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Role of Machine Learning in Detection 
and Classification of Leukemia: 
A Comparative Analysis

Ruchi Garg, Harsh Garg, Harshita Patel, Gayathri Ananthakrishnan, 
and Suvarna Sharma

1  Introduction

The discipline of bio informatics involves using computation to draw conclusions 
from a variety of biological data [1]. Through the application of algorithms, it 
ensures the collection, archival, retrieval, manipulation, and modelling of data for 
analysis, prediction, or visualization. The size and quantity of biological datasets 
that are currently available have greatly risen in recent years, which has prompted 
bio informatics researchers to apply a variety of machine learning and data mining 
algorithms [2]. Deep learning and other machine learning approaches are currently 
being used for autonomous feature learning with datasets for various biological 
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research projects [3–5]. The work presented in this chapter is on the diagnosis of 
leukemia, a lethal disease of white blood cells (WBC) that affects the blood and 
bone marrow in humans [6] using various machine learning algorithms. There are 
two different types of leukemia: acute and chronic [7]. The type of leukemia is 
determined by several genetic variations and gene expressions with their gene value 
related with the white blood cell.

Uncontrolled accumulation of aberrant white blood cells is a defining feature of 
the cancerous illness leukemia. Leukemia is a fatal kind of cancer. Hematopoiesis, 
which occurs in the bone marrow, which fills the bone’s interior cavity, is the pro-
cess by which all blood cells form. Acute leukemia causes the patient to rapidly 
deteriorate, whereas chronic leukemia progresses slowly and might be lymphocytic 
or myelogenous. The World Health Organization (WHO) proposal and the French- 
American- British (FAB) classification are the two classifications now in use to cat-
egorize leukemia [8]. Acute myeloid leukemia (AML) [9, 10], which contains seven 
varieties (M-1-M-7), was identified by blast cells seen in a peripheral blood smear. 
This method is unsuitable for studying a large number of cells since it is boring, 
time-consuming, and laborious. However, several mathematical techniques and 
technologies have been created to differentiate between blood cells, which is crucial 
for detecting leukemia [11, 12]. These researchers [13] hypothesized a subjective 
mapping standard discovery model, and they concluded that learning from earlier 
mastery cannot be taken into account to better dictate the parameters because the 
ultimate objective is to improve meeting and shorten the learning period. We have 
investigated a number of well-known machine learning techniques, such as decision 
trees, support vector machines, and k-nearest neighbors. In order to determine 
which machine learning (ML) method will deliver the highest level of accuracy for 
the used dataset, the objective of this study is to evaluate several ML algorithms. In 
order to determine which machine learning algorithm can provide the maximum 
accuracy for a dataset to determine if a patient has acute leukemia or chronic leuke-
mia, detailed comparison of several machine learning algorithms has been done. 
The methods used in this research include k-Means, Naive Bayes, support vector 
machine (SVM), logistic regression, and XG-Boost.

2  Methodology

The Jupyter notebook software on Windows OS is used to implement the various 
algorithms on the dataset. The dataset is uploaded after importing the libraries. The 
dataset was trained. Following that, many machine learning methods are applied to 
the dataset, including k-Means, SVM, logistic regression, Naive Bayes, and 
XG-Boost. A measurement is made of each algorithm’s accuracy. As expected from 
the theory, each algorithm’s accuracy value came out to be almost different. Besides 
testing the accuracy, an additional work of creating the confusion matrix has also 
been done in this chapter. Confusion matrix is created for each of the methods. The 
confusion matrix provides a visual representation of the nature of predictions of the 
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work done in this paper. Additionally, it will aid in identifying the algorithm that 
will prove to be the most accurate. This approach may be used to find the algorithm 
that will work best to identify the type of leukemia the patient has, allowing for the 
earliest possible treatment. Only the gene expression value may simplify our effort 
without using the conventional way of gathering and analyzing blood samples since 
we can apply several machine learning algorithms to find the optimal algorithm that 
can produce the result with the greatest accuracy. The dataset which is used and 
applied on the algorithms has been taken from the link as mentioned: https://github.
com/titichhm/AI- Project- Dataset. The various tools which have been used to con-
duct the work are Numpy, Pandas, Matplotlib, Seaborn, mpl toolkits, Keras, scikit.
learn, Tensor flow, and XG-Boost.

3  Literature Review

For the detailed study, a number of good research papers have been studied. The 
application of ML algorithms for the identification, classification, and diagnosis of 
leukemia illness has undergone a thorough, comprehensive examination. Elaborated 
analysis of the work is presented in this section. On the basis of the kind of algo-
rithm employed, the literature review offered in this section is categorized into three 
subsections, as shown in Fig. 1.

According to the kind of algorithm employed, the literature review offered in this 
part is separated into two subsections.

Fig. 1 Number of research papers reviewed

Role of Machine Learning in Detection and Classification of Leukemia: A Comparative…
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3.1  Diagnosis by Using SVM, KNN, K-Means, 
and Naive Bayes

Tanima Thakur et al. [14] show the use of gene expression data in predicting cancer 
as an important development in the field of cancer diagnosis and treatment. Despite 
the variety of approaches available, it is crucial to select one that is appropriate for 
the dataset being used and to weigh the benefits and drawbacks of each method. For 
these techniques to be more accurate and available to patients and healthcare profes-
sionals on a larger scale, additional study is required.

In the work presented by Muhammad Hammad Waseem et al. [15], there are 72 
individuals in the leukemia dataset, of whom there are 47 cases of acute lympho-
blastic leukemia (ALL) and 25 cases of acute myeloid leukemia (AML). Waseem 
et  al. [16] employed 100 blood pictures (acute lymphoblastic leukemia, acute 
myeloid leukemia, chronic lymphocytic leukemia, and chronic myeloid leukemia). 
SVM, short for support vector machine, is employed. While identifying leukemia 
from blood pictures, SVM has produced results with an overall accuracy of 79.38%.

A collection of 130 ALL contaminated pictures was used by Jyoti Rawat et al. 
[17]. A total of 65 of these photos have been utilized for training. The remaining 
images were employed to test the suggested work. Gray level cooccurrence matrices 
(GLCM) and an automatic support vector machine (SVM) binary classifier have 
been applied. For the cytoplasm and nucleus, respectively, texture-based feature 
categorization accuracy is 86.7 and 72.4%. However, classification accuracy of 56.1 
and 72.4%, respectively, were found for shape-based features. Classification accu-
racy is attained with combined texture-shape feature of 89.8%.

In the research work presented by Ahmed S. Negm et al. [18], a dataset having 
757 images is used. Leukemia cells are located utilizing panel selection, segmenta-
tion using K-means clustering, feature mining, and picture refining techniques. 
According to test findings, the accuracy was 99.517%, the sensitivity was 99.348%, 
and the specificity was 99.529%.

In the work of Ahmed M. Abdeldaim et al. [19], dataset consisting of 260 cell 
images is used. Out of these, 130 images were of normal subjects whereas the rest 
of the 130 were of those affected by acute lymphoblastic leukemia (ALL). The clas-
sifiers of k-nearest neighbors (KNN) and SVM are used by the researchers. The 
accuracy shown by KNN is 93.2% whereas the classification accuracy given by 
SVM came out as 87.4%. Hence, KNN came out better as compared to SVM in this 
case. A dataset of images having a total of 2555 is used by Jaroonrut Prinyakupt 
et al. [20]. Out of these, 601 images comprised of white blood cells. 2477 cropped 
white blood cell pictures are included in the collection. Using Naive Bayes classi-
fiers, the performance was compared. The total correction rate for Naive Bayes 
models during the classification phase is around 94%.

Oscar Picchi Netto et al. [21] have used a dataset of 72 samples. The remaining 
34 samples are utilized for testing, while the remaining 38 samples are used to train 
the dataset. The techniques used by the researches are decision trees using nominal 
values and SVM. The accuracy given by decision trees is 94.2 whereas 86.4% is 
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achieved for SVM. The sample size of 126 consists of acute lymphoblastic leuke-
mia and its subtypes is used by Amjad Rehman et al. [22]. Naive Bayesian classifi-
ers, KNN, and SVM are used. SVM accuracy is 97.78%, KNN accuracy is 82.5%, 
and Naive Bayesian accuracy is 92.3%. The dataset used by Enrique J.deAndr’es- 
Galiana et al. [23] was of the year ranging from 1997 and 2007. This clinical data 
was gathered from Hospital Cabuen˜es (Asturias, Spain). This dataset has a sample 
size of 265 Caucasians. These patients were identified with CLL. The classifiers 
SVM and KNN are used for algorithmic prediction. KNN has a precision of 54.7% 
while SVM has a precision of 90.1%.

Juli’an Candia et al. [24] collected a dataset of 847. Human microRNAs were 
measured for each sample. Filtering is done on this dataset which resulted in a 
smaller set of 370 microRNAs. The samples having low or absent expression of 
microRNAs were removed. The researchers used support vector machine (SVM) 
with a linear kernel in their work. 99.5% is the prediction performance of the model. 
A sample size of 120 patients suffering from malignant neutrophils of chronic 
myelogenous leukemia (CML) is collected by Wanmao Ni et al. [25]. The method 
of support vector machine method is used by them. They recorded a high specificity 
≤95.80% and sensitivity ≤95.30%.

The sample size total of 100 microscopic blood cell images were attained by 
Sachin Paswan et al. [26]. Image color threshold is used to preprocess the images. 
For segmentation, the threshold approach is employed. Hausdorff dimension, shape 
features, texture features, and GLCM were features taken into account throughout 
the computation. The classification process uses KNN and modified SVM. KNN 
reported a 61.11% accuracy rate. 83.33% accuracy was reported using SVM. The 
SVM method was enhanced, and an initialization phase to discover a 12-neighbor 
linked component was included.

Morteza Moradi Amin et al. [27] have made a dataset of 42 samples from two 
sources. These sources were Isfahan Al-Zahra and Omid hospital pathology lab. 
Dataset consists of 21 bone marrow slides and peripheral blood smears from 14 
ALL patients and 7 healthy individuals. Segmenting the nucleus and preprocessing 
were done. Segmentation was performed using K-means. Features were extracted 
following creation and selection. In the first stage, traditional SVM was utilized. As 
there were six classes, a multi class SVM classifier was utilized in the second stage. 
Evaluation used the K-fold cross validation procedure with k = 10. Clarity, preci-
sion, and sensitivity for the binary SVM classifier were 98, 95, and 97%, respec-
tively. These numbers are 84.3, 97.3, and 95.6% for the multi-class SVM classifier, 
respectively.

Sachin Kumar et  al. [28] got the database from a hospital. Dr. RML Awadh 
Hospital in Lucknow provided samples for the suggested work. Preprocessing was 
done to improve the quality and reduce unwanted distortions. On a dataset of 60 
pretested samples, the proposed technique was tested with KNN and Naive Bayes 
Classifier after feature extraction for a few chosen characteristics. 92.8% accuracy 
was attained. Both KNN and Naive Bayes classifiers obtained approximately the 
same sensitivity, while KNN had significantly higher specificity. Khaled et al. [29] 
in the work prepared a database of 4000 samples. It includes 200 samples of the 
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patients suffering from leukemia disease. Every sample has 18 attributes. Dataset 
was gathered from the European Gaza Hospital’s CBC testing repository. To 
increase precision, data preparation was carried out. Three classifiers—SVM, DT, 
and KNN—were applied. To acquire the accuracy, they were applied using 
RapidMiner. The accuracy of DT was 77.30%, the highest of the three algorithms. 
In terms of outward qualities, it also acquired properties.

Rodellar et al. [30] analyzed a set of 9395 images for the image processing of 
morphological analysis of blood cells using various approaches for image process-
ing and segmentation. The gray-level co-occurrence matrix and granulometry are 
the two primary methods for evaluating textures (GLCM). Support vector machines 
(SVM), decision trees, and neural networks are employed. To assess the effective-
ness across various color photographs, multiple color models were evaluated in 
datasets. Minal et al. [31] collected two different kinds of datasets. Both the ALL-
IDB1 and ALL- IDB2 have segmented WBCs to test the categorization of blast cells. 
Both of these databases may be used to evaluate the segmentation capabilities of 
algorithms, classification systems, and image preprocessing techniques. Blast cells 
have been distinguished from regular lymphocyte cells using the KNN classifier. 
Fuzzy C-Mean clustering and K-Mean clustering are utilized. Using a KNN classi-
fier, leukemia detection with suggested characteristics was categorized, yielding an 
overall accuracy of 93%.

The UCI machine’s cross-domain sonar data collection [8] learning repository is 
used to assess the suggested techniques. For training and testing, there are 140 and 
68 occurrences, respectively. Bare-bones particle swarm optimization (BBPSO) 
approaches are introduced to identify the key distinctions between blast and healthy 
cells in order to efficiently categorize ALL.  Lymphocytes are categorized using 
Gaussian Radial Basis Function (RBF), Support Vector Machine (SVM), 1-Nearest 
Neighbor (1NN), and the best feature subsets. Improved geometric mean perfor-
mances of 94.94 and 96.25% are produced by the provided methods for the SDM-
based clustering strategy.

Fatemeh Kazemi et al. [32] observed a total of 1500 data. Out of the dataset 750 
were used for ALL and 750 were used for AML. In total 1500 were divided into 
1200 train data and the remaining data as test data. Binary support vector machine 
(SVM) classifier, k-means clustering, and fuzzy C-means clustering applied to seg-
regate the foreground and background are used to classify photos into malignant 
and noncancerous images. According to the findings, KNN performed well in cat-
egorizing both AML and ALL with high percentage accuracy up to 86%. Sachin 
Kumar et  al. [28] collected a dataset of 6000 samples. The author applied the 
K-mean Clustering Algorithm to image processing. The approach makes use of 
basic enhancement, morphology, filtering, and segmentation techniques as well as 
the k-means clustering algorithm to identify regions of interest. The suggested 
approach was evaluated using Nearest Neighbor (KNN) and Naive Bayes Classifier, 
and it demonstrated an accuracy of 92.8%.

The dataset that was made accessible [33] was split in half, with one half (which 
makes up two-thirds of the dataset) being used just for testing and the other half 
(which makes up the last one-third) being utilized for learning. Two-thirds of the 
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data from the first batch have likewise been divided into two halves. The SVM clas-
sifier’s pure learning process took up the first half, while the fitness function’s cal-
culation took up the second half (the validation of the SVM model). Only the last 
third of the data was used for the trained classifiers’ testing. Using a bone marrow 
picture as a starting point, a support vector machine (SVM) and a genetic algorithm 
(GA) were used to identify blood cells. In comparison to the most effective feature 
selection strategy, we improved blood cell identification accuracy by more than 
25% (relatively) (linear SVM ranking). Nasir et  al. [34] observed a total of 500 
pictures using the Leica microscope. Out of these, 200 ALL and 300 AML were 
taken from acute leukemia blood samples. They have employed the Simplified 
Fuzzy ARTMAP (SFAM) and Multilayer Perceptron (MLP) neural networks. The 
MLP network has been trained using Bayesian Regulation and Levenberg–
Marquardt algorithms. The Bayesian Regulation algorithm-trained MLP network 
delivered the best classification results, with testing accuracy for all suggested fea-
tures of 95.70%.

There are two different kinds of datasets [35]. Both the ALL-IDB1 and ALL- 
IDB2 have segmented WBCs to test the categorization of blast cells, and both may 
be used to evaluate the segmentation capabilities of algorithms, classification sys-
tems, and methods for image pre-processing algorithms, classification systems, and 
methods for image pre-processing. In the research, the closest neighbor and support 
vector machine (SVM) concepts are discussed. Leukemia was detected using sug-
gested characteristics, and the KNN classifier identified it with an overall accuracy 
of 93%. Furey et al. [36] collected a dataset of 72 patients. Of those, 24 were uti-
lized for testing and the remaining 38 were used for training. SVM algorithm was 
considered for the algorithmic interpretation. Through SVM, an accuracy percent-
age of 70% is attained. Su-In Lee et al. [37] observed 30 patient gene expression 
samples. They were examined using two different datasets. Then they have applied 
Multiple regression techniques, the MERGE algorithm, and leave-one-out cross 
validation. MERGE algorithm had an accuracy of 83%, LOOCV had an accuracy of 
72%, and multiple regression techniques had an accuracy of just 60%.

Nayana B. Sen et al. [38] used the dataset from American Society of Hematology 
online image bank. Following feature extraction for a few chosen characteristics, 
picture segmentation was done to increase quality and obtain key parts of the 
images. K closest neighbor technique was then employed for classification. Healthy 
and malignant cells have Harsdorf Dimensions of 1.5501 and 1.7828, respectively. 
In terms of specificity and precision, it was discovered that KNN classifier is about 
as well as SVM classifier.

3.2  Diagnosis by Using ANN and CNN Algorithms

In the work of Rana Zeeshan Haider et al. [39], artificial neural network (ANN) with 
principal component analysis (PCA) have been used. Their dataset consists of 1067 
patients. In this dataset there were 44 patients of APML (PML-RARA), 181 of 
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AML (excluded APML), 89 of chronic myeloid leukemia (CML), 51 of myelodys-
plastic syndrome (MDS), 71 of myeloproliferative disorders (MPN) except CML, 
10 of MDS/MPN, 136 of acute lymphocytic leukemia (ALL), 9 of Hodgkin’s lym-
phoma (HL), 95 of non-Hodgkin’s lymphoma (NHL), 32 of multiple myeloma, and 
349 of normal control were present. At Pakistan’s National Institute of Blood 
Disease and Bone Marrow Transplantation (NIBD and BMT), they were prospec-
tively enrolled. In conjunction with artificial neural networks, principal component 
analysis (PCA) was performed (ANN). The accuracy rates of the ANN for the train-
ing and testing datasets were 95.7 and 97.7%, respectively. Rana Zeeshan Haider 
et al. [39] in their study covered a diagnosis of 1067 patients. Hematological neo-
plasms were the cause of their pain. Principal component analysis (PCA) and artifi-
cial neural network (ANN) predictive modeling are both employed. For the training 
and testing datasets, respectively, the ANN model was determined to be sufficient 
with values of 95.7 and 97.7%. For the purpose of analyzing, a dataset of 9395 
images is used by J. Rodellar et al. [30]. This sample size was collected from blood 
smears of 218 patients. Support vector machines (SVM), decision trees, and neural 
networks are employed as approaches. The mean value SVM classifier’s overall 
accuracy is 88.3%, however the accuracy of the other approaches is less than that of 
the SVM.

The value of fuzzy logic-based systems in the detection of different illnesses is 
highlighted by Nega Gupta et al. in their study [40]. These technologies serve as 
assisting tools for medical personnel and can be extremely helpful in developing 
regions with low doctor-to-patient ratios. The article also looks at various fuzzy 
models used in healthcare systems for decision-making, with a focus on their appli-
cations in the diagnosis of a number of illnesses, such as Alzheimer’s, Chronic 
Kidney Disease, Cholera, Hepatitis B, Coronary Artery Disease, Diabetes, Asthma, 
COVID-19, Stroke, Renal Cancer, and Heart Disease. In order to highlight the value 
of fuzzy logic-based systems in the healthcare industry, the chapter presents the 
findings from many researchers in the identification of these disorders.

To prepare the dataset, the researchers used the sources of ALL-IDB and ASH 
Image bank. Nizar Ahmed et al. [41] have done data augmentation to upsurge data-
set size and to circumvent memorization. They used the Convolutional Neural 
Network model (CNN). Feature extraction which could be done automatically is 
performed for the images. 25 epochs and 32 batch sizes were used in the model’s 
training. The dataset size was increased by using image modifications. Experiments 
show that the CNN model works with 81.74% accuracy when categorizing all sub-
types into different groups and 88.25% accuracy when comparing leukemia to 
healthy persons. Compared to other well-known machine learning algorithms, the 
CNN model performs better.

ALL-Image Database (IDB) is used as data source to frame the dataset by 
Sarmad Shafique et al. [42] in their work. Besides this data source, researchers have 
used Google too, to increase the size of the dataset. From Google they collected 50 
microscopic blood images. These samples were validated by the expert oncologist. 
Then, AlexNet, a pretrained Convolutional Neural Networks, for detection of ALL 
and classification of its sub types is used. For the architecture of deep neural 
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networks, transfer learning was applied. Data augmentation was used to diagnose 
leukemia with a 99.50% accuracy rate and classify its subtypes with a 96.06% accu-
racy rate. To find the most effective deep learning architecture for categorization, 
researchers should use a variety of deep learning designs. T. T. P. Thanh et al. [43] 
have used the data source of ALLIDB for building their database of images. They 
performed several types of transformations on the images to enhance the size of the 
dataset. By doing this a database of 1188 images were built. Seven-layer convolu-
tional neural network was employed. The first five levels extract features, while the 
next two layers categorize the features. The percentage of photos used for testing 
was 30%. A 96.60% accuracy rate was achieved. In conclusion, CNN is quite trust-
worthy for spotting blood cancer in its early stages.

