25)

The kinematic relations are

F0,n = Fk,n · F0,k, (18.26)

Jk,n = det Fk,n, (18.27)

Fk,n = k∇ n
R = I +

n∑

i=k+1

k∇ui =
(

n∇ k
R

)−1

=
(

I −
n∑

i=k+1

n∇ui

)−1

, (18.28)

where
k
R and

n
R are the position vectors of a particle in the kth and nth states,

respectively; ui is a displacement vector in transition from the (i − 1)th state to the
i th state.

C0,n = FT
0,n · F0,n and b0,n = F0,n · FT

0,n are tensors defining the strains associated
with the transition of a body from the initial state to the nth state (with n = 1,
C0,1 = C and b0,1 = b are the right and the left Cauchy–Green deformation tensors,
respectively (Lurie 1990).

18.5 Examples

In this paper, the solution of the problems is carried out within the framework of
hyperelastic plasticity. We consider the following explicit forms of strain energy
potential for isotropic elastic domain (Lurie 1990; Truesdell 1972):
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W = U (J e) + W̄ (b̄e)

b̄e = J e−2/3be,
(18.29)

U (J e) = 1

2
K

[
1

2
(J e2 − 1) − ln J e

]

W̄ (b̄e) = 1

2
μ

(
tr [b̄e] − 3

)
,

(18.30)

where K and μ are elastic bulk and shear moduli, for elastic domain and von-Mises
yield function for plastic domain.

All calculations were performed by the finite and spectral-element methods using
the multi-purpose software package (FIDESYS LLC 2023)

The first two examples are given in order to examine the numerical algorithm;
the next two demonstrate the possibility of accurate calculations with step-by-step
geometry changes.

18.5.1 Expansion of Thick-Walled Cylinder

This example was considered in Simo and Ortiz (1985) and Simo (1988b). A thick-
walled cylinder with an inner radius of 1 units and an outer radius of 2 units is
subjected to prescribed displacement at the internal radius up to 7.5 units, Fig. 18.1.

Fig. 18.1 Cylinder expansion
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Fig. 18.2 The Cauchy stress σrr at the internal boundary as a function of internal radius

The values of the material constants shown are chosen to replicate rigid plastic
behavior to allow a comparison with the exact solution (Hill 1998): bulk modu-
lus K = 40 GPa, shear modulus μ = 3.8 GPa, yield stress k = 0.5 MPa. Bi-linear
isoparametric elements are used (Figs. 18.2 and 18.3).

18.5.2 Necking of a Circular Bar

The one shown here describes the necking of a circular bar with a radius of 6.413mm,
length of 53.334mmmadeof a nonlinearly hardeningmaterial. This is experimentally
well-documented example given by Simo and Hughes (1998). Material parameters
are: Young modulus E = 207GPa, Poisson ’s ratio ν = 0.3.

The initial meshes are shown in Fig. 18.4 for four cases of 240, 1920, 3840,
and 5760 elements. Isoparametric elements with midside nodes are used. The final
deformed configurations with imposed edge displacement u = 7.0mm obtained for
all meshes are shown in Fig. 18.5, in three dimension for 5760 elements—Fig. 18.6. It
is seen that there are no significant differences among the three. Figure18.7 shows the
ratio of the neck radius to the initial radius plotted against the relative elongation of the
bar; the centered symbols represent experimental results, the solid curve represents
results calculated by thehyperelastic plasticity in 15-time steps. Thenumerical results
are in excellent agreement with the experimental ones. Stresses and deformations
are shown in Fig. 18.8.
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Fig. 18.3 Distribution of the Cauchy stress σrr over the thickness for the following values of the
internal radius: a = 2, 3, 4, 5, 8.5

Fig. 18.4 Calculated finite-element meshes, initial view. Calculations have been carried out for the
mesh of 240, 1920, 3840, and 5760 elements with refinement in the center
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Fig. 18.5 Calculated finite-element meshes. The view of meshes shown above (Fig. 18.4) after
deformation

Fig. 18.6 Volumetric mesh
for the problem of necking.
View after deformation
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Fig. 18.7 The radius of the sample in the neck area as a function of stretch

Fig. 18.8 Stress and strain state in the problem of necking. a—stress σz , b—σx , c—stress intensity,
d—intensity of plastic strains
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18.5.3 Elongation of the Plate with Step-by-Step Removal
of Inclusions

The step-by-step elongation of the plate with a free circular cutout with the appear-
ance of additional circular cutouts during loading is considered. The side boundaries
are free of load, Fig. 18.9.

Previously this task was considered only in case of elastic deformation in Levin
et al. (2013), Levin and Zingerman (2008).

This example is characterized by the possible presence of localized shear bands
and discontinuous displacements along them. The accuracy of the solutionwith high-
order elements in localization problems is quite well studied, see, for example, Solin
et al. (2003), Jeremić and Xenophontos (1999). 4th order spectral elements are used
in this study to capture plastic localization (Levin and Krapivin 2022).

Slip-line analysis gives an exact solution to the directions of the plastic flow
fields, Hill (1998), Kachanov (1971). A family of logarithmic spirals expressed in
polar coordinates as

θ − θ0 = ± ln r
a

arctan ζ/2
(18.31)

can adjoin a load-free circular boundary, and a family of straight-line segments can
adjoin a load-free rectilinear boundary. Spirals intersect the radius vector at a constant
angle ζ/2.

Figure18.10 shows the evolution of the slip lines. Initially, the slip lines are
straight-line segments. When additional circular holes appear in the deformed state,
additional lines appear in the form of logarithmic spirals. Thus, an overlap of two
patterns of plastic flow is formed.

Fig. 18.9 Example 3. Circular inclusions
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Fig. 18.10 Shear bands
evolution
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Fig. 18.11 Example 4.
Increasing circular hole

18.5.4 Elongation of the Plate with a Step-by-Step Increase
in the Circular Hole

A step-by-step elongation of a plate with a free circular cutout with the removal
of blocks in the area of stress concentration during loading is considered. The side
boundaries are free of load, Fig. 18.11. In the elastic formulation, this problem is
solved in Levin and Morozov (2007). Calculations are performed in three steps.
Evolution and geometrical place of shear bands is shown in Fig. 18.12. Example can
be useful for researchers of crack initiation and propagation.

18.6 Conclusion

Hyperelastic-based plasticity demonstrates a fast (small number of incremental steps
is enough) numerical solutions of the strain localization problems inmedia with step-
by-step exclusion of geometrical parts. The qualitative effect related with multiple
superposition of finite strains is that a new family of slip lines is originated at each
step of deformation. Thus, an overlap of some plastic flow patterns is formed.
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Fig. 18.12 Shear bands
evolution
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Chapter 19
Dynamic Buckling of Functionally
Graded Plates and Shells Subjected
to Thermal Shock

Stanislav V. Levyakov

Abstract In this work, the nonlinear dynamic response of suddenly heated func-
tionally graded shells is studied through nonlinear transient analysis. To this end,
a triangular shell finite element with 15 degrees of freedom is developed using
the invariant-based approach and the concept of the surface of mass. Equations
of motion of the shell finite-element model are integrated numerically by the
Newmark method combined with iterative refinement of the solution using the
Newton–Raphson procedure. For each time increment, the transient temperature
field across the shell thickness is determined by iteratively solving the unsteady
heat-conduction equation taking into account temperature-dependent properties of
the material. The predicted temperature profile is used to compute the nodal thermal
loads and temperature-dependent stiffness characteristics of the shell element. The
proposed finite-element element formulation is validated against the available solu-
tions of dynamic problems of plates and shells. A number of examples are given to
demonstrate nonlinear capabilities of the proposed formulation and to estimate the
effect of dynamic thermal loading on buckling instability of FGM plates and shells.

Keywords Functionally graded material · Shells · Thermal shock · Unsteady heat
conduction · Nonlinear dynamic buckling · Finite-element modeling

19.1 Introduction

In various fields of engineering, structural members have to operate in thermal
environment characterized by elevated temperatures and high thermal gradients.
Aerospace technology and nuclear engineering are modern areas of engineering
where structures may be subjected to rapid surface heating, which leads to unsteady
heat conduction and high thermal stresses referred to as thermal shock. Thin-walled
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members subjected to thermal shock may experience large-amplitude motion and
even exhibit unstable behavior that affects the performance of the structure.

Boley (1956) was the first to provide theoretical analysis of thermally induced
vibrations of a thin beam subjected to step heating. Based on the linear beam bending
theory, he obtained the exact analytical solution governing forced lateral vibrations
caused by thermal moment that occurs due to transient non-uniform temperature
distribution through the beam cross-section. Jones (1966), Seibert and Rice (1973)
refined the solution of the problem by taking into account transverse shear effects
and rotary inertia. One of the earliest finite-element formulations for dynamic anal-
ysis of beams and plates under unsteady heat conduction was proposed by Mason
(1968). Stroud andMayers (1971) studied the effect of temperature-dependent mate-
rial properties on the dynamic response of a rapidly heated plate. It was shown that
neglect or even incomplete consideration of the temperature dependence can lead
to dangerously unconservative results. Das (1983) reported on vibrations of thin
polygonal plates subjected to thermal shock through the complex variable theory.
Irie and Yamada (1978) obtained analytical solution governing thermally induced
axisymmetric vibrations of circular and annular plates subjected to a sinusoidally
varying heat flux. Based on coupled equations of thermoelasticity, Al-Huniti et al.
(2003) studied small transient deflections of a thin simply supported rectangular plate
subjected to suddenly applied laser pulse of short duration. Nakajo and Hayashi
(1988) studied dynamic axisymmetric response of circular plates under thermal
impact by analytical and finite-element methods. They emphasized the significance
of geometric nonlinearity in the analysis of plates with immovable edge. The studies
mentioned above deal with homogeneous isotropic plates.

Tauchert (1989) investigated thermally induced vibrations of homogeneous
orthotropic rectangular plates having two parallel simply supported edges. Chang
et al. (1992) developed a finite element for linear analysis of thermally-induced
vibrations of shear deformable laminated plates under thermal impact. Based on the
finite-element results, they discussed the effect of boundary conditions and stacking
sequence of laminates on themagnitude of vibrations.Adams andBert (1999) studied
the effect of orthotropic mechanical and thermal properties of the material on small-
amplitude vibrations of a thin symmetrically laminated rectangular plate subjected to
a step heat flux. The transient stresses and displacements in a thin orthotropic cylin-
drical shell subjected to instantaneous thermal shock were discussed by Huan and
Wo (1980). Using the Donnel shell theory, Birman (1990) presented the analysis of
dynamic response of linear and geometrically nonlinear reinforced cylindrical shells
manufactured from composite materials. For various reinforcements, he evaluated
the critical temperature at which the shells exhibit dynamic buckling behavior.

There has been a renewed interest in the analysis of thermally induced vibrations
after the advent of functionally gradient materials (FGM) representing new class of
advanced composite materials. Owing to high thermal resistance, FGMs are used
in the design of structures operating under ultrahigh temperatures and large thermal
gradients. There exists a large body of literature on stresses, vibrations, and buckling
of mechanically and thermally loaded structural elements fabricated of FGMs. In
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what follows, we confine our review to those contributions that deal with thermally
induced vibrations of rapidly heated thin-walled structures.

Ma and Lee (2011) reported on small-amplitude lateral vibrations of a shear-
deformable FG beam about thermally bent configuration caused by uniform temper-
ature distribution. Based on the numerical solution of the governing equations, they
studied the effect of thermal load on the beam frequencies taking into account
temperature-dependent material properties. A more accurate approach based on
nonlinear transient analysis of FG beams was proposed by Ghiasian et al. (2014).
Nonlinear equations of motion were solved by the multi-term p-Ritz method
combined with the Newmark integration scheme in the time domain. The issue of
dynamic buckling of beams subjected to uniform rapid heating was briefly discussed
by Ghiasian et al. (2015) based on the Budiansky-Roth criterion. Using a finite-
element formulation,Malik andKadoli (2017, 2018) studied thermally inducedvibra-
tions of FG beams taking into account geometrical nonlinearity and temperature-
dependent properties of the material. Javani et al. (2019a) presented nonlinear
dynamic analysis of suddenly heated shallow circular arches. The governing differen-
tial equations based on the first-order shear deformation theory and strain–displace-
ment relations of the von Karman type were discretized and solved by the hybrid
generalized differential quadrature method combined with the Newmark time inte-
gration scheme.A similar approachwas used to investigate large-amplitude thermally
induced vibrations of annular sector plates (Javani et al. 2021) and circular plates
(Kiani and Eslami 2014; Javani et al. 2019b). Axisymmetric dynamic response of
suddenly heated shallow cylindrical and conical shells was studied in Esmaeili et al.
(2019); Javani et al. (2019c), respectively. Javani et al. (2020) and Taleb et al. (2022)
addressed the dynamic snap-through instability of shallow spherical caps.

Prakash et al. (2007) employed a finite-element procedure to investigate nonlinear
dynamic buckling of shear-flexible FG spherical caps subjected to step heating.
Zhang et al. (2019) dealt with axisymmetric dynamic thermal buckling of annular
plates with small initial geometric imperfections. The governing equations based
on the classical plate theory were solved by expanding the deflections in power
series and integrating numerically in the time domain. Zhang et al. (2015) examined
the effect of grading material properties on axisymmetric transient displacements of
rapidly heated thin cylindrical shells by the differential quadrature method. Dynamic
thermal buckling of geometrically perfect cylindrical shells was studied by Zhang
et al. (2020) using the symplectic method. Pandey and Pradyumna (2018) proposed
a finite-element formulation for transient stress analysis of FGM plates and panels
based on the higher-order layerwise theory. Using a 20-node solid finite element,
Czechowski (2015) studied dynamic buckling of a clamped rectangular plate FGM
plate subjected to thermal heat flux loading of short duration.

The dynamic response of rapidly heated thin-walled structures made of FGMs
represents a relatively new area of investigation. As can be seen from the existing
literature, only a limited number of works have so far been reported on thermally
induced nonlinear vibrations and dynamic buckling of suddenly heated plates and
shells. The available results are confined to circular plates and shallow shells of
revolution undergoing axisymmetric deformations. The effect of initial geometric
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imperfections, which play an important role in the dynamic buckling behavior, has
been discussed only briefly.

It is of interest to examine the dynamic stability of suddenly heated FGM shells
through nonlinear transient analysis, which appears to be the most realistic approach
to the problem. Transient analysis of nonlinear shells can be efficiently carried out
using time marching schemes combined with iterative determination of deformed
configuration at each time increment. Among available numerical approaches, the
finite element method is one of the most successful and powerful tools. Typically, a
finite-element model of a shell of relatively simple geometry involves thousands and
even more solution variables to be operated on. Hence, much computer memory and
time is required to repeatedly solve large system of equations governing dynamic
response of the model. In most cases, the computational process is very time-
consuming even for the current state-of-the-art computers. It is therefore of impor-
tance to develop effective numerical techniques that would allow one to reduce
computational effort while providing reasonable accuracy in the calculations.

Our goal in this work is to develop a computationally-effective finite-element
formulation for geometrically nonlinear analysis of thermally induced motion
of functionally graded shells. To this end, we revisit the formulation reported
in Levyakov and Kuznetsov (2011, 2014) to take into account inertia forces,
thermal loads due to unsteady heat conduction, and temperature-dependent material
properties.

19.2 Material Properties

We consider a shell made of a functionally graded material consisting of metal
and ceramic constituents. The material properties are assumed to be graded in the
thickness direction according to the power law (Shen 2009)

P(z, T ) = Pm(T ) + [Pc(T ) − Pm(T )](0.5 + z/h)n

(−h/2 ≤ z ≤ h/2) (19.1)

where P denotes mechanical or thermal property of the material (Young’s modulus,
Poisson’s ratio, coefficient of linear thermal expansion, etc.), T is the current temper-
ature, h is the shell thickness, z is the distancemeasured from the shellmiddle surface,
subscriptsm and c refer to metal and ceramic phases, respectively, and n is a positive
constant referred to as the grading index.

Dependence of material properties on temperature is commonly described by the
power law

Pi = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3), (i = c,m) (19.2)

where P−1, P0, . . . , P3 are coefficients determined for each constituent material.
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19.3 Temperature Distribution

We consider non-steady one-dimensional problem of heat transfer through the
thickness of a shell with temperature dependent material properties, assuming that
heat transfer does not depend on a deformed configuration of the shell. The one-
dimensional Fourier-Biot heat conduction equation to be solved for the temperature
field T = T (z, t) is given by

(κT ′)′ − ρcpṪ = 0

0 ≤ t, −h/2 ≤ z ≤ h/2 (19.3.1)

where κ = κ(z, T ) is the thermal conductivity, ρ = ρ(z) is the density of the
material, cp = cp(z, T ) is the specific heat capacity, and prime and superposed
dot denote partial derivatives with respect to the transverse coordinate z and time t ,
respectively. Since the temperature profile varies with time, the material properties
mentioned above are functions of z and t .

The initial condition is assumed to be

T (z, 0) = Tre f (19.3.2)

where Tref is the reference temperature at which the shell is stress free. We confine
our attention to the following three types of thermal boundary conditions:

T (−h/2, t) = f (t)

T (h/2, t) = f (t) (19.3.3)

T (−h/2, t) = Tref

T (h/2, t) = f (t) (19.3.4)

T ′(−h/2, t) = 0

T (h/2, t) = f (t) (19.3.5)

in which f (t) is a prescribed boundary temperature.
The two common representations of the thermal shock are given by

f (t) = �T · H(t) (19.3.6)



330 S. V. Levyakov

f (t) = �T (1 − e−σ t ), σ > 0 (19.3.7)

where H(t) is the Heaviside unit step function and σ is the loading parameter.
Because of inhomogeneous structure of the material and temperature-dependent

properties, the solution of the heat-conduction problem (19.3.1)–(19.3.5) by analyt-
ical methods encounters serious mathematical difficulties. To solve the problem, we
employ thefinite-elementmethodwith step-by-step computations in the timedomain.
Equation (19.3.1) is multiplied by a test function and then integrated to obtain the
variational form of the problem. We divide the shell thickness into elements of equal
length �z and assume that the material properties κ , ρ, and cp are constant within
each element.

Following the standard approximation procedure (see, e.g. (Zienkiewicz and
Morgan 1983) and (Reddy 2004)), we use piecewise linear test functions and inte-
grate over z. As a result, we arrive at a system of nonlinear ordinary differential
equations, which can be converted to matrix form

K(T )T + R(T )Ṫ = 0 (19.3.8)

where T is the vector representing nodal temperatures, K and R are tridiagonal
symmetric matrices depending on the nodal temperatures.

Let the time domain be represented by a sequence of finite elements of length
�t . Within the n-th time element, the temperature field can be approximated by the
linear shape functions

T = TnN1 + Tn+1N2

N1 = 1 − (t − tn)/�t

N2 = (t − tn)/�t (19.3.9)

where tn < t < tn+1.
Using the weighted residual method to solve Eqs. (19.3.8), we require that the

equations be satisfied at collocation points t = tn + τ�t (0 < τ < 1). After
integration of the equations, we obtain

(τ�tKn+τ + Rn+τ )Tn+1 + ((1 − τ)�tKn+τ − Rn+τ )Tn = 0 (19.3.10)

where Kn+τ = K(Tn+τ ), Rn+τ = R(Tn+τ ), and Tn+τ = (1 − τ)Tn + τTn+1.
The matrices Kn+τ and Rn+τ are assembled from the elemental matrices

Kn+τ
e = 1

�z
κτ+n

(
1 −1

−1 1

)
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Rn+τ
e = 1

6�z
ρcn+τ

p

(
2 1
1 2

)
(19.3.11)

where the material properties are calculated at the point zη = (1 − η)ze + ηze+1

(0 < η < 1) within the element at instant t = tn + τ�t .
Temperature at which the material properties are evaluated is given by

T n+τ
η = (1 − τ)(1 − η)T n

e + (1 − τ)ηT n
e+1 + τ(1 − η)T n+1

e + τηT n+1
e+1 (19.3.12)

In the computations, we set τ = η = 1/2, which gives errors of O(�t2) and
O(�z2) in determining the temperature profile. To solve Eqs. (19.3.10), we use the
iterative Newton–Raphson procedure assuming the Hessian to be constant at each
time step. The computation scheme is given by

(τ�tKn+τ
(i) + Rn+τ

(i) )δTn+1
(i) + (τ�tKn+τ

(i) + Rn+τ
(i) )Tn+1

(i) +

+((1 − τ)�tKn+τ
(i) − Rn+τ

(i) )Tn = 0 (19.3.13)

Tn+1
(i+1) = Tn+1

(i) + δTn+1
(i)

where δT is the increment in the nodal temperatures and subscript i enumerates
iterations in the time domain.

19.4 Shell Finite Element Formulation

We develop a shell finite element formulation for nonlinear dynamic analysis of
FGMshells using the invariant-based approach proposed in Levyakov andKuznetsov
(2011); Levyakov and Kuznetsov 2014). We recall some basic statements of the
approach.

19.4.1 Invariant Representations

Given two tensorsumn andvmn (m, n = 1, 2) referred toCartesian systemof reference
ξ1Oξ2, the combined invariant is defined as

Iuv = 1

2
empenqumnvpq (19.4.1)
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where emp is the permutation tensor with the components e11 = e22 = 0, e12 =
−e21 = 1 and summation is performed over dummy indices unless otherwise
specified.

It is worth noting that Eq. (19.4.1) implies the well-known results. Namely, setting
vmn = 2δmn (δmn being the Kronecker delta) and vmn = umn , from Eq. (19.4.1) we,
respectively, obtain the first and second invariants of the tensor umn

Iu = u11 + u22

Iuu = u11u22 − u212 (19.4.2)

When dealing with a triangular domain, it is reasonable to introduce three natural
coordinates γi (i = 1, 2, 3) defined by three directions along the triangle’s edges
(see Fig. 19.1). Then the tensor umn can be represented by three natural components
ui (i = 1, 2, 3) determined in the three directions (no summation over i).

ui = αmniumn (19.4.3)

αmni = λmiλni , λmi = 1
li
(ξmk − ξmj ), (m, n = 1, 2; i, j, k = 1, 2, 3),

where ξmk is them-th coordinate of the k-th vertex, li is the length of the side opposite
to the i-th vertex, and the subscripts i , j , and k obey the rule of cyclic permutation.

Using matrix notation, the invariants (19.4.1) and (19.4.2) can be written in terms
of the natural components as

Iu = uTτ, Iuu = uT
(
aaT − ρ

)
u, Iuv = uT

(
aaT − ρ

)
v (19.4.4)

Fig. 19.1 Natural
coordinates of a triangular
element
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u = {
u1, u2, u3

}T
, v = {

v1, v2, v3
}T

, a = {
a1, a2, a3

}T
, τ =

2
{
a1(a − 2a1), a2(a − 2a2), a3(a − 2a3)

}T
, ρ = diag(2a21, 2a22, 2a23),

� = (l pl p)2 − 2l2pl
2
p, ap = (l p)2√

�
(no summation over p),

a = lq lq√
�

(p, q= 1, 2, 3),

where superscript T is a transpose of the matrix.

19.5 Reference Surface

To formulate kinematic relations of the finite element, we use the surface of mass as
a reference surface whose position is given by

zR =
h/2∫

−h/2

ρzdz

⎛
⎜⎝

h/2∫
−h/2

ρdz

⎞
⎟⎠

−1

(19.4.5)

where ρ = ρ(z) is the density of the material.
The concept of the surface of mass is adopted here to decouple translations and

rotations in the expression for the kinetic energy of FGM shell with non-uniform
distribution of material properties across the thickness.

Under the assumptions of the first-order shear deformation theory, the position
vectors of a material particle of the shell in the initial and deformed configurations
are, respectively, written as

rz = r + (z − zR)d, r∗z = r∗ + (z − zR)d∗ (19.4.6)

where r is the position vector of the surface of mass, d is the unit vector (director)
normal to the undeformed middle surface, and the asterisk denotes variables that
refer to a deformed state of the shell.

19.5.1 Kinematics of the Shell Element

A three-node triangular finite element proposed in Levyakov and Kuznetsov (2011);
Levyakov and Kuznetsov 2014) is modified in the present work to incorporate inertia
effects. The element geometry is determined by three nodal position vectors ri , r j ,
and rk and three nodal directors di , d j , and dk normal to the reference surface in the
undeformed state (see Fig. 19.2). We note that the three nodes and adjoined directors
constitute a kinematic group which plays an important role in the formulation of the
shell element.
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Fig. 19.2 Shell element and nodal degrees of freedom

In accordance with the first-order shear deformation theory of plates and shells,
the directors are not necessarily normal to the surface but do not change in length.
The element possesses 5 degrees of freedom (DOF) per node: three translations in
the coordinate directions and two rotations of the nodal director. A total number of
DOFs is equal to 15, which represent 9 straining modes and 6 rigid-body modes of
motion.

Possible changes in the position and configuration of the element are characterized
by the vector of generalized coordinates

δqe = [
δqT

1 , δqT
2 , δqT

3

]
T , δqT

n = [
δx∗

1n, δx∗
2n, δx∗

3n, δω1n, δω2n
]

(n = 1, 2, 3)
(19.4.7)

where x∗
mn are the components of the nodal position vector r∗

n in a deformed state
and ωmn are the components of the rotation vector of the nodal director d∗

n .

19.5.2 Strain Energy

Using the assumptions of the first-order shear deformation theory,wewrite the strains
of the heated shell as

Smn = εmn + (z − zR)κmn − α(T − Tre f )

Sm3 = γm3 (m, n = 1, 2) (19.4.8)



19 Dynamic Buckling of Functionally Graded Plates and Shells Subjected … 335

where εmn and κmn are the membrane strains and curvature changes of the refer-
ence surface z = zR , respectively, α = α(z, T ) is the coefficient of linear thermal
expansion, and γ13 and γ23 are the transverse shear strains.

The strain energy density of the shell can be expressed in terms of invariants as

�V = 1

2

E

1 − ν2

(
I 2S − 2(1 − ν)ISS + 1 − ν

2
I�

)
(19.4.9)

where IS and ISS are the first and second invariants of the strain tensor Smn , respec-
tively, I� is the first invariant of the tensor �mn = Sm3Sn3, E = E(z, T ) is Young’s
modulus, and ν = ν(z, T ) is Poisson’s ratio of the material. The invariants appearing
in Eq. (19.4.8) are determined using the template Eqs. (19.4.2) or (19.4.3).

SubstitutingEqs. (19.4.7) intoEq. (19.4.8) and integrating over the shell thickness,
we obtain the strain energy

� = 1
2

¨

A

(B1 I
2
ε − 2B2 Iεε + D1 I

2
κ − 2D2 Iκκ+

2G1 Iε Iκ − 4G2 Iεκ + C� I� − 2NT Iε − 2MT Iκ + 2α0)d A

(19.4.10)

where

(B1,G1, D1) =
h
2∫

− h
2

(
1, z − zR, (z − zR)2

) E

1 − ν2
dz (19.4.11)

(B2,G2, D2) =
h
2∫

− h
2

(
1, z − zR, (z − zR)2

) E

1 + ν
dz (19.4.12)

(NT , MT ) =
h
2∫

− h
2

(1, z − zR)
E

1 − ν
α(T − Tre f )dz (19.4.13)

C� = k

h
2∫

− h
2

Gdz

α0 =
h
2∫

− h
2

E

1 − ν
α2(T − Tref )

2dz (19.4.14)
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Here A is the area of the shellmiddle surface,G = 0.5E/(1+ν) is the shearmodulus,
k is the shear correction factor introduced to account for non-uniform distribution of
transverse shear stresses in the thickness direction.

Since the material properties are functions of the coordinate z and time t , the
integrals in Eqs. (19.4.11)–(19.4.14) can be evaluated by numerical methods only.
We employ the trapezoidal rule for this purpose.

Using Eqs. (19.4.3), we express the strain energy (19.4.9) of the triangular element
in terms of the natural components of the strain tensors

�e = 1
2

¨

Ae

{εT [B1ττT − 2B2(aaT − ρ)]ε + κT [D1ττT − 2D2(aaT − ρ)]κ+

2εT [G1ττ T − 2G2(aaT − ρ)]κ + C�τT� − 2τT (NT ε + MT κ) + 2α0}d Ae

(19.4.15)

where εT = {
ε1, ε2, ε3

}T
, κT = {

κ1, κ2, κ3
}T

,�T = {
�1, �2, �3

}T
are vectors

of the natural strains, and Ae is the element area computed by the formula Ae = 1
4

√
�,

in which � is computed using Eqs. (19.4.4).
Using approximations of the natural strains considered in Levyakov and

Kuznetsov (2011), after integration over the element area in Eq. (19.4.14), we obtain
the strain energy of the element.

�e = 1

2
uTKu − uTP + α0Ae (19.4.16)

where u is the 9 × 1 vector of the generalized elastic strains,K is the 9 × 9 stiffness
matrix, P is the 9 × 1 vector of thermal loads (for detailed derivation, the reader is
referred to Levyakov and Kuznetsov (2011)).

To formulate algorithm for determining the deformed configuration of the shell,
it is necessary to find the first and second variations of the strain energy.

δ�e = gTe δqe

δ2�e = δqT
e Heδqe (19.4.17)

where is ge andHe the gradient and the Hessian of the element, respectively, and δqe
is given by Eq. (19.4.7).
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19.5.3 Kinetic Energy

Using Eq. (19.4.6) and taking into account Eq. (19.4.5), we write the kinetic energy
of the shell element

Te = 1

2

¨

A

(I0ṙ
∗2 + I2ḋ∗2)d Ae

(I0, I2) =
h/2∫

−h/2

(1, (z − zR)2)ρdz (19.4.18)

We determine the mass matrix of the triangular finite element using the direct
mass lumping. Assuming that nodal contribution of the mass distribution over the
element is proportional to the angle at the node, we obtain the 15× 15 diagonal mass
matrix

Me = diag(μT
1 , μT

2 , μT
3 )

μT
i = Ae(αi/π){I0, I0, I0, I2, I2} (19.4.19)

where αi is the angle at the i-th vertex of the element. In what follows, we ignore
the terms I2 representing rotary inertia.

Assuming that rotary inertia I2 is of minor significance compared to translational
inertia I0, we set I2 = 0.

19.6 Finite-Element Equations of Motion and Solution
Method

The equations of motion of the shell finite-element model can be obtained using
Hamilton’s principle

δ

t2∫
t1

∑
e

(Te − �e) dt = 0 (19.5.1)

where t1 and t2 are instants of time and summation is performed over the finite
elements.

Substituting expressions for the strain energy (19.4.15) and the kinetic energy
(19.4.16) of the element intoEq. (19.5.1) and integrating byparts,we obtain nonlinear
equations of motion
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Mq̈ + Cq̇ + g = 0 (19.5.2)

in which M, C, g, and q are the mass matrix, the damping matrix, the gradient, and
the vector of the generalized coordinates of the strain energy of the finite-element
assemblage, respectively.

To integrate Eqs. (19.5.2) in the time domain, we employ Newmark’s implicit
scheme. At each moment t + �t , where �t is the time increment, solution of the
dynamic equations is found iteratively using the Newton–Raphson procedure:

(
Ht+�t

(p) + a1M + a4C
)
δqt+�t

(p+1) = −gt+�t
(p) − (a1M + a4C)

(
qt+�t

(p) − qt
)
+

(19.5.3)

+(a2M − a5C)q̇t + (a3M − a6C)q̈t ,

a1 = 1
α�t2 , a2 = 1

α�t , a3 = 1−2α
2α , a4 = β

α�t , a5 = 1 − α
β
, a6 =

(
1 − β

2α

)
�t ,

where H is the Hessian of the finite-element model of the shell, δq is the increment
in the vector of generalized coordinates, the subscript p enumerates iterations, and
α and β are the parameters taken to be equal to 1/4 and 1/2, respectively (Bathe and
Wilson 1976). The procedure for computing the gradient and Hessian of the shell
element can be found in Levyakov and Kuznetsov (2011).

After the increment δqt+�t
(p) has been found from Eqs. (5.3), we update the nodal

vectors using the formulas

r∗(p+1)
s = r∗(p)

s + δr∗(p)
s (19.5.4)

d∗(p+1)
s = c(p)

1 d∗(p)
s + c(p)

2

(
t∗(p)
1s δω

(p)
1s + t∗(p)

2s δω
(p)
2s

)

t∗(p+1)
ms = t∗(p)

ms − δω(p)
ms

[
c(p)
2 d∗(p)

s + c(p)
3

(
t∗(p)
1s δω

(p)
1s + t∗(p)

2s δω
(p)
2s

)]

δω(p)
s =

(
δω

(p)2
1s + δω

(p)2
2s

)1/ 2

c(p)
1 = cos δω(p)

s , c(p)
2 = sin δω

(p)
s

δω
(p)
s

, c(p)
3 = 1 − cos δω

(p)
s

δω
(p)2
s

where t∗1s and t∗2s are two auxiliary unit vectors normal to the director d∗
s .

After the solution of Eqs. (19.5.2) has been found with a required accuracy, the
nodal velocities and accelerations at each time step are computed using formulas
(Bathe and Wilson 1976)

q̈t+�t = a1qt+�t − a1qt − a2q̇t − a3q̈ (19.5.5)
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q̇t+�t = a4qt+�t − a4qt + a5q̇t + a6q̈t

19.7 Evaluation of Dynamic Buckling

After thermal shock of magnitude �T is applied to a surface of a shell, the stress
resultants NT and MT (see Eqs. (19.4.12)) increase monotonically with time due to
heat transfer through the wall thickness. The rate at which the thermal loads increase
depends on the (1) magnitude of thermal shock, (2) material properties, (3) wall
thickness, and (4) thermal boundary conditions. If the shell is restrained against
thermal expansion, thermally induced compressive stresses can result in buckling.
As the stresses reach the critical level, the shell jumps to oscillations about new
equilibrium configuration. Volmir (1967) proposed the following simple criterion
for dynamic buckling of plates and shells: given the time history of deflection at
a certain characteristic point of the shell, the critical time is defined as a moment
of the highest buckling rate, which corresponds to the inflection point on the time-
deflection curve. In the general case, however, this approach is difficult to implement,
since the location of the characteristic point is not known in advance. For this reason,
to investigate dynamic buckling, we use the time history of the kinetic energy rather
than deflection at a single point.

It is well known that initial geometric imperfections unavoidable in real structures
play an important role in the stability of thin plates and shells. In the nonlinear analysis
of imperfection-sensitive thin-walled structure, the dynamic buckling instability is
interpreted as rapid development of the initial deflections under the time-dependent
loads. Since the amplitude and pattern of deviation from ideal geometric shape are
random, it is common practice to assume that the initial imperfection is similar in
shape to eigenmodes obtained from the static buckling analysis.

19.8 Numerical Results and Discussion

The sample problems considered belowdealwith FGMplates and shells composed of
silicon nitride Si3N4 (ceramic phase) and SUS304 stainless steel (metal phase) unless
otherwise specified. Mechanical and physical properties of the phases are listed in
Tables 19.1 and 19.2 (see, e.g. (Shen 2009)). Temperature-dependent properties are
taken into account unless otherwise specified.

In all the problems, transient analysis of the structures is performed under zero
initial conditions. To determine temperature distribution across the wall thickness,
we use a uniform mesh of 200 elements of equal size.
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Table 19.1 Temperature-dependent properties of Si3N4

Property Dimension P0 P−1 P1 P2 P3

Ec Pa 348.43 × 109 0 −3.07 × 10–4 2.16 × 10–7 −8.946 ×
10–11

νc – 0.24 0 0 0 0

αc K−1 5.8723 × 10–6 0 9.095 × 10–4 0 0

κc W(mK)−1 13.723 0 −1.032 × 10–3 5.466 × 10–7 −7.876 ×
10–11

cpc J/(kgK) 555.11 0 1.016 × 10–3 2.92 × 10–7 −1.67 ×
10–10

ρc kg/m3 2370 0 0 0 0

Table 19.2 Temperature-dependent properties of SUS304

Property Dimension P0 P−1 P1 P2 P3

Em Pa 201.04 × 109 0 3.079 × 10–4 −6.534 × 10–7 0

νm – 0.3262 0 −2.002 × 10–4 3.797 × 10–7 0

αm K−1 12.33 × 10–6 0 8.086 × 10–4 0 0

κm W(mK)−1 15.379 0 −1.264 × 10–3 2.092 × 10–6 −7.223 ×
10–10

cpm J/(kgK) 496.56 0 −1.151 × 10–3 1.636 × 10–6 −5.863 ×
10–10

ρm kg/m3 8166 0 0 0 0

19.8.1 Comparison Studies

In this section, the present finite-element formulation formulation is validated by
considering free vibration and transient problems for which analytical or numerical
solutions are available in the literature.

19.8.1.1 Free Vibration of FGM Shells

The first example is free small-amplitude vibrations of a circular cylindrical panel
of square plan form. The outer surface of the panel is ceramic rich and the inner
surface is metal rich. The properties of the material are determined at the reference
temperature Tre f = 300 K . The grading index in Eq. (19.2.1) is set equal to n = 2.
The geometric parameters are: wall thickness h = 0.01 m, side length a = 10h,
radius of the middle surface R = 10a, and subtended angle θ = 0.05.

The aim is to verify the mass matrix of the proposed shell element. We determine
free-vibration frequencies ω of the shells with fully clamped and simply supported
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Table 19.3 Frequency parameter λ of the FGM cylindrical panel for n = 2

Boundary
conditions

Mode
number

Present solution Zhao et al.
(2009)

ANSYS

8 × 8 16 × 16 32 × 32 15 × 15 24 × 24

1 40.078 40.556 40.670 40.670 41.166

CCCC 2 75.731 77.359 77.705 76.823 79.046

3 75.820 77.443 77.788 76.885 79.136

1 23.692 23.711 23.609 − 23.884

SSSS 2 55.562 56.117 56.086 − 56.758

3 55.718 56.268 56.238 − 56.970

immovable boundary contour. Table 19.3 lists the nondimensional frequency param-
eter λ = (ωa2/h)

√
12(1 − ν2

m)ρm/Em computed for the first three vibration modes
using uniform union-jack meshes. The computation results agree well with the
numerical solution obtained by the element-free kp-Ritz method (Zhao et al. 2009)
and with the finite-element solution obtained by the ANSYS software where the
grading properties of the material were modeled using the Shell181 multilayered
element.

19.8.1.2 Dynamic Response of an Isotropic Beam to Thermal Shock

The second example deals with thermally-induced vibrations of a simply supported
isotropic beam made of the Si3N4 material, which corresponds to n = 0 in
Eq. (19.2.1). The length, thickness, and width of the beam are l = 1 m, h = 0.01 m,
and b = 0.1 m, respectively. The upper surface of the beam is exposed to step
temperature rise �T = 100 K, whereas the lower surface is kept at a reference
temperature of 300 K (see Eqs. (19.3.4) and (19.3.6)).

For small-amplitude vibrations, the dynamic response of the beam with
temperature-independent properties can be predicted using the analytical solution.

w =
∞∑

m=1,3,5...

αm(t) sin
mπx

l
− MT

2D
(x2 − lx) (19.7.1)

αm(t) = 8l2bEαh2�T

Dπ5m3

∞∑
k=2,4,6...

1

k2
e−γk t − (ωm/γk) sinωmt − cosωmt

1 + (ωm/γk)2

MT = bEαh2�T

(
1

12
− 2

π2

∞∑
k=2,4,6...

1

k2
e−γk t

)

γk = κ

cpρ

(
kπ

h

)2

, ωm = (mπ/ l)2
√
D/I , D = Ebh3

12
, I = ρbh
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Fig. 19.3 Time history of the midspan deflection for the simply supported isotropic beam

where w is the lateral deflection and x is the axial coordinate.
The finite-element solution predicting dynamic response of the beamwas obtained

using the following data: a 4 × 40 uniform union-jack mesh with 320 elements, and
the time increment in the Newmark integration scheme �t = 10−4 s.

The midspan deflection wc versus time is shown in Fig. 19.2. The finite-element
results agree favorably with the linear analytical solution (19.7.1) in the case where
the end supports are allowed to move in the axial direction. For axially immovable
supports, the linear solution fails to predict the beam response adequately because
of geometrically nonlinear effects. It is seen from Fig. 19.2 that the frequency of
vibrations increases due to the additional constraints at the beam ends.

19.8.1.3 Dynamic Response of a Circular Plate to Thermal Shock

The third example is the thermally induced vibrations of a simply supported FGM
circular plate with immovable edge. The upper surface of the plate is exposed to
step temperature rise �T = 10 K , whereas the lower surface is kept at a reference
temperature of 300 K (see Eqs. (19.3.4) and (19.3.6)). The radius and thickness of
the plate are a = 0.080 m and h = 0.001 m, respectively.

To determine the dynamic axisymmetric deflections of the plate, we consider a
quarter of the plate using the following data: number of elements N = 16 and the
time increment in the Newmark integration scheme �t = 0.5 × 10−4 s.

The predicted central deflection wc versus time is shown in Fig. 19.3 for the
grading index n = 5. The finite-element results are very close to the solution of Kiani
and Eslami (2014) obtained by the Ritz method with simple polynomial functions.

19.8.1.4 Snap-Through of a Shallow Spherical Cap

The next example deals with the snap-through instability of a suddenly heated
isotropic spherical cap with immovable simply supported edge. This problem has
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Fig. 19.4 Time history of the central deflection of the simply supported circular FGM plate

recently been considered by Javani et al. (Javani et al. 2020). Given the wall thickness
h, the geometry of the cap is determined by two nondimensional parameters

λ = √
12

Rθ2

h
, μ = 2

√
12

Rθ

h

where R is the radius of curvature and θ is the half opening angle.
The cap is made of the SUS304 steel with temperature-independent properties.

The inner surface of the cap is suddenly heated, whereas the outer surface is kept
at the reference temperature (see Eqs. (19.3.4) and (19.3.6)). Under these loading
conditions, the cap can jump to inverted position. Assuming that axisymmetric defor-
mation occurs, we consider a quarter of the cap and impose symmetry conditions
along two radial directions. In Fig. 19.5, we plot time histories of the normalized
central deflection w/ f for h = 1 mm, λ = 1.7 and μ = 150, where f = Rθ2/2
is the rise of the cap. Using the model consisting of 400 elements, we found that
snap-through instability occurs if 68.6K < �T < 68.65K . The same range was
obtained using a finer mesh consisting of 1 600 elements. The present results agree
well with the calculation results of Javani et al. (Javani et al. 2020) who found that
the critical temperature rise lies in the range 68.25 K < �T < 68.5 K.

19.8.1.5 Large Thermal Displacements of an FGM Plate

Now we verify nonlinear capabilities of the proposed finite-element model in the
dynamic analysis of large displacements and rotations. To this end, we consider
thermal finite bending of a cantilevered thin narrow plate of length L = 1 m, width
b = L/80, and thickness h = L/200. The grading index of the FGM is n = 1.
The plate is heated according to Eqs. (3.4) and (3.7), where �T = 1 880 K. Due
to the increasing thermal bending moment MT , the plate is rolled up into a circular
cylindrical shape. The computation results are shown in Fig. 19.6 for two heating
rates determined by parameters σ = 1 s−1 (slow heating) and σ = 10 s−1 (rapid
heating) that enter Eq. (3.7). It is seen that, for slow heating, the plate is bent nearly
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Fig. 19.5 Time history of the central deflection of the simply supported spherical cap

statically performing small-amplitude oscillations about the deformed configuration.
With time, the plate tends to assume closed circular shape (see Fig. 19.7), where the
tip displacements approach their limiting values, i.e. u/L → 1 and w/L → 0. As
a reference solution, we take the analytical solution based on the beam model and
steady-state temperature distribution over the plate (Levyakov and Kuznetsov 2014).
Using this solution, one finds that the temperature rise required to roll the plate into
a closed circle is �T = 1 814 K, which is 3.5% lower than the above-mentioned
magnitude. A slightly stiffer response of the present finite-element model compared
to the beam model can be attributed to the fact that under non-uniform heating the
plate is deformed into a doubly curved surface rather than into a cylindrical surface.
The effect of Poisson’s ratio on the dynamic thermal deflections was found to be of
little significance. It is seen from Fig. 19.6 that under rapid heating, the pure thermal
bending is accompanied by finite-amplitude oscillations. The solution obtained for
20× 2 mesh agrees with that obtained for finer 80× 2 mesh, the difference becomes
noticeable after approximately 1 s. Deformed configurations of the rapidly heated
plate are shown in Fig. 19.7. The effect of the time increment on accuracy of the
solution is demonstrated by Table 19.4.

Fig. 19.6 Time histories of the tip displacements of the cantilevered FGM plate
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Fig. 19.7 Equilibrium
configurations of the
cantilevered plate under
rapid heating (80 × 2 mesh)

Table 19.4 Convergence study of the thermal bending of a rapidly heated cantilevered plate

t, s �t , s u/L w/L T , J �, N·m
0.5 1.0 × 10–3 1.183040 0.3738415 0.2408254 0.3547774 × 103

0.5 × 10–3 1.182904 0.3740037 0.2376331 0.3547818 × 103

0.25 × 10–3 1.182890 0.3740629 0.2367167 0.3547828 × 103

1 1.0 × 10–3 1.107099 0.8054594 × 10–1 0.3501693 0.1925129 × 103

0.5 × 10–3 1.106922 0.8062025 × 10–1 0.3339732 0.1925309 × 103

0.25 × 10–3 1.106802 0.8066291 × 10–1 0.3301827 0.1925350D × 103

2 1.0 × 10–3 0.9783874 0.6896778 × 10–2 0.8386965 0.6026749 × 102

0.5 × 10–3 0.9876465 0.6889352 × 10–2 0.6100725 0.5948815 × 102

0.25 × 10–3 0.9874587 0.6621523 × 10–2 0.5892913 0.5950926 × 102

3 1.0 × 10–3 diverges at t = 2.1 s

0.5 × 10–3 0.9944956 0.9535049 × 10–2 1.626111 0.3034419 × 102

0.25 × 10–3 0.9932212 0.9230670 × 10–2 1.590626 0.3038009 × 102

4 1.0 × 10–3 diverges at t = 2.1 s

0.5 × 10–3 1.060673 0.9872496 × 10–2 0.7590779 0.2422324 × 102

0.25 × 10–3 1.058927 0.1021280 × 10–1 0.8333617 0.2414937 × 102

19.8.2 Dynamic Thermal Buckling of a Clamped
Rectangular Plate

We consider a fully clamped rectangular FGM plate of length a = 0.3 m, width
b = 0.15 m, and thickness h = 0.001 m. It is assumed that initial geometrical
imperfection is of the form.
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w0 =
∑
m,k

Amkϕm(x/a)ϕk(y/b) (19.7.2)

where ϕm(x) is them-th eigenfunction governing the vibrationmode of the clamped–
clamped beam and Amk represents amplitude of the imperfection mode. The
eigenfunctions are normalized to unity.

We study nonlinear dynamic instability of the plate under thermal shock using the
following discretization parameters: a uniform 32 × 16 union-jack mesh with 1 024
elements and the time increment�t = 0.5×10−4 s. In thermal boundary conditions
(19.3.3), (19.3.4), and (19.3.5), the loading function f (t) is given by Eq. (19.3.6).

At the initial stage of heat transfer, the plate remains undisturbed. If themagnitude
of thermal shock �T is high enough, the compressive stresses rapidly develop and
reach the critical level. At this moment, the plate jumps to oscillations about new
configuration. Figure 19.8 shows timehistories of the deflection at point A(a/2; b/4)
for three types of thermal boundary conditions and for different magnitudes of
thermal shock �T . The curves were obtained for n = 1 and nonzero coefficients
A11 = A12 = 10−2h in Eq. (19.7.2).

Decreasing the magnitude of thermal shock �T leads to slower thermal loading.
As a result, the critical time necessary for the plate to buckle increases and the
amplitude of postbuckling vibrations becomes less and less pronounced. This result
suggests that in the limit as t → ∞, where steady-state temperature distribution
is reached, the plate exhibits static buckling. It follows that the critical temperature
rise �Tcr can be determined from the static buckling problem under steady-state
temperature distribution.

In Fig. 19.8, the dark circles mark the critical moments where the kinetic energy
of the plate reaches the first pronounced maximum. Given a magnitude of thermal
shock �T > �Tcr , the shortest critical time occurs if the top and bottom surfaces
are heated simultaneously (see Eqs. (19.3.3)). Comparing Figs. 8b and c, we infer
that the curves obtained under thermal boundary conditions (3.4) and (3.5) differ
only slightly.

In Fig. 19.9, we show normalized deflections of the plate subjected to thermal
boundary conditions (19.3.4) for �T = 100 K. The effect of the antisymmetric
mode of imperfection A12 shows up only at the onset of buckling. After the critical
moment t > 0.005 s, its effect vanishes and the plate oscillates about a doubly
symmetric bent configuration.

It is of interest to estimate the effect of the rate of thermal loading on the dynamic
buckling instability. Confining our attention thermal boundary conditions (19.3.4),
we compute the dynamic load factor (DLF) using formula

DLF = Ndyn
T,cr

N stat
T,cr

(19.7.3)

where Ndyn
T,cr is the stress resultant at the critical moment and Nstat

T,cr is the critical stress
resultant obtained from the solution of the corresponding static buckling problem
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(a)

(b)

(c)

Fig. 19.8 Time histories of the deflection of the clamped rectangular FGM plate: a response under
thermal boundary conditions (19.3.3); b response under thermal boundary conditions (19.3.4);
c response under thermal boundary conditions (19.3.5).

under steady-state temperature distribution. The computation results are summarized
in Table 19.5. It is seen that the dynamic buckling resistance of the plate increases
as the grading index n and the magnitude of thermal shock �T increase. This effect
can be attributed to inertia forces.



348 S. V. Levyakov

Fig. 19.9 Contour plots of the normalized deflections w/h of the rectangular plate

Table 19.5 Effect of thermal loading on the dynamic buckling of the clamped rectangular plate

n Steady-state solution �T/�T stat
cr

�T stat
cr , K Nstat

T,cr , kN 1.5 2 5 10

DLF

0.2 26.84 45.20 1.021 1.067 1.41 2.114

0.5 23.97 42.43 1.024 1.080 1.415 2.140

1 21.52 40.23 1.020 1.082 1.414 2.140

5 17.35 37.10 1.031 1.101 1.434 2.136

10 16.15 35.85 1.042 1.108 1.469 2.203

19.8.3 Dynamic Buckling of a Shallow Cylindrical Panel

We consider a shallow cylindrical panel whose boundary contour is simply supported
and immovable. Dimensions of the panel are: radius of curvature R = 1 m, wall
thickness h, half opening angle θ = 0.1, and length l = 0.2 m (see Fig. 19.10).

Fig. 19.10 Geometry of a shallow cylindrical panel
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The initial imperfection is assumed to be of the form

w0 =
∑
m,k

Amk sin
mπx

a
sin

kπy

l
(19.7.4)

where m and k are the half-wave numbers in the coordinate directions. We consider
two panels whose thicknesses are 0.5 mm and 1 mm. For h = 0.5 mm, the only
nonzero coefficients in Eq. (7.3) are A2,2 = −A3,2 = h/100. For h = 1 mm, we set
A2,1 = −A2,3 = −h/100, the remaining coefficients being zero. The imperfection
shapes are roughly similar to the bucklingmode shapes obtained by solving the corre-
sponding static buckling problem under the steady-state temperature distribution
across the thickness.

Using a uniform 32 × 32 mesh and setting �t = 3× 10−5 s, we study dynamics
of the cylindrical panel under thermal boundary condition (3.4), in which the loading
function f (t) is given by Eq. (3.7) and σ = 102 s−1.

Figure 19.11 shows time histories of the normalized central deflection wC/h
and kinetic energy of thin cylindrical panel with h = 0.5 mm and n = 1. Contour
plots of the normalized deflections are shown in Fig. 19.12. The first maximum of the
kinetic energy occurs at t = 0.01695 s, where deformation of the panel changes from
symmetric to asymmetric mode. The second, more pronounced maximum occurs at
t = 0.0269 s, which is the evidence of the buckling mode switching. We note that,
in contrast to plates, dynamic buckling of the panels occurs deeply in the region of
large deflections. The results presented in Fig. 19.12 agree with the results obtained
by static nonlinear analysis of the panel under static thermal loading (Levyakov and
Kuznetsov 2014).

To estimate the effect of dynamic thermal loading on the buckling instability
of the panel, we compute the dynamic load factor defined by Eq. (19.7.3). The
calculation results obtained under thermal boundary conditions (3.4) are summarized
in Table 19.6. It is seen from the results that the buckling resistance of the panel

Fig. 19.11 Time histories of deflection and kinetic energy of thin cylindrical panel of thickness
h = 0.5 mm under �T = 250 K
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Fig. 19.12 Contour plots of the normalized deflections w/h of thin cylindrical panel

Table 19.6 Effect of dynamic thermal loading on buckling resistance of the simply supported
cylindrical panel

h, mm n Steady-state solution �T/�T stat
cr

�T stat
cr , K Nstat

T,cr , kN 1.2 1.5 2.0

DLF

0.5 0.2 138.74 121.9 1.07 1.16 1.28

0.5 123.35 112.4 1.07 1.09 1.34

1 110.99 105.8 1.07 1.17 1.34

5 98.169 105.5 1.08 1.19 1.39

10 97.60 108.6 1.09 1.21 1.42

1.0 0.2 411.65 797.3 1.09 1.24 1.51

0.5 375.29 735.3 1.09 1.23 1.54

1 344.68 690.8 1.08 1.22 1.57

5 321.45 702.1 1.11 1.25 1.66

10 329.54 740.3 1.13 1.40 1.69

slightly increases with the magnitude of thermal shock �T and index n. This effect
can be attributed to lateral inertia.

19.8.4 Buckling of Simply Supported Cylindrical Shells

Finally, we consider a closed cylindrical shell of radius R = 0.4 m, length L =√
3/5m, andwall thickness h = 0.001m.Theouter surface of the shell is ceramic rich

and the inner surface is metal rich. The edges are simply supported and immovable.
The shell is meshed into 5 120 elements obtained by dividing the cylindrical surface
into 160 segments in the circumferential direction and into 16 segments in the axial
direction.

We assume that initial imperfection is of the form
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w0 = A0(w01 + w02 + w03) (19.6.6)

where A0/h = 10−2 andw01,w02, andw03 are thefirst three bucklingmodes obtained
from the nonlinear static analysis of the shell subjected to uniform temperature rise.
Fourier series approximations of the buckling modes are given by

w01 = sin 17φ
9∑

k=1,3,...

ak sin
kπ z

L

w02 = sin 18φ
9∑

k=1,3,...

bk sin
kπ z

L
(19.6.7)

w03 = sin 16φ
10∑

k=2,4,...
ck sin kπ z

L ,

where a1 = 0.270, a3 = 1.0, a5 = 0.061, a7 = −0.315, a9 = −0.136, b1 = 0.188,
b3 = 1.0, b5 = 0.071, b7 = −0.372, b9 = −0.171, c2 = 1.0, c4 = 0.398,
c6 = −0.165, c8 = −0.270, c10 = −0.047.

The nonlinear transient simulation was performed under thermal shock governed
byEqs. (19.3.4) and (19.3.7), inwhichσ = 103s−1. Figure 19.13 shows timehistories
of the axial reaction force F and kinetic energy T for the shell with grading index
n = 1. It is seen that, due to unsteady heat conduction, the reaction force increases
from zero and, after reaching a maximum, drops by approximately 45%. As the
critical time, we take the moment at which the reaction force reaches a maximum.

Figure 19.14 shows deformed configurations of the shell computed for the
moments marked by circles in Fig. 19.13. In the prebuckling state, the shell
swells axisymmetrically near the immovable edges. In the postbuckling regime, the
deflection pattern rapidly changes exhibiting no symmetry.

Fig. 19.13 Axial reaction force versus time for the simply supported cylindrical FGM shell with
grading index n = 1
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Fig. 19.14 Deformed configurations of the cylindrical FGM shell for states marked in Fig. 19.13
(deflection is magnified by a factor of 10)

Table 19.7 Effect of dynamic thermal loading on buckling resistance of the simply supported
cylindrical shell

n Steady-state solution �T/�T stat
cr

�T stat
cr , K Nstat

T,cr , kN F, kN 1.2 1.5 2.0 3.0

DLF

0.2 271.3 500.7 770.5 0.919 0.931 0.970 1.021

1 236.2 462.6 686.1 0.917 0.941 0.978 1.046

5 200.5 434.1 615.7 0.924 0.947 0.996 1.068

Table 19.7 lists the dynamic load factor computed for various values of the grading
index n. In contrast to the plates and shallow shells considered above, the dynamic
load factor is less than unity. This can be attributed to high sensitivity of closed
cylindrical shell to (1) initial imperfections introduced in the dynamic analysis and
(2) time history of the stresses that develop under unsteady heat transfer through the
shell thickness.

