
143

Generative Adversarial Learning 
for Medical Thermal Imaging Analysis

Prasant K. Mahapatra, Neelesh Kumar, Manjeet Singh, Hemlata Saini, 
and Satyam Gupta

1 � Introduction

Currently, most medical practitioners diagnose disorders using computer-aided 
imagery. Generally speaking, low-resolution photos made it difficult to diagnose 
several of the disorders. In order to create artificial images as well as their seg-
mented images, the deep convolutional network will be used. These synthesized 
photos have a high resolution.

Generative adversarial networks (GANs) have emerged, offering new technolo-
gies and a framework for the use of medical pictures. GANs are quickly becoming 
a cutting-edge foundation as a result of achieving increased performances in a num-
ber of medical applications. The technical characteristics of common GAN 
approaches utilized in the medical imaging domain are extensively elucidated. 
Unsupervised learning is accomplished using sophisticated neural networks called 
generative adversarial networks (GANs).

2 � What is a GAN (Generative Adversarial Network)?

Generative adversarial networks (GANs), a method for deep learning, allow com-
puters to synthesize new, artificial data from collections of pre-existing data. In 
particular, a GAN can produce high-quality data with little to no labeling through 
competition between the generator and discriminator networks [1, 2].
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There are two competing neural network models in GAN. Using the noise vector 
(usually a low-dimensional random vector sampled from a normal or uniform dis-
tribution typically between 50 and 512 dimensions, and is randomly generated for 
each sample during training) as an input, one creates samples (and so named gen-
erator). The purpose of the noise vector is to introduce randomness into the genera-
tor network and to allow it to produce a diverse set of 2 outputs. By providing 
different random vectors as input to the generator network, we can generate a wide 
range of new data. In order to ensure that the generated outputs are diverse and not 
just copies of the training data, the noise vector is an important factor in the success 
of GANs.

The second model, referred to as the discriminator, is given samples from the 
generator and training data [3]. The generator has been trained to make images that 
closely resemble actual data, while the discriminator has been trained to completely 
distinguish between produced data and true data. The adversarial network’s genera-
tor and discriminator compete against one another until symmetry is established, at 
which point the network is trained.

2.1 � Overview of GAN Structure

GANs compete two neural networks against each other to establish the probability 
distribution of a dataset. GAN has two neural networks in it:

•	 Generator, G.
•	 Discriminator, D.

A generative network seeks to create artificial images that appear realistic. It 
accepts a random vector as input (let us say a 100-dimensional array of numbers 
from a Gaussian distribution) and produces a highly realistic image that appears to 
be a part of our training set.

On the other hand, the discriminator network accurately determines if an image 
is fake (i.e., created by the generator) or real (i.e., direct from the source of the 
input). These processes are repeated many times, so that the generator and the 
discriminator get better and better at their respective roles with each iteration. Fig. 1 
will help you understand how it works.

2.2 � Mathematical Equation

The discriminator examines generated images and real images (i.e., training sam-
ples) separately. It determines if the discriminator’s input image is fake or real. The 
probability that the input x is real is represented by the output D(x). The discrimina-
tor is trained in the same manner as a deep network classifier. We want D(x) = 1 if 
the input is true, that is, image is real. It should be zero if it is a generated image.
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Fig. 1  An illustration of a generative adversarial network (GAN)

The discriminator finds qualities that contribute to realistic images through this 
method. On the other hand, we want the generator to produce images that are identi-
cal to the true image, with D(x) = 1. It backpropagates the desired value all the way 
back to the generator in order to train the generator to generate images that are more 
similar to what the discriminator recognizes as real.

The generator becomes stronger at producing realistic images that the discrimi-
nator cannot tell apart from actual ones as the training goes on. The discriminator 
also grows stronger at picking up even the smallest variations between the two sorts 
of images. The generator eventually creates visuals that are similar to real images as 
the two models converge.

The following formula can be used to mathematically explain it [4]:
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where,

x = real data,
z = noise vector,
G(z;θ_g) = The generator network operates by performing a mapping function from 

the noise vector to a synthetic data point, with the parameters of the generator 
network denoted as θ_g.