MalekMalek ADJOUADI et al. [44] collected the samples from several hospi-
tals. The samples consist of normal as well as infected cells. Further data analysis 
was performed in order to extract just the cells that satisfied the relevant criteria. 
Prior to categorization, only five features underwent feature extraction. ALL and 
AML sample categorization was carried out using ANN. Three testing and training 
cycles were carried out for the ALL classification. Testing accuracy for the largest 
number of samples was 98.46. Only one test was carried out for AML categoriza-
tion. It provided 97.27% accuracy. ANNs may be trained to distinguish between 
AML and ALL by utilizing fewer parameters.

SBILab was the source of dataset taken by Sara Hosseinzade h Kassani et al. 
[45]. The dataset is based on the differentiation between benign and malignant cells 
in microscopic pictures of B-ALL white blood cancer. 76 different people make up 
the dataset, which has an overall cell picture of 7272 ALL and 3389 normal cells. 
Preprocessing of the data increased the number of photos. It is suggested to use a 
hybrid CNN model, which incorporates low-level characteristics from intermediate 
layers. The CNN MobileNet and VGG16 architectures were employed. At the clas-
sifier layer, two output neurons with SoftMax non-linearity activation functions are 
employed to associate normal and malignant cases. 967 test photos were used to get 
the results. The suggested model produced an accuracy of 96.17%. Results obtained 
indicate that merging characteristics discovered by deep models enhances perfor-
mance and produces more precise results.

In the work of Dr. BBM Krishna et al. [46] dataset is a compilation of Golub’s 
published expression measurements. From 72 individuals with ALL or AML, pro-
files have been created. Using dimensionality reduction approaches for classifica-
tion, such as Signal-to-Noise Ratio, Class-Separability, etc., the best genes for 
classification were found. A fuzzy hypersphere neural network classifier was used 
for categorization. Two genes were all that was required to achieve high accuracy. 
With the ALL/AML dataset, the FHSNN classifier trained and tested on average 
substantially quicker than more established techniques like KNN and SVM. FHSNN 
produced 100% accuracy compared to 97.1% for conventional approaches. Dhvani 
Kansara et al. [47] in their work used 12,500 images in their dataset. There were 
3000 enhanced photos of each kind (Eosinophil, Lymphocyte, Monocyte, and 
Neutrophil). 410 of the photos were unaltered originals, classifying photos into dif-
ferent cell types using a deep convolutional neural network. In the beginning, many 
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layers of convolution and pooling are applied to extract every feature that could be 
present. A collection of WBC pictures with various orientations were produced 
using image modifications. Because of back-propagation, the model’s accuracy 
increased with the number of epochs. After 30 epochs, the validation set accuracy 
remained almost unchanged. Precision is measured to be 83%. Recall and F1 score 
were both 78%.

Gulshan Sharma et al. [48] prepared a dataset of 364 images. This is a public 
dataset having colored microscopic images of WBC. From the data, a training set of 
80% was used. Approximately 10% of the data were used for validation. Test set 
was created using the remaining 10%. Five 2D convolutional layer convolutional 
neural networks are employed. The most epochs that could be specified was 10. 
High rates of accuracy were seen. Accuracy for binary classification was 99.76%. 
Accuracy for multiple categorization was 98.14%.

Gayathri S et al. [49] in their work used a dataset of tiny images. The complete 
dataset is made up of microscopic images that were taken in the lab using a Canon 
Power Shot G5 camera. After acquisition, segmentation and cleaning were carried 
out. First, an ANN was put into action. Its performance was contrasted with that of 
the SVM. CNN is also used to implement the proposed tasks. The feature extraction 
method-based recognition system has an efficiency of 89.47% with SVM and 
92.10% with ANN. The effectiveness of the CNN-based feature extraction approach 
is 93%. TTP et al. [13] worked using CNN for the preparations of clinical DSS. They 
had a database of 80 samples out of which 40 are of normal cells whereas, another 
40 samples are of abnormal cells. This database was used for training the model. 
Another dataset has 28 samples out of which 19 were for normal cells and 9 were of 
abnormal cells. This dataset was used for testing the model. A unique approach of 
classifying acute leukemia uses convolution neural networks (CNN). Convolutional, 
pooling, and fully linked layers are only a few of the many layers that make up a 
CNN. Pooling layers lower the dimensionality of the data by averaging the output 
of convolutional layers, whereas convolutional layers utilize filters to extract fea-
tures from the input data. The fully connected layers then use this processed data to 
make a prediction or classification. It gives a very good performance in the classifi-
cation procedure, achieving 96.43% accuracy to distinguish between normal and 
pathological cell pictures from the provided database. This data collection comes in 
two separate [42] iterations. Acute Lymphoblastic Leukemia-IDB 1 had 108 images, 
49 of which were of leukemia patients and 59 of which were of healthy individuals. 
For the acute lymphoblastic leukemia-IDB 2 investigation, 260 single-cell pictures 
were utilized to collect the data, of which 130 were collected from leukemia patients 
and 130 from healthy people. A data augmentation strategy was utilized to reduce 
over training. Convolutional neural networks (CNN), SVM (support vector 
machines), and DCCN (deep convolutional neural network) were then applied. The 
categorization of the subtype of acute lymphoblastic leukemia achieved sensitivity 
of 96.74%, specificity of 99.03%, and accuracy of 96.06%. It was 100% sensitive, 
98.11% specific, and 99.50% accurate at detecting acute lymphoblastic leukemia.

Saeid Afshar et al. [50] observed from the medical records of 131 individuals (63 
of whom had cancer and the remainder did not) with pathological results, 41 clinical 
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and laboratory parameters were chosen. They performed the Artificial Neural 
Network (ANN), LM algorithm interpretations on the dataset. The learning effec-
tiveness was 0.094. The area under the ROC curve was 0.967, and there was a good 
correlation between the output of the trained network for the test data and the actual 
results of the test data. Consequently, artificial neural networks may be used to rec-
ognize leukemia quickly and accurately. Theera-Umpon et  al. [51] analyzed the 
clustering of patch-based blood. The six kinds of white blood cells represented in 
the dataset are myeloblast, promyelocyte, myelocyte, metamyelocyte, band, and 
PMN. Each of the six cell classes has a corresponding number of hand segmented 
images: 20, 9, 139, 33, 45, and 185. Fuzzy C-means clustering and mathematical 
morphology are the foundations of the segmentation. In comparison to an expert’s 
ground truth, we achieve a decent segmentation and promising classification results. 
The suggested patch-based segmentation approach makes more sense than the 
pixel-based segmentation techniques because of the inconsistent grayscale in each 
area of a white blood cell picture.

Leyza Baldo et al. [52] tested over 100 photos in grayscale using images from 
CellAtlas.com. To increase the accuracy of segmentation, employ basic morpho-
logical operators and investigate the scale-space characteristics of a toggling opera-
tor. Future research, such as the categorization of WBC using shape descriptors 
taken from segmented nuclei, is encouraged by the accurate nucleus segmentation 
results.

3.3  Diagnosis by Using Random Forest and Decision 
Tree Algorithms

Liyan Pan et al. [53] have used a dataset of 661 children. They were of the ages less 
than 16  years. All of them were diagnosed recently suffering from ALL.  The 
researchers used Random Forest (RF) and Decision Tree (DT) for the predictive 
analysis. The prediction given by RF presented an accuracy of 0.831 specificity as 
0.895, PPV as 0.880, and AUC as 0.902 as compared to DT in 4 of 6 measurements. 
The results given by RF stand out as compared to DT.

Jakkrich Laosai et  al. [54] have used a sample size of 500. Out of these 500 
samples, 200 have been used for training and the rest of the 300 have been used for 
testing. These samples were of acute-leukemia. The cluster of differentiation (CD) 
marker is used. The testing result shows an accuracy of 99.67%.

The total of 76 sample size is used by Gonzalez Jesus A [55] et al. in their work. 
Out of this, 56 samples were used for training the dataset. The rest of the 20 are used 
for testing. SVM, ANN, RF, k-Means are used. The difference between the acute 
myeloblastic and lymphoblastic leukemia relations was achieved with an accuracy 
of 95.5% from SVM, 79.4% from ANN, 82.3% from RF, and 82.6% from k-Means. 
Tatdow Pansombut et al. [56] prepared two datasets. Dataset 1 consists of 93 sam-
ples. These samples are of WBCs. The second collection consists of pre-T and 
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pre-B cells from the ASH image library, representing ALL subtypes. The classifica-
tion process uses Convent, a convolutional neural network. Automatic feature 
extraction was carried out. 46 features were chosen for feature extraction for 
SVM-GA, MLP, and Random Forest. GA was used to inform the procedures for 
parameter and feature optimization. The average accuracy rates for ConVNet, 
SVM-GA, MLP, and random forest were, respectively, 81.74%, 81.65%, 76.12%, 
and 78.43%. In each of the three classes, CNN outperformed MLP and random for-
est. Haneen et al. [7] worked for the diagnosis of leukemia by using ML applica-
tions. The search algorithms made use of Boolean logic and MeSH terminology, 
such as the phrases “Leukemia” and “Leukemia, Myeloid,” as well as terms related 
to AHI procedures. According on the type of leukemia, the studies were divided in 
these categories: ALL (13), AML (8), CLL (3), and CML (1). For both AML and 
ALL, two studies offered diagnostic models. ALL Image DataBase (IDB), a popular 
digital resource, was utilized in 5 investigations (42%).

There are two datasets for 42 ALL-IDB. While the cells in dataset (2) are seg-
mented, those in dataset (1) are not, providing for exercises in both segmentation 
and classification. Deep learning and machine learning (ML) methods including 
SVM, KNN, RF, LR, RC, and CNN are employed. Pattern recognition-based seg-
mentation algorithms (such as fuzzy c-means and k-means) were most often used, 
followed by threshold-based algorithms (e.g., watershed). The accuracy of the 
methods employed for ALL varied from 74% to 99.5%. Using the SVM method, 
ALL detection accuracy was 74%. The accuracy of the algorithms utilized in AML 
has ranged from 82% to 97%. After utilizing many techniques, including Bayesian 
clustering (BC), a diagnosis of CLL using a flow cytometer was made with 99.6% 
accuracy.

Fig. 2 The proposed method
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4  Results and Discussion

The data was obtained from GitHub, Fig. 2 depicts a confusion matrix that is used 
to demonstrate how well a classification system works. A confusion matrix shows 
and summarizes a categorization method’s efficacy. Five important algorithms and 
classifiers are evaluated on the dataset for performance and accuracy.

The algorithms and classifiers on which the accuracy is checked are (i) K-Means, 
(ii) Naive Bayes, (iii) Support Vector Means, (iv) Logistic Regression, and (v) 
XG-Boost algorithm. The confusion matrix for all above-mentioned five algorithms 
have been prepared and depicted below.

4.1  K-Means

The confusion matrix for K-Means is shown in Fig. 3. The accuracy of this algo-
rithm when trained by the dataset came out to be 0.765.

4.2  Naive Bayes

0.912 is the accuracy of the Naive Bayes algorithm when it is trained by the dataset. 
Its confusion matrix is depicted in Fig. 4.
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4.3  Support Vector Means

The confusion matrix for Support Vector Means is shown in Fig. 5. The accuracy of 
this algorithm when trained by the dataset came out to be 0.941.

4.4  Logistic Regression

1.0 is the accuracy of Logistic Regression algorithm when it is trained by the data-
set. Its confusion matrix is depicted in Fig. 6.
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4.5  XG-Boost

The confusion matrix for XG-Boost is pictured in Fig. 7. The accuracy of this algo-
rithm when trained by the dataset came out to be 0.912.

4.6  Accuracy Achieved in Algorithms

Various algorithms like K-means, Naive Bayes, SVM, Logistic Regression, and 
XG-Boost are trained by the dataset. The accuracy is measured on all the five algo-
rithms. The resultant accuracy is shown in Fig. 8. It shows that logistic regression 
resulted in 100% accuracy rate.
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5  Conclusion

In this chapter a thorough examination of numerous research articles is done that 
used SVM, KNN, Naive Bayes, K-Means, logistic regression, and various artificial 
intelligence algorithms like ANN and CNN for the diagnosis, detection, and clas-
sification of the leukemia disease. The accuracy of K-Means, Naive Bayes, Support 
Vector Means, Logistic Regression, and XG-Boost algorithm are checked by train-
ing them using the dataset. The accuracy of K-Means is 0.765, Naive Bayes is 
0.912, Support vector means is 0.941, Logistic Regression is 1.0, and XG-Boost 
algorithm is 0.912, respectively. The result shows that logistic regression is the best 
approach for the dataset used in this work. The comparative analysis among various 
algorithms also shows that logistic regression gives best accuracy. The leukemia 
patients can be detected using this algorithm and also could be classified as per the 
level of suffering, that is, acute or chronic. Leukemia being fatal, cancer needs to be 
rectified at the earliest. As it has been shown in this chapter, logistic regression gives 
the best accuracy, hence use of logistic regression algorithms can help the medicos 
in identifying the right type of leukemia at the earliest stage.
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A Review on Mode Collapse Reducing 
GANs with GAN’s Algorithm and Theory

Shivani Tomar  and Ankit Gupta 

1  Introduction

The generative adversarial networks (GANs) have turned into a very trending topic 
of discussion due to its popularity and have wide range applications. They work 
very well on images, audio, and video [13–16]. They have many applications in the 
medical field also which includes new drug discovery [21], detection of disease, etc.

GAN is made up of two networks which are discriminator and generator. It 
works on the principle of min-max rule. The objective function is to maximize the 
loss equation for the discriminator and minimize it for the generator. The generator 
tries to capture the probability distribution from the dataset to generate new exam-
ples of data whereas discriminator is a binary classifier which tries to recognize the 
true dataset over the data generated by the generator. The adversarial idea works 
very well and gives excellent results. But, due to GAN’s complex structure, it is 
tough to train GAN and faces a lot of issues like non-convergence, instability, and 
mode collapse in which mode collapse is a very big issue because it blocks the true 
potential of the generative adversarial network by stopping it from generating more 
diverse data. Mode collapse is not the problem of only vanilla GAN, but this is also 
seen in many GAN methods which solve the problems using the GAN concept. 
MOL-GAN is a GAN method which was introduced to solve chemical synthesis 
problems by generating direct molecular graphs of elements. This model also suf-
fered from mode collapse which was avoided by using improved Wasserstein GAN 
and mini-batch discriminator [21]. EEG-GAN is used to generate electroencephalo-
graphic (EEG) brain signals and suffers from mode collapse and it is avoided using 
WGAN [28]. BAGAN (Balancing GAN) is used as an augmentation framework for 
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balancing the imbalanced data by generating minority class data and this framework 
must be free from mode collapse to generate diverse data to balance the dataset. To 
do the same, regularization is done along with the encoder coupled with BAGAN 
[29]. Mode collapse problem is also faced by text generation using adversarial net-
works and this problem is resolved by inverse reinforcement learning [13]. Self- 
Attention GAN uses spectral regularization for smoothing the training process and 
diversity of image generation [17].

There are many applications which are using adversarial networks and mostly 
face mode collapse problems and are resolved by many different ways. So, we can 
say that mode collapse is the big stone in the GAN (generative adversarial networks).

2  Literature Survey

GAN is the generative model which falls under the method of semi unsupervised 
learning. In unsupervised learning methods, there are no labels on the dataset and 
the learning is done only through the data itself. All clustering algorithms like 
k-means, k-median algorithms, feature extraction algorithms like PCA (Principal 
Component Analysis), etc., come under unsupervised learning methods. In super-
vised learning, labels are there along with the data in the dataset. Classification, 
regression, segmentation, etc., are the supervised learning methods. In GAN, dis-
criminator works on supervised learning method and generator works on unsuper-
vised learning method.

Generative Models Models which are used to generate data are called generative 
models. Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM), 
etc., are examples of generative models. A generative model captures the joint prob-
ability P(x/y), that is, what is the probability of occurring event x while event y 
already occurs if the condition is: given. If there is no such event then it calculates 
only P(x), that is, probability of occurring event x. Most of the generative models 
work on the maximum likelihood function.

Figure 1 shows the structure of generative models on the basis of maximum like-
lihood. On the basis of maximum likelihood function, generative models are divided 
into two categories – the first one is known as explicit density generative models and 
another one is known as implicit density generative models. The former one requires 
prior probability distribution of the data to calculate posterior along with the maxi-
mum likelihood estimation while implicit density model does not require prior 
probability distribution to calculate the probability distribution of data. Explicit 
density models are further classified into tractable and intractable (approximate) 
density models. As their name suggests, in tractable models, function is computable 
while in approximate density model function is not computable and derived by 
using other ways. Pixel Recurrent Neural Networks, Fully Visible Belief Networks 
(FVBN), Neural Autoregressive Distribution Estimation (NADE), Masked 
Autoencoder for Distribution Estimation (MADE), etc., are the examples of 
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Fig. 1 Hierarchical structure of generative models on the basis of maximum likelihood

tractable density models while approximate density is further classified into two 
categories which are variational and Markov chain. Variable auto encoder comes 
under variational density and Boltzmann machine is categorized under Markov 
chain. In an implicit density model, the probability distribution is calculated on the 
basis of Monte Carlo Markov chain method or distribution is directly calculated. 
GSN (deep generative stochastic network) is an example of Markov chain implicit 
density method.

GAN comes under the implicit density model in the direct probability distribu-
tion method as it does not require any external probability distribution to calculate 
joint probability.

Maximum likelihood based generative models have some disadvantages like – 
tractable density models are very slow as they work sequentially. For example, 
FVBNs take two minutes to generate one second of audio. Variational autoencoders 
(VAEs) are hard to optimize and Markov chains are very slow to converge.

To avoid these disadvantages, GAN was designed which has the following 
advantages over other generative models:

GAN does not use runtime, proportional to dimension of the data, and it can gener-
ate samples in parallel while other generator neural networks like pixel RNN 
generate data sequentially.

In GAN, there is no variational lower bound required while VAE requires 
lower bound.

They are instinctively regarded as generating better results as compared to the other 
methods while others like VAE compromise with the image quality.

With these advantages, GAN comes along with some disadvantages which are the 
issues faced by GAN while training them [25].
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Idea Behind GAN Most of the generative models use L2 loss function which is 
|xi − xj|2 while GAN works on the adversarial idea for generating data samples, that 
is, both generator and discriminator trying to oppose each other. Generator tries to 
generate data samples in such a way that discriminator might not be able to recog-
nize which one is fake and which one is real and discriminator always tries to reject 
the data generated by the generator:
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The objective function of the generator is to minimize Eq. (1) and discriminator 
tries to maximize the Eq. (1).

For the fixed G, the optimal discriminator D* is –
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When pdata(x) = pG(x), then Eq. (2) will be 
1
2 . Putting this value in Eq. (1), we 

get the value of function V(D, G) − log 4 which is also known as global minima [26].
Discriminator uses KL divergence and JS divergence to calculate how one image 

is different or similar from another image:
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where M = (p(x) + q(x))/2.
KL divergence is not symmetric which can be understood by the following exam-

ple [26]:
when p(x) = 1 and q(x) = 0, then KL(P‖Q) =  + ∞ while KL(P‖Q) = 0 when p(x) = 0 

and q(x) = 1 [18].
JS divergence is symmetric having value 1/2 log 2 in both cases [18].

Algorithm of Training GAN Training of GAN is difficult as we need to synchro-
nize between two neural networks to train them. Following is the algorithm for 
training GAN using back propagation. The training of GAN is done in batches 
(Algorithm 1).

In the algorithm, k = no. of steps applies to the discriminator.
While training the GAN, we update the loss function of the discriminator by 

gradient ascent and update the loss function of the generator by gradient descent [4].
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Problems in GAN While Training In the early stage of training, the generator 
does not generate appropriate data samples and the discriminator rejects the data 
sample with high confidence. As a result, the gradient of G saturates and does not 
get trained. This is known as the vanishing gradient problem. To avoid this problem, 
generators are trained to maximize log(D(G(z))) rather than minimize 
log(1 − D(G(z))) [4].

Another drawback of GAN is non-saturating game between discriminator and 
generator, that is, both discriminator and generator try to cancel out the values of 
each other to make zero sum value, that is, may be the current update leads one 
player downhill but same update can lead the other player uphill. In this procedure, 
there are oscillations toward the converging solution and both may not reach the 
converging point or may reach the converging point. This makes the GAN training 
unstable. It is studied that GAN converges to its minima when there is no mode col-
lapse or parameters are updated within the function space. If this condition does not 
happen, GAN in most cases does not converge to its global minima [25].

The other big problem in GAN is mode collapse which is a big issue as it limits 
the GAN application. Mode collapse is a condition a model starts generating the 
same data or very less diverse data. Full mode collapse is occasional however partial 
mode collapse is seen more frequently. In a study, it is found that mode collapse can 
emerge when the max-min solution of GAN is not the same as min-max solution, 
that is, maximizing discriminator and minimizing generator is not the same as mini-
mizing generator and maximizing discriminator:
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Algorithm 1 Algorithm of training GAN

INPUT: n number of real images for discriminator and n number of noise data samples for 
generator.
OUTPUT: n number of images generated by generator.