The critical time and buckling resistance increase with the grading index of the
material since higher content of the ceramic phase results in higher stiffness of the
FGM shell and lower rate of heat transfer through the shell thickness.

19.9 Concluding Remarks

A finite-element formulation has been proposed for nonlinear dynamic analysis of
functionally graded plates and shells subjected to thermal shock.A triangular element
with 15 degrees of freedom has been developed using the invariant-based approach
and the concept of the surface of mass. Among the computational advantages of the
shell finite element are (1) small number of degrees of freedom, (2) exact repre-
sentation of six rigid body modes, and (3) compact and closed-form formulas for
computing the gradient and Hessian, which are used to formulate the equations of
motion. Performance of the element has been tested in several problems and good
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agreement has been reported between the calculation results and solutions available
in the open literature.

A nonlinear analysis of transient response of suddenly heated plates and shells
fabricated of functionally graded materials has been performed. Based on the
numerical results, the following conclusions can be drawn:

(1) sudden heating of thin plates and shells leads to nonlinear vibrations and, under
certain conditions, to dynamic buckling instability;

(2) plates and shells with restrained edges exhibit dynamic buckling provided the
magnitude of thermal shock is higher than the critical temperature rise obtained
from the corresponding static buckling analysis under steady-state temperature
distribution;

(3) the critical buckling time at which dynamic buckling occurs decreases with an
increase in the magnitude of thermal shock;

(4) the dynamic load factor increases with the magnitude of thermal shock;
(5) higher content of ceramic phase of the material tends to increase buckling

resistance of FGM plates and shells.
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Chapter 20
Deposition and Characterization
of Magnetron Sputtered AlN Coatings
with Variable Stoichiometry
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Pavel E. Antipov, Vasilina A. Lapitskaya, Andrey S. Vasiliev,
and Sergey S. Volkov

Abstract In the present paper, a series of AlN coatings deposited using magnetron
sputtering method were characterized in terms of their stoichiometry, microgeome-
try, and microstructure. The coatings were obtained at 1, 2, 3, 4 sccm N2 flow. Their
thickness and microstructure were studied using scanning electron microscopy and
the stoichiometrywas observed using energy dispersiveX-ray analysis. Themicroge-
ometry of the coatings was obtained using atomic-force microscope. Stable modes of
obtaining AlN coatings with nitrogen content from 6.31 to 25.48 atomic percent with
an average deposition rate of about 3.3 angstroms per second were demonstrated.
The results demonstrated an almost linear relationship between the composition of
the coatings and the composition of the gas mixture during the deposition process.
This observation can be used to predict the required composition of the gas mixture
under the given process parameters to obtain AlN coatings of the required thickness
and with the required elemental composition.
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20.1 Introduction

Aluminum nitride (AlN) is a ceramic material, which finds various applications in
modern medicine, science, and industry. One of the innovative ways to utilize AlN
is the development of biosensors. Such devices are used in the applications where
precise and selective detection of target molecules is required (Wingqvist 2010).
The detection is performed via customized biomolecules, for example, antibodies,
usually in viscous media (Wingqvist et al. 2007). Such sensors are also significant
instruments for analytical researches of biomolecular interactions with solid sur-
faces. For example, such biosensors may be integrated on the extraluminal surface
of implants for the continuous monitoring of the vascular graft (Natta et al. 2019;
Mishra et al. 2022) providing vital information about the blood flow hemodynamics
in the artificial vessel of the patient.

Due to the modern possibilities of magnetron sputtering techniques AlN biosen-
sors may be of miniature size (Sadyrin et al. 2023, 2020), thus allowing high degree
of manipulation during the implant construction. Moreover, AlN offers attractive
physical properties such as high piezoelectric effect, high surface acoustic wave
velocity, excellent dielectric permittivity, high thermal stability, wide band gap (6.2
eV), and chemical inertness (Mwema et al. 2020; Fei et al. 2018; Chen et al. 2019;
Besleaga et al. 2017).

Recently, the AlN thin films were used (Murillo et al. 2019) for the development
of the breast cancer biosensor demonstrating encouraging efficacy. The usage of
AlN coatings in the fabrication of gravimetric biosensors, responding to species, like
proteins, DNA chains, toxins, virus, or bacteria, of different molecular weights was
proposed in García-Gancedo et al. (2011), DeMiguel-Ramos et al. (2017), Nikolaev
et al. (2014). Construction of flexible piezoelectric pressure sensors using AlN thin
films deposited on polymeric substrates has been reported in Akiyama et al. (2006).
The use of such films for measuring human muscle movements (Bu et al. 2009) and
monitoring the respiration and heartbeat during sleep (Bu et al. 2007) was suggested.
AlN coatings as the elements of the biosensors have been recently employed to per-
forming intravascular ultrasound imaging (Lu et al. 2014) and ultrasonic fingerprint
sensing (Lu et al. 2015).

One of the possible ways to improve the mechanical properties of the AlN coating
is to manage its stoichiometric composition during the sputtering process by varying
the volume of nitrogen in the vacuum chamber (Gilewicz et al. 2022; Aizikovich
et al. 2022; Sadyrin et al. 2018). In the present paper, utilizing such an approach a
range of AlN coatings was deposited followed by their characterization. Thus, their
thickness and microstructure have been studied using scanning electron microscopy
(SEM) and the stoichiometry—using energy dispersiveX-ray (EDX) analysis (Zhilin
et al. 2014; Pushkariov et al. 2014; Popenko et al. 2011). The microgeometry of the
coatings was obtained using atomic-force microscope (AFM).
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20.2 Materials and Methods

Three AlN coatings were deposited on the substrates made of Si (100) wafers 10 ×
15 mm2. Prior to the preparation of the substrates the notch perpendicular to its face
was applied using a diamond cutter. The sample preparation included successively
keeping the substrates in the following liquids:

• analytical grade acetone brought to boil;
• hydrogen peroxide mixed with nitric acid 1:1 by volume brought to boil;
• 2% hydrofluoric acid at room temperature.

The deposition was carried out using Robvac VSM100 (Aktan Vacuum, Fryazino,
Russia) magnetron sputtering unit.

PureAl target (99.99%pure)wasmechanically clamped to themagnetron cathode
of the sputtering system. Substrates were mounted on the sample holder and a base
pressure of 10−6 mbar was obtained. The target surface was sputter etched by Ar at
150W for 15min to avoid contamination before deposition. During deposition, N2

and Ar were supplied to the vacuum chamber using mass flow controllers. Ar was
suppliedwith aflowequal to 75 sccm. In thisway, filmswere obtained at four different
N2 flow (1, 2, 3, 4 sccm). Let us denote them as the samples 1, 2, 3, 4. The remaining
deposition parameters were kept quasi-constant. The working pressure varied from
7.7*10−3 mbar to 8.1*10−3 mbar. The deposition temperature was 100 ◦C. The target
was sputtered in the power stabilization mode at 150W. Target to substrate distance
was 8cm. The voltage applied to the magnetron varied from 450 to 700 volts during
the sputtering process. Deposition times were 40min, 40min, 32min and 44min for
the samples 1, 2, 3, and 4 respectively.

Following deposition, the samples were chipped along the previously applied
notch and their thickness was obtained in the SEM Crossbeam 340 (Carl Zeiss
Microscopy, Oberkochen, Germany). During examination the samples were clamped
in the special holder so that the chip surface was positioned normally under the elec-
tron beam. The research was conducted using the Everhart-Thornley secondary elec-
tron detector with electron high tension (EHT) voltage 3 kV. After that the samples
were glued to the position table with the conductive tape and the microstructure of
their surface was studied, EHT was 3 kV as well.

Chemical analysis conducted by EDS Oxford X-Max 80 (Oxford Instruments,
Abingdon, UK) with 200x magnification and 20 kV voltage, from the surface of the
sample over the total area with a wide coverage (approximately 150–200 µm by
400–500 µm), as well as from individual contrasting crystals pointwise.

The microgeometry of the coatings was obtained using AFM Nanoeducator (NT-
MDT, Zelenograd, Russia) equipped with the tungsten probe. The resolution was
270× 270 px on the scanning fields 21× 21 µm. The probe was checked using the
calibration grid prior to each test.
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20.3 Results and Discussion

Figure20.1 demonstrates the results of thickness measurements on each of the sam-
ples. The images of the sample surface obtained using SEM are shown in Fig. 20.2
for the samples 1–4.

The obtained values for the coating thickness were 833.2, 788.7, 725.3, and
732.3nm for the samples 1, 2, 3, and 4, respectively.

The microgeometrical research revealed that for the sample 1 the surface was
formed by the aluminum particles in the form of three-dimensional polyhedra
(Fig. 20.2a). At the same time, the surface of the sample 2 (Fig. 20.2b) was comprised
of the sparse positioned particles of aluminum (Fig. 20.2b) between depressed AlN
particles, whereas the surface of the samples 3 (Fig. 20.2c) and Fig. 20.4 (Fig. 20.2d)
is comprised mostly of AlN particles. The particles are elongated resembling micro-
pillars.Moreover, according to the examination of the faces of the notches (Fig. 20.1c
and 20.1d) one can conclude, that these micro-pillars are higher for the case of the
sample 4 (Fig. 20.2c).

The AFM-derived surface topography of the samples 1–4 is presented on the
Fig. 20.3. The microgeometrical characteristics (average roughness Ra and aver-
age maximum roughness height Rz) were obtained for each sample by 20 profiles
(Sadyrin et al. 2022): 5 in horizontal direction, 5 in vertical direction, 10 in diagonal
direction. Additionally, each profile was averaged by the 10 nearest profiles. Thus,
200 profiles were analyzed for the study (Table20.1). Maximum roughness height
Rt was measured for the whole image.

Note, that the smallest values of Ra , Rz , and Rt were observed for the sample
1 (obtained at 1 sccm of N2). The analysis of the results revealed the monotonic
increase of the average maximum roughness height from sample 1 to sample 4. A
sudden increase in the microgeometrical parameters from sample 1 to sample 2 is
explained by the character of the surface relief—the sparse depressions between the
high peaks of the freestanding aluminum particles, clearly visible on both the SEM
(Fig. 20.2b) and AFM (Fig. 20.3b) images. The decrease of the Ra from the sample 3
to sample 4 (Fig. 20.4) can be explained by the close arrangement of relief elements
in the form of micro-pillars to each other, which does not allow the tip of the probe
to pass to their base.

Table 20.1 The microgeometrical characteristics of the samples 1–4

Sample Ra , nm Standart
deviation, nm

Rz , nm Standart
deviation, nm

Rt , nm

1 65.7 18.7 257.8 61.9 920.0

2 105.1 41.2 395.1 181.4 980.0

3 104.0 17.3 406.6 86.3 1100.0

4 93.9 14.2 424.8 77.6 1000.0
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Fig. 20.1 Thickness measurements along the notch of the samples: a 1 (1 sccm of N2); b 2 (2 sccm
of N2); c 3 (3 sccm of N2); d 4 (4 sccm of N2)
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Fig. 20.2 SEM derived surface of the samples: a 1 (1 sccm of N2); b 2 (2 sccm of N2); c 3 (3 sccm
of N2); d 4 (4 sccm of N2)

Table 20.2 The element composition for the sample 1–4

Sample number Al (atomic %) O (atomic %) N (atomic %)

1 92.49 2 5.5

2 85.97 2.23 11.8

3 77.39 7 15.61

4 73.23 3.6 23.17

The element composition for each of the samples was measured for each sample
by three rectangular 150× 300 µm areas, then the results were averaged across the
areas (Table20.2).

The Aztec 3.3 SP1 (Oxford Instruments, Abingdon, UK) software, which was
used to analyze the EDX spectra, made it possible to recalculate the composition
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Fig. 20.3 AFM surface topography of the samples: a 1 (1 sccm of N2); b 2 (2 sccm of N2);
c 3 (3 sccm of N2); d 4 (4 sccm of N2)

Table 20.3 The elemental composition for the sample 1–4 without oxygen

Sample number Al (atomic %) N (atomic %)

1 93.69 6.31

2 87.02 12.98

3 80.6 19.4

4 74.52 25.48

of chemical elements and remove elements that could be erroneously determined
from the calculations. The composition of the coatings included oxygen in a typical
amount. Oxygen, most likely, was adsorbed on the porous surface of the coatings
during the transfer of samples from the magnetron chamber to the SEM. The surface
topography of the samples obtained using AFM confirmed this assumption. A more
developed coating structure corresponds to a larger amount of adsorbed oxygen.
Table20.3 shows the recalculation of the elements composition of coatings without
taking into account adsorbed oxygen.

Analysis of the EDS results revealed an almost linear dependence of the elemen-
tal composition of the coatings on the nitrogen flow during the deposition process
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Fig. 20.4 Dependence of Ra , Rz and Rt values on the stoichiometric ratio of nitrogen to aluminum
in AlN coatings

Fig. 20.5 Dependence of the elemental composition of the deposited coatings on the nitrogen flow
during the deposition process

(Fig. 20.5). Note, that this material behavior is not typical for reactive magnetron
sputtering.
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20.4 Conclusion

In this work, we investigated a set of AlN coatings deposited with different nitrogen
content (nitrogen flow). The deposition method was reactive magnetron sputtering.
The influence of this factor on the elemental composition of the coatings and the
microstructure of the coatings has been studied. Stable modes of obtaining AlN
coatings with nitrogen content from 6.31 to 25.48 atomic percent with an average
deposition rate of about 3.3 angstroms per second were demonstrated. The results
show an almost linear relationship between the composition of the coatings and
the composition of the gas mixture during the deposition process. This fact can be
used to predict the required composition of the gas mixture under the given process
parameters to obtain AlN coatings of the required thickness and with the required
elemental composition. The next step of this study will be to establish relationships
between the elements composition, mechanical and tribological properties of AlN
coatings. As a result, this will make it possible to obtain functionally graded coatings
with a smooth change in properties by depth.
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Chapter 21
Nonlinearity and Dispersion in Extended
Mass-in-Mass Metamaterials

Alexey V. Porubov

Abstract Three nonlinearly elastic extendedmass-in-massmetamaterialmodels are
asymptotically studied using their long wavelength continuum limits. The governing
nonlinear equations with dispersion are obtained for longitudinal strain including
dispersion effects. Both nonlinear stiffness of the main chain spring and those of
the attached masses are taken into account. It is shown that the nonlinearities and
dispersion differently affect the dynamics of the longitudinal strain waves for the
models considered.

Keywords Metamaterial · Continuum limit · Nonlinear wave · Localization ·
Dispersion

21.1 Introduction

Nonlinear strain waves transfer considerable strain energy and may reflect internal
structure of a material. Nonlinear finite amplitude waves, being powerful, may affect
durability of a material. The behavior of nonlinear strain waves is sensitive to the
characteristics of the material. Of special interest are localized waves that can exist
due to a balance between nonlinearity and dispersion. Metamaterials possess rich
internal structure that give rise to variety of sources of nonlinearity and dispersion.

One of the simplest but instructive metamaterial models is the mas-in-mass lattice
model, Huang et al. (2009), Ma and Sheng (2016), Eremeyev and Turco (2020),
Lazarov and Jensen (2007), Cveticanin and Cveticanin (2018), Fang et al. (2017),
Erofeev et al. (2020), Porubov and Antonov (2021), Porubov (2021), Porubov and
Krivtsov (2022). Experimental realization of themetamaterialmodelwith the internal
resonators can be found in Yao et al. (2008), Zhou et al. (2015), Yang et al. (2017),
Zhou et al. (2012). They provide directions to the possible extensions of the mass-in
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-massmetamaterialmodel. Such extendedmodels have been considered in Fang et al.
(2017), Zhou et al. (2015), Oyelade and Akano (2020), Bukhari and Barry (2020),
Liu and Reina (2018), Huang and Sun (2010), Hu et al. (2017). A nonlinearly elastic
chain with masses when attached mass with are attached through two main masse
has been studied in Fang et al. (2017). The model with additional attached masses
has been considered in Zhou et al. (2015), Oyelade and Akano (2020), Bukhari and
Barry (2020).

Discrete modeling based on the study of the difference governing equations is
the most favorable method for finding the solution of the metamaterial problems.
This is effective in the linear problems, however, nonlinear difference equations are
much less solvable than the continuumdifferential ones. Nevertheless, the continuum
modeling is used much less frequently (Erofeev et al. 2020; Porubov and Antonov
2021; Porubov 2021; Porubov and Krivtsov 2022). The usual transfer from discrete
to continuum approach is based on the long wavelength continuum limit giving rise
to the partial differential governing equations (Born and Huang 1954; Askar 1985;
Ostoja-Starzewski 2002; Andrianov et al. 2010; Porubov 2023). It restricts the study
by the long strain waves.

The plan of the current work is as follows. In Sect. 21.2, the nonlinear discrete
models for extended mass-in-mass metamaterials are presented. Next Sect. 21.3 is
devoted to the continuum approximation and obtaining coupled nonlinear differen-
tial equations for all three models. The asymptotic procedure for decoupling and
obtaining single nonlinear equations for longitudinal strains is given in Sect. 21.4. A
comparative analysis of the localized wave solution of the single equations is exam-
ined in Sect. 21.5. The Conclusions summarize the most important deviations in the
nonlinear strain dynamics caused by each modification of the mass-in-mass model.

21.2 Extended Nonlinear Mass-in-Mass Models

21.2.1 Classic Mass-in-Mass Chain

The classic mass-in-mass chain is shown in Fig. 21.1.
We consider a one-dimensional lattice where interaction between the masses m

is modeled by nonlinearly-elastic spring. The additional masses m1 are attached to
each mass m by the springs with another nonlinearly elastic stiffness. The quadratic
nonlinearity appears as a result of an expansion of a more general potential of inter-
action in the weakly nonlinear case and by retaining the leading order nonlinear term.
We assume that the masses m1 are not connected by the springs.

Then the model equations are

ün = β0(un−1 − 2un + un+1)+ ηβ1(vn − un)+

+ ηβ2(vn − un)
2 + β3((un+1 − un)

2 − (un−1 − un)
2), (21.1)
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Fig. 21.1 Classic mass-in-mass chain

v̈n = −β1(vn − un)− β2(vn − un)
2, (21.2)

where the displacement of the mass m with the number n is denoted by un , while
that ofm1 is denoted by vn . Other notations are η = m1/m, the linear stiffness of the
spring in the chain is β0m, the nonlinear stiffness is β3m. The corresponding linear
and nonlinear stiffnesses of the attached spring are β1m1, β2m1, respectively. We
considered this problem in Porubov (2023) in detail. Here some results are used for
comparison with the other models.

21.2.2 Chain with Extra Attached Masses

The chain with extra attached masses m1 is shown in Fig. 21.2.
We considered different stiffnesses of the springs of the attached masses for the

linearized problem in Porubov (2023). Now besides nonlinearity, we also take into
account different attached masses, m1 and m2. The model equations of motion are

ün = β0(un−1 − 2un + un+1)+ ηβ1(vn − un)+ ηγ(wn − un)+

β3((un+1 − un)
2 − (un−1 − un)

2)+ ηβ2(vn − un)
2 + χ κ(wn − un)

2 (21.3)

v̈n = −β1(vn − un)− β2(vn − un)
2. (21.4)

ẅn = −γ(wn − un)− κ(wn − un)
2. (21.5)

Here χ = m2/m, γ m2, κ m2 account for linear and nonlinear stiffness of the
additional attached spring respectively. The displacement of the mass m with the
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Fig. 21.2 Chain with extra attached masses

number n is denoted by un , that of m1 (“upper” in Fig. 21.2), is denoted by vn while
that of m2 (“lower” in Fig. 21.2) is denoted by wn . We use these schematic notations
but in reality this is one-dimensionalmodelwhere attachedmasses are depicted upper
and lower for better understanding.

21.2.3 Chain with Extra Internal Attached Masses

The chain with extra internal attached masses is shown in Fig. 21.3.
Nowweuse the notationwn for the internalmass displacement,while the notations

un , vn have the same meaning as in the classic mass-in-mass model. The equations
of motion are

ün = β0(un−1 − 2un + un+1)+ ηβ1(vn − un)+

β3((un+1 − un)
2 − (un−1 − un)

2)+ ηβ2(vn − un)
2 (21.6)

v̈n = β1(un − vn)+ f γ(wn − un)− β2(vn − un)
2 + f κ(wn − un)

2. (21.7)

ẅn = −γ(wn − un)− κ(wn − un)
2, (21.8)
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Fig. 21.3 Chain with extra internal attached masses

where f is the mass ratio, f = m2/m1, and κm2 is the nonlinear stiffness of the
internal spring.

21.3 Continuum Limit of the Discrete Models

Another description of the dynamic processes can be done using a continuum limit
of Eqs. (21.1) and (21.2). The continuum functions u(x, t), v(x, t) are introduced for
description of the displacements of themassesm1,m2. The continuumdisplacements
of the neighboring masses are sought using the long-wave approximation (Born and
Huang 1954), based on the Taylor series,

un±1 = u ± h ux + h2

2
uxx ± h3

6
uxxx + h4

24
uxxxx + ...,

where the lattice step, h, is considered as an increment of the spatial variable, x .
Truncating the series by the fourth-order terms, we obtain from Eqs. (21.1), (21.2)

of the classic mass-in-mass model,

utt = β0h
2uxx + β0h4

12
uxxxx + ηβ1(v − u)+ ηβ2(v − u)2 + 2β3h

3uxuxx , (21.9)

vtt = −β1(v − u)− β2(v − u)2. (21.10)

The continuum functions u(x, t), v(x, t), w(x, t) are introduced for description
of the displacements of the masses m, “upper,” m1, and “lower,” m2, respectively,
in the model with the additional attached mass. Then the continuum limit of Eqs.
(21.3)–(21.5) is
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utt = a2uxx + a2 h2

12
uxxxx + ηβ1(v − u)+ χγ(w − u)+

ηβ2(v − u)2 + χκ(w − u)2 + 2β2h
3uxuxx , (21.11)

vtt = −β1(v − u)− β2(v − u)2, (21.12)

wtt = −γ(w − u)− κ(w − u)2. (21.13)

The continuum limit of the equations of motion (21.6)–(21.8) for the model with
an extra internal attached mass gives rise to

utt = a2uxx + a2 h2

12
uxxxx + ηβ1(v − u)+

ηβ2(v − u)2 + 2β3h
3uxuxx , (21.14)

vtt = β1(u − v)+ f γ(w − u)− β2(v − u)2 + f κ(w − u)2, (21.15)

wtt = −γ(w − u)− κ(w − u)2. (21.16)

21.4 Derivation of Governing Equations

21.4.1 Asymptotic Decoupling of Continuum Equations

The asymptotic procedure of decoupling of continuum governing equations has been
developed in Porubov (2023) for the classic mass-in-mass mode (21.9), (21.10). The
procedure is applicable for the weakly nonlinear and the long wavelength case. The
idea is to obtain single nonlinear equation with dispersion terms for the longitudinal
displacement or strain of the main chain, while remaining displacements of the
attached masses are expressed through it and its derivatives.

The series solution of the function v of Eq. (21.10), is suggested,

v = v0 + v1 + v2 + ..., (21.17)

Then theweakly nonlinear and longwavelength consideration suggests in the leading
order,

v0 − u = 0.

Next order equation is
v0,t t + β1v1 = 0,
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while in the second order we obtain

v1,t t + β1v2 + β2v
2
1 = 0.

Then the solutions of the equations are

v0 = u, v1 = − 1

β1
utt , v2 = 1

β2
1

utttt − β2

β3
1

u2t t .

Truncating series (21.17) by v2 and substituting it into Eq. (21.9) we obtain single
equation for the displacement u,

(1+ η)utt = β0h
2uxx + β0h4

12
uxxxx + η

β1
utttt + 2β3h

3uxuxx . (21.18)

One can see that nonlinearity, caused by nonlinear stiffness of the spring of the
attached mass of the original model, is absent in Eq. (21.18). Also there are two
dispersion terms in the equation.

This equation can be re-written for a longitudinal strain q = ux ,

(1+ η)qtt = β0h
2qxx + β0h4

12
qxxxx + η

β1
qtttt + β3h

3(q2)xx . (21.19)

Next we can change the terms qxxxx , qtttt with the term wxxtt using the relationship
fp;;pwong from the leading order of the equation.

qtt = β0h2

1+ η
qxx .

This, in general, approximate substitution can be used for dispersion terms qxxxx ,
qtttt as the exact substitution since Eq. (21.19) itself has been obtained approximately
as a continuum limit neglecting sixth-order derivative terms. Then we arrive at the
single governing equation for longitudinal strain waves to be presented in the next
Section.

The model with extra attached mass consists of three coupled equations, and the
asymptotic solution is sought as

v = v0 + v1 + v2 + ..., w = w0 + w1 + w2 + ..., (21.20)

Like for the previous model, we obtain from Eqs. (21.12), (21.13),

v0 = u, v1 = − 1

β1
utt , v2 = 1

β2
1

utttt − β2

β3
1

u2t t .
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w0 = u, w1 = − 1

γ
utt , w2 = 1

γ2
utttt − κ

γ3
u2t t .

Then it follows from Eq. (21.11) that the longitudinal strain q = ux

(1+ η + χ)qtt = β0h
2qxx + β0h4

12
qxxxx +

(
η

β1
+ χ

γ

)
qtttt + β3h

3(q2)xx .

(21.21)
Here approximate substitution for transformation of the dispersion terms is

qtt = β0h2

1+ η + χ
qxx .

Again the resulting equation will be presented in the next Section.
The asymptotic procedure for the model with an internal attached mass has the

form of Eq. (21.20) We obtain from Eqs. (21.15) and (21.16) for vi , wi ,

v0 = u, v1 = −1+ f

β1
utt , v2 = a1utttt + a2u

2
t t .

w0 = u, w1 = −β1 + (1+ f )γ

β1γ
utt ,

where

a1 = β1 f + γ(1+ f )2

β2
1γ

,

a2 = −β2
(1+ f )2

β3
1

.

The equation for q follows from Eq. (21.14).

(1+ η(1+ χ))qtt = β0h
2qxx + β0h4

12
qxxxx + ηa1

β1
qtttt + β3h

3(q2)xx . (21.22)

Here approximate substitution is

qtt = β0h2

1+ η(1+ f )
qxx ,

it will be used for substitution both in derivative and nonlinear terms, and the final
equation can be found in the next Section.
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21.4.2 Single Equations for Longitudinal Strains

The single governing equation for the classic mass-in-mass model is Porubov (2023)

qtt = β0h2

1+ η
qxx + β1h2(1+ η)2 + 12ηβ0h2

12β1(1+ η)2
qxxtt + β3h3

1+ η
(q2)xx . (21.23)

The single governing equation for the mass-in-mass model with an extra attached
mass is

qtt = β0h2

1+ η + χ
qxx + h2((1+ η + χ)2β1γ + 12(ηγ + χβ1)β0)

12(1+ η + χ)β1γ
qxxtt+

β3h3

1+ η + χ
(q2)xx . (21.24)

After transformation of the dispersion terms the single governing equation for the
mass-in-mass model with an extra internal attached mass is

qtt = β0h2

1+ η(1+ f )
qxx + h2((1+ η(1+ f ))2 + 12ηβ1β0a1)

12(1+ η(1+ f )
qxxtt+

β3h3

1+ η(1+ f ))
(q2)xx . (21.25)

Equations (21.23), (21.24) have the same functional form with the difference in
the coefficients of the corresponding linear, nonlinear, and dispersion terms. Both
equations doesn’t contain any influence of the nonlinear stiffness of the attached
masses. The linear stiffness coefficients affect the coefficients of the equations. The
sign of the dispersion term in both equations is always positive while the sign of
nonlinear term depends on the sign of the nonlinear stiffness coefficient β3.

One can note that modulational waves in the classic mass-jn-mass model the
nonlinear stiffness of the attached mass results in the additional nonlinear term in
the modulation equation giving rise to the bounded growth of the amplitude of the
modulation wave (Porubov 2021).

21.5 Localized Nonlinear Waves

The analysis of the solutions of the linear model equations usually considers peri-
odic wave solutions where the band gaps are the most important finding. However,
localized waves do not demonstrate band gaps even in the linear case (Porubov and
Krivtsov 2022).
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Equations (21.23), (21.24) and (21.25) possess exact localized traveling wave
solution,

q = A sech2(p(x − V t − x0)), (21.26)

where for a classic mass-in-mass model (Porubov 2023),

A = 3(V 2(1+ η)− β0h2)

2β3h3(1+ η)
, p =

√
3β1(1+ η)(V 2(1+ η)− β0h2)

(β1(1+ η)2 + 12ηβ0)h2 V 2
. (21.27)

Then the reality of p is achieved for the velocity V defined as

V >

√
β0h2

1+ η
.

The parameters of the solution of model with the additional attached mass are

A = 3(V 2(1+ η + χ)− β0h2)

2β3h3
, p =

√
(V 2(1+ η + χ)− β0h2)

4bs V 2
(21.28)

where

bs = h2((1+ η + χ)2β1γ + 12β0(ηγ + χβ1))

12(1+ η + χ)β1γ
.

Then the reality of p is achieved for the velocity V defined as

V >

√
β0h2

1+ η + χ
.

The parameters of the solution of model with the additional internal attachedmass
are

A = 3(V 2(1+ η(1+ f ))− β0h2)

2β3h3
, p =

√
(V 2(1+ η(1+ f ))− β0h2)

4bd V 2
(21.29)

where

bd = h2(1+ η(1+ f ))

12
+ β0β1ηh2

1+ η(1+ f )

β1 f + γ(1+ f )2

β2
1γ

.

Then the reality of k is achieved for the velocity V

V >

√
β0h2

1+ η(1+ f )
.
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The velocity intervals are different. Both extendedmodels providewidening of the
velocity interval. The sign of the amplitude is defined entirely by the sign of nonlinear
stiffness coefficient β3 of the main chain. Different dispersion term coefficients in
the single model equations give rise to variation in the width of the solitary wave.

Numerical simulations reveal important differences in the evolution of the initial
localized perturbation. We have chosen it in the form

q(x, 0) = An sech
2(pn(x − x0)),

qt (x, 0) = 2Vn pn An sech
2(pn(x − x0))tanh(k(x − x0)), (21.30)

where

Vn =
√

β0h2 + δ, An = 3(V 2
n − β0h2)

2β3h3
, pn = 0.5

√
3(V 2

n − β0h2)

hVn
.

This condition differs from that of any exact solutions given above. We use the
Wolfram Mathematica 13 for numerical simulations using the sweep method or the
three-diagonal matrix algorithm, see, e.g., Yu et al. (2009). Numerical simulations
for Eq. (21.23) are performed in the region in the region 0 < x < xN , 0 < t < tN .
The values of the parameters are chosen as

h = 0.7,β0 = 0.5,β1 = 0.5,β2 = 0.2,β3 = 0.5, η = 0.2,χ = 0.4, δ = 0.2.

xN = 200, x0 = xN/3, tN = 150.

Shown in Fig. 21.4 is a comparative localized waves evolution for the case of
classic mass-in-mass model, Eq. (21.23), and the model with an extra attached mass,
Eq. (21.24). Since the initial condition (21.30), Fig. 21.4, corresponds neither exact
solution (21.27) nor (21.28) we don’t observe stable single solitary wave (21.26)
propagation. Shown by dashed line is the evolution in classic model. We see that the
initial perturbation splits into two solitary waves marked by 1 and 3 in Fig. 21.4b–
d. They propagate with their velocities, and the distance between them increases as
time goes on. The amplitudes remain permanent. On the contrary, no splitting into the
solitary waves is seen for the extended model shown by solid line. Only perturbation
tail develops behind the solitary wave marked by 2. The amplitude and the velocity
of the wave is smaller than that of the highest wave 1 of the classic model. The choice
of non-zero initial velocity Vn provides unidirectional propagation.

Figure21.5 demonstrates dependence of the amplitude and the velocity of local-
ized wave on the mass ratio χ. One can see an increase in both parameters with the
decrease in the value of χ. No more waves are generated, and the tails behind the
localized wave are similar for all values of χ. Contrary to the previous figure here
and in the following x0 = xN/2.
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Fig. 21.4 Evolution of the localized input for the case of the classic mass-in-mass model (dashed
line) and the model with extra attached mass (solid line). a t = 0, b t = tN /4, c t = tN /2, d t = tN .
Marked by 1, 2, 3 are the localized waves emerged form the initial perturbation

Fig. 21.5 Dependence on the mass ratio χ for the model with extra attached mass. Marked by 1 is
the case χ = 0.2, dashed line; marked by 2 is the caseχ = 0.4, solid line; 3 corresponds to χ = 0.7,
dotted line. a t = 0, b t = tN /4, c t = tN /2, d t = tN
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Fig. 21.6 Dependence on the initial velocity Vn for the model with extra attached mass. Marked
by 1—δ = 0.4, dotted line; 2—δ = 0.2, solid line; 3—δ = 0.1, dashed line. a t = 0, b t = tN /4, c
t = tN /2, d t = tN

Dependence on the value of initial velocity Vn is seen in Fig. 21.6. Again the
number of the emerged solitary waves is the same. The velocity and the amplitude
grow with an increase in the value of δ thus in the value of Vn .

21.6 Conclusions

Extended nonlinearly elastic metamaterial mass-in-mass models can be analyzed
in the long wavelength continuum approximation. The model equations and their
localized exact solutions reveal important features caused by the additional elements
in the original models. Even variations in the dispersion term coefficients of the
governing equations result in the serious differences in the dynamics of localized
strain waves evolution. It concerns variations in the amplitude and velocity and the
number of the emerged waves.

The nonlinear stiffness of the spring of the main chain only affects propagation of
localized longitudinal waves for all models. Contribution of the nonlinear stiffness
of the attached mass spring is found in the relationships for the displacements of the
attached masses.
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Chapter 22
Nonlinear Change of Young’s Modulus
of Geomaterials Under Alternating Loads

Evgenii P. Riabokon, Mikhail S. Turbakov, Evgenii V. Kozhevnikov,
Mikhail A. Guzev, and Hongwen Jing

Abstract Young’s modulus of the geomaterial is investigated experimentally under
the alternating loads. With an increase in the frequency of the alternating load the
strain amplitude of rock samples decreases, while Young’s modulus increases. It was
also found that Young’s modulus behaves differently (according to different laws)
in the low-frequency region (below 10Hz) and in the high-frequency region (above
10Hz).

Keywords Nonlinear young’s modulus · Alternating load · Geomaterial

22.1 Introduction

Under the alternating loads the mechanical characteristics of rocks and Young’s
modulus in particular change. The nonlinearity of Young’s modulus of sedimentary
rocks is evidenced by both state-of-the-art and earlier experimental works. In partic-
ular, in Sun et al. (2020) a nonlinear dependence (increase) of Young’s modulus of
Bleurswiller sandstone on the frequency of the external applied axial load ranging
from 10−2 Hz to 102 Hz was obtained. The work Li et al. (2020) also revealed an
increase in Young’s modulus of dense sandstone with an increase in the frequency
of loading ranging from 100 Hz to 103 Hz. In the study of New Red sandstone on a
small experimental rig (Guzev and Kozhevnikov 2020; Riabokon et al. 2021; Guzev
et al. 2021a, b an increase in Young’s modulus with an increase in the frequency of
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the alternating load was revealed from 10Hz to 40Hz in accordance with the rational
function. While studying the Opalinus Clay (Lozovyi and Bauer 2019) and Mancos
shale (Szewczy et al. 2016) samples, a steady slow increase in Young’s modulus
was revealed with an increase in the load frequency ranging from 1Hz to 100Hz.
During the study of Pierre clay, in Pimienta et al. (2015) the authors also revealed
the dispersion of the elastic modulus with help of a dynamic loading rig. In earlier
works, for example, in Batzle et al. (2006) and Tutuncu et al. (1998), the nonlinear
behavior of Young’s modulus with the increasing loading rate (frequency) was also
obtained.

It is generally accepted that with an increase in the frequency of an alternating
load Young’s modulus increases in accordance with the same dependence at different
frequencies. At the same time, the analysis of works shows that still less attention
was paid to the low-frequency region (below 10Hz), in which the change in Young’s
modulus may differ from the region of higher frequencies (above 10Hz). In this
regard, to study the behavior of Young’s modulus both at low and high frequencies,
experimental studies are performed using geomaterial samples.

The studies are carried out in the zone of linear elasticity of the geomaterial, in
which the stress σ and the longitudinal strain ε are connected linearly by Young’s
modulus E in accordance with the ratio σ = E · ε. The state of the linear elasticity
was achieved by static preloading of the samples. The boundaries of the zone of linear
elasticity of the rock were preliminary estimated in tests for uniaxial compressive
strength. The behavior of Young’s modulus of the geomaterial under loading was
studied in the frequency range from 0.1Hz to 60Hz. As a result of the investigation,
the nonlinear behavior ofYoung’smoduluswas revealed and two zoneswith different
laws of change of Young’s modulus were identified.

The paper is organized as follows. Section22.2 describes the materials and
methods for conducting an experimental investigation. Section22.3 presents the
research results and their discussion. Section22.4 presents model interpretations
of the obtained experimental data, followed by a conclusion.

22.2 Materials and Methods

22.2.1 Materials for Study

As a geomaterial for study, a limestone with a dense consolidated heterogeneous
structure was chosen. The six samples with a diameter of 25mm and a length of
50mm were prepared for the investigation in accordance with the ASTM standard
(ASTM 2001) (Fig. 22.1).

According to the analysis of a thin section, form components of limestone are rep-
resented by bioclasts, composed of micritic calcite, but more often clear-crystalline
calcite 0.08–0.22mm in size fills bioclast chambers or fills their walls (Fig. 22.2a).
Single chambers of skeletal forms are filled with quartz, the grain size of which
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Fig. 22.1 The photograph depicting six limestone samples prepared for the study

Fig. 22.2 Microphotographs of a limestone sample: a microphotograph of a thin section of a
sample with a fragment of bryozoan with a chamber filled with medium-grained calcite; b electron
microphotograph of a sample with rhombohedral calcite particles

is less than 0.04mm. The matrix in the rock is micritic. Secondary calcite cement,
sparite (30%), of different crystals with grain sizes of 0.08-0.3mm, is developed in
the intergranular space as a result of recrystallization of the matrix and bioclasts.
The pores are intercrystalline, formed along organogenic voids, isolated, rounded,
slit-like, irregularly shaped. The pores are 0.008–0.2mm in size. The stylolite sutures
are finely serrated and the veins of the seal are branching, filled with brown clay-
organic matter. The results of electron microscopy revealed that the sample structure
is represented by a microgranular framework with a rhombohedral calcite particle
size of more than 0.1mm (Fig. 22.2b).

22.2.2 Study Methods

The investigation was carried out on the Instron ElectroPuls E10000 servo-electric
testing system (Fig. 22.3a), which met the experimental requirements such as: (a)
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Fig. 22.3 Photographs of the Instron ElectroPuls E10000 test system depicting: a general view of
the system; b geomaterial sample 2/39 between load plates with strain gauge installed.

is able to develop a load sufficient to transfer a full-size traditional core sample to
a state of linear elasticity; (b) allows to create alternating loading of a full-sized
rock sample in a wide frequency range. The deformation of the rock sample during
the tests was recorded by an Instron 2620–603 mechanical strain gauge, which was
supported on the sample by highly sensitive knives and pressed against the sample
by rubber clamps (Fig. 22.3b).

Before the start of the experiment, each sample was loaded with a static preload
Fst = 6.9 kN. During the experiment, each sample was additionally loaded with a
dynamic load Fdyn of the amplitude A = 850 N applied at different frequencies.

The program of investigation included 12 steps (Fig. 22.4). After the first step of
initializing the experiment to achieve the specified value of sample strain (control
mode by digital position) at a frequency of 0.1Hz, a gradual increase in the amplitude
of the dynamic load begins at the second step. The waveform was sinusoidal. The
duration of each step is chosen in such a way that the regime stabilizes and the
deformation amplitude reaches a shelf (a certain constant value) (see Fig. 22.5a). For
this, the duration of stabilization (the number of cycles required) was preliminarily
estimated (Table22.1). After the amplitude reached a constant value at the second
step of the experiment, the load was instantly removed and the second loading mode
was initialized until a constant amplitude value was reached again. The process was
repeated ten times at all frequencies, after which the experiment was completed. The
procedure was performed for each of the six samples. The data from the load cell of
the testing system and the strain sensor were recorded in the WaveMatrix package.
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Fig. 22.4 The program of the dynamic loading of geomaterial samples including 12 steps such as
step 1 is a stage of preloading the samples; steps 2–11 are stages of loading samples at frequencies
of 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60 and 100Hz; step 12 is an unloading stage

Table 22.1 Duration (number of cycles) of loading in each mode

Load
fre-
quency
ω, Hz

0.1 0.5 1 2 5 10 20 40 60

Number
of
cycles

10 25 50 50 100 200 500 1000 1000

Despite the availability of experimental results at a frequency of 100Hz, the data
were not stable, and therefore it was decided not to use them.

22.3 Results and Discussion

Note that the strain amplitude decreases not with an increase in the number of cycles
(duration of cyclic exposure) and possible fatigue effects, but with an increase in the
frequency of the alternating load (Fig. 22.5a) at a constant value of the alternating
load (Fig. 22.5b).

Taking the asymptotic values from Fig. 22.5a, it is not difficult to demonstrate the
nonlinear dependence of the geomaterial strain amplitude on the frequency of the
alternating applied load (Fig. 22.6).

The decrease in the amplitude of sample strain shown in Fig. 22.6 at the constant
load and the stress consequently, indicates an increase in the resistance of the sample
with an increase in the strain rate (load frequency).

At the same time, the stress-strain diagrams (Fig. 22.7) show that, for example,
the rock sample 2/46 at all frequencies of the variable load behaves like an absolutely
elastic body, which is confirmed by the absence of empty space inside the ellipse
(the absence of hysteresis and energy dissipation), as a result, the ellipse becomes
almost a straight line.

As a result of processing experimental data and calculating based on their dynamic
Young’s modulus, two areas are visually distinguished in which Young’s modulus
changes in accordance with different laws (Fig. 22.8).
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Fig. 22.5 Graphs of changes in experimental data under the influence of an alternating load with
frequencies ranging from 0.1Hz to 60Hz load amplitude (on example of the sample 2/46): a strain
amplitude; b load amplitude

Fig. 22.6 Dependence of
the sample strain amplitude
on the frequency of the
alternating load ranging from
0.1Hz to 60Hz (on example
of the sample 2/46)

22.4 Model Interpretations

The analysis of the dependencies obtained (Fig. 22.8) shows that for all rock samples
the nature of the change in Young’s modulus is the same, only the specific values
of the mechanical characteristic are different. There is an inflection is clearly visible
in the frequency region of 10Hz, where the law changes, in accordance with which
Young’s modulus changes. In the frequency range from 10Hz to 60Hz the behavior
of Young’s modulus is determined by a rational function (see Fig. 22.9). The change
inYoung’smodulus in accordancewith a rational function in the range of frequencies
ω from 10Hz to 40Hz of the applied load with an amplitude A was modeled by the
authors in previous works. In particular, the work Guzev et al. (2020) presents a
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Fig. 22.7 Stress-strain diagrams of the sample under the influence of the alternating load at fre-
quencies from 0.1Hz to 60Hz (on example of the sample 2/46)

mathematical model based on the classical idealized model of Jaeger J.C. “mass-on-
spring” and built using Newton’s equation.

Edyn = A
S
l

∣
∣
∣

A
m[α2−1]ω2 − C sin πα

2 cosπα
∣
∣
∣

. (22.1)

Based on physical substantiated relationships, the classical model includes sample
parameters such as mass m, length l and diameter d. The model also contains the
parameterC , which takes into account the experimental conditions, and the parameter
α, which reflects the ratio of the natural oscillation frequency of the geomaterial at
the moment of loading to the frequency of the applied load. It can be said that the
classical model corresponds to the continuum model.

In another work of the authors Guzev et al. (2021c), based on the gradient theory,
a non-classical mathematical model of the change in Young’s modulus is presented,
taking into account the scale (internal structure) of the sample,
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Fig. 22.8 Dependencies of Young’s modulus of rock samples on the frequency of the applied
alternating load

Fig. 22.9 Experimental data
and the change in Young’s
modulus calculated by the
classical and non-classical
models depending on the
frequency of the applied
dynamic load (on the
example of sample 2/21)

Edyn = Est + ρ0
−υ2

st +
√

υ4
st − (4γω2)/ρ0

2
. (22.2)

The model contains a phenomenological parameter γ, which takes into account the
internal heterogeneous structure of the geomaterial. In addition to the additive, the
model takes into account the velocity of propagation of a sound wave vst in the
geomaterial, the density of the geomaterial ρ0 and the frequency ω of the external
applied load. Figure22.9 shows the model dependences and experimental data on
Young’s modulus in the frequency range from 10Hz to 60Hz.
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Fig. 22.10 Approximation
of experimental data on the
change in Young’s modulus
with an increase in the
frequency of the alternating
load from 0.1Hz to 10Hz (on
example of the sample 2/4)

In the frequency range from 0.1Hz to 10Hz, the nature of the change in Young’s
modulus for all samples is close to a certain logarithmic function (see Fig. 22.8).
To identify the dependence of Young’s modulus of the rock on the frequency of
the applied load, let us use the approximation of experimental data. On example
of the experimental data obtained when loading the sample 2/4 it can be seen
(Fig. 22.10) that the values of Young’s modulus are approximated by the natural
logarithm function of the dimensionless frequency (ω0 = 1 Hz) of the applied load
Edyn = a · ln(ω/ω0)+ Est . In the approximating equation, the dynamic Young’s
modulus Edyn , numerical coefficient a and the added static Young’s modulus Est

have the dimension of [GPa].
The nature of the change inYoung’smodulus at frequencies below 10Hz indicates

a slightly different mechanism for the response of the geomaterial to an external
applied load than in the previously proposed classical and non-classical models. In
this regard, in further studies, the task will be to propose a mathematical model that
would reflect the change in Young’s modulus over the entire frequency range, taking
into account the change in the dispersion law.

22.5 Conclusion

An experimental investigation of the change in Young’s modulus of the geomaterial
under the influence of an alternating load with a frequency ranging from 0.1Hz to
60Hz was carried out in the work. Heterogeneous limestone was used as the studied
rock. Based on the results of the study, the following conclusions can be drawn:

(1) under the influence of an alternating load the change in Young’s modulus of
the geomaterial is carried out differently over the entire frequency range: in the low-
frequency region (from 0.1Hz to 10Hz) the approximation of the calculated Young’s
modulus is given by a certain logarithmic function,while in the high-frequency region
(from 10Hz to 60Hz) the law of Young’s modulus change is close to a rational one;
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(2) the experimental data obtained in this work on high-precision equipment con-
firmed the previous results of the authors obtained on a small experimental rig,
according to which, with an increase in the strain rate (frequency of the applying
dynamic load), a dispersion of Young’s modulus of the geomaterial is observed;

(3) the classical and non-classical models previously developed by the authors,
which reflect the change in Young’s modulus at frequencies from 10 to 40Hz, can
be extended to 60Hz and supplemented with a new revealed dependence of Young’s
modulus in the low-frequency region.
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Chapter 23
Microstructural Model of Magnetic
and Deformation Behavior of Single
Crystals and Polycrystals of
Ferromagnetic Shape-Memory Alloy

Anatoli A. Rogovoy and Olga S. Stolbova

Abstract Based on the microstructural approach, a model of the Heusler alloy
with magnetic shape-memory behavior is constructed using the theory of micromag-
netism. The Landau–Lifshitz–Gilbert equation is utilized to describe the dynamics
of the magnetization process. The problem of magnetization of single crystals of
the Ni2MnGa alloy, which has a “herringbone”-type martensitic structure (a twinned
variant of martensite), is considered. A condition for the detwinning of a ferro-
magnetic shape-memory alloy in a magnetic field is proposed, and the effect of the
reorientation (detwinning) of martensitic variants forming a twin on the magneti-
zation of the material and the occurrence of structural (detwinning) deformations
in it are taken into account. First, the process of magnetization and occurrence of
the structural deformation of a single grain is considered, when an external mag-
netic field is applied at different angles to the anisotropy axes of twinned variants.
Then, based on the obtained results, magnetization curves for various (isotropic and
texture-oriented) polycrystalline samples are constructed and the deformed states of
these materials are determined.

23.1 Introduction

Recently, the Ni2MnGa Heusler alloy has become the object of a large number of
studies aimed at developing new functional materials that can change their size and
shape when exposed to an external magnetic field (see, for example, Bachaga et al.
2019; Khan et al. 2018; Vasil’ev et al. 2003). When this material is cooled from a
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high-temperature phase with a cubic crystal lattice (austenite state) without applying
a mechanical load, then, in the process of a direct first-order phase transition, twin
structures are formed in a low-temperature phase with a tetragonal crystal lattice
(martensitic state). To detwin these structures, a stress and/or an external magnetic
field is applied, while deformation of up to 6–10% occurs in the material.

In themartensitic state at temperatures below theCurie point (376KforNi2MnGa),
Heusler alloys are ferromagnets, which means they have spontaneous magnetization
even in the absence of an external magnetic field. Each variant of martensite has an
easy magnetization axis, and this axis is an energetically favorable direction of the
spontaneous magnetization vector. Magnetic domains are formed in regions consist-
ing of interrelated variants of martensite with the same direction of magnetization
vectors. Thus, magnetic domains with different directions of the magnetization vec-
tors are formed in the martensitic phase, and these domains are located in such a way
that the alloy is non-magnetized in the absence of a magnetic field. In a magnetic
field, the walls of magnetic domains move, the magnetization vectors rotate, and the
martensitic variants are reoriented (detwinned).

The processes described above occur at the level of the material structure; there-
fore, microstructural modeling, which is the subject of the works of Kazaryan and
Wang (2002), Mennerich et al. (2011), Wan et al. (2006), Zhang and Chen (2005),
allow to write constitutive equations without additional assumptions, in contrast to
the phenomenological approach, to which many publications are devoted (Busta-
mante et al. 2007; Haldar et al. 2011; Rogovoy and Stolbova 2016). To describe the
evolution of themagnetization vector, there are two approacheswithin the framework
of the theory ofmicromagnetism (Brown 1963). The first approach is tominimize the
magnetic energy density functional with additional restrictions on the parameters.
In this case, the Euler–Ostrogradsky equation is solved, which corresponds to the
minimum of this functional, or this functional is minimized directly. In the second,
the Landau–Lifshitz–Gilbert equation is used, and the effective field strength vector
is found as a result of applying the Euler–Ostrogradsky operator to the total magnetic
energy density functional. In the publication of Rogovoy et al. (2021a), the magnetic
energy functional is minimized to describe the evolution of the magnetization and to
perform numerical simulation of the motion and interaction of the Neel domain walls
under the action of a magnetic field for a Ni2MnGa single crystal. In another arti-
cle (Rogovoy et al. 2001b), the Landau–Lifshitz–Gilbert equation was used for the
twinned variant of martensite, which is a more complex structure. In this publication,
the variational equations corresponding to the Landau–Lifshitz– Gilbert differential
equation and the equation for the scalar magnetic potential are written using the
standard Galerkin procedure. Due to this, the requirements for the smoothness of
the solution are reduced (weakened) in comparison with the original differential
equations; therefore, such a formulation of the problem is called weak. The possibil-
ities of approaches described above (minimization of the magnetic energy functional
and solution of the Landau–Lifshitz–Gilbert equation) for describing magnetic pro-
cesses are analyzed, and a conclusion is made about the advantage of utilizing the
Landau–Lifshitz–Gilbert equation (Rogovoy and Stolbova 2021).
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In a ferromagnetic material, purely magnetic Maxwellian stresses and mass (pon-
deromotive) purely magnetic forces and moments arise in an external magnetic field.
These forces andmoments cause in the body, in addition toMaxwell’s, the usual elas-
tic stress. It is believed that twinning or detwinning of the martensitic structure in a
ferromagnetic material with shape memory occurs when these forces and moments
reach critical values, resulting in significant deformations (6–10%). This deforma-
tion is not magnetostrictive, which is usually neglected due to its smallness. These
critical values are reached when the motion of the walls of the magnetic domains
ends (the magnetic domains favorably located to the external field have grown at
the expense of the domains less favorably located to it) and the local magnetization
vectors begin to turn in a direction favorable for the external magnetic field.

All the above processes occur in a single ferromagnetic alloy crystal with shape
memory. But most of the real materials are polycrystalline materials, since they,
unlike single crystals, are easier to manufacture. For example, polycrystalline films
are used in spintronics, actuator, and sensor applications. But such materials can be
not only isotropic but also textured. The structures of polycrystals, which are created
from single-twin crystals of Ni–Mn–Ga alloys and correspond to different textures,
can be found in many works (see, for example, Casoli et al. 2020; Kumar et al. 2012;
Li et al. 2017; Musabirov et al. 2015; Rani et al. 2011). We will use this information
when we model the behavior of polycrystalline material based on the behavior of
single crystals.

In the present research, which is a continuation of the previous works of the
authors (Rogovoy and Stolbova 2022a, b), a mesostructural model of the behavior of
the Heusler alloy single-twin crystal with the shape memory in the magnetic field has
been constructed to describe the such mentioned above processes, as the motion of
the magnetic domain walls, the rotation of the magnetization vectors, and the reori-
entation (detwinning) of martensitic variants. Using this model, the magnetization
curves for both the single-twin crystal and polytwin crystals are constructed and the
deformation behavior of these structures has been described.

In this work, the new results of research are (a) using variational equations cor-
responding to the differential formulation of the problem of magnetization of the
Heusler alloys in a magnetic field, (b) the detwinning condition for a ferromagnetic
shape-memory alloy under the action of amagnetic field only, (c) the results obtained
within the framework of the approach based on the use of variational equations and
describing the behavior of a twin variant of martensite of Ni–Mn–Ga alloys in the
magnetic field allowing for detwinning process, and (d) magnetization curves in
polytwinned crystals consisting of single-twin crystals and deformed states of such
structures.

We denote vectors in bold italic font, A, tensors in bold straight font,A, the scalar
product between tensors and/or vectors as A · B, the vector product as A × B and
the tensor product, for which the notation ⊗ is sometimes used, as AB. When the
Hamilton operator ∇ = r i ∂/∂qi is used, the basis vector of this operator is always
in the first place on the left, ∇ ∗ A = r i ∗ ∂A/∂qi , where ∗ is scalar, vector, or
tensor product, unlike some works in which the action of the Hamilton operator is
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represented as ∇ ∗ A = ∂A/∂qi ∗ r i . The expression AT means the transpose of
the second rank tensor A.

23.2 The Main Relations of Micromagnetism

23.2.1 Differential Equations

According to Brown’s work (1963), the magnetization of each cell of the crystal will
be described by the spontaneous magnetization vector of constant length M (|M| =
Ms , Ms is the saturation magnetization), oriented along one of the crystallographic
directions (the easy magnetization axis) in two opposite directions. The Landau–
Lifshitz–Gilbert equation describes the dynamics of this vector in a magnetic field:

∂m
∂t

= −γ(m × He f f ) + α

(
m × ∂m

∂t

)
, (23.1)

where γ is a gyromagnetic ratio,α is a damping (dissipation) parameter,m = M/Ms

is unit magnetization vector, He f f is a strength vector of effective field (external and
internal (intrinsic) magnetic fields):

He f f = Hext + H int + Hexch + Hanis + Hm−el . (23.2)

Here, Hext is a strength vector of applied external field, H int is a strength vector
of internal demagnetization field caused by an applied external field, Hexch is the
exchange field strength vector, Hanis is the anisotropy field strength vector, Hm−el

is a strength vector of magneto-elastic field causing magnetostrictive strain, which is
very small compared to the phase or structural (detwinning) one, due to which this
strain and this magnetic field are usually neglected (Mennerich et al. 2011).