D(x;θ_d) = The discriminator network is a function that receives a data point as its 
input and generates a scalar output that denotes whether the input is authentic or 
artificial. The parameters of the discriminator network are represented by θ_d.

p_data(x) = The probability distribution of the actual data.
p_z(z) = The probability distribution function of the noise vector z.

The principal objective of GANs is to enhance the discriminative capacity of the 
discriminator in discerning genuine and synthesized images. The aforementioned 

Generative Adversarial Learning for Medical Thermal Imaging Analysis



146

process is accomplished via a minimization-maximization methodology, wherein 
the generator endeavors to minimize its objective, while the discriminator strives to 
maximize it. The primary aim of the objective function is to enhance the likelihood 
of detecting artificially generated images as counterfeit and genuine images as 
authentic, thereby optimizing the likelihood of observed data. The cross-entropy 
function is a widely adopted method for computing the loss in deep learning, which 
involves the calculation of p multiplied by the natural logarithm of q. In the context 
of real images, the appropriate label to assign is p, which has a value of 1. In the case 
of generated images, the label is inverted, specifically by subtracting it from one. 
GANs are commonly characterized as a minimax game in which the objective of the 
generator is to minimize the value of V, while the discriminator aims to maximize it.

2.3 � Major Applications of GAN

Wherever new, plausible data is required, GANs can be used in a wide range of 
applications. GANs are specifically used to produce new images and videos.

Image Generation: GANs are commonly used for generating realistic images. For 
example, they can be used to generate realistic-looking faces, landscapes, or 
even artwork.

Style Transfer: GANs have the potential to facilitate the transfer of style from one 
image to another, thereby enabling the creation of an entirely new image that 
incorporates the content of one image and the style of another.

Data Augmentation: GANs can be used for generating new data from existing data, 
which can be useful for training machine learning models with limited datasets.

Disease Diagnosis and Prediction: GANs can be used for identifying patterns in 
medical data and predicting the likelihood of a patient developing a certain 
disease.

Medical Image Analysis: GANs can be used for generating synthetic medical 
images, such as CT or MRI scans, which can be used for training machine learn-
ing models. GANs can also be used for image segmentation, enhancing the qual-
ity of medical images, and reducing image noise.

Medical Data Augmentation: GANs have the potential to generate synthetic medi-
cal data, thereby serving as a means of augmenting limited datasets and enhanc-
ing the precision of machine learning models.

Overall, GANs have the potential to revolutionize the field of medicine, by 
improving the accuracy of disease diagnosis, speeding up drug discovery, and 
enabling personalized treatment plans.
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3 � Self-supervised Generative Adversarial Learning

We will first define the term “Self-Supervised Learning” and then discuss how it 
enhances GANs. Self-supervised is the most similar to unsupervised learning when 
compared to the prominent families of supervised and unsupervised learning. An 
effective method for learning representations from unlabeled data is self-supervised 
(SS) learning [5]. Self-supervised learning algorithm learns from data itself, with no 
data labeled examples. The algorithm must identify patterns within the dataset to 
facilitate the process of acquiring knowledge from it [4].

With the help of pseudo-labels [5], self-supervised approaches enable the classi-
fier to learn better feature representation [6]. These methods specifically suggest 
learning the model to recognize a geometric transformation that has been done to 
the input image in order to learn an image feature.

There exist several approaches to the implementation of self-supervised learn-
ing. One approach to comprehending the attributes of the data is to employ a neural 
network. Subsequently, the neural network can be employed to forecast the designa-
tions of novel data. The identification of data structure can also be accomplished 
through the utilization of a Convolutional Neural Network (CNN). A CNN can be 
utilized to forecast the outcomes of novel data.

There are some situations where self-supervised learning is superior to super-
vised learning. For example, a CNN trained just through self-supervised learning 
can classify images more accurately than a CNN taught only through supervised 
learning. This is due to the fact that a CNN that is learned only through supervised 
learning is limited by the training set that is made accessible to it. A CNN that has 
been trained only through self-supervised learning can understand the data’s struc-
ture from scratch, improving its ability to generalize to new data [6, 7].

4 � Conditional and Unconditional GANs

The issues with training GANs will now be linked to self-supervised learning. 
GANs are a type of unsupervised generative modelling in which you may just input 
data and let the model generate false data from it. Modern GANs, on the other hand, 
use a method called conditional-GANs [8], which convert the generative modelling 
challenge into a supervised learning task that needs labeled data. For easier genera-
tive modelling, conditional-GANs incorporate class labels within the generator and 
discriminator [9].