1 for number of training iterations do the following
2 for k steps do the following
3 Take a sample of mini batch of n noise samples {z(1), …, z(n)} from noise prior Pg(z).
4 Take a sample of a mini batch of n examples {x(1), …,  x(n)} from data generating 

distribution Pdata(x).
5 Modify the discriminator by ascending its stochastic gradient value:
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6 end for
7 Take a mini batch of n noise samples {z(1), …,  z(n)} from noise prior pg(z).
8 Modify the generator by descending its stochastic gradient value:
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9 end for
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G∗ takes samples through the data distribution. When the order of min as well as 
max is changed
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(6)

find the minimum value with reference to the generator, at present it resides in the 
internal loop of optimization method. Then the generator mapped every z value to 
the corresponding x coordinate which the discriminator knows is mostly expected 
to be real in place of fake. Parallelly gradient descent does not distinctly prefer min- 
max over max-min and vice versa. It was used in the expectation that it will act like 
min-max however it frequently acts like a max-min equation. It is also found that 
mode collapse is not because of using JS divergence or KL divergence. Cost func-
tion also does not contribute to mode collapse. It may be the training of GAN which 
is causing mode collapse conditions [25].

What GAN Cannot Generate An experiment is done to analyze which modes are 
dropped by GAN while generating images. In the experiment of measuring as well 
as visualizing mode dropping in the most modern generative models, comparison is 
done using statistics analysis of the segmented images. Both the real and generated 
images are segmented and a deep analysis is done. Analysis is done at both levels – 
distributed as well as instance level using the images generated by WGAN, 
Progressive GAN, and Style GAN.

A visualization tool which predicts current analysis is developed by layer-wise 
inversion of the generator to see which mode is dropped by the tool. This tool is 
used for studies to get little perception of the phenomenon in modern GANs. 
According to the studies, it is found that GAN does not drop the modes or classes of 
objects because they are distorted or have low quality as in noise. Even they are not 
rendered as they are not part of the image. The dropped modes are hard to learn by 
GAN and that is why they are dropped, but this does not affect the quality of the 
image. It is still an open question as to which modes are dropped by GAN [11].

Methods and Algorithms to Reduce Mode Collapse A lot of methods and new 
GANs were introduced to reduce mode collapse from the GAN by the researchers 
after the introduction of GAN. Table 1 illustrates the list of new GANs and other 
methods which attempt to alleviate or reduce mode collapse since 2016.

These methods are specially designed to alleviate mode collapse from GAN and 
stable training. Unrolled GAN is the very first method which was introduced to 
reduce mode collapse in GAN.

Unrolled GAN works on the principle of calculating generator’s gradient on 
maximum discriminator’s value function. Ideally, the gradient for G is not calcu-
lated for the max value of D in V(D, G) function and prone to mode collapse. To 
alleviate it, a graph structure is generated for the k steps of learning of the discrimi-
nator to maximize its value function and the gradient of the generator is calculated 
by back propagating through all k-step discriminators. It will take tens of thousands 
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of k steps to fully maximize the value function. But it is also experimented that 10 
steps can also reduce mode collapse effectively. The value function for generator 
becomes:
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update value of generator and discriminator is as follows:
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The disadvantage of this method is that it is computationally high and for large 
datasets, K may increase linearly, and this method is also not implemented for 
ImageNet. Further research is required to implement this method on ImageNet [12].

A lot of methods and techniques were introduced in the year 2017 and 2018. A 
description of these GANs are given below.

WGAN was introduced in 2017 with a concept of earth mover distance to calcu-
late how one probability distribution differs from other probability distribution of 
the data. It uses earth-mover distance for divergence calculation rather than KL 
divergence or Jensen Shannon divergence or total variance which is given below:
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Earth mover distance guides how much mass needs to be transported to make 
both distributions similar.

It is found out that earth mover distance is weakest among them and KL is the 
strongest one to calculate the divergence between the two probability distributions. 
WGAN also modifies the objective function of GAN. Now in it, the discriminator 
tries to maximize D(x) − D(G(z)) and the generator tries to maximize D(G(z)). In 

Table 1 Mode Collapse Reducing Methods of the GAN

S.no. Year Technique

1. 2016 Unrolled GAN
2. 2017 VAEGAN, VEEGAN, PacGAN, MAD-GAN, WGAN, distributional adversarial 

network, D2GAN, Bayesian-GAN
3. 2018 Primal dual subgradient GAN, MRGAN, MGGAN, sub-GAN, BourGAN
4. 2019 ProbGAN, MSGAN, spectral-regularization, diversity-sensitive GAN, MDGAN
5. 2020 Dropout-GAN, TailGAN
6. 2021 SSAT-GAN
7. 2022 UniGAN
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WGAN, discriminator loss is also known as critic loss and its value is not only 
bound to between intervals [0, 1]. WGAN is proved to be very effective in mode 
collapse and also stables the training of GAN [27].

To resolve mode collapse, VEEGAN introduces a reconstructor network whose 
work is opposite to the generator, that is, to convert the generated data and true data 
into latent. This reconstructor helps the generator to guide which mode is dropped 
by comparing the latent of both true data and generated data. The mismatch between 
the latent leads to the conclusion that few modes are dropped. The generator and 
reconstructor network are trained jointly and for the training of the reconstructor 
network, the data with forgotten mode is ignored and this network uses an autoen-
coder with l2 loss functions. The objective function for VEEGAN is as follows:
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where H(Z, Fθ(X)) is mapping between true data distribution Fθ(X) and gaussian 
distribution Z using cross entropy. VEEGAN is very much similar to ALI and 
BiGAN however its objective function provides remarkable benefits over the logis-
tic regression loss. VEEGAN may be similar to other GANs also but it is different 
from them. Few of them are ALI, BiGAN, InfoGAN, etc. ALI and BiGAN both use 
the objective function same as vanilla GAN, so the output depends on the discrimi-
nator while in VEEGAN, the reconstructor term does not depend on the discrimina-
tor and can provide learning signals while the discriminator is constant and reduces 
mode collapse. InfoGAN and VEEGAN seem to be similar but the key difference 
between them is that InfoGAN does not train reconstruct network on the true data. 
In the experiment, it is found out that VEEGAN is very much suitable for identify-
ing modes in comparison of ALI, BiGAN, Unrolled GAN, and vanilla GAN and 
produces much sharper images than others. It is also found that all GANs took 
almost the same time in computation except Unrolled GAN. VEEGAN runs suit-
able on default parameters so there is no hyper parameter tuning required [5].

The main idea of PACGAN is to modify the discriminator to construct decisions 
on the basis of several samples of the identical class which belong to either true data 
or generated data. The rest of the architecture is the same as the original GAN, hav-
ing a generator and adversarial loss function. In PACGAN, the responsibility of 
discriminator is not just to map whether single data is real or fake, instead this aug-
mented discriminator is used which maps m samples to a single class label. The 
intuition behind PACGAN is “Discriminator will detect mode collapse easily due to 
the reason that insufficiency of diversity is greater in groups rather than a single 
data.” The discriminator is also known as “packed discriminator” and concatenated 
m samples are known as “degree of packing.” The packing is implemented by 
increasing the number of nodes in the input layer of the discriminator by the factor 
m where m is the degree of packing. The rest of the architecture is the same. The 
advantage of PACGAN is that it is easy to implement and can be added to any GAN 
method. In the experiment, PacGAN is compared with the Unrolled GAN, 
VEEGAN, BiGAN, and ALI and found out that PacGAN captures more modes with 
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very less KL divergence. In stacked MNIST data, it captures around 1000 ± 0.00 
modes with the KL divergence 0.07 ± 0.005 in generated images [7].

Dual discriminator GAN attempts to alleviate mode collapse from GAN by 
introducing one extra discriminator to the GAN architecture. In D2GAN one dis-
criminator is rewarded for rejecting data generated by generator and the other dis-
criminator favors that data by using KL divergence along with reverse KL divergence, 
and moreover the generator needs to satisfy both the discriminators. It is basically a 
three-player minimax game whose objective function is:

 

minmax & log
,G D D

P PG D D D D G
1 2

1 2 1 1 , ,
data

( ) = × ( )  + − (∼ ∼α E Ex zx z
z

))( ) 

+ − ( )  + × ( )( ) ∼ ∼E Ex zx z
zP PD D G

data 2 2β log
 

(12)

where α and β are newly introduced hyperparameters having value 0 < α, β ≤ 1 
to stabilize the learning and control the effect of KL and reverse KL. Experiment 
with MNIST data shows that D2GAN captures more modes than unrolled GAN, 
Reg GAN, DCGAN, and vanilla GAN [32].

GANs are implicit density models which learn to generate data using SGD. Due 
to some reasons it is not able to replicate a few modes and generate less diverse data. 
Bayesian GAN increases the diversity among generated data by including Bayesian 
inference to the model which comes under explicit density model. It uses prior dis-
tribution to calculate the posterior distribution. To marginalize the posteriors over 
the weights of discriminator and generator stochastic gradient Hamiltonian Monte 
Carlo method is used.

To infer posteriors over θg, θd, sampling is done by following conditional 
posteriors:
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p(θg| αg) and p(θd| αd) are the priors over the parameters of generator as well as 
discriminator, along with the hyperparameters αg and αd, respectively. nd and ng are 
the numbers of the mini-batch samples for the discriminator as well as generator, 
respectively [31].

In 2017, not only these GAN methods are introduced, even a lot more GAN 
methods are introduced like VAEGAN which is a combination of variational auto-
encoder and GAN to overcome the disadvantages of both, that is, VAE generates 
blurry images and GANs are prone to mode collapse, both the models are combined 
together which become very effective in reducing mode collapse [33]. MADGAN 
include multiple generators to avoid mode collapse so that all generators capture 
every mode and there is less probability of a mode collapse. These generators are 
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combined together to get the overall results. These generators are called multi-agent 
diverse and the model is known as MADGAN [24]. A complex structure is the dis-
advantage of this model.

In 2018, a lot of GAN methods were introduced to mitigate mode collapse 
from GAN.

MGGAN (Manifold Guided GAN) tries to resolve the problem of mode col-
lapse by introducing a guided network which inspires the generator to grasp all the 
modes of the data distribution rather than being stuck to a few modes. This guided 
network consists of pre-trained encoders and discriminators. The output of the dis-
criminator in manifold space tells the generator how much latent of real data and 
fake data differ from each other and the generator updates its weight according to 
both of the discriminators’ output. The objective function of MGGAN is:

min
,

log log log
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Generator’s objective function:

 
min log log
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Generator tries to meet the two goals – one is to find dissimilarity between real 
and fake data and another is to map real and fake data in manifold space. Manifold 
network is weakly connected to the rest of the network bidirectionally. Strict bidi-
rectional mapping has the limitation. In strict bidirectional mapping, when addi-
tional constraints are applied on the encoder, the generator depletes the generation 
power to enclose the extensive range of the latent distribution and strict constraints 
rarely satisfied, which makes the network unstable and reduces representational 
power of the encoder that later results in a generation of low-quality images. So, in 
MGGAN, weak bidirectional mapping is used which is feasible and realistic and 
makes it to cover the missing modes and produce sharp images with diversity. 
MGGAN seems similar to ALI and BiGAN but in these GANs, the discriminator 
has two responsibilities – one to find out real and fake images and the other is to 
match joint probability distributions. This makes the discriminator insensitive to 
change for each distribution and not able to capture minor changes in the distribu-
tion and the whole network becomes unfaithful toward the images. MDGAN and 
VEEGAN use the reconstruction loss to reduce mode collapse but it is difficult to 
tune the balancing parameter in both as the network’s loss unit and reconstruction 
loss unit is different. All these disadvantages are overcome in MGGAN.  In the 
experiment, it is found that vanilla GAN is much prone to mode collapse. VEEGAN 
as well as Unrolled Gan capture all modes despite them generating very scattered 
data. It is observed that MGGAN captures every mode and reduces mode col-
lapse [6].
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Primal-dual subgradient GAN uses primal dual algorithm to avoid mode col-
lapse from GAN. It is found that GAN does not face any mode collapse when some 
noise is added to it. Actually, it works as a regularizer for it. Inspired from this idea, 
primal-dual subgradient method is used where discriminator is primal variable and 
generator is dual variable. The dual variable is modified according to the subgradi-
ent of L(x(t), λ(t)) with reference to λ(t) at every iteration t and primal variable is 
modified relative to the subgradient of L(x(t), λ(t)) with reference to x(t) where L is 
a Lagrangian function [19].

Bour-GAN uses Bourgain’s theorem to reduce mode collapse inspired from the 
idea that modes are geometric structures of the data distribution in the metric space. 
This experiment argues two basic questions:

The commonly used multivariate gaussian which generates random vectors for gen-
erator network.

Geometric interpretation of modes.

It was demonstrated in the experiment that in the presence of modes, selecting a 
random vector from a single gaussian leads to the larger gradient to the generator 
and different metrics may lead to different distributions of modes which cannot be 
interpreted. So, mixture gaussian and logarithmic pairwise distance distribution 
(LPDD) is used in BourGAN. In BourGAN, the very first step is to preprocess the 
dataset which includes subsampling to the dataset. In this process, m no. of data 
items is selected from the random distribution. This step is essential when the data-
set is large as it reduces the computational cost. In the experiment it is found that the 
value of m = 4096 is sufficient for the dataset. After this, a gaussian mixture model 
is constructed to generate random vectors in latent space. In this process, data items 
are embedded to l2 space. The model must be constructed in such a way that latent 
vector dimensionality must be small and mode structure must be reflected in the 
latent space. To achieve the goal, Bourgain embedding algorithm is used. After this, 
training is done. While training BourGAN, to alleviate mode collapse, the generator 
is encouraged to match the pairwise distance of generated samples to the pairwise 
distance of the l2 latent vector in Z. The objective function of BourGAN is:
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where Lgan is the standard GAN equation and β is a parameter to balance the two 
terms. In Ldist, zi and zj are the two separate samples where zi ≠ zj. The advantages of 
using logarithm distance are:

 (i) The outliers are prevented.
 (ii) It turns the uniform scale of distance metrics into constant so that it has no 

effect on optimization.
 (iii) It eases the theoretical analysis.
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BourGAN is compared with standard GAN, VEEGAN, Unrolled GAN, and 
PacGAN and it captures more modes than others and prevents them from being 
generated again. Standard GAN is worst in capturing modes while other methods 
are close to BourGAN. Wasserstein distance is calculated to know how well the 
model is capturing data distribution. BourGAN performs the best among them [30].

MRGAN (Manifold regularized GAN) introduces a term manifold regulariza-
tion to alleviate mode collapse and this idea can be extended on DCGAN and 
WGAN to improve the diversity of generated dataset. This model is inspired from 
the idea that real data lies in submanifolds and generated and real data which lies in 
disjoint manifolds is the reason for facing issues by GAN in training. The objective 
function of MRGAN is:
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where λ∫x ∼ M ∥ ∇M(ψ(y) − ψ(x))∥2 is a regularizing term. It is theoretically proved 
that the MRGAN provides stable training with very less matching score between 
real data and generated data (shown in experiment) and forced the generator to gen-
erate a unique dataset [20].

In 2019, most appropriate and compact methods were introduced to resolve the 
problem of mode collapse and most of the techniques were different types of regu-
larization. Few of them were specially designed for a particular type of GAN and 
few were general.

SRGAN (spectral regularization GAN) works on the idea that mode collapse 
occurs because of spectral collapse in GAN. In this experiment, it is found that there 
is no mode collapse seen when singular values in W WSN � �  in the discriminator are 
very close to 1 and when the singular value drops dramatically, mode collapse 
occurs. This phenomenon of dropping a large no. of singular values is known as 
spectral collapse where W WSN � �  is spectral normalized weight matrix. When spec-
tral collapse occurs, there is a high probability of occurring mode collapse and 
Inception score as well as Fréchet inception distance also drops. So, to alleviate 
mode collapse, spectral collapse must be removed. SRGAN is used to do so. A regu-
larization is done to remove spectral collapse. In SRGAN, singular value decompo-
sition is used. So, the weight matrix can be expressed as follows:

 W U VT� · ·�  (20)

where U and V are orthogonal matrix, U is left singular matrix of W while V is 
right singular matrix of W and Σ is:
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where D =  diag {σ1, σ2, …, σr} represents the spectral distribution of W.
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When mode collapses, spectral distribution condenses on the first singular value 
and rest values drop. To balance out this, ∆D is applied where ∆D is diag{σ1 − σ1, 
σ1 − σ2, …, σ1 − σi, 0, …, 0}, and i is a hyperparameter (1 ≤ i ≤ r). The suitable value 
of i is 0.5 N (proved in the experiment) and used in SRGAN. This experiment dem-
onstrated that SRGAN performed very well over SNGAN (Spectral normalized 
GAN) and treated SNGAN as a special case in SRGAN [23].

Diversity sensitive GAN is a regularization technique to reduce mode collapse 
from conditional GAN. The intuition behind DSGAN is that mode collapse occurs 
when the generator maps the large portion of latent codes to the same output, that is, 
G(x, z1) ≈ G(x, z2) for all z1, z2~N(0, 1). To avoid this, regularization is done to the 
generator and the regularization function is:
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where τ bound is for numerical stability. Its objective function is [9]:
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where λ controls the degree of stochasticity in generator.
This regularization technique is simple, general, and can be used with other 

existing conditional GAN’s objective. This regularization also provides control over 
diversity via hyperparameter λ. It can also be extended to incorporate different dis-
tance metrics to measure the diversity. This is shown using distance in feature space 
and for sequence data in the experiment. Three types of tasks are performed using 
DSGAN, which are image to image translation, video prediction, and image inpaint-
ing. It is found that DSGAN performs very well and is easy to integrate with the 
conditional GAN and generate diverse dataset [9].

MSGAN (Mode seeking GAN) is also a regularization technique introduced for 
conditional GANs as they need to generate diverse images each time for the same 
input. It works on the idea that mode collapse between two images mostly occurs 
when the latent space of these two images is very close to each other in the latent 
space. The distance between them is maximized during the regularization. The 
objective function of MSGAN is:

 L L Lori ms msnew � � �  (24)

where Lori is the original objective function and Lms is
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Mode seeking GAN is experimented on conditional GAN, image to image trans-
lation as well as text to image synthesis, therefore as a result it is found that it per-
forms very well both in terms of visual quality and diversity and provides baseline 
for the GAN. For the evaluation purpose, some metrices are used which are Fréchet 
Inception Distance (FID), Learned Perceptual Image Patch Similarity (LPIPS), and 
Number of Statistically-Different Bins (NDB) and Jensen-Shannon Divergence 
(JSD). FID is used to test the quality of images. LPIPS is used for diversity mea-
surement for image and JSD and NDB are used to measure the similarity between 
original and generated images. This GAN method is used on three conditional 
GANs which are image-to-image translation, categorical generation, as well as text- 
to- image synthesis and found to be an effective method and generated diverse 
data [22].

Mixture density GAN (MDGAN) reduces mode collapse by introducing the 
concept of mixture density of images. It uses the mixture Gaussians in the objective 
function of which the mean vectors are put down in vertices of the d dimensional 
simplex. In MDGAN, discriminator creates clusters on the basis of embeddings of 
real images. Generator tries to generate images which are very close to the embed-
ding of the real images to fool the discriminator. As there are multiple clusters, 
every mode of images is captured and alleviates mode collapse.

The objective function of MDGAN is given below:
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where the lk(e) is also known as the likelihood for given image, let e = D(x) which 
is defined in the given Eq. (27):
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where the following terms stands for:

Φ = Gaussian PDF.
μj=mean vector
∑j =covariance matrix for Gaussian component j
C = total number of Gaussian components.

(Each mixture weight equals 1/1 + d)
The discriminator firstly encodes the inserted image x within embedding e, when 

it tries to differentiate between real and fake image. Then, it calculates likelihood 
lk(e). The lk(e) is considered as the probability of e, like an embedding of the real 
image to the given present model. In the experiment, MDGAN is compared with the 
other seven baseline GANs which are Vanilla GAN, ALI, Unrolled GAN, VEEGAN, 
DeliGAN, InfoGAN, SpecNorm GAN, then it is found that MDGAN performs 
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better than other GANs and captures each mode. MDGAN has more FID score than 
other GANs [34].

ProbGAN generally works on the idea of the aggregation of the generators to 
single discriminator. It is believed that a single generator cannot capture all the 
modes of the data. To capture the multi-modal data distribution, there is a require-
ment of multiple generators. In ProbGAN, multiple generators are used with proba-
bilistic network. It seems to be similar to Bayesian GAN but it is different from it. 
In the studies, it is found that Bayesian GAN does not converge due to the use of 
weak informative prior but ProbGAN overcomes this disadvantage. ProbGAN uses 
less standard prior. It sets different priors for generator and discriminator. For the 
generator, previous time step prior is used. The intuition behind this is that when the 
generator generates plausible data which is close to true data the discriminator tries 
to give equal score which results in equal likelihood. So, it is better to keep the dif-
ferences between generator and discriminator by setting previous time step prior to 
the generator. This dynamically evolving prior results in the generation of diverse 
data and converges to some point. For the posterior calculation, Stochastic Gradient 
Hamiltonian Monte Carlo method is used. In the experiment, ProbGAN is com-
pared with DCGAN, Mixture GAN, and Bayesian GAN on the dataset STL-10, 
CIFAR-10, as well as image-net over the evaluation metric Inception score along 
with FID. And it is found that ProbGAN has highest inception score and lowest FID 
score [10].