For the effective field He f f , the following expression takes place (Mennerich et al.
2011):

He f f = − 1

μ0Ms

δψ

δm
, (23.3)

in which μ0 is a magnetic constant. The variational derivative

δψ

δm
= ∂ψ

∂m
− ∇ · ∂ψ

∂(∇m)
(23.4)

is the Euler–Ostrogradsky operator, which gives the differential equation, that min-
imizes the total magnetic energy functional ψ with respect to variable m, and the
condition [

m ×
(
N · ∂ψ

∂(∇m)

)]∣∣∣∣
Γ

= 000, (23.5)
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where N is the external unit normal to the body surface Γ in the actual state, is a
natural boundary condition for this functional. The total magnetic energy density ψ
can be written as (Mennerich et al. 2011)

ψ = ψext + ψint + ψexch + ψanis .

Here, the first two terms are the density of magnetic energy from the action of an
applied external magnetic field (Zeeman energy and demagnetization energy), and
the last two terms are the density of internal magnetic energy (exchange energy and
anisotropy energy):

ψext = −μ0Ms H0 · m, ψint = −1

2
μ0Ms Hdemag · m,

ψexch = Aexch |∇m|2, ψanis = Kanis
(
1 − (m · pα)2

)
, (23.6)

where Aexch is the exchange constant, Kanis is the anisotropy constant, and pα is the
direction of the easy axis of the variant α (for the case of the existence of several
easy axes in the crystal. It is further assumed that there is only one easy axis in the
crystal). Thus, it follows from the relations (23.3), (23.4) and (23.6) that (Mennerich
et al. 2011)

Hext = H0, H int = Hdemag,

Hexch = 2 Aexch
μ0Ms

Δm, Hanis = 2 Kanis
μ0Ms

(m · pα) pα.
(23.7)

The boundary condition (23.5) with account for (23.7) will be written in the form:

2 Aexch
[
m × (N · ∇m)

]∣∣
Γ

= 000. (23.8)

Since m · m = 1, then it turns out that the normal derivative N · ∇(m · m) = 0,
thereby (N · ∇m) · m = 0, so, the vector (N · ∇m) is perpendicular to the vector
m. The equality (23.8) will be true only if at least one of the multipliers is equal to
zero. Since m �= 000, the second vector must be equal to zero, which is the Neumann
boundary condition for the vector m:

(N · ∇m)
∣∣
Γ

= 000.

The strength of the acting external field and the demagnetization field is deter-
mined by the equation H = H0 + Hdemag . This field in the absence of electric cur-
rents should be vortex-free,∇ × H = 000, which, at constant H0, reduces to the equal-
ity ∇ × Hdemag = 000, which will always be executed if we put Hdemag = −∇ ϕ,
where ϕ is a scalar depending on the vector coordinate x. The magnetic field
inductance B, which must satisfy the equation ∇ · B = 0, is introduced by the
relation B(x) = μ0 (H + Ms m) for x ∈ Ω(in), where Ω(in) is the region occupied
by the body and B(x) = μ0 H for x ∈ Ω(ex), where Ω(ex) is the region occupied
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by the medium surrounding the body. Therefore, given the above representations
H, Hdemag and the constancy of H0, the Poisson and the Laplace equations for the
function ϕ follow:

∇ · ∇ϕ = Ms ∇ · m ∀x ∈ Ω(in), (23.9)

∇ · ∇ϕ = 0 ∀x ∈ Ω(ex). (23.10)

The natural requirement that ϕ must obey is

ϕ → 0 when x → ∞. (23.11)

On the surface Γ separating the body from its environment, the following equality
is fulfilled:

ϕ(in)|Γ = ϕ(ex)|Γ , (23.12)

wherein the superscript (in) corresponds to the body, and superscript (ex) denotes
its environment.

Additional boundary conditions that the function ϕ should satisfy are related to
the behavior of vectors H and B on the surface Γ (Rogovoy et al. 2001b, 2021a):

(∇ϕ(in) − ∇ϕ(ex))|Γ ·TTT = 0, (23.13)

whereTTT is the unit tangent vector to the surface of the body Γ in the actual config-
uration, and

(∇ϕ(in) − ∇ϕ(ex))|Γ · N = Ms m · N. (23.14)

From (23.7) and the representation of Hdemag in terms of the scalar potential ϕ,
the effective field (23.2) is written as:

He f f = H0 − ∇ϕ + 2 Aexch

μ0Ms
Δm + 2 Kanis

μ0Ms
(m · pα) pα. (23.15)

23.2.2 Variational Equations

To describe the distribution of the magnetization vector in the body, it is necessary to
solve the differential equation (23.1) with boundary condition (23.8) and differential
equations (23.9), (23.10) with boundary conditions (23.11)–(23.14). The strength
vector of effective field He f f in equation (23.1) is determined by the relation (23.15).
The relations (23.9), (23.10) require, at least, the existence of a second derivative
with respect to the coordinates for the function ϕ, and the relation (23.15) for the
functionm. Using theGalerkin procedure, we realize the so-calledweak (variational)
formulation of the problem and reduce the requirements for the smoothness of these
functions. The obtained variational equations are solved by the finite elementmethod.
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According to the Galerkin procedure, the equations (23.1), (23.9), (23.10) and
boundary conditions (23.8), (23.14) are first reduced to one or another homogeneous
form: that is, the right part of the equation is transferred to the left part, or vice versa.
Therefore, homogeneous equations can differ in sign and it is convenient to use this
to significantly simplify the final expression. According to the Galerkin procedure,
the equations acting on the volume of the body and the equations acting on the
surface (boundary conditions) are processed separately. Since the areas in which
these equations operate do not intersect, the equations obtained in accordance with
the Galerkin procedure can be added (or subtracted) and each of them can have both
a plus sign and a minus sign. As a result, we get

∫
Ω(in)

[
∂m
∂t

+ γ (m × He f f ) − α

(
m × ∂m

∂t

)]
· δm dΩ(in)±

± β

∫
Γ

[
m × (n · ∇m)

] · δm dΓ = 0, (23.16)

where β is a constant coefficient, the value of which we define below, and

∫
Ω(in)

(∇ · ∇ϕ − Ms ∇ · m) δϕ dΩ(in) +
∫

Ω(ex)

(∇ · ∇ϕ) δϕ dΩ(ex)±

±
∫
Γ

n · (∇ϕ(in) − ∇ϕ(ex) − Ms m)δϕ dΓ = 0. (23.17)

Here, δm and δϕ are arbitrary changes of the vector m and of the scalar ϕ, that is
their variations.

The first two integrals of the equation (23.17) include the second derivatives of ϕ
with respect to the coordinates, which requires using at least the quadratic approx-
imation for these quantities under the numerical solution. Using the easily proved
equality ∇ · (A b) = b · (∇A) + A (∇ · b), where A and b are arbitrary scalar and
vector, this requirement can be significantly weakened and the so-called weak for-
mulation of the problem can be implemented. Rewriting this equality in the form
A (∇ · b) = ∇ · (A b) − b · (∇A), accepting A = δϕ, b = ∇ϕ or b = Ms m and
applying the Ostrogradsky–Gauss theorem, we will convert the first line in (23.17),
which we denote {1}, to the form
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{1} =
∫
Γ

n(in) · [(∇ϕ(in) − Ms m) δϕ(in)] dΓ +

+
∫
Γ

n(ex) · [(∇ϕ(ex)) δϕ(ex)] dΓ +
∫

Γ∞

n(∞) · [(∇ϕ(∞)) δϕ(∞)] dΓ∞−

−
∫

Ω(in)

(∇ϕ − Ms m) · ∇δϕ dΩ(in) −
∫

Ω(ex)

∇ϕ · ∇δϕ dΩ(ex).

Taking into account that n(in) = n, n(ex) = −n, ϕ → 0 when x → ∞ (see (23.11))
and ϕ(in)|Γ = ϕ(ex)|Γ (see (23.12)), we transform the first two lines on the right side
of this equality by combining integrals over the Γ surface, and then the expression
{1} is presented as

∫
Γ

n · [(∇ϕ(in) − ∇ϕ(ex) − Ms m) δϕ] dΓ −

−
∫

Ω(in)

(∇ϕ − Ms m) · ∇δϕ dΩ(in) −
∫

Ω(ex)

∇ϕ · ∇δϕ dΩ(ex).

Taking the “minus” sign in the last integral of the equation (23.17), we obtain as a
result the following weak form of the variational equation (23.17), which includes
only the first derivatives from ϕ with respect to the coordinates:

∫
Ω(in)

(∇ϕ − Ms m) · ∇δϕ dΩ(in) +
∫

Ω(ex)

∇ϕ · ∇δϕ dΩ(ex) = 0. (23.18)

Let’s return now to the equation (23.16). From the equality m · m = 1, it follows
that δ(m · m) = 2m · δm = 0, that is, the vectors δm and m are mutually orthogo-
nal, δm⊥m. This requirement can be satisfied by putting δm = m × δξ, where δξ
are any trial vector-functions that do not coincide in direction with m. As a result,
we get

∫
Ω(in)

[
∂m
∂t

+ γ (m × He f f ) − α

(
m × ∂m

∂t

)]
· (m × δξ) dΩ(in)±

± β

∫
Γ

[
m × (n · ∇m)

] · (m × δξ) dΓ = 0.

Using now the known properties of the mixed product of vectors and the scalar
product of two vector products of vectors, choosing the functions δξ satisfying the
condition δξ ⊥m, from which the equality m · δξ = 0 will follow, and given that
m · m = 1, we reduce this equation to the form
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∫
Ω(in)

[(
m × ∂m

∂t

)
− γ He f f + α

∂m
∂t

]
· δξ dΩ(in) ∓

∓ β

∫
Γ

(n · ∇m) · δξ dΓ = 0.

Substituting here the expression for the effective field (23.15), we will have

∫
Ω(in)

[(
m × ∂m

∂t

)
− γ

(
H0 − ∇ϕ + 2 Aexch

μ0Ms
Δm + 2 Kanis

μ0Ms
(m · pα) pα

)
+

+ α
∂m
∂t

]
· δξ dΩ(in) ∓ β

∫
Γ

(n · ∇m) · δξ dΓ = 0.

(23.19)

Here, the integrand contains the quantity Δm, which includes second derivatives
with respect to the coordinates, that requires the usage of at least the quadratic
approximation for this quantity under the numerical solution. Using the well-known
equality ∇ · (A · b) = (∇ · A) · b + AT · ·∇b, where A and b are an arbitrary tensor
of the second rank and a vector, fromwhich it follows that (∇ · A) · b = ∇ · (A · b) −
AT · ·∇b, assuming that A = ∇m, b = δξ and applying the Ostrogradsky–Gauss
theorem, we obtain

∫
Ω(in)

(∇ · ∇m
) · δξ dΩ(in) =

∫
Ω(in)

[
∇ · (∇m · δξ) − (∇m)T · ·∇δξ

]
dΩ(in) =

=
∫
Γ

(n · ∇m) · δξ dΓ −
∫

Ω(in)

(∇m)T · ·∇δξ dΩ(in).

Taking the “plus” sign in the last integral of the equation (23.19) and assuming
β = (2 γ Aexch)/(μ0Ms), we get

∫
Ω(in)

[(
m × ∂m

∂t

)
− γ

(
H0 − ∇ϕ + 2 Kanis

μ0Ms
(m · pα) pα

)
+ α

∂m
∂t

]
· δξ dΩ(in)+

+ 2 γ Aexch

μ0Ms

∫
Ω(in)

(∇m)T · ·∇δξ dΩ(in) = 0.

When solving this variational equation, we will use the θ-scheme. To do this,
let us represent m(t) at the current time t , as m∗ + θ τ v, where m∗ = m(t∗) is the
magnetization at the previous time moment t∗, τ = t − t∗ is the time step, θ ∈ [0, 1],
v = ∂m/∂t . As a result, keeping only the linear terms relative to τ , we come to the
equation
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∫
Ω(in)

(m∗ × v + α v) · δξ dΩ(in)−

− γ

∫
Ω(in)

(
H0 − ∇ϕ + 2 Kanis

μ0Ms
[(m∗ + θ τ v) · pα] pα

)
· δξ dΩ(in)+

+ 2 γ Aexch

μ0Ms

∫
Ω(in)

[(∇m)T∗ + θ τ (∇v)T ] · ·∇δξ dΩ(in) = 0.

(23.20)

From the condition m(t) · m(t) = 1 ∀t , it follows that m∗ · v = 0 and δ (m∗ · v) =
m∗ · δv = 0. Then, given thatm∗ · δξ = 0,we take as δξ the quantity δv, δξ = δv. To
meet the conditionsm∗ · v = 0 andm∗ · δv = 0, we will use the Lagrange multiplier
method. As a result, the equation (23.20) is presented in the following final form:

∫
Ω(in)

(m∗ × v + α v + λm∗) · δv dΩ(in)−

− γ

∫
Ω(in)

(
H0 − ∇ϕ + 2 Kanis

μ0Ms
[(m∗ + θ τ v) · pα] pα

)
· δv dΩ(in)+

+ 2 γ Aexch

μ0Ms

∫
Ω(in)

[(∇m)T∗ + θ τ (∇v)T ] · ·∇δv dΩ(in) +
∫

Ω(in)

(m∗ · v) δλ dΩ(in) = 0,

(23.21)

where λ is the Lagrange multiplier.
The constructed related variational equations (23.18) and (23.21) allow us to

determine ϕ, v and λ. The external magnetic field is applied in accordance with the
step-by-step procedure, and at each such step, the variational equations are solved.
These equations describe the change in the magnetic field over time within each
increment of the external field and use other, internal time steps. At the internal
current step, the value m∗ is taken from the previous internal step.

After finding v at the current step, in order to reduce the computational error, the
vector m is corrected so that its length remains unit:

m = m∗ + τ v

|m∗ + τ v| .

Given that |m| = 1, the process in internal steps is over when the condition |m −
m∗| < 10−3 is fulfilled. This happens in about 3000 internal steps.

At the first stage, in the absence of an external magnetic field, the initial magneti-
zation distribution m is set and, solving variational equations, the initial boundaries
of the magnetic domains and distribution of the magnetization vectors in them are
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determined. The resulting magnetic structure is the initial one for the subsequent
application of an external magnetic field.

The stability of the numerical solution is provided by the choice of the parameter
θ: if θ > 0.5, the scheme will be stable for any steps in time and space.

23.3 Detwinning Process

23.3.1 Twin Structure

This section is devoted to a brief explanation of the detwinning process that occurs
during the reorientation of martensitic variants that form a twin. A detailed consider-
ation of this process can be found in another publication of the authors of this article
(Rogovoy and Stolbova 2022b).

The symmetry of the crystal is characterized by the orthogonal tensors proper1

Rα forming a group of rotations P, Rα ∈ P , in which the shape of the crystal
remains unchanged: a cube is transformed into a cube, a parallelepiped into the same
parallelepiped, and so on. During the first-order phase transition, the cubic cell of
austenite (high-temperature state) of the Ni2MnGa shape-memory alloy transforms
into a tetragonal martensite cell (low-temperature state). The rotation group for a
cell in the austenitic state Pa (for a cubic cell) consists of 24 orthogonal tensors,
VP a = 24. The rotation group for a cell in the martensitic statePm (for a tetragonal
cell) consists of eight orthogonal tensors, VPm = 8 (orthogonal tensors matching
to these states are given, for example, in the work of Hane and Shield 1998). The
number of independent variants of martensite that can form during a phase transition
is given by V = VP a/VPm , which is 3 for Ni2MnGa.

The Bain strain tensorUi (the symmetric positive definite tensor of the pure strain
in the polar decomposition of the deformation gradient Fi = Ri · Ui , whereRi is the
proper orthogonal tensor) describes the transformation of an austenitic crystal cell
into a martensitic one. The cubic austenite cell in the Ni2MnGa shape-memory alloy
transforms into any of the three tetragonal martensite cells whose pure strain tensors
Ui , i = 1, 2, 3, have the following form in the orthonormal basis ek , k = 1, 2, 3,
with vectors parallel to the edges of the cubic cell (Bhattacharya 1991; Hane and
Shield 1998)

U1 = β e1e1 + α (e2e2 + e3e3), U2 = α (e1e1 + e3e3) + β e2e2,
U3 = α (e1e1 + e2e2) + β e3e3.

(23.22)

1 The tensor Q for which QT = Q−1 is called the orthogonal tensor. This tensor, when scalar
multiplied by some vector, rotates it in space without changing its modulus. When acting on two
vectors, this tensor also preserves the angle between them as they rotate in space. The determinant
of the orthogonal tensor is ±1. The determinant of the orthogonal tensor proper is +1.
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On the plane separating the two variants of martensite with the Bain strain tensors
Ui and U j , the Hadamard compatibility condition (Truesdell 1972) for deformation
gradients Fi and F j must be fulfilled, which in our case takes the form (Hane and
Shield 1998)

Fi − F j = a n. (23.23)

Here, Fk = (∇Rk)
T , where ∇ is the Hamilton operator with respect to the initial

configuration and Rk is the radius-vector of the position of the point k in the actual
configuration, n is the unit vector of the normal to the surface separating the marten-
site variants in the initial, undeformed state, a = (Fi − F j ) · n is the projection onto
the normal of the jump of the deformation gradient when passing through the sepa-
rating surface.

The Hadamard condition is a consequence of the following reasoning. Let the
surface S be a part of the inner surface of the body dividing it into volumes (denote
them V+ and V−), in each of which the vector a is continuous and differentiable
along any path lying on S. Then there are continuous derivatives having in our
notation the form (see the end of the Introduction) da+ = (∇a)T+ · d l and da− =
(∇a)T− · d l , which characterize the changes of the vector a in the direction of any
vector l lying on S under tending to the surface S from the side of the volumes V+ and
V−. Subtracting one from the other, we get the Hadamard compatibility condition:
[da] = [∇a]T · d l , where [da] = da+ − da− and [∇a]T = (∇a)T+ − (∇a)T−. If the
vector a is continuous in the body including the surface S, then [da] = 0 fromwhich
it follows that [∇a]T · d l = 0, and, as a result, the second-rank tensor [∇a]T should
have a dyadic representation in the form [∇a]T = b n, where n is the normal to the
surface S, which can be considered as unit, and b is some vector that determines
the projection of [∇a]T on the normal, as it follows from the condition [∇a]T · n =
b n · n = b.

Rewriting (23.23) in the form Ri · Ui − R j · U j = a n, carrying out a scalar
multiplication of this expression on the left by RT

j and introducing a vector â =
RT

j · a, we get
Ri j · Ui − U j = â n, (23.24)

where Ri j = RT
j · Ri . Representing (23.24) as

Ri j · Ui = (g + â n · U−1
j ) · U j , (23.25)

where g is the unit tensor, we conclude that det (g + â n · U−1
j ) = 1, since the deter-

minant of the product is equal to the product of the determinants, det Ri j = 1 and
det Ui = det U j for the expressions (23.22). It follows from here that the tensor
g + â n · U−1

j describes processes without changing the volume, namely, a simple
shift, and this will be shown below. Following Hane and Shield (1998), Bhattacharya
(1991), we will represent (23.25) in the form:

Ri j · Ui = (g + s ã N) · U j , (23.26)
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Fig. 23.1 The process of
twin formation

where s = |â||U−1
j · n| is the magnitude of the shift, ã = â/|â| is the direction of

the shift and N = (U−1
j · n)/|U−1

j · n|. The symmetry of the tensor U−1
j is taken

into account here: U−1
j · n = n · U−1

j .
The relation (23.26) can be written as

Ri j · Ui = f · U j , f = g + s δ1 δ2, (23.27)

where f is the deformation gradient describing the process of simple shift (not to be
confused with a pure shift) by an amount s (by an angle γ, s = tan γ) in the plane
with unit normal δ2 in direction of the unit vector δ1. The fulfillment of this condition
leads to the fact that the axes of the plates of two variants of martensite with the Bain
strain, for example, U1 and U2 are located at a certain angle to each other, forming
a twin, and such a structure for material under consideration can be obtained by a
simple shift of part of one of the martensite plate in the direction of the δ1 axis, as
shown in Fig. 23.1.

Here, according to the Hadamard compatibility condition, a plate ABCDEF
with an axis c1 coinciding with the short axis of a tetragonal martensite cell with a
Bain strain U1, turns into a twin ABC ′D ′EF by shifting of any cross section of part
BCDE of plate ABCDEF , parallel to the plane to which the vector δ2 is normal,
in the direction of the vector δ1, proportional to the distance of this cross section
from the cross section of BE , and transformation of the part BCDE into the part
BC ′D ′E shown in Fig. 23.1 by the dashed line.2 This corresponds to a simple shift
in the direction of the vector δ1 relative to the vector δ2 by an angle γ or the rotation
of the plane BC (ED) by the angle φ to the position BC ′ (ED ′). The angle χ here
is the angle between vectors c1 and δ1. Again, in accordance with the Hadamard
compatibility condition, tetragonal martensite cell in a plate BC ′D ′E with a Bain
strain U2 has a short axis c2 which is directed at a certain angle ψ to the vector c1.
This vector does not coincide with the axis of the plate BC ′D ′E , and the angle ψ is
not, in general, 90◦. So, for the ferromagnetic shape-memory alloy, it is necessary

2 The tetragonal martensite cells are shown in Fig. 23.1 as the gray areas. Each tetragonal cell has
two identical edges a = b and one short edge, which is denoted as c. For this reason, the unit normal
to the largest plane of the tetragonal cell is denoted as c and this vector coincides with the vector of
easy magnetization p in the last relation (23.6).
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to clearly distinguish the directions of the main axes of plates forming a twin and
of the short axes of the tetragonal martensite cells with the Bain strains Ui . These
tetragonal martensite cells are formed in each of two structural elements that make
up the twin (Planes et al. 2009) and the vectors of local spontaneous magnetization
M of the cells in a ferromagnetic material are directed along or against the short axes
of the tetragonal martensite cells ci . Regions that include interconnected variants
of martensite with the same direction of the magnetization vector form magnetic
domains. In the martensitic state, many magnetic domains are formed with different
directions of the magnetization vectors, while it is energetically favorable for these
domains to coordinate with each other in such a way that the total magnetization of
the material in the absence of an external magnetic field is zero. When a magnetic
field is applied, the walls of magnetic domains begin to move, magnetization vectors
rotate, and reorientation (detwinning) of the martensitic variants begins.

For Ni2MnGa, the parameters of cubic and tetragonal cells are known (Lee et al.
2004; Velikohatny and Naumov 1999): a cubic cell has equal length of all edges
a = 0.5852 nm, and for a tetragonal cell, the length of edges is a = b = 0.5920 nm,
c = 0.5566 nm, c/a = 0.94. As a result, in the Bain tensors, α = 0.5920/0.5852 =
1.01162,β = 0.5566/0.5852 = 0.951128. For these parameters, itwas obtained (see
Rogovoy and Stolbova, 2022 b) that χ = 46.8◦, γ ≈ 7◦, φ ≈ 4◦ and a deformation
gradient which describes a simple shift and in the basis δ1, δ2, shown in Fig. 23.1,
has a view f = g + s δ1δ2 (see (23.27)), where s = tan γ = 0.123398 from which
it follows that γ ≈ 7◦, in the basis e1, e2, coinciding with the vectors c1, c2, takes
the following concrete form

f = g − 0.061582 (e1e1 − e2e2) + 0.057899 e1e2 − 0.065498 e2e1 (23.28)

(regarding the relations between the basis vectors δ1, δ2 and e1, e2 see the right
part of Fig. 23.2). For our material, the short axes c of two tetragonal martensite
cells forming a twin, which are also the axes of easy magnetization, are located at an
angle 90◦ to each other,ψ = 90◦ and this is in a full accordancewith the experimental
results (Ge et al. 2004, 2005; Musabirov et al. 2012).3 Then, in the basis ek , in which
the expressions (23.22) are presented, vectors c1 and c2 in Fig. 23.1 coincide with
the vectors e1 and e2 respectively (atU1 short axis is directed along the vector e1 and
at U2 along the vector e2) and this basis is convenient to use in describing the twin
structure from material under consideration. The axis of the cell relative to which
twinning occurs (here it is a tetragonal cell with deformation U1) is parallel to the
boundary of the twin, and the axis of the other cell is not parallel.

3 Mennerich et al. (2011) indicated that the short axes of two tetragonal martensite cells forming
a twin in the Ni2MnGa alloy are at an angle of 86.5◦ to each other and reference is made to the
experimental work of Solomon et al. (2005). But in the specified publication the Ni51Mn29Ga20
alloy is considered. We assume that the difference in angles is due to this.
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Fig. 23.2 The twin structure, spatial direction of the basis, and magnetization vectors in magnetic
domains of tetragonal cells (at the left); the view in the direction of the arrow A (at the right)

Figure23.2 shows a general view of twinned structure (“herringbone” structure)
and presents the spatial direction of the vectors e1, e2, δ1 and δ2 and the magne-
tization vectors in the tetragonal magnetic domains located in structural elements
forming a twin.

23.3.2 Detwinning Condition

Since in our case the twinning was produced by a simple shift, then the detwinning
must also be produced by a shift. Detwinning will occur when the tangential force
on the surface separating the martensitic variants reaches a certain value, which can
be obtained from the experiment. As it was shown in the work of Rogovoy and
Stolbova (2022b), to find this force it is necessary to solve a boundary value problem
for the case of anisotropic moment theory of elasticity. If detwinning occurs under
the simultaneous application of external forces and a magnetic field, then solving
such a problem is the only way to describe the detwinning process. However, when
only a magnetic field is applied, there is an easier way to simulate the detwinning
process based on the calculation of the mass magnetic moment. This subsection is
devoted to the description of such approach.

All variants of martensite have magnetic domains, the magnetization vectors
that are directed along or against the short axes c, and this leads to zero overall
magnetization of the entire structural element when there is no external magnetic
field. If a magnetic field is applied and gradually increased, the following pro-
cesses are realized. At the first stage, the walls of the magnetic domains move:
the most favorably oriented domains in the direction of the applied external field
increase due to the less favorably oriented domains. After that, the magnetization
vectors in the domains try to rotate along the applied field. Besides the magnetic
field induces mass (ponderomotive) forces Fmag = μ0 M · ∇H and mass moments
Lmag = μ0 M × H , which act in the body volume. Since μ0 H = B − μ0 M (see
Sect. 23.2) and M × M = 000, then the last expression for the mass moments is
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represented as Lmag = M × B. It should be noted that the magnetic field also
induces forces f mag = (1/2)μ0 M2

N N, MN = M · N , which are distributed over
the actual body surface but this field does not produce magnetic moments lmag dis-
tributed over this surface, lmag = 000. These forces and moments create a stressed
state in the material, and when this state and the corresponding magnetic forces and
moments (if there are no forces and moments of a different physical nature) reach a
certain critical value at any point of the material, the process of the twinned structure
disappearance (detwinning process) takes place in this point, in addition to the two
mentioned above the processes.

In our work, only purely magnetic processes are considered, it is assumed that
V (in) coincides with all space, V (ex) = 0, and the boundary condition is replaced by
periodic ones. Therefore, onlymass (ponderomotive) forces Fmag andmassmoments
Lmag act in the medium. There are no surface forces and moments.

The process of detwinning, in which the boundary between two differently ori-
ented adjacent variants of martensite forming a twin, begins to move, has been exper-
imentally studied for Ni–Mn–Ga alloys close to stoichiometric Ni2MnGa by Heczko
et al. (2001), Heczko and Straka (2003), Heczko (2005), Heczko and Bradshaw
(2017). Cooling to the temperature of the austenite–martensite transformation in the
absence of a magnetic and force field caused a shift in the (110) plane of the initial
cubic austenite structure, and this led to the formation of twin structures. In this
state, single-crystal prismatic samples were cut along the {100} planes. Thus, the
directions [100], [010] and [001] in the martensitic variants that form the twin are
easy magnetization axes c and are parallel to the sides of the sample. A magnetic
field was applied along one of these short axes and the magnetization along this
axis of some Ni–Mn–Ga alloys close to stoichiometric Ni2MnGa was measured,
thus magnetization curves were plotted for these experiments. At the magnetic field
μ0 |H0| = 0.3 ÷ 0.5T a sharp jump in themagnetization is observed on these curves.
Such a jump is explained by the reorientation of the martensitic variants that form the
twin, or, in other words, by detwinning process. Similar experiments were carried out
for shape-memory magnetic films of the same material, and magnetization curves
were plotted (Thomas et al. 2009).

Under the action of only a magnetic field and the absence of forces and moments
of a different physical nature, we believe that detwinning occurs when the mass mag-
netic moment reaches a certain value (found from the experiment) in the elements
of the twin. It is convenient to consider this process in the short axes ci , i = 1, 2
of tetragonal martensitic cells forming these plates which are the axes of easy mag-
netization (the vectors of local spontaneous magnetization M are directed along or
against them in the absence of an external magnetic field) and coincide, as shown
above, with the vectors of orthonormal basis ei , i = 1, 2.

Twins of the same shape can be formed in two ways. In the first of them, the
structure arises from element 1 − 2 − 3′ (see Fig. 23.3 on the left) by shifting its
part 2 − 3′ in the direction of the vector δ1 to the position 2 − 3. This process was
discussed in the previous subsection where, for specific parameters of cubic and
tetragonal cells for Ni2MnGa, connections are established between the quantities
present in the Hadamard compatibility equation.
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Fig. 23.3 The formation of twin, χ = 46.8◦

As a result, the deformation gradient describing the kinematics of the process is
constructed both for basis δi , i = 1, 2, in which it is convenient to represent the
deformation of a simple shear, and for basis ei , i = 1, 2, which coincides with both
the axes of magnetic anisotropy of the material and the axes of easy magnetization.
This gradient in the basis δi , shown in Fig. 23.3 on the left or in the right Fig. 23.2, is
represented, as we know, by the expression f = g + s δ1δ2, where s is the magnitude
of the shift. As it follows from these figures,

δ1 = e1 cosχ + e2 sinχ, δ2 = − e1 sinχ + e2 cosχ, (23.29)

and then in the basis ei tensor f , which we will further denote as f1 indicating
belonging to the first case, takes the form

f1 = g − a (e1e1 − e2e2) + b e1e2 − c e2e1. (23.30)

Here, for specific values of s and χ given above,

a = s sinχ cosχ = 0.061582, b = s cos2 χ = 0.057899,
c = s sin2 χ = 0.065498

(23.31)

and f1 is represented as (see (23.28))

f1 = g − 0.061582 (e1e1 − e2e2) + 0.057899 e1e2 − 0.065498 e2e1. (23.32)

The second way of twin formation is shown in Fig. 23.3 on the right. Here, twin
occures from element 1′ − 2 − 3 by shifting its part 1′ − 2 in direction of the vector
δ1 to the position 1 − 2. Note that the vectors δ1 and δ2 on the right and left of
Fig. 23.3 have different positions relative to the vectors e1 and e2. As it follows from
the solution of the Hadamard compatibility equation, the position of vector δ1, in
direction of which the shift is taking place, is determined by the angle χ relative to
the element from which the twin is formed. In the first case, it is element 1 − 2 − 3′,
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while in the second case, it is element 1′ − 2 − 3. So, the formation of twins in the
second case is described by the expression the same as in the first case, but for the
vectors δi shown in Fig. 23.3 on the right, f = g + s δ1δ2. As it follows from this
figure,

δ1 = e1 sinχ + e2 cosχ, δ2 = e1 cosχ − e2 sinχ, (23.33)

and then tensor f , which we will further denote as f2 indicating belonging to the
second case, takes for this case in the basis ei the form

f2 = g + a (e1e1 − e2e2) − c e1e2 + b e2e1 (23.34)

and is represented allowing for (23.31) as

f2 = g + 0.061582 (e1e1 − e2e2) − 0.065498 e1e2 + 0.057899 e2e1. (23.35)

In accordance with these two cases of twinning process, detwinning process will
occur in two cases also: when element 2 − 3 rotates in the plane of the drawing
counterclockwise relative to the point 2 and takes the position 2 − 3′ and when the
element 1 − 2 rotates in the plane of the drawing clockwise relative to point 2 and
takes the position 1′ − 2. In the first case, the positive mass magnetic moment, which
is perpendicular to the plane of Fig. 23.3 and has a necessary magnitude, should be
applied to element 2 − 3, and in the second case, the negativemassmagneticmoment,
which is perpendicular to the plane of Fig. 23.3 and has a necessary magnitude, must
be applied to element 1 − 2. In the third case, when these necessary conditions are
met for two elements 1 − 2 and 2 − 3 at the same time, is unlikely due to all kinds
of fluctuation processes accompanying magnetic, force, and temperature processes
occurring in the body.

Asmentioned above, for an external magnetic field applied along the easy magne-
tization axis, reorientation (detwinning) in the Heusler Ni2MnGa alloy occurs, as fol-
lows from the experiments, whenμ0 |H0| = 0.3 ÷ 0.5 T. To this moment, 180◦ walls
separatingmagnetic domains disappear but the strength of the external magnetic field
is still insufficient to rotate the vectors of local magnetization in elements of the twin
mainly along the field. Therefore, a mass magnetic moment Lmag = μ0 M × H ,
acting on the elements of the twin 1 − 2 and/or 2 − 3 in Fig. 23.3, arises. We put
in accordance with this moment the critical value of the external field when the
detwinning process begins.

To realize the above, a magnetic problem is solved for the twinned state of the
Ni2MnGa Heusler alloy, when an external magnetic field is applied in the direction
along or against element 1 − 2 (easy axis c1, problemC1), or along or against element
2 − 3 (easy axis c2, problemC2) in Fig. 23.3, that fully corresponds to the experiment
described above. The obtained magnetization distribution allows us to determine
the average value of the mass magnetic moment Lmag in the regions occupied by
elements 1 − 2 and 2 − 3 of the twin. For the problem C1, as a result of the motion
of the magnetic domain walls, the magnetization vector M almost coincides with
the magnetic field vector H in the element 1 − 2. For this reason, the mass magnetic
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moment Lmag in this element of the twin is a rather small magnitude. In the element
2 − 3, the vectors M, as a result of the movement of the magnetic domain walls and
rotation of this vector, occupy such a position with respect to the vector H , that the
mass magnetic moment implements counterclockwise rotation and its value we will
call critical and denote as Lcr

mag for the above critical value of the applied external
magnetic field μ0 |H0| = 0.3 ÷ 0.5 T. This situation has a simple interpretation: the
positive magnetic moment acting counterclockwise on the element 2 − 3 of the twin
(see Fig. 23.3) causes this element to rotate around point 2 counterclockwise also in
the plane of the drawing. As a result, the element 2 − 3 becomes a linear continuation
of the element 1 − 2 (the reorientation of martensite variants occurs in accordance
with the first case considered above when discussing Fig. 23.3).

For the problem C2, as a result of the magnetic domain walls movement, the
magnetization vector M became almost coincident with the magnetic field vector
H in the element 2 − 3. For this reason, the mass magnetic moment Lmag in this
element of the twin is a rather small magnitude. In the element 1 − 2, the vectors
M, as a result of the movement of the magnetic domain walls and rotation of this
vector occupy such a position with respect to the vector H , that the mass magnetic
moment implements clockwise rotation when |L|mag = |L|crmag . This situation has a
simple interpretation: the negativemagneticmoment acting clockwise on the element
1 − 2 of the twin (see Fig. 23.3) causes the rotation of this element around point 2
clockwise also in the plane of the drawing. As a result, the element 1 − 2 becomes a
linear continuation of the element 2 − 3 (the reorientation of the martensitic variants
occurs in accordance with the second case considered above in the discussion of
Fig. 23.3).

In the next section, following any of these algorithms, we will get a specific value
of |L|crmag corresponding to the above-mentioned experiments performed by Heczko
et al. (2001), Heczko and Straka (2003), Heczko (2005), Heczko and Bradshaw
(2017). This critical value we use to determine the beginning of the detwinning
process in the same material, but when an external magnetic field is applied in
different directions relative to the c axis of each variant of martensite that makes
up the twin. As noted above detwinning occurs when the module of mass magnetic
moment |L|mag reaches a magnitude |L|crmag and will be positive in the element 2 − 3
of the twin with the easy axis c2 or negative in the element 1 − 2 of the twin with
the easy axis c1. In the first case element 2 − 3 will occupy position 2 − 3′ and will
be a continuation of element 1 − 2. In the second case element 1 − 2 will occupy
position 1′ − 2 (see Fig. 23.3) and will be a continuation of element 2 − 3. In any
other cases, detwinning process does not occur.

Kinematics corresponding to detwinning process is described by the relations
inverse (23.32), (23.35). It is easy to construct the latter based on the expression for
the deformation gradient written in the basis δi , corresponding to the left or right
Fig. 23.3, f = g + s δ1δ2. As it is easy to check, the tensor inverse to f , will have the
form f = g − s δ1δ2. Substituting representations (23.29) and (23.33) here, we will
have
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f−1
1 = g + a (e1e1 − e2e2) − b e1e2 + c e2e1 for the first case,

f−1
2 = g − a (e1e1 − e2e2) + c e1e2 − b e2e1 for the second case,

(23.36)

and taking into account (23.31), we get the following specific expressions:

f−1
1 = g + 0.061582(e1e1 − e2e2) − 0.057899e1e2 + 0.065498e2e1,
f−1
2 = g−0.061582(e1e1−e2e2)+0.065498e1e2−0.057899e2e1.

(23.37)

By direct multiplication, it is easy to show that tensors (23.36) are the inverse to the
tensors (23.30), (23.34) and tensors (23.37) are the inverse to the tensors (23.32),
(23.35).

Remark As noted earlier, the element 2 − 3 of the twin 1 − 2 − 3 (see Fig. 23.3)
passes into the element 2 − 3′ and becomes a continuation of the element 1 − 2 for
the first case of detwinning process. The result of this is the elongation of thematerial
in the direction of the vector e1 and its shortening in the direction of the vector e2. The
element 1 − 2 of the twin 1 − 2 − 3 passes into the element 1′ − 2 − 3 and becomes
a continuation of the element 2 − 3 for the second case of detwinning process. The
result of this is the elongation of the material in the direction of the vector e2 and
its shortening in the direction of the vector e1. As a result, the deformation process
becomes most evident in this basis and the convenience of such a representation will
be demonstrated below.

23.4 Statement of the Problem and Procedure for Its
Numerical Implementation

23.4.1 Computational Domain and Material Parameters

The relations which were presented in the previous sections, we use to construct
a model of magnetic and deformed behavior of a ferromagnetic Ni2MnGa Heusler
alloy in an externalmagnetic field. This alloy is considered both as amonotwin crystal
and as a polytwin crystal, each grain of which is a twinned variant of martensite and
has strong anisotropic properties. At the beginning, we consider the processes of
magnetization and deformation of a single grain, when an external magnetic field is
applied at different angles to the anisotropy axes of twinned variants, after which,
using the results obtained, we plot magnetization curves for various polycrystalline
samples and describe the deformation behavior of these materials in detwinning
process. Figure23.4 shows the structure of the twinned variant of martensite in a
monotwin crystal.

As a characteristic size of martensitic plates in Heusler alloy is about 100–200nm,
the computational domain is chosen in the form of a square L × L , where L = 380
nm. The 380 nm ×380 nm domain under consideration (blue square in Fig. 23.4) is
an elementary cell duplicated along the x and y axes. In the “herringbone” structure
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Fig. 23.4 Computational domain for the twinned variant of martensite in a monotwin crystal

under consideration, the axes of easymagnetization in themagnetic domains belong-
ing to two variants of martensitic plates forming the twin, are located relative to the
plane separating the martensitic variants (habitus plane) at an angle of 90◦ to each
other. Inside each martensitic variant, these axes in the magnetic domains are located
at an angle of 180◦. The arrows in Fig. 23.4 show the magnetization vectors directed
along or against the short axes (the axes of easymagnetization or the anisotropy axes)
c1 and c2 in each variant of martensite when there is no external magnetic field. With
this distribution, the sample is not magnetized as a whole.

For Ni2MnGa alloy, the values of saturation magnetization Ms , magnetocrys-
talline anisotropy constant Kanis , exchange constant Aexch , gyromagnetic ratio γ and
the damping (dissipation) parameter α are given in the Table23.1. For the numer-
ical implementation of the problem, we make all the relations dimensionless by
introducing the characteristic size l0 = 3.8 nm and energy ψ0 = μ0M2

s = 4.55 · 105
J/m3. We estimate the thickness of the domain wall to determine the characteristic
size of the finite element in the numerical calculation of the magnetization process.
This size should be such that at least four to five elements fall on the domain wall.
A large number of elements significantly increases the counting time, a smaller
number significantly reduces the accuracy of the result. We determine the order of
domain wall thickness by the relation δ ≈ √

Aexch/Kanis given in Brown’s mono-
graph (see Brown 1963), and for the Ni2MnGa δ ≈ 9 nm. The thickness by itself,Δ,
is determined for a 180◦ wall in two ways: by the Lilly method ΔL = π δ and by the
Landau–Lifshitz method ΔL−L = 2 δ, which, taking into account the above value of
δ, give ΔL ≈ 28 nm ≈ 7.4 l0 and ΔL−L ≈ 18 nm ≈ 4.7 l0. As a result, we obtain the
following dimensionless parameters:

M̃s = 1; K̃anis = Kanis

ψ0
≈ 0.54; Ãexch = Aexch

ψ0 l20
≈ 3.

We also make dimensionless the external magnetic field H̃0 = H0/Ms and intro-
duce the notation H̃0 = |H̃0|.
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Table 23.1 Material parameters

Parameter Value Dimension Source

Ms 6.015 · 105 A/m Mennerich et al.
(2011), Tickle and
James (1999)

Kanis 2.5 · 105 J/m3 Mennerich et al.
(2011), Tickle and
James (1999)

Aexch 2 · 10−11 J/m Mennerich et al.
(2011), Zhang and
Chen (2005)

γ 2.21 · 105 m/(A·s) Mennerich et al.
(2011)

α 0.5 – Mennerich et al.
(2011)

23.4.2 Problem Formulation and Procedure for Its
Numerical Realization

For the twinning structure, presented in Fig. 23.4, and the shape-memory ferromag-
netic Ni2MnGa Heusler alloy with the such parameters, we statement the problem to
describe the magnetic and deformed behavior in a magnetic field both as a monotwin
crystal and as a polytwin crystal. First, the behavior of amonotwin crystal ismodeled.
The periodicity conditions of the solution are imposed (Rogovoy et al. 2021a). For
the computational domain shown in Fig. 23.4, these conditions for the any function
ϕ have a view:

if y0 − L/2 ≤ y ≤ y0 + L/2 then

{
if x0 + L > x > x0 + L/2 then ϕ(x, y) = ϕ(x − L , y)

if x0 − L < x < x0 − L/2 then ϕ(x, y) = ϕ(x + L , y)
,

if x0 − L/2 ≤ x ≤ x0 + L/2 then

{
if y0 + L > y > y0 + L/2 then ϕ(x, y) = ϕ(x, y − L)

if y0 − L < y < y0 − L/2 then ϕ(x, y) = ϕ(x, y + L)
.

Here x0, y0 are the coordinates of the center of the computational domain shown in
Fig. 23.4. To implement these conditions, it is necessary to consider the 2 L × 2 L
domain already, in themiddle of which the domain L × L (blue square in Fig. 23.4) is
located. The motion and interaction of the walls of magnetic domains, the rotation of
the magnetization vectors and the detwinnng process should be taken into account in
this description. As noted earlier, we, based on the initial magnetization distribution
m andusing the coupled variational equations (23.18) and (23.21), establish the initial
boundaries of the magnetic domains and distribution of the magnetization vectors in
them in the absence of an external magnetic field (Problem 1). The obtainedmagnetic
structure is the initial one for the subsequent application of the magnetic field. Then,
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applying an external magnetic field in the direction of vector c1 (see Fig. 23.4), that
corresponds to the experiments given in the previous section (Heczko et al. 2001;
Heczko and Straka 2003; Heczko 2005; Heczko and Bradshaw 2017), we determines
the critical value of the mass magnetic moment Lcr

mag at which detwinning process is
carried out (Problem 2). Now we have everything to solve the problem in full and to
describe the movement of the domain walls, the rotation of the magnetization vector
and detwinning process that will allow us to construct the magnetization curves and
to define deformation states when an external magnetic field H0 is applied to the
computational domain, shown inFig. 23.4, at different angles to the y axis in the (x, y)
plane (Problem 3). Thus, we obtain the evolution of the magnetization distribution
in the sample with an increase in the external magnetic field, and magnetization
curves for each direction (dependencies of the average value of the projection of the
magnetization on the axis along which the external magnetic field is directed on the
applied field) and deformation states.

When solving the variational equation (23.21), the time step was τ = γ Ms t =
0.05 and θ = 0.6. This problemwas solved by the finite elementmethod (FEM) using
open source computing platform FEniCS (https://fenicsproject.org). A regular grid
consisting of 5184 finite elements was set. The blue square in Fig. 23.4 was divided
into 1296 equal squares, each of the resulting squares was divided diagonally into
four equal triangles. Each element was triangle with sides 7.5 nm, 7.5 nm and 10.6
nm. As a result, there were from three to four finite elements per domain wall, which
is quite enough to ensure the necessary accuracy of the solution. The specified above
periodicity conditions of the solution are imposed. A quadratic approximation was
set for the vector v, and linear forϕ andλ. H̃0 increased from 0 to 1.5with increments
of h̃0 = 0.01. Within each step of the applied magnetic field, 3000 time steps were
realized to fulfill the condition of convergence of the solution.

Having a sufficient set of magnetization curves and deformed states of a single
crystal for various directions of application of an external magnetic field to it,4

we describe the behavior of a polycrystal, each grain of which is a single crystal
oriented in the plane of Fig. 23.4 in a certain way which determines the isotropic
and anisotropic behavior of the polycrystal. As a result, we construct magnetization
curves and determine deformed states in a polycrystal, which is a representative
volume of the material under consideration (Problem 4).

The results obtained in solving Problems 1–4 are given in the next section.

4 The justification for the necessary sufficiency will be given in the following section.

https://fenicsproject.org
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23.5 Results of Numerical Simulation

23.5.1 A Monotwin Crystal

First of all, we will present results of calculating the evolution of the magnetization
vector m. This presentation demonstrates the movement and annihilation of the
domain walls and the rotation of the vector m, but does not yet take into account the
detwinning process. Why this is done in this way, we hope, will become clear a little
later. The results obtained in this direction describe the evolution of themagnetization
vector when the external magnetic field is applied to the y axis at the angles φ (see
Fig. 23.4) where 0◦ ≤ φ ≤ 90◦. As will be shown below, this is enough to describe
the magnetic and deformation behavior of various polytwin crystals. Among all the
results obtained in this direction, we will give only three of the most representative.
Figures23.5, 23.6 and 23.7 demonstrate these three cases of the evolution of the
magnetization vector in an external magnetic field. Although the problem under
consideration is plane, but when solving the Landau–Lifshitz–Gilbert equation, the
vector m does not lie in the (x, y) plane of the computational domain shown in
Fig. 23.4 and the arrows in these figures show the projections of the vector m onto
the plane (x, y) for various values of the external magnetic field H̃0 applied at angles
φ = 0◦ (Fig. 23.5), φ = 45.84◦ (Fig. 23.6) and φ = 90◦ (Fig. 23.7) to the y axis. The
color of the mx component is rendered so that areas where mx = 1 are red and areas
where mx = −1 are blue. Areas with other mx values are shown in gradations of
these colors according to the scales presented on the right.

Fig. 23.5 The process of the magnetization vector evolution when a magnetic field is applied along
the y axis: a H̃0 = 0, b H̃0 = 0.25, c H̃0 = 0.3, d H̃0 = 0.32, e H̃0 = 0.33, f H̃0 = 1.5
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Fig. 23.6 The process of the magnetization vector evolution when a magnetic field is applied at
an angle of 45.84◦ to the y axis: a H̃0 = 0, b H̃0 = 0.15, c H̃0 = 0.16, d H̃0 = 0.17, e H̃0 = 1.1,
f H̃0 = 1.5

Fig. 23.7 The process of the
magnetization vector
evolution when a magnetic
field is applied along the x
axis: a H̃0 = 0, b
H̃0 = 0.11, c H̃0 = 0.13,
d H̃0 = 1.5

Figures23.5a, 23.6a and 23.7a show the initial magnetic domains boundaries and
the distribution of themagnetization vectors in them and in the computational domain
in the absence of an external magnetic field, which is a solution to Problem 1 posed in
Sect. 23.4.2. Such a picture is obtained by solving the coupled variational equations
(23.18) and (23.21) for the initial distribution of the magnetization vector m shown
in Fig. 23.4. The resulting magnetic structure is the initial one for the subsequent
application of a magnetic field in various directions relative to the computational
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domain (Figs. 23.5, 23.6 and 23.7b, c and so on). It can be seen from these figures
that, at the initial stage, the magnetization occurs due to the motion of the magnetic
domains walls, and then due to the rotation of the magnetization vectors.

Knowing the distribution of themagnetization vector in the computational domain
for the angles 0◦ ≤ φ ≤ 90◦, we construct the dimensionlessmassmagneticmoments
L̃mag = Lmag/ψ0 corresponding to these angles, where Lmag = μ0 M × H . L̃mag

is defined as the average value of the mass magnetic moment in elements 1 − 2 (see
Fig. 23.3) corresponding to the middle of the computational domain in Fig. 23.4, for
this domain, and in elements 2 − 3 corresponding to the periphery of this computa-
tional domain, for this domain. The key results for further explanation and use are
shown in Fig. 23.8 depending on H̃0. The blue color shows the moment for element
1 − 2 (the middle area in Fig. 23.4), red for element 2 − 3 (the periphery area in
Fig. 23.4). φ is the angle to the y axis in degrees.

The dependence of L̃mag on H̃0, shown in Fig. 23.8 for the angle φ = 45.84◦,
allows us to solve Problem 2 of Sect. 23.4.2 and determine the critical value of the
mass magnetic moment L̃

cr
mag , in which the detwinning process is carried out. Here

the vector of the external magnetic field H0 acts in the direction of the axis of easy
magnetization c1 of one of the elements of the twin, located in the central region
of Fig. 23.4, as in the experiments in which the magnetization curve is constructed
taking into account the detwinning process (Heczko et al. 2001; Heczko and Straka
2003; Heczko 2005; Heczko and Bradshaw 2017).

As follows from Fig. 23.6, 180◦ walls separating magnetic domains disappear
already at a value H̃0 = 0.17 (see Fig. 23.6d), which corresponds to μ0 |H0| = 0.13
T, and the vector m lies completely in the plane of this figure. The vector of the
mass magnetic moment L̃mag (its average value), as it follows from Fig. 23.8 for the
angle φ = 45.84◦, directed at the reader perpendicular to the plane of this figure (red
line, counterclockwise rotation, positive moment L̃mag) in the peripheral region of
Fig. 23.4, where the vector of easy magnetization is c2, or from the reader also per-
pendicular to the plane of this figure (blue line, clockwise rotation, negative moment
L̃mag) in the middle area of Fig. 23.4, where the vector of easy magnetization is
c1. Directions of these moments in these areas correspond to all detwinning cases
discussed in Sect. 23.3.2. But the magnitude of L̃mag in the central region is very
small. Therefore, the detwinning will occur in accordance with the first case, when
the mass magnetic moment in the peripheral area reaches a critical value |L̃|crmag . As
follows from the experiments, presented in theworks of Heczko et al. (2001), Heczko
and Straka (2003), Heczko (2005), Heczko and Bradshaw (2017), detwinning begins
when the external magnetic field reaches the value μ0 |H0| = 0.3 ÷ 0.5 T. Choosing
the smallest value μ0 |H0| = 0.3, to which H̃ cr

0 = 0.41 corresponds, we have from
Fig. 23.8 for the angle φ = 45.84◦ that |L̃|crmag = 0.35, |L|crmag = 0.16 · 106 N·m/m3

and this is the solution to Problem 2 posed in Sect. 23.4.2.
Distributions of L̃mag , including that shown in Fig. 23.8, and the obtained critical

value of the mass magnetic moment allow us to conclude that there is no detwinning
until φ is less than ≈40◦. In the field of (≈40◦) ≤ φ ≤ (≈89◦), detwinning occurs
in accordance with the first case. At the same time, H̃ cr

0 at which the critical value
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Fig. 23.8 Mass magnetic moments

|L̃|crmag is reached, varies from 0.40 at φ ≈ 40◦ to 0.72 at φ ≈ 89◦. At an angle of

90◦, the curves of the dependence of L̃mag on H̃0 for element 1 − 2 (Fig. 23.3, the
middle of the calculated area in Fig. 23.4) and for element 2 − 3 (the periphery of the
computational domain in Fig. 23.4) differ only by a sign (see Fig. 23.8). This means
that detwinning here can occur both in accordance with the first and in accordance
with the second case but only when the external magnetic field reaches the value
H̃ cr

0 = 0.72. From the point of view of physics, the probability of any of these
cases is the same due to all kinds of fluctuations accompanying magnetic, force and
temperature processes occurring in the medium. But as shown below, at φ = 90◦ +
γ, 0◦ < γ < 90◦ detwinning occurs in accordance with the second case. Therefore,
from the point of view of mathematics, if we strive to an angle of 90◦ from the side
90◦−, then detwinning occurs in accordance with the first case, but if from the side
90◦+, then in accordance with the second one. We will continue to adhere to this
position, without having any specifics from the point of view of physics.

To construct models of polytwin crystal behavior, dependencies L̃mag on H̃0 were
calculated for 17 values of the angles φ, including 8, shown in Fig. 23.8. The segment
along the angleφ from0 to 1.5 radianswas passed in increments of 0.1 radians, 1.5708
radians corresponded to 90◦. Table23.2 shows the values of H̃ cr

0 at which the first
or the second case of detwinning process occurs for the corresponding φ. As noted
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Table 23.2 The values at which the dewinning process occurs

φ, radians 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.5708

φ, degrees 40.11 45.84 51.57 57.30 63.03 68.75 74.48 80.21 85.94 90.00

H̃ cr
0 0.40 0.41 0.42 0.43 0.45 0.48 0.52 0.57 0.65 0.72

Detwinning 1 case 1 or 2
case

Fig. 23.9 Domain DS containing a twin and having a certain symmetry

earlier, detwinning does not occur for angles φ less than 40◦. Therefore, the table
shows the results only for angles greater than 40◦.

Such a change in the angle φ is sufficient to fully describe the magnetic and
deformation reaction of the material to the application of an external magnetic field
at angles from 0◦ to 360◦, if we take into account the following. Figure23.4 shows the
computational domain, which is duplicated in the horizontal and vertical directions.
This choice of the computational domain allows us to set the periodicity condition
of the solution. But such a choice of domains repeating in space is not the only one.
In Fig. 23.9, in addition to the computational domain, another domain containing a
twin and having a certain symmetry is highlighted (let’s denote it as DS).

Based namely on the symmetry, we carry out analysis further. In Fig. 23.10 the
magnetic structure of this symmetrical domain DS is shown. Here, the k2 axis is the
vertical axis y of symmetry for domain DS and axis k1 is the axis x in Fig. 23.9. The
angles between the axes k1, 01′, k2, 02′, − k1, 01, − k2, 02, k1 are all 45◦. The
vectors of spontaneous magnetization m are directed from point 0 to points 1 and 2′
for one group of magnetic domains and from point 0 to points 2 and 1′ for another
group (see Fig. 23.9).

The magnetic structure presented in Fig. 23.10 has four 180◦ axes of symmetry:
k1, k2 and two diagonals 1 − 1′ and 2 − 2′. Symmetry with respect to diagonals
replaces vectors k1 and k2 with vectors k2 and k1 or—k2 and − k1 accordingly.
Symmetrywith respect to vector k1 replaces vector k2 with vector—k2 and symmetry
with respect to vector k2 replaces vector k1 with vector—k1. We will use symmetries
with respect to vectors k1 and k2 based on the fact that mutual positions of the vectors
m and H0 correspond to the conditions of such symmetry. We will describe the
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Fig. 23.10 The magnetic
structure of symmetrical
domain DS . H0 is a strength
vector of external magnetic
field applied to the domain at
an angle φ

symmetry using an orthogonal tensor (Rogovoy 2020)

O(ϕ, e) = g cosϕ + ee (1 − cosϕ) + (e × g) sinϕ. (23.38)

This tensor rotates any vector a with respect to the vector e by an angle ϕ coun-
terclockwise, leaving its length unchanged: a′ = O(ϕ, e) · a, |a′| = |a|. In addi-
tion, with this transformation, the angle between the two vectors a and b remains
unchanged: a · b = a′ · b′.