The term “unconditional GANs” eliminates the necessity for class labels in gen-
erative modelling. This chapter will demonstrate how self-supervised learning tasks 
can do away with labeled data when using GANs.
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5 � Thermal Imaging Systems

The surface skin temperature [10] can be measured using thermal imaging devices. 
These systems might contain a temperature reference source in addition to an 
infrared thermal camera [11, 12].

The surface skin temperature of a subject may typically be measured reliably by 
thermal imaging devices without being in immediate contact to the subject under 
evaluation [13]. Thermal imaging systems [14] have advantages over other tech-
niques of measuring temperature since they require a closer proximity or touch 
(Fig. 2).

5.1 � Why are Thermal Imaging Devices Beneficial?

There are various advantages of using thermal imaging systems/cameras, which 
are listed below:

	1.	 100% non-invasive: The proximity of the evaluator to the subject under scrutiny 
is not a requisite for the operation of thermal imaging devices.

	2.	 Speed and accuracy: In contrast to traditional forehead or oral thermometers that 
require close proximity or physical contact with the subject under evaluation, 
thermal imaging devices have the potential to provide more rapid and precise 
monitoring of surface skin temperature.

	3.	 Flexible and cost-effective diagnostic approach: Thermal camera should be 
readily available on the market at reasonable price and the same equipment is 
used to record both thermal and geometric data.

Fig. 2  Shows how to set 
up thermal imaging 
properly to analyze persons 
individually

P. K. Mahapatra et al.
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6 � Need of Data Augmentation in GANs

Generating annotated medical imaging data is a challenging and costly task. The 
creation of deep learning models that can be generalized necessitates the acquisition 
of substantial amounts of data. Standard data augmentation is a commonly employed 
technique aimed at enhancing the generalizability of machine learning models. 
Generative adversarial networks offer a novel method for data augmentation [6, 7].

Insufficient data during the training of GANs often leads to the issue of discrimi-
nator overfitting [15] which in turn causes the training process to diverge. Our pro-
posed approach involves utilizing an adaptive discriminator augmentation technique 
that effectively enhances the stability of training in scenarios where data availability 
is limited [16, 17]. This approach is applicable for both initial training and does not 
necessitate modifications to either loss functions or network architectures. The uti-
lization of unlabeled data holds significant value in the improvement of deep learn-
ing efficacy. GANs are a potent category of neural networks capable of generating 
lifelike novel images based on unannotated source images [15, 18]. GANs have 
been employed in the past to augment data, including the creation of supplementary 
training images for classification purposes and the enhancement of synthetic 
images [19].

In order to overcome overfitting and underfitting [2], data augmentation with 
GANs was demonstrated to boost model accuracy and decrease model loss, hence 
enhancing the generalizability of the model [20] (Fig. 3).

Fig. 3  Thermal image of knee osteoarthritis patient (a) and its augmented GAN-generated 
images (b–e)

Generative Adversarial Learning for Medical Thermal Imaging Analysis



150

7 � Improved Medical Image Generation via 
Self-supervised Learning

In the domain of deep learning, it is customary to utilize extensive labeled datasets 
to effectively train a deep neural network. Various self-supervised learning tech-
niques have been suggested as a means to acquire universal visual characteristics in 
an automated manner, thereby circumventing the laborious and time-intensive pro-
cess of manually annotating vast quantities of data. Self-supervised generative 
adversarial neural networks, also known as unconditional GANs, are utilized for the 
purpose of generating synthetic thermal images.

The widespread use of deep CNNs in computer vision applications can be attrib-
uted to their remarkable ability to extract features from visual data. These applica-
tions include but are not limited to image classification, semantic and instance 
segmentation, object recognition, and image captioning. The efficacy of deep learn-
ing models is notably impacted by the quantity of data utilized during the training 
process, as they have the ability to expand and enhance in intricacy with the incor-
poration of supplementary training data.