Dropout is a regularizing technique which is utilized to avoid the problem of 
overfitting in neural networks by dropping some neurons from the network ran-
domly based on probability. Dropout-GAN uses this technique to drop the discrimi-
nator from the set of K discriminators as it works on intuition that mode collapse 
occurs due to overfitting of a model over a particular mode due to satisfying condi-
tions on a single discriminator. It was introduced in 2020.

The dropout-GAN generator updates its value according to every discriminator 
which is not dropout. And every discriminator also updates its weight according to 
the GAN’s standard equation. There may be a condition that every discriminator is 
dropped out and no one is left to guide the generator. In this case, a discriminator is 
randomly chosen among the set of discriminators and generator’s weights are 
updated. The function used for this neural network along with standard GAN equa-
tion is: given below:

 

minmax ( log
G D K

k

k
K

k

k x p x k

z p

k
r

z

V D G D x
{ }

= =

∼ ( )

∼

∑ ( ) = ∑ ( ) 

+

1 1

, δ E

E zz kD G z( ) − ( )( )( )



log )1

 

(28)

Dropout GAN uses dynamic ensemble discriminators for training keeping the 
original GAN objective function. In dropout GAN, each discriminator is trained 
individually. That means no other discriminator knows other discriminator’s exis-
tence since changes were not made on their individual gradient updates. In this 
GAN method, generator is updated by a drastically large value as it needs to satisfy 
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multiple discriminators. As a result, it is found that it converges to zero very easily. 
It is also noticed in experiment that as the number of discriminator increases, the 
number of generator’s gradient starting to converge also increases. It means that a 
large number of discriminators can delay the learning process. In the experiment, 
batch partitioning is done among the different discriminators so that every discrimi-
nator learns a specific mode of the data distribution. In the experiment, it is also 
found out that GAN works very well with dropout rate 0.2 and 0.5. Dropout GAN 
is compared with other GANs and it is found that dropout GAN performs well 
among them. Fréchet distance is calculated for the comparison and Dropout GAN 
performs well with less Fréchet distance and produces more diverse data than 
LSGAN, MODGAN, DRAGAN [8].

TailGAN is a type of GAN in which we can perform AD (anomaly detection) as 
well as generating samples at the back end of a typical distribution sample. The 
TailGAN utilizes adversarial training as well as GANs. After that it reduces the 
objective cost function by using the following equations:
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where the following terms stand for:
Ltot=total cost function
Lpr=probability cost
Ld=distance loss
Le=maximum-entropy cost
Lsc =scattering loss
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By making use of the GAN that can straightforwardly calculate the probability 
density, we carry out sample generation at the back end of data distribution, it 
addresses distributions of multimodal alongside disconnected components and after 
that it also reduces mode collapse. We construct a tail formation model based out of 
GAN (TailGAN) for detection of any inconsistency. This type of GAN was created 
for sample generation at the back end of the data distribution as well as detecting 
any anomaly nearby the supporting boundary. With this TailGAN, we make use of 
the maximum amount possible of entropy regularization. By using this type of GAN 
that is itself learning the probability of the underlying distribution has many benefits 
of refining anomaly detection by authorizing to design a generator for generating 
boundary samples. The TailGAN addresses support alongside disjoint components 
as well as attains better performance in the images [3].
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Mode Collapse Reducing by Making Use of UniGAN (Uniform Generator) In 
this method the UniGAN is used which is a generative framework alongside a gen-
erator which is based out of the normalizing flow. It is a simple GAN but it is yet 
sample efficient to generate uniformity regularization which in turn can be easily 
adapted to any other type of generative framework. Udiv which is a new type of 
diversity metric is also suggested along with this type of GAN for the assessment of 
uniform diversity under the set of generative samples given. The regularization for 
consistency of the generator executed is formed by the following:
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After that we will put together the above defined NF-based generator as well as 
the normal discriminator within the generative framework giving out the GAN 
whose objective function is defined by the following equation:

 
  unigan gan gunif gunif� � �

 
(32)

where gan stands for original objective of GAN and balancing hyper-parameter is 
given by λgunif.

It was also proposed for maximizing the uniform diversity. By carefully examin-
ing the results experimented, it proves the effectiveness of the UniGAN framework 
to reduce the mode collapse [1].

SSAT-GAN (Spectral–Spatial Attention GAN) is a semi-supervised feature 
extraction technique that adds raw data into the framework of deep learning. Firstly, 
the unlabeled data is included in the discriminator for reducing the complication of 
samples training as well as by using the adversarial training it imparts an actual 
HSI (Hyperspectral Image) data distribution which is reconstructed. SSAT was also 
built to enhance the representation of HSIs and then it is extended to the discrimina-
tor along with the generator for extracting selective characteristics through ample 
spatial contexts as well as spectral signatures. Also, the SSAT modules grasp the 3D 
filter bank alongside SSAT weights for obtaining relevant feature maps for improv-
ing the distinct feature of the feature representation. For reducing mode collapse of 
GAN in unsupervised learning, the mean minimization loss is implemented. The 
loss function LG formed in this type of GAN is given by:
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The SSAT-GAN enhances the spreading of the characteristics with the extended 
SSAT feature for representing the feature. For improving characterization during 
the phase of feature extraction, this GAN effectively put on the attention weights for 
intensifying spectral bands as well as spatial correlations. For extracting discrimina-
tive features, SSAT-GAN put together the spectral as well as spatial attention mod-
ules in each of the discriminators together with generator composing of convolutional 
and transposed layers, respectively [2].

To solve the problem of mode collapse we had studied certain types of GANs in 
which the mode collapse is reduced either by introducing a new model in the GAN 
method or regularizing the latent or by adding some additional terms to the GAN 
loss function. Few of the methods discussed till now are helpful to solve the prob-
lem of mode collapse for only specific types of GAN. This shows that the problem 
of mode collapse is not solved globally or if it is solved, then either it involves very 
high computation or has very complex design or introduces some new hyperparam-
eter to the loss function which in turn needs to be tuned further for good results.

3  Conclusion

GAN has become a very interesting and exciting topic nowadays and has a lot of 
applications. The study of GAN opens doors of lots of opportunity. In this chapter 
we discuss about the generative models, their classification on the basis of maxi-
mum likelihood. Then we deeply discuss the generative adversarial network along 
with the adversarial idea and its training algorithm. There is small talk about the 
GAN’s training issues and understanding what is mode collapse. A thought is dis-
cussed about what GAN cannot generate and then there is a long discussion on the 
different types of GAN methods which try to alleviate mode collapse from GAN 
along with their objective function.
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Medical Image Synthesis Using Generative 
Adversarial Networks

Vishal Raner, Amit Joshi, and Suraj Sawant

1  Introduction

The development of deep neural networks and their cutting-edge performance in 
various imaging-related tasks has contributed to the arrival of third artificial intelli-
gence boom and major changes in image processing. Most of the practitioners make 
use of computer-aided diagnosis because certain diseases cannot be diagnosed man-
ually with bare eyes, so in order to diagnose such diseases many researchers pro-
posed supervised as well as unsupervised learning algorithms in respective imaging 
domains [1]. The diagnosis of medical imaging systems such as retinal imaging, 
pathology, radiology, and dermatology mostly rely on supervised learning algo-
rithms [2]. The training process of supervised algorithms requires annotated datas-
ets which contains images having ground truth class or label associated with them. 
The annotated medical imaging related datasets are not easily available due to legal 
restriction and patient’s privacy. Also it is very costly to produce a dataset; it is a 
tedious and time-consuming process to perform manual annotation of these acquired 
images in order to use it in supervised image analysis tasks. Because there is cur-
rently limited availability to large annotated datasets, deep learning approaches in 
medical diagnosis are still restricted. Deep learning algorithms, however, struggle 
with over-fitting when trained on small datasets, which is especially problematic 
when working with medical images. The varying incidences of different diseases 
frequently results in imbalanced datasets, particularly in medical images this issue 
further complicates the learning process. Therefore, it is necessary to find alterna-
tive ways to generate high-fidelity medical images for training supervised medical 
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diagnostic systems. This work proposed a variant of Generative Adversarial Network 
(GAN), a Deep Convolution GAN (DCGAN) to synthesize retinal fundus images. 
Creating pictures of the retinal vasculature with a more detailed retinal vein network 
is the goal of this literature.

Discriminator and generator are the two network models that make up the 
GAN. The generator with the help of random noise vector generates fake images. 
The produced image is then fed to discriminator module; the task of it is to classify 
it as fake or real. The generator model weights get updated each time discriminator 
identifies generated image as fake. Both models get trained simultaneously. The 
generator model tries to learn the probability distribution function of underlying 
training set data in order to generate new examples to fool the generator. The gen-
erators do not start generating images that are similar to training data in pixel val-
ues; rather it starts randomly generating images. As training proceeds generator 
starts capturing underlying patterns in training data distribution and generates 
images which are similar to training data. Both generator and discriminator work on 
single objective function; like game theory generator tries to maximize it on the 
other hand discriminator tries to minimize it by producing plausible images which 
can fool discriminator.

Generative modeling and image synthesis reached previously unheard-of quality 
levels after Goodfellow et al. introduced Generative Adversarial Networks (GANs) 
[3]. Each iteration of the research on GANs pushed the boundaries of image quality 
farther and further. With growing strength, the GANs are creating magnificent pho-
torealistic pictures that copy the information in the datasets they have been learned 
to replicate. GANs can generate data without defining the probabilistic model, 
which makes them data-generating tools. However GANs are also proven effective 
in various computer vision related tasks in the medical imaging domain [4]. GANs 
are an exciting and rapidly changing field that offer potential for generative models, 
as they can generate realistic examples of various problem domains [5]. It is possi-
ble to create a high-resolution RGB image such that even experts fail to identify 
between real used for training and synthetic image generated by the generator of 
GAN. Frechet Inception Distance (FID) score [6] was calculated using training data 
obtained from well-known and regularly used datasets to evaluate the clarity of the 
pictures produced using GANs.

1.1  Retinal Image Analysis

We can learn about the state of the entire system and the health of the eyes through 
retinal vessel network analysis. Ophthalmologists can identify early indications of 
vascular burden brought on by diabetes complications and hypertension and also the 
lethal retinal diseases like Retinal Artery Occlusion  (RAO) and Retinal Vein 
Occlusion (RVO), which are brought on by abnormalities in vascular structure. 
Medical images, in particular, are inadequate, costly, and have restricted uses due to 
legal concerns such as patient’s privacy. Furthermore, the size and annotation of the 
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datasets of medical images that are made publicly available are frequently inconsis-
tent. Because of this, they are less effective for training data-hungry neural net-
works. The medical diagnosis mostly relies on supervised learning algorithms 
which require images along with their ground truths [7]. Due to these limitations it 
is hard to train such supervised diagnosis systems. This has a direct impact on how 
quickly medical diagnosis systems can develop.

In applications where neural networks are being used to generate images, it 
requires up-sampling from low resolution to higher resolution. The up-sampling 
task in convolutional layers is carried out by one of the interpolation methods. It is 
similar to manual feature engineering, that is, interpolation has to be selected while 
deciding network architecture, hence network cannot learn anything from it. After 
applying convolutional operation, positional connectivity gets established between 
input and output in forward direction, that is, top right values in input matrix affects 
top right values in output matrix.

This work proposed a DCGAN-based approach where the generator only con-
sists of transposed convolutional layers as hidden layers. Transposed convolutional 
layers form the same connections as regular convolutions, but in the opposite direc-
tion (backward direction). Transposed convolution is used to carry out up-sampling, 
hence no requirement of fixed interpolation methods. The weights in transposed 
layers can be learned via backward connectivity, which helps the network up- sample 
data in the best way possible.

The remainder of the paper is structured as follows. In Sect. 2, we describe the 
Generative Adversarial Network and the previous work in this field. Section 3 elab-
orates about the methodology used. The experimental design and findings were cov-
ered in Sect. 4. In Sect. 5 elaborates about conclusions and findings of the 
proposed method.

2  Related Work

Wang et al. gave a detailed overview of deep learning based methods for medical 
image synthesis along with their clinical applications. Authors mentioned the need 
of additional quality assurance methods to identify abnormal generated images 
which are not compatible with imaging protocols [8]. Krithika et al. discussed vari-
ous GAN architectures and their applications in medical imaging domain. Authors 
have enlisted various use cases of GANs in the medical domain such as image syn-
thesis, segmentation, image reconstruction, registration, and classification [9]. 
Koshino et al. discussed about usefulness of GANs in medical imaging with respect 
to seven topics, namely, (I) data augmentation, (II) modality conversion, (III) de- 
noising, (IV) image reconstruction for, (V) super-resolution, (VI) domain adapta-
tion knowledge, and (VII) image generation with radio genomics and disease 
severity [10]. Yi et al. gave a detailed summary on medical image reconstruction 
publications, here authors enlisted dataset used, GAN methods used, qualitative 
measures, and loss functions used. Authors also gave a detailed summary of loss 
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Table 1 Batch-wise FID 
score of generated images

Batch number FID score

B-1 150.8387
B-10 110.8625
B-20 88.1051
B-30 84.0791
B-40 79.74568
B-50 57.3344
B-60 48.4354
B-70 49.5234
B-70 49.5234

functions used for GAN implementations and quantitative measure [11]. Skandarani 
et al. tested different GAN architectures on three medical image modalities, namely, 
RGB retina, cardiac cine-MRI, and liver CT images. Authors used FID score to 
measure the performance of GAN-generated images in terms of visual acuity. 
Authors further trained U-Net on the produced images and checked the segmenta-
tion accuracy with original data. Authors found out that images generated can fool 
experts visually, but segmentation results reflected that GANs are far away in cap-
turing the full richness of medical data [12]. Bissoto et al. used the variety of GAN 
architectures to generate and enhance skin lesion pictures. Authors further used 
anonymization techniques where real data gets replaced by synthetic data and the 
model performance is checked. Authors used FID score for the qualitative measure 
of generated images [13] (Table 1).

Andreini et al. developed a deep learning and GAN-based method for semantic 
segmentation of colonies of bacteria seen in photos of agar plates. Authors used 
CNN to separate bacterial colony from backgrounds, then used GAN to generate 
synthetic samples of these separated colonies. Authors then imposed these synthetic 
data on existing backgrounds of agar plate. Further, authors used both the real and 
synthetic data to train the network and achieved performance gain [14]. Chlap et al. 
gave a detailed overview of data augmentation techniques. Authors discussed about 
different GAN networks used for various image modalities. Authors also discussed 
about deformable techniques which allow complex form of data augmentation [15]. 
Ghassemi et al. proposed a new deep learning method to perform tumor classifica-
tion task in MRI images. Initially authors pre-trained the network as discriminator 
in GAN on various MRI image datasets. Authors then placed fully connected layers 
and full network is trained as a classifier in order to distinguish among three classes 
of tumor. Authors achieved significant performance gain than other state-of-the-art 
methods [16]. Zhu et al. discussed about limitations of use GAN trained on natural 
images for medical image synthesis. Authors proposed lesion focused single image 
super resolution (LF-SR) technique for brain tumor MRI images to overcome this 
issue. Authors tested various GAN architectures, namely, WGAN, WGAN-GP, 
MS-GAN; they found that MS-GAN along with LFSR performed better [17].

Ma et al. proposed a residual neural network (ResNet) and DC-GAN based blood 
cell image classification framework. The authors implemented a novel loss function 
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in this paper and evaluated the framework on White Blood Cell (WBC) pictures, 
achieving a classification accuracy of 91.7%  [18]. Joshi et  al. proposed a GAN- 
based technique to improve MRI image resolution. Authors have trained SRGAN to 
convert low resolution blurry images to more detailed high resolution by 4x up- 
scaling factor. Authors used peak signal to noise ratio (PSNR) and structural simi-
larity index (SSIM) as performance metric and achieved a score of 6.403804 and 
0.787986, respectively [19]. Nema et al. proposed the (RescueNet) residual cyclic 
unpaired encoder-decoder network which uses an unpaired adversarial learning 
method which segments whole tumor and performance enhancement in regions in 
brain MRI scan. Authors have used DICE and sensitivity measure as performance 
parameters and tested results on BraTS 2017 and BraTS 2015 dataset [20]. Rashid 
et al. proposed GAN-based data augmentation and skin lesion classification tech-
nique. Authors first generated synthetic images, which then fed to discriminator to 
predict the class of it. Authors achieved the balanced accuracy score of 0.861 [21]. 
Qin et al. proposed Style-GAN based skin lesion image synthesis technique. Authors 
have constructed the classifier on pre-trained deep Neural-Network with the help of 
transfer learning. Authors used the FID and Inception score (IS) as performance 
metrics. Authors achieved improvement of balanced multiclass accuracy, sensitiv-
ity, accuracy, specificity, and average precision by 5.6%, 24.4%, 1.6%, 3.6%, and 
23.2%, respectively, than the CNN-based model [22]. Nie et al. implemented a com-
pletely convolution-based network model for the synthesis of medical images. 
Authors also applied Auto-context model for context aware image synthesis. The 
proposed model is tested on CT, 3 T MRI, and 7 T MRI. Authors addressed the 
synthesis of CT from MRI image and 7 T MRI from 3 T MRI image. Authors have 
used MAE and PSNR as performance measure [23]. Zhou et al. suggested (HI-Net) 
model to synthesize MRI images from several modalities. Authors have exploited 
the correlations present among multiple image modalities by means of the layer- 
wise multi-modal fusion strategy. Authors have used PSNR, SSIM, and Normalized 
Mean Square Error (NMSE) as a performance measure [24].

Sun et al. proposed an ANT-GAN image synthesis model to synthesize normal 
medical images based on their corresponding abnormal counterpart. The author 
tested the model on (BratS18) and liver tumor segmentation challenge dataset 
(LiTS). Authors used PSNR and VERISIMILITUDE score (VS) as performance 
metrics [25]. Devi et al. proposed DR-DCGAN to synthesize diabetic retinopathy 
images. Authors used resnet50 model to check the classification accuracy using 
synthesized images. Authors used APTOS Blindness dataset, and achieved classifi-
cation accuracy of 98.7% [26]. You et al. gave n detailed survey of various applica-
tions of GAN-based techniques in ophthalmology domain. In this literature authors 
have discussed about various types of GANs used, imaging domains, and corre-
sponding results obtained [27]. Iqbal et  al. proposed MI-GAN model for retinal 
image synthesis. The proposed model can synthesize retinal images along with their 
segment mask. Authors tested the proposed model on STARE and DRIVE dataset. 
Authors used DICE coefficient score as performance metric and achieved the values 
0.837 and 0.832 for STARE and DRIVE dataset, respectively [28]. Shenkut et al. 
proposed a two-stage GAN-based technique to synthesize fundus images. At first 
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stage the segmented vessel tree is extracted, the second stage performs image to 
image translation and produces fundus image. Furthermore, authors have built a 
classification model which achieved 0.872 validation accuracy [29]. Liang et  al. 
proposed an C-GAN method for retinal image synthesis. Authors have used VGG-19 
feature extraction module in generator part. Based on combined loss, the generator 
model is constrained to generate visually high-quality images only. Authors used 
Frechet Inception Distance (FID) and Sliced Wasserstein Distance (SWD) as per-
formance metrics [30]. Yu et al. proposed a multi-channel multi-landmark (MCML) 
GAN-based image synthesis technique to synthesize retinal images. Authors used 
DRIVE and DRISHTI-GS dataset to train pix2pix-GAN and cycle-GAN architec-
tures. PSNR and SSIM metrics are used as performance measures [31]. Beers et al. 
proposed a PGGAN-based image synthesis model for retinal and MRI image syn-
thesis. Authors used Retinopathy of Prematurity (ROP) and multi-modal MRI 
images of glioma as dataset to train the proposed model. The authors applied the 
cutting-edge segmentation method and predicted  segmentation masks created by 
algorithms utilizing GANs. The authors obtained an AUC score  of 0.97 [32].

3  Proposed Methodology

In this work we have implemented DCGAN to synthesize retinal vasculature 
images. Convolution layers are used in place of fully connected GAN layers in the 
DCGAN model. The overview of the entire architecture is shown in Fig. 1. In the 
GAN architecture the generator is a forger attempting to generate data that appears 
to be real. Although it does not know what the actual data is, it can adapt thanks to 
the discriminator model’s feedback. The discriminator compares the generated data 
with actual data, in our case generated images with real images and tries to identify 
it as real or fake. The back-propagation of the generator model is assisted with the 
help of output of the discriminator network. Conceptually, the GAN may be thought 
of as the generator and discriminator models competing in a min-max game. Both 
the models are trained simultaneously where the discriminator model tries to mini-
mize the loss while the generator tries to maximize the loss. The generator network 
receives the random noise z as an input, using z to generate the output picture G (z). 
The discriminator accepts a synthesized picture (G(z)) or a real image (X) as input 
and outputs D, where D has a value between [0, 1].