Using expression (23.38), a 180◦ rotation relative to the k1 axis is described by
the orthogonal tensor O(k1) = k1k1 − k2k2 − k3k3. As noted earlier, although the
problem under consideration is plane, but when solving the Landau–Lifshitz–Gilbert
equation, the vector m has three components, m = m1 k1 + m2 k2 + m3 k3. But m3

does not make sense to take into account when calculating the magnetization curves
and the mass magnetic moment for which we carry out this analysis. m3 does not
affect themagnetization curves at all, aswill be shownbelow, and themagnitudeof the
mass magnetic moment necessary to determine its critical value is calculated when
m3 is already zero. Therefore, the components of any vector or tensor associated
with the vector k3 are not taken into account further. Bearing in mind the above,
O(k1) = k1k1 − k2k2 and vectors

m = m1 k1 + m2 k2, H0 = H 1
0 k1 + H 2

0 k2, H = H 1 k1 + H 2 k2 (23.39)

are transformed by such rotation into the vectors m′ = O · m = m1 k1 − m2 k2,
H ′

0 = O · H0 = H 1
0 k1 − H 2

0 k2 and H ′ = O · H = H 1 k1 − H 2 k2 (the vectors
m′, H ′

0 and H ′ are a mirror image relative to the axis k1 of the vectors m, H0 and
H). The magnetization curves which is described by the relation m̃ = m · (H0/H0)

remain unchanged in this case since m · (H0/H0) = m′ · (H ′
0/H

′
0), but the vector

Lmag = μ0 Ms m × H changes its sign because m × H = −m′ × H ′ (both are
easy to check with a simple substitution. Note that m3 does not affect m · (H0/H0)

at all). With such rotation, as it is easy to understand, the angle φ between the vector
H ′

0 and the fixed vertical axis y (see Fig. 23.9), which was equal to β for the vector
H0, becomes equal to π − β, 0 ≤ β ≤ π/2 (mathematically, this follows from the
analysis of scalar products k2 · H0 and k2 · H ′

0). With that in mind and considering
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the results of Sect. 23.3.2, we conclude that detwinning process for π − β begins
at the same H̃ cr

0 as in Table 23.2 for the angle φ = β but instead of the first case it
will be carried out in accordance with the second case discussed in above-mentioned
Sect. 23.3.2. The magnetization curves will be exactly the same as for angle φ = β.

Let’s now perform a 180◦ rotation around the vector k2,O(k2) = − k1k1 + k2k2,
in addition to the previous rotation: O = O(k2) · O(k1) = − k1k1 − k2k2. Note,
this product is commutative, in contrast to the general case. As a result, the vectors
m, H0 and H (23.39) are transformed by such rotation into the vectors m′ = O ·
m = − (m1 k1 + m2 k2), H ′

0 = O · H0 = − (H 1
0 k1 + H 2

0 k2) and H ′ = O · H =
− (H 1 k1 + H 2 k2) that leads to the equalities m̃ = m̃ ′ and Lmag = L′

mag . Given that
the angle φ between the vector H ′

0 and the fixed vertical axis y shown in Fig. 23.9,
which was equal to β for the vector H0, becomes equal to π + β, 0 ≤ β ≤ π/2, we
conclude that detwinning process for π + β begins at the same H̃ cr

0 as in Table23.2
for the angle φ = β and is carried out in accordance with the first case indicated in
this table. The magnetization curves will be exactly the same as for angle φ = β.

Finally, we will perform a 180◦ rotation only around the k2 axis: O(k2) =
− k1k1 + k2k2.Of course, this rotation is a 180◦ rotation around the vector k1 in addi-
tion to the previous rotationO = O(k2) · O(k1). The vectors m, H0 and H (23.39)
are transformed by such rotation into the vectors m′ = O · m = −m1 k1 + m2 k2,
H ′

0 = O · H0 = − H 1
0 k1 + H 2

0 k2 and H ′ = O · H = − H 1 k1 + H 2 k2 that leads
to the equalities m̃ = m̃ ′ and Lmag = − L′

mag .With such rotation, the angleφbetween
the vector H ′

0 and the fixed vertical axis y shown in Fig. 23.9, which was equal to
β for the vector H0, becomes equal to 2π − β, 0 ≤ β ≤ π/2. Considering this and
the results of Sect. 23.3, we conclude that detwinning process for 2 π − β begins
at the same H̃ cr

0 as in Table23.2 for the angle φ = β but instead of the first case it
will be carried out in accordance with the second case discussed in above-mentioned
Sect. 23.3. The magnetization curves will be exactly the same as for angle φ = β.

Let us construct the average value of the projection of the magnetization on the
axis along which the external magnetic field is directed:

m̃ =< m|| >
1

S

∫
Ω(in)

(
m · H̃0

H̃0

)
dΩ(in), (23.40)

where S is the area of the considered domain. Figure23.11 demonstrates the depen-
dencies of m̃ on the modulus H̃0 for various directions (angles φ) of an external
magnetic field application, taking into account possible detwinning. Five stages of
the magnetization process are distinguished on each of the presented curves. At the
first stage, the 180◦ walls of the magnetic domains moves proportional to the applied
magnetic field and the magnetization depends linearly on this field. At the second
stage, a jump in magnetization occurs due to a significant increase in the speed of
movement of these walls. At the third stage, these walls are annihilated in a critical
field, magnitude of which H̃0, for example, is approximately 0.32 for Fig. 23.5e, or
0.17 for Fig. 23.6d, or 0.13 for Fig. 23.7c, and the magnetization vectors begin to turn
gradually, trying to lie along the applied external magnetic field. At the fourth stage,
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Fig. 23.11 Themagnetization curves for different directions of application of the externalmagnetic
field φ (in degrees)

which is observed only for φ greater than 40◦, detwinning occurs and the magneti-
zation increases sharply again by a jump. For the curves presented in Fig. 23.11 this
takes place at the values of H̃0 given in Table23.2. At the last fifth stage, the mag-
netization reaches saturation. The magnetization curves obtained show essentially
anisotropic magnetic properties in the twinned martensite of the Ni2MnGa alloy. By
this we solve the magnetic part of Problem 3, formulated in the Sect. 23.4.2.

The detwinning process, which accompanies the magnetization process at certain
values of the angle φ, leads to the occurrence of the structural deformation and can
be carried out, as it has been shown, in accordance with two cases. Let’s construct
a deformed state for these cases. For detwinning process the strain tensor has a
form e = (f−T · f−1 − g)/2, where f−1 = f−1

1 or f−1 = f−1
2 is defined in the basis

e1, e2 by the relations (23.36) or (23.37). Using expressions (23.36), this form is
concretized into an expression e = e11 e1e1 + e22 e2e2 + e12 (e1e2 + e2e1), where

e11 = (a2 + c2 + 2 a)/2, e22 = (a2 + b2 − 2 a)/2,

e12 = [(1 − a) c − (1 + a) b ]/2, for the first case;

e11 = (a2 + b2 − 2 a)/2, e22 = (a2 + c2 + 2 a)/2,

e12 = [(1 − a) c − (1 + a) b ]/2, for the second case.

Giving that a = 0.061582, b = 0.057899, c = 0.065498 (see (23.31)), we obtain

e11 ≈ 0.06, e22 ≈ − 0.06, e12 ≈ 0.00 for the first case;
e11 ≈ − 0.06, e22 ≈ 0.06, e12 ≈ 0.00 for the second case.

(23.41)
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These results correspond to the actual behavior of the sample. Indeed, for detwinning
process of the first case, element 2 − 3 of the twin 1 − 2 − 3 in Fig. 23.3 is converted
to an element 2 − 3′ which is a continuation of element 1 − 2. As a result the sample
increases its size in the direction of element 1 − 2 − 3′ (in direction of vector e1)
and decreases in the perpendicular direction (in direction of element 1′ − 2 − 3 or
vector e2). Therefore, the component e11 of the strain tensor is positive, and e22 is
negative (see the first line in (23.41)). For detwinning process of the second case,
element 1 − 2 of the twin 1 − 2 − 3 in Fig. 23.3 is converted to an element 1′ − 2
which is a continuation of element 2 − 3. As a result the sample increases its size in
the direction of element 1′ − 2 − 3 (in direction of vector e2) and decreases in the
perpendicular direction (in direction of element 1 − 2 − 3′ or vector e1). Therefore,
the component e22 of the strain tensor is positive, and e11 is negative (see the second
line in (23.41)), unlike the previous case. The magnitude of these strains is in a full
accordance with the experimental data (see Heczko and Straka 2003; Heczko 2005)
both in the first and in the second cases.

Since the detwinning in these two cases is carried out by a simple shift, this process
should take place without changing the volume. The obtained values of the strain
tensors components fully correspond to this position. In addition, it turned out that
the vectors e1, e2, coinciding with both the axes of easy magnetization c1, c2 of the
crystal and the axes of its anisotropy p1, p2, are the principal axes of the twinning
and detwinning deformation processes.

We emphasize that deformations (23.41) occur only if the conditions given in
Table23.2 are met: to each angle φ, which determines the direction of action of
the external magnetic field on the calculated area, a certain intensity of this field
corresponds. If this intensity is less than that shown in Table23.2, no detwinning
occurs. To take into account everything that is said here, based on the analysis carried
out after Table23.2 for the angle φ varying from 90◦ to 360◦, we rewrite represented
in (23.41) as

e11 = 0.06Γ (φ, H̃0), e22 = − 0.06Γ (φ, H̃0), e12 = 0.00,

Γ (φ, H̃0) =

⎧⎪⎪⎨
⎪⎪⎩

H(H̃0 − H̃ cr
0 (φ)) if 0 ≤ φ ≤ π/2

− H(H̃0 − H̃ cr
0 (π − φ)) if π/2 ≤ φ ≤ π

H(H̃0 − H̃ cr
0 (φ − π)) if π ≤ φ ≤ 3π/2

− H(H̃0 − H̃ cr
0 (2 π − φ)) if 3π/2 ≤ φ ≤ 2 π

, (23.42)

where H̃ cr
0 (ζ) = ∞, if 0◦ ≤ ζ ≤ 40◦ and H(x) is the Heaviside’s function:

H(x) =
{
1 if x ≥ 0
0 if x < 0

.

All of the above allows us to assert that the deformation part of Problem 3,
formulated in the Sect. 23.4.2, has been solved.
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23.5.2 A Polytwin Crystal

A monotwin crystal was considered above, to which an external magnetic field was
applied at different angles in the xy plane. Now fixing the direction of the external
magnetic field and placing the same calculated region shown in Fig. 23.4 at different
angles to it, we, using the curves shown in Fig. 23.11, describe the magnetization
of this representative composite region, which models a polycrystal with a different
arrangement of twins in the plane, and deformed state of a polycrystal arising as
a result of the detwinning processes in single crystals. This will be the solution to
Problem 4, formulated in Sect. 23.4.2. With this approach, as is customary in many
structural models, the magnetic interaction, as well as the deformation interaction
of these regions are not taken into account and the question of these effects remains
open.

In order to specify the location of single crystals in a polycrystal, we introduce,
in addition to the orthonormal coordinate systems (q1, q2) associated with single
crystals, the general orthonormal coordinate system (k1, k2) associated with the
polycrystal (see Fig. 23.12). The location of the single crystal in the polycrystal is
determined by the angle ϕ between the axis q2 of the single crystals and the vector
k1 of the general coordinate system. The arcs between the black dots in Fig. 23.12
cover equal angles of 45◦.

To construct the magnetization curves for isotropic and anisotropic polycrystals
we prepose the following relation

m(H̃0) =
( φ2∫

φ1

m̃(φ, H̃0) dφ

)/( φ2∫
φ1

dφ

)
, (23.43)

where m̃(φ, H̃0) is the values of magnetization that correspond to the angle φ, shown
in Fig. 23.4 for the single crystal, at the point H̃0. The angle φ, shown in Fig. 23.4,
is defined through the angle ϕ, shown in Fig. 23.12, by the relation φ = ϕ − ϕH ,

Fig. 23.12 The position of a
single crystal in a polycrystal

e1

e2

k1

k2

q2

q1

900

900
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where ϕ is the angle between the vector k1 and the vector q2 and ϕH is the angle
between the vector H0 and the vector k1. The angle ϕ defines the position of the
single crystal in polycrystal and ϕH defines the direction in which the vector of the
external magnetic field H0 acts with respect to the polycrystal. The relation (23.43)
describes the effect of the magnetization of single crystals for the angles φ belonging
to the segment [φ1, φ2] on the magnetization of a polycrystal, which corresponds to
the unit of the angle φ.

For isotropic polycrystal relation (23.43) takes the form

m(H̃0) =
( 2 π∫

0

m̃(φ, H̃0) dφ

)/( 2 π∫
0

dφ

)
. (23.44)

It is easy to see that this expression remains valid for any choice of ϕH . Indeed, let’s
choose any ϕH from the closed segment [0, 2 π] and fix it. Taking into account that
0 ≤ ϕ ≤ 2 π, we have:

if ϕH ≥ ϕ, then 0 ≤ ϕ ≤ ϕH and − ϕH ≤ φ ≤ 0,
if ϕH ≤ ϕ, then ϕH ≤ ϕ ≤ 2 π and 0 ≤ φ ≤ 2 π − ϕH ,

and as a result − ϕH ≤ φ ≤ 2 π − ϕH .

In such case expression (23.43) for isotropic material takes a form

m(H̃0) =
( 2 π−ϕH∫

−ϕH

m̃(φ, H̃0) dφ

)/( 2 π−ϕH∫
− ϕH

dφ

)
(23.45)

and is a complete analogue of the equation (23.44). Since the established connection
between (23.44) and (23.45) is valid for anyϕH , the relation (23.44) does not depend
on ϕH .

Let’s go back to the expression (23.43). Dividing the segment [φ1, φ2] into n
equal parts and believing m̃ as a constant on each such part, we obtain from (23.43)

m(H̃0) = 1

n

n∑
j=1

m̃(ϕ j − ϕH , H̃0). (23.46)

We consider three types of polycrystalline samples: isotropic polycrystal, texture-
oriented polycrystal—structure 1 and texture-oriented polycrystal—structure 2.

It is assumed that an isotropic polycrystal consists of 17 twinned single crystals of
the same volume located at angles ϕ j = 0◦, ..., 90◦ between the axis q2 of the single
crystals and the vector k1 of the general coordinate system (see Fig. 23.12). The
magnetization curves corresponding to these 17 positions are shown in Fig. 23.11
and are used to construct the magnetization curve for isotropic polycrystal. Let’s
show that such a change in the angle of ϕ is quite enough.
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In connection with what is said in the paragraphs after Table23.2,

m̃(2 π − φ j , H̃0) = m̃(−φ j , H̃0) = m̃(φ j , H̃0), m̃(π − φ j , H̃0) = m̃(φ j , H̃0),

m̃(π + φ j , H̃0) = m̃(φ j , H̃0), where φ j = ϕ j − ϕH , 0 ≤ φ j ≤ π/2.
(23.47)

Let’s represent (23.46) for an isotropic material in the form

m(H̃0) = 1

4 n

[ n∑
j=1

m̃(φ j , H̃0) +
n∑
j=1

m̃(π − φ j , H̃0)+

+
n∑
j=1

m̃(π + φ j , H̃0) +
n∑
j=1

m̃(2 π − φ j , H̃0)

]
,

where φ j in each sum varies from 0◦ to 90◦. This expression takes into account the
uniform distribution of the direction of the q2 vector of single crystals along a circle
from 0◦ to 360◦, which must be performed for an isotropic polycrystal. Then, in
accordance with (23.47), we will have four identical sums in square brackets and
this expression will eventually take the following form for an isotropic material at
the value n = 17 given above:

m(H̃0) = 1

17

17∑
j=1

m̃(φ j , H̃0), where 0 ≤ φ j ≤ π/2,

and it will be the simplest when ϕH = 0:

m(H̃0) = 1

17

17∑
j=1

m̃(ϕ j , H̃0). (23.48)

Here m̃(ϕ j , H̃0) is the values of magnetization at the point H̃0 for the curve shown
in Fig. 23.11 that correspond to the angle φ j at which the external magnetic field
acts on the calculated domain for the single crystal. We use expression (23.48) to
construct the magnetization curve of an isotropic polycrystal, shown in Fig. 23.13.

There is a predominant direction of martensitic structures orientation for textured
polycrystals. It is assumed that the structure 1 consists of 3 twinned single crystals
and the structure 2 consists of 5 twinned single crystals of the same volume. These
twinned crystals are located at angles ϕ j = 40.11◦, 45.84◦, 51.57◦ for the structure
1 and ϕ j = 34.38◦, 40.11◦, 45.84◦, 51.57◦, 57.30◦ for the structure 2 between the
vectors q2 of the twinned single crystals and k1 of the general coordinate system.

Remark This arrangement of twin crystals is not randomly chosen. The sets of
single-twin crystals, differently located in the space for the structure 1 and the struc-
ture 2, are grouped around a crystal whose angle ϕ is about 45◦. This means that
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for this crystal one element of the twin has the axis e1 directed against the vector
k1, and the other element of the twin has the axis e2 directed against the vector k2
(see Fig. 23.12). If an external magnetic field is applied along the axis k1 and reaches
a value of H̃0 ≈ 0.4 (see Table23.2), this crystal will detwinned and the element,
which was directed along the vector −k2, will be directed along the vector k1. As a
result, the magnetization in this crystal in the direction of the vector k1 will increase
by a jump. In addition, as it was shown above, detwinning process causes in this
crystal a structural strain and in the direction of the vector k1 its value is e11 ≈ 0.06.
The values of H̃0 ≈ 0.4 and e11 ≈ 0.06 will be the control values for the magnetic
and deformed behavior of the structures 1 and 2 under the action of an external
magnetic field in the direction of the vector k1. Detwinning of other crystals in these
structures under the action of a field in the same direction causes the same elonga-
tion as in the above case, but in a direction other than k1. This, in accordance with
(23.40), will reduce the value of m̃ compared to the previous case and this decrease
will be stronger the stronger the angle ϕ j will differ from 45◦. As a result, the jump
in the average value of magnetization, determined by the relation (23.43), should be
less for structure 2 compared to structure 1, since the structure 2 is the structure 1,
expanded by the two elements most distant from the element defined by an angle of
45◦.

The magnetization curve for the above anisotropic structures is described by the
expression

m(H̃0) = 1

n

n∑
j=1

m̃(ϕ j − ϕH , H̃0),

where n = 3 for the structure 1 and n = 5 for the structure 2,ϕH is the angle in the xy
plane between the vectors H0 and k1, m̃(ϕ j − ϕH , H̃0) is the values ofmagnetization
at the point H̃0 for the curve shown in Fig. 23.11 that correspond to the angleϕ j − ϕH

at which the external magnetic field acts on the calculated domain for the single
crystal. By applying an external magnetic field along the k1 vector (ϕH = 0) and in
the direction of 45◦ to this axis (ϕH = 45◦), we construct curves for an anisotropic
polycrystalline material of structures 1 and 2 (see Fig. 23.13).

The solid lines in Fig. 23.13 show the curves for such polycrystals when an exter-
nal magnetic field is applied along the k1 vector of these polycrystals. The dashed
lines show the magnetization curves for textured polycrystals when a magnetic field
is applied at an angle of 45◦ to the vector k1 (for an isotropic polycrystal, the magne-
tization curve completely coincided with the curve corresponding to the field acting
along the k1 vector).

When the external magnetic field is applied along the vector k1 (the solid lines)
the curves for anisotropic structures 1 and 2 have jumps in the region H̃0 = 0.4. At
that, the jump for structure 1 is greater than the jump for structure 2. All this is in
full accordance with what was said above in the Remark. If for structures 1 and 2
detwinning occurs simultaneously in all single crystals that make up these structures,
then in an isotropic material detwinning occurs sequentially in single crystals with
an increase in the external magnetic field, since the intensity of this field is not
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Fig. 23.13 Magnetization curves for different polycrystals

enough for simultaneous detwinning in all crystals. At a given time, detwinning
occurs only in those crystals, position of which and field strength in which satisfy
the conditions of Table23.2. For this reason, the curve for an isotropic material in
Fig. 23.13 (blue solid line) consists of a series of small jumps in magnetization in the
interval 0.4 ≤ H̃0 ≤ 0.7.

If an external magnetic field is applied at an angle of 45◦ to the vector k1, then, as
will be shown below, detwinning does not occur in structures 1 and 2 and there are
no jumps on the curves in Fig. 23.13 (dashed lines). The magnetization curves for
these textured polycrystals differ depending on the direction of the applied magnetic
field, because such polycrystals are anisotropic.

Let us now define the deformed state that occurs in isotropic and anisotropic
(structures 1 and 2) polycrystalline materials in the detwinning process. As it defined
at the end of the previous subsection, the deformations arising in detwinning process
are represented in the basis e1, e2 as

e = e11 e1e1 + e22 e2e2 + e12 (e1e2 + e2e1) (23.49)

and have components (see (23.42))

e11 = 0.06Γ (φ, H̃0), e22 = − 0.06Γ (φ, H̃0), e12 = 0.00. (23.50)

In the basis of polycrystal k1, k2 (see Fig. 23.12), the tensor (23.49) has the form

e = E11 k1k1 + E22 k2k2 + E12 (k1k2 + k2k1) (23.51)

and from the equality of tensors in (23.49) and (23.51) we conclude that Ekp =
ei j (ei · kk)(e j · kp) or, given that e12 = 0 for any case of detwinning process (see
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(23.50)),
E11 = e11 (e1 · k1)(e1 · k1) + e22 (e2 · k1)(e2 · k1),
E22 = e11 (e1 · k2)(e1 · k2) + e22 (e2 · k2)(e2 · k2),
E12 = e11 (e1 · k1)(e1 · k2) + e22 (e2 · k1)(e2 · k2).

(23.52)

From Fig. 23.12 we have

e1 · k1 = − cos(ϕ − 45◦), e1 · k2 = − sin(ϕ − 45◦),
e2 · k1 = sin(ϕ − 45◦), e2 · k2 = − cos(ϕ − 45◦)

and then expressions in (23.52) take a view

E11 = e11 cos2(ϕ − 45◦) + e22 sin2(ϕ − 45◦),
E22 = e11 sin2(ϕ − 45◦) + e22 cos2(ϕ − 45◦),

E12 = e11 sin(ϕ − 45◦) cos(ϕ − 45◦) − e22 sin(ϕ − 45◦) cos(ϕ − 45◦)

or, given that cos2 α = [1 + cos(2α)]/2, sin2 α = [1 − cos(2α)]/2, sinα cosα =
(1/2) sin(2α),

E11 = 1
2 (e11 + e22) + 1

2 (e11 − e22) sin(2ϕ),

E22 = 1
2 (e11 + e22) − 1

2 (e11 − e22) sin(2ϕ),

E12 = − 1
2 (e11 − e22) cos(2ϕ)

and, considering (23.50), we obtain

E11(φ,ϕ, H̃0) = 0.06Γ (φ, H̃0) sin(2ϕ), E22(φ,ϕ, H̃0) = − 0.06Γ (φ, H̃0) sin(2ϕ),

E12(φ,ϕ, H̃0) = − 0.06Γ (φ, H̃0) cos(2ϕ).

(23.53)
As explained earlier, φ = ϕ − ϕH (see the explanation after the relation (23.43)).
The relations (23.53) allow us to construct the deformed state that occurs in an

isotropic or anisotropic polycrystal during the detwinning process in single crystals.
To do this, we use a relation similar to (23.43),

Ê i j (ϕH ) =
( ϕ2∫

ϕ1

Ei j (φ,ϕ, H̃0) dϕ

)/( ϕ2∫
ϕ1

dϕ

)
. (23.54)

Dividing here the segment [ϕ1, ϕ2] into n equal parts, Δϕ = (ϕ2 − ϕ1)/n, believ-
ing that ϕ j = ϕ1 + ( j + 0.5)Δϕ, calculating Ei j in these points and assuming it a
constant on each such part, we obtain

Ê i j (ϕH ) = 1

n

n−1∑
j=0

Ei j (ϕ j − ϕH ,ϕ j , H̃0). (23.55)
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The expression (23.55) will be convenient for us to use for anisotropic material in
some cases.

For the isotropic material we use the relation (23.54). Let’s consider the cases
when an external magnetic field with strengths of H̃0 = 0.46 and H̃0 = 1.0 is applied
at angles of ϕH = 0◦ and ϕH > 0◦. Then, for ϕH = 0◦, φ = ϕ − ϕH = ϕ and in
accordance with (23.42) and the Table23.2 we have for H̃0 = 0.46 that

Γ (ϕ) =
⎧⎨
⎩
0 if 0 ≤ ϕ ≤ α1

1 if α1 ≤ ϕ ≤ α2

0 if α2 ≤ ϕ ≤ π/2
, Γ (ϕ) = −

⎧⎨
⎩
0 if π/2 ≤ ϕ ≤ π − α2

1 if π − α2 ≤ ϕ ≤ π − α1

0 if π − α1 ≤ ϕ ≤ π
,

Γ (ϕ) =
⎧⎨
⎩
0 if π ≤ ϕ ≤ π + α1
1 if π + α1 ≤ ϕ ≤ π + α2
0 if π + α2 ≤ ϕ ≤ 3π/2

, Γ (ϕ) = −
⎧⎨
⎩
0 if 3π/2 ≤ ϕ ≤ 2 π − α2
1 if 2 π − α2 ≤ ϕ ≤ 2 π − α1
0 if 2 π − α1 ≤ ϕ ≤ 2 π

,

where, as it follows from Table23.2, α1 = 40◦, α2 = 63.03◦. With this in mind and
substituting (23.53) into (23.54) we get

Ê11 = 0.06

2 π

( α2∫
α1

sin(2ϕ) dϕ −
π−α1∫

π−α2

sin(2ϕ) dϕ+

+
π+α2∫

π+α1

sin(2ϕ) dϕ −
2 π−α1∫

2 π−α2

sin(2ϕ) dϕ

)
. (23.56)

It is easy to show that each of the last three integrals with their signs is equal to
the first integral. As a result

Ê11 = 2
0.06

π

α2∫
α1

sin(2ϕ) dϕ = 0.06

π
[ cos(2α1) − cos(2α2)]. (23.57)

Substituting the above values of angles here, we get for ϕH = 0◦ and H̃0 = 0.46
that Ê11 = 0.015 and, as it follows from (23.53), that Ê22 = − 0.015. It also follows
from (23.53) that Ê12 is represented in the case under consideration as (23.56) with
the replacement of the sine by the cosine and the addition of a minus sign before the
entire expression. It is easy to show that the terms in the obtaining expression are
mutually destroyed under any α1 and α2 and as a result Ê12 = 0.

If now H̃0 = 1.0, then, in accordance with Table23.2, we have for ϕH = 0◦
that α2 = π/2 in the expression (23.56) for Ê11 and as a result, Ê11 = 0.022,
Ê22 = − 0.022, Ê12 = 0. The increase in the modulus of these components with
the increasing the external magnetic field is explained by the inclusion of additional
regions in detwinning process (see Table23.2). The expression for Γ (ϕ) which will
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not be quite correct in this case, it is clear how to convert, but having the relation
(23.56), it is now not necessary.

For ϕH > 0◦, φ = ϕ − ϕH and in accordance with (23.42) and the Table23.2 we
have for H̃0 = 0.46 that

Γ (ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ϕH + α1 ≤ ϕ ≤ ϕH + α2

− 1 if π + ϕH − α2 ≤ ϕ ≤ π + ϕH − α1

1 if π + ϕH + α1 ≤ π + ϕH + α2

− 1 if π + ϕH − α2 ≤ π + ϕH − α1

,

andΓ (ϕ) = 0 for all otherϕ. Then, equation (23.54), in view of the relations (23.53),
takes for Ê11 the form

Ê11 = 0.06

2 π

( ϕH+α2∫
ϕH+α1

sin(2ϕ) dϕ −
π+ϕH−α1∫

π+ϕH−α2

sin(2ϕ) dϕ +

+
π+ϕH+α2∫

π+ϕH+α1

sin(2ϕ) dϕ −
2 π+ϕH−α1∫

2 π+ϕH−α2

sin(2ϕ) dϕ

)
. (23.58)

It is easy to show that this equality can be represented as

Ê11 = 0.06

π

( α2∫
α1

sin(2ϕ + 2ϕH ) dϕ +
α2∫

α1

sin(2ϕ − 2ϕH ) dϕ

)
,

or as

Ê11 = 0.06

π

α2∫
α1

[ sin(2ϕ + 2ϕH ) + sin(2ϕ − 2ϕH )] dϕ,

or at last, given that sin A + sin B = 2 sin
A + B

2
cos

A − B

2
, as

Ê11(ϕH ) = 2
0.06

π
cos(2ϕH )

α2∫
α1

sin(2ϕ) dϕ. (23.59)

As it follows from (23.53) Ê22 = − Ê11 and Ê12 is represented in the case under
consideration as (23.58) with the replacement of the sine by the cosine and the
addition of a minus sign before the entire expression
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Ê12 = − 0.06

2 π

( ϕH+α2∫
ϕH+α1

cos(2ϕ) dϕ −
π+ϕH−α1∫

π+ϕH−α2

cos(2ϕ) dϕ +

+
π+ϕH+α2∫

π+ϕH+α1

cos(2ϕ) dϕ −
2 π+ϕH−α1∫

2 π+ϕH−α2

cos(2ϕ) dϕ

)
.

This equality is reduced to

Ê12 = 0.06

π

α2∫
α1

[ cos(2ϕ + 2ϕH ) − cos(2ϕ − 2ϕH )] dϕ,

or, given that cos A − cos B = 2 sin
A + B

2
sin

B − A

2
, to

Ê12(ϕH ) = 2
0.06

π
sin(2ϕH )

α2∫
α1

sin(2ϕ) dϕ. (23.60)

Relations (23.59) and (23.60) are the general expressions that defines the compo-
nents of the strain tensor that occurs in an isotropic material with the shape memory
when it is detwinned. The magnitudes of these components depend both on the mag-
nitude of the applied external magnetic field, which in accordance with Table23.2
determines the value of the angleα2, and on the direction of this field action (from the
angleϕH ).As it follows fromTable23.2,α2 = 63.03◦ when H̃0 = 0.46andα2 = 90◦
when H̃0 = 1.00.At the same time the angleα1 remains unchanged,α1 = 40◦.When
ϕH = 0 expression (23.59) is exactly the same as (23.57) and from the expression
(23.60) it follows that Ê12 = 0 as it was noted earlier. Although the components of
the strain tensor in the orthonormal basis ki (see Fig. 23.12) depend on the angle
ϕH between vectors k1 and H0, in the orthonormal basis γ i in which vector γ1 is
directed along the vector H0, these components remain unchanged. This can easily
be shown in the same way as the relationship was shown between ei j and Ekp in the
expressions (23.49) and (23.51). Therefore, the such material is called isotropic.

Let us now consider the deformed state of an anisotropic material with shape
memory when it is detwinned. We assume that twinned single crystals of the same
volume are continuously distributed in a polycrystal atϕ1 ≤ ϕ ≤ ϕ2 and the external
magnetic field is applied at an angle ϕH . We will consider two special cases of
textured polycrystals for which magnetization curves were above constructed: the
structure 1 when ϕ1 = 40.11◦ and ϕ2 = 51.57◦, and the structure 2 when ϕ1 =
34.38◦ andϕ2 = 57.30◦. For these two caseswe present an algorithm for determining
the deformed state during the dissipation of twins (during detwinning) for the two
angles ϕH of the action of an external magnetic field: ϕH = 0 and ϕH = 45◦, and
two H̃ : H̃0 = 0.46 and H̃0 = 1.00. The deformed state during detwinning for any
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other case of anisotropy and the direction of action of the external magnetic field can
be determined in accordance with this algorithm.

So, we analyze the deformation behavior of structure 1 at ϕH = 0, H̃0 = 0.46.
(1) Since φ = ϕ − ϕH then φ = ϕ and ϕ1 ≤ φ ≤ ϕ2 where ϕ1 = 40.11◦ and ϕ2 =
51.57◦. (2) Such a change in φ corresponds to the first line in (23.42). As a result,
we have Γ (φ, H̃0) = H(0.46 − H̃ cr

0 (φ)). (3) As it follows from Table23.2, Γ = 1
for H̃0 = 0.46 if φ = ϕ ∈ U where the set U = [40◦, 63.03◦]. Since for structure 1
ϕ ∈ U1 where the setU1 = [40.11◦, 51.57◦] then it follows from the intersection of
the setsU andU1,U ∩U1, that ϕ1 = 40.11◦ and ϕ2 = 51.57◦. (4) As a result of the
above, we obtain from the expressions (23.53) and (23.54) that

Ê11 = a S, Ê22 = − a S, Ê12 = − a C,

a = 0.06/(ϕ2 − ϕ1), S =
ϕ2∫
ϕ1

sin(2ϕ) dϕ, C =
ϕ2∫
ϕ1

cos(2ϕ) dϕ
(23.61)

and for structure 1, ϕH = 0, H̃0 = 0.46 the detwinning strain tensor has the follow-
ing components in the basis ki (see Fig. 23.12): Ê11 = 0.06, Ê = − 0.06, Ê12 =
0.0017.

Now, we analyze the deformation behavior of structure 1 at ϕH = 0, H̃0 = 1.00.
Everything that is said in item (1) of the previous case remains unchanged here. In
accordance with item (2) Γ (φ, H̃0) = H(1.00 − H̃ cr

0 (φ)) and with item (3) the set
U for H̃0 = 1.00 has the formU = [40◦, 90◦]. Since the setU1 remains unchanged,
then the set that is the intersection of sets U and U1 remains unchanged too. As a
result, the angles ϕ1 and ϕ2 are the same as in the previous case and from item (4)
we have the same components of the detwinning strain tensor as above.

If the external magnetic field acts on structure 1 at an angle ϕH = 45◦ then φ =
ϕ − ϕH will be change, given that ϕ ∈ U1 where the set U1 = [40.11◦, 51.57◦],
in the interval φ ∈ [−4.89◦, 6.57◦] what corresponds to the first and fourth areas
of change of φ in the expression (23.42): φ ∈ [0◦, 6.57◦] and φ ∈ [355.11◦, 360◦].
Since H̃ cr

0 (ζ) = ∞, if 0◦ ≤ ζ ≤ 40◦, where ζ = φ for the first area and ζ = 2 π − φ
for the second area, then Γ = 0 in the any of these cases and detwinning does not
occur at any magnitude of the external magnetic field.

All of the above about the deformation behavior during the detwinning structure
1 at ϕH = 0 and H̃0 = 0.46 remains valid for structure 2 with the replacement of the
setU1 by the setU2 where the setU2 = [34.38◦, 57.30◦] is the set that describes the
structure 2. The consequence of the intersection of the sets U and now U2 (instead
of U1) will be the values of the angles ϕ1 = 40◦ and ϕ2 = 57.30◦ and, as a result,
we obtain from the expressions (23.61) that Ê11 = 0.0586, Ê = − 0.0586, Ê12 =
0.0075.

By performing an analysis similar to that performed for structure 1 at ϕH = 0
and H̃0 = 1.00, as well as at ϕH = 45◦, we obtain similar results for structure 2: at
ϕH = 0 and H̃0 = 1.00, the deformed state remains exactly the same as at ϕH = 0
and H̃0 = 0.46, and at ϕH = 45◦, detwinning does not occur.
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Table 23.3 Some results of the performed deformation analysis

ϕH = 0 ϕH = 45◦

H̃0 = 0.46 H̃0 = 1.0 H̃0 = 0.46 H̃0 = 1.0

Isotrop., E11 0.015 0.022 0.015 0.022

Structure 1, E11 0.06 0.06 0 0

Structure 2, E11 0.0586 0.0586 0 0

The results of the deformation analysis carried out above are presented in
Table23.3. Here E11 is the average strain of elongation of the considered structure in
the direction of the vector k1 (see Fig. 23.12) caused by the detwinning process (for
an isotropic material, this vector can have any direction). As follows from this table,
the detwinning of an isotropic material occurs sequentially and is determined by an
increase in the strength of the applied external magnetic field. In structures 1 and
2, complete detwinning occurs when a field is applied along the vector k1 already
at H̃0 = 0.46 and the value of E11 for the first structure is greater than that of the
second. When the field is applied at an angle of 45◦ to the vector k1, the detwinning
does not occur at any external field strength.

The results of the deformation analysis fully correspond to the explanations given
above in the Remark and when discussing the curves in Fig. 23.13.

23.6 Conclusion

Within the framework of the theory of micromagnetism, the problem of magnetiza-
tion of a single-twinnedmartensitic crystal of theNi2MnGa alloywith shapememory
by the finite element method was solved. The dynamics of the magnetic process was
described by the Landau–Lifshitz–Gilbert equation, for which, as for other differen-
tial equations and boundary conditions of the theory of micromagnetism, variational
equations were put in correspondence. This made it possible to reduce the require-
ments for the smoothness of the problem solution.Magnetization curves were plotted
for various angles of application of the magnetic field to the anisotropy axes of the
twin variants.

A condition for the detwinning of a shape-memory ferromagnetic alloy in a mag-
netic field was proposed and the influence of the reorientation (detwinning) of the
martensitic variants forming a twin on the magnetization of material and on the
occurrence of the structural (detwinning) deformations in it were taken into account.

A change in the main mechanisms of magnetization, such as the movement and
interaction of 180◦ magnetic domain walls, the rotation of the local magnetization
vectors and the occurrence of the structural deformations connected with detwinning
process, leads to kinks in the magnetization curves which occur at various values
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of the external magnetic field depending on the direction of action of this magnetic
field.

Based on the magnetization curves obtained for single crystal and deformation
statewhich corresponds to detwinning state of such structure, the deformed states and
themagnetization curveswere constructed for various types of polycrystals (isotropic
and textured) which are some structures from the single crystals. For texture-oriented
polycrystals, the magnetization curves and deformation states differ depending on
the direction of the applied magnetic field, because such polycrystals are anisotropic.
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Chapter 24
Stability of Circular Sandwich Plate
with Porous Core and Prestressed
Uniform Coatings

Denis N. Sheydakov and Viacheslav A. Lyzhov

Abstract Within the framework of a general stability theory for three-dimensional
bodies the buckling analysis is carried out for a three-layer circular plate under radial
compression. Themiddle layer of the plate (core) ismade of a highly porousmaterial,
and to describe its behavior the micropolar continuum model is used. The top and
bottom layers (coatings) are made of classic non-polar materials. It is assumed that
the coatings were attached to the porous core after preliminary deformations of radial
tension-compression and contain internal stresses. When determining the subcritical
state in the core and the coatings, writing of constitutive relations with respect to
different reference configurations is used. For the physically linear material, the
equations of neutral equilibrium are derived, which describes the behavior of the
considered sandwich plate in a perturbed state. For a special case of axisymmetric
perturbations the stability analysis of a circular sandwich plate with a porous core and
prestressed uniform coatings is reduced to solving a linear homogeneous boundary
value problem for a system of seven ordinary differential equations. It is also found
that if top and bottom coatings are identical then the stability analysis can be reduced
to solving two independent linear homogeneous boundary value problems for half
of the sandwich plate.

Keywords Nonlinear elasticity · Deformation stability · Micropolar medium ·
Internal stresses · Sandwich plate · Porous core · Prestressed coating

24.1 Introduction

The problem of equilibrium stability for deformable bodies is of considerable inter-
est from a practical point of view because the exhaustion of load-bearing capacity
and the collapse of buildings and engineering structures quite often occur due to
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the buckling under external loads. The stability of classical elastic bodies has been
extensively studied (Fu and Ogden 1999; Pignataro et al. 1991; Timoshenko and
Gere 2009; Volmir 1970). However, due to the development of modern technologies
and the emergence of new materials, the buckling analysis for bodies with a com-
plex microstructure and internal stresses is becoming quite relevant. Particularly, in
recent decades, various constructions made of highly porous materials such as metal
and polymer foams (Ashby et al. 2000; Banhart 2000; Degischer and Kriszt 2002;
Gibson and Ashby 1997) have become widely used in the aerospace and automotive
industries. This is due to a number of their advantages: low weight, high specific
strength, excellent possibilities to absorb energy, etc. As a rule, these constructions
have a sandwich structure—a foam core is covered by hard and stiff shells (coatings).
The latter are necessary for corrosion and thermal protection, as well as optimization
of mechanical properties under loading. In addition, coatings often contain internal
stresses, which can be both a side effect of the assembly process due to the plastic
strains, heating, phase transitions, etc., and a required functional property.

The present paper is dedicated to studying the stability of nonlinearly elastic
sandwich plates with a highly porous core and prestressed uniform coatings. First, it
should be noted that the behavior of porousmaterials quite often cannot be adequately
describedwithin the framework of the classical elasticity theory due to the absence of
internal size parameters. One approach to account for the microstructure influence is
to use the model of a micropolar continuum (Cosserat continuum) (Altenbach et al.
2010; Cosserat and Cosserat 1909; Eringen 1999; Kafadar and Eringen 1971; Mau-
gin 1998; Toupin 1964), i.e., medium with couple stresses and rotational degrees of
freedom. It allows, in particular, describing the size effects observed experimentally
for porous materials (Diebels 1999; Diebels and Steeb 2002; Lakes 1986, 1995).
Next, a distinctive feature of sandwich plates with prestressed coatings is the lack of
a unified natural (stress-free) reference configuration. For this reason, when deriving
the governing equations for different parts of a sandwich plate, the writing of the
constitutive relations with respect to different reference configurations is used (Ere-
meev and Zubov 2017;Merodio and Ogden 2016;Merodio et al. 2013; Zubov 2019).
Given the above, we studied the bifurcation of equilibrium for a quite common struc-
tural element—a circular sandwich plate with a porous core and prestressed coatings.
The static Euler method was used for the stability analysis. Within this method, the
critical values of loading parameters are determined from the condition of existence
for non-trivial solutions of a linearized boundary value problem.

24.2 Circular Sandwich Plate

We consider a three-layer circular plate of radius r0 and thickness H . The mid-
dle layer of the plate (core) of thickness 2h is made of a highly porous material,
and to describe its behavior the micropolar continuum model is used. The top and
bottom layers (coatings) are formed from the circular panels made of classic non-
polar materials. These panels are attached to the porous core after their preliminary
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deformation. We assume that the coatings experienced initial deformations of radial
tension-compression, described by the following relations (hereinafter, the super-
scripts “+” and “−” will denote the quantities related to the top coating and the
bottom coating, respectively) (Lurie 1990; Sheydakov 2013):

r = a±ρ±, 0 ≤ ρ± ≤ ρ±
0 , a±ρ±

0 = r0; ϕ = θ±, 0 ≤ θ± ≤ 2π;
z = c±ζ± + z±

0 , 0 ≤ ζ± ≤ ζ±
0 , z−

0 = −c−ζ−
0 − h, z+

0 = h; (24.1)

C±
0 = a±e±

ρ ⊗ er + a±e±
θ ⊗ eϕ + c±e±

ζ ⊗ ez, (24.2)

where ρ+, θ+, ζ+ and ρ−, θ−, ζ− are the cylindrical coordinates in natural reference
configurations χ+ and χ− of circular panels acting as the top and bottom coat-
ings, ρ+

0 , ζ+
0 and ρ−

0 , ζ−
0 are the radii and the thicknesses of these panels before

the deformation; r,ϕ, z are the cylindrical coordinates in a prestressed state χ;{
e+
ρ , e+

θ , e+
ζ

}
,
{
e−
ρ , e−

θ , e−
ζ

}
and

{
er , eϕ, ez

}
are orthonormal vector bases of the cor-

responding cylindrical coordinates; a+ and a− are the given coefficients of radial
tension-compression of the coating panels, c+ and c− are some constants character-
izing the deformations in the thickness direction of these panels and determined from
the absence of loads on their faces; C+

0 and C−
0 are the deformation gradients corre-

sponding to the transition from the natural reference configuration to the prestressed
state of the top coating and the bottom coating, respectively

(
χ± → χ

)
.

Next, we study the deformation of radial compression for the considered sandwich
plate, choosing χ as the reference configuration, which is natural for the micropolar
core, but prestressed for the non-polar coatings. This deformation is described by the
relations (Lurie 1990; Sheydakov 2013; Zubov 1997)

R = αr, 0 ≤ r ≤ r0; � = ϕ, 0 ≤ ϕ ≤ 2π;

Z =
⎧⎨
⎩

f − (z) , −h − h− ≤ z ≤ −h,

f (z) , |z| ≤ h,

f + (z) , h ≤ z ≤ h + h+,

h± = c±ζ±
0 ;

R = αreR + f (z) eZ , R± = αreR + f ± (z) eZ .

(24.3)

Here R,�, Z are the cylindrical coordinates in the actual (deformed) configura-
tion X; {eR, e�, eZ } is an orthonormal vector basis of the corresponding cylindrical
coordinates; α is the given radial compression ratio; f (z) , f + (z) , f − (z) are the
unknown functions which characterize the thickness deformation of the sandwich
plate; h+ and h− are the thicknesses of the prestressed coatings; R, R+, R−are the
radius-vectors corresponding to the transition from the chosen reference to the actual
configuration (χ → X) of the circular sandwich plate.

In addition, a proper orthogonal tensor of microrotationH, which determines the
rotation of medium particles, is given for the micropolar core (|z| ≤ h):

H = er ⊗ eR + eϕ ⊗ e� + ez ⊗ eZ . (24.4)
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According to the expressions (24.3), the deformation gradients C,C+,C− are
(hereinafter the ′ denotes the derivative with respect to z):

C = ◦∇ R = αer ⊗ eR + αeϕ ⊗ e� + f ′ez ⊗ eZ ,

C± = ◦∇ R± = αer ⊗ eR + αeϕ ⊗ e� + f ±′ez ⊗ eZ ,

(24.5)

where
◦∇ is a nabla-operator in the reference configuration χ.

It follows from relations (24.4), (24.5) that thewryness tensorL for themicropolar
core of the sandwich plate (|z| ≤ h) is equal to zero (I is the unit tensor) (Nikitin
and Zubov 1998; Pietraszkiewicz and Eremeyev 2009; Zubov 2016)

L = 1

2
tr

[
H ·

( ◦∇ ×H
)T

]
I − H ·

( ◦∇ ×H
)T

= 0, (24.6)

and the stretch tensor Y is expressed as follows

Y = C · HT = αer ⊗ er + αeϕ ⊗ eϕ + f ′ez ⊗ ez . (24.7)

According to the Eqs. (24.5), the expressions of the stretch tensors U+,U−
and the macro rotation tensors A+,A− for the top

(
h ≤ z ≤ h + h+)

and bottom(−h − h− ≤ z ≤ −h
)
non-polar coatings have the form (Lurie 1990)

U± =
(
C± · C±T

) 1
2 = αer ⊗ er + αeϕ ⊗ eϕ + f ±′ez ⊗ ez,

A± = U±−1 · C± = er ⊗ eR + eϕ ⊗ e� + ez ⊗ eZ .

(24.8)

We assume that the elastic properties of the sandwich plate are described by the
model of a physically linear material. In this case, the specific strain energy W for
the micropolar core is a quadratic form of the tensors Y − I and L (Eremeyev and
Zubov 1994; Lakes 1995)

W = 1

2
λtr2 (Y − I) + 1

2
(μ + κ) tr

(
(Y − I) · (Y − I)T

) +

+ 1

2
μtr (Y − I)2 + 1

2
γ1tr

2L + 1

2
γ2tr

(
L · LT

) + 1

2
γ3trL2,

(24.9)

μ + κ > 0, λ + 2μ + κ > 0, γ2 > 0, γ1 + γ2 + γ3 > 0,

and the constitutive relations for the Piola-type stress and couple stress tensors
D and G at |z| ≤ h have the form (Sheydakov 2013, 2016):
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D = ∂W

∂Y
· H = [

λtr (Y − I) I + (μ + κ) (Y − I) + μ
(
YT − I

)] · H,

G = ∂W

∂L
· H = [

γ1 (trL) I + γ2L + γ3LT
] · H,

(24.10)

where λ,μ,κ, γ1, γ2, γ3 are the micropolar elastic parameters of the porous core.
The specific strain energiesW+ andW− for the top and bottom non-polar coatings

are written as follows (Lurie 1990):

W± = 1

2
λ±tr2

(
U±

1 − I
) + μ±tr

(
U±

1 − I
)2

, μ± > 0, λ± + 2μ± > 0. (24.11)

Here λ+,μ+ and λ−,μ− are the elastic parameters of the uniform coatings; U+
1 and

U−
1 are the stretch tensors corresponding to the transition from the natural (stress-

free) reference configuration to the actual (deformed) state of the top coating(
h ≤ z ≤ h + h+)

and the bottom coating
(−h − h− ≤ z ≤ −h

)
, respectively(

χ± → X
)
. To obtain expressions for these tensors, we use the formulae for trans-

forming the deformation gradient when changing reference configuration (Eremeev
and Zubov 2017; Lurie 1990; Truesdell 1977):

C±
1 = C±

0 · C±, U±
1 =

(
C±

0 · U±2 · C±
0
T
) 1

2
,

A±
1 =

(
C±

0 · U±2 · C±
0
T
)− 1

2 · C±
0 · U± · A±,

(24.12)

where C+
1 ,A+

1 and C−
1 ,A−

1 are the deformation gradients and the macrorotation
tensors for the transition from the corresponding natural reference configurations to
the actual state of the coatings

(
χ± → X

)
.

According to representation (24.11) for the non-polar coatings, the Piola stress
tensors D+

1 ,D−
1 with respect to natural reference configurations χ+ and χ− have the

form (Sheydakov 2011a, b):

D±
1 = ∂W±

∂U±
1

· A±
1 = [

λ±tr
(
U±

1 − I
)
I + 2μ± (

U±
1 − I

)] · A±
1 . (24.13)

The constitutive relations for the coatings with respect to the prestressed reference
configuration χ are derived using the formulae connecting the Piola stress tensors in
different reference configurations (Eremeev and Zubov 2017; Lurie 1990)

D± = J±
0

−1C±
0
T · D±

1 , J±
0 = detC±

0 . (24.14)

Thus, according to Eqs. (24.12)–(24.14) for the top and bottom coatings, the Piola
stress tensors D+,D− relative to reference configuration χ have the form:
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D± = J±
0

−1C±
0
T ·

(
λ±tr

[(
C±

0 · U±2 · C±
0
T
) 1

2− I
]
I+

+ 2μ±
[(

C±
0 · U±2 · C±

0
T
) 1

2− I
])

·
(
C±

0 · U±2 · C±
0
T
)− 1

2· C±
0 · U± · A±.

(24.15)
It follows from expressions (24.4), (24.6), (24.7) and (24.10) that for the microp-

olar core the Piola-type couple stress tensor G is equal to zero in the case of radial
compression of a circular sandwich plate and the Piola-type stress tensor D is

D = [λs + ψ (α − 1)]
(
er ⊗ eR + eϕ ⊗ e�

) + [
λs + ψ

(
f ′ − 1

)]
ez ⊗ eZ ,

(24.16)
s = 2α + f ′ − 3, ψ = 2μ + κ.

According to the relations (24.2), (24.8) and (24.15), the expressions of the Piola
stress tensors D+ and D− for the prestressed non-polar coatings have the form:

D± = 1

a±c±
[
λ±s± + 2μ± (

αa± − 1
)] (

er ⊗ eR + eϕ ⊗ e�

) +

+ 1

a±2

[
λ±s± + 2μ±

(
f ±′

c± − 1
)]

ez ⊗ eZ ,

(24.17)

s± = 2αa± + f ±′
c± − 3.

The equilibrium equations of the considered sandwich plate in the absence ofmass
forces and moments are written as follows (Eremeyev and Zubov 1994; Sheydakov
2011b; Zubov 1997):

◦∇ ·D− = 0, −h − h− ≤ z ≤ −h,

◦∇ ·D = 0,
◦∇ ·G + (

CT · D)
× = 0, |z| ≤ h,

◦∇ ·D+ = 0, h ≤ z ≤ h + h+.

(24.18)

The symbol × represents the vector invariant of a second-order tensor. The boundary
conditions

ez ·D±∣∣
z=±h±h± = 0, ez ·D|z=±h = ez ·D±∣∣

z=±h ,

f (0) = 0, f (±h) = f ± (±h) ,
(24.19)

express the absence of loads on the faces of the plate
(
z = ±h ± h±)

, the rigid
coupling of the prestressed coatings with the porous core (z = ±h), and the absence
of vertical displacement at z = 0.

By solving the boundary value problem (24.18), (24.19) while taking into account
relations (24.5), (24.16) and (24.17), we find the unknown functions:
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f (z) = ξz, f ± (z) = ξ±z ± h
(
ξ − ξ±)

,

ξ = 1 − 2λ (α − 1)

λ + ψ
, ξ± = 1

c± − 2λ± (
αa± − 1

)

c± (λ± + 2μ±)
.

(24.20)

The coefficients c+ and c− in the case of a physically linear material (24.11) are
expressed as follows:

c± = 1 − 2λ± (
a± − 1

)

λ± + 2μ± .

24.3 Perturbed State of Sandwich Plate

We assume that in addition to the described subcritical state of equilibrium X for
the circular sandwich plate, there is an infinitely close perturbed equilibrium state
under the same external loads, which is determined by the radius-vector R + ηv and
the microrotation tensor H − ηH × ω for the micropolar core, and by the radius-
vectors R+ + ηv+ and R− + ηv− for the prestressed non-polar coatings. Here η
is a small parameter; v, v+, v− are the vectors of additional displacements; ω is
the linear incremental rotation vector, which characterize the small rotation of the
micropolar medium particles, measured from the subcritical state. This perturbed
state is described by the equations (Eremeyev and Zubov 1994; Green and Adkins
1960; Ogden et al. 1997):

◦∇ ·D−• = 0, −h − h− ≤ z ≤ −h,

◦∇ ·D• = 0,
◦∇ ·G• +

[ ◦∇ vT · D + CT · D•
]

×
= 0, |z| ≤ h,

◦∇ ·D+• = 0, h ≤ z ≤ h + h+,

(24.21)
where D• and G• are the linearized Piola-type stress and couple stress tensors for
the porous core; D+• and D−• are the linearized Piola stress tensors for the top and
bottom coatings. In the case of a physically linear micropolar material (24.9), the
following relations are valid for the first two tensors (Eremeyev and Zubov 1994;
Sheydakov 2011a):

D• = [
λ (trY•) I + (μ + κ)Y• + μY•T] · H−

− [
λtr (Y − I) I + (μ + κ) (Y − I) + μ

(
YT − I

)] · H × ω,

G• = [
γ1 (trL•) I + γ2L• + γ3L•T] · H−

− [
γ1 (trL) I + γ2L + γ3LT

] · H × ω,

(24.22)

Y• =
( ◦∇ v + C × ω

)
· HT, L• = ◦∇ ω · HT. (24.23)
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Here Y• is the linearized stretch tensor, and L• is the linearized wryness tensor for
the micropolar core of the sandwich plate.

According to the expressions (24.12)–(24.14), the representations of the linearized
Piola stress tensors D+• and D−• for a physically linear non-polar material (24.11)
have the form (Sheydakov 2011a, b):

D±• = J±−1

0 C±
0
T · [

λ± (
trU±

1
•) I + 2μ±U±

1
•] ·

(
C±

0 · U±2 · C±
0
T
)− 1

2· C±
0 · U± · A±+

+ J±−1

0 C±
0
T ·

(
λ±tr

[(
C±

0 · U±2 · C±
0
T
) 1

2 − I
]
I+ (24.24)

+ 2μ±
[(

C±
0 · U±2 · C±

0
T
) 1

2 − I
])

· A±
1

•
,

A±
1

• =
(
C±

0 · U±2 · C±
0
T
)− 1

2 · C±
0 · ◦∇ v±−

−
(
C±

0 · U±2 · C±
0
T
)− 1

2 · U±
1

• ·
(
C±

0 · U±2 · C±
0
T
)− 1

2 · C±
0 · U± · A±,

(24.25)
where U+

1
•
,U−

1
•
are the linearized stretch tensors, and A+

1
•
,A−

1
•
are the linearized

macrorotation tensors with respect to the natural reference configurationsχ+ andχ−
of the non-polar coatings. The stretch tensors can be expressed in terms of linearized
Cauchy-Green deformation tensors g+

1
•
, g−

1
•
:

g±
1

• = (
U±

1 · U±
1

)• = U±
1

• ·
(
C±

0 · U±2 · C±
0
T
) 1

2 +
(
C±

0 · U±2 · C±
0
T
) 1

2 · U±
1

•
,

g±
1

• =
(
C±

1 · C±T

1

)• = C±
0 ·

( ◦∇ v± · C±T + C± · ◦∇ v±T
)

· C±
0
T
.