8 � Methods

Despite the prevalence of comprehensive color image databases for diverse objects 
in the public sphere, there exists a dearth of comparable databases for thermal 
images, with either a lack of availability or restricted representation of object 
categories. The synthesis of thermal images is of great significance due to the ardu-
ous nature and high expenses associated with obtaining authentic data. The process 
of gathering and annotating extensive datasets comprising millions of images is 
arduous, costly, and time-intensive [21].

GANs have demonstrated remarkable efficacy in generating diverse images 
through the use of pre-existing images and stochastic noise, a widely acknowledged 
fact. Currently, unconditional GANs have the ability to generate images that exhibit 
a high degree of realism, diversity, and quality.

8.1 � Training Dataset

The selection of an appropriate unlabeled dataset is an essential part of transfer 
learning via self-supervised pre-training.

Our training dataset [22] is based on the knee areas [23] of the human body 
which are captured with a FLIR thermal camera. While diagnosing arthritis, ther-
mography is frequently used to examine deep-bodily joints that are challenging to 
evaluate with a standard X-ray [19, 24]. The size of all thermal images is 312 KB 
with dimensions of 320 × 240 pixels [25] (Fig. 4).

P. K. Mahapatra et al.
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Fig. 4  Generator and discriminator models used in this technique

8.2 � Results and Conclusion

The application of thermal imaging technology [26, 27] is employed for the purpose 
of diagnosing infectious skin conditions and investigating a wide range of disorders, 
wherein alterations in body temperature may indicate the presence of inflammation 
in injured tissues or clinical abnormalities that result in changes in blood circula-
tion [23].

The results of the current study indicate that thermal imaging has the potential to 
serve as a dependable diagnostic modality for detecting measurable patterns in skin 
temperatures [28]. It has been shown that changes in pain intensity associated with 
arthritic, repetitive strain, muscular, and circulatory issues can be correlated with 
temperature variance [29–31].
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We believe that this non-intrusive method makes it possible to find the earliest 
clinical features, with high reliability [32].

8.3 � GAN Results

The GAN generated fake images from the given thermal images of Knee dataset and 
comparison of generator & discriminator loss on a trained GAN architecture are 
visualised (Figs. 5 and 6).

8.4 � Outlook and Conclusions

This chapter has explored various techniques for producing simulated thermal 
images using the provided knee dataset. Future research in the field of data augmen-
tation will focus on various topics, including the development of a taxonomy of 
augmentation methods. To improve the quality of GAN samples, researchers may 
explore novel combinations of meta-learning and data augmentation techniques, 
investigate the correlation between data augmentation and classifier architecture, 

Fig. 5  (a) Different thermal images of knee pair and its lateral view (right and left); (b) Matrix of 
input real image and the GAN-generated fake image matrix
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Fig. 6  Comparison of the generator and discriminator loss on a GAN architecture that trained on 
knee dataset

and apply these concepts to diverse data types. Furthermore, the integration of inno-
vative data augmentation techniques can enhance the variety and magnitude of the 
training dataset, consequently augmenting the efficacy of the GAN model [33].

In our upcoming study, we intend to investigate performance benchmarks for 
geometric and color space augmentations on numerous datasets from various image 
recognition tasks. To show how well these augmentations work in situations when 
there isn’t a lot of data, we are going to impose these dataset’s size restrictions. The 
qualities of the temperature profile that is connected with a thermal image have not 
yet been investigated while creating synthetic thermal images, which may be a 
future course of action.

The GAN framework has undergone several modifications in various research 
articles, utilizing diverse network designs, loss functions, evolutionary techniques, 
and other methodologies. The study has led to a significant improvement in the 
quality of samples generated by GANs. An important avenue for further investiga-
tion pertains to the augmentation of GANs’ sample quality, as well as the assess-
ment of their efficacy across diverse datasets. To advance the exploration of GAN 
sample combinatorics, we aim to employ supplementary augmentation techniques, 
including the transfer of diverse styles onto GAN-generated samples.

Generative Adversarial Learning for Medical Thermal Imaging Analysis
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Future research in generative models with data augmentation should also focus 
on StyleGAN2, StyleGAN2-ADA, DiffAugment, and Variational Autoencoder 
(VAE). Trying to produce high-resolution outputs from GAN samples is one of the 
main challenges. It will be interesting to explore how we might utilize these GAN 
networks to produce high-resolution images as a result.
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