The equation of loss function of GAN can be summarized as shown below in eq. 
1 based on original paper by Ian Goodfellow. G (z) is the generator’s output image 
produced using random noise z. D(x) is the discriminators output probability that 
the original image x is real. D (G (z)) is the output of discriminator indicating the 
probability that the generated data G (z) is real. Ex and Ez denote mean log likeli-
hood over all real data points and synthetic data points, respectively.

 
min max log [log~ ~G D X Pdata X z Pz zF G,D E D x E D G z� � � � �� ��� �� � � �� � � � 1 ��� �� �� �

�  
(1)
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Fig. 1 Proposed Deep Convolution Generative Adversarial Network (DCGAN)

In the eq. (1) during training phase of discriminator, it tries to maximize [Log 
(D(x))], that is, achieving the correct labels as real or synthetic for the classification 
of provided data x. During training of generator, it focuses on minimizing the [Log 
(1-(D (G (z)))] . Here the generator cannot influence the [Log (D(x))] directly.

3.1  Generator Architecture

The architecture of the employed generator is depicted in Fig. 2. This work imple-
mented the generator model based on transposed convolution layers. Transposed 
convolution layers help in reversing the down-sampling of convolution layers. This 
module consists of random noise z, 1 fully connected layer, and 5 transposed con-
volution layers. In the layer between convolutions, batch normalization and leaky 
ReLU activation function are utilized. The down-sampling is not recommended at 
generator. Transposed convolution layers have been used for up-sampling. At each 
layer the image size is doubled and filter size is halved. The output produced by 
generator module has dimensions as 256 × 256 × 3.
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Fig. 2 Proposed Generator Architecture

Fig. 3 Discriminator Architecture

3.2  Discriminator Architecture

The architecture of the employed discriminator is depicted in Fig. 3. The input to the 
discriminator is 256 × 256 × 3 either real or synthesized images. In the proposed 
architecture at each layer the filter size is doubled. Only strided convolution layers 
have been used, as down-sampling is not recommended. It uses 5 convolution layers 
each using leaky ReLU activation function and batch normalization. The output of 
the discriminator is a probability value between zero and one. The discriminator 
loss function is given below in eq. 2.

 D Loss D Loss Real D Loss Fake_ _ _ _ _� �  (2)
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D_Loss_Real is a loss when discriminator predicts real image as fake.
D_Loss_Fake is a loss when discriminator predicts fake image as real.

This work used label smoothing technique in order to facilitate discriminator to 
generalize better. For real images all labels are set to 1, by using label smoothing we 
slightly dropdown this value 1 to 0.9 or 0.95.

4  Results and Discussion

4.1  Experimental Setup

The proposed model has been built using python 3.9 and TensorFlow 2.x used to 
build the neural networks of generator and discriminator. The training is carried out 
on NVIDIA DGX-WORKSTATION; it consists of four NVIDIA Volta V100 
Graphics cards each with 32GB of memory. The compute capability of these 
NVIDIA cards is 7.0.

4.2  Dataset Description

The GAN model is trained using data from the DRIVE fundus imaging dataset. 
There are 40 color fundus photos in it. These photos were taken in the Netherlands 
as part of a program to check for diabetic retinopathy. The photographs were taken 
with a Canon CR5 non-mydriatic 3CCD camera with an Field of View (FOV) of 45 
degrees. Each picture has a 584 by 565 pixel resolution and three color channels.

4.3  Performance Metrics

Heusel et al. presented Frechet inception distance to evaluate the quality of GAN- 
generated pictures. The FID compares between the distribution of synthesized 
images and set of real images [6].

 
FID Tr� � � ��� � � ��� �� �� �w w w2

1 2/

 
(3)

N(μ, ∑) is the multivariate normal distribution inferred using Inception-v3 charac-
teristics calculated on real-world pictures in eq. (3). The multivariate normal distri-
bution N(μw, ∑w) is calculated using Inception v3-features computed on synthesized 
pictures.
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Fig. 4 Box Plot of FID 
Score

This work also computed seven more image similarity metrics, for the evaluation 
of the same the code provided by Muller et al. is used [32]. The metrics that are 
employed include the peak signal to noise ratio (PSNR), the structural similarity 
index (SSIM), the feature-based similarity index (FSIM), the signal-to- reconstruction 
error ratio (SRE), the spectral angle mapper (SAM), and the universal image quality 
index (UIQ) (Fig. 4).

4.4  Results

In this work the proposed model is trained for fundus image synthesis. The model is 
trained for 6000 epochs with hyper-parameter values as input image size 256 × 256 
× 3, noise vector value 150, batch size of 16, discriminator learning rate as 13 × 
10(−6), generator learning rate as 13 × 10(−5), and alpha value as 0.25. Adam opti-
mizer is used. The model took approximately 18 hours to finish training. In this 
work we have saved images for every 5 batches and recorded corresponding epoch 
number and generator and discriminator loss. It is found that our model produced 
sharper and clearer images of size 256 × 256 × 3 after 800 epochs. Almost all 
images produced after 900th epoch are visually accurate and preserved details. 
Figure 5 shows the generator loss and discriminator loss at each epoch.

This literature makes use of FID score to perform a qualitative measure of GAN- 
synthesized images. To check the visual acuity of synthesized images, the FID score 
is computed for each batch of 20 images with the actual training dataset. Images 
synthesized after 900 epochs are used to measure FID score. A total of 70 image 
batches of 20 image each are formed and FID computations have been per-
formed. Table 1 displays the FID score of each batch that was measured; the best 
FID for the batch is 48.256. The FID score pattern among GAN-generated picture 
batches included for evaluation. Figure 4 gives box plot distribution of FID score 
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Fig. 5 The line plot of generator and discriminator loss recorded every third epoch

Fig. 6 Input images

along these batches. It is observed that as training proceeds, FID score tends to shift 
toward zero.

The generator and discriminator loss is computed at every third epoch, Fig. 5 
shows the line plot of model’s losses. Figure  6 shows the sample of four input 
images out of 40 images from DRIVE dataset. Figure  7 shows the synthesized 
images. It is found that the proposed model generated visually acute images in FID 
standards. Also it successfully captured the distribution of train dataset and pro-
duced images with varying optic disk position, vessel color, and vein network which 
was not present in original data (Table 2).
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Table 2 Performance metric evaluation scores for images shown in Figs. 6 against 7

Image\Metric FID RMSE PSNR SSIM FSIM SRE SAM UIQ

a 62.8273 0.002859 50.8748 0.9701 0.6794 53.3361 67.2679 0.4197
b 44.5502 0.002568 51.8060 0.9699 0.7204 51.2326 66.7308 0.5159
c 77.8374 0.002265 52.8983 0.9822 0.7064 52.9385 66.2470 0.5052
d 63.8814 0.002146 53.3639 0.9795 0.7161 50.8799 65.1703 0.4992
e 78.9070 0.003600 48.8721 0.9670 0.5832 51.4702 66.4311 0.3819

Fig. 7 GAN-generated images

5  Conclusions

Retinal image analysis plays an important role in ophthalmology to diagnose dis-
eases like RVO and RAO. These types of diagnoses make use of supervised algo-
rithms hence require huge annotated datasets. Due to various factors the huge 
clinical imaging data is not available easily. This work proposes the GAN-based 
image synthesis method to generate infinite synthetic retinal images. This work 
avoided usage of redundant fully connected layers hence reduced the number of 
trainable parameters. The task of up-sampling is carried out by the usage of trans-
posed convolution layers; it is found out that usage of transposed convolution layers 
gave better results. Further this approach can be extended to other imaging domains 
to generate synthetic images feasibly. The proposed model requires few training 
samples, hence can be used to generate images of specific rare diseases.

Acknowledgments We are grateful to the Computer Engineering and Information Technology 
department, COEP Technological University (COEP Tech.) for the provision of GPU computing 
facility for the computation of this work. The GPU server facility was established under the 
TEQIP-III (A World Bank Project).

References

1. Nakata, N. (2019). Recent technical development of artificial intelligence for diagnostic medi-
cal imaging. Japanese Journal of Radiology, 37, 103–108.

2. Varoquaux, G., & Cheplygina, V. (2022). Machine learning for medical imaging: 
Methodological failures and recommendations for the future. npj Digital Medicine, 5(1), 48.

V. Raner et al.



53

3. Goodfellow, J., Pouget-Abadie, M., Mirza, B., Xu, D., Warde-Farley, S., Ozair, A.  C., & 
Bengio, Y. (2014). Generative adversarial Neworks. NIPS, 2014.

4. Wang, Z., She, Q., & Ward, T. E. (2021). Generative adversarial networks in computer vision: 
A survey and taxonomy. ACM Computing Surveys (CSUR), 54(2), 1–38.

5. Lan, L., et al. (2020). Generative adversarial networks and its applications in biomedical infor-
matics. Frontiers in Public Health, 8, 164.

6. Heusel, M., Ramsauer, H., Unterthiner, T., & Nessler, B. (2017). Günter Klambauer, and Sepp 
Hochreiter. GANs trained by a two time-scale update rule converge to a nash equilibrium. 
arXiv preprint arXiv, 1706.08500.

7. Kim, M., et al. (2019). Deep learning in medical imaging. Neurospine, 16(4), 657.
8. Wang, T., et al. (2021). A review on medical imaging synthesis using deep learning and its 

clinical applications. Journal of Applied Clinical Medical Physics, 22(1), 11–36.
9. Suganthi, K. (2021). Review of medical image synthesis using GAN techniques. ITM Web of 

Conferences, 37.
10. Koshino, K., et al. (2021). Narrative review of generative adversarial networks in medical and 

molecular imaging. Annals of Translational Medicine, 9, 9.
11. Yi, X., Walia, E., & Babyn, P. (2019). Generative adversarial network in medical imaging: A 

review. Medical Image Analysis, 58, 101552.
12. Skandarani, Y., Jodoin, P.-M., & Lalande, A. (2021). Gans for medical image synthesis: An 

empirical study. arXiv preprint arXiv, 2105.05318.
13. Bissoto, A., Valle, E., & Avila, S. (2021). Gan-based data augmentation and anonymization for 

skin-lesion analysis: A critical review. Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition.

14. Andreini, P., et al. (2020). Image generation by GAN and style transfer for agar plate image 
segmentation. Computer Methods and Programs in Biomedicine, 184, 105268.

15. Chlap, P., et al. (2021). A review of medical image data augmentation techniques for deep 
learning applications. Journal of Medical Imaging and Radiation Oncology, 65(5), 545–563.

16. Ghassemi, N., Shoeibi, A., & Rouhani, M. (2020). Deep neural network with generative adver-
sarial networks pre-training for brain tumor classification based on MR images. Biomedical 
Signal Processing and Control, 57, 101678.

17. Zhu, J., Yang, G., & Lio, P. (2019). How can we make GAN perform better in single medical 
image super-resolution? A lesion focused multi-scale approach. In 2019 IEEE 16th interna-
tional symposium on biomedical imaging (ISBI 2019). IEEE.

18. Ma, L., et al. (2020). Combining DC-GAN with ResNet for blood cell image classification. 
Medical & Biological Engineering & Computing, 58, 1251–1264.

19. Joshi, O. S., Joshi, A. D., & Suraj, T. S. Enhancing Two Dimensional Magnetic Resonance 
Image Using Generative Adversarial Network. In IEEE 9th Uttar Pradesh section interna-
tional conference on electrical (p. 2022). Electronics and Computer Engineering (UPCON).

20. Nema, S., et  al. (2020). RescueNet: An unpaired GAN for brain tumor segmentation. 
Biomedical Signal Processing and Control, 55, 101641.

21. Rashid, H., Asjid Tanveer, M., & Khan, H. A. (2019). Skin lesion classification using GAN 
based data augmentation. In 2019 41st annual international conference of the IEEE engineer-
ing in medicine and biology society (EMBC). IEEE.

22. Qin, Z., et  al. (2020). A GAN-based image synthesis method for skin lesion classification. 
Computer Methods and Programs in Biomedicine, 195, 105568.

23. Nie, D., et al. (2018). Medical image synthesis with deep convolutional adversarial networks. 
IEEE Transactions on Biomedical Engineering, 65(12), 2720–2730.

24. Zhou, T., et al. (2020). Hi-net: Hybrid-fusion network for multi-modal MR image synthesis. 
IEEE Transactions on Medical Imaging, 39(9), 2772–2781.

25. Sun, L., et al. (2020). An adversarial learning approach to medical image synthesis for lesion 
detection. IEEE Journal of Biomedical and Health Informatics, 24(8), 2303–2314.

26. Sravani, D. Y., & Kumar, S. P. (2022). DR-DCGAN: A deep convolutional generative adver-
sarial network (DC-GAN) for diabetic retinopathy image synthesis. Webology, 19.2.

Medical Image Synthesis Using Generative Adversarial Networks



54

27. You, A., et al. (2022). Application of generative adversarial networks (GAN) for ophthalmol-
ogy image domains: A survey. Eye and Vision, 9(1), 1–19.

28. Iqbal, T., & Ali, H. (2018). Generative adversarial network for medical images (MI-GAN). 
Journal of Medical Systems, 42, 1–11.

29. Shenkut, D., & Bhagavatula, V. (2022). Fundus GAN-GAN-based fundus image synthesis for 
training retinal image classifiers. In 2022 44th annual international conference of the IEEE 
engineering in Medicine & Biology Society (EMBC). IEEE.

30. Liang, N., et al. (2022). "end-to-end retina image synthesis based on CGAN using class feature 
loss and improved retinal detail loss." IEEE. Access, 10, 83125–83137.

31. Yu, Z., et al. (2019). Retinal image synthesis from multiple-landmarks input with generative 
adversarial networks. Biomedical Engineering Online, 18(1), 1–15.

32. Beers, A., et al. (2018). High-resolution medical image synthesis using progressively grown 
generative adversarial networks. arXiv preprint arXiv, 1805.03144.

V. Raner et al.



55

Chest X-Ray Data Augmentation 
with Generative Adversarial Networks 
for Pneumonia and COVID-19 Diagnosis

Beena Godbin A and Graceline Jasmine S

1  Introduction

Recently, Convolutional Neural Networks (CNN) have demonstrated great out-
comes on a variety of tasks when provided with appropriate amounts of training 
data [1–3]. Little datasets in many fields, including medical imaging, continue to be 
a major contributor to less CNN performance and easily prone to overfitting on 
training dataset. It is possible to improve the performance of CNNs by making more 
efficient use of the data that is already available. Several methods of augmentation, 
such as random rotations, flips, and the addition of a variety of noise waveforms, 
have been suggested [4, 5] as possible augmentation techniques. The work can be 
broken down into the following sections: Section 1.1 describes the works that are 
linked to our work. In Sect. 2, we will concentrate on the specific GAN network 
designs that we chose to implement. Section 3 provides a technical description of 
the study and the data collection used. The experiments that we carried out and the 
findings that we gathered are discussed in great detail in Sect. 4. In Sect. 5, we draw 
our conclusions, discuss potential applications for the future, and conclude our work.

1.1  Related Works

GAN model was proposed by Goodfellow [6]. Chest tomography images with high 
contrast and non-contrast were learned using Cycle-GAN [7], hence enabling the 
generation of synthetic non-contrast images of CT. This led to an improvement in 
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the segmentation model of various organs in computed tomography that were con-
structed using a U-Net based model [8]. Radford et al. [9] developed a model with 
deep CGAN. This was the outcome of the above mentioned. In CT scans of liver 
lesions and mammograms, DCGAN and CGAN (conditional-GAN) [10] signifi-
cantly improved the findings. CNNs were used in order to classify the lesions 
employing these methodologies [11, 12]. In this research, we present a GAN model 
for the model of augmentation of data that is especially designed to increase the 
performance of another method of GAN. This model’s goal is to produce better 
results than the original GAN model. Our model was influenced by the publication 
Deep Convolutional- GAN (DCGAN) [13], which came out in 2013. The use of 
Deep Learning models for diagnostic medical imaging has shown promising results 
despite the growing number of models. However, before these models can classify 
diseases like pneumonia and COVID-19, they need a significant amount of labeled 
data to learn and generalize. Several research have developed supervised methods to 
recognize COVID-19 markers from chest X-ray pictures using the COVID – lung 
xray [14] and COVIDx [15] datasets. The CNN-based COVID-NET [15] built by 
Wang et al. achieved an accuracy of 93.3% for multi-class classification in a test. 
The leftover images from each class were used to train the model. In DarkNet [16], 
which was created by Ozturk et al. (COVID-19 vs. No Findings), the multi-class 
classification (Pneumonia vs. COVID-19 vs. No Results) and binary classification. 
They analyzed 24 COVID-19 pictures, 100 photos of normal, and 100 images of 
pneumonia and reported binary classification accuracy of 98.08% and multi-class 
classification accuracy of 0.86%.

Karim et al. [17] proposed a deep COVID explainable model for identifying 
COVID from chest X-ray images. Hemdan et  al. COVIDX-Net.’s [18], which is 
constructed of different models like VGG19, InceptionV3, and DenseNet121, was 
evaluated on 55 images of X-ray taken from the dataset of COVID-19 lung X-ray. 
The images were used to find the performance of the network. 25 COVID-19 tests 
came back negative, while 25 COVID-19 tests came back positive. According to 
what they have stated, the accuracy of each analyzed architecture ranges anywhere 
from 50% (InceptionV3) to 90% (VGG19 and DenseNet201). Capsule networks 
were utilized by Afshar et al. in order to identify COVID-19-positive instances via 
the COVIDx dataset. Their model was initially developed with lung X-ray photos 
from other datasets that were not part of COVID-19. There was an area under the 
Region Of Characteristics (ROC) curve (AUC) of 97%, accuracy of 96.7%, sensi-
tivity of 91%, and specificity of 96.8%. The authors did not reveal how many pho-
tographs were taken for each category of test.

Using deep learning models, Ghoshal [19] has developed a model for detecting 
lung diseases more easily. In a recent paper, Afshar et al. [20] explained a capsule 
network based model for COVID detection. The COVID-19 chest X-ray dataset 
[14] and COVIDx [15] datasets were imbalanced in a latest study by DeGreve et al. 
[21]. The results of this study showed that these models overfit to the data and were 
unable to generalize to other datasets. In an effort to increase the accuracy of GAN 
model based networks, we investigated data augmentation approaches in light of 
GAN’s recent success in identifying abnormalities in radiological pictures [22, 23]. 
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On one dataset, we had normal pictures of lung X-rays and images of pneumonia, 
and on the other, we had normal chest X-ray images, images of COVID-19, and 
images of pneumonia. There are COVID-19 images in both of these datasets. ANN 
model for diabetes prediction was proposed by Revathi [25]. Szegedy et al. [26] 
developed a vision model for identifying disease. A deep learning model has been 
proposed by Godbin and colleagues [27, 28] for the identification of pneumonia and 
COVID. A trained GAN model can improve generative models’ accuracy by pro-
ducing X-ray pictures independent of their labels by generating new X-ray pictures. 
We created these new images without using the labels from the originals. We 
assessed the effectiveness of the GAN model based on the training of DCGAN for 
unknown abnormalities detection (AnoGAN) [22], and our results demonstrated 
enhanced classification accuracy for instances of pneumonia and COVID-19 posi-
tivity with increased ROC curve area under the receiver operating characteristic 
(AUC), specificity, and sensitivity. Regardless of the subject matter of the photo-
graphs that is given to analyze as input, we were able to demonstrate that our trained 
GAN is capable of producing new data that is unique to a certain field. Due of this, 
an unsupervised data augmentation was allowed to take place in the case that some 
of the photographs included in the dataset lacked associated labels. This was made 
possible as a result of the fact that the data was readily available. We demonstrated 
the ineffectiveness of these models in successfully augmenting data to train a gen-
erative based model when compared to our GAN for detecting pneumonia and 
COVID-19 images by training the same DCGAN model on the augmented data 
using conventional augmentation techniques and creating new data using another 
DCGAN. This allowed us to show that our GAN was able to successfully detect 
pneumonia and COVID-19 images. To achieve this, we generated additional data 
using a different DCGAN for the data augmentation and trained the same DCGAN 
model on the supplemented data. Because of this, we were able to demonstrate that 
our GAN is superior when it comes to recognizing COVID-19 pictures and 
pneumonia.