Linearized boundary conditions on the faces of the sandwich plate
(
z = ±h ± h±)

and at the interfaces between the prestressed coatings and the porous core (z = ±h)

are written as follows (Sheydakov 2011b):

ez · D±•∣∣
z=±h±h± = 0; ez · D•|z=±h = ez · D±•∣∣

z=±h ,

ez · G•|z=±h = 0, v|z=±h = v±∣∣
z=±h .

(24.26)

We assume that there is no friction at the edge of the circular plate (r = r0) and
constant radial displacement is given. This leads to the following linearized edge
conditions (Sheydakov 2013):

er · D• · e�|r=r0 = er · D• · eZ |r=r0 = er · v|r=r0 = 0,

er · G• · eR|r=r0 = eϕ · ω|r=r0 = ez · ω|r=r0 = 0,

er · D±• · e�

∣∣
r=r0

= er · D±• · eZ
∣∣
r=r0

= er · v±∣∣
r=r0

= 0.

(24.27)



24 Stability of Circular Sandwich Plate with Porous Core … 451

The vectors of additional displacements v, v+, v− and the vector of incremental
rotation ω in the basis of Eulerian cylindrical coordinates are written as

v = vReR + v�e� + vZeZ ,

v± = v±
R eR + v±

�e� + v±
Z eZ ,

ω = ωReR + ω�e� + ωZeZ . (24.28)

Then, according to formulae (24.2), (24.4), (24.5), (24.8), (24.23), (24.25) and
(24.28), the expressions for the linearized wryness tensor L•, the linearized macro-
rotation tensors A±

1
•
, and the linearized stretch tensors Y• and U±

1
•
have the form:

L• = ∂ωR

∂r
er ⊗ er + 1

r

(
∂ω�

∂ϕ
+ ωR

)
eϕ ⊗ eϕ + ∂ωZ

∂z
ez ⊗ ez+

+ ∂ω�

∂r
er ⊗ eϕ + 1

r

(
∂ωR

∂ϕ
− ω�

)
eϕ ⊗ er + ∂ωZ

∂r
er ⊗ ez+

+ ∂ωR

∂z
ez ⊗ er + 1

r

∂ωZ

∂ϕ
eϕ ⊗ ez + ∂ω�

∂z
ez ⊗ eϕ,

(24.29)

A±
1

• = 1

2α

(
∂v±

�

∂r
− 1

r

∂v±
R

∂ϕ
+ v±

�

r

)
e±
ρ ⊗ e� + ε

a±

(
a±

c±
∂v±

Z

∂r
− ∂v±

R

∂z

)
e±
ρ ⊗ eZ+

+ 1

2α

(
1

r

∂v±
R

∂ϕ
− v±

�

r
− ∂v±

�

∂r

)
e±
θ ⊗ eR + ε

a±

(
a±

c±r
∂v±

Z

∂ϕ
− ∂v±

�

∂z

)
e±
θ ⊗ eZ+

+ ε

c±

(
c±

a±
∂v±

R

∂z
− ∂v±

Z

∂r

)
e±
ζ ⊗ eR + ε

c±

(
c±

a±
∂v±

�

∂z
− 1

r

∂v±
Z

∂ϕ

)
e±
ζ ⊗ e�,

(24.30)

Y• = ∂vR

∂r
er ⊗ er + 1

r

(
∂v�

∂ϕ
+ vR

)
eϕ ⊗ eϕ + ∂vZ

∂z
ez ⊗ ez+

+
(

∂v�

∂r
− αωZ

)
er ⊗ eϕ +

(
1

r

∂vR

∂ϕ
− v�

r
+ αωZ

)
eϕ ⊗ er+

+
(

∂vZ

∂r
+ αω�

)
er ⊗ ez +

(
∂vR

∂z
− ξω�

)
ez ⊗ er+

+
(
1

r

∂vZ

∂ϕ
− αωR

)
eϕ ⊗ ez +

(
∂v�

∂z
+ ξωR

)
ez ⊗ eϕ,

(24.31)
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U±
1

• = a± ∂v±
R

∂r
e±
ρ ⊗ e±

ρ + a±

r

(
∂v±

�

∂ϕ
+ v±

R

)
e±
θ ⊗ e±

θ + c± ∂v±
Z

∂z
e±
ζ ⊗ e±

ζ +

+ a±

2

(
1

r

∂v±
R

∂ϕ
+ ∂v±

�

∂r
− v±

�

r

) (
e±
ρ ⊗ e±

θ + e±
θ ⊗ e±

ρ

)+

+ ε

(
α

∂v±
R

∂z
+ ξ± ∂v±

Z

∂r

)(
e±
ρ ⊗ e±

ζ + e±
ζ ⊗ e±

ρ

)
+

+ ε

(
α

∂v±
�

∂z
+ ξ±

r

∂v±
Z

∂ϕ

) (
e±
θ ⊗ e±

ζ + e±
ζ ⊗ e±

θ

)
; ε = a±c±

αa± + ξ±c± .

(24.32)
Taking into account relations (24.2), (24.4), (24.6)–(24.8), (24.14), (24.22),

(24.24), (24.28)–(24.32), the components of the linearized Piola-type stress and cou-
ple stress tensors D• and G• are written as follows (Sheydakov 2013):

er · D• · eR = (λ + ψ)
∂vR

∂r
+ λ

r

(
∂v�

∂ϕ
+ vR

)
+ λ

∂vZ

∂z
,

eϕ · D• · e� = λ
∂vR

∂r
+ λ + ψ

r

(
∂v�

∂ϕ
+ vR

)
+ λ

∂vZ

∂z
,

ez · D• · eZ = λ
∂vR

∂r
+ λ

r

(
∂v�

∂ϕ
+ vR

)
+ (λ + ψ)

∂vZ

∂z
,

er · D• · e� = τ
∂v�

∂r
+ μ

r

(
∂vR

∂ϕ
− v�

)
+ BZωZ ,

eϕ · D• · eR = τ

r

(
∂vR

∂ϕ
− v�

)
+ μ

∂v�

∂r
− BZωZ ,

(24.33)

er · D• · eZ = τ
∂vZ

∂r
+ μ

∂vR

∂z
− B�ω�, ez · D• · eR = τ

∂vR

∂z
+ μ

∂vZ

∂r
+ B�ω�,

eϕ · D• · eZ = τ

r

∂vZ

∂ϕ
+ μ

∂v�

∂z
+ BRωR, ez · D• · e� = τ

∂v�

∂z
+ μ

r

∂vZ

∂ϕ
− BRωR,

er · G• · eR = γ
∂ωR

∂r
+ γ1

r

(
∂ω�

∂ϕ
+ ωR

)
+ γ1

∂ωZ

∂z
,

eϕ · G• · e� = γ1
∂ωR

∂r
+ γ

r

(
∂ω�

∂ϕ
+ ωR

)
+ γ1

∂ωZ

∂z
,

ez · G• · eZ = γ1
∂ωR

∂r
+ γ1

r

(
∂ω�

∂ϕ
+ ωR

)
+ γ

∂ωZ

∂z
,

(24.34)
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er · G• · e� = γ2
∂ω�

∂r
+ γ3

r

(
∂ωR

∂ϕ
− ω�

)
, er · G• · eZ = γ2

∂ωZ

∂r
+ γ3
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∂z
,
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r
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∂ω�

∂r
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r
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∂ϕ
+ γ3
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,

ez · G• · eR = γ2
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∂ωZ

∂r
, ez · G• · e� = γ2

∂ω�

∂z
+ γ3

r

∂ωZ

∂ϕ
,

and the components of the linearized Piola stress tensors D+• and D−• are

er · D±• · eR = λ± + 2μ±

c±
∂v±

R

∂r
+ λ±

c±r

(
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�

∂ϕ
+ v±

R
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�
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a±c±

(
B±
R

c±r
∂v±

Z

∂ϕ
− S±

a±
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(24.35)
The following notation is adopted here:

BR = B� = λs + μ (α + ξ) − ψ, BZ = λs + 2μα − ψ,

B±
R = B±

� = S± + 2μ± (
αa± + ξ±c±)

, B±
Z = S± + 4μ±αa±,

τ = μ + κ, γ = γ1 + γ2 + γ3, S± = λ±s± − 2μ±.

Using expressions (24.5), (24.16), (24.28), (24.33)–(24.35), we write the equa-
tions of neutral equilibrium (24.21) for the circular sandwich plate in scalar form:
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τ
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r2
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(24.36)
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λ± + 2μ±
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(24.37)
Substitution (n = 0, 1, ...)

vR = VR (r, z) cosnϕ, v� = V� (r, z) sinnϕ, vZ = VZ (r, z) cosnϕ,

v±
R = V±

R (r, z) cosnϕ, v±
� = V±

� (r, z) sinnϕ, v±
Z = V±

Z (r, z) cosnϕ,

ωR = �R (r, z) sinnϕ, ω� = �� (r, z) cosnϕ, ωZ = �Z (r, z) sinnϕ,

allows us to separate the variable ϕ in these equations, reducing the stability analysis
to the solution of a homogeneous boundary value problem (24.26), (24.27), (24.36),
(24.37) for a system of twelve partial differential equations in the twelve unknown
functions of two variables r, z.

24.4 Axisymmetric Buckling

In the special case of axisymmetric perturbations (n = 0) the use of substitution
(Sheydakov 2013)

vR = VR (z) J1 (βr) , v� = 0, vZ = VZ (z) J0 (βr) ,

v±
R = V±

R (z) J1 (βr) , v±
� = 0, v±

Z = V±
Z (z) J0 (βr) ,

ωR = 0, ω� = �� (z) J1 (βr) , ωZ = 0,

(24.38)
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β = σm/r0, J1 (σm) = 0, m = 1, 2, ...

leads additionally to the separation of variable r in the linearized boundary value
problem (24.26), (24.27), (24.36), (24.37) and allows satisfying the linearized edge
conditions (24.27). Here J0, J1 are the Bessel functions of the first kind.

Taking into account relations (24.38), the equations of neutral equilibrium (24.36),
(24.37) are written as follows:

τV ′′
R − (λ + ψ) β2VR − (λ + μ)βV ′

Z + B��′
� = 0,

(λ + ψ) V ′′
Z − τβ2VZ + (λ + μ) βV ′

R − βB��� = 0,

γ2�
′′
� + [

(α + ξ) B� − γ2β
2
]
�� − B�V

′
R − βB�VZ = 0,

εB±
�

a±3 V
±
R

′′ −
(
λ± + 2μ±)

β2

c± V±
R − β

a±

(
λ± − εS±

a±c±

)
V±
Z

′ = 0,

(
λ± + 2μ±) c±

a±2 V
±
Z

′′ − εβ2B±
�

a±c±2 V
±
Z + β

a±

(
λ± − εS±

a±c±

)
V±
R

′ = 0.

(24.39)

The linearized boundary conditions (24.26) take the form:
(1) on the faces of the plate

(
z = ±h ± h±)

B±
�

a± V±
R

′ + βS±

c± V±
Z = 0, λ±βV±

R + (
λ± + 2μ±) c±

a± V±
Z

′ = 0; (24.40)

(2) at the interfaces between the coatings and the core (z = ±h)

τV ′
R − μβVZ + B��� = εB±

�

a±3 V
±
R

′ + εβS±

a±2c± V±
Z ,

λβVR + (λ + ψ) V ′
Z = λ±β

a± V±
R + (

λ± + 2μ±) c±

a±2 V
±
Z

′
,

�′
� = 0, VR = V±

R , VZ = V±
Z .

(24.41)

Thus, in the case of axisymmetric perturbations, the stability analysis of a circular
sandwich plate with a porous core and prestressed uniform coatings is reduced to
solving a linear homogeneous boundary value problem (24.39)–(24.41) for a system
of seven ordinary differential equations.

24.5 Sandwich Plate with Identical Coatings

It is easy to show that in the case of identical top and bottom coatings (h+ = h−,
a+ = a−, λ+ = λ−, μ+ = μ−) the boundary value problem (24.39)–(24.41) has two
independent sets of solutions (Sheydakov 2011b, 2013). The First set is formed
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by solutions for which the deflection of a sandwich plate is an odd function of z (a
symmetric buckling):

VR(z) = VR(−z), VZ (z) = −VZ (−z), ��(z) = −��(−z), 0 ≤ z ≤ h,

V+
R (z) = V−

R (−z), V+
Z (z) = −V−

Z (−z), h ≤ z ≤ h + h+.

For the Second set of solutions, on the contrary, the deflection is an even function
of z (a flexural buckling):

VR(z) = −VR(−z), VZ (z) = VZ (−z), ��(z) = ��(−z), 0 ≤ z ≤ h,

V+
R (z) = −V−

R (−z), V+
Z (z) = V−

Z (−z), h ≤ z ≤ h + h+.

Due to this property, it is sufficient to consider only half of the sandwich plate(
0 ≤ z ≤ h + h+)

to study its stability. The boundary conditions at z = 0 follow
from the evenness and oddness of the unknown functions VR, VZ ,��:

(1) for the First set of solutions:

V ′
R (0) = VZ (0) = �� (0) = 0, (24.42)

(2) for the Second set of solutions:

VR (0) = V ′
Z (0) = �′

� (0) = 0. (24.43)

Thus, the stability analysis of a circular sandwich plate with a porous core and
identical prestressed coatings can be reduced to solving two linear homogeneous
boundary value problems—(24.39)–(24.42) and (24.39)–(24.41), (24.43)—for a sys-
tem of five ordinary differential equations.

24.6 Conclusion

In the framework of bifurcation approach, we have studied the stability of a cir-
cular sandwich plate under radial compression. The plate consists of a micropolar
porous core and non-polar uniform coatings. The coatings were assumed to be sub-
jected to preliminary deformations and contain internal stresses. When determining
the subcritical deformed state in different parts of a sandwich plate, writing of con-
stitutive relations with respect to different reference configurations was used. For
the physically linear material, we have derived the equations of neutral equilibrium
(24.36), (24.37), which describe the behavior of a circular sandwich plate with a
porous core and prestressed uniform coatings in a perturbed state. Using a special
substitution (24.38), these equations were simplified and the linearized boundary
value problem was formulated for the case of axisymmetric perturbations. Thus, the
stability analysis was reduced to solving a linear homogeneous boundary value prob-
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lem (24.39)–(24.41) for a system of seven ordinary differential equations. It was also
shown that for a circular sandwich plate with identical top and bottom coatings the
stability analysis can be reduced to solving two linear homogeneous boundary value
problems—(24.39)–(24.42) and (24.39)–(24.41), (24.43)—for a system of five ordi-
nary differential equations. For specific materials of the porous core and the coatings
all formulated boundary value problems can be solved numerically, using methods
described by Sheydakov (2016, 2021).
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Chapter 25
Localized Modes in a 1D Harmonic
Crystal with a Mass-Spring Inclusion

Ekaterina V. Shishkina and Serge N. Gavrilov

Abstract The spectral problemconcerning the existence of localizedmodes of oscil-
lation in 1D harmonic crystal with a single mass-spring inclusion is investigated. A
crystal is an infinite harmonic chain of particles with nearest-neighbor interaction.
The bond stiffnesses are referred to as “springs”. Two types of inclusion are con-
sidered, namely, a symmetric and an asymmetric ones. The symmetric inclusion
consists of the particle of an alternated mass with two springs of alternated stiff-
nesses attached. The asymmetric inclusion consists of the particle of an alternated
mass with one alternated spring attached. Outside the inclusion the chain is assumed
to be uniform. For both types of a mass-spring inclusion, the necessary and suffi-
cient conditions for the existence of localized modes, as well as the corresponding
frequencies of localized oscillation, are found.

25.1 Introduction

The phenomenon of localized modes of linear oscillation is well known for both
continuum (Glushkov et al. 2011; Indeitsev et al. 2007; Kuznetsov et al. 2002; Ursell
1951) and discrete (Andrianov et al. 2012; Gendelman and Paul 2021; Kossevich
1999; Manevich et al. 1989; Maradudin et al. 1963; Montroll and Potts 1955; Rubin
1963; Teramoto andTakeno 1960;Yu 2019) systems. In discretemechanical systems,
to the best of our knowledge, this phenomenonwas first time described in the classical
study by Montroll and Potts (1955), though it was previously known in physics for
non-mechanical systems (Conwell et al. 1950; Koster 1954; Koster and Slater 1954).
In the discrete case, usually, isotopic (i.e., pure inertial) or pure elastic inclusions
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are considered, though in the referenced above work (Montroll and Potts 1955) a
mass-spring inclusion is also discussed.

To discover the existence of a localized mode in a system, one needs to consider
a spectral problem, see, e.g., Indeitsev et al. (2007). If localized mode exists in
a system, then one can observe (Shishkina et al. 2023) the localization of non-
stationary waves.1 Namely, some portions of the wave energy can be trapped forever
near inhomogeneities (in the absence of dissipation). One can observe undamped
localizedvibrationof an infinite systemsubjected to an impulse loading. For a discrete
mechanical system this was shown first time by Teramoto and Tokeno (1960).

The localized modes essentially influence on another wave phenomenon, which
we call the anti-localization of non-stationary waves (Shishkina and Gavrilov 2023;
Shishkina et al. 2023). This is zeroing of the non-localized propagating component of
the wave-field in a neighborhood of an inclusion. The anti-localization breaks at the
boundary of the localization domain (the domain of existence for the localized mode
in the problem parameters space). This fact can be discovered only by considering
the systems, where the boundary of the localization domain does not correspond to a
homogeneous system without any inclusion (Shishkina et al. 2023). This is our main
motivation to investigate the problems involving mass-spring inclusions.

In the paper we systematically investigate the spectral problems concerning the
existence of localizedmodes of oscillation in 1D harmonic crystal with amass-spring
inclusion. A crystal is an infinite harmonic chain of particles with nearest-neighbor
interaction. The bond stiffnesses are referred to as “springs”. The chain contains a
single mass-spring inclusion, which consists of a single particle with an alternated
mass and two or one springs attached to this particle with an alternated stiffness. The
first case is the case of a symmetric inclusion, whereas the second case is the case of
an asymmetric inclusion. Outside the inclusion the chain is assumed to be uniform.
The schematic of the system is presented in Fig. 25.1. For both types of a mass-spring
inclusion, the necessary and sufficient conditions for the existence of localizedmodes
are found, as well as the corresponding frequencies of localized oscillation. Note that

Fig. 25.1 The schematic of the system. a The case of a symmetric inclusion, b the case of an
asymmetric inclusion

1 In the discrete case it is more correct to speak about quasi-waves, since the perturbations propagate
at an infinite speed.
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the spectral problem for a continuum analogue of discrete problems considered in
the paper is investigated in Glushkov et al. (2011), Gavrilov et al. (2019).

Note that the case of a symmetricmass-spring inclusionwas previously considered
by Montroll and Potts in (1955), who obtained the expression for the frequency of
the antisymmetric localized mode and the frequency equation for the symmetric
mode. For the symmetric oscillation the problem solution was not finalized, namely,
neither the expression for the admissible frequency was explicitly derived, nor the
domain of existence for the corresponding mode was obtained. In recent paper (Yu
2019) Yu considered a non-stationary problem for the case of a symmetric mass-
spring inclusion and, in particular, obtained the frequency of the symmetric localized
oscillation and its domain of existence. In our opinion, although the results obtained
in Yu (2019) are correct, they have been derived by a wrong way. The more detailed
comparison of the results obtained in this paper with the known results is given in
Discussion (see Sect. 25.5).

25.2 The Mathematical Formulation for the Spectral
Problem

The equations ofmotions in the dimensionless form can be expressed as the following
infinite system of differential-difference equations:

ün − (un+1 − 2un + un−1)

= ( − (m − 1)ü0 + (K − 1)
(
(u1 − u0) + γ (u−1 − u0)

))
δn

− (K − 1)(u1 − u0)δn−1 + γ (K − 1)(u0 − u−1)δn+1, (25.1)

where n ∈ Z, δn is the Kronecker delta, un(t) is the dimensionless displacement
of the particle with a number n, n = 0 corresponds to the particle with alternated
dimensionless mass m, γ = 1 corresponds to the case of a symmetric inclusion, and
γ = 0 corresponds to the case of an asymmetric inclusion. We assume that

m > 0 and K > 0; (25.2)

m �= 1 or K �= 1. (25.3)

The differential-difference operator in the left-hand side of Eq. (25.1) corresponds
to a uniform chain of mass points of unit mass connected by springs of unit stiffness.
The non-dimensionalization is discussed, e.g., in Shishkina and Gavrilov (2023).
Assuming that un(t) is a harmonic oscillation

un(t) = Un(�) e−i�t , (25.4)
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consider the steady-state problem concerning the natural localized oscillation at a
frequency �. In what follows, we assume without loss of generality that

� > 0. (25.5)

Since we deal with a linear system, for the uniform chain (m = 1, K = 1) the
corresponding solutions for amplitudes are

Un = U0e
−iqn, (25.6)

where q is the (quasi-)wave-number. The frequency� andwave-number q are related
by the dispersion relation, which properties are discussed in Appendix.

In the case of the chain with the inclusion, we look for a mode with finite energy,
and, therefore, we require that Un satisfy conditions

∞∑

n=−∞
U 2

n < ∞,

∞∑

n=−∞
(Un+1 −Un)

2 < ∞, (25.7)

and, hence, consider the frequencies inside the stop-band (25.79) (see Appendix).
Due to Eq. (25.1) for the amplitudes Un one gets:

−�2Un − (Un+1 − 2Un +Un−1) = (
(m − 1)�2U0 + (K − 1)

(
(U1 −U0) + γ (U−1 −U0)

))
δn

−(K − 1)(U1 −U0)δn−1 + γ (K − 1)(U0 −U−1)δn+1. (25.8)

The last equation can be treated as the equation of motion for the homogeneous chain
with three-point loads expressed by terms in the right-hand side. Thus, the solution
is

Un = (
(m − 1)�2U0 + (K − 1)

(
(U1 −U0) + γ (U−1 −U0)

))
Gn

+ (K − 1)(U0 −U1)Gn−1 + γ (K − 1)(U0 −U−1)Gn+1,

(25.9)

where Gn is the Green function for a uniform chain given by Eq. (25.82) (see
Appendix).

25.3 The Case of a Symmetric Inclusion

Here we take γ = 1. Due to symmetry, the oscillation, without lost of generality, can
be considered as the sum of symmetric and antisymmetric components:

Un = U s
n +U a

n , (25.10)
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where U s−n = U s
n , U

a−n = −U a
n . Hence, for the symmetric mode Eq. (25.9) can be

rewritten as

U s
n = (m − 1)�2U s

0Gn + (K − 1)(U s
0 −U s

1)(Gn+1 − 2Gn + Gn−1), (25.11)

where n ≥ 0. For the antisymmetric mode U a
n , taking into account that U a

0 = 0, we
rewrite Eq. (25.9) in the following form:

U a
n = (K − 1)U a

1 (Gn+1 − Gn−1). (25.12)

25.3.1 Symmetric Mode

Consider now the symmetric mode.We subsequently substitute n = 0 and n = 1 into
Eq. (25.11) and obtain the following homogeneous set of linear algebraic equations
for unknown U s

0 and U
s
1:

(
1 − (m − 1)�2G0 − 2(K − 1)(G1 − G0)

)
U s

0 + 2(K − 1)(G1 − G0)U
s
1 = 0,

(25.13)
(
(m − 1)�2G1 + (K − 1)(G2 − 2G1 + G0)

)
U s

0

− (
1 + (K − 1)(G2 − 2G1 + G0)

)
U s

1 = 0.
(25.14)

Here we have taken into account that Gn = G−n . A non-trivial solutions exist if
and only if the determinant of the set is zero. Substituting expression (25.82) for
the Green function, calculating the determinant, and simplifying the complicated
expression obtained lead to the frequency equation for the symmetric mode:

�L(�) = −
√

�2 − 4R(�), (25.15)

where

L(�) = m�6 − (
(m + 2)K + 5m

)
�4 + (

2(2m + 5)K + 5m
)
�2 − 2K (m + 5),

(25.16)

R(�) = m�6 − (
(m + 2)K + 3m

)
�4 + (

2(m + 3)K + m
)
�2 − 2K .

(25.17)

Here we have taken into account that (25.79) is fulfilled. Equation (25.15) after
squaring, which is possible if and only if

L(�)R(�) ≤ 0, (25.18)



466 E. V. Shishkina and S. N. Gavrilov

can be equivalently transformed to the form of the following bi-quadratic equation:

m2(K − 1)�4 + Km
( − (m + 2)K + 4

)
�2 − 4K 2 = 0. (25.19)

The solution of the last equation (25.19) in the case

K �= 1 (25.20)

is

�2 = �2
±

def=
K

(
− 4 + (m + 2)K ±

√(
(m + 2)2K − 8m

)
K

)

2(K − 1)m
. (25.21)

The special case K = 1 is considered in Sect. 25.3.3. Since � ∈ R, the discriminant
for Eq. (25.19) must be non-negative:

K ≥ 8m

(m + 2)2
. (25.22)

Finally, the domain of existence for modes with corresponding frequencies �± are
areas in the two-dimensional parameter space,2 where inequalities (25.79), (25.18),
and (25.22) are fulfilled. For the mode with the frequency � = �+ the domain of
existence is plotted in Fig. 25.2 (see zone “4”). For the root �− restriction (25.18) is
never satisfied in the domain where Eq. (25.22) is fulfilled.

Fig. 25.2 The domain of existence (zone 4) for the symmetric mode with the frequency � = �+
in the case of symmetric inclusion. Outside of zone “1” inequality (25.22) is true; in zone “2”
inequality (25.77) is true; in zones “2” and “3” inequality (25.18) is false

2 The parameters are m and K .
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The boundary for the domain of existence for the mode with the frequency � =
�+ is the boundary between zones “3” and “4”, which corresponds to a common
root of the equation

L(�)R(�) = 0, (25.23)

and frequency equation (25.15). To find the analytic expression for the boundary we
should prove the following lemma.

Lemma 1 Provided that Eqs. (25.2), (25.3), (25.5), (25.20) are true, � = 2 is the
unique solution of set of Eqs. (25.23), (25.15), which exists if and only if

K = 2m

1 + m
. (25.24)

Proof Clearly, the right-hand side of (25.15) is zero at � = 2. Thus, � = 2 is the
solution of set (25.23), (25.15) if and only if L(2) = 0. Calculating L(2) and putting
the expression obtained to zero yields

− 2 Km − 2 K + 4m = 0, (25.25)

which is equivalent to Eq. (25.24).
Let positive � �= 2 satisfies Eqs. (25.23), (25.15). Then

L(�) − R(�) ≡ −2m�4 + 2
(
2m + K (2 + m)

)
�2 − 2K (4 + m) = 0. (25.26)

Since Eq. (25.23) is true, Eq. (25.19) follows from Eq. (25.15). Thus,� is a common
root of two bi-quadratic equations, namely Eqs. (25.19), (25.26), hence, the left-
hand sides of these equations must be proportional. Calculating the remainder of
two polynomials, which equal to the left-hand sides of (25.19) and (25.26), and
putting the result to zero, one gets for all �:

(
Km(m + 2) − 2m2

)
�2 + Km2 + 4 Km − K 2(m + 2)2 ≡ 0, (25.27)

which is equivalent to m = 0 and K = 0. �

Remark 1 One can easily prove that for K > 0 and m > 0 polynomials L(�) and
R(�) do not have common roots by calculating the Gröbner basis (Buchberger 2002)
for this set of polynomials.

Hence, the boundary between zones “3” and “4” corresponds to the curve, where
Eq. (25.24) is fulfilled. Finally, there exists the unique symmetric localized mode
with the frequency � = �+, where �+ is given by Eq. (25.21). The domain of
existence for this mode is

K >
2m

1 + m
. (25.28)
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Fig. 25.3 The value of the trapped mode frequency � = �+ defined according to Eq. (25.21)
inside the domain of existence (25.28) in the case of a symmetric inclusion

The frequency equation in the form of bi-quadratic equation (25.19) was previ-
ously obtained by Montroll and Potts in (1955). The authors in Montroll and Potts
(1955) do not find the explicit expressions for the roots of this equation and do not
examine their properties, hence, they do not obtain the domain (25.28) of existence
for the symmetric mode of localized oscillation.

In Fig. 25.3 one can see the plot of the value of the trapped mode frequency �+
defined according to Eq. (25.21) inside the domain of existence (25.28).

25.3.2 Antisymmetric Mode

Consider now the antisymmetric mode. One substitutes n = 1 into Eq. (25.12) and
gets (

(K − 1)(G2 − G0) − 1
)
U a

1 = 0. (25.29)

The non-trivial solution for U a
1 exists if and only if

(K − 1)(G2 − G0) − 1 = 0. (25.30)

Substituting expression (25.82) for the Green function, and simplifying the compli-
cated expression obtained yields the following frequency equation:

2K − �2 = �
√

�2 − 4. (25.31)

Equation (25.31) after squaring, which is possible if and only if
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2K − �2 ≥ 0, (25.32)

can be equivalently transformed to the form of the following expression:

�2 = K 2

K − 1
. (25.33)

One can see that � ∈ R, if and only if

K > 1. (25.34)

Finally, the domain of existence for the antisymmetricmodewith frequency (25.33) is
the area in the two-dimensional parameter space, where inequalities (25.32), (25.34),
and (25.79) are fulfilled. Substituting Eq. (25.33) into restrictions (25.32), (25.79),
respectively, leads to the following inequalities:

K (K − 2)

K − 1
≥ 0, (25.35)

K 2

K − 1
> 4. (25.36)

The solution of the set of inequalities (25.34)–(25.36) is

K > 2. (25.37)

Thus, provided that (25.37) is true, there exists the unique antisymmetric localized
mode with frequency given by (25.33).

Results of Sect. 25.3.2 re-obtain the ones derived by Montroll and Potts in
(1955). Namely, in Montroll and Potts (1955) the authors obtained frequency equa-
tion (25.30), Eq. (25.33) for the frequency of antisymmetric localized mode and
domain of its existence (25.37).

25.3.3 The Special Case K = 1

Consider the particular case K = 1.The antisymmetricmode in this case cannot exist.
For the symmetric mode frequency equation (25.19) transforms to the following one:

m(2 − m)�2 − 4 = 0. (25.38)

Hence, the frequency of the localized mode is

� = �0
def= 2√

m(2 − m)
. (25.39)
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Here, obviously,m < 2, since� ∈ R. The left-hand side of Eq. (25.18) with� given
by (25.39) is

L(�0)R(�0) = 4(m − 1)m6

(m − 2)6
. (25.40)

Thus, Eq. (25.18) is equivalent to
m ≤ 1. (25.41)

Taking into account that restriction (25.79) for � described by Eq. (25.39) is equiv-
alent to the inequality

(m − 1)2 > 0, (25.42)

which it true for all m �= 1, one gets the expression for the domain of existence for
the localized mode

m < 1. (25.43)

Note that it is the particular case of Eq. (25.28) for K = 1.
These results for the particular case K = 1 are well known in the literature and

coincide with the ones previously obtained in many studies, e.g., in Montroll and
Potts (1955) or in recent paper (Shishkina and Gavrilov 2023).

25.4 The Case of an Asymmetric Inclusion

Let us take γ = 0 and substitute n = 0 and n = 1 into Eq. (25.9). We obtain the
following homogeneous set of linear algebraic equations for unknown U0 and U1:

(
(m − 1)�2G0 − (K − 1)(G0 − G1) − 1

)
U0 + (K − 1)(G0 − G1)U1 = 0,

(25.44)
(
(m − 1)�2G1 − (K − 1)(G1 − G0)

)
U0 + (

(K − 1)(G1 − G0) − 1
)
U1 = 0.

(25.45)

Here one have taken into account that Gn = G−n . A non-trivial solutions exist if
and only if the determinant of the set is zero. Substituting expression (25.82) for
the Green function Gn , calculating the determinant, and simplifying the complicated
expression obtained lead to the frequency equation for the localized mode:

�L(�) = −
√

�2 − 4R(�), (25.46)
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where

L(�) = m�4 − (
1 + K + 3m + Km

)
�2 + 2 + 4K + 2Km, (25.47)

R(�) = m�4 − (
1 + K

)(
1 + m

)
�2 + 2K . (25.48)

Here we have taken into account that (25.79) is fulfilled. Equation (25.46) after
squaring, which is possible if and only if

L(�)R(�) ≤ 0, (25.49)

can be equivalently transformed to the form of the following bi-quadratic equation:

m(m − 1)(K − 1)�4 + (
K 2 − (1 − Km)2

)
�2 − 4K 2 = 0. (25.50)

In the case
m �= 1 and K �= 1 (25.51)

the solution of Eq. (25.50) is

�2 = �2±
def= (1 − Km)2 − K 2 ±

√(
1 + K (m − 1)

)2(1 + K (2 − 6m + K (1 + m)2)
)

2(K − 1)(m − 1)m
.

(25.52)
The special case K = 1 is considered in Sect. 25.3.3. The case m = 1 is treated in
Sect. 25.4.1. Since � ∈ R, the discriminant for Eq. (25.50) must be non-negative:

1 + K (m − 1) = 0 or 1 + K (2 − 6m + K (1 + m)2) ≥ 0. (25.53)

The first expression in Eq. (25.53) is equivalent to

K = 1

1 − m
. (25.54)

For inequality (25.53) one can obtain the following equivalent one:

(1 + m)2K 2 + 2(1 − 3m)K + 1 ≥ 0. (25.55)

We can demonstrate that this inequality is satisfied if and only if

(
m ≤ 1 and K > 0

)
or

(
m > 1 and K ∈ (0, K−] ∪ [K+,+∞)

)
, (25.56)

where

K±
def= 3m − 1 ± 2

√
2m(m − 1)

(1 + m)2
. (25.57)
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Note that K+ = K− = 1/2 at m = 1.
Finally, the domain of existence formodeswith corresponding frequencies�± are

areas in the two-dimensional parameter space, where restrictions (25.79), (25.49),
and (25.56) are fulfilled. For modes with frequency � = �− and � = �+ the
domains of existence are plotted in Fig. 25.4a, b, respectively (see zone “4” in each
plot).

The boundaries for the domain of existence for the modes with the frequencies
� = �± correspond to the common roots of the equation

Fig. 25.4 The domain of existence (zone 4) for the mode with the frequency a� = �−, b� = �+
in the case of asymmetric inclusion. Outside of zone “1” restriction (25.56) is true; in zone “2”
inequality (25.77) is true; in zones “2” and “3” inequality (25.49) is false
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L(�)R(�) = 0, (25.58)

and frequency equation (25.46).

Lemma 2 Provided that Eqs. (25.2), (25.5), (25.51) are true, the solutions of set of
Eqs. (25.58), (25.46) are

1. � = 2, which exists if and only if

K = 2 − 1

m
; (25.59)

2.

� =
√

2

(1 − m)m
, (25.60)

which exists if and only if inequality

m < 1 (25.61)

and Eq. (25.54) are fulfilled.
There are no more solutions.

Proof Clearly, the right-hand side of (25.46) is zero at � = 2. Thus, � = 2 is the
solution of set (25.58), (25.46) if and only if L(2) = 0. Calculating L(2) yields:

Km − 2m + 1 = 0, (25.62)

which is equivalent to Eq. (25.59).
Let � �= 2 satisfies Eqs. (25.58), (25.46). Equation (25.58) can be fulfilled if and

only if � is a common root of equations:

L(�) = 0, (25.63)

R(�) = 0. (25.64)

Therefore,
L(�) − R(�) = 2(−m�2 + K (1 + m) + 1) = 0, (25.65)

which is equivalent to

� =
√
1 + K (1 + m)

m
. (25.66)

Since Eq. (25.58) is true, Eq. (25.50) follows from Eq. (25.46). Thus, Eq. (25.66)
should be a common root of Eq. (25.65) and bi-quadratic equation (25.50). Substi-
tuting Eq. (25.66) into Eq. (25.50) leads to
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− 4(1 + K (m − 1))2 = 0, (25.67)

which is equivalent to Eq. (25.54). For such values of K

� = �±
∣∣
K= 1

1−m
=

√
2

(1 − m)m
. (25.68)

It is clear, that the root (25.68) exists only if m < 1. �

One can see that the root defined by Eq. (25.68) satisfies restriction (25.79):

2

(1 − m)m
> 4 ⇐⇒ m2 + (m − 1)2 > 0. (25.69)

Hence, the boundary between zones “3” and “4” in Fig. 25.4a corresponds to the
curve, where Eq. (25.54) is fulfilled. The same boundary separates the left simply
connected domain of zone “3” and zone “4” in Fig. 25.4b. The boundary between
zone “4” and the right simply connected domain of zone “3” in Fig. 25.4b is defined
by Eq. (25.59).

The final conclusion can be formulated as follows. Provided that inequality

K > 2 − 1

m
(25.70)

is true, there exists the unique localized mode, which frequency equals � = �− if

m < 1 and K >
1

1 − m
, (25.71)

and equals� = �+ otherwise.Note that form < 1 and K = 1/(1 − m) the localized
mode exists, and the corresponding frequency is defined by Eq. (25.68).

In Fig. 25.5 one can see the plot of the value of the trapped mode frequency �±
defined according to Eq. (25.52) and the root selection condition (25.71) inside the
domain of existence (25.70).

25.4.1 The Special Case m = 1

Consider the special case m = 1, K �= 1. Frequency equation (25.46) transforms to
the following one:

(2K − 1)�2 − 4K 2 = 0. (25.72)

Hence, the frequency is

� = 2K√
2K − 1

. (25.73)
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One can see that � ∈ R if and only if K > 1/2. It is easy to show that the frequency
defined by Eq. (25.73) satisfies restriction (25.79) if and only if K �= 1.

Now we should verify restriction (25.49). Equations (25.47), (25.48) calculated
at � given by (25.73) transform to the following ones:

L(�) = 2(1 − K )

(2K − 1)2
, (25.74)

R(�) = 2K

(2K − 1)2
. (25.75)

Obviously, inequality (25.49) is satisfied for K ≥ 1. Since we consider K �= 1, we
conclude that the localized mode with frequency Eq. (25.73) exists if and only if
K > 1.

The results of this particular case were previously obtained in Maradudin et al.
(1963).

25.5 Discussion

The spectral problem concerning the existence of localized modes of oscillation in
1D harmonic crystal with a single mass-spring inclusion has been investigated in
the paper. We have considered two types of inclusion, namely, a symmetric inclu-
sion (Fig. 25.1a), and an asymmetric inclusion(Fig. 25.1b). Note that the obtained
results were verified by numerical calculation of a fundamental solution for the cor-
responding non-stationary problems at a number of various values of the problem

Fig. 25.5 The value of the trapped mode frequency � = �± defined according to Eq. (25.52)
and the root selection condition (25.71) inside the domain of existence (25.70) in the case of an
asymmetric inclusion
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parametersm and K . The presence of a localizedmode can be easily discovered in the
non-stationary response of a system as a non-vanishing oscillation with correspond-
ing frequency (Teramoto and Takeno 1960; Rubin 1963; Shishkina and Gavrilov
2023; Yu 2019; Shishkina et al. 2023). The perfect agreement was obtained.

For the case of a symmetric mass-spring inclusion (Sect. 25.3) oscillation can be
uncoupled into two components, namely, the symmetric and antisymmetric ones.
For the symmetric mode expression (25.21) for the natural frequency � = �+ is
obtained. For the symmetric mode the domain of existence is defined by Eq. (25.28),
see Fig. 25.2 for details. The frequency of the antisymmetric mode is given by
Eq. (25.33).

Note that the case of a symmetric mass-spring inclusion was previously consid-
ered by Montroll and Potts in their famous study (Montroll and Potts 1955), where
the expression for the frequency of the antisymmetric localized mode in the form of
Eq. (25.33), as well as the frequency equation for the symmetric mode, coinciding
with bi-quadratic equation (25.19), were obtained. The solution of Eq. (25.19) was
not derived, and the domains of existence for modes with frequencies �± defined by
Eq. (25.21) were not investigated. Note that, as far as we understand (see Remark 1),
our unsquared frequency equation (25.15) cannot be reduced to the unsquared fre-
quency equation in Montroll and Potts (1955) (see equation (3.22) in Montroll and
Potts 1955). Moreover, in book (Maradudin et al. 1963) the corresponding prob-
lem concerning the symmetric localized mode is not accounted in the list of known
analytically solvable 1D problems.

In study Yu (2019) the momentum autocorrelation function for the alternated
mass in a chain with a symmetric defect is investigated. This function coincides with
(Rubin 1963) a fundamental solution of the deterministic problem (with accuracy to
a constant multiplier). The non-vanishing component of the momentum autocorre-
lation function consists of contributions from modes with frequencies �± defined
by Eq. (25.21). Restriction (25.18) is not introduced into consideration. In order
to select the appropriate value of the frequency among two possible values given
by (25.21), Yu calculates the amplitudes of the corresponding modes and rejects the
mode with frequency �− due to its “non-physical nature”, since its amplitude is
greater than the initial particle velocity. In the present study we demonstrate that the
criterion for the choice of the proper root (25.21) of the frequency equation in the
form of bi-quadratic equation (25.19) is restriction (25.18), which makes possible
the squaring of Eq. (25.15). We also demonstrate that the boundary of the domain
of existence (25.28) corresponds to a root of Eqs. (25.23), whereas in Yu (2019) it
is declared that the boundary corresponds to a minimal (in some sense) value of the
frequency�+. In our opinion, although the results obtained in Yu (2019) are correct,
they have been derived by a wrong way.

For the case of an asymmetric mass-spring inclusion (Sect. 25.4) the domain
of existence for the localized mode defined by inequality (25.70) is divided into
two areas, to which different roots � = �± (25.52) of frequency equation (25.50)
correspond. The choice of the proper root should be done according to condition
(25.71). We have not found any study where the spectral problem for an asymmetric
inclusion was considered, although there may be some.
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The special particular cases considered in Sects. 25.3.3, 25.4.1 were previously
considered in Maradudin et al. (1963); Montroll and Potts (1955).

The plots for values of the localized modes frequencies inside the corresponding
domains of existence are presented in Figs. 25.3 and 25.5 for the cases of a symmetric
and an asymmetric inclusion, respectively. One can see that the plots have qualita-
tively similar structure, the essential difference can be observed only for enough
small values of m and K .

The results of the paper can be used, in particular, in the investigation of non-
stationary waves anti-localization (Shishkina et al. 2023) in infinite discrete systems.
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Appendix

Here we discuss the dispersion relation and the Green function in the frequency
domain for the uniform chain. Assuming the solution to be in the form of Eqs. (25.4),
(25.6) we get the dispersion relation for a uniform chain corresponding to the one
described by Eq. (25.1):

�2 = 4 sin2
q

2
≡ 2(1 − cos q), (25.76)

where� ∈ R is the frequency, q is the wave-number. The detailed analysis of the dis-
persion relation for a uniform chain is given, for example, in Shishkina and Gavrilov
(2023).

The whole frequency band � ∈ R can be divided to the pass-band, where

�2 < �2
∗ ≡ 4, (25.77)

q = ± arccos
2 − �2

2
, (25.78)

i.e., the corresponding wave-numbers q(�) are reals, and the stop-band, where

�2 > �2
∗ ≡ 4, (25.79)

q = π ± i arccosh
1

2
(�2 − 2) = π ± i ln

(
1

2
(�2 − 2) +

√
1

4
(�2 − 2)2 − 1

)

,

(25.80)

i.e., the corresponding wave-numbers are imaginary. Here
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�∗
def= 2 (25.81)

is the cut-off (or boundary) frequency, which separates the bands.
The Green function in the frequency domain for the corresponding uniform chain

in the stop-band is Montroll and Potts (1955), Shishkina and Gavrilov (2023)

Gn(�) = (−1)|n|2|n|

�|n|−1(�)((−�2 + 2)�(�) + 4)
, (25.82)

where
�(�)

def= �2 − 2 + |�|
√

�2 − 4. (25.83)
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Chapter 26
On Plate Buckling Induced
by a Chemical Reaction

Vladislav O. Shtegman, Alexander B. Freidin, and Alexander V. Morozov

Abstract This paper is concerned with the study of a plate buckling caused by a
chemical reaction and ismotivated by the use of buckling as a stress relaxationmecha-
nism in silicon-based anodes in lithium-ion batteries. Chemical reaction is localized
at the sharp interface—reaction front—and is accompanied by the transformation
strain, which generates internal stresses which, in turn, affect the front propagation.
If the external supports limit the elongation of the plate, then the transformation strain
creates compressive forces, which can lead to buckling of the plate and redistribution
of the stresses in the plate. Coupling of stresses and chemical reaction rate is carried
out using the concept of a chemical affinity tensor. A problem for a plate with two
reaction fronts is considered. The kinetics of the reaction fronts before the loss of
plate stability and during post-buckling is studied.

Keywords Buckling · Mechanochemistry · Configurational force · Chemical
affinity tensor · Numerical simulations

26.1 Introduction

Environmentally friendly, cheap, and durable energy storage is necessary to meet the
needs of its storage. Since first entering the market, Li-ion batteries (LiBs) became
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the promising source of energy storage for applications such as portable electronics,
microchips, electro cars, and large-scale energy storage.

The Li-ion battery consists of the three main structural elements: anode, cathode,
and electrolyte.Anode and cathode are theLi-ion absorbingmaterials, and electrolyte
is used for the transfer of ions and electrons. Lithium ions flow through the electrolyte
whereas the electrons generated from the reaction, Li = Li+ − e− go through the
external circuit. Liquid electrolytes used in LiBs are usually made of lithium salt,
e.g., LiPF6, LiBF4, or LiClO4, in a liquid organic solvent, e.g., ethylene carbonate,
diethyl carbonate (Teki et al. 2009). One of the main factors determining capacity of
the LiBs is the choice of anode material. The capacity of LiBs with Si as the anode
material is 9 times higher than the capacity of a battery with a widely used graphite
anode, e.g., 3590 mAh/g versus 375 mAh/g, respectively (Wu and Cui 2012).

Lithiation of Si is a two-phase process (McDowell et al. 2013a; Liu et al. 2012b),
which may occur at a sharp propagating interface (Liu et al. 2012a, b). Lithiated
silicon is formed as a result of the chemical reaction, Si + xLi → LixSi, where
maximal theoretical value of x is 4.4 (Li22Si5). However, at a room temperature
metastable phase of lithiated silicon Li15Si4 can be formed (McDowell et al. 2013b).
In all cases, the lithiation is accompanied by a transformation strain (Kasavajjula et al.
2007) producing mechanical stresses, which could retard and block the lithiation
(McDowell et al. 2013a; Liu et al. 2012b; Van Havenbergh et al. 2016) and destroy
the anode (Liu et al. 2012a; Van Havenbergh et al. 2016). Thus, mechanism of stress
relaxation is desirable.

Extensive research has been carried out on the development of new nanoscale
structures of silicon-based anodes for lithium-ion batteries, e.g., Kasavajjula et al.
(2007), Baggetto et al. (2011), Van Havenbergh et al. (2016), Esmanski and Ozin
(2009), Cui et al. (2009), Park et al. (2009), Song et al. (2010), Chan et al. (2008). In
Van Havenbergh et al. (2016), the formation of nanovoids in coated Si nanoparticles
(NPs) during lithiation was reported. Nanovoids contributed to the stress relaxation
during lithiation and prevented fracture of the NPs. In Cui et al. (2009), Chan et al.
(2008), the authors reported on the capacity and cycle-life performance of 3D designs
of Si anode for LiBs made of arrays of nanowires. In Park et al. (2009), Song et al.
(2010), the capacity and cycle-life performance of Si-nanotube anode structures for
LiBs was investigated. Baggetto et al. (2011) performed an experimental study in
which a honeycomb periodic structure of the Si anode was fabricated which buckled
during lithiation, releasing stored elastic energy (Fig. 26.1).

Note that the loss of stability of a structural element is present in many micro-
electronics applications and is usually considered undesirable due to the loss of the
bearing capacity of the element. Over the past decades, various models have been
developed describing the buckling of structural elements, and some examples are
listed below. Buckling of a two-layered circular plate with a pre-stressed layer was
studied in Eremeev and Zubov (2015) where three-dimensional linearized equilib-
rium equations for each layer and the equation for critical strains were derived. Non-
linear buckling analysis of a three-layered rectangular plate with pre-stressed middle
layer subjected to the lateral compression/stretching was presented in Eremeev and
Zubov (2017) where critical values of a load parameter and the dependence of the
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Fig. 26.1 Schematic representation of the honeycomb-structured Si anode: a unlithiated;b lithiated
(designed basing on Baggetto et al. 2011)

critical stress on initial strains were obtained. Instability of the hollow elastic cylin-
der using bifurcation method was studied in Zubov and Sheydakov (2008) where
the critical surface and the stability region in the space of loading parameters were
defined, and the influence of the wall thickness on the instability was investigated,
and the criterion of stability under tension was formulated. In Nikravesh et al. (2020)
and Mei et al. (2007) it was reported on buckling and a numerical simulation of
surface delamination and wrinkling of bi-layered composite thin films. The effects
of stress accelerated corrosion on the loss of the stability of a spherical shell due to
changing the thickness and the critical time prior to the stability loss were discussed
in Gutman et al. (2016).

Buckling of a structural element due to stresses produced by a transformation of
a material is presented by the loss of stability of a rod caused by martensitic trans-
formations, see, e.g., Rahman et al. (2005), Movchan et al. (2020), Movchan et al.
(2020), Dumanskii and Movchan (2019) and reference therein. Buckling-induced
fracture and delamination of the supercapacitor due to the charge transfer was stud-
ied in Yang (2017). The effects of manufacturing process, geometric conditions, and
charge/discharge rates on the stability of the electrode structure using geometrically
nonlinear buckling theory were investigated in Zhu et al. (2022). In Kermani et al.
(2021), the authors reported on an analytical and numerical study of buckling of a
layered cell of a lithium-ion battery due to in-plane loading and examined the strength
at buckling.

In the above examples, buckling is an undesirable phenomenon. The present study
is inspired by the utilization of buckling as amechanismof stress relaxation in a struc-
tural element of the Si-based honeycomb anode. We consider buckling of a pinned
plate undergoing a chemical reaction as a model problem and make a step toward
modeling the lithiation-induced buckling process in terms of a stress-affected chem-
ical reaction by using the concept of the chemical affinity tensor (Freidin 2013). The
concept of the chemical affinity tensor (Freidin 2013) is used to couple mechanical
stresses and the reaction rate in a thermodynamically sound manner.

The paper is organized as follows. In Sect. 26.2, the overview of the chemical
reaction front kinetics based on the chemical affinity tensor concept is given. In
Sect. 26.3, a plate undergoing a chemical reaction is considered and the kinetics
of chemical reaction fronts before the loss of the stability of the plate is described
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analytically. Then, in Sect. 26.4, numerical investigation of post-buckling behavior
of the plate and reaction fronts propagation at post-buckling stage are performed.

26.2 Modeling Kinetics of the Chemical Reaction Front

The chemical reaction of the following type is considered:

n−B− + n∗B∗ → n+B+, (26.1)

where B−, B∗, and B+ are the chemical formulae of the reaction constituents, n−,
n∗, and n+ are the stoichiometric coefficients, the subscripts “−”, ∗, and “+” refer to
the initial solid material, diffusing reactant, and solid reaction product, respectively.
During further analysis stoichiometric coefficients n∗, n−, n+ are normalized by
n∗: n− → n−/n∗, n+ → n+/n∗, n∗ → 1.

It is assumed that the chemical reaction is localized at the reaction front and the
diffusing reactant is fully consumed by the reaction. Chemical reaction is accom-
panied by the transformation strain which is assumed to be a volume expansion: an
elementary volume of initial material dV− = n−M−/ρ− transforms into an elemen-
tary volume of the transformed material dV+ = n+M+/ρ+, where M± and ρ± are
the molar masses and reference mass densities of the constituents B±, respectively.
The ratio Jch = dV+/dV− represents the transformation strain at the reaction front
if the diffusing constituent does not produce additional volume deformation (the
case of a solid skeleton approach (Freidin 2013), but generally speaking the ratio
of elementary volumes of materials on both sides of the reaction front, if they were
stress-free, is given by the formula (Morozov et al. 2020)

Jch = n+M+/ρ+ + βM∗/ρ∗
n−M−/ρ−

, (26.2)

where parameterβ characterize deformational interaction between the diffusing reac-
tant B∗ and the reaction product B+;β = 0 in the case of the solid scheleton approach,
β = 1 if the diffusing reactant adds its volume to the reaction product. Note that Jch
depends on the concentration of the diffusing constituent if β �= 0, but for the sake
of simplicity further we consider Jch as a given material parameter.

Kinetics of the chemical reaction front is modeled using the concept of the chem-
ical affinity tensor. The chemical affinity tensor was derived as the consequence of
the mass balance, linear momentum balance, energy balance, and the second law of
thermodynamics in the form of the Clausius-Duhem inequality written for a moving
reaction front (Freidin 2013), see also (Freidin et al. 2014; Freidin and Vilchevskaya
2020). Stresses produced by the transformation strain and external loading affect the
reaction front velocity through the normal component of the chemical affinity tensor.
The validity of the approach based on the chemical affinity tensor was demonstrated
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by solution of a number of coupled mechanochemistry problem (see, e.g., Petrenko
et al. 2022, Freidin et al. 2022 and reference therein).

The kinetic equation used in classical chemistry is based on the scalar chemical
affinity (Prigogine and Defay 1954; Glansdorff et al. 1973). It can be reformulated
for the reaction rate ω[n] at the area element with normal n as a function of the
normal component of the affinity tensor as follows Freidin (2013):

ω[n] = k∗c
{
1 − exp

(
− Ann

RT

)}
(26.3)

where k∗ is a kinetic coefficient, c is the partial molar concentration of the diffusing
reactant, R is the universal gas constant, T is the temperature, and Ann is the normal
component of the chemical affinity tensor acting as a configurational force. Then the
normal component of the reaction front velocity Wn can be obtained from the mass
balance at the reaction front:

Wn = n−M−
ρ−

ω[n]. (26.4)

Further we consider the case of small strains. Then the expression for the normal
component of the chemical affinity tensor takes the form:

Ann = n−M−
ρ−

(γ − ζ ) + n∗RT ln
c

c∗
, (26.5)

where c∗ is the solubility of B∗ in B+,

ζ = w+ − w− − σ± : [[ε]] (26.6)

represents the influence of the stress-stain state, w± are the strain energies of the
solid constituents per unit volume, [[ε]] = ε+ − ε− is the jump of the strain tensor
across reaction front, σ is the Cauchy stress tensor, and

γ = η− − η+ + ρ−
n−M−

η∗ (26.7)

is the temperature dependent chemical energy parameter, η+, η− are the chemical
energies in the stress-free state of the constituents B+, B−, and η∗ is the reference
chemical energy of the diffusing reactant B∗.

An equilibrium concentration ceq can be introduced at the reaction front such that
Ann(ceq) = 0. From (26.5) it follows that ceq = κc∗ where

κ = exp

(
−n−M−

ρ−
(γ − ζ )

RT

)
. (26.8)

Then the reaction rate (26.3) can be expressed as
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ω[n] = k∗ (c − κc∗) , (26.9)

where κ represents the influence of the competition between chemical and mechan-
ical factors on the reaction rate. If the stresses are such that κ = 1, i.e., ζ = γ , then
the front propagation is blocked.

Hence, one has a coupling between mechanics, diffusion, and chemical reaction.
In addition, effects of mechanical stresses can be accounted for through the stress-
dependent diffusivity and the cross effects of stress gradient in the diffusion flux,
see, e.g., Knyazeva (2003), Cui et al. (2013), Bower and Guduru (2012). However,
in the present work, we focus only on the influence of stresses on the reaction rate
and buckling due to reaction front propagation.