2  GAN Architecture

GANs are a particular type of framework for a generative method. A generative 
model is one that attempts to learn the data distribution in an implicit manner pdata 
from a dataset of sample models x(1), …, x(n) to further create new data samples taken 
from the learned model distribution. We employed a technique called Deep 
Convolutional GAN (DCGAN), which involves using deep CNNs for the Generator 
(G) model and the Discriminator (D) networks. This method is made up of two 
neural networks, both of which undergo training at the same time. The initial net-
work, which is referred to as the discriminator, is represented by the letter D. The 
discriminator is responsible for determining which samples are authentic and which 
ones are counterfeit. It takes in a sample of x as its input and output D(x), the likeli-
hood of it being a genuine representation of the population.
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The second network, which is referred to as the generator, is represented by the 
letter G. The generator creates synthetic data samples that D will, in all likelihood, 
regard to be genuine samples. G receives input sample models z (1), …, z(m) from a 
well-known simple data distribution model pz, basically an equal kind of data distri-
bution, and it merges G(z) to the image space of data distribution model pg. The aim 
of G is to get pg = pdata. In order to train adversarial networks, one must first optimize 
the value loss function of a two-player minimax game, which looks like this:

 
min max logG DE logD x E D G zx pdata x� �� � � � � �� �� ��

�
�
�px 1

 
(1)

In order to maximize D(x) for pictures with x ∼ pdata and minimize D(x) for images 
with x ∼  pdata, the discriminator (D) is trained. In order to trick discriminator (D) 
during training such that D(G(z)) pdata, the generator G(z) generates pictures. The 
generator is therefore taught to minimize 1D(G(z)) or, alternatively, to maximize 
D(G(z)). Throughout the training phase, both the G (generator) and the D (discrimi-
nator) become better at their respective jobs. The generator becomes good at gener-
ating images that are more original, while the discriminator (D) becomes good at 
differentiating actual photos from synthetic images. Because of this, it is often 
referred to as “adversarial training.”

2.1  Generator Architecture

As input, the generator network model receives a vector of one hundred random 
values selected from a normal distribution, and as output, it produces a chest X-ray 
picture with the dimensions 64 by 64 by 1. In order to up-sample the picture, the 
network design includes a dense layer that has been reconfigured into a 4 by 4 size 
by 512, as well as four fractionally strided convolutional layers that each have a 
kernel size of 4 by 4. One interpretation of a fractionally strided convolution is that 
it is an expansion of the pixels achieved by interpolating zeros between them. The 
output layer is exempt from having batch normalization done to it, but every other 
layer of the network does. Stabilizing the process of GAN learning and preventing 
the generator (G) from condensing all of the sample models into a single model may 
be accomplished by normalizing answers such that they have a mean of zero value 
and a variance value of one throughout the whole mini-batch. All of the layers make 
use of ReLU activation functions, with the exception of the final layer, which makes 
use of activation function tanh.
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Fig. 1 Architecture of GAN

2.2  Discriminator Architecture

The discriminator (D) network receives the input picture, which is a chest X-ray 
measuring 64 by 64 by 1, and produces only one decision: whether or not the X-ray 
image in question is authentic. Figure 1 presents an illustration of the discriminator 
network’s underlying architecture. The network has a fully connected layer in addi-
tion to its four convolution layers, each of which has a kernel size of 4 by 4. Each 
convolution layer receives an application of stroked convolutions in order to mini-
mize the spatial dimensionality. Every layer of the network, with the exception of 
the input layer and output layers, has the batch-normalization algorithm applied to 
it. With the exception of the output layers, which uses the Sigmoid value function to 
calculate the similar probability (0–1) score of the images, leaky ReLU activation 
value functions are incorporated to every other layer. The activation function 
f(x) = max (0, x) is applicable to all layers. Moreover, dropout is applied to all of the 
network’s layers, with the exception of the second and output levels.

2.3  Classifier

Figure.1 illustrates both the design of the classifier that we propose and the relative 
trainable parameter values. Because of these limited input size and datasets, CNN 
designs often used for medical imaging feature fewer convolutional layers than 
those used for other applications. Grayscale input X-rays with a fixed size of 64 by 
64 and normalized within the range are sent to our classification Network (0, 1). The 
model is comprised of three convolutional layers, each having a kernel that is 3 by 
3, batch normalization, ReLU activation function, and maximum pooling layer. The 
output layer consists of 2 layers that are fully connected, each of which has a drop-
out of 0.5 and a softmax output function applied across all 4 classes. In order to 
reduce overfitting of the trainset, which is especially prevalent in datasets with a 
small size, batch normalization and dropout have been incorporated.

Chest X-Ray Data Augmentation with Generative Adversarial Networks for Pneumonia…



60

2.4  Batch Size

While training a GAN, it is generally advised to avoid selecting a high batch size if 
at all possible. The reason for this is that when the discriminator is first being 
trained, it is given a huge number of instances to train on due to the bigger batch 
size, which might lead the generator to get overwhelmed. This can result in the 
network being unstable, and it is possible that the network as a whole will not con-
verge. We opted to utilize a pretty modest batch size of 32 since, taking into consid-
eration the size of the data we selected to train our algorithm on, it was a rather 
small dataset. We found that the batch size was fairly adequate for our use case, and 
we were able to see that the discriminator and the generator were both capable of 
training with stability.

2.5  Transforms of Training Samples

Before feeding the training samples to the network for the purpose of training, we 
might chain together a variety of different picture transformations. The following 
are the transformations that were used:

• Resize: This assists in resizing the picture that was entered to match the needed 
size. Because our GAN only accepts photographs, we scale the input photos to 
the necessary size before feeding them to the network that are 64 pixels width 
and 64 pixels height.

• Random horizontal flip: This will rotate the picture you have been provided 
horizontally.

• Grayscale: We make use of this function in order to transform the picture that 
was provided as input into an image with a single channel that can subsequently 
be sent to the network.

• Normalize: We use this function to normalize the picture that has been supplied 
to us such that both the mean and the standard deviation have unit values.

2.6  Hyperparameters

Each of the four categories of chest X-ray pictures – normal, COVID-19, bacterial 
pneumonia, and viral pneumonia – were each assigned to their own unique DCGANs 
and trained to synthesize the images of chest X-ray. This method of training for both 
the generator and the discriminator was performed in an iterative manner. As was 
noted before, we worked with small batches consisting of 32 chest X-rays each 
x1

(1), …, x1 (m) for each X-ray type l ∈ (normal, COVID-19, bacterial pneumonia, and 
viral pneumonia) and n = 32 noise data samples z (1), …, z(n) taken from equal normal 
distribution between [−1–1]. The leak’s incline was determined to be leak = 0.2 in 
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the Rectified Linear Unit (ReLU) that was being used. The weights were initially set 
to follow a uniform normal value with a zero-centered mean value and a 0.02 devia-
tion. We used a technique called stochastic gradient descent (SGD) in conjunction 
with the adaptive moment optimizer. Adam is a gradient-aware adaptive momentum 
estimator that takes into consideration both the first and second gradients. These 
moments are controlled by the parameters 1 = 0.05 and 2 = 0.989, respectively. A 
learning rate of 0.0001 was maintained throughout the first stage of development of 
both the generator and discriminator networks.

By experimenting with several alternative combinations of the learning rates for 
the generator and discriminator model networks, subsequent phases assessed the 
convergence of the entire GAN. Finally, we decided to set the generator network’s 
learning rate at 0.002, which was a significant increase. The section on the outcomes 
provides an explanation for the rationale for the same.

2.7  Evaluation Metrics

In order to do an analysis of the effectiveness of a GAN, we keep track of the train-
ing statistics listed below:

• Loss_D: The entire amount of the losses for all of the correct batches and all of 
the false batches combined, which is known as the discriminator loss 
(log(D(x)) + log(D(G(z)))).

• Loss_G: It is the total loss from the generator that is calculated here as 
log(D(G(z))).

• D(x): It is a typical depiction of the discriminator’s output for the entire batch of 
real data. This ought to start off close to 1 and maybe converge around 0.5 as G 
becomes better.

• D(G(z)):This represents the discriminator outputs on an average basis for the 
fake batch as a whole. The first value, denoted by D G z1, comes from a time 
before D is modified, whereas the second number, denoted by D(G) z2, comes 
from a time after D is updated. These figures should begin close to 0, and as G 
becomes better, they should converge to 0.5. As a discriminator is updated, the 
process attempts to bring D(x) as near to 1 as possible while also bringing 
D(G(z)) as close as possible to 0.

On the other hand, the purpose of an update to a generator is to improve D(G(z)). 
This means that it attempts to deceive the discriminator into believing that the 
images that were produced from random noise are the real ones. To put it another 
way, it endeavors to deceive the discriminator into thinking that the noise-based 
visuals are the real ones. In a perfect world, the discriminator would not be able to 
tell the difference between real photographs and photoshopped ones. On the other 
hand, this situation is difficult to accomplish in actual life. Because there were so 
many cases in the initial test set (9,9,9,9), we decided to use a group of 36 photos 
that had an equal number of chest X-rays for each of the four classes. We chose to 
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take the average of each test conducted for a total of 500 iterations so that we could 
obtain a more accurate evaluation of the performances. A classification total accu-
racy metric was employed in the process of assessing the accuracy of the classifica-
tion model. Additionally, for this also we computed confusion matrices, sensitivity 
matrices, specificity matrices, accuracy matrices, and f1 score measures for each 
type of lesion. The following equations offer all of these measurements for your 
perusal and consideration:

 
Accuracy �

�
� � �
TP TN

TP FP TN FN  
(2)

 
Precision �

�
TP

TP FP  
(3)

 
F1 2� � �

�
�
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Precision Sensitivity

Precision Sensitivity  
(4)

 
Sensitivity �

�
TP

TP FN  
(5)

 
Specificity �

�
TN

TN FP  
(6)

• Total Accuracy: This is the total degree to which the classification corresponds to 
the reality of the situation.

• Accuracy: This is the degree to which the categorization is similar to the 
intended class.

• Sensitivity: This statistic, which is also referred to as Recall, calculates the reli-
ability of the prediction of a class (i.e., the percentage of COVID-19 affected 
people who are accurately identified as having some illness) and is given by the 
number of samples that were rightly predicted in relation to the total amount of 
samples belonging to that class.

• Specificity: Or precision, this evaluates how many false positives are accurately 
recognized out of the total false positives (i.e., the proportion of healthy individu-
als who are accurately classified as not having COVID-19 and pneumonia).

• F1Score: It is a metric that indicates how accurate a test is. It is determined by 
taking into account both the sensitivity and the specificity.

Positive examples (P) are therefore instances from that category, whereas nega-
tive examples (N) are examples from the remaining three groups.
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3  Materials and Methods

Python was used as the programming language to create the new model. The pro-
posed model was accessed using three distinct scenarios: the first scenario involved 
testing the proposed method with four classes. In the second scenario, the suggested 
model was tested with three classes; in the third, the proposed model was tested 
with only two classes. The COVID-19 class participated in all of the test experiment 
settings. The validation phase and the testing phase are both components of each 
and every scenario. During the phase of validation, 20% of the total photos that 
were created will be used, but during the phase of testing, around 10% of the initial 
dataset will be utilized. During the entirety of the project, we made use of the open- 
source machine learning package called PyTorch. The Torch library served as the 
primary inspiration and foundation for the development of this library. It offers 
functions that are simple to implement and high-level interfaces, both of which are 
essential for projects involving machine learning and deep neural networks.

3.1  Dataset

All of our models were trained using the Kaggle COVID-19 chest X-ray dataset, 
which can be used at the below link on Github: https://github.com/vj2050/Transfer- 
Learning- COVID- 19. The dataset has been thoughtfully organized and is comprised 
of four distinct categories: bacterial pneumonia, viral pneumonia, normal, and 
COVID-19. The dataset includes a total of 270 photos for training (60, 70, 70, 70), 
as well as 36 images for testing (9, 9, 9, 9). We followed the recommendation made 
by the original developers of the dataset and utilized a default train/test split. The 
genuine photographs from the aforementioned dataset are used as input to a 
Generative Adversarial Network, which then generates fake images for each of the 
four categories. Also, the same dataset is utilized in the training model for the clas-
sifier method.

The fundamental difference between the accuracy of the testing phase and the 
validation phase is that in the validation phase, the data that will be used to calculate 
the generalization capacity of the model or early halting will occur during the train-
ing time. This is the primary contrast between the accuracy of the testing phase and 
the validation phase. In contrast, the validation phase uses data to validate the accu-
racy of the predictions made by the model. During the testing phase, the data are 
utilized for a variety of objectives, including training and validating, but also for 
other purposes (Fig. 2).
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Fig. 2 Sample images

4  Experimental Details and Results

In this part of the article, we will talk about the many tests that were carried out 
using the various models that we trained in order to finish the mission. In this sec-
tion, the results are presented for the purpose of the categorization of the chest 
X-ray images that are currently available. These images fall into one of four catego-
ries: COVID-19, normal, pneumonia bacteria, or pneumonia virus. We analyze the 
final results received while creating fake images from the GAN for the purpose of 
augmenting the data. We also conduct a comparison of the performance of the CNN 
when the traditional data augmentation approach is applied, as well as when the 
augmentation is carried out with the help of false pictures produced by the GAN.

4.1  Synthetic Images Generated from GAN

During the training process of the GAN, we utilized the COVID-19 lung X-ray 
dataset. For each trained network, the pertinent parameters, in particular loss D, are 
as follows: For the purpose of analysis, the values for Loss G, D(x), D(G(z1)), and 
D(G(z2) were recorded and plotted against the epoch number [24]. This was helpful 
in tracking the stability of the generator networks as well as the discriminator net-
works as the number of training epochs increased. Figure 3 is a stack of genuine 
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Fig. 3 Images of real (left) and fake X-ray images created by the GAN (right). (a, b) For 
COVID-19; (c, d) for normal; (e, f) for bacteria pneumonia; (g, h) for virus pneumonia
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Fig. 4.3 (continued)
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X-ray pictures taken from the datasets, together with synthetic images of X-ray cre-
ated by GAN model after it was trained on all of the four classes – bacterial pneu-
monia, viral pneumonia, normal, and COVID-19 – that are being considered. The 
false pictures that are displayed in Fig. 3 are one channel images that were created 
from a separate GAN that was trained for each of the four classes using 512 itera-
tions. We present in the following sections a brief summary of the numerous experi-
ments and analyses carried out when training GANs in a variety of different settings.

We trained a total of four GANs, one each for the bacterial pneumonia, viral 
pneumonia, COVID-19, and normal classes. Because of its slow learning rate of 
0.0002, the generator network initially created synthetic images of poor quality. The 
discriminator was dominating the generator network, which was the primary source 
of the problem.

 (a) Real COVID-19 images.
 (b) Fake COVID-19 images.
 (c) Real normal images.
 (d) Fake normal images.
 (e) Bacterial pneumonia real.
 (f) Bacterial pneumonia fake.
 (g) Viral pneumonia real.
 (h) Viral pneumonia fake.

The quality of the network’s output synthetic pictures was enhanced when the 
learning rate was adjusted to 0.002 from its previous value of 0.0001. Because of 
this, the generator network was able to learn in a more restrictive manner. The dis-
criminator overtakes the generator network at lr = 0.0002 for a GAN trained on typi-
cal X-ray images, as shown in the figure. However, the generator network converges 
at lr = 0.002 since its loss drops down considerably more gradually over the training 
epochs. This is illustrated by the fact that the discriminator dominates the generator 
network at this value. After the discovery that a generator network that was trained 
with a learning rate of 0.002 performed better than other models, we carried out an 
investigation on the effectiveness of training GAN at various epochs. For the pur-
pose of making a comparison, we trained a GAN using X-ray pictures of pneumonia 
viruses at three distinct values of epochs: 128, 256, and 512. As the number of 
epochs increases, it is possible to observe an improvement in the pictures’ overall 
quality. The more epochs that pass, the more features are included in the images that 
are formed, which shows that the generator network’s capacity to make fake images 
that are similar to genuine photos is also improving. Figure 4 presents a comparison 
of the accuracy of the traditional set of data and the synthetic dataset. The classifica-
tion system performed with a sensitivity value of 82.7% and a specificity value of 
90.4% using only conventional data augmentation (average). The sensitivity of the 
results increased to 90.6%.

Figure 5 illustrates the performance results obtained using the standard data aug-
mentation method. Accuracy is a metric of evaluation that is utilized most frequently 
for classification-related activities. It is a numerical representation of the proportion 
of correct forecasts. We arrive at this value by determining the proportion of all of 
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Fig. 4 Accuracy comparison between classic and synthetic dataset
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Fig. 5 Performance results on classic data augmentation

the models’ predictions that were accurate to all of the other predictions. Although 
accuracy is the most common and well-known assessment criterion for classifica-
tion, it is possible that it is not always sufficient when working with datasets taken 
from real life.

Criteria for categorization include the following – performance outcomes deter-
mined by traditional measures:

Precision
Recall
AUC/ROC curve
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F1-score

The F-score or the F1 Score metric is used to evaluate a binary classification 
model, and this evaluation is based on the predictions that are supplied for the posi-
tive class. It is computed by utilizing both Precision and Recall in the process. This 
is a special sort of score that takes into account both your precision and your recall. 
The area that is beneath the ROC curve is referred known as the AUC. According to 
what its name suggests, AUC is used to calculate the two-dimensional area under 
the entire ROC curve. Along the same lines as the precision meter, the recall metric 
calculates the percentage of true positives that were incorrectly identified as false 
positives. It is possible to compute it as true positive, which refers to predictions that 
are actually true to the total amount of positives, regardless of whether they are 
accurately expected as positives or incorrectly projected as negatives (true positive 
and false negative).

The other significant assessment measures are depicted in Fig. 5. The accuracy 
of the COVID-19 class was determined to be 100%, while the f1 score for the bacte-
rial pneumonia class was 82.7. Specificity of the viral pneumonia class was found 
to be 97.6 while accuracy was found to be 89.1. Figure 5 shows that the f1 score is 
85.2 and that the specificity for the usual class is 99.9. The confusion matrix for the 
traditional data augmented dataset is displayed in Fig. 6. The prediction summary is 
shown as a confusion matrix. It displays the number of accurate and wrong predic-
tions made for each class. It aids in clarifying the classes that models mistake for 
other classes.

Figure 7 illustrates the CNN classification performance using a dataset that has 
been enriched with synthetic data. It provides a comparison of the COVID-19, nor-
mal, viral, and bacterial classes based on the epochs and log-loss values. The log- 
loss statistic provides an indication of how well the forecast probability matches the 
actual or “real” value (0 or 1 if it is of binary classification). The value of the log loss 

Fig. 6 Confusion matrix 
for classic dataset
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Fig. 8 Performance results on synthetic data augmentation
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Fig. 7 CNN classification performances with classic data augmentation

will go up according to the amount by which the expected probability deviates from 
the value that actually occurs in the experiment.

The COVID-19 class obtained a perfect score of 100%, and the bacterial pneu-
monia class received a score of 90.7 on the f1 scale. Specificity of 97 was reached 
for the viral pneumonia class, and accuracy was 93.3. As can be seen in Fig. 8, the 
specificity for the typical class is 99.7, and the f score is 94.3. An example of a con-
fusion matrix can be found in Fig. 9 for the traditional data enhanced dataset. It 
assesses how well our classification model performs when it is asked to generate 
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Fig. 9 Confusion matrix 
for synthetic augmented 
dataset
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Fig. 10 CNN classification performances with synthetic (DCGAN generated) data augmentation

predictions based on test data, and it provides feedback about the overall quality of 
the classification model. It not only explains the mistake that the classifiers made, 
but it also specifies the kind of fault, such as type-I or type-II errors.

Figure 10 displays the CNN classification performance with a dataset that has 
been enriched with synthetic data. It presents a comparison of the classes of 
COVID-19, normal, viral, and bacterial organisms based on epochs.
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5  Discussion and Conclusion

This study presents a GAN learning for detecting COVID-19 and pneumonia in 
restricted images of chest X-rays. The images were taken from a single patient. The 
primary impetus behind the creation of this project was the dearth of COVID-19 
benchmark datasets, particularly those including chest X-ray pictures. The primary 
objective is to gather every conceivable image of COVID-19 and then make use of the 
GAN model to produce additional photos that can assist in the identification of the 
virus using the images of X-ray that are now accessible. A total of 270 photos from 
the four different classes were included in the dataset that was gathered. The catego-
ries are the contagious, normal, bacterial, and viral forms of pneumonia. The catego-
rization and detection of the four distinct classes is a job that may be seen as being 
quite challenging in the absence of a large dataset. Using the developed fake images 
as a supplement to the original dataset would enhance classification and identification 
accuracy of chest X-rays. Ultimately, this would lead to a better diagnosis of lung 
cancer. Further research into generative adversarial architectures, which create multi-
class samples simultaneously, is something that is high on our priority list. It is pos-
sible that in the near future, one of the most important things to look at will be how to 
use the work that was given in contexts outside of medical activities.
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Detection of GAN-Generated Face Images

Swati Shilaskar, Shripad Bhatlawande, Siddharth Nahar, 
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1  Introduction

Adobe photo editing [1] has simplified the handling of complex photos and their 
conversion into other high-quality images. These techniques can be used to enhance 
image quality [2], repair portions of images [3], or to produce complex phony 
images that are hard for average people to tell whether they are real or not. They can 
also be used to fabricate news, twist the facts, slander, and assume the identity of 
another person. Furthermore, such false and misrepresented material can spread 
swiftly via social media [4]. Various individuals can use deepfake technologies to 
target politicians [5], producing false information and malevolent hoaxes [6], among 
other things [7]. As a result, there is a growth of false pornography, hate crimes, and 
various forms of fraud. The victims of these crimes are suffering greatly from the 
harmful use of such machine learning–enabled digital technology.

Along with the aforementioned tools for altering digital photos, deep learning 
has made major strides in a number of other fields, such as speech recognition, 
image processing, and computer vision [8]. In particular, it is possible to use 
Generative Adversarial Networks (GANs) [9], where the discriminator and genera-
tor compete with one another, to completely generate brand-new, incredibly realis-
tic images, movies, and voices. The main use of GANs was to produce close to real 
images [10] and to improve their quality [11]. Deep learning models, such as GANs, 
can fool users with artificially created images similar to how image editing programs 
can. Both humans and machine learning classifiers can be duped by a false face 
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made by GANs [12, 13]. It can be especially problematic if they are deliberately 
abused for authentication of users, in addition to the generation of false information.

2  Related Work

Related work is split into three parts. The first part discusses about GANs in general, 
their properties, and issues. The later parts focus on GANs used for image forgery 
and various fake image detections techniques.

GANs [9] were first proposed in 2014 by I. Goodfellow et al. They proposed a 
training method to create a generative model that produces images from random 
noise vectors. A generative model is put up against a discriminative model that gives 
valuable feedback to the generator on its created images. The two models compete 
with each other to improve the accuracy of both resulting in a zero-sum game. 
GANs have been deployed in the field of [14] image processing, and image genera-
tion [15], image super-resolution, and image in painting. Modern GANs use addi-
tional methods like auto feature encoders [16] to improve the generated results and 
reduce distortions in the generated images. DualGAN [17] is a popular implementa-
tion of GAN where two GANs use each other’s output as their input and learn to 
convert the information from one latent space to another latent space. They are most 
popularly used in image-to-image translations (converting images of one style to 
another). In addition to DualGAN, we have [18] StackGAN which stacks two GANs 
on top of each other. The first GAN outputs basic shapes and colors for the output, 
then the second GAN uses this image to generate details to create a more realistic 
image. This approach is used to solve the problem of GAN-generated images lack-
ing details. GANs, despite their wide usage, face some challenges like [19] mode 
dropping (inability of generators to learn some features) and as a result they lag 
behind discriminators which causes the gradient of generators to vanish. In some 
cases, the generator tries to over-optimize the discriminator.

The performance of GANs has improved significantly from its starting years. 
This has led to the use of GANs in filling missing data in images. For example, the 
Face-Frontalization [20] framework that takes a profile photo of a person and gener-
ates a frontal image of the face by filling the missing data with generated data with 
the help of FI-GAN and GSP-GAN, respectively. Another implementation of GAN 
is found in unmasking the face [21] of people where GAN takes the image of a 
person with mask as input and outputs the image of that person without mask. 
Though the images generated by GANs are realistic they usually have some pertur-
bation inconsistencies in the spatial distribution of RGB. In [22], a novel method for 
negating this limitation is proposed by balancing the distribution of R, G, and B 
channels in the generated images. In some cases, GANs have been wrongly used to 
create fake faces [23] and deep fakes. The research in [24] proposes a method for 
anti-face spoofing that takes a visible light image and converts it into a near-infrared 
image and then detects if the face is spoofed or not. Though modern techniques for 
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fake detection are improving, they can be fooled by simply exploiting their detec-
tion mechanism as pointed out in [25].

Fake image creation with GAN reaching realistic image production, research 
into fake image detection has become critical. Researchers have tried implementing 
simple networks from [26] LPP-SIFT for key point matching to the integration of 
both the host picture into non-overlapping and irregular blocks using the suggested. 
Much of the research points to the fact that both [27] conventional and deep learning 
methods can perform well in the detection of fake images but deep learning models 
take the lead when the image is compressed or has gone through additional process-
ing to avoid fake image detection methods. On the other hand, Convolutional Neural 
Networks like [28] SFFN demonstrate the capacity to concentrate on altered facial 
landmarks and only require RGB images without metadata. However, [29] Dual- 
Order Attentive Generative Adversarial Network works with first- and second-order 
attenuated input fusing them with the original image data to create fused features for 
localizing and predicting copy-move forgery or tampering on the image. In [30], the 
authors exploit the most vulnerable link in GANs, then transpose convolution layer 
to detect inconsistencies in global information.

3  Methodology

For detection of fake images, different state-of-the-art CNN models were trained 
from scratch without any pretrained weights. This enabled the models to embed 
features specifically to detect fake images and not be influenced by weights of other 
prediction task, generally based on the ImageNet dataset.

3.1  Dataset

The Dataset consists of a total of 140,000 images. Fake, AI-generated images were 
taken from the 1 million Fake Faces Dataset developed by NVIDIA using StyleGAN 
[31]. These images were created in reference to Flickr Face HQ [32] real face 
image dataset which constitute the other half of the dataset. The images are resized 
to 224  ×  224 and are divided into test, validation, train, and sets. A few select 
images from the dataset are presented in Fig. 1. Another dataset of 50,000 images 
was sampled from this dataset for performing five-fold cross-validation. Equal 
number of fake and real images were used for the same. For each fold a different 
set of 40,000 and 10,000 images are utilized from the same dataset and used to train 
and validate a new model of the same architecture. Refer to Table 1 for dataset 
distribution. These images span a wide variety of faces from different ethnicities, 
ages, and gender. This creates a dataset with less bias which helps in building a 
better model.
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Fig. 1 Some images from the dataset. The faces in the first row are AI-generated by StyleGAN 
[31]. The second row consists of real images from the Flickr Face HQ dataset [32]

Table 1 Dataset distribution of fake and real images for hold-out and five-fold cross validation

Dataset for hold-out method
Dataset class Number of images
Positive images (fakes) 70,000
Negative images (real) 70,000
Train 100,000
Validation 20,000
Test 20,000
Total 140,000
Dataset for five-fold cross validation
Positive images (fakes) 25,000
Negative images (real) 25,000
Train (per fold) 40,000
Validation (per fold) 10,000
Total (per fold) 50,000

3.2  Models Used

A total of five CNN models were used for the classification task, namely, (i) 
DenseNet102 [33], (ii) ResNet121 [34], (iii) MobileNetV2 [35], (iv) InceptionV3 
[36], and EfficientNetB0 [37]. All of these have a unique architecture which is the 
basis of this comparison.
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The “vanishing gradient” problem appears as CNNs get deeper, or when the 
number of layers in the CNN rises. DenseNets address this issue by adjusting the 
typical CNN architecture and streamlining the connectivity structure across layers. 
The name “Densely Connected Convolutional Network” comes from the fact that 
each layer in a DenseNet architecture is directly connected to the rest of the follow-
ing layers. There are (M (M + 1))/2 links for layer “M.” This is visualized in Fig. 2. 
Each layer receives as input the feature maps from all layers that came before it. The 
output feature maps serve as inputs for the layers that follow. DenseNets offer a 
variety of benefits, these include the avoidance of issues regarding vanishing gradi-
ents, improvement in propagation of features, facilitated reuse of features, and sig-
nificantly fewer parameters. A DenseNet is made up of Transition Layers and Dense 
Blocks, both of which contain convolutional layers. DenseNet-121 features 4 
Average Pooling layers with 1 fully connected layer and 120 Convolutions. To pre-
pare the network for the fake picture classification, a dense layer with sigmoid acti-
vation was added. The total number of trainable parameters is 6.9 million.

Deep networks suffer from a degradation issue that becomes apparent once net-
work convergence begins. Increase in network depth causes accuracy to saturate and 
deteriorate substantially. To provide a solution to this problem, the deep residual 
learning framework ResNet was developed. ResNet uses residual mappings to fit 
the stacked layers. One or more layers in ResNet are bypassed using shortcut con-
nections. Figure 3 represents the block diagram of a residual connection. The short-
cut connections are used to perform identity mapping, and the outcomes are 
combined with those from the stacked layers. Filters of size 3 × 3 are used in the 
majority of the convolutional layers and they adhere to two straightforward rules. 
ResNet-101 contains 1 convolutional layer, 2 pooling layers, and 33 bottleneck 
blocks with 3 convolution layers each. To prepare the network for the categorization 
of fake images, a dense layer with sigmoid activation was added. The total number 
of trainable parameters is 42.5 million.

Fig. 2 The diagram 
displays the main part of 
the DenseNet architecture. 
Every previous layer has 
its output connected to the 
every subsequent layer [33]
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Fig. 3 The figure depicts 
the core component of 
ResNet, that is, the residual 
connections in ResNet for 
preserving the identity of 
the input in the case of 
weight degradation [34]

Fig. 4 Two types of bottleneck architectures of MobileNetV2, one with an inverted residual con-
nection and stride equal to 1 and another with stride equal to 2 without the residual connection [35]

The MobilenetV2 deep learning model is an object detection and recognition 
model that makes use of a unique “bottleneck” architecture. This architecture 
employs depth wise and pointwise convolutions to maintain a comparatively low 
number of parameters than other state-of-the-art convolutional models. Figure  4 
gives an idea of the bottleneck. The complete architecture of the model contains a 
normal 2-D convolution followed by 17 bottleneck layers, a 1 × 1 convolution, and 
an average pooling layer. For this particular use case, we utilized the same architec-
ture with a change in the final layer. The number of trainable parameters was equal 
to 2.2 million.

InceptionV3 is another CNN network that employs pointwise convolutions. Its 
distinctive feature is the inception module. This module involves multiple opera-
tions on the same input and stacks the output of all these operations. This final 
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output serves as an input to the next layer or inception module. InceptionV3 particu-
larly uses three types of modules or blocks, namely, module A, module B, and mod-
ule C. Each of these modules has different operations but they result in a stackable 
final output. Module A has four parallel sequential operations that are concatenated. 
Three of four operations start with a pointwise operation. The third operation starts 
with a max pool layer, followed by a pointwise convolution. The first operation 
involves two 3 × 3 convolutions and the second parallel operation involves one 3 × 3 
convolution. A similar presentation of modules B and C is given in Fig.  5a, b. 
Modules B and C use factorizing convolutions of size 1 × n and n × 1 instead of a 
whole convolution of size n × n. Subsequently, this reduces the overfitting of the 
model while the network can go deeper to extract better features. The model in total 
has 42 layers, subdivided into 5 × Module A, 4 × Module B, 2 × Module C, and 2 
grid reduction layers that act as regularizers. The final layer is a single-neuron dense 
layer with a sigmoid activation for fake image classification. The total number of 
trainable parameters was over 21 million.

A family of models of EfficientNets has been created by the authors to using a 
scalable architectural framework. All EfficientNet models are scaled from 
EfficientNet-B0 (see Fig. 6) using compound scaling, which includes width, depth, 
and resolution scaling. Any network’s stem comes first, followed by architectural 
exploration, which is common to all eight models and the top layers. They each have 
seven blocks after that. The fundamental advantage of EfficientNet is the modified 
inverted bottleneck that is built on top of the depth wise convolution. The layer’s 
ability to represent a solution is also simplified. As a result, the number of channels 
is raised to enhance overall capacity. The outcome is fewer parameters and FLOPS 
than other methods, but greater data flow due to the increased number of channels. 
GPUs are hardware accelerators built for models with high amounts of processing 
and where data transport is a minor component of overall performance. In the 

Fig. 5 (a) Depicts Module B of the InceptionV3 model with factorized convolutions [36] and (b) 
displays the use of parallel factorizations in Module C. These modifications serve to reduce the 
number of weights to be learned while preserving important information
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Fig. 6 This figure depicts 
the architecture of the 
EfficientNet B0 CNN 
model [37]

instance of EfficientNets, we have a neural network architecture that uses much less 
CPU while moving significantly more data than comparable networks. As a result, 
on hardware accelerators, EfficientNets performs badly.

3.3  Hardware and Software Setup

All models were trained on the Kaggle platform with access to a graphical process-
ing unit (GPU). The GPU used was NVIDIA Tesla P100 with a video RAM capac-
ity of 16 GB. The general RAM capacity of the cloud instance was 13 GB with a 
2-core Intel Xeon central processing unit (CPU). All models were trained using the 
Tensorflow 2.6.4 framework developed by Google, with Python version 3.7.2.

3.4  Algorithms

For the hold-out method, the models were imported and were stored in a dictionary. 
A loop was initiated over the list and each model was trained for one iteration of the 
loop. Each iteration trained the specific model for 10 epochs with uninitialized 
weights. The trained models were then tested using a separate test dataset and there-
after the metrics were calculated. Algorithm 1 explains the process of training the 
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models using the hold-out method. The metrics of each model get updated to a new 
row with every iteration. The metrics are compared in the next section of this paper.

The five-fold cross validation method is also carried out for each of the models 
separately to test their effectiveness on a random sample of the whole dataset. The 
more the parameters the more time is required for completing the five-fold cross 
validation. Hence, each model was trained individually using the process explained 
in Algorithm 2. The scikit-learn library provides a k-fold validation function that 
provides indices that split the data for each fold. In this case it provides 5 set of 
indices. A loop is initialized and the data is split according to indices set for that 
particular fold and then the model is trained 5 times. This means we get 5 different 
models for different train and validation sets within the same dataset. The models 
are trained for 10 epochs. Another difference from the previous approach is that a 
checkpoint is set at each epoch to save the model that performs best on the valida-
tion data. It may happen that a model down performs after a certain epoch and is not 
able to maintain the best accuracy moving forward. Hence, this change was made.

Algorithm 1: Training and Testing the Models

Input: Model List, train data and validation data

Output: Metrics dataframe

1:     //Initialize all models without pretrained weights

2:     // Store Models in a list

3:     Model_list = [DensNet121, Resnet102,

4:     MobileNetV2, InceptionV3, EfficientNetB0]

5:     for model in Model_list:

6:           // Initialize a sequential model

7:          Temp = Sequential ()

8:         // add model from list

9:          Temp.add (model)

10:        Temp.add (GlobalAveragePooling2D)

11:        //add dense layer with sigmoid activation

12:        Temp.add (Dense 1 with sigmoid))

13:        // compile the model with binary cross entropy

14: // (BCE) loss and Adam Optimizer.

15:        Temp.compile (loss = BCE, optimizer =Adam)

16:        Temp.fit (train_data, validation_data, Epochs = 10)

17:        Y_pred = Temp.predict (test_data)

18:        Y_test = test_data.classes

19:        Report= calculate_metrics (Y_pred, Y_test)

20:        Dataframe = Dataframe.add (Report)  
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Algorithm 2: Five-Fold Cross Validation for One Model

Input: Dataframe ‘df’ containing paths to each image in the dataset. 

Output: Metrics dataframe for a particular model

1: //extract indices using Kfold from sklearn

2: Kf = Kfold (folds=5, df)

3: for t_index, val_index in Kf:

4: Train_data = generate data from df [t_index]   

5: Val_data = generate data from df [val_index]

6:           // Initialize the model                      

7: Temp = Sequential (model)             

8: Temp.add (GlobalAveragePooling2D)

9: //add dense layer with sigmoid activation

10: Temp.add (Dense 1 with sigmoid))

11: // compile the model with binary cross entropy 

12:         (BCE) loss and Adam Optimizer.

13: Temp.compile (loss=BCE, optimizer=Adam)

14: Temp.fit (Train_data, Val_data, Epochs = 10, checkpoint = save_best_model

15: Y_pred = Temp.predict (Val_data)

16: Y_test = Val_data.classes

17: Report= calculate_metrics (Y_pred, Y_test)

18: Dataframe = Dataframe.add (Report)  

4  Results and Discussions

Models trained using the hold-out method were tested on a separate test dataset of 
20,000 images, having an equal number of real and fake images. A classification 
task was performed to predict if the images were real or fake. The performance 
metrics were derived from a confusion matrix. Accuracy along with the macro 
average F1-score, precision, and recall were some of the metrics utilized to evaluate 
the models. Macro averages were calculated by averaging the respective metrics of 
both classes:

 
Macro metric

Metric MetricFake Realavg. �
�
2  (1)

where the metric can be F1-score, precision, or recall. Macro-average will be 
referred to as MA for simplicity (MA-F1 score, MA-Precision, and MA-Recall). 
Five state-of-the-art deep learning models were utilized, namely, DenseNet102, 
ResNet121, MobilNetV2, InceptionV3, and EfficientNetB0.

From Table 2, it is clear that InceptionV3 performed best in all metrics as com-
pared to other models. Performance of MobilnetV2 was the lowest. It can be inferred 
from this that an inverted bottleneck architecture might not be suitable for capturing 
fine details of AI-generated facial images. The exceptional performance of 
InceptionV3 can be contributed to its diverse set of operations on the input image 
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Table 2 Comparison of detection metrics of each model for holdout method

Model Accuracy MA- Precision MA- Recall MA- F1 score

DenseNet102 81% 0.86 0.81 0.80
ResNet121 97% 0.97 0.97 0.97
MobilNetV2 61% 0.78 0.61 0.54
InceptionV3 99% 0.99 0.99 0.99
EfficientNetB0. 97% 0.97 0.97 0.97

Fig. 7 Fake images 
classified as fake by all the 
models. A probable reason 
for this can be the distorted 
backgrounds created by 
StyleGAN

and the concatenation of these outputs to form a new input for subsequent layers. An 
analysis of some images predicted by all the models was performed. The two images 
in Fig. 7 are fake and were classified as fake by all the models as true positives. They 
have visible background pattern distortions which can be easily deciphered. 
Figure 8a is a fake image but classified as real by four models except InceptionV3. 
There were particularly no background distortions in this image which may have 
been the cause for the misclassification. The face itself has no irregularity. This is a 
case of false negative. Figure 8b was a real image but classified as fake by three 
models except InceptionV3 and EfficientNetB0 which makes it a case of false posi-
tive. Though the image is real, the blurred hair in background seems to have caused 
the misclassification. Figure  8c is a real image classified as real by all models 
(Table 3).

Models trained using the five-fold cross validation method were trained and 
tested on a set of 40,000 and 10,000 images, respectively, for each fold. Five differ-
ent models had five different metrics which were averaged to obtain the final result 
table. The metrics for a particular model in different folds of data differed by +3 
or −3 than the average. The five-fold cross validation method worked well for all 
models, but it especially helped in improving the performance of MobileNetV2 as 
it converged at the seventh epoch and required no further training. A similar case 
was observed with DenseNet121. Further training only decreased the model’s accu-
racy. ResNet and InceptionV3 appeared to have over fit the large training data in the 
hold-out method as the accuracy decreased by 5% in five-fold cross valida-
tion method.

The drawback of this research is its bias toward face images. The trained net-
works in this research may not work to detect other types of generated images. 
Hence, we call upon the creation of a diverse dataset of generated images with their 
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Fig. 8 Left to right, (a) is a case of false negative, (b) is a case of false positive, and (c) is a true 
negative classification

Table 3 Comparison of averaged detection metrics of each model using five-fold validation

Model Accuracy MA- Precision MA- Recall MA- F1 score

DenseNet102 93% 0.93 0.93 0.93
ResNet121 92% 0.93 0.92 0.92
MobilNetV2 84% 0.86 0.84 0.84
InceptionV3 95% 0.95 0.95 0.95
EfficientNetB0. 94% 0.94 0.94 0.94

real counterparts that can create a parallel impact, essentially like the ImageNet 
Dataset. A dataset of this degree can help establish the premise for new classifica-
tion architectures or frameworks. This will definitely be helpful for digital forensics 
tasks as we move toward a future of generated data that has raised ethical issues 
regarding its misuse.

5  Conclusion

The spread of fake photos on social media is a rapidly growing issue. The most 
cutting-edge GANs are used by popular mobile and online apps to produce signifi-
cant changes on human face photographs, such as gender swapping, aging, etc. 
Even for inexperienced users, the results are incredibly straightforward to use and 
extremely realistic. In this study, we evaluate how well five cutting-edge deep learn-
ing models can distinguish between legitimate and fraudulent facial photos. 
StyleGAN was used to generate the fake facial photos. The breakthrough StyleGAN 
paper makes it easier than ever to create convincing false images because it provides 
realistic images of the highest quality and allows for superior control and knowl-
edge of the generated images. A dataset of 140 k images was utilized containing 
images generated from StyleGAN and publicly available real face images from 
Flickr to train the 5 models without pre-trained weights for the binary classification 

S. Shilaskar et al.



87

task. InceptionV3 provided the best result in every metric recorded with a testing 
accuracy of 99%. ResNet121 and EfficientNetB0 were also found suitable for the 
task. MobileNetV2 was the worst performer with a 61% testing accuracy. However, 
this was offset by performing five-fold cross validation on the same architectures.