To calculate ζ and, therefore specify a kinetic equation defining the reaction front
velocity one has to find stresses, strains, and the concentration of the diffusive reactant
at the reaction front. Further following assumptions are used: we neglect the initial
stage of the diffusion of B∗ prior to the start of the reaction and separation of the
reaction front from the outer boundary of the body. We also assume that the front
propagation is controlled by the reaction rate rather than by diffusion, i.e., we assume
that diffusion is much faster than the chemical reaction and is fast enough to consider
a steady-state diffusion for each front position. Then the diffusion can be described
by Fick’s equation:

�c = 0 (26.10)

with boundary conditions:

Dn · ∇c − α(c∗ − c) = 0 at 
+, Dn · ∇c + ω[n] = 0 at �, (26.11)

where α is the surface mass transfer coefficient, 
+ is the outer boundary of the
domain occupied by material B+. The first boundary condition states that if the
solubility c∗ is reached then the supply of the diffusing reactant stops. The second
boundary condition follows from the mass balance at the reaction front and states
that all the diffusing reactant is consumed by the reaction.

To find stresses and strains one has to solve the equilibrium equation

∇ · σ = 0 (26.12)

with boundary and interface conditions

u|
1 = u0, σ ·n|
2 = t0, (26.13)

[[u]]|� = 0, [[σ ]]|� · n = 0, (26.14)

where u0 and t0 are the displacement and traction prescribed at the parts 
1 and 
2

of the outer boundary of the body, respectively, � is the reaction front. We consider
linear elastic solid constituents with constitutive relations
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σ− = C− : ε−, σ+ = C+ : (ε+ − εch), (26.15)

where C± are the stiffness tensors, εch is the chemical transformation strain. Then

γ − ζ = γ − 1

2
σ+ : (ε+ − εch) + 1

2
σ− : ε− + σ± : [[ε]]. (26.16)

Further we consider isotropic solid constituents and take

C± = λ±E ⊗ E + 2μ±I, εch = εchE, (26.17)

where λ± and μ± are the Lamé constants, E and I are the second and forth rank unit
tensors, respectively.

26.3 Loss of Plate Stability Due to the Chemical Reaction

A coupled problem “diffusion—chemistry—mechanics” for a pinned plate until its
loss of stability was considered in Shtegman et al. (2021). Below, for completeness,
the main points are presented.

We consider a plate of the width a, length b � a, and thickness 2H , symmetric
with respect to themiddle plane, pinned at the edges x = ±a/2 (Fig. 26.2, rectangular
coordinates x, y, z are used). The upper and lower sides y = ±H are traction-free.
A plane strain formulation is assumed with ε±

z = 0. The chemical reaction starts
simultaneously on both sides and two reaction fronts propagate toward the middle
plane. The diffusing reactant is supplied through the upper and lower sides. The reac-

Fig. 26.2 Schematic representation of a plate with two chemical reaction fronts: a before buckling;
b during post-buckling
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tion fronts are planar before buckling, the top and bottom layers of the transformed
material have the same thickness h. Due to pinning, ε±

x = 0.
The stresses are induced by the transformation strain similar to thermal stresses.

Since the upper and lower sides of the plate are traction-free and the traction conti-
nuity condition [[σy]]|y=±(H−h) = 0 holds at the reaction fronts, one can accept that
σ±
y = 0 everywhere. Then non-zero stresses are

σ+
x = σ+

z = E+εch

1 − ν+
, H − h < |y| < H, (26.18)

where E+ and ν+ areYoung’smoduli and Poisson’s ratio of the transformedmaterial,
respectively. The stresses do not depend on the front position until the loss of stability.
Then ζ in (26.16) does not depend on the thickness of the transformedmaterial layer,

γ − ζ = γ − E+ε2ch

1 − ν+
. (26.19)

The planar chemical reaction front can propagate only if ω[n] > 0 which holds if
c > ceq at the reaction front. On the other hand c ≤ c∗. Thus, if the front propagates,
then ceq < c∗, κ < 1 and γ − ζ > 0, i.e., γ /γ∗ > 1, where γ∗ = E+ε2ch/(1 − ν+) is
the critical value of γ .

The solution of the diffusion equation (26.10) with boundary and interface con-
ditions (26.11) gives the concentrations at the upper and lower reaction fronts:

c(y)||y|=H−h = 1 + κk∗ (1/α + h/D)

1 + k∗ (1/α + h/D)
c∗. (26.20)

Then, by (26.4) and (26.9), the reaction front velocity Wn is expresses as a function
of the front position:

Wn(h) = dh/dt = n−M−
ρ−

c∗(1 − κ)

1/k∗ + 1/α + ξH/D
(26.21)

where ξ = h/H is the relative thickness of the transformed layer. Integrating (26.21)
gives the time of reaching the relative thickness ξ :

t (ξ) = ρ−
n−M−

ξ(1/k∗ + 1/α + ξH/(2D))

c∗(1 − κ)
H (26.22)

The time is inversely proportional to the kinetic coefficient k∗, the mass transfer
coefficient α, and the diffusivity D. Internal stresses produced by the transformation
strain affect the reaction front kinetics via parameter κ. It is seen how the front
decelerates if the ratio γ /γ∗ decreases, i.e., if the mechanical factor γ∗ increases
relative to the chemical energy γ .
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The reaction force Rx at the supports, bending stiffens Def and critical buckling
load Ncr can be calculated as Timoshenko and Gere (1961), Eslami et al. (2013)

Rx (h) =
−H∫
H

σxdy, Def(h) =
−H∫
H

Cy2dy, Ncr(h) = Def(h)
π2

a2
, (26.23)

where σx is given by (26.18), C = C+ if H − h < |y| < H , and C = C− if |y| < h,
C± = E±/(1 − ν2±).

During the propagation of the front the reaction force increases and the bending
stiffness changes.Buckling occurs at the critical thickness of the transformed layerhcr
such that Rx (hcr) = Ncr(hcr). Substitution of (26.23) into the buckling criterion leads
to the equation

(C−/C+ − 1) η3
cr + Gηcr − G + 1 = 0, (26.24)

where ηcr = 1 − ξcr, ξcr = hcr/H , the ratio C−/C+ reflects the influence of the elas-
ticity parameters of both solid constituents on the bending stiffness of a plate, dimen-
sionless parameter G depends on the geometrical dimensions of the plate—the ratio
a/H , the chemical transformation strain and Poisson’s ratio of the transformedmate-
rial:

G = 3εch(1 + ν+)
a2

π2H 2
. (26.25)

Buckling occurs if the solution of (26.24) is in range ηcr ∈ [0, 1]. Such a root
exists if G > 1. For given transformation strain and elastic moduli, by adjusting the
ratio a/H , one can achieve the buckling at prescribed ξcr. Then one can calculate the
time tcr prior buckling by (26.22).

Further calculations are performed at the reference values of the material parame-
ters, which are given in Table26.1. The dependencies of the critical relative thickness
ξcr on parameter G for various values of the ratio C−/C+ are shown in Fig. 26.3.

The dependencies of critical time tcr on parameter G at various values of energy
parameter γ are shown in Fig. 26.4. The energy parameter depends on the tempera-
ture. Thus, it is possible to control γ (T ) and hence the reaction front velocity and the
moment of buckling by changing the temperature. Note that temperature can cause
thermal stresses affecting the kinetics of the reaction.

Table 26.1 Reference values of parameters

Parameter a/H E− [GPa] E+ [GPa] ν− ν+ εch

Value 11.6 86.4 59.2 0.33 0.25 0.017

Parameter γ [J/mm3] D [mm2/s] c∗ [mol/mm3] k∗ [mm/s] α [mm/s] γ∗ [J/mm3]

Value 0.03 − 0.05 0.1 0.1 0.01 0.2 0.022
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Fig. 26.3 Dependencies of the critical thickness of the reaction front on parameter G at various
ratio C−/C+ (γ = 0.03)

Fig. 26.4 Dependencies of the time prior buckling on the parameterG at various γ (C−/C+ = 1.5)

26.4 Post-buckling of the Plate and Reaction Front
Propagation

Post-buckling behavior of a homogeneous beam or plate can be described analyti-
cally with the use of a geometrically nonlinear post-buckling theory developed by
Timoshenko and Gere (1961), see also Eslami (2018), Li et al. (2002), Hauck et al.
(2010), Eremeyev and Pietraszkiewicz (2011), Levin et al. (2015) and references
therein. However, in order to model the propagation of two chemical reaction fronts
during post-buckling one has to find stresses and strains at nonplanar fronts inside
the bi-materials plate with changing thickness of the domains occupied by materials
B+ and B− along coordinate axis x (Fig. 26.2b). Therefore, numerical modeling was
implemented.

Previously, numerical simulations of the equilibrium and propagation of the sharp
interface were carried out by finite element modeling (FEM) for the case of stress-
induced phase transformations driving by the configurational force equal to the jump
of the Eshelby stress tensor across the interface (see, e.g., Socrate and Parks 1993;
Mueller andGross 1998; Gross et al. 2002; Kabanova and Freidin 2022 and reference
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therein). A numerical study of the propagation of the chemical reaction front with the
reaction kinetics defined by the chemical affinity tensor was performed by FEM in
Morozov et al. (2019), Freidin et al. (2022). Belowwe focus on the chemical reaction
front propagation in the plate at the post-buckling stage. Due to the symmetry of the
modelwith respect to axis x = 0 (see Fig. 26.2), only half of the platewas considered.
The interface passed along the edges of the elements, and remeshing of the geometry
in combination with a user-defined Python postprocessing algorithmwas undertaken
at each iteration.

Developed numerical procedure does not describe the nucleation of the newphase,
therefore existence of an initial thin layer of material B+ was assumed. Note that the
FEM procedure for tracking the reaction front may be a time-costly procedure. A
number of steps are to bedone at each iteration: createmodel andmesh it, find stresses,
strains, and concentration at each point of the reaction front, compute velocity of
the reaction front by (26.3), (26.4), move the reaction front in accordance with the
velocities of its points to the new position for the next iteration.

According to Euler’s buckling criterion, Rx (h) = Ncr(h), in numerical modeling,
two stages can be distinguished: before and after the loss of stability. Before buckling,
at Rx (h) < Ncr(h), a flat plate with two planar reaction fronts propagated with equal
velocities was observed, as expected.

At the post-buckling stage, the stress-strain state was no longer symmetrical with
respect to the middle plane. This resulted in unequal velocities of the points of the
upper and lower chemical reaction fronts. Figure26.5 shows an image of a buckled
plate consisting of the initial and transformed materials.

Positions of the chemical reaction fronts and the shape of the middle plane of
the half of the bent plate at various iteration steps are shown in Fig. 26.6. By (26.8),
the acceleration or retardation of the front is defined by the competition between
chemical and mechanical factors, γ and ζ . The upper chemical reaction front is
subjected to additional tension due to buckling, which results in acceleration of the
front whereas the lower reaction front is subjected to the compressing strains, which
retard the front and even can block it. Note that, depending on material parameters
and the ranges of tension and compression values, tension can retard the front, and
compression can accelerate it Freidin et al. (2014), Petrenko et al. (2022).

The impact of energy parameter γ on the front kinetics is represented in Fig. 26.7
where the position of the middle point of the front is shown in dependence on time

−

+

+

Fig. 26.5 FEM-image of a partially transformed plate in a post-buckling state
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Fig. 26.6 Kinetics of the
chemical reaction fronts and
plate bending: a the upper
and lower reaction fronts and
b deflection w of the middle
plane of the plate at various
post-buckling moments;
E+ = 59.2, E− = 86.4,
ν+ = 0.25, ν− = 0.33
(C−/C+ = 1.5), γ = 0.03;
x ′ = (x + a/2)/H , N is the
iteration number

Fig. 26.7 Positions of the
middle points (at x = 0) of
upper and lower chemical
reaction fronts v.s. time at
various values of γ ,
E+ = 59.2, E− = 86.4,
ν+ = 0.25, ν− = 0.33

for the same set of elasticity parameters as in Fig. 26.6 and two values of γ . One can
see that 33% increase in the energy parameter (from γ = 0.03 to 0.04) results in 2
times acceleration of the lower chemical reaction front. At γ = 0.03 the propagation
of the part of the lower front is blocked. In the case γ = 0.04 blocking of the lower
chemical reaction front was not observed.

The kinetics of the front at the set of the elasticity parameters “exchanged” with
respect to the parameters of Fig. 26.6 (E+ ↔ E−, ν+ ↔ ν−, i.e.,C−/C+ ↔ C+/C−)
but at higher γ is shown in Fig. 26.9. In this case γ∗ = 0.035 and the front cannot
start to propagate at the initial stage prior to buckling. That is why γ = 0.05 was
taken. In both cases blocking of the propagation of the part of the lower front takes
place but in the second case the blocking starts earlier than in the first case despite
the higher value of γ .
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Fig. 26.8 Zoomed rectangle from Fig. 26.6a: development of instabilities of the upper reaction
front (N is the iteration number)

Fig. 26.9 The positions a of upper and lower chemical reaction fronts at various iterations N;
b zoomed rectangle from a: development of reaction front instabilities; E+ = 86.4, E− = 59.2,
ν+ = 0.33, ν− = 0.25 (C−/C+ = 0.6), γ = 0.05; x ′ = (x + a/2)/H

In both cases the loss of stability of the reaction front—the appearance and
growth of wave-type perturbations—was observed after a number of iterations. In
the first case it took place at the part of the upper reaction front, at x ′ ≈ 4 − 5.5
(Figs. 26.6a, 26.8). However, if the elasticity parameters were exchanged, the loss of
stability of the lower reaction front occurred at x ′ ≈ 2.5 − 3 (Fig. 26.9).



494 V. O. Shtegman et al.

Detailed examinations of the stability of the reaction front are out of the scope
of the present paper. We only note that this may be the result of so-called kinetic
instability according to which the front is unstable if front perturbations grow further
due to kinetic equations (26.3), (26.4). The procedure of kinetic stability analysis
was developed earlier for an equilibrium phase interface in the case of stress-induced
phase transformations (see Yeremeyev et al. 2007 and reference therein) and then
for equilibrium and propagating chemical reaction fronts (Morozov et al. 2023) (see
also Morozov et al. 2019). In this case, numerical inaccuracies caused by remeshing
and numerical finding of the normal to the reaction front act as physical fluctuations.

26.5 Conclusion

In this paper, the plate buckling coupled with the propagation of chemical reaction
fronts was studied. Two stages of the fronts propagation were considered: before
and after the loss of stability of the plate. The influence of elasticity and energy
parameters on the critical thickness of the transformed material layer and the time
before buckling as well as on the propagation of the reaction front and deflection of
the plate at the post-buckling stage was investigated. Differences in the behavior of
the upper and lower reaction fronts were described. The blocking of the propagation
of the parts of fronts and instability of the fronts were observed at the post-buckling
stage.
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Chapter 27
On a Boundary Element Method for a
Flow of Viscous Fluid Around a Cylinder

Mezhlum Sumbatyan and Rafael Zakaryan

Abstract In the classical problem of hydrodynamics, for a cylinder placed in a
flow of viscous incompressible fluid, we propose a new version of boundary integral
equation (BIE), in the two-dimensional (2d) case. The proposed method is based
on the Navier–Stokes equations formulated in terms of vorticity and stream func-
tions. With this treatment, the most complex point is to satisfy correctly the no-slip
boundary conditions on the surface of the cylinder, which all are written in terms of a
stream function; hence, there is no boundary condition for the vorticity function. This
obstacle is overcome in the present work by substituting an appropriate expression
for vorticity to a certain expression for the stream function. Such an approach results
in a specific system of BIEs for the boundary value of the vorticity function and its
normal derivative, over the boundary line. By so doing, we demonstrate the applica-
tion of this method by using two different forms of Green’s function—(i) for full 2d
space; (ii) for the exterior of the cylinder, with the Dirichlet boundary condition over
its surface. In the latter case, Green’s function is more complex, being expressed as
an infinite series of the modified Bessel functions, but the treatment is simplified in
this case to be reduced to a single BIE, instead of a traditional system of two BIEs. In
a discrete form, the proposed approach generates a newDirect Numerical Simulation
(DNS) method to the formulated problem.

Keywords Flow around a cylinder · Viscous fluid · Boundary integral equation ·
Boundary element method · Stream function · Vorticity function

27.1 Introduction

StandardDNSmethods, likeFiniteElementMethods (FEM) (Zienkiewicz andTaylor
2000), Finite Volume Methods (FVM) (Moukalled et al. 2019), and others, have
widely been applied to the problem about flows of viscous fluid around bodies. The
BIE method, which is a subject of the present work, is used for viscous fluids less
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extensively, since their governing Navier–Stokes equations are strongly nonlinear.
Among others, let us mention the works (Brebbia et al. 1984; Dargush and Banerjee
1991; Aydin and Fenner 2000; Grigoriev and Dargush 1999).

The BIE method is coupled with the Boundary Element Method (BEM), follow-
ing from the classical potential theory. Initially, this method was applied to elastic
problems, and some later—to the problems of fluids and gases. The method is based
on the governing differential equations describing a certain physical problem, writ-
ten in an integral form. The main advantage of the BIE method is observed in linear
and linearized problems and consists of a decreasing dimension of the problem by
unit. Many impressive examples such an efficiency can be found in the dynamics
of non-viscous fluid, as well as in viscous fluid dynamics with the Stokes and the
Oseen approximations. Thus, the solution to a three-dimensional (3d) problem can
be reduced to a BIE over a 2d surface, and a solution to a 2d problem can be reduced
to an integral equation over a boundary curve. Obviously, with nonlinear terms this
advantage disappears, and one needs to discretize both 3d or 2d integrals, respec-
tively. However, there are some other positive factors when applying the BIEmethod,
discussed below.

Let us discuss the principal aspects of the BIE applied to flows of the viscous
incompressible fluid. First of all, the application of the BIE depends on the choice
of basic physical quantities: velocity—pressure or stream function—vorticity, or
velocity—vorticity. Such a choice influences the choice of the initial and the bound-
ary conditions, as well as the way of transformation of the Navier–Stokes and conti-
nuity equations to the integral form, which determines the form of integral equations
themselves. If one the chosen physical quantities is the velocity, then the boundary
conditions are rather simple. An attractive approach, at least in the 2d problems, is
found in the Navier–Stokes equations written in terms of stream and vorticity func-
tions, which in the 2d problems both are scalar functions, and the pressure function
is excluded. With this treatment, the most complex point is to satisfy correctly the
no-slip boundary conditions on the boundary, since they all are written in terms of the
stream function. Therefore, there is a trouble when solving a respective boundary-
value problem for the vorticity function, since there is no explicit boundary condition
for the vorticity; see, for example, Roache 1976; Fletcher 1988.

The second important point is the choice between stationary and transient forms of
the Navier–Stokes equations. In the transient case, one should choose an appropriate
form for the derivative, respectively time. Then this derivative is represented either
in integral form or by a finite-difference scheme. In the present work, we represent
the time derivative as a finite difference by the Euler scheme (an implicit form), as
in Tseng and Ferziger (2003).

The third important point is the choice of an appropriate representation for the
nonlinear terms in theNavier–Stokes equations. For instance,with the Stokes approx-
imation the nonlinear terms are neglected, and in the Oseen approximation there are
neglected the small quantities of the second order. In otherworks, the authors propose
some finite-difference schemes for the nonlinear terms, as well as penalty functions
have been used for convective terms. Besides, some authors apply the divergence
theorem and the dual reciprocity method (DRM) for the nonlinear terms (Aydin and
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Fig. 27.1 A round cylinder
of radius a placed in a
uniform flow of viscous fluid

Fenner 2000). As a rule, thesemethods permit the study of flowswith small andmod-
erate Reynolds numbers. However, the improved formulation of the penalty function
in Grigoriev and Dargush (1999) permits acceptable solutions for large Reynolds
numbers, but as outlined in Aydin and Fenner (2000) the method itself looks more
like a certain FEM.

The fourth important point is the used way to transform partial differential equa-
tions to a system of integral equations. Let us emphasize the two possible approaches:
(i) the weighted residuals method with arbitrary weight function, and (ii) the method
based on Green’s function. In the first case, there is usually used the Green–Gauss
theorem, but in the second case there is typically used the second Green’s formula
transforming the volumetric integral to an integral over the boundary.

Now let us describe the principal difference and expected advantage of the BIE
method when compared with the FEM and the FVM. The main attention is paid to
methods of development of integral equations and their reducing to an efficient form
of discretization. The main advantage of the BIE method is that this provides a good
convergence of the numerical process with a relatively small number of nodes on
the mesh. Hence, this essentially reduces the time required to construct the solution.
It should also be noted that the integral form of the equations permits to take into
account singular points and breaking points of the solution, not by increasing the
dimension of the mesh but by some mathematical transformations.

27.2 Mathematical Formulation

Let us consider a uniform flow of the incompressible viscous fluid around a circular
disk; see Fig. 27.1. The governing equations are the Navier–Stokes equations, which
we write in the 2d case in the Cartesian coordinate system (x1, x2) in terms of stream
function ψ and vorticity function ω; see Roache (1976), Fletcher (1988), and Cottet
and Koumoutsakos (2000):
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∂ω f

∂t
= − v f 1

∂ω f

∂x1
− v f 2

∂ω f

∂x2
+ ν�ω f ,

v f 1 = ∂ψ f

∂x2
, v f 2 = − ∂ψ f

∂x1
, ω f = ∂v f 1

∂x2
− ∂v f 2

∂x1
, �ψ f = ω f ,

(27.1)

where the subscript f indicates that the respective quantity is related to the full stream
field. Here v f 1 and v f 2 are the components of the velocity vector. The equation of
continuity ∂v f 1/∂x1 + ∂v f 2/∂x2 = 0 is satisfied here automatically.

Any full physical quantity is a sum of respective quantity in the incoming flow
(marked with the subscript 0) and the perturbed one (free of any subscript):

v f 1 = v0 + v1, v f 2 = v2, ψ f = ψ0 + ψ, ω f = ω, ψ0 = v0x2. (27.2)

The perturbed quantities are assumed to decay in the far zone.
If the initial values for t = 0 are known for both functions ψ and ω, then the first

equation in (27.1) can be solved by iterationswith respect to time. It is known (Roache
1976; Fletcher 1988) that stable numerical methods are provided with backward
finite-difference schemes over time. In the simplest form, such an implicit iterative
scheme is obtained from theEuler approximation (∂ω/∂t)n ≈ (ωn − ωn−1)/τ ,where
τ is a chosen time step. It is possible to apply finite-difference schemes of higher
orders, but this does not change the essence of the algorithm and only modifies
slightly the value of the small parameter ε below. In any way, the nonlinear term
in Eq. (27.1 should be taken on the “previous” time layer, to avoid the nonlinear
boundary-value problem at each iteration. The current time layer is associated with
iteration number n which may appear as either a subscript or a superscript, for any
physical quantity. With such a treatment, the iteration algorithm is convergent for a
sufficiently small time step τ .

This approach yields the following iteration process for functions ωn and ψn:

ωn
f − ε�ωn

f = gn−1
f ∼ �ωn

f − k2ωn
f = −gn−1

f

ε
,

gn−1
f = ωn−1

f + τ

(
∂ψ f

∂x1

∂ω f

∂x2
− ∂ψ f

∂x2

∂ω f

∂x1

)
n−1

,

�ψn
f = ωn

f , (ε = ν τ , k2 = 1/ε) .

(27.3)

By a standard method related to the classical potential theory (Brebbia et al.
1984; Colton and Kress 1983), one can extract from two elliptic partial differential
equations in (27.3) the following integral representations for functions ωn and ψn:
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ωn(x) =
∫
l

[
∂Gω(y, x)

∂ny
ωn(y) − Gω(y, x)

∂ωn(y)

∂ny

]
dly +

+ 1

ε

∫∫
S

Gω(y, x) gn−1
f (y)dsy ,

(27.4)

ψn(x) =
∫
l

[
∂Gψ(y, x)

∂ny
ψn

f (y) − Gψ(y, x)
∂ψn

f (y)

∂ny

]
dly −

−
∫∫
S

Gψ(y, x) ωn(y)dsy ,

(27.5)

for any chosen point x = (x1, x2) in the fluid. Here, S is the domain covered by the
fluid, i.e. exterior of the cylinder, l is its circular boundary line, dly is the elemental
arc length over the boundary line, dsy is the elemental area in the fluid, and ny is the
unit normal to l directed toward the fluid (i.e. outside the cylinder). The subscript y
means that the elemental quantities are taken at point y = (y1, y2), not at point x .
Besides, functions

Gω = 1

2π
K0(k|y − x |) , Gψ = − 1

2π
ln |y − x | ,

|y − x | = [
(y1 − x1)

2 + (y2 − x2)
2
]1/2 (27.6)

are Green’s functions in the unbounded space for Helmholtz operator (�y − k2)Gω

and Laplace operator �yGψ , respectively. If k → +0 then the first of them is trans-
formed to the second one that is evident due to the asymptotic behavior of the
Macdonald function K0 (Abramowitz and Stegun 1964).

By using the no-through and no-slip boundary condition and taking into account
that the stream function is defined up to arbitrary constant summand, one may write
the following boundary conditions for function ψ :

ψn
f (x)

∣∣
l
= 0, =⇒ ψn(x)|l = − ψ0|l , (27.7)

∂ψn
f (x)

∂nx

∣∣∣∣
l

= 0, =⇒ ∂ψn(x)

∂nx

∣∣∣∣
l

= − ∂ψ0

∂nx

∣∣∣∣
l

, (27.8)

where l is a boundary line of the cylinder.
Equations (27.4) and (27.5) contain four functions over the boundary line l, on the

current n-th time layer: ψn and ∂ψn/∂n, as well as ωn and ∂ωn/∂n. Obviously, they
should be defined from the boundary conditions. For a more efficient representation,
let us calculate asymptotically in Eq. (27.4) the integral over domain S, along variable
y with an arbitrary fixed x ∈ S, in the case when parameter ε is small:



504 M. Sumbatyan and R. Zakaryan

∫∫
S

Gω(y, x) gn−1(y)dsy = 1

2π

∫∫
S

K0(k|y − x |)gn−1
f (y)dsy ∼

∼
(
y1 − x1 = μ cosϕ

y2 − x2 = μ sin ϕ

)
∼ gn−1

f (x)

2π

2π∫
0

∞∫
0

K0(kμ)μdμdϕ = εgn−1
f (x) .

(27.9)
Here, the above asymptotic function gn−1

f could be extracted outside the integral
with its value at point y = x , since the principal contribution to this integral is given
by a small vicinity of this point, due to exponential decay of the Macdonald function
with an increasing argument. Besides, the value of the last integral in (27.9), over
variable μ, is tabulated; see Abramowitz and Stegun (1964).

Let us rewrite Eq. (27.4), by using (27.9), with variables (y; η) instead of (x; y):

ωn(y) =
∫
l

[
∂Gω(η, y)

∂nη

ωn(η) − Gω(η, y)
∂ωn(η)

∂nη

]
dlη + gn−1

f (y) . (27.10)

Now, the obtained expression (27.10) for vorticity ωn may be substituted into
the dual integral in (27.5), by taking into account that the curvilinear integral in
Eq. (27.5), containing the boundary value of a full stream function and of its normal
derivative, is equal to zero, due to boundary conditions (27.7), (27.8):

ψn(x)=−
∫∫
S

Gψ(y, x) gn−1
f (y)dsy−

∫
l

ωn(η)
∂

∂nη

⎡
⎣∫∫

S

Gψ(y, x)Gω(η, y)dsy

⎤
⎦

× dlη +
∫
l

∂ωn(η)

∂nη

⎡
⎣∫∫

S

Gψ(y, x)Gω(η, y)dsy

⎤
⎦dlη .

(27.11)
The asymptotic estimate of Eq. (27.11) with small ε gives for the internal dual

integral:

∫∫
S

Gψ(y, x)Gω(η, y)dsy ∼ Gψ(η, x)

2π

π∫
0

∞∫
0

K0(kμ)μdμdϕ = ε

2
Gψ(η, x) ,

(27.12)
where we have taken into account that this integral should be applied over a half-
plane for variableμ = |y − x |, since point η belongs to the boundary contour: η ∈ l,
and so the principal contribution to this integral is given by a small semi-circle whose
diameter is tangential to contour l. Of course, such a treatment is valid only if the
boundary line l is smooth.

Then, to come to integral equations, one should evaluate the behavior of respective
integrals, as x → l (Colton and Kress 1983):



27 On a Boundary Element Method for a Flow of Viscous Fluid Around a Cylinder 505
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dly ,

(27.13)

where f is an arbitrary smooth function.
This implies that two boundary conditions (27.7) and (27.8) applied to function

(27.11), taking also into account relations (27.12) and (27.13), lead to a pair of BIEs,
with respect to the two unknown functions ωn and ∂ωn/∂n, as follows:

ε

4
ωn(x) + ε

2

∫
l

∂Gψ(y, x)

∂ny
ωn(y)dly − ε

2

∫
l
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∂ny
dly =

= ψ0 −
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Gψ(y, x) gn−1
f (y)dsy , (27.14a)

ε
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∂nx
− ε

2

∫
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∂nx
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∂ny
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2
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= ∂ψ0

∂nx
−

∫∫
S

∂Gψ(y, x)

∂nx
gn−1
f (y)dsy . (27.14b)

The developed system of BIEs in the discretization of the domain covered by
the flow, with nodes of a boundary mesh, implies the subdivision of contour l to
N small sub-intervals. This leads to a system of linear algebraic equations (SLAE)
of dimension 2N × 2N . The known values of respective functions on the (n − 1)th
time layer permit, with the use of this SLAE, to define the unknown functions over
the boundary contour l on the nth time layer. Then one can find, coming back to
Eqs. (27.10) and (27.11), the unknown functions on the nth time layer in the total
flow domain. This allows one to pass to the calculation of all physical quantities on
the next time layer. If one sets on the initial 0-th layer the values of the physical
functions corresponding say to a flow of non-viscous fluid around a cylinder, then
one comes, after several iteration steps, to a flow field corresponding to the viscous
flow around the cylinder.

Obviously, such an approach is applicable to any body of a rather general geometry
placed in the flow of viscous incompressible fluid.
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27.3 Specific Green’s Functions for the Exterior of the
Cylinder

Here, we construct Green’s functions for both Poisson and Helmholtz equations,
which satisfy the homogeneous Lagrange boundary condition over the cylinder. The
derivation follows the classical book (Duffy 2001).

Let us start with the Poisson equation. First of all, let us pass to the polar coordinate
system, with

x1 = r0 cos θ0, x2 = r0 sin θ0, y1 = r cos θ, y2 = r sin θ . (27.15)

One thus needs to solve the following equation:

�Gψ ≡ ∂2Gψ

∂r2
+ 1

r

∂Gψ

∂r
+ 1

r2
∂2Gψ

∂θ2
= − δ(y − x) ≡ − δ(r − r0)δ(θ − θ0)

r
,

(27.16)
regarding function Gψ = Gψ(y, x) = Gψ(r, θ; r0, θ0) as a function of y = (r, θ)

for any fixed point x = (r0, θ0) in the fluid, with the boundary conditionGψ |r=a = 0.
Then, according to Duffy (2001), since

δ(θ − θ0) = 1

2π

∞∑
m=0

am cos[m(θ − θ0)], a0 = 1, am = 2 (m ≥ 1) , (27.17)

one may seek function Gψ , due to the orthogonality of the trigonometric functions,
in the following form:

Gψ =
∞∑

m=0

G ψ
m (r, r0) cos[m(θ − θ0)] . (27.18)

By so doing, Eq. (27.16) is reduced to the inhomogeneous ordinary differential
equation (ODE) of the second order:

∂2G ψ
m

∂r2
+ 1

r

∂G ψ
m

∂r
− m2

r2
G ψ

m = − am
δ(r − r0)

2πr
, (27.19)

whose solution, bounded at infinity and satisfying the boundary condition G ψ
m (a) =

0, can simply be constructed in the following form:

G ψ
m (r, r0) = 1

2πm

[
−

(
a2

r0r

)m

+ H(r−r0)
(r0
r

)m+H(r0−r)

(
r

r0

)m]
, (m ≥ 1),

(27.20a)

Gψ

0 (r, r0) = 1

2π

[
H(r − r0) ln

r0
a

+ H(r0 − r) ln
r

a

]
, (27.20b)



27 On a Boundary Element Method for a Flow of Viscous Fluid Around a Cylinder 507

where H is the Heaviside function, whose derivative is Dirac’s delta-function.
Green’s function for the Helmholtz operator

∂2Gω

∂r2
+ 1

r

∂Gω

∂r
+ 1

r2
∂2Gω

∂θ2
− k2Gω = − δ(r − r0)δ(θ − θ0)

r
,

(
k2 = 1

ε
, ε = ν τ

)
,

(27.21)

with a certain parameter k > 0, can be developed by analogy. If one applies the
expansion as in (27.18)

Gω =
∞∑

m=0

G ω
m (r, r0) cos[m(θ − θ0)] , (27.22)

then for every coefficient in this expansion, Eq. (27.21) is again reduced to the ODE,
as follows:

∂2G ω
m

∂r2
+ 1

r

∂G ω
m

∂r
−

(
m2

r2
+ k2

)
G ω

m = − am
δ(r − r0)

2πr
, (27.23)

whose solution, bounded at infinity and satisfying the boundary condition G ω
m (a) =

0, is constructed in a similar way (Grigoriev and Dargush 1999):

G ω
m (r, r0) = am

4π

[
−Km(kr0)

Km(ka)
Km(kr) Im(ka) +

+H(r − r0) Km(kr) Im(kr0) + H(r0 − r) Im(kr) Km(kr0)] , (m ≥ 0).
(27.24)

It is interesting to notice that Green’s function for the Poisson equation (3.6) can
directly be obtained from Green’s function for the Helmholtz equation (27.24) if one
applies the limit k → +0 in the latter, by taking the well-known asymptotic behavior
of the modified Bessel functions for a small argument.

27.4 The BIE with the Specific Green’s Functions

With so constructed specific Green’s functions, the basic equations above can sig-
nificantly be simplified. Thus, representation (27.4) is reduced to

ωn(x) =
∫
l

∂Gω(y, x)

∂ny
ωn(y)dly + 1

ε

∫∫
S

Gω(y, x) gn−1
f (y)dsy , (27.25)

since Gω(y, x) = 0, y ∈ l. Besides, Eq. (27.5) is simplified to the following form:
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ψn(x) = −
∫∫
S

Gψ(y, x) ωn(y)dsy , (27.26)

since ψ f (y) = 0, ∂ψ f (y)/∂ny = 0, y ∈ l at each iteration step, due to no-through
and no-slip boundary conditions (27.7) and (27.8). It is obvious that the second
boundary condition means trivial tangential velocity on the boundary contour. The
first one follows from the trivial normal velocity on the cylinder, which is equivalent
to the trivial tangential derivative of the stream function. This leads to a constant
value of function ψ f (y) over the boundary, which we accept as trivial. Then both
terms in the boundary integrals in Eq. (27.5) become zero.

When looking at representations (27.25) and (27.26), it is obvious that if function
gn−1
f is known from the previous iteration step and boundary value of the vorticity

ωn is known over the boundary line l then Eq. (27.25) determines vorticity ωn at an
arbitrary point in the fluid. After that, by substituting this calculated function into
Eq. (27.26) one thus can find also the stream function all over the flow.Therefore, here
we are faced with the well-known key trouble—in which way the boundary value
of the vorticity ωn can be determined if there is no boundary condition formulated
for this function? To overcome this obstacle, there were proposed many approximate
formulas, starting from the work of Thom (1933), which locally connect boundary
values of vorticity with boundary values of the stream function; a good survey is
given in Weinan and Liu (1996).

In the present work, we propose a natural treatment of this point, which does
not require any approximations. In the case of Green’s functions valid in the full
2d space, this has been applied above in Section 2. First of all, let us note that
expression (27.5) is obtained from the Poisson equation �ψ = ω, see Eq. (27.1),
where the boundary condition may be known either for ψ (Dirichlet problem) or for
its normal derivative (Neumann problem). If one has homogeneous conditions for
both these functions, one thus can use only one of them, for correct treatment of the
Poisson equation.We assume thatψ f = 0, y ∈ l. Therefore, the remaining condition
∂ψ f (y)/∂ny = 0 is indeed the one which should be used to find the boundary value
of vorticity ω. It is obvious that the most natural way is to substitute expression
(27.25) into expression (27.26), and then to take the normal derivative of the so
obtained function, ∂ψn

f (y)/∂ny , to put it equal to zero, that is equivalent to condition
∂ψn(y)/∂ny = − ∂ψ0/∂ny .

The above-mentioned substitution leads to the following formula:

ψn(x) = −
∫
l

⎡
⎣∫∫

S

Gψ(y, x)
∂Gω(η, y)

∂nη

dsy

⎤
⎦ωn(η) dlη −

− 1

ε

∫∫
S

⎡
⎣∫∫

S

Gψ(y, x)Gω(η, y)dsy

⎤
⎦gn−1

f (η)dsη ,

(27.27)
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where 2dpoints x, y, η canbe expressed in both theCartesian and the polar coordinate
systems, as follows:

x = (x1, x2) = (r0 cos θ0, r0 sin θ0),

y = (y1, y2) = (r cos θ, r sin θ),

η = (η1, η2) = (ρ cosβ, ρ sin β).

(27.28)

This allows one to write out representation (27.27) for the stream function in the
polar coordinate system:

ψn(r0, θ0) = −
2π∫
0

⎡
⎣

2π∫
0

∞∫
a

( ∞∑
m=0

G ψ
m (r, r0) cos[m(θ − θ0)]

)
×

×
⎛
⎝ ∞∑

q=0

∂G ω
q (a, r)

∂ρ
cos[q(β − θ)]

⎞
⎠ rdrdθ

⎤
⎦ωn(a, β) a dβ −

− 1

ε

2π∫
0

∞∫
a

⎡
⎣

2π∫
0

∞∫
a

( ∞∑
m=0

G ψ
m (r, r0) cos[m(θ − θ0)]

)
×

×
⎛
⎝ ∞∑

q=0

G ω
q (ρ, r) cos[q(β − θ)]

⎞
⎠ rdrdθ

⎤
⎦ gn−1

f (ρ, β) ρ dρ dβ .

(27.29)

By taking into account the orthogonality of the trigonometric functions, the inte-
gration over variable θ significantly simplifies expression (27.29), as follows:

ψn(r0, θ0)= −πa
∞∑

m=0

bm

2π∫
0

∞∫
a

G ψ
m (r, r0)

∂G ω
m (a, r)

∂ρ
cos[m(β−θ0)] ωn(a, β) rdrdβ−

− π

ε

∞∑
m=0

bm

2π∫
0

∞∫
a

⎡
⎣

∞∫
a

G ψ
m (r, r0)G

ω
m (ρ, r) rdr

⎤
⎦cos[m(β − θ0)] gn−1

f (ρ, β) ρ dρ dβ ,

(27.30)
where b0 = 2, bm = 1 (m ≥ 1).
Since the normal to the round cylinder is directed along the radius, the expression

for the normal derivative of the stream function over the boundary line is directly
obtained from (27.30):
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∂ψn(a, θ0)

∂r0
=

= −πa
∞∑

m=0

bm

2π∫
0

∞∫
a

∂G ψ
m (r, a)

∂r0

∂G ω
m (a, r)

∂ρ
cos[m(β−θ0)] ωn(a, β) rdrdβ −

π

ε

∞∑
m=0

bm

2π∫
0

∞∫
a

⎡
⎣

∞∫
a

∂G ψ
m (r, a)

∂r0
G ω

m (ρ, r)rdr

⎤
⎦cos[m(β−θ0)]gn−1

f (ρ, β)ρdρdβ.

(27.31)
Some terms in the last formula can be calculated in explicit form:

∂G ψ

0 (r, a)

∂r0
= 1

2πa
,

∂G ψ
m (r, a)

∂r0
= 1

πa

(a
r

)m
, (m ≥ 1), (27.32)

∂G ω
m (a, r)

∂ρ
= kam

4π

[
−K

′
m(ka)Im(ka)

Km(kr)

Km(ka)
+ I

′
m(ka)Km(kr)

]
=

= amKm(kr)

4πaKm(ka)
,

(27.33)

where we have used the equality Im(z)K
′
m(z) − Km(z)I

′
m(z) = −1/z; see Prudnikov

et al. (1986).
On the basis of (27.32) and (27.33), one can calculate explicitly two integrals on

a semi-infinite interval over variable r in Eq. (27.31). In the second line of (27.31),
this implies

∞∫
a

∂G ψ
m (r, a)

∂r0
G ω

m (ρ, r) rdr = am ε

4π2a

[(
a

ρ

)m

− Km(kρ)

Km(ka)

]
, (m ≥ 1),

∞∫
a

∂G ψ

0 (r, a)

∂r0
G ω

0 (ρ, r) rdr = a0 ε

8π2a

[
1 − K0(kρ)

K0(ka)

]
,

(27.34)

where we have used the following tabulated integrals (Colton and Kress 1983):

∫
Km(z)z1−mdz = −z1−mKm−1(z),

∫
Im(z)z1−mdz = z1−m Im−1(z), (27.35)

as well as the following equality: Km(z)Im−1(z) + Im(z)Km−1(z) = 1/z.
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By analogy, the semi-infinite integral in the first line of (27.31) implies

∞∫
a

∂G ψ
m (r, a)

∂r0

∂G ω
m (a, r)

∂ρ
rdr = am

√
ε

4π2a

Km−1(ka)

Km(ka)
, (m ≥ 1),

∞∫
a

∂G ψ

0 (r, a)

∂r0

∂G ω
0 (a, r)

∂ρ
rdr = a0

√
ε

8π2a

K−1(ka)

K0(ka)
= a0

√
ε

8π2a

K1(ka)

K0(ka)
,

(27.36)

since for Macdonald’s functions K−1 = K1.
Then representation (27.31) reads

∂ψn(a, θ0)

∂r0
= −

2π∫
0

K (β − θ0) ωn(a, β)dβ −
2π∫
0

∞∫
a

Kg(ρ, β − θ0) g
n−1
f (ρ, β)ρdρdβ,

(27.37a)
where

K (β − θ0) =
√

ε

4π

∞∑
m=0

am
Km−1(ak)

Km(ak)
cos[m(β−θ0)],

Kg(ρ, β − θ0) = 1

4πa

∞∑
m=0

am

[(
a

ρ

)m

− Km(kρ)

Km(ka)

]
cos[m(β−θ0)] .

(27.37b)

Now, by taking into account that ψ0 = v0x2 = v0r0 sin θ0, and satisfying the
boundary condition ∂ψn(a, θ0)/∂r0 = − ∂ψ0(a, θ0)/∂r0 = −v0 sin θ0, Eq. (27.37a)
is reduced to the basic BIE of the first kind for the boundary value of the vorticity at
each iteration step (0≤θ0≤ 2π ):

2π∫
0

K (β−θ0) ωn(a, β)dβ =v0 sin θ0 −
2π∫
0

∞∫
a

Kg(ρ, β−θ0) g
n−1
f (ρ, β)ρdρdβ .

(27.38)
As soon as this boundary value ω(a, β) is found, both stream and vorticity func-

tions can easily be determined all over the volume occupied by the fluid stream—by
Eqs. (27.30) and (27.25), respectively.
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27.5 Conclusions

The following conclusions may be drawn from the above study:

1. In the 2d problem about a rigid body placed in the uniform stream of the viscous
incompressible fluid, we apply a standard implicit scheme in time, which reduces
the nonlinear Navier–Stokes equations to an iterative process, where at each
iteration step there is a need to solve two linear elliptic boundary-value problems,
if the convective terms are taken at the previous temporal layer. The two linear
partial differential equations (PDEs) are the Laplace equation for the stream
function and the Helmholtz equation for the vorticity function.

2. To solve those PDEs, we propose two alternative approaches, to construct some
BIEs over the obstacle’s boundary contour. By an appropriate discretization,
these can be reduced to a certain form of the BEM.

3. The proposed approach allows the authors to overcome thewell-known difficulty
connected with the fact that there is no appropriate boundary condition for the
vorticity function. Based on Green’s functions for the unbounded 2d-space, the
proposed method reduces the problem, at each iteration step, to a system of
two BIEs. On the contrary, Green’s function which satisfies the homogeneous
Dirichlet boundary condition permits reducing the problem to a single integral
equation only, which is more preferable from the numerical point of view.

Acknowledgements The first author is grateful to the Russian Foundation for Basic Research
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Chapter 28
Interface Crack Starting
From the Corner of a Wedge Attached
to a Half-Plane

Konstantin B. Ustinov

Abstract An analytical solution has been obtained for a problem of an edge crack
between a wedge and half-plane of different elastic isotropic materials with the
zero second Dundurs parameter of elastic mismatch. The solution has been obtained
with the help of the Mellin transform and by reducing the problem to the matrix
Wiener-Hopf problem. The kernel of the problem allowed factorization by Khrap-
kov’s technique, however for zero second Dundurs parameter only. A particular case
of uniform loading applied to the crack faces is considered in detail. Expressions for
stress intensity factors for both opening and shear modes are obtained in terms of
combinations of three single integrals of algebraic functions.

Keywords Wiener-Hopf technique · Matrix factorization · Mellin transform ·
Interface crack

28.1 Introduction

The problem in question belongs to a category of problems on contacting wedges
with cracks. An elegant way to obtain analytical solutions for a class of 2-D elasticity
problems of uniform bodies composed by two wedges with cracks was obtained by
Khrapkov (1971a, b, c, 2001). This class covers the following cases: (i) two wedges
forming a half-plane (an inclined edge crack in a half-plane); (ii) two wedges form-
ing a plane (a semi-infinite crack with an arbitrarily oriented branch); (iii) one of the
wedges forming a half-plane (the crack lying on the line of the contact of an arbitrary
wedge and a half-plane). The method consists in reducing the problems to vector
Riemann problems by applying the Mellin transform, followed by factorization of
the matrix coefficient. Later, this technique was successfully used for solving simi-
lar problems including the problems of wedges of different materials (Kuliev 1979;
Kipnis 1978), problem of semi-infinite crack parallel to a free rectilinear boundary
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(Zlatin and Khrapkov 1990; Khrapkov 2001), problems of a semi-infinite interface
cracks between layers and half-plane (Ustinov 2015), and in bi-material elastic layer
(Ustinov 2019). In Ustinov (2020), it was demonstrated that the way to obtain solu-
tions for all cases considered by Khrapkov (1971a, b, c, 2001) may be applied for
similar cases of the wedges composed by different elastic materials, although with a
restriction imposed on the elastic constants. The current article is devoted to obtaining
a solution of this type, namely a wedge and half-plane of different elastic isotropic
materials glued together everywhere except a finite region at the wedge corner, where
both normal and tangential discontinuity of displacement take place.

Problemsof bodies composedofwedges of differentmaterials evenwithout cracks
attract attention by many research due to their importance from both the theoretical
and practical points of view; such problems appear when studying processes of
fracture of polycrystalline media, coating delamination, and others. Thus, bodies
composed of two quadrant wedges of different materials were considered in Bogy
(1970). In Bogy (1971b), the solution was generalized for a half-plane composed of
two non-quadrant wedges. The contact and the crack problems for an elastic wedge
of arbitrary angle were considered in Erdogan and Gupta (1976).

The next step was considering composed bodies with cracks terminating at the
interface. A semi-infinite crack in a plane normal to a rectilinear interface and ter-
minating on it was considered in Zak and Williams (1963). Similar problems for an
inclined crack and for a crack terminating at the corner of a kinked interface were
solved in Bogy (1971a, b), respectively. A review may be found in Sinclair (2004).

In the case of interfacial cracks, i.e. when the crack locates along the interface,
causing additional difficulties when considering the stress field near its tip. The
necessary information about the distribution of stresses and strains near the interface
cracks may be found in Hutchinson and Suo (1991), Begley and Hutchinson (2017).
Apart from purely geometrical parameters, solutions of problems of interface crack
are determined by two Dundurs parameters α, β (Dundurs 1964), characterizing the
mismatch of the elastic properties, written here in the form of Ustinov and Massabò
(2022)

α = Ē1 − Ē2

Ē1 + Ē2
=

(
1

Ē2
− 1

Ē1

)(
1

Ē1
+ 1

Ē2

)−1

,

β = 1

2

(
1 − ν̄2

Ē2
− 1 − ν̄1

Ē1

)(
1

Ē2
+ 1

Ē1

)−1
(28.1)

Here, Ei = Ei , νi = νi for plane stress, and Ei = Ei/(1 − ν2
i ), νi = νi/(1 − νi ) for

plane strain; Ek, νk, k = 1, 2 are Young’s moduli and Poisson’s ratios of media 1,2;
−1 ≤ α ≤ 1, and−1/8 + 3α/8 ≤ β ≤ 1/8 + 3α/8 for plane stress,−1/2 + α/2 ≤
β ≤ 1/2 + α/2 for plane strain. Thus, the condition of vanishing of the second
Dundurs parameter β = 0 to be used further may be satisfied for any α for plane
strain and for −1/3 ≤ α ≤ 1/3 for plane stress.

The current study is devoted to obtaining an analytical solution of a problem of an
edge crack between awedge of arbitrary angle 0 < θ0 ≤ π and half-plane of different
elastic isotropic materials with zero second Dundurs parameter of elastic mismatch.
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The solution is obtainedby applying theMellin transform to the equations of elasticity
and boundary conditions and reducing the problem under consideration to a matrix
Riemann problem. It is the fulfillment of the above-mentioned restrictive condition
β = 0 that allows the application of Khrapkov’s method of matrix factorization. For
arbitrary combinations of elastic constants, effective approximate methods may be
used, e.g. Rogosin and Mishuris (2016), Abrahams et al. (2008a, b).

28.2 Geometry: Mathematical Formulation

Consider an infinite wedge of angle θ0 ≤ π attached to a half-plane with a finite
interface crack of unit length starting from the vertex of the wedge. Without loss
of generality, the crack length may be set equal to unity. In polar coordinate frame
r, θ with the origin of the vertex, the geometry may be considered as two wedges
0 ≤ θ ≤ θ0 and −π ≤ θ ≤ 0 attached perfectly along the ray 1 ≤ r < ∞ and sep-
arated along the line segment 0 ≤ r ≤ 1 (Fig. 28.1). The wedge and half-plane are
isotropic and elastic, with Young’s moduli and Poisson’s ratios being E1, ν1 and
E2, ν2, respectively.

For both the wedge and the half-plane, the system of equations of elasticity has
to be satisfied. In the introduced polar coordinate system r, θ , it has the form

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ σrr − σθθ

r
= 0; ∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 2

σrθ

r
= 0;

εrr = ∂ur
∂r

; εθθ = ur
r

+ 1

r

∂uθ

∂θ
; εrθ = 1

2

(
∂uθ

∂r
− uθ

r
+ 1

r

∂ur
∂θ

)

εrr = 1

Ek
σrr − νk

Ek
σθθ ; εθθ = 1

Ek
σθθ − νk

Ek
σrr ; εrθ = 1 + νk

2Ek
σrθ

(28.2)

Here, subscripts k = 1, 2 correspond to thewedge andhalf-plane, respectively;ur , uθ

are the components of displacement vector;σrr , σθθ , σrθ , εrr , εθθ , εrθ are components
of stress and strain tensors.

Fig. 28.1 Wedge attached to
a half-plane with a finite
interface crack starting from
the wedge corner
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Together with the boundary conditions,

σθθ (r, θ0) = σθθ (r,−π) = σrθ (r, θ0) = σrθ (r,−π) = 0

σθθ (r, 0) = σ
(0)
θθ (r), σrθ (r, 0) = σ

(0)
rθ (r), 0 ≤ r ≤ 1

u(1)
r (0, r) − u(2)

r (0, r) = 0, u(1)
θ (0, r) − u(2)

θ (0, r) = 0, r ≥ 1

(28.3)

the above equations form a closed system.

28.3 Reduction of the Problem in Question to a Riemann
Matrix Problem

ConsiderMellin transforms (note that this definition followsUflyand1968;Khrapkov
1971a, b, c, 2001 and differs from Sneddon 1979):

f̂ (p) =
∞∫
0

f (r) r pdr, f (r) = 1

2π i

c+i∞∫
c−i∞

f̂ (p) r−p−1dp, −δ0 < c < 0

(28.4)

Here, δ0 is the distance of the closest to the imaginary axis singularity of f̂ (p),
located in the left half-plane of p.

The relations between transforms of the displacement derivatives and stresses
along the ray 0 ≤ r < ∞, θ = 0 for the wedge are Khrapkov (1971a, b, c, 2001)

∂ ûθ

∂r
(0, p) = 2

E1

[
sin θ0 p cos θ0 p + p sin θ0 cos θ0

p2 sin2 θ0 − sin2 θ0 p
σ̂θθ (0, p)+

(
p(p − 1) sin2 θ0

p2 sin2 θ0 − sin2 θ0 p
− 1 − ν1

2

)
σ̂rθ (0, p)

] (28.5)

∂ ûr
∂r

(0, p) = 2

E1

[(
− p(p + 1) sin2 θ0

p2 sin2 θ0 − sin2 θ0 p
+ 1 − ν1

2

)
σ̂θθ (0, p)+

sin θ0 p cos θ0 p − p sin θ0 cos θ0

p2 sin2 θ0 − sin2 θ0 p
σ̂rθ (0, p)

] (28.6)

A similar relation for the half-plane is obtained from (28.6) by replacing E1, ν1
with E2, ν2 and θ0 with −π . From here, the relations between transforms of deriva-
tives of relative displacements of the contacting edges and stresses are obtained as
follows:
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X+ = K (X− + Z+) (28.7)

Here,

X+ = E1E2

2 (E1 + E2)

1∫
0

∂

∂r

(
u(1)

θ (0, p) − u(2)
θ (0, p)

u(1)
r (0, p) − u(2)

r (0, p)

)
r pdr

X− =
∞∫
1

(
σθθ (0, p)
σrθ (0, p)

)
r pdr, Z+ =

1∫
0

(
σθθ (0, p)
σrθ (0, p)

)
r pdr

(28.8)

The intervals of integration were reduced owing to vanishing of the integrands
beyond the specified bounds. The components of the matrix kernel K are

K11 = 1 − α

4d1
(sin 2pθ0 + p sin 2θ0) + 1 + α

4d2
sin2pπ

K12 =
(
1 − α

2d1
sin2 θ0

)
p(p − 1) + β

K21 = −
(
1 − α

2d0
sin2 θ0

)
p(p + 1) − β

K22 = 1 − α

4d1
(sin 2pθ0 − p sin 2θ0) + 1 + α

4d2
sin2pπ

(28.9)

d1 = p2 sin2 θ0 − sin2 pθ0; d2 = − sin2 pπ (28.10)

In order to formulate the Riemann problem, the behavior of the vector-functions
to be determined has to be specified in key points (corresponding to zero, unity, and
infinity of the original problem). In order to have elastic energy bounded near the
crack tip both stresses and displacements derivatives at r → 1 should grow no faster
than (r − 1)−1/2, which corresponds to

X± = O(p−1/2); p → ±∞ (28.11)

Singularities of vector-functionsX+ andZ+ corresponding to bounded derivatives
of displacements and bounded stresses lay within the left half-plane of p with the
closest to the imaginary axis simple pole located at p = −1:

X+ = O(p−1); Z+ = O(p−1); p → −1 (28.12)

Therefore, vector-functionsX+ and Z+ are holomorphic in the half-plane Re p >

−1, which is why the lower index + is used.
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Behavior of function X− depends on the applied loads. If no load is applied at
infinity, the stresses σθθ (0, r) and σrθ (0, r) tend to zero at r → ∞. If the load applied
at the crack faces is self-balanced, then the stresses will tend to zero faster than r−1.

Thus, vector-function X− has no singularities (is holomorphic) in the left half-
plane Re p ≤ 0 (therefore the lower index “-” is used) and

X− = O(1); p → 0 (28.13)

A uniform load applied at infinity results in a pole at p = −1 in X−

X− = O(p−1); p → −1 (28.14)

Thus, in case of load applied to the crack faces the vector-functions X± have
an overlapping range of regularity −1 < Re p < 0, and a traditional non-uniform
Wiener-Hopf problem may be posed.

In case of free of loading crack faces (Z+ = 0) and uniform stress σ∞ applied at
infinity, the vector-functions X± have only a common line of regularity (except the
point p = −1, where they may have simple poles), and a uniform Riemann problem
may be formulated for finding the eigen solution.

28.4 Factorization of the Matrix Kernel

The main point of the solution consists in the factorization of the matrix coefficient
K (p), i.e. its representation in the form

K (p) = K+ (p)K−1
− (p) (28.15)

where matrix-functions K± (p) are holomorphic in the right and left half-planes of
complex plane Re p ≥ δ0 and Re p ≤ δ0, respectively, and detK± (p) �= 0 in the
corresponding domains up to the boundary. The general solution for an arbitrary
kernel is still unknown. However, kernel (28.9) being a particular case of the matrix-
functions described in Ustinov (2020) may be effectively factorized by Khrapkov’s
method (Khrapkov 1971a, b, c, 2001) for β = 0:

K±1
+ (p) = �±1

+ (p)
[
I cosh (φ β+) ± B (p) sinh (φ β+)

]
K±1

− (p) = �±1
− (p)

[
I cosh (φ β−) ± B (p) sinh (φ β−)

] (28.16)

Here I is the unity matrix; matrix-function B (p) called the commutant (Khrapkov
1971a, b, c, 2001) and function φ (p) are
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B (p) = φ−1 (p)

(
cos θ0 (p − 1) sin θ0

−(p + 1) sin θ0 − cos θ0

)
, φ (p) =

√
1 − p2 sin2 θ0

(28.17)

Functions �± (p) , β± (p) are the solutions of scalar Riemann problems (the latter
should not be confused with the second Dundurs parameter, which will not appear
hereafter):

�−1
− (p)�+ (p) = 1/2 (p) , p ∈ L (28.18)

β+ (p) − β− (p) = φ−1 (p) ε (p) , p ∈ L (28.19)

Here, determinant (p) and exponent ε (p) of matrix K (p) are

(p) = λ1 (p) λ2 (p) , ε (p) = 1

2
log

λ1 (p)

λ2 (p)
(28.20)

Eigenvalues λ1 (p) , λ2 (p) of matrix K (p) are

λ1,2 (p) = cot p A1,2 (τ ) (28.21)

Here A1,2 (τ ) are expressed in terms of the argument corresponding to the imaginary
axis p = iτ

A1,2(τ ) = 1

4
tanh τ

[
1 − α

d3
sinh 2τθ0 + 1 + α

d4
sinh 2πτ±

2τ sin θ0

√
1 + τ 2 sin2 θ0

1 − α

d3

]

d3 = τ 2 sin2 θ0 − sinh2 θ0τ ; d4 = − sinh2 πτ

(28.22)

Solutions of (28.18), (28.19) may be written similar to Khrapkov (1971a, b, c,
2001) in terms of Cauchy type integrals and factorization of cotangent in terms of
gamma function:

�+ (p) =
√

π � (1 + p/π)

� (1/2 + p/π)
J+ (p) , �− (p) = p� (1/2 − p/π)√

π� (1 − p/π)
J− (p)

(28.23)

J± (p) = exp

⎧⎨
⎩− 1

4π

∞∫
−∞

log [A1 (τ ) A2 (τ )]
dτ

iτ − p

⎫⎬
⎭ (28.24)
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β± (p) = − 1

4π

∞∫
−∞

1√
1 + τ 2 sin2 θ0

log
A1 (τ )

A2 (τ )

dτ

iτ − p
(28.25)

According to the rule of calculation of contour integrals, the integration contour
may be transformed to the imaginary axis of p. For equal properties of the wedge
and half-plane (α = β = 0), the above formulae are reduced to formulae due to
Khrapkov (1971a, b, c, 2001).

Note that the obtained factorization may be used for solving a problem with a
similar geometry but with the locations of the intact part of the interface and the
crack being exchanged. Such a problem for a homogeneous body was solved in
Kipnis (1979).

28.5 Asymptotics of the Involved Functions

Let us write the asymptotics of the involved functions that will be used further. Using
the representation of Cauchy type integrals at infinity (Noble 1959; Khrapkov 2001),
the following asymptotics for (28.25) are obtained:

β±(p) = q cot θ0
p

(28.26)

where

q (θ0, α) = sin θ0

2π

∞∫
0

1√
1 + τ 2 sin2 θ0

log
A1 (τ )

A2 (τ )
dτ, p → ±∞ (28.27)

Substituting (28.26) into (28.16) gives

K±1
− (p) = (−p)±1/2Q±1

∞ (28.28)

where

Q±1
∞ =

(
cos q ± sin q

∓ sin q cos q

)
, p → −∞ (28.29)

It follows from (28.16) that vector-functions K±1
± (p) are regular at p = −1

(except for α = 0, α = π ). Therefore

K±1
−1 ≡ K±1

− (−1) = −�±1
−1Q

±1
−1 (28.30)
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where1

Q±1
−1 = I cosh q−1 ±

(
1 −2 tan θ0
0 −1

)
sinh q−1 (28.31)

�−1 ≡ �−(−1) = − � (1/2 + 1/π)√
π� (1 + 1/π)

exp

⎧⎨
⎩− 1

2π

∞∫
0

log [A1 (τ ) A2 (τ )]
dτ

τ 2 + 1

⎫⎬
⎭

(28.32)

q−1 ≡ φ(−1)β− (−1) = −cos θ0

2π

∞∫
0

1√
1 + τ 2 sin2 θ0

log
A1 (τ )

A2 (τ )

dτ

τ 2 + 1
(28.33)

For an important case θ = π/2, expression (28.31) becomes formally undeter-
mined since cos θ0 → 0. By performing the proper limit transition, one has

Q±1
−1(θ = π/2) = I ±

(
0 1
0 0

)
1

π

∞∫
0

1√
1 + τ 2

log
A1 (τ )

A2 (τ )

dτ

τ 2 + 1
(28.34)

28.6 Solution of the Riemann Problem

Let us consider the non-homogeneous problem, consisting in solving Eq. (28.7)
where vector-functionsX± have an overlapping range of regularity −1 < Re p < 0.
Substituting (28.15) into (28.7) yields

K−1
+ X+ − Y+ = K−1

− X− − Y− (28.35)

Here Y± represents product K−1− Z+ as a sum of parts, holomorphic in the right and
left half-planes of complex plane p, respectively

Y+ − Y− = −K−1
− Z+ (28.36)

According to Liouville theorem (e.g. Noble 1959; Khrapkov 2001), both the left-
and right-hand sides of equation (28.35) are equal to a single function, holomorphic
in the whole plane p. Moreover, it may be concluded from (28.28) and (28.11)
that both sides of (28.35) tend to zero as p → ∞ in both half-planes Re p > 0 and

1 There were a misprint in Ustinov (2020) in the formula similar to (28.31) not affecting further
results: the sign “-” before tangent was missed.
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Re p < 0; and hence, this holomorphic function should be equal to zero. Thus, the
general solution is

X± = K±Y± (28.37)

Consider the load being a power function

(
σθθ (0, p)
σrθ (0, p)

)
= Smxm, 0 < r < 1, m > −1 (28.38)

where Sm is a real constant vector. The Mellin transform is

Z+ == Sm(p + m + 1)−1 (28.39)

By adding and subtracting the term 1
p+m+1K

−1
− (p = −m − 1)S0 in (28.36), one

has

Y+ = − 1

p + m + 1
K−1

− (p = −m − 1)S0

Y− = 1

p + m + 1

[
K−1

− (p) − K−1
− (p = −m − 1)

]
S0

(28.40)

Substitution of (28.40) into (28.37) finally yields

X+ = − 1

p + m + 1
K+(p)K−1

− (p = −m − 1)S0

X− = 1

p + m + 1

[
I − K−(p)K−1

− (p = −m − 1)
]
S0

(28.41)

The most important values that could be extracted from the obtained solution
are the stress intensity factors, SIFs, (K1, K2), i.e. coefficients at inverse square
root singularities at r = 1 corresponding to similar singularities at infinity for the
transforms (e.g. Khrapkov 1971a, b, c)

X− = 1√−2p

(
K1

K2

)
, p → −∞ (28.42)

Comparison of (28.42) and (28.41) using (28.28), (28.31) gives

(
K1

K2

)
= −√

2�−1
− (p = −m − 1)Q∞Q−1

− (p = −m − 1)S0 (28.43)

The obtained solution may be applied to a load being a superposition of power
functions. Moreover, a rather general function may be approximated by a power
series.
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The solution is especially simple in the case of the uniform load applied to the
crack faces: σ0 = σθθ = const, τ0 = σrθ = const . Thus, (28.41) reduces to

Y+ = − 1

p + 1
K−1

−1S0, Y− = 1

p + 1

[
K−1

− (p) − K−1
−1

]
S0 (28.44)

and (28.43) reduces to

(
K1

K2

)
= −√

2�−1
−1Q∞Q−1

−1S0 (28.45)

28.7 Some Numerical Results

Consider the crack of length a with faces loaded with the constant normal unit

stresses, so that S0 =
(
1
0

)
The SIFs are determined by algebraic functions of three

integrals: (28.27), (28.32), and (28.33). Substituting their values into (28.29), (28.31)
and then into (28.45) yields the values of SIFs. The results are presented in Figs. 28.2,
28.3, 28.4, and 28.5. Figures 28.2 and 28.3 depict dependencies ofmode I andmode II
SIFs versus the wedge angle for various values of α. Solid lines correspond to α = 0,
dashed lines correspond toα = 0.9, anddotted lines correspond toα = −0.9. Figures
28.4 and 28.5 depict dependencies of mode I andmode II SIFs versus parameter α for
various wedge angles. Solid lines correspond to θ = π/2, dashed lines correspond
to θ = 3π/4, dotted lines correspond to θ = π/4, and dot-dashed lines correspond
to θ = π/3.

Fig. 28.2 Mode I SIF for the crack with faces loaded by the constant normal stresses versus the
wedge angle
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Fig. 28.3 Mode II SIF for the crack with faces loaded by the constant normal stresses versus the
wedge angle

Fig. 28.4 Mode I SIF for the crack with faces loaded by the constant normal stresses versus the
first Dundurs parameter α

It is seen from Fig. 28.2 that for θ → π the value of K1 approaches the value cor-
responding to a semi-infinite crack in a plane, whose faces are loadedwith the normal
stresses within interval a, the faster the large parameter α. The value corresponding
to θ = π may be obtained from the solution for finite crack loaded symmetrically
within finite intervals adjusted to the crack tips (Paris and Sih 2023) by a proper limit
transition. This limiting value is

K1√
aσ0

= 2
√
2√

π
(28.46)
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Fig. 28.5 Mode II SIF for the crack with faces loaded by the constant normal stresses versus the
first Dundurs parameter α

28.8 Conclusion

A problem of an infinite wedge being in full contact with a half-plane everywhere
except a finite region near the corner is considered. Both the wedge and half-plane
are supposed to be linear elastic with, generally, different elastic constants: Young’s
moduli and Poisson’s ratios. By using the Mellin transform, the problem has been
reduced to a matrix Wiener-Hopf problem. For an arbitrary angle of the wedge and
zero secondDundurs parameter, thematrix kernel of the problem allows factorization
using Khrapkov’s method. Thus a closed analytical solution has been obtained. The
problem under consideration corresponds to one of particular cases of the problem
for two contactingwedges allowing closed-form solution (Ustinov 2020), these cases
being exactly the same as the ones considered by Khrapkov (1971a, b, c, 2001) for
wedges of the same material. Loading of the crack faces with a uniform normal
loading has been considered inmore detail. Expressions for stress intensity factors for
both opening and shear modes are obtained in terms of combinations of three single
integrals of algebraic functions. For the wedge angle approaching to π , i.e. when the
wedge unfolds to a half-plane, the values of SIFs tend to the values corresponding
to a known solution for a plane with a semi-infinite crack. The obtained solution
appears valuable for analyzing extreme cases of parameters.
Funding The work has been done under financial support of Russian State Assign-
ment under contract No. -20-120011690133-1.
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Chapter 29
Static Thermomechanical Loading
of Thermal Barrier Coatings:
Compliance Functions

Andrey S. Vasiliev, Sergei M. Aizikovich, and Regina A. Bardakova

Abstract The paper addresses a modeling of a thermobarrier coating under thermal
and mechanical loading. The coating consists of three layers of various thicknesses:
metallic bond coat, thermally grown oxide and ceramic top coat. The surface of the
coating is subjected to an arbitrary normalmechanical loading and thermal heating.A
boundary value problem is obtained for construction compliance functions using the
Hankel integral transformation. The compliance functions are obtained analytically
for a homogeneous bond coat and numerically for a functionally graded bond coat.
Illustrations of the properties of the compliance functions on each interface between
the layers are presented for an example of a thermal barrier coatingmade of materials
used in gas turbines. It is shown that graded properties and thickness of the bond
coat sufficiently change the compliance functions. The results provide the basis for
carrying out further research for the optimization of properties of the layer of thermal
barrier coatings to reduce the stress concentration on the interfaces between the layers
leading to delamination.
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29.1 Introduction

Thermal barrier coatings (TBCs) are the advanced layered systems which are used to
provide thermal insulation to metallic components from the high temperature (Vaßen
et al. 2010). They are widely used to increase the lifetime of the components of
turbine engines (Wortman et al. 1989; Padture et al. 2002; Parker 1992) and usually
consist of three layers: ceramic top coat (TC) with a significantly lower thermal
conductivity than themetallic substrate, metallic bond coat (BC) and a thin interlayer
of a thermally grown oxide (TGO). The BC is used to protect the substrate from
oxidation and corrosion and improve the bonding between the substrate and top coat.
The TGO layer forms as a results of oxidation of the BC during the high-temperature
operating conditions. TheTC is typicallymade ofY2O3-stabilizedZrO2 (YSZ)which
possesses desirable properties for TBCs (Arnault et al. 1999; Chen 2006). It has one
of the lowest value of thermal conductivity at an elevated temperature of all ceramics
(2.3 Wm−1K−1 at 1000 ◦C) (Schlichting et al. 2001) and high thermal-expansion
coefficient (11.5 ·10−6K−1) (Vaßen et al. 2010). One of the most common causes
of failure of TBCs is delamination, spallation and cracking in service owing to their
poor bond strength and high residual stresses (Miller and Lowell 1982). The concept
of functionally graded materials (FGMs) is used to mitigate these problems (Khor
and Gu 2000; Schulz et al. 2003).

Mathematical modeling is one of the simplest and effective ways to study the
influence of layer properties of TBCs on mechanical stresses and, thus, on one of
the possible failure mechanisms. Contact problems of thermoelasticity can be used
for that purpose. They are intensively studied by many authors in different formu-
lations. One-dimensional contact problems for FGMs help one to study complex
phenomena involving dynamic effects, wear, thermodynamic instability, etc. Barber
(1969), Yi et al. (2000), Mao et al. (2017, 2018). An important feature of one-
dimensional problems is the fact that their solutions can be obtained in an analytical
form Zelentsov et al. (2022), Zelentsov andMitrin (2019) using the Complex Analy-
sis. Two-dimensional contact problems of thermoelasticity usually require the solu-
tion of singular integral equations which involves much more complex mathematical
apparatuses. Thermoelastic quasi-static contact was studied taking into account fret-
ting heat generation (Çömez and Güler 2022) including residual contact (Su et al.
2015), piezoelectric effect (Su et al. 2016; Çömez 2021), both in plane (sliding
frictional contact) and axisymmetric (torsion) formulations (Liu et al. 2021). These
problems are often solved using the semi-analytical methods such as collocation
method (Erdogan and Gupta 1972) and the bilateral asymptotic method (Vasiliev
et al. 2018). More complicated three-dimensional formulations are usually studied
using numerical methods such as boundary element method (Ipatov et al. 2017;
Igumnov et al. 2014, 2019) and finite element method (FEM) (Igumnov et al. 2019;
Wang et al. 2018). Simulation of the mechanical behavior of thermal barrier coatings
is also usually done using FEM only (Busso et al. 2009; Wang et al. 2014; Bäker and
Seiler 2017).
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The present paper addresses the construction of effective mathematical model
of studying the mechanical behavior of TBCs using the approximated analytical
approach (Vasiliev 2019). Thermoelastic half-space with a TBC under an arbi-
trary distributed thermal heating and normal mechanical loading is considered. The
schemeof construction of a set of compliance functions is proposed.Analysis of these
functions is important in the context of the solution of singular integral equations
arising in the mixed problems of thermoelasticity for TBCs. It also makes it possi-
ble to evaluate the influence of the properties of each layer of TBCs on mechanical
stresses on the interfaces between the layers.

29.2 Formulation of the Thermoelastic Problem

Let us consider a thermoelastic half-space with a thermal barrier coating of thick-
ness H. Cylindrical coordinate system r, φ, z is used with the z-axis being normal
to the surface of the half-space. Lame parameters, thermal conductivity and thermal
expansion coefficients of the TC, TGO and substrate are assumed to be constant
and denoted by the symbols λ

(i)
E , μ(i), λ

(i)
T andα

(i)
T . Hereinafter upper index (i) means

that the quantity corresponds to a certain layer: (0)—TC, (1)—TGO, (2)—BC and
(3)—substrate. The BC is assumed to be functionally graded (FG) with thermome-
chanical properties being the functions of z coordinate: λ

(2)
E (z), μ(2)(z), λ(2)

T (z) and
α

(2)
T (z). Thicknesses of the TC, TGO and BC are denoted as h(1), h(2) and h(3).

The depth of the interfaces between the layers are denoted by the following sym-
bols: H (0) = 0, H (1) = h(1), H (2) = h(1) + h(2)andH (3) = H = h(1) + h(2) + h(3).
The surface of the coating is subjected to the normal mechanical loading pa(r)
and thermal heating qa(r) in the circular area 0 ≤ r ≤ a, stress free and thermally
insulated outside this region. Thus, the following boundary conditions are satisfied:

σz|z=0 =
{

−pa(r), 0 ≤ r ≤ a

0, r > a
, λ

(0)
T T ′|z=0 =

{
−qa(r), 0 ≤ r ≤ a

0, r > a
,

τr z|z=0 = 0, r ≥ 0

(29.1)

Perfect thermomechanical bonding on all interfaces between the layers of the TBC
and substrate are assumed:

z = −H (i)

(i = 1, 2, 3)
: u(i−1) = u(i), w(i−1) = w(i), T (i−1) = T (i),

λ
(i−1)
T T (i−1)′ = λ

(i)
T T (i)′, σ (i−1)

z = σ (i)
z , τ (i−1)

r z = τ (i)
r z

(29.2)

Thermomechanical state of the half-space is described by the equilibrium equations
and heat equation:

∂σr
∂r + ∂τr z

∂z + σr−σφ

r = 0, ∂σz

∂z + ∂τr z
∂r + τr z

r = 0, λT�T + λ′
T

∂T
∂z = 0 (29.3)

and Duhamel-Neumann’s law:



534 A. S. Vasiliev et al.

Fig. 29.1 The scheme of a
TBC

σr = (λE + 2μ)∂u
∂r + λE ( ur + ∂w

∂z ) − kT, σφ = μ u
r + λE ( ∂u

∂r + ∂w
∂z ) − kT

σz = (λE + 2μ)∂w
∂z + λE ( ur + ∂u

∂r ) − kT, τr z = μ(∂u
∂z + ∂w

∂r )

k(z) = (3λE + 2μ)αT (z)
(29.4)

Vanishing of the displacements and temperature is also assumed:

{u(3), w(3), T (3)} → 0, z → −∞ (29.5)

The scheme of the problem is illustrated on Fig. 29.1.

29.3 Compliance Functions

Let us apply the Hankel integral transformation:

u(r, z) = −
∞∫
0
ū(α, z)J1(αr)αdα,

{w, T }(r, z) =
∞∫
0
{w̄, T̄ }(α, z)J0(αr)αdα,

{pa, qa}(r) =
∞∫
0
{ p̄a, q̄a}(α)J0(αr)αdα

(29.6)

Equations (29.3) and (29.4) take the form of the following systems of ordinary
differential equations (ODE):

A(i) · x(i)′ = x(i), x(i) = (ū(i), ū(i)′, w̄(i), w̄(i)′, T̄ (i), T̄ (i)′)T (29.7)

Coefficients of these systems expressed by the matrix A are variable for the BC:
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A(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

α2 M (2)

μ(2) −μ(2)′
μ(2) −α

μ(2)′
μ(2) −α

λ
(2)
E +μ(2)

μ(2) α k(2)

μ(2) 0
0 0 0 1 0 0

α
λ

(2)′
E

M (2) α
λ

(2)
E +μ(2)

M (2) α2 μ(2)

M (2) −M (2)′
M (2)

k(2)′
M (2)

k(2)

M (2)

0 0 0 0 0 1

0 0 0 0 α2 − λ
(2)′
T

λ
(2)
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29.8)

and constant for the TC (i = 0), TGO (i = 1) and substrate (i = 3):

A(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

α2 M (i)

μ(i) 0 0 −α
λ

(i)
E +μ(i)

μ(i) α k(i)

μ(i) 0
0 0 0 1 0 0

0 α
λ

(i)
E +μ(i)

M (i) α2 μ(i)

M (i) 0 0 k(i)

M (i)

0 0 0 0 0 1
0 0 0 0 α2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(29.9)

The following notation is used above: M = (λE + 2μ). Let us also seek the solution
of these systems in the form of linear combinations over the Hankel transform of the
applied mechanical and thermal loading:

x (i)
k (α, z) = −a(i)

k2 (α, z) p̄a(α) − a(i)
k3 (α, z)q̄a(α), k = 1, 3, 5 (29.10)

Obviously, vectors a(i)
j = (a(i)

k j )
6
k=1, j = 2, 3 also satisfy the system (29.7), i.e.:

A(i) · a(i)′
j = a(i)

j , j = 2, 3 (29.11)

Systems of ODE (29.11) for i = 0, 1, 3 have constant coefficients and can be solved
analytically. Their solutions have the form:

a(i)
1 j (α, z) = (d(i)

j1 + αzd(i)
j2 )eαz + (d(i)

j3 + αzd(i)
j4 )e−αz,

a(i)
3 j (α, z) = (d(i)

j1 + (αz − λ
(i)
E +3μ(i)

λ
(i)
E +μ(i)

)d(i)
j2 + k(i)

α(λ
(i)
E +μ(i))

d(i)
j5 )eαz−

−(d(i)
j3 + (αz + λ

(i)
E +3μ(i)

λ
(i)
E +μ(i)

)d(i)
j4 + k(i)

α(λ
(i)
E +μ(i))

d(i)
j6 )e−αz,

a(i)
5 j (α, z) = d(i)

j5 e
αz + d(i)

j6 e
−αz

(29.12)

Boundary conditions (29.1) and (29.2) after using Hankel transformations take the
form:

z = 0
( j = 2, 3)

:
μ(0)(a(0)

2 j + αa(0)
3 j )) = 0

M (0)a(0)
4 j − αλ

(0)
E a(0)

1 j − k(0)a(0)
5 j = δ j2

λ
(0)
T a(0)

6 j = δ j3

(29.13)
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z = −H (i)

(i = 1, 2, 3)
( j = 2, 3)

:
a(i−1)
1 j = a(i)

1 j , a
(i−1)
3 j = a(i)

3 j , λ
(i−1)
T a(i−1)

6 j = λ
(i)
T a(i)

6 j ,

a(i−1)
5 j = a(i)

5 j , μ
(i)(a(i)

2 j + αa(i)
3 j )) = μ(i−1)(a(i−1)

2 j + αa(i−1)
3 j ))

M (i)a(i)
4 j − αλ

(i)
E a(i)

1 j − k(i)a(i)
5 j =

= M (i−1)a(i−1)
4 j − αλ

(i−1)
E a(i−1)

1 j − k(i−1)a(i−1)
5 j

(29.14)
Here δ j2, δ j3 are the Kronecker delta. Taking into account (29.5), one can obtain
d(3)
j3 = d(3)

j4 = d(3)
j6 = 0. Thus, we have two boundary value problems (j = 2, 3) for

the systems of ODEs (29.11), i = 2 and 21 boundary conditions (3 in Eq. (29.13)
and 18 in Eq. (29.14) for i = 1, 2, 3) for each to obtain the unknown 6 coefficients
in the ODE solutions and 15 coefficients d(i)

jk (k = 1, ..., 6, i = 0, 1), d(3)
j1 , d(3)

j2 , d(3)
j5 .

If the BC is also homogeneous, i.e. λ
(2)
E , μ(2), λ

(2)
T , α

(2)
T are independent of z, then

vector-functions a(2)
2 and a(2)

3 can also be obtained analytically and have the form
(29.12). For the case of FG BC, they can be obtained analytically only for some
specific cases of the variation of properties in depth, for example, in the case of
exponential variation of thermomechanical properties in depth. For the general FG
materials, they have to be calculated numerically.

Let us introduce the following functions: Gkj = a2k−1 j . Then it is satisfied:

⎡
⎣ ū

w̄

T̄

⎤
⎦ =

⎡
⎣G11 G12 G13

G12 G22 G23

0 0 G33

⎤
⎦

⎡
⎣ 0
p̄a
q̄a

⎤
⎦ (29.15)

It is convenient to introduce following notations:

L∗(i)
k j (α) = α


(0)
k j G

(i)
k j (α, H (i)), k j = 12, 22, 33

L∗(i)
k j (α) = α2


(0)
k j G

(i)
k j (α, H (i)), k j = 13, 23,

L(i)
k j (α) = L∗(i)

k j ( α
H ), i = 0, 1, 2, 3

(29.16)



(i)
22 = E (i)

2(1−(ν(i))2)
, 


(i)
33 = λ

(i)
T ,


(i)
23 = −


(i)
13 = λ

(i)
T

(1+ν(i))α
(i)
T

,



(i)
12 = − E (i)

(1+ν(i))(1−2ν(i))
, i = 0, 1, 3



(2)
22 = E (2)(−H)

2(1−(ν(2)(−H))2)
, 


(2)
33 = λ

(2)
T (−H),



(2)
12 = − E (2)(0)

(1+ν(2)(0))(1−2ν(2)(0)) , 

(2)
23 = −


(2)
13 = λ

(2)
T (−H)

(1+ν(2)(−H))α
(2)
T (−H)

(29.17)

where E is Young’s modulus and ν is Poisson’s ratio which are related to the Lame
parameters by the following expressions:

E = μ
3λE+2μ
λE+μ

, ν = λE
2(λE+μ)

(29.18)

Functions L(i)
k j (α) characterize the relation between the Hankel transforms of the

displacements and temperature on each interface and applied normal mechanical
stresses and thermal heat on the surface. First index—1, 2 or 3—corresponds to the



29 Static Thermomechanical Loading of Thermal Barrier Coatings … 537

radial, normal displacements and temperature respectively; second index—2, 3—
corresponds to the type of applied loading—mechanical normal stresses or thermal
heat. In the literature, these functions are called the compliance functions (Aizikovich
and Aleksandrov 1982; Il’man and Privarnikov 1971). Obviously, they are closely
related to the Hankel transforms of the Green functions. Constants 


(i)
k j describe the

effective thermomechanical properties of each layer under the normal mechanical
stresses and thermal heating. It was previously shown that the compliance functions
have following properties (Volkov et al. 2020):

L(0)
k j (α) = 


(0)
k j



(3)
k j

+ αDkj + O(α2), α → 0

L(0)
k j (α) → 1, α → ∞

(29.19)

Displacements and temperature can be obtained in the form of quadratures invert-
ing the Hankel transformation:

u(r, H (i)) =
∞∫
0
(
L∗(i)
12 (α)



(0)
12

p̄a(α) + L∗(i)
13 (α)



(0)
13

q̄a(α)

α
)J0(αr)dα,

w(r, H (i)) = −
∞∫
0
(
L∗(i)
22 (α)



(0)
22

p̄a(α) + L∗(i)
23 (α)



(0)
23

q̄a(α)

α
)J0(αr)dα,

T (r, H (i)) = −
∞∫
0

L∗(i)
33 (α)



(0)
33

q̄a(α)J0(αr)dα

(29.20)

Expression (29.20) is used to reduce the problems with mixed boundary condi-
tions, such as contact problems, to the solution of singular integral equations with
functions L(0)

k j being the kernel transforms. For example, function L(0)
22 is the kernel

transform of the integral equation arising in the solution of the elastic indentation
problem (Vasiliev et al. 2018), and function L(0)

33 is the kernel transform of the integral
equation in the case of thermal heating of a circular area of the surface to a known
temperature distribution (Volkov 2021). Function L(0)

23 appears in an integral equation
in the case of simultaneous thermomechanical loading. It should also be noted that
the compliance functions for the axisymmetric problems considered in the present
paper are exactly the same as for the plane contact problems (Vasiliev et al. 2017).

29.4 Numerical Results and Discussion

Let us consider a YSZ top coat, aluminum-containing bond coat, α − Al2O3 ther-
mally grown oxide and Ti64 substrate (Wright 1999). Material properties are pre-
sented in Table 29.1 (Vaßen et al. 2010; Wright 1999; Busso et al. 2009; Brandt
et al. 1986; Shivakumar and Aradhya 2006; Ezugwu and Wang 1997). Let us con-
sider homogeneous BC and two types of functionally graded BC with linear and
exponential variation of all thermomechanical properties in depth (see Fig. 29.2):
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Table 29.1 Properties of the considered TBC

Layer Young’s modulus,
GPa

Poisson’s ratio Thermal
conductivity,
Wm−1K−1

Thermal
expansion, 10−6

K−1

TC 210 0.1 2.3 11.5

TGO 375 0.23 30 8.5

BC 200 0.3 16 14.5

Substrate 106 0.29 7.3 9.0

Fig. 29.2 Variation of thermomechanical properties in depth of the considered coatings

x (2)(z) = x (0) − (x (3) − x (0)) z+H (2)

H
(29.21)

x (2)(z) = (x (0)eK−x (3))

eK−1 − (x (0)−x (3))

eK−1 exp( K (z+H (2))

H ), K = −3 (29.22)

Here x (2) is one of the following: {E (2), ν(2), λ
(2)
T , α

(2)
T }. Figures 29.3, 29.4 and 29.5

illustrate the compliance functions L(i)
k j (α) for the homogeneous coating on all inter-

faces. The thicknesses of TC, TGOandBC are assumed to be 100, 10 and 50microns.
Functions L(0)

13 and L(0)
23 corresponding to radial and normal displacements appear-

ing as the result of thermal heating are very close to each other while the same
functions on different interfaces differ sufficiently. Functions L(i)

22 , L
(i)
23 and L(i)

33 are
monotonous and positive, L(i)

12 is nonmonotonous on all interfaces, positive on the
surface and sign-changing on other interfaces and L(i)

13 is nonmonotonous and sign-
changing only on the interface BC/substrate. Although the thickness of the TGO
is small, the compliance functions on the interfaces TC/TGO and TGO/BC differ
markedly especially L(i)

12 and L(i)
13 .

Effect of the FG materials is illustrated in Figs. 29.6 and 29.7 on an example of
L(2)
k j . The biggest difference observed is for L(2)

12 , L(2)
13 and L(2)

23 . Function L(2)
23 for

FG materials behaves nonmonotonically in contrast to a homogeneous coating. The
influence of the thickness of BC on the compliance functions is illustrated in Figs.
29.8 and 29.9. No qualitative differences in the behavior of compliance functions
were noted; however, there are significant quantitative differences.
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Fig. 29.3 Compliance functions L(0)
k j on the surface of the homogeneous coating

Fig. 29.4 Compliance functions L(i)
12 and L(i)

22 , i = 1, 2, 3 on interfaces between the layers of the
homogeneous coating

Fig. 29.5 Compliance functions L(i)
13 , L(i)

23 and L(i)
33 , i = 1, 2, 3 on interfaces between the layers of

the homogeneous coating
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Fig. 29.6 Compliance functions L(2)
12 and L(2)

22 for the homogeneous FG coatings

Fig. 29.7 Compliance functions L(2)
13 , L(2)

23 and L(2)
33 for the homogeneous FG coatings

Fig. 29.8 Compliance functions L(2)
12 and L(2)

22 for the homogeneous coating with different BC
thickness
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Fig. 29.9 Compliance functions L(2)
13 , L(2)

23 and L(2)
33 for the homogeneous coating with different

BC thickness

29.5 Closure

Compliance functions for a thermoelastic half-space with a TBC under arbitrary
thermomechanical loading are constructed. For the case of homogeneous bond coat,
calculation of these functions is reduced to the solution of a system of linear algebraic
equations. For the case of arbitrary functionally graded bond coat, they are calculated
numerically from the solution of two-point boundary value problems for a system
of ordinary differential equations with variable coefficients. The properties of the
compliance functions are illustrated for each interface of the TBC for the case of
homogeneous and functionally graded coatings. It is shown that the thickness of
the bond coat and type of variation of properties in depth sufficiently change the
compliance functions, especially the ones corresponding to the radial displacements.
It means that the optimization of the thickness and properties of the bond coat can
be effectively used to change the distribution of the radial displacements and shear
stresses on the interfaces between the layer, thereby reducing the risk of delamination
of the layers and failure of the TBC. The results of the paper will be used to obtain
approximated analytical expressions for the stresses, displacements, temperature
and thermal heat distribution appearing on the interfaces of the layered TBC under
mechanical and thermal loading using the approaches developed earlier (Volkov et al.
2016; Vasiliev et al. 2018; Kudish et al. 2019).
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Chapter 30
Sensitivity Analysis for Inhomogeneous
and Prestressed Elastic Bodies

Alexander O. Vatulyan, Rostislav D. Nedin, and Victor O. Yurov

Abstract The research is devoted to the development of the theoretical founda-
tions of a non-destructive acoustic method for identifying the laws of inhomogeneity
of material characteristics and prestress fields of elastic bodies, depending on the
probing loading and the frequency range. As additional data in the corresponding
inverse coefficient problems, we consider the displacement field measured on a part
of the body surface. The concept of sensitivity of field characteristics with respect to
changes in variable elastic moduli, density and prestress tensor components, based
on the use of Fréchet derivatives, is introduced, and formulas for its analysis are
obtained. We present an example for inhomogeneous cylindrical rods, study sensi-
tivity characteristics and give some recommendations for the choice of frequency
ranges in the reconstruction of the law of axial initial stress inhomogeneity.

Keywords Inverse problem · Sensitivity · Fréchet derivative · Prestress · Elastic
body · Inhomogeneity · Rod · Vibrations

30.1 Introduction

In view of the active use of structures made of new functionally graded materials
(FGM) with complex inhomogeneous physical and mechanical properties, which
are often prestressed, one of the urgent tasks is the development and refinement of
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deformation models. Modern FGM manufacturing technologies make it possible to
create objects of complex geometry without using classical technologies, like cast-
ing, which requires additional production of molds. For the manufacture of FGM
structural elements, high-temperature technologies are usually used (e.g., surfacing,
sintering and work hardening), which is why, after cooling, the samples are often in
conditions of prestress states that have a significant effect on their dynamic charac-
teristics (Schajer 2013).

Recently, composite sandwich-FGMs have become increasingly popular, combin-
ing rigid layers and layers with a continuous graded structure. Due to the property of
continuity of material characteristics, functionally graded sandwich structures can
reduce a significant concentration of interfacial stresses between composite layers
(Li et al. 2008). This type of composite structure has generated significant research
interest from industry and academia (Li et al. 2019). Based on the theory of high-
order shear deformation, the authors of Nguyen and Nguyen (2015) investigated the
statics, buckling and vibrations of multilayer FGM beams. Based on the broken nor-
mal hypotheses and the Ritz method, Fazzolari (2016) presents an analysis of the
stability of FGM sandwich panels.

In Dudarev et al. (2020), Vatulyan and Yurov (2021), the techniques for studying
inverse problems of restoring the laws of inhomogeneity for material characteristics
are proposed using the construction of an iterative process, at each step of which
it is required to investigate a system of Fredholm integral equations of the first
kind with smooth kernels; a numerical analysis is carried out for different objects.
It should be noted that the order of the kernel norms in these equations can be
different, which complicates the procedure for constructing a regularized solution,
so it is advisable to perform additional analysis of the kernels depending on the
loading and the frequency range. In connection with this circumstance and the need
to analyze kernels, the concept of sensitivity has been introduced, which is quite
widely represented in the literature when analyzing problems based on minimizing
the residual functional. Sensitivity analysis is quite easy to carry outwhen theproblem
parameters are constant, and in the case of their variability, it is required to analyze
operator relations in some function space. Based on this approach, some results of
calculating the sensitivity characteristics for cylindrical rods within longitudinal and
bending steady vibrations are given in Vatulyan and Yurov (2023).

The development of methods for measuring the level and structure of prestress is
a fairly popular topic—a large number of studies have been devoted to it, and interest
in it has increased significantly in recent years. Of certain practical importance is the
study of the problems of determining prestress arising in the course of welding oper-
ations, hardening, heat treatment, shot peening and other technological processes
(Schajer 2013). Several linearized approaches to modeling prestresses are given in
Vatulyan et al. (2015), Nedin et al. (2017), which describe a number of methods
for restoring the initial state in elastic bodies, including those made of functionally
graded composites, on the basis on the acoustic sounding method. The proposed
methods are mainly based on iterative-regularization schemes for solving the cor-
responding coefficient inverse problems. In Nedin et al. (2018), inverse problems
on the reconstruction of prestress fields within the analysis of bending vibrations
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of plates in the framework of Timoshenko’s hypotheses were studied using several
techniques. In Nedin et al. (2018), based on the general linearized formulation of the
motion of an elastic prestressed body, the problem of radial oscillations of an elas-
tic isotropic pipe is studied. The inverse problem of identifying an inhomogeneous
prestress state is studied on the basis of additional data on the displacement function
measured at the outer boundary in a certain frequency range. Yurov et al. (2020)
investigates the problem for a finite cylinder under conditions of a complex initial
stress state described by four non-zero components of the prestress tensor. Based on
the perturbation method, formulas are derived that allow one to approximately find
the changes in resonant frequencies caused by the presence of the components of
the inhomogeneous prestress field. The influence of prestress levels on the change
in natural frequencies is analyzed. In Nedin et al. (2022), the inverse problem of
recovering three parameters of an inhomogeneous prestress field of a given structure
is studied.

This study continues the development of theoretical foundations for identifying
the laws of inhomogeneity of material characteristics and prestress fields of elastic
bodies depending on the method of probing loading in the presence of the data on
the measured boundary displacement fields in a certain frequency range. In order
to improve the procedure for reconstructing the desired characteristics, a sensitivity
analysis technique based on the use of Fréchet derivatives is proposed. An exam-
ple of steady oscillations of the prestressed rod is considered. A sensitivity of the
deformative characteristics with respect to the prestress is estimated, which makes
it possible to reveal a recipe for the optimal probing loading when solving the cor-
responding inverse coefficient problems on restoring arbitrary laws of change in the
inhomogeneous prestress distribution.

30.2 Vibrations of an Isotropic Elastic Inhomogeneous
Body in the Presence of Prestresses

Using the principle of superimposing small deformations on finite ones, we shall
consider small oscillations of an elastic prestress body of volume V bounded by the
surface S = Su ∪ Sσ under the action of a periodic load with the components pkeiωt ,
k = 1, 3, applied to the surface part Sσ in the actual configuration. The corresponding
complete boundary-value problem after separating the time factor eiωt in the metric
of the natural undeformed configuration takes the form Guz (2004), Vatulyan et al.
(2015):

Ti j, j + ρω2ui = 0 (30.1)

Ti j = σi j + ui,mσ 0
mj (30.2)

σi j = λδi j um,m + μ
(
ui, j + u j,i

)
(30.3)
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ui |Su = 0, Ti j n j

∣∣
Sσ

= pi (30.4)

Here, Ti j—the components of the linearized nonsymmetric first Piola-Kirchhoff
stress tensor,ui—components of small displacement vector,σ 0

i j andσi j—components
of symmetric initial and incremental stress tensors, ρ—density, ω—vibration fre-
quency and ni—components of the unit vector of the outer normal to the body
surface; the surface part Su is clamped. Taking into account the smallness of the
initial deformation gradient, we assume that the change in the normal vector can
be neglected in the transition from the initial configuration to the actual one. The
statement (30.1)–(30.4) allows one to set arbitrary laws of change for the elastic
modules λ, μ and the density ρ depending on the coordinates allowing to describe
an inhomogeneous material, for example, FGM.

Within the frameworkof thismodel,we shall consider the following twoproblems:

1. Problem I—without prestress σ 0
i j = 0, with variable elastic moduli and density,

for an inhomogeneous elastic body; (30.1)–(30.4) in this case take the classical
form:

σi j, j + ρω2ui = 0 (30.5)

ui |Su = 0, σi j n j

∣∣
Sσ

= pi (30.6)

where the stress tensor components σi j satisfy the constitutive relations (30.3).
2. Problem II—with prestress, in the framework of the statement (30.1)–(30.4).

The presented model makes it possible to describe body oscillations in the pres-
ence of inhomogeneous prestress fields of various nature and given values of λ,
μ and ρ.

30.3 General Structure of Relationships for Sensitivity
Estimation

Consider two inverse problems of determining the following variable characteristics:
(1) the elastic moduli λ, μ and the density ρ (3 functions); (2) the prestress tensor
components σ 0

i j (6 functions) when specifying the additional data on the measured
displacement field in a certain frequency range ω ∈ [

ω−, ω+
]
. The inverse problem

is reduced to a system of nonlinear operator equations, the solution of which is based
on Newton’s operator method. In Dudarev et al. (2020), Vatulyan and Yurov (2021),
Nedin et al. (2017), Nedin et al. (2018) and Nedin et al. (2018), methods for studying
such inverse problems are proposed by constructing an iterative process, at each step
of which it is required to investigate a system of Fredholm integral equations of the
first kind with smooth kernels. A numerical analysis was carried out for different
objects. Note that the order of the kernel norms in these equations, in general, can be
different, which complicates the procedure for constructing a regularized solution,
thus it is necessary to perform some preliminary analysis of the kernels depending
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on the loading and the frequency range. For example, when studying the inverse
problem for a cylinder, in case of probing by a tangential load along the lateral
surface, the corresponding kernel by the Lamé parameter λ turns into zero, which
makes its reconstruction impossible.

For a preliminary analysis of kernels, below we introduce the concept of sensi-
tivity which is quite widely represented in the literature for operators with constant
coefficients. In such a case, the inverse problem may be reduced to the minimization
of the residual functional in finite-dimension space. However, in the case of vari-
ability of physical characteristics, it is required to derive additional boundary-value
problems, introduce the corresponding Fréchet derivatives and analyze operator rela-
tions in some functional space. Let us turn to the formulations of Problems I and II
described above.

Problem I
Consider the following subproblems.

(1) Sensitivity Characteristics with Respect to the Density ρ

Let us introduce the Fréchet derivatives ξ
ρ

i j = ∂σi j

∂ρ
and v

ρ

i = ∂ui
∂ρ

. It is easy to

show that in terms of the introduced functions ξ
ρ

i j and v
ρ

i , the following equations
hold:

ξ
ρ

i j, j + ω2ui + ρω2v
ρ

i = 0 (30.7)

Based on (30.6), the essential and natural boundary conditions for the functions
σi j , ξ

ρ

i j , ui and v
ρ

i take the form

v
ρ

i

∣∣
Su

= 0, ξ
ρ

i j n j

∣∣
∣
Sσ

= 0 (30.8)

Let us multiply (30.5) by v
ρ

i and (30.7) by ui , and integrate their difference over
the volume V : ∫

V

[
σi j, jv

ρ

i − ξ
ρ

i j, j ui − ω2uiui
]
dV = 0

Carrying out standard transformations using the Gauss-Ostrogradsky theorem
and using boundary conditions (30.6), (30.8), we obtain

∫

Sσ

piv
ρ

i dS −
∫

V

(
σi jv

ρ

i, j − ξ
ρ

i j ui, j + ω2uiui
)
dV = 0 (30.9)

Let us show that the expression σi jv
ρ

i, j − ξ
ρ

i j ui, j turns into zero. To shorten
the notation, we will use the generalized Hooke’s law form σi j = Ci jkluk,l ,
whereCi jkl = λδi jδkl + μ

(
δikδ jl + δilδ jk

)
represent the components of the elas-

ticmoduli tensor for isotropic case.According to the constitutive relations (30.3),
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ξ
ρ

i j = ∂σ u
i j

∂ρ
= Ci jkl

∂εukl
∂ρ

= Ci jklε
v
kl . Further, taking into account the symmetry of

the tensors σi j , ξ
ρ

i j and Ci jkl , we have

σi jv
ρ

i, j − ξ
ρ

i j ui, j = σ u
i jε

v
i j − ξ

ρ

i jε
u
i j = Ci jklε

u
klε

v
i j − Ci jklε

v
klε

u
i j =

= Ckli jε
u
klε

v
i j − Ci jklε

u
i jε

v
kl = 0,

where εui j = 1
2

(
ui, j + u j,i

)
, εv

i j = 1
2

(
v

ρ

i, j + v
ρ

j,i

)
. Thus, (30.9) takes the form

∫

Sσ

piv
ρ

i dS − ω2
∫

V

uiuidV = 0 (30.10)

(2) Sensitivity Characteristics with Respect to the Lamé Parameter λ

By introducing the functions of the Fréchet derivatives ξλ
i j = ∂σi j

∂λ
and vλ

i = ∂ui
∂λ

,

we get from (30.5)–(30.6) that

ξλ
i j, j + ρω2vλ

i = 0, vλ
i

∣∣
Su

= 0, ξλ
i j n j

∣∣
Sσ

= 0 (30.11)

Carrying out transformations similar to the previous subproblem, we obtain

∫

V

[
σi j, jv

λ
i − ξλ

i j, j ui
]
dV = 0

whence, considering the boundary conditions (30.6), (30.11), we obtain

∫

Sσ

piv
λ
i dS −

∫

V

(
σi jv

λ
i, j − ξλ

i j ui, j
)
dV = 0 (30.12)

Taking into account that σi jv
λ
i, j − ξλ

i j ui, j = σi jε
v
i j − ξλ

i jε
u
i j = −εukkε

u
ii , we may

rewrite (30.12) as ∫

Sσ

piv
λ
i dS +

∫

V
εukkε

u
ii dV = 0

or, using the strain tensor expressions εui j in terms of displacement gradients,

∫

Sσ

piv
λ
i dS +

∫

V

uk,kul,ldV = 0 (30.13)

(3) Sensitivity Characteristics with Respect to the Shear Modulus μ

Introducing similarly the function ξ
μ

i j = ∂σi j

∂μ
and v

μ

i = ∂ui
∂μ

, we get
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ξ
μ

i j, j + ρω2v
μ

i = 0, v
μ

i

∣∣
Su

= 0, ξ
μ

i j n j

∣∣
∣
Sσ

= 0 (30.14)

Carrying out similar transformations and considering the boundary conditions
(30.11), we obtain

∫

Sσ

piv
μ

i dS −
∫

V

(
σi jv

μ

i, j − ξ
μ

i j ui, j
)
dV = 0 (30.15)

Using σi jv
μ

i, j − ξ
μ

i j ui, j = σi jε
v
i j − ξ

μ

i j ε
u
i j = −2εui jε

u
i j , (30.15) takes the form

∫

Sσ

piv
μ

i dS +
∫

V
2εui jε

u
i j dV = 0

or ∫

Sσ

piv
μ

i dS + 1

2

∫

V

(
ui, j + u j,i

) (
ui, j + u j,i

)
dV = 0 (30.16)

Problem II

Let us now introduce the tensor functions of the fourth and third ranks Qsk
i j = ∂Ti j

∂σ 0
sk

,

vsk
i = ∂ui

∂σ 0
sk

, fixing the indices s, k = 1, 3. Then from the linearized equations of

motion (30.1), we obtain
Qsk

i j, j + ρω2vsk
i = 0 (30.17)

vsk
i

∣∣
Su

= 0, Qsk
i j n j

∣∣
Sσ

= 0 (30.18)

Performing transformations similar to those described for Problem I, on the basis of
(30.1) and (30.17), we obtain

∫

S

(
Ti jv

sk
i − Qsk

i j ui
)
n jdS −

∫

V

(
Ti jv

sk
i, j − Qsk

i j ui, j
)
dV = 0 (30.19)

Taking into account the conditions (30.4) and (30.18), the relation (30.19) takes the
form ∫

Sσ

piv
sk
i dS −

∫

V

(
Ti jv

sk
i, j − Qsk

i j ui, j
)
dV = 0 (30.20)

By using the generalized Hooke’s law to shorten the notation, we have
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Qsk
i j = ∂

∂σ 0
sk

(
σi j + ui,mσ 0

mj

) = ∂σi j

∂σ 0
sk

+ ∂ui,m
∂σ 0

sk

σ 0
mj + ui,m

∂σ 0
mj

∂σ 0
sk

=
= Ci jklvk,l + vi,mσ 0

mj + ui,sδ jk

Then, using the symmetry of the tensors Ci jkl and σ 0
mj , (30.20) transforms into

0 =
∫

Sσ

pivi dS−

−
∫

V

[(
Ci jkluk,l + ui,mσ 0

mj

)
vi, j − (

Ci jklvk,l + vi,mσ 0
mj + ui,sδ jk

)
ui, j

]
dV

whence, returning to the original notation, we obtain

∫

Sσ

piv
sk
i dS +

∫

V

ui,sui,kdV = 0 (30.21)

The obtained formulas (30.10), (30.13), (30.16) and (30.21) make it possible to
evaluate the sensitivity in the models considered with respect to the corresponding
functional parameters.

30.4 Sensitivity Characteristics for Problems I and II When
Sounding by Concentrated Forces

Problem I Let a1 = ρ, a2 = λ and a3 = μ, then ξ
(m)
i j = ∂σi j

∂am
and v

(m)
i = ∂ui

∂am
, m =

1, 3. We assume that in order to assess the sensitivity with respect to each of the
three functions am , frequency sounding is implemented bymeans of the concentrated
loads p(m)

i = P (m)
i δ

(
x − x (m)

)
, applied to three different points on the surface of the

body. According to the formulas from the previous section, we obtain the following
sensitivity relations:

P (1)
i v

(1)
i

(
x (1)

) = ω2
∫

V

uiuidV (30.22)

P (2)
i v

(2)
i

(
x (2)

) = −
∫

V

uk,kul,ldV (30.23)

P (3)
i v

(3)
i

(
x (3)

) = −1

2

∫

V

(
ui, j + u j,i

) (
ui, j + u j,i

)
dV (30.24)
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Here, we note some properties of the quantities appearing on the right-hand sides
of the relations obtained. On the right side of (30.22), there is a positive value,
and (30.23) and (30.24) contain non-positive values. The expression on the right
side of (30.23) vanishes if and only if the volumetric strain is zero (for example,
during torsional vibrations of a cylinder). It follows from relations (30.23) that under
loading for which there is no volumetric deformation, it is impossible to determine
the modulus a2 regardless of the frequency range. The expression on the right side
of (30.24) vanishes if and only if all the strain tensor components are equal to zero.

Relations (30.22)–(30.24) make it possible to determine the sensitivity of the
measured boundary functions with respect to variable elastic moduli and density
under various types of probing concentrated loading and compare the responses for
different inhomogeneity laws.

Problem II
In the case of probing with a concentrated force pi = Piδ

(
x − x (0)

)
applied to some

point on the surface of the body xk = x0k , from (30.21) we have

Piv
sk
i

(
x (0)

) = −
∫

V

ui,sui,kdV (30.25)

The relation (30.25) makes it possible to determine the sensitivity of the measured
boundary functions with respect to the prestress components, for certain probing
modes, and to compare the responses for various inhomogeneity laws.

30.5 Sensitivity Analysis for Longitudinal and Flexural
Vibrations of Rods

The results of calculating the sensitivity characteristics in the framework of Problem
I for cylindrical rodswithin longitudinal and flexural steady-state vibrations are given
in Vatulyan and Yurov (2023). Below, we consider several examples of estimating
sensitivity functions for Problem II.

Example 30.1 Longitudinal Oscillation of Prestressed Rod

As an example, consider a uniaxial prestress state of tension or compression of
a cantilevered beam, described by a single component σ 0

11(x1) = σ0(x). The rod
deformation hypotheses have the form u1 = u(x), u2 = 0, u3 = 0, where u(x) is
the longitudinal displacement. The probing is carried out by applying a longitudinal
periodic load p1 = Pu/F at the free rod’s end, where F is the rod’s cross-sectional
area, V = [0, l] × F and l is the rod’s length. The longitudinal displacement u(l, ω)

is used as the additional data in the inverse problem. The only non-zero component
of the third rank tensor v0

isk = v0
111 we denote as vu . The statement of the boundary-

value problem on the longitudinal vibrations of the considered prestress rod has the
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form Vatulyan et al. (2015):

(
(E + σ0) Fu

′)′ + ρFω2u = 0 (30.26)

u|x=0 = 0, (E + σ0) Fu
′∣∣
x=l = Pu (30.27)

Based on (30.25) for the considered case and taking into account the indicated defor-
mation hypotheses and the probing method, we have

Pu vu |x=l = −
∫

V

u1,1u1,1dV = −
l∫

0

∫

F

(
u′)2 dFdx = −

l∫

0

F
(
u′)2 dx,

which gives

Pu vu |x=l = −
l∫

0

F
(
u′)2 dx, vu = ∂u

∂σ0
(30.28)

The relation (30.28) allows one to determine the sensitivity characteristic of the
specified functions in relation to the axial distribution of the prestress σ0(x) when
probing with a longitudinal load in a certain frequency range. Note that the right side
of (30.28) coincides with the formula for the sensitivity characteristic with respect
to the elastic modulus E in the problem on longitudinal vibrations of a rod without
prestress (Vatulyan and Yurov 2023).

Example 30.2 Flexural Vibration of a Prestressed Rod

Let us consider the formulation of the problem on flexural vibrations of a prestress
cantilever rod clamped by its left end. The rod deformation hypotheses are u1 =
−x3w′(x), u2 = 0 and u3 = w(x), where w(x) represents the deflection function.
As the additional data in the inverse problem, the deflectionw(l, ω) or rotation angle
θ(l, ω) given at the free rod’s end is used. The motion equation and the essential
boundary conditions have the following form Vatulyan et al. (2015):

(
(E + σ0) Jw′′)′′ − (

Fσ0w
′)′ − ρFω2w = 0 (30.29)

w|x=0 = 0, w′|x=0 = 0 (30.30)

In the case of probing with transverse force p3 = Pw/F applied to the free rod’s
end, the natural boundary conditions take the form

(E + σ0) Jw′′∣∣
x=l

= 0,
(
(E + σ0) Jw′′)′ − Fσ0w

′
∣
∣∣
x=l

= Pw (30.31)

in the case of probing by means of the bending moment M
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(E + σ0) Jw′′∣∣
x=l = M,

(
(E + σ0) Jw′′)′ − Fσ0w

′
∣∣
∣
x=l

= 0 (30.32)

Based on (30.25), we express the sensitivity characteristic as

Pw v0
311

∣∣
x=l = −

l∫

0

∫

F

ui,1ui,1dFdx = −
l∫

0

∫

F

(
x23

(
w′′)2 + (

w′)2
)
dFdx =

= −
l∫

0

(
J

(
w′′)2 + F

(
w′)2

)
dx

hence,

Pw vw|x=l = −
l∫

0

(
J

(
w′′)2 + F

(
w′)2

)
dx, vw = ∂w

∂σ0
(30.33)

The relationship (30.33) makes it possible to determine the sensitivity characteristic
of the rod with respect to some axial distribution of prestress σ0(x) when probing
with a concentrated force in a certain frequency range. Similar sensitivity relation in
terms of the rotation angle θ = w′, when probing with a bending moment, will take
the form

M vθ |x=l = −
l∫

0

(
J

(
θ ′)2 + Fθ2

)
dx, vθ = ∂θ

∂σ0
(30.34)

It is to be mentioned that the integrands of the sensitivity characteristics (30.28),
(30.33) and (30.34) coincide with the expressions for the kernels of the Fredholm
integral equations of the first kind, obtained when considering the inverse problems
of prestress identification for the considered rods by linearizing the generalized reci-
procity relation (Vatulyan et al. 2015). The generalized structure of this expression
when determining (or estimating the sensitivity) prestress is given in the formula
(30.25).

Consider a particular case of the statement (30.29)–(30.32), in which, due to
the smallness of prestress with respect to the elastic modulus (σ0/E < 10−3), it
is assumed that E + σ0 ≈ E . In this case, based on a simplified statement, using
the technique for constructing sensitivity characteristics described in the previous
section, it is easy to obtain the relations

Pw vw|x=l = −
l∫

0

F
(
w′)2 dx, M vθ |x=l = −

l∫

0

Fθ2dx (30.35)
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30.6 Numerical Experiments

This section presents computational experiments on estimating rods’ sensitivity with
respect to the uniaxial prestress state for longitudinal and bending vibrations based
on the relations (30.33)–(30.35) in the framework of Problem II.

Additionally, an alternative way of calculating the sensitivity using the classical
formula for the Fréchet derivative (Hutson and Pym 1980) is introduced according
to

f (σ ∗
0 + �σ0) − f (σ ∗

0 ) = v∗�σ0 + η(σ ∗
0 ,�σ0), lim‖�σ0‖→0

∥
∥η(σ ∗

0 ,�σ0)
∥
∥

‖�σ0‖ = 0

(30.36)
Here, v∗ = f ′

σ ∗
0
is the displacement sensitivity characteristic f with respect to some

reference prestress state σ ∗
0 ; �σ0—small prestress increment;

∥∥η(σ ∗
0 ,�σ0)

∥∥ and
‖�σ0‖ represent the norms in the corresponding normed spaces. It is possible to
carry out a sensitivity analysis depending on the oscillation frequency in the vicinity
of the zero prestress state by setting f ′

σ ∗
0
(ω) ≈ f ′

0(ω) = v(ω):

f |σ0=�σ0
(ω) − f |σ0=0 (ω) = v(ω)�σ0 + η(�σ0), ‖η(�σ0)‖ / ‖�σ0‖ → 0

(30.37)
Note that since the prestress σ0 is small compared to the elastic modulus E ,

the corresponding sensitivity during probing by the longitudinal force is close to
zero. For flexural vibrations of the rod, the calculations were carried out based on
dimensionless statements: a) when probing the rod with a transverse force (30.29)–
(30.31); b) when probing with a bending moment (30.29)–(30.30) and (30.32), in
case of a constant cross section (F = F0, J = J0). The following dimensionless com-
plexes were used: ξ = x

l , W = w
l , g (ξ) = E(ξ l)

E0
, r (ξ) = ρ(ξ l)

ρ0
, s = σ0

E0
, κ2 = ρ0ω

2l2

E0
,

γ = F0l2

J0
, P̃ = Pwl2

E0 J0
and M̃ = Ml

E0 J0
. Using the introduced dimensionless notation, the

sensitivity characteristics (30.33)–(30.35) for P̃ = 1, M̃ = 1 take the form

ṽw|ξ=1 = −
1∫

0

[
γ

(
W ′)2 + (

W ′′)2
]
dξ, ṽw = ∂W

∂s
(30.38)

ṽθ |ξ=1 = −
1∫

0

[
γ θ2 + (

θ ′)2
]
dξ, ṽθ = ∂θ

∂s
(30.39)

For simplified formulations based on (30.35), we obtain

ṽw|ξ=1 = −γ

1∫

0

(
W ′)2 dξ, ṽθ |ξ=1 = −γ

1∫

0

θ2dξ (30.40)
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Fig. 30.1 Results of calculating the rod’s sensitivity characteristics ṽw , ṽθ with respect to prestress
according to (30.37) (points); (30.38)–(30.39) (solid lines); (30.40) (dotted line)

Table 30.1 Sensitivities ṽw and ṽθ for different values of the dimensionless frequency parameter
κ in the vicinity of the first three resonances κ1 = 0.352, κ2 = 2.20 and κ3 = 6.17

κ 0.4 0.6 0.8 1.7 2 2.18 2.22 2.4 4 5.8 6.07 6.27 6.6

ṽw 140.5 2.89 0.52 0.33 1.95 140.6 279 1.87 0.02 0.23 3.08 2.985 0.16

ṽθ 247.7 4.82 2.32 10.2 49.6 3248 6325 39.4 0.91 15.2 192 181.3 9.29

Figure 30.1 shows the results of a comparative analysis of the sensitivity charac-
teristics ṽw and ṽθ found according to (30.38)–(30.40) for the considered rod when
probing with a transverse force and a bending moment. The problem parameters in
the calculations were used as follows: γ = 100, g = 1, r = 1, P̃ = 1 and M̃ = 1.

Table 30.1 shows the sensitivity values ṽw and ṽθ calculated by formulas (30.38)–
(30.39) in the vicinity of the first three resonant frequencies.

From the results shown in Fig. 30.1 and Table 30.1, we can conclude that bending
moment probing leads to a significantly more pronounced dynamic response of the
rod than axial force probing. Thus, when studying the inverse problem of identifying
the law of inhomogeneity for the axial prestress component of a rod, it is advisable
to perform frequency probing by the bending moment with the choice of oscillation
frequencies in the vicinity of the first three resonances. Calculations over a wider
frequency range have also revealed that the amplitude of sensitivity with respect to
prestress for the rod during bending vibrations decreases in the regions between the
resonances with increasing frequency; when considering longitudinal oscillations,
there is no such a pattern.

30.7 Conclusion

Based on the introduced sensitivity concept for inhomogeneous bodies, formulas
for the analysis of the desired material characteristics and prestress components for
an arbitrary isotropic elastic body are proposed. The computational experiments on
calculating the sensitivity characteristics for prestressed rods are carried out. The
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recommendations are presented on the choice of sounding frequency ranges for
cylindrical rods, inhomogeneous along the axial coordinate, when solving inverse
coefficient problems on the basis of the longitudinal and flexural vibrations analysis.
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Chapter 31
The Lowest Eigenfrequencies of an
Immersed Thin Elastic Cylindrical Shell

Hazel Yücel, Barış Erbaş, Nihal Ege, and Julius Kaplunov

Abstract The plane strain time-harmonic motion of an immersed cylindrical elastic
shell is considered. The revisit to this classical problem is motivated by modern
technical applications, including the investigation of low-frequency band gaps arising
at acoustic wave propagation through a periodic array of thin-walled cylinders. In this
paper, the effect of the fluid is reduced to a mixed boundary condition along the outer
face of the shell after the separation of the circumferential variable. The asymptotic
analysis of the ordinary differential equations along a narrow interval results in
approximate formulae for the lowest complex eigenfrequencies. It is demonstrated
that their values are asymptotically smaller than the lowest eigenfrequencies of a
shell with traction-free faces, and at leading order they do not depend on the shell
density. At the same time, the fluid compressibility does not appear in the two-term
asymptotic behaviour. Numerical examples for steel and aluminium shells immersed
in water confirm that the imaginary parts of the sought-for frequencies are extremely
small and may often be ignored in comparison with the contribution of structural
damping.
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31.1 Introduction

Fluid–structure interaction problems for thin elastic shells were initially inspired by
various engineering applications in the area of underwater acoustics; see the books
(Veksler 2012; Kaplunov et al. 1998) and the general reference papers (Gaunaurd
and Werby 1990; Zarastvand et al. 2021), to mention a few. More recent efforts in
this area are concerned with the modelling of modern materials, e.g., see Jin and
Ren (2022), Li et al. (2013) and Hasheminejad and Rajabi (2007). In this case, the
lowest eigenfrequencies of a thin cylindrical shell are of particular importance for the
investigation of themain band gaps for the periodic arrays of cylinders immersed into
acoustic media; see Krynkin et al. (2013) and also Krynkin et al. (2011), Shengjun
et al. (2012). At the same time, such frequencies were not always within a special
focus of the publications based on the canonical formulations for a single immersed
shell. They usually studied a broader frequency band with several exceptions, includ-
ing (de Loock et al. 2013) reporting on numerical and experimental results over the
low-frequency region. Only very few developments on the subject presented explicit
analytical results. Among them, we mention (Kaplunov et al. 1998, 1994) expos-
ing robust asymptotic formulae for complex-valued scattering resonances, e.g., see
Gaunaurd and Brill (1984). However, the scope of the cited publications was mainly
restricted to higher frequencies, for which the effect of the shell curvature was often
less essential.

In this paper, we study the time-harmonic motion of a thin cylindrical shell
immersed into a compressible fluid under plane strain assumptions. The considera-
tion below generalizes the asymptotic analysis of 2D equations in elasticity in Ege
et al. (2021), Ege et al. (2022) oriented to the evaluation of the lowest eigenfrequen-
cies for a shell with traction-free faces. The alternative approach to the last problem
was developed in Chapman and Sorokin (2017) starting from the full dispersion
relation.

First, by using the Fourier series in the angular coordinate, we reduce the original
fluid–structure interaction problem over an infinite domain to a 2D boundary value
problem for a narrow annulus with mixed boundary conditions along its outer face
and a traction-free inner one. The coefficients in the former involve appropriate
Hankel functions satisfying the radiation conditions at infinity.

It is demonstrated that the presence of the fluid affects drastically the asymptotic
order of the lowest eigenfrequencies of interest. As might be expected, they are much
smaller than their counterparts for a free cylindrical shell calculated in Ege et al.
(2021). Nevertheless, the scaling of the displacement and stress components appears
to be the same as in Ege et al. (2021). A peculiarity of the considered problem consists
in incorporating into the asymptotic techniques well established in the general shell
theory; e.g., see Goldenveizer (1976), Kaplunov et al. (1998), the complex-valued
series for the above mentioned coefficients in the boundary conditions containing
Hankel functions.

A two-term asymptotic formula is derived for the real parts of the sought-for
eigenfrequencies. The first term in this formula does not depend on the shell density,
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while neither of them is influenced by fluid compressibility. The imaginary parts of
the eigenfrequencies, due to the radiation of the vibration energy to infinity, are also
evaluated explicitly. The approximate numerical values of the eigenfrequencies are
calculated for steel and aluminium shells immersed in water.

31.2 Statement of the Problem

Consider an elastic cylindrical shell of thickness 2h with mid-surface radius R
immersed in a compressible fluid; see Fig. 31.1. The shell is assumed to be thin,
i.e., η = h/R is a small geometric parameter. Specify the conventional orthogonal
coordinates αi , i = 2, 3, in the form

α2 = Rθ, α3 = hζ (31.1)

where θ corresponds to the circumferential coordinate (0 ≤ θ < 2π ) and ζ is the
transverse coordinate (−1 ≤ ζ ≤ 1 inside the shell and ζ ≥ 1 over the exterior
domain).

The displacement and stress components vi (θ, ζ ) and σi j (θ, ζ ) of the shell, i, j =
2, 3, and the acoustic pressure p(θ, ζ ) in the fluid can be presented as

v2 = u2 sin nθ, v3 = u3 cos nθ (31.2)

and
σ22 = s22 cos nθ, σ32 = s32 sin nθ, σ33 = s33 cos nθ, (31.3)

and

Fig. 31.1 Geometry of the
problem
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p = P(ζ ) cos nθ, (31.4)

where ui (ζ ), si j (ζ ) and P(ζ ) denote unknown Fourier coefficients, and n is the
circumferential wavenumber. Then, the plane strain equations of motion in linear
elasticity, see, e.g., Ege et al. (2023), Kaplunov et al. (1998), become

∂s32
∂ζ

− nη

1 + ηζ
s22 + 2η

1 + ηζ
s32 + ηρω2Ru2 = 0, (31.5)

and

∂s33
∂ζ

+ nη

1 + ηζ
s32 − η

1 + ηζ
s22 + η

1 + ηζ
s33 + ηρω2Ru3 = 0 (31.6)

together with

s22 = E

(1 − ν2)R

1

(1 + ηζ )
(nu2 + u3) + ν

1 − ν
s33, (31.7)

E

h

∂u3
∂ζ

= (1 − ν2)s33 − ν(1 + ν)s22, (31.8)

and

s32 = E

2(1 + ν)R

(
1

η

∂u2
∂ζ

− 1

1 + ηζ
(u2 + nu3)

)
. (31.9)

Here, ω is the angular frequency, ρ is the mass density of the shell, E is Young’s
modulus and ν is Poisson’s ratio; the time-harmonic factor eiωt , where t is time, is
omitted.

The fluid motion is governed by the Helmholtz equation (ζ ≥ 1)

�P + ω2

c20
P = 0, (31.10)

where c0 is the sound wave speed, and the 2D Laplace operator is given by

� = 1

R2

(
1

η2

∂2

∂ζ 2
+ 1

η(1 + ηζ )

∂

∂ζ
− n2

(1 + ηζ )2

)
. (31.11)

Next, we describe the fluid interaction through the contact conditions at ζ =
1 (e.g., see Kaplunov et al. 1998), written as

s33 = −P, s32 = 0, (31.12)

and
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u3 = 1

hρ0ω2

∂P

∂ζ
, (31.13)

where ρ0 is the mass density of the fluid.
In addition, we assume that the inner surface of the shell ζ = −1 is traction free.

Thus,
s3i = 0, i = 2, 3. (31.14)

As usual, the pressure P is subject to the radiation condition at infinity (ζ → ∞),
given by

∂P

∂ζ
+ i

ω

c0
P = o

(
ζ−1/2) . (31.15)

The fluid pressure satisfying the Helmholtz equation (31.10) over the region ζ ≥
1, subject to the radiation condition (31.15), for the chosen time dependence eiωt can
be written as

P = P0H
(2)
n

(
ωR(1 + ηζ )

c0

)
, (31.16)

where H (2)
n (z) is the appropriate Hankel function; see Abramowitz et al. (1988).

Substituting the pressure (31.16) into the impenetrability condition (31.13) and
taking into account the first of the boundary conditions (31.12), the two remaining
boundary conditions may be combined in a single one such as

u3 + s33
1

ρ0c0ω
H = 0, (31.17)

where

H = (H (2)
n (x))′

H (2)
n (x)

(31.18)

at x = ωR(1 + η)/c0.

31.3 Asymptotic Scaling

Let us define the dimensionless displacement and stress components as

u2 = Ru∗
2, u3 = Ru∗

3 (31.19)

and
s22 = Eηs∗

22, s32 = Eη2s∗
32, s33 = Eη2s∗

33 (31.20)
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where the starred quantities are assumed to be of the same asymptotic order. We also
specify the dimensionless frequency by

Ω = η−3/2 ωR

c2
, Ω ∼ 1 (31.21)

with c2 = √
E/(2(1 + ν)ρ) denoting the shear wave speed in the shell material. It

is worth noting that for a shell immersed in a vacuum, i.e., with both traction-free
faces, the region of the lowest eigenfrequencies is observed at

ωR

c2
∼ η, (31.22)

e.g., see Ege et al. (2023), Ege et al. (2022). Thus, as might be expected, the presence
of the fluid decreases the values of the lowest eigenfrequencies.

In addition, we have
H = η−3/2H ∗ (31.23)

where, according to Abramowitz et al. (1988, Eqs. 9.1.10 and 9.1.11),

H ∗ = − n c∗
Ω(1 + η)

− n − 2

4(n − 1)c∗
Ωη3(1 + η) + · · ·

− i
π

22n−1c2n−1∗ ((n − 1)!)2 Ω2n−1η3n(1 + η)2n−1 + · · ·
(31.24)

with c∗ = c0/c2.
The equations of motion (31.5)–(31.9) may now be rewritten in dimensionless

variables as

∂s∗
32

∂ζ
− n

1 + ηζ
s∗
22 + 2η

1 + ηζ
s∗
32 + η2Ω2

2(1 + ν)
u∗
2 = 0, (31.25)

and

∂s∗
33

∂ζ
+ nη

1 + ηζ
s∗
32 − 1

1 + ηζ
s∗
22 + η

1 + ηζ
s∗
33 + η2Ω2

2(1 + ν)
u∗
3 = 0, (31.26)

whereas the stress–displacement relations take the form

ηs∗
22 = 1

1 − ν2

(
1

1 + ηζ

(
nu∗

2 + u∗
3

)) + ν

1 − ν
η2s∗

33, (31.27)

∂u∗
3

∂ζ
= (1 − ν2)η3s∗

33 − ν(1 + ν)η2s∗
22, (31.28)

and
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η3s∗
32 = 1

2(1 + ν)

(
∂u∗

2

∂ζ
− η

1 + ηζ

(
nu∗

3 + u∗
2

))
. (31.29)

In terms of the starred quantities, the conditions (31.14) and (31.17) take the forms

s∗
32 = 0, (ζ = ±1), s∗

33 = 0, (ζ = −1) (31.30)

and

ηΩu∗
3 − 2(1 + ν)

c∗ρ∗
H ∗s∗

33 = 0, (ζ = 1) (31.31)

where ρ∗ = ρ0/ρ.
In what follows, all starred quantities are expanded in asymptotic series as

f ∗ = f (0) + η f (1) + η2 f (2) + · · · , (31.32)

while the dimensionless frequency is taken in the form

Ω2 = Ω2
0 + ηΩ2

1 + η2Ω2
2 + · · · . (31.33)

31.4 Leading Order Approximation

At the leading order, by integrating equations (31.28) and (31.29) with respect to the
thickness variable ζ , we have

u(0)
3 = U (0)

3 and u(0)
2 = U (0)

2 (31.34)

where U (0)
3 and U (0)

2 are unknown constants. Taking into account (31.27), they are
related by

U (0)
2 = −1

n
U (0)

3 . (31.35)

Then, by integrating equation (31.25)with respect to the thickness variable,we obtain

s(0)
32 = −n

1∫
ζ

s(0)
22 ds. (31.36)

Next, we deduce from the boundary condition (31.30) at ζ = −1

1∫
−1

s(0)
22 ds = 0. (31.37)
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It also follows from (31.26) that

s(0)
33 = −

1∫
ζ

s(0)
22 ds (31.38)

which results in s(0)
33 = 0 at ζ = ±1, due to (31.37), agreeing with boundary condi-

tions (31.30) and (31.31). The relations above do not allow calculating the leading
order term Ω2

0 in the asymptotic series (31.33). Therefore, we need to proceed to the
next order approximation.

31.5 First Order Approximation

At the first order, we have from (31.28)

u(1)
3 = U (1)

3 . (31.39)

Next, by integrating (31.29) in the thickness variable ζ , then using (31.35), we obtain

u(1)
2 = −1 − n2

n
ζU (0)

3 +U (1)
2 . (31.40)

Now, by integrating (31.27) along the thickness and employing (31.37), we arrive at
the relation

U (1)
2 = −1

n
U (1)

3 . (31.41)

It also follows from (31.27), as a result of (31.41), that

s(0)
22 = −1 − n2

1 − ν2
ζU (0)

3 . (31.42)

Substituting the latter back into (31.36) and (31.38), we respectively have

s(0)
32 = n(1 − n2)

2(1 − ν2)

(
1 − ζ 2)U (0)

3 , (31.43)

and

s(0)
33 = 1 − n2

2(1 − ν2)

(
1 − ζ 2

)
U (0)

3 . (31.44)
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Integrating (31.25) throughout the thickness of the shell and making use of equa-
tions (31.42) and (31.43), we find

1∫
−1

s(1)
22 ds = 2(1 − n2)

3(1 − ν2)
U (0)

3 . (31.45)

We also deduce from (31.25) that

s(1)
32 = −n

1∫
ζ

s(1)
22 ds + n(1 − n2)

3(1 − ν2)

(
1 − 3ζ + 2ζ 3

)
U (0)

3 . (31.46)

Finally, Eq. (31.26) may be integrated along the thickness to give

Ω2
0 = 4n(1 − n2)2

3ρ∗(1 − ν)
(31.47)

taking into consideration the boundary condition

s(1)
33

∣∣∣
ζ=1

= ρ∗
2(1 + ν)n

Ω2
0U

(0)
3 . (31.48)

We also have

s(1)33 = −
1∫

ζ

s(1)22 ds −
(1 − n2)(1 − ζ )

(
3ζ(1 + ζ ) − n2(2 − ζ − ζ 2)

)
6(1 − ν2)

U (0)
3 + ρ∗

2(1 + ν)n
Ω2
0U

(0)
3 .

(31.49)

31.6 Second Order Approximation

At the second order, by integrating equation (31.28) and using (31.42), we have

u(2)
3 = ν

2(1 − ν)
(1 − n2)ζ 2U (0)

3 +U (2)
3 . (31.50)

Then, by integrating (31.29) and using Eqs. (31.34), (31.39) and (31.40), we obtain

u(2)
2 = −1 − n2

n
ζU (1)

3 +U (2)
2 . (31.51)
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Next, integration of equation (31.27), taking into account relations (31.34), (31.39),
(31.40) and (31.44), results in

U (2)
2 + 1

n
U (2)

3 = − ν(1 − n2)

2n(1 − ν)
U (0)

3 . (31.52)

Substituting the latter back into (31.27), we obtain

s(1)
22 = −1 − n2

1 − ν2
ζU (1)

3 + 1 − n2

1 − ν2
ζ 2U (0)

3 . (31.53)

Now, Eqs. (31.46) and (31.49), taking into consideration (31.53), respectively
become

s(1)
32 = n(1 − n2)

2(1 − ν2)
(1 − ζ 2)U (1)

3 − n(1 − n2)

2(1 − ν2)
ζ(1 − ζ 2)U (0)

3 , (31.54)

and

s(1)
33 = (1 − n2)

2(1 − ν2)
(1 − ζ 2)U (1)

3

+ n(5ζ 3 − 3ζ − 2) + 4n3(1 − ζ 3) − n5(2 − 3ζ + ζ 3)

6n(1 − ν2)
U (0)

3 + ρ∗Ω2
0

2n(1 − ν2)
U (0)

3 .

(31.55)

Then, we derive from equation (31.25), subject to boundary conditions (31.30),

1∫
−1

s(2)
22 ds = 2(1 − n2)

3(1 − ν2)
U (1)

3 − 1

n2(1 + ν)
Ω2

0U
(0)
3 . (31.56)

Similarly, from equation (31.26) subject to boundary conditions (31.30) and (31.31),
we have

1∫
−1

s(2)
22 ds = 2n2(1 − n2)

3(1 − ν2)
U (1)

3 − 2(1 − n2)2

3(1 − ν2)
U (0)

3 + n + ρ∗
n(1 + ν)

Ω2
0U

(0)
3

+ ρ∗
2(1 + ν)n

(
Ω2

0U
(1)
3 + Ω2

1U
(0)
3 + Ω2

0U
(0)
3

)
. (31.57)

Comparing the last two equations and using the expression forΩ2
0 given by equation

(31.47), we arrive at

Ω2
1 = −8(1 − n2)2(1 + nρ∗ + n2)

3ρ2∗(1 − ν)
. (31.58)
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31.7 Discussion

Let us insert (31.47) and (31.58) in (31.33) to get a two-term approximate formula
for the sought-for eigenfrequencies. It takes the form

Ω2 ≈ 4n(1 − n2)2

3ρ∗(1 − ν)
− η

8(1 − n2)2(1 + nρ∗ + n2)

3ρ2∗(1 − ν)
. (31.59)

Using (31.21) and returning to the original variables we arrive at the dimensional
counterpart of (31.59) given by

ω ≈
√

2Eh3

3(1 − ν2)

(n2 − 1)
√
n

R5/2√ρ0

(
1 − 1 + nρ∗ + n2

ρ∗n
h

R

)
. (31.60)

It is remarkable that the leading order term of this formula does not depend on the
shell density. At the same time, the fluid compressibility does not affect the lowest
eigenfrequency at least up to first order corrections.

It follows from the derivation above that the imaginary parts of the eigenfre-
quencies of interest are placed outside the accuracy of formula (31.60) (or (31.59)).
Nonetheless, below, we roughly evaluate them, ignoring the contribution of higher
order terms associated with the real parts. To this end, we set

Ω ≈ Ω0 (1 + iβ) (31.61)

where β � 1 is a small parameter to be determined. Inserting the last ansatz into
boundary condition (31.31) and taking into account (31.24), we obtain at the leading
order

βΩ2
0U

(0)
3 − (1 + ν)n

ρ∗
π

22n−1c2n−1∗ ((n − 1)!)2 Ω2n
0 η3n s(1)

33

∣∣∣
ζ=1

= 0. (31.62)

Then, substituting the value s(1)
33 at ζ = 1 from (31.48), we deduce that

β = π

22nc2n∗ ((n − 1)!)2 Ω2n
0 η3n. (31.63)

Numerical results are presented in Table 31.1 for aluminium and steel shells
immersed in water. The densities and shear wave speeds are taken as 2790 kg/m3

and 3100 m/s for aluminium and 8030 kg/m3 and 3160 m/s for steel, whereas the
density of water is 1000 kg/m3 with c0 = 1470 m/s. As might be expected, the values
of the imaginary part of the lowest eigenfrequencies are extremely small.
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Table 31.1 Numerical values of the eigenfrequencies (31.47), (31.58), (31.59) and (31.63) for
ν = 0.3 and η = 0.01

Ω2
0 Ω2

1 Ω2 β

n Al Steel Al Steel Al Steel Al Steel

2 95.65 275.31 −1525.73 −11604.5 80.39 159.26 3.55 ×
10−8

3.17 ×
10−7

3 1020.34 2936.69 −21019.1 −163084 810.15 1305.85 1.14 ×
10−9

3.06 ×
10−8

4 4782.86 13765.7 −122991 −967110 3552.95 4094.61 6.97 ×
10−11

5.58 ×
10−9

5 15305.1 44050.3 −474704 −3.76 ×
106

10558.1 6382.01 7.78 ×
10−12

1.86 ×
10−9

31.8 Concluding Remarks

The asymptotic procedure typical for the general theory for elastic shells is adapted
for a plane strain time-harmonic problem for a thin-walled hollow cylinder with
mixed boundary conditions along its faces. The latter are established by separating
the circumferential variable and expressing the solution of the Helmholtz equation
over the exterior domain throughappropriateHankel functions. It is demonstrated that
the lowest eigenfrequencies of a fluid loaded cylindrical shell occur atωR/c2 ∼ η3/2,
whereas for a shell with traction-free faces ωR/c2 ∼ η. Thus, the latter are about
η1/2 times greater.

The obtained two-term asymptotic formula for the real parts of complex-valued
eigenfrequencies does not involve the effect of the fluid compressibility. Moreover,
the leading order term in this formula does not depend on the shell density. The
imaginary parts of eigenfrequencies are also estimated. Numerical results presented
for steel and aluminium shells immersed inwater show that even very small structural
damping may result in a greater contribution to the imaginary parts in question. The
explicit asymptotic results presented in the paper may be used for validating the
predictions based on various approximate theories for thin elastic shells, e.g., see
Kaplunov et al. (1998), Kaplunov et al. (1994), Belov et al. (1998).

The proposedmethodology allows various generalizations and extensions, includ-
ing 3D problems, contrast problem parameters, including the case of the so-called
light fluid loading, as well as FGM and viscoelastic shells. In addition, calculation of
higher order terms in the asymptotic expansion for the real parts of eigenfrequencies,
along with comparison with the exact solution of the initial plane strain problem,
seem to be of interest.
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Ege N, Erbaş B, Kaplunov J, Noori N (2023) Asymptotic corrections to the low-frequency theory
for a cylindrical elastic shell. Zeitschrift für angewandte Mathematik und Physik 74(2):43
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Chapter 32
Grinding of Functionally Graded
Coating Taking into Account Wear
and Friction Heating

Vladimir B. Zelentsov, Polina A. Lapina, and Andrey L. Nikolaev

Abstract The processing of product materials by grinding is widely used in modern
industry, both at the macro-, micro-, and even nano-level. Often the materials or coat-
ings processed by grinding are inhomogeneous, multilayered, functionally graded in
terms of the depth of processing.Material inhomogeneity complicates the processing
process and can lead to emergency situations. Simulation of the grinding process
makes it possible to study the signs of a developing emergency situation, to develop
methods for its relief. For this purpose, the problem of grinding of a functionally
graded coating with a rigid abrasive with a flat base shape moving at a constant
speed over its surface is considered. During the movement of the abrasive, it settles
into the coating material, taking into account wear and heating of the sliding contact
from friction. Solutions to the problem are presented as convolutions from the abra-
sive introduction law and the original as a contour integral of the inverse Laplace
transform. Analytical solutions made it possible to study the effect of the coeffi-
cient of functionally graded inhomogeneity on the main characteristics of the sliding
contact: temperature, displacements, stresses, and wear of the functionally graded
coating material with the same law of abrasive introduction. In order to control the
grinding process, a method has been developed for selecting the law of abrasive
introduction, which makes it possible to keep the values of the contact parame-
ters (temperature, stresses, wear) within certain limits without creating emergency
situations.
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32.1 Introduction

The problems of wear modelling grinding process of functionally graded coatings
are actual problems of modern mechanics due to the need to optimize designs that
include functionally graded coatings, and diagnose to prevent emergency situations.
In microelectronics, semiconductor materials in the form of thin plates with a func-
tionally graded inhomogeneity in depth are used. The thickness of such plates does
not exceed 20–30 µm. The process of thinning of plates for microelectronics is
carried out by grinding and polishing. The significant question is the determination
of the influence degree of the properties of the functionally graded inhomogeneity
of the workpiece material on the grinding process, the nature of the heating of the
workpiece, the possibility of occurrence of thermoelastic instability of the contact,
the acceleration or the deceleration of the grinding process, the grinding process
control, etc.

Works (Guler and Erdogan 2007, Altenbach and Eremeyev 2009, Selvadurai and
Katebi 2013, 2016, Tokovyy and Ma 2015, Vasiliev et al. 2017, 2018a, b, Alinia
et al. 2016, Ma et al. 2016, Kudish et al. 2016, Zelentsov et al. 2016a) are devoted to
mathematical modeling of the contact problems for bodies with functionally graded
coatings. However, not enough attention is paid to the problem of modeling of wear
or grinding of functionally graded coatings, there are several works in this direction
(for example, Singh and Singh 2015). When solving wear problems, the Archard
relations aremost often used (Archard 1953). InDow andBurton (1973), theArchard
relation is used to study wear taking into account the conditions of heat generation
from friction and the conditions for the occurrence of thermoelastic instability of
a blade sliding along the surface of a half-space are also studied by the method
of small perturbations. In Alexandrov and Annakulova (1990, 1992), the contact
problem taking into account heat generation from friction and wear of the coating
and the problem of mutual wear of coatings are considered. Works (Zmitrowicz
1987a, b) are devoted to the thermomechanical phenomena at the contact, taking
into account friction and wear. A new direction in the development of the model of
sliding contact between two elastic bodies, taking into account friction, wear, and
heat generation has arisen, based on the principle of virtual energy and the basic
laws of thermodynamics (Strömberg et al. 1996, Andrews et al. 1997). In Strömberg
(1999), the finite element model implementation of suchmodel in a two-dimensional
formulation was performed. In Evtushenko and Pyryev (1997), Pyryev and Grilitsky
(1996), Awrejcewicz and Pyryev (2002), Zelentsov et al. (2016b, 2017), the integral
Laplace transform with the solution in the form of functional series over the poles
of the integrands of contour quadratures of the inverse Laplace transform was used
to solve contact problems of thermoelasticity in the course of wear process. The
solution method makes it possible to establish the parametric boundaries of the
thermoelastic instability of a sliding contact and to investigate the properties of the
obtained solutions. In Belyakov andNosko (2010), the contact problem of the sliding
of an elastic coating over the surface of another one taking into account friction, wear,
and heat generation from friction, is reduced to solving the differential equation
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by the method of integral transformations, and the conditions of the thermoelastic
stability of such a system are investigated. In Gu et al. (2000), quasi-static and
dynamic unrelated contact problems of thermoelasticity on friction and wear of
a rod were considered. In Papangelo and Ciavarella (2020a, b), the conditions of
the occurrence of thermoelastic instability during mutual wear of surfaces made of
different materials were considered. Due to the large number of parameters in the
problemsofwear and thermal friction contact, one-dimensional quasi-static problems
were more often considered. In the listed works, the relationship between fields of
strain and temperaturewasneglected, and theproblemsof uncoupled thermoelasticity
were considered. In Zelentsov et al. (2019), the related problem of thermoelasticity
of coating wear, taking into account the frictional heat generation in a quasi-static
formulation, was considered.

32.2 Statement of the Problem of FGM Grinding

We consider the quasi-static contact problem of a rigid thermally insulated abrasive
sliding with the constant velocity over the upper surface (x = h) of the elastic
thermally conductive coating with the thickness h (0 ≤ x ≤ h). The lower surface
of the coating adheres perfectly to a rigid substrate. The coating shear modulus varies
in its depth and is represented by the function μ(x) (0 ≤ x ≤ h). When the abrasive
slides, the coatingwear takes place,which can also be considered as abrasive grinding
of the coating surface. The frictional heat originated at the contact interface flows
into the coating. From the initial time moment, the abrasive slides along the y axis
and deforms the upper surface (x = h) of the elastic coating in the negative direction
of the x axis according to the indentation law �(t). Before the initial time moment,
the coating was resting and its temperature was zero (Zelentsov et al. 2022).

In the described problem formulation, the distributions of temperature, stresses,
and displacements in the coating depend on the vertical coordinate x and time t and
do not depend on the horizontal coordinate y (Evtushenko and Pyryev 1997, Pyryev
and Grilitsky 1996, Awrejcewicz and Pyryev 2002, Zelentsov et al. 2016b, 2017).
In this case, the stressed state of the coating is described by differential equations of
linear elasticity in the quasi-static formulation and without taking into account body
forces

∂σxx

∂x
= 0,

∂σxy

∂x
= 0, 0 ≤ x ≤ h, t > 0 (32.1)

where σxx = σxx (x, t), σxy = σxy(x, t) are normal and tangential stresses in the
coating.

Temperature distribution in the coating is presented using the heat equation

∂2T

∂x2
− 1

κ

∂T

∂t
= 0, 0 ≤ x ≤ h, t > 0 (32.2)
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where T (x, t) is the coating temperature, κ is the thermal diffusivity.
Stresses and displacements in the coating are related by Duhamell–Neumann law

σxx = 2(1 − ν)

1 − 2ν
µ(x)

(
∂u

∂x
− 1 + ν

1 − ν
αT

)
, σxy = µ(x)

∂w

∂x
(32.3)

where u(x, t), w(x, t) are vertical and horizontal displacements in the coating,μ(x),
ν, α are the shear modulus, Poisson’s ratio, coefficient of linear heat expansion of
the coating material.

Equations (32.1) and (32.2) represent differential equations of linear uncoupled
elasticity and describe thermoelastic state of the coating.

The boundary conditions are as follows (t > 0)

x = h u(h, t) = −�(t) + uw(t) (32.4)

σxy (h, t) = − f σxx (h, t) (32.5)

x = 0 u(0, t) = 0 (32.6)

w(0, t) = 0 (32.7)

where f is the coefficient of friction, uw(t) is the abrasive displacement due to the
coating wear. We consider abrasive wear conditions (Pyryev and Grilitsky 1996)
with linear wear rate, which can be represented in the integral form as

uw(t) = − f V K ∗
t∫

0

σxx (h, τ )dτ , t > 0 (32.8)

where σxx (h, t) is the compressive normal stress at the contact interface, K ∗ is the
proportionality coefficient between the work of friction forces and the volume of
removed material.

The boundary conditions for the heat Eq. (32.2) are as follows (t > 0)

x = h K ∂T (h,t)
∂x = Q(t) (32.9)

x = 0 K ∂T (0,t)
∂x = k(T (0, t) − T0) (32.10)

where K is a coefficient of thermal conductivity of the coating material, k is a heat
transfer coefficient, Q(t) = f V (−σxx (h, t)) is the amount of heat generated at the
contact due to friction (Bowden and Tabor 1950). From (32.9) it follows that all the
heat at the contact is formed due to friction.
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Initial conditions for displacements and temperature in the coating are zero

u(x, 0) = w(x, 0) = T (x, 0) = 0 (32.11)

32.3 Exact Solution of the Problem for an Arbitrary µ(X)

We solve the problem using the Laplace integral transform (Ditkin and Prudnikov
1975).

T L(x, p) =
∞∫
0

T (x, t)e−pt dt,T (x, t) = 1

2π i

i∞+c∫
−i∞+c

T L(x, p)eptdp,

Rep < c, c > 0 (32.12)

The index L in (32.12) denotes the Laplace transformation.
The temperature T (x, t) in the coating is determined using the Laplace transfor-

mation, which is applied to the solution of the differential heat conduction Eq. (32.2).
As a result of the Laplace transformation, the temperature of the coating material
T L(x, p) is given by the formula

T L(x, p) = A1sh

√
p

κ
x + A2ch

√
p

κ
x (32.13)

where A1, A2 are arbitrary constants depending on the parameter p.
The vertical displacements u(x, t) in the coating are determined from the first

differential equation of elasticity theory (32.1). To solve Eq. (32.1), the integral
Laplace transform (32.12) is used taking into account the first formula from (32.3).
The Laplace transform of vertical displacements uL(x, p) is given by

uL(x, p) = 1 + v

1 − v
α

1√
p
κ

(
A1ch

√
p

κ
x + A2sh

√
p

κ
x

)
− A3B(x) + A4 (32.14)

where A1, A2 are arbitrary constants from (32.13), A3, A4 are additional arbitrary
constants depending on p. Function B(x) is defined through the functionμ(x) in the
form

B(x) =
x∫

0

dξ

μ(ξ)
, 0 ≤ x ≤ h (32.15)

where μ(x) is continuous and μ(x) �= 0 for all x ∈ [0, h].
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After applying the integral Laplace transform to the boundary conditions (32.4),
(32.4), (32.9), (32.10) the constants Ak , k = 1 − 4 are determined

x = h K dT L (h,p)
dx = − f Vσ L

xx (h, p) (32.16)

x = 0 K dT L (0,p)
dx = kT L(0, p) (32.17)

x = h uL(h, p) = −�L(p) + uL
w(p) (32.18)

x = 0 uL(x, p) = 0 (32.19)

where

uL
w(p) = − f V K ∗ σ L

xx (h, p)

p
(32.20)

σ L
xx (x, p) = 2(1 − v)

1 − 2v
μ1

(
duL(x, p)

dx
− 1 + v

1 − v
αT L(x, p)

)
(32.21)

Here μ1 = μ(h) is the value of the shear modulus at the upper coating boundary,
�L(p) is the Laplace image of the function�(t), representing abrasive displacement
into the coating.

Substituting (32.13), (32.14), (32.20), (32.21) into the boundary conditions
(32.16)–(32.19), we obtain a linear algebraic system from which the constants Ak ,
k = 1 − 4 are determined. After determination of Ak , k = 1 − 4, we obtain the
transforms

T L(x, p) = 1 − ν

1 + ν

V̂

αh
�L(p)

hB ′(h)

B(h)

NT (x, z)

R(z)
(32.22)

NT (x, z) = √
z
(
Bish

√
z
x

h
+ √

zch
√
z
x

h

)
(32.23)

uL(x, p) = −�L(p) · N
0
u (h, z)

R(z)
(32.24)

N 0
u (x, z) = zr(h, z)

B(x)

B(h)
− V̂

hB ′(h)

B(h)
(r(x, z) − Bi) (32.25)

σ L
xx (x, p) = 2(1 − v)

1 − 2v
μ(x)�L(p)

hB ′(x)
B(h)

· N
0
σ (z)

R(z)
(32.26)

N 0
σ (x, z) = zr(x, z) (32.27)
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where

R(z) = zr(z) − V̂η((1 − kw)r(z) − Bi) (32.28)

r(x, z) = Bi ch
√
z
x

h
+ √

zsh
√
z
x

h
(32.29)

z = p

κ
h2, Bi = kh

K
, kw = 1 − v

1 + v

K K ∗

ακ
, V̂ = f Vα

K

2μ(1 + v)h

1 − 2v

After substitution (32.23) into (32.20) the wear Laplace transform uL
w(p) takes

the form

uL
w(p) = kwV̂

hB ′(h)

B(h)
�L(p)

r(h, z)

R(z)
(32.30)

Performing the inverse Laplace transformation of the obtained transforms
T L(x, p), uL(x, p), σ L

xx (x, p), we obtain solutions of the problem in the form of
convolutions (t > 0)

T (x, t) = 1 − v

1 + v

V̂

αh
· hB

′(h)

B(h)

t∫
0

�(τ) fT (x, t − τ)dτ (32.31)

fT (x, t) = 1

2π i

∫
�

NT (x, z)

tκ R(z)
ezt̃ dz (32.32)

u(x, t) = −
t∫

0

�(τ) f 0u (x, t − τ)dτ (32.33)

f 0u (x, t) = 1

2π i

∫
�

N 0
u (x, z)

tκ R(z)
ezt̃ dz (32.34)

σxx (x, t) = −2μ(h)(1 − v)η

(1 − 2v)

t∫
0

�(τ) f 0σ (x, t − τ)dτ (32.35)

f 0σ (x, t) = 1

2π i

∫
�

N 0
σ (x, z)

tκ R(z)
ezt̃ dz (32.36)

where t̃ = t
tκ
, tκ = h2

κ
.

When obtaining formula (32.35) from formula (32.26), it was taken into account
thatμ(x)B ′(x) = 1. Thewear of the coating surface uw(t) is determined after inverse
Laplace transformation uL

w(p) from (32.30).
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uw(t) = kwV̂
hB ′(h)

B(h)

t∫
0

�(τ) fw(t − τ)dτ (32.37)

fw(t) = 1

2π i

∫
�

r(h, z)

tκ R(z)
ezt̃ dz (32.38)

When studying the existence of contour quadratures (32.32), (32.34), (32.36),
(32.38), the behavior of integrands is determined for large values of the integration
variable (arg z = π/2, |z| → ∞):

NT (x, z)R−1(z) = O
(
z−1/2

)
, 0 < x < h

N 0
u (x, z)R−1(z) = B(x)

B(h)
+ O

(
z−1/2

)
, 0 < x < h (32.39)

N 0
σ (x, z)R−1(z) = 1 + O

(
z−1/2

)
, 0 < x < h

r(h, z)R−1(z) = O
(
z−1

)

Asymptotic relations (32.39) show that the integrands in (32.34) and (32.36) do
not decrease at infinity (at |z| → ∞), and the integrals are divergent and they are
understood in a generalized sense (Brychkov and Prudnikov 1977). After regular-
ization of quadratures (32.34), (32.36) and selection of the generalized component
of the displacements u(x, t) and stresses σxx (x, t), they will be written in the form
of the following formulas (t > 0)

u(x, t) = − B(x)

B(h)
�(t) −

t∫
0

�(τ) fu(x, t − τ)dτ , 0 ≤ x ≤ h, t > 0 (32.40)

fu(x, t) = 1

2π i

∫
�

Nu(x, z)

tκ R(z)
ezt̃ dz (32.41)

Nu(x, z) = N 0
u (x, z) − B(x)

B(h)
R(z) (32.42)

σxx (x, t) = − 2(1 − v)

(1 − 2v)B(h)

⎛
⎝�(t) −

t∫
0

�(τ) fσ (x, t − τ)dτ

⎞
⎠, 0 ≤ x ≤ h, t > 0

(32.43)

fσ (x, t) = 1

2π i

∫
�

Nσ (x, z)

tκ R(z)
ezt̃ dz (32.44)



32 Grinding of Functionally Graded Coating Taking into Account Wear … 581

Nσ (x, z) = N 0
σ (x, z) − R(z) (32.45)

where the integration contour � = {z : −i∞ + dtκ ,+i∞ + dtκ} is a straight line
in the complex plane of the integration variable z parallel to the imaginary axis and
spaced from it by a value dtκ , which is chosen so that the integration contour passes
to the right of all isolated singular points of the integrands.

Horizontal displacements w(x, t) are determined from formulas (32.1), (32.5),
(32.7) and have the following form

w(x, t) = − f B(x)σxx (h, t), 0 ≤ x ≤ h, t > 0 (32.46)

The properties of integrands for calculating the corresponding quadratures make
it possible to apply the methods of the theory of functions of a complex variable and
study the obtained solutions for stability.

32.4 Poles of Integrands

To study the stability of the problem solutions obtained in the previous paragraph,
it is necessary to study the dependence of the poles of the integrands in quadratures
(32.32), (32.38), (32.41), (32.44) on the main parameters of the problem. The poles
of the integrands are the zeros of the transcendental equation

R(z) = zr(h, z) − ηV̂ ((1 − kw)r(h, z) − Bi) = 0, | arg z| < π, |z| < ∞ (32.47)

in the complex plane z = ξ + iζ . Functions R(z) and r(x, z) are given in (32.38)
and (32.29), where η = hB ′(h)/B(h). Equation (32.47) contains four dimension-
less parameters of the problem (kw, V̂ , Bi, η),which are expressed in terms of the
dimensional physical, mechanical, and geometric parameters of the problem. In this
case, the dimensionless parameter η, whose numerical value characterizes the func-
tionally graded material of the coating, is added from B ′(h) = μ−1(h) and B(h)

from (32.15), for which, according to the mean value theorem, there is such a point
c ∈ [0, h], that the equality is true.

B(h) = μ−1(c)h, c ∈ [0, h] (32.48)

As a result, the parameter η is represented as a ratio of the average value of the
shear modulus μ(c), c ∈ [0, h] and the value of the shear modulus μ(h) on the
contact surface of the functionally graded coating material:

η = μ(c)

μ(h)
, c ∈ [0, h] (32.49)
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32.5 Asymptotic Analysis of the Obtained Solutions

To determine the degree of influence of the dimensionless parameter η, as well as
other parameters of the problem, an asymptotic analysis of the obtained solutions
T (x, t), u(x, t), σxx (x, t), uw(t) for small values of time t is carried out. The selected
main parts u(x, t) in (32.40), σxx (x, t) in (32.43), taking into account the estimate
of the convolution integrals, allow us to obtain the following asymptotic relations.

T (x, t) = 1 − ν

1 + ν

V̂

α

B ′(h)

B(h)

√
t

tκ
�(t) + O

(
t3/2�̇(t)

)
at t → 0 (32.50)

u(x, t) = − B(x)

B(h)

�(t)

h
+ O

(
t1/2�(t)

)
at t → 0 (32.51)

σxx (x, t) = − 2(1 − ν)

(1 − 2ν)B(h)
�(t) + O

(
t1/2�(t)

)
at t → 0 (32.52)

32.6 Features of Wear of the FGM Coating

The exact formulas for the main parameters on the sliding contact, such as temper-
ature T (x, t) (32.31), displacements u(x, t) (32.33), stresses σxx (x, t) (32.35) and
wear uw(t) (32.37), were obtained in Sect. 32.3. The resulting formulas depend on
an arbitrary shear modulus μ(x), 0 ≤ x ≤ h.

Formulas for the coefficient of functionally graded inhomogeneity η and its
components for elementary functionally graded laws of shear modulus μ(x) are
presented in Table 32.1.

The numerical implementation of the obtained formulas for temperature, displace-
ments, stresses, and wear is considered, when the shear modulus μ(x) of the
functionally graded coating changes according to the parabolic law

μ(x) = μ0

(
a
( x
h

)2 + b
x

h
+ c

)
(32.53)

a = 2

(
μ1

μ0
− 2

μ1/ 2
μ0

+ 1

)
, b = −

(
μ1

μ0
− 4

μ1/ 2
μ0

+ 3

)
, c = 1

where μ0 = μ(0), μ1 = μ(h), μ1/ 2 = μ(h/2). At the boundary with the rigid
substrate at x = 0, the shear modulus is equal to μ0, at the contact of the coating
with the rigid abrasive at x = h it is equal to μ1, and in the middle of the coating it
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is equal to μ1/ 2. At μ1/ 2 = (μ1 + μ0)/2, we obtain a = 0 and dependence (32.53)
becomes linear.

Calculating the integral in (32.15) of the function (32.53), we obtain a formula
for B(x)

B(x) = h

μ1

⎧⎪⎪⎨
⎪⎪⎩

2χ√−D
arctg

√−D
θ(x) D < 0

χ√
D
ln

∣∣∣ 1+θ−(x)
1−θ+(x)

∣∣∣ D > 0

−4 c
b

χ

θ(x) D = 0

(32.54)

D = b2 − 4ac, χ = μ1

μ0
, θ(x) = 2c + b

x

h
, θ±(x) = 2a1

b1 ± √
D

· x
h

Formula (32.54) allows to determine other characteristics of μ(x):

B ′(x) = 1

μ(x)
= 1

μ0

(
a
(
x
h

)2 + b x
h + c

) (32.55)

B ′(h) = 1

μ0χ
(32.56)

B(h) = h

μ1

⎧⎪⎪⎨
⎪⎪⎩

2χ√−D
arctg

√−D
2c+b D < 0

χ√
D
ln

∣∣∣ 1+b1−
1−b1+

∣∣∣ D > 0

−4χ c
b(2c+b) D = 0

(32.57)

D = b2 − 4ac, b1± = 2a

b ± √
D
b1±,

Then the value η, characterizing the functionally graded coating material in the
case of parabolic dependence (32.53), is written by the formula

η = hB ′(h)

B(h)
= h

μ1B(h)
(32.58)

The law of introduction �(t) of the rigid abrasive into the coating is given in the
form

�(t) = �0
(
eεt H(1 − t) + H(t − 1)

)
, t > 0 (32.59)

where segment of introduction at 0 < t ≤ 1 is the active time segment of introduction,
and segment of introduction at t > 1 is the passive one.

The problem is to study the influence of the parameter η = η(ε) of the considered
problem of thermoelasticity on wear by a rigid abrasive of an elastic strip of func-
tionally graded material (aluminum with a gradient content of aluminum oxide),
on the main characteristics of the contact (temperature T (h, t), contact stresses
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Fig. 32.1 Shear modulus
µ(x) in the coating depth at
various values μ1/ 2: 1— 50,
2— 75, 3 — 100 GPa

p(t) = −σxx (h, t), wear of the coating uw(t), wear rate u̇w(t)). Functionally graded
material is characterized by increased shear modulus μ1 = μ(h) = 125.0 GPa at the
contact and usual at the interface with the substrateμ0 = μ(0) = 25.0 GPa, ν = 0.34,
κ = 88.1·10−6 m2/s, α = 22.9·10−6 1/K, K = 209.3 W/(m·K), f = 0.47, h = �0

= 10 mm. Three different values μ1/ 2 = μ(h/2) are considered. At μ1/ 2 = 50 GPa
η = 0.361287, at μ1/ 2 = 75 GPa η = 0.497067, at μ1/ 2 = 100 GPa η = 0.619564.
When μ1/ 2 = μ(h/2) changing, μ(x) along the coordinate x illustrates in Fig. 32.1.

The coating is being worn out to the depth �0 up to a point of time t = tw when
the coating wear uw(t) equals to �0 and the contact stress turns to zero (p(t) =
−σxx (h, t) = 0). We call tw the coating wear time by amount �0. Assuming the
wear factor K ∗ = 1.0·10−11 m2/N, we obtain the values of dimensionless parameters
kw = 0.511 and Bi = 105 using formulas (32.29).

Tables 32.2 and 32.3 give the coating wear time tw, together with maximum
values of contact pressure p(t) and temperature T (h, t), depending on values of
μ1/ 2 at sliding velocity V = 2.5 mm/s and V = 5.0 mm/s.

The regulation of the parameters of the functional dependence of the shear
modulus μ(x) on the thickness of the coating allows you to accelerate or slow down
the wear of the coating.

Table 32.2 Values of tw ,
max

t∈(0,tw] p(t), max
t∈(0,tw] T (h, t)

depending on the μ1/ 2 at
V = 2.5 mm/s

μ1/ 2, GPa tw , s max
t∈(0,tw] p(t), GPa max

t∈(0,tw] T (h, t), K

50 192.3 0.142 4.600

75 128.9 0.196 6.292

100 93.3 0.246 7.749

Table 32.3 Values of tw ,
max

t∈(0,tw] p(t), max
t∈(0,tw] T (h, t)

depending on the μ1/ 2 at
V = 5.0 mm/s

μ1/ 2, GPa tw , s max
t∈(0,tw] p(t), GPa max

t∈(0,tw] T (h, t), K

50 124.6 0.144 8.996

75 30.2 0.201 12.279

100 18.6 0.253 15.153
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32.7 Grinding Process Control by Abrasive Settlement �(t)

The process of controlling thewear-grinding of a strip of functionally gradedmaterial
is primarily associated with the regulation of the temperature, contact stresses, wear
time, that expand in the process of wear-grinding, to prevent emergency situations
including the occurrence of thermoelastic instability of a sliding contact, etc. As a
temperature controller, both at the contact and in depth, it is effective to use not only
the change in the horizontal speed of the abrasive but also the order of settlement
�(t) of the abrasive in the functionally graded material of the strip. To implement
this, we use relation (32.31), which determines the temperature T (x, t) in the strip
through the law of abrasive settling �(t).

T (x, t) = θ−1

t∫
0

�(τ) fT (x, t − τ)dτ , 0 ≤ x ≤ h, t > 0 (32.60)

where

fT (x, z) = 1

2π i

∫
�

NT (x, z)

tκ R(z)
ez t̃ dz, /, θ = 1 + ν

1 − ν

αh

V̂η
, z = p tκ , t̃ = t

tκ
(32.61)

NT (x, z) and R(z) are given in (32.23) and (32.28).
If T (x, t) in (32.60) is known in advance from any considerations, rules, exper-

imental studies, then relation (32.60) turns into the Volterra integral equation
(Polyanin and Manzhirov 2003) with respect to an unknown �(t) in the form

t∫
0

�(τ) fT (x, t − τ)dτ = θT (x, t), 0 ≤ x ≤ h, t > 0 (32.62)

To solve this equation, the Laplace transform (32.12) is used. As a result of
applying the Laplace transform, we obtain that

�(t) = θ

t∫
0

T (x, τ )gT (x, t − τ)dτ , 0 ≤ x ≤ h, /, t > 0 (32.63)

where

gT (h, t) = 1

2π i

∫
�

R(p tκ)

NT (x, p tκ)
eptdp (32.64)

θ is given in (32.61). The resulting formula is also valid for x = h, that is, at the
contact.
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Often in practice, depending on the processing of a functionally graded material,
it is necessary to control or limit contact stresses p(t) = −σxx (h, t). To obtain
a contact pressure sensor, we use the abrasive settlement �(t). For this purpose,
formula (32.35) for σxx (x, t) at x = h.

σxx (h, t) = −θ−1

t∫
0

�(τ) f 0σ (h, t − τ)dτ , t > 0 (32.65)

Where

f 0σ (h, t) = 1

2π i

∫
�

N 0
σ (z)

tκ R(z)
ez t̃ dz, θ = 1 + ν

1 − ν

1

ημ(h)
, z = p tκ , t̃ = t

tκ
(32.66)

N 0
σ (z) and R(z) are given (32.27) in (32.28).
With a known or predetermined σxx (h, t) relation (32.65) turns into the Volterra

equation with respect to �(t)

t∫
0

�(τ) f 0σ (h, t − τ)dτ = θp(t)

t > 0 (32.67)

The solution of the integral Eq. (32.67) is determined by applying the Laplace
transform (32.12) and has the form

�(t) = θ

t∫
0

p(τ )gσ (h, t − τ)dτ

t > 0 (32.68)

where

gσ (t) = 1

2π i

∫
�

R(p tκ)

N 0
σ (p tκ)

eptdp (32.69)

θ is given in (32.66).
For grinding some functionally graded materials, it is necessary to use a delicate

settlement of the abrasive into the material. To determine the delicate settlement, we
use the formula (32.37) to determine the wear.
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uw(t) = θ−1

t∫
0

�(τ) fw(t − τ)dτ , t > 0 (32.70)

where

fw(t) = 1

2π i

∫
�

r(h, z)

tκ R(z)
ez t̃ dz, θ = 1

ηkwV̂
, z = p tκ , t̃ = t

tκ
(32.71)

r(h, z) and R(z) are given in (32.29) and (32.28).
With a known or predetermined abrasive settling uw(t) due to wear, relation

(32.70) turns into the Volterra integral equation with respect to �(t)

t∫
0

�(τ) fw(t − τ)dτ = θuw(t), t > 0 (32.72)

Applying the Laplace transform to solve the integral Eq. (32.70), we obtain

�(t) = θ

t∫
0

uw(τ )gw(t − τ)dτ , t > 0 (32.73)

where

gw(t) = 1

2π i

∫
�

R(p tκ)

r(h, p tκ)
eptdp (32.74)

θ is given in (32.71).

32.8 Conclusion

An exact solution to the problem of grinding of a functionally graded material for
the main parameters of a sliding contact is constructed. The solution is presented in
the form of Laplace convolutions from the law of abrasive settling into a functionally
graded material and a function that characterizes the boundary value problem. On
the one hand, this made it possible to investigate the behavior of the main contact
parameters, such as temperature, stresses, wear, etc., depending on the lawof abrasive
settlement. On the other hand, this made it possible to obtain Volterra integral equa-
tions for determining the law of abrasive settling into a functionally graded material
according to given limits of contact parameters. The foundations of the method of
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stopping the possibility of emergency situations in the process of grinding have been
laid.
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