The good performance achieved in this study indicates that while the generated 
fake photos might seem realistic to the human eye, there are still enough blemishes 
for popular neural networks to detect these images correctly. Hence, we call upon 
the creation of a more diverse dataset of generated images that can mitigate the 
drawback of this research. This in turn will help in matters regarding misuse of 
generated data and how to separate the real from the fakes.
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Data Augmentation in Classifying Chest 
Radiograph Images (CXR) Using 
DCGAN-CNN

C. Rajeev and Karthika Natarajan

1  Introduction

1.1  Data Augmentation

It is a method employed in machine learning and computer vision to enlarge the size 
of a training dataset by implementing diverse transformations to the existing data 
samples. The primary purpose of data augmentation is to enhance the accuracy and 
generalizability of machine learning models by presenting them with a broader 
spectrum of variations in the input data. The structure of data augmentation is 
depicted in Fig. 1. Some common data augmentation techniques include:

• Flipping, rotating, and scaling images.
• Adding noise or distortions to images.
• Changing the brightness, contrast, or saturation of images.
• Randomly cropping or padding images.
• Applying geometric transformations like perspective shifts.

By applying these transformations to the training data, the machine learning 
model can learn to recognize and classify objects and patterns in different contexts 
and orientations. Data augmentation can be particularly useful in cases where the 
amount of available training data is limited, as it allows researchers to create more 
diverse and representative datasets without collecting additional samples.
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Fig. 1 Data augmentation

1.2  Augmented Versus Synthetic Data

1.2.1  Augmented Data

The term “augmented data” pertains to the generation of supplementary training 
data by employing different modifications or transformations to the primary data. 
This process involves utilizing mathematical functions or image processing tech-
niques to the input data, creating novel versions of the data that can enhance the 
model’s performance. The fundamental objective of data augmentation is to expand 
the diversity of the training set, which helps prevent overfitting and enhances the 
model’s capacity to generalize to novel unseen data. Data augmentation can be uti-
lized across diverse data types, encompassing but not limited to images, text, 
and audio.

1.2.2  Synthetic Data

Without utilizing the actual dataset, it is artificially constructed. To produce syn-
thetic data, DNNs (Deep Neural Networks) and GANs are frequently used. The 
approaches for enhancement are not just for images. It may enhance text, audio, and 
video as well as other sorts of data. Synthetic and augmented data [1] in the context 
of radiological pictures are data that are not entirely produced by direct measure-
ment from patients. With more data, machine learning models get better. Yet, there 
are not many open, free radiology datasets out there. Machine learning (ML) with-
out synthetic and augmented data is difficult due to concerns about patient privacy 
and regulatory constraints on data use. Furthermore, certain illnesses are so uncom-
mon that even huge datasets do not have enough examples to produce reliable 
machine learning algorithms. Synthetic data may be used into algorithms for arte-
fact correction in addition to helping to create algorithms for picture identification 
and classification.
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1.3  Why Data Augmentation Is Important Now?

There are a few of the recent developments that have made data augmentation strat-
egies crucial.

1.3.1  Improves the Performance of ML Models

Nearly all state-of-the-art deep learning (DL) applications, such as object detection, 
image classification, image recognition, natural language understanding, semantic 
segmentation, and many others, heavily rely on data augmentation techniques [2]. 
The implementation of augmented data has been improving the efficiency and out-
comes of deep learning models by generating novel and diverse training examples 
for the datasets.

1.3.2  Reduces Operation Costs Related to Data Collection

DL models may need time-consuming and expensive operations for data collecting 
and data labelling. By adopting data augmentation techniques to change datasets, 
businesses may save operating costs.

1.4  How Does Data Augmentation Work?

Data augmentation involves making a few small adjustments to the current data to 
create additional variants. They are accomplished by giving the dataset to transfor-
mation functions, which transform the data before creating a new dataset. Here is an 
example that will help you clarify the workflow of the data augmentation process 
which involves applying a series of transformation functions using human expertise 
[3]. Figure 2 depicts workflow for data augmentation. The following phases make 
up a typical workflow for heuristic data augmentation:

 1. The data are put into the pipeline for data augmentation which contains the series 
of transformation operations.

 2. The sequence of various augmentations that result in various iterations of each 
data point defines the data augmentation pipeline.

 (a) TF1 – Flipping
 (b) TF2 – Blur
 (c) TF3 – Rotation
 (d) TF4 – Skewing
 (e) TF5 – Grayscale to RGB
 (f) TFn – Brightness
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Fig. 2 Workflow of the data augmentation process

 3. The image is then processed via each stage of the transformation function before 
being given to the data augmentation pipeline.

 4. A human expert validates the boosted findings once the image has been processed.
 5. The enriched findings are now ready to be used by the AI model for training after 

the verification procedure.

In order to work with models that will categorize photos, heuristic data augmenta-
tion is employed. In contrast to picture data, data augmentation is less common in 
the NLP (Natural Language Processing) discipline. The primary reason is the diffi-
culty in automating the task of improving textual data, which stems from the intri-
cate nature of natural language.

1.5  Advanced Techniques for Data Augmentation

To provide more varied and realistic training data, there are a number of sophisti-
cated techniques [4] for data augmentation. Some of these methods consist of:

 1. Generative Adversarial Networks (GANs): Synthetic data that closely mimics 
real-world data may be produced using GANs. A generator network is respon-
sible for producing fresh samples, while a discriminator network determines 
their authenticity. Together, these two networks make up a GAN. Together, the 
two networks are trained, and the generator has the ability to create samples that 
deceive the discriminator.

 2. Autoencoders: Neural networks with the ability to compress and decompress 
data are known as autoencoders. We can create new samples by randomly sam-
pling the compressed representation and then decompressing it back to the origi-
nal space after training an autoencoder on a dataset.
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 3. Style Transfer: One method for transferring one image’s style to another is 
known as style transfer. A series of photographs can be transformed into new 
ones with different styles and comparable content by performing style transfer to 
the original images.

 4. Mixup: A data augmentation approach called mixup involves creating new 
instances by linearly mixing pairs of samples from the training set. Mixup can 
create a new example that sits on the line linking the two original instances by 
merging two examples.

 5. CutMix: With the data augmentation method known as CutMix, an image patch 
is randomly cropped from one image and pasted onto another image. By doing 
this, a new picture is produced that has the information from both the original 
and pasted images.

 6. Cutout: Cutting away rectangular portions of an image at random is a data aug-
mentation method called cutout. In addition to improving the model’s capacity to 
generalize to new data, this drives the model to learn more robust features.

The performance and durability of machine learning models may be enhanced by 
using these cutting-edge strategies to provide more varied and realistic training 
data. They could also require more careful adjustment to prevent overfitting and be 
more computationally costly.

1.6  Data Augmentation in Health Care

There are several methods to use data augmentation in healthcare, including:

 1. Image Augmentation: By using image augmentation including rotation, flipping, 
scaling, and cropping, medical imaging data from X-rays and MRIs can be 
improved [5]. This method can expand the dataset and strengthen the model’s 
resistance to changes in the pictures.

 2. Synthetic Data Generation: Existing datasets can be supplemented with syn-
thetic data. Generative models, including GANs and VAEs (variational autoen-
coder) can be used for this, as well as simulation methods. When the current 
dataset is tiny or unbalanced, this strategy can be especially helpful.

 3. Text Augmentation: Using strategies like synonym substitution, paraphrasing, 
and reverse translation can enhance textual data such as patient records, lab 
results, and clinical notes. Natural language processing models used in health-
care applications may perform better using this method.

 4. Audio Augmentation: Time stretching, pitch shifting, and noise addition are 
some examples of transformations that may be used to improve audio data, such 
as heart and lung sounds. This method can aid in enhancing the effectiveness of 
illness diagnostic models.
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1.7  Benefits of Data Augmentation

Some of the key benefits of data augmentation are:

 1. Improved Model Performance: Machine learning models can perform better by 
being given extra data to train on thanks to data augmentation. The model may 
learn to spot patterns and characteristics that it might have otherwise missed by 
producing new data points.

 2. Better Generalization: By integrating a wider range of diversity into the model’s 
training, augmenting the data can enhance its capacity to generalize to novel, 
unseen data. This can potentially result in enhanced real-world performance.

 3. Reduced Overfitting: When a model is unable to generalize to new data and starts 
identifying patterns that are specific only to the training set, it is referred to as 
overfitting. To mitigate this issue, the introduction of randomness and diversity 
through data augmentation can assist in minimizing overfitting.

 4. Reduced Data Bias: By broadening the data’s diversity, augmentation can aid in 
the reduction of data bias. This might be crucial in the healthcare industry 
because patient population bias and short datasets are common.

 5. Reduced Data Collection Costs: It may be expensive and time-consuming to 
gather extensive and varied datasets. By creating new data points from current 
data and obviating the need for extra data gathering, data augmentation can assist 
in lowering these expenses.

1.8  Challenges of Data Augmentation

There are several challenges associated with this technique:

 1. Overfitting: Data augmentation has the potential to be a potent technique in 
machine learning that may enhance the performance, generalization, and dura-
bility of models while lowering overfitting, bias, and data collecting costs.

 2. Computational complexity: Applying data augmentation necessitates the use of 
additional computing power to create and modify fresh samples. When working 
with large datasets, this can result in an increase in training time and expense.

 3. Quality control: Data augmentation may create mistakes or inconsistencies that 
have a detrimental impact on the model’s performance. It is crucial to make sure 
the augmented data is of a high caliber and accurately represents the real- 
world data.

 4. Transformation selection: It might be difficult to select the best data augmenta-
tion methods for a certain dataset. For particular types of data, some transforma-
tions might not be applicable or useful, while others can add unwelcome biases 
or distortions.

 5. Interpretability: It may become more challenging to understand how the model 
behaves and makes decisions as a result of data augmentation. It might be more 
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difficult to understand why the model is producing particular predictions since 
the enhanced data might not accurately represent the distribution of the input data.

2  GANs

2.1  Introduction

GANs  [6] is a type of advanced deep learning model that comprises two neural 
networks: the generator network and the discriminator network. The primary objec-
tive of the discriminator network is to differentiate between real and fake samples. 
Conversely, the generator network is designed to learn and replicate the statistical 
distribution of the training data. This intricate process is achieved through adver-
sarial training, wherein both networks are simultaneously trained. Throughout the 
training phase, the discriminator network is exposed to authentic samples from the 
training data as well as counterfeit samples generated by the generator network [7]. 
While the generator network strives to produce samples that can trick the discrimi-
nator into classifying them as authentic, the discriminator network endeavors to 
correctly differentiate each sample as genuine or fake. The two networks compete 
in a zero-sum game, with the discriminator aiming to get better at discriminating 
real samples from false and the generator trying to make better fake examples. This 
back-and-forth between the two networks goes on until the generator generates 
samples that the discriminator cannot tell apart from the genuine data. The use of 
GANs has been extended to various tasks, such as image and video synthesis, style 
transfer, and data augmentation. They have become one of the most active areas of 
deep learning research due to their astounding performance in creating very realistic 
and varied samples.

2.2  Why GANs

In order to overcome the difficulty of producing realistic and varied samples of 
complicated data, such as images, videos, and music, Generative Adversarial 
Networks, or GANs, were created. Autoencoders and variational autoencoders were 
employed for this before to the creation of GANs, but they had limits in their capac-
ity to produce high-quality samples with rich and diverse information [8]. Ian 
Goodfellow and his associates initially introduced GANs in a 2014 publication, and 
since then, they have grown to be one of the most well-liked and commonly applied 
methodologies for generative modelling. GANs are comprised of a duo of neural 
networks engaged in a training competition: the discriminator and the generator. 
The discriminator’s role is to learn to differentiate between real and artificially cre-
ated samples, while the generator aims to generate authentic-looking samples of the 
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data. Through a series of iterative training sessions, the generator progressively 
improves its ability to produce highly persuasive samples, fooling the discriminator. 
This iterative process ultimately leads to the development of top-notch genera-
tive models.

GANs have been effectively used for a variety of tasks, such as text production, 
music creation, style transfer, picture and video synthesis, and more. They have also 
been employed in fields like healthcare and finance for data augmentation and 
anomaly detection. In general, GANs are a significant advance in the field of deep 
learning and have created new opportunities for producing complicated and var-
ied data.

2.3  Components of GANs

The primary components of GANs [9] are comprised of a generator and discrimina-
tor network.

 1. Generator: This network creates a sample that should closely match the original 
data by using a random noise vector as input. The generator network, which 
turns random noise into an output with the same size and distribution as the real 
data, is often a deep neural network represented in Fig. 3.

 2. Discriminator: This network receives a sample as input and returns a probability 
of whether the sample is authentic or represented in Fig. 4. A deep neural net-
work that learns to discriminate between genuine and false data serves as the 
discriminator in most cases.

Fig. 3 Generator accepts a randomly generated vector as input and produces synthetic images of 
digits [10]
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Fig. 4 Discriminator is to distinguish whether the images produced by the generator are genuine 
or counterfeit [10]

Fig. 5 Two tasks of creating synthetic data from latent space and distinguishing between genuine 
and fabricated data [10]

In Fig. 5, the generator network uses a latent sample as input to produce a sample 
that should be as similar to the real data as feasible. The generator network converts 
the random noise into an output whose size and distribution are identical to those of 
the actual data. The discriminator network receives a sample as input and returns a 
probability of whether the sample is authentic or not. The discriminator is trained to 
recognize authentic samples from false ones. The GAN architecture is given 
in Fig. 6.
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Fig. 6 GAN architecture

2.4  GAN Loss Function

Let us explore the iterative process of Generative Adversarial Networks (GANs) 
and how they employ the loss function [11] to minimize and maximize. To gain a 
deeper understanding, we will examine the following details. The generator’s objec-
tive is to decrease a specific loss function, while the discriminator aims to maximize 
it. The loss function utilized in GANs can be represented as follows:

 
V D,G E D x E D G zX Pdata x Z Z� � � � ��� �� � � � �� �� �� �

�� � � �~ ~log [logPZ 1
 (1)

In Eq. (1), D(x) represents the discriminator’s estimation of the probability that a 
real data instance x is genuine. The term Ex denotes the expected value across all 
real data instances. G(z) signifies the output generated by the generator when pro-
vided with noise z. On the other hand, D(G(z)) represents the discriminator’s esti-
mation of the probability that a fake instance is perceived as real. Furthermore, the 
term Ez indicates the expected value across all random inputs given to the generator, 
which can be seen as the expected value across all generated fake instances G(z).

2.5  Training and Prediction of GANs

There are six steps in the training of Generator and Discriminator and prediction of 
GANs. They are:

 1. Define the GAN architecture: We define the generator and discriminator net-
works. The generator is commonly a neural network which generates new data 
by taking a random noise vector as input. On the other hand, the discriminator is 
a neural network that can classify real or generated data as authentic or fake.

 2. Define the loss functions: Two distinct loss functions are defined. The generator’s 
loss function aims to generate data that is close to the real data, while the 
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 discriminator’s loss function focuses on accurately classifying between real and 
generated data.

 3. Train the discriminator: During the GAN training process, the discriminator is 
trained on a batch of real data as well as a batch of generated data. The discrimi-
nator is then updated to enhance its capability of differentiating between genuine 
and fake data.

 4. Train the generator: To train the generator in GAN architecture, a batch of fake 
data is generated and passed through the discriminator. The generator is then 
updated to produce data that can deceive the discriminator.

 5. Repeat steps 3 and 4: The process of training involves alternating between train-
ing the discriminator and the generator. This iteration continues until the genera-
tor generates data that is impossible to differentiate from real data.

 6. Prediction: After completing the training process of GAN, the generator can be 
utilized to create new data that is analogous to the real data. The generation of 
new data is carried out by feeding a random noise vector to the generator, and the 
generator then produces new data.

2.6  Challenges Faced by GANs

GANs also face several challenges [12], including:

 1. Training instability: GANs can exhibit an unstable nature, which may result in a 
phenomenon known as mode collapse. Mode collapse occurs when the generator 
of the GAN produces a restricted or limited range of possible outputs, failing to 
capture the full diversity of the desired distribution. Additionally, this can result 
in oscillations and vanishing gradients, making it difficult to train the model 
effectively.

 2. Mode collapse: When the generator produces only a small fraction of potential 
outputs, it is referred to as mode collapse. This can lead to a lack of variety in the 
generated data. Mode collapse can occur when the discriminator becomes too 
dominant or the generator converges prematurely.

 3. Evaluating performance: It can be difficult to gauge the effectiveness of GANs 
since conventional measures like accuracy and loss may not be appropriate. It 
might be challenging to judge if the created data is actually realistic or not since 
the generated data’s quality is subjective.

 4. Overfitting: Overfitting, when the generator becomes overly specialized in pro-
ducing one sort of data and fails to provide varied data, can be a problem 
for GANs.

 5. Large datasets: Working with sparse or private data can be challenging since 
GANs need huge datasets to train efficiently.

 6. Hyperparameter tuning: For GANs to work well, a variety of hyperparameters 
must be tweaked. It might take a while and a lot of trial and error to find the ideal 
collection of hyperparameters.
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 7. Inference speed: When creating high-resolution photos or movies, employing 
GANs to generate fresh data might be time-consuming. When applying GANs in 
real-time applications, this can be a restriction.

It takes extensive experimentation, parameter modification, and attention to the 
subtleties of the GAN architecture and training procedure to overcome these obsta-
cles. To enhance GAN performance and deal with these difficulties, researchers are 
always coming up with new strategies.

2.7  Different Types of GANs

There are several types of GANs, each designed for a specific task or use case. 
Some of the most common types of GANs are:

 1. Vanilla GAN: A generator and a discriminator network are combined in this type 
of GAN, which is the earliest and most basic type. The discriminator learns to 
tell the difference between actual and phoney data, while the generator learns to 
produce realistic data.

 2. Conditional GAN: Similar to a vanilla GAN, a conditional GAN accepts extra 
inputs, such as labels or characteristics, to regulate the qualities of the produced 
data. Common applications for this kind of GAN include style transfer and 
image-to-image translation.

 3. Wasserstein GAN: The Wasserstein GAN (WGAN) is an iteration of the GAN 
framework that quantifies the difference between the distributions of generated 
and real data by utilizing the Wasserstein distance metric. WGANs can provide 
output of greater quality and are more stable throughout training.

 4. DCGAN: It is a kind of GAN in which the discriminator and generator networks 
are both constructed using convolutional neural networks (CNNs). It has been 
demonstrated that DCGANs can generate high-quality pictures and are often 
employed for image production jobs.

 5. CycleGAN: A CycleGAN [13] is an image-to-image translation task-specific 
GAN type. To make sure that the output of the generator is consistent with the 
input and vice versa, it employs a cycle consistency loss.

 6. Progressive GAN: A progressive GAN is a sort of GAN that builds layers onto 
the generator and discriminator networks to gradually produce high-resolution 
pictures. Tasks requiring the production of high-resolution images frequently 
utilize this kind of GAN.

Numerous variants of GANs have been created, and each possesses unique 
advantages and limitations. Ongoing research is focused on inventing fresh and 
inventive GAN models to cater to diverse applications.
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2.8  Steps to Implement Basic GAN

Implementing a basic Generative Adversarial Network (GAN) involves the follow-
ing steps:

 1. Import the necessary libraries: You must import the relevant deep learning 
libraries, such as TensorFlow or PyTorch, in order to create a GAN.

 2. Load the dataset: The dataset from which you wish to produce synthetic data 
must be loaded before you can begin training a GAN.  Any kind of material, 
including images, text, and audio, might be included here.

 3. Define the generator: The generator network is in charge of producing synthetic 
data from an input of random noise. A fully connected network or a convolu-
tional neural network are examples of deep neural network architectures that 
may be used to achieve it.

 4. Define the discriminator: The discriminator network is in charge of separating 
authentic data from fraudulent data. An architecture for deep neural networks 
can also be used to implement it.

 5. Train the GAN: To train the GAN, it is necessary to alternate between training 
the two networks. The generator is given random noise inputs in each cycle and 
utilized to create fake data. The discriminator plays a crucial role in assessing the 
quality of the generated data and offering feedback to the generator. This itera-
tive process persists until the generator becomes proficient in producing high- 
quality fake data that can effectively deceive the discriminator.

 6. Evaluate the results: When the GAN has been trained, you may assess the pro-
duced data’s quality by contrasting it with the original data. To gauge how effec-
tively the GAN has worked, you can use a variety of assessment criteria, 
including visual inspection, classification accuracy, or statistical statistics.

 7. Generate new data: Last but not least, when the GAN has been trained, you may 
use it to produce fresh synthetic data by feeding it random noise inputs.

3  Augmentation of Chest Radiograph Images 
for Covid-19 Classification

A Deep Convolutional Generative Adversarial Network (DCGAN) is a kind of 
GAN in which the discriminator and generator networks are both constructed using 
convolutional neural networks (CNNs). DCGANs can generate high-quality pic-
tures and are often employed for image prediction jobs.
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3.1  Methodology

The approach employed involves utilizing the DCGAN-CNN technique to effec-
tively classify CXR images into three distinct groups: normal, pneumonia, and 
COVID-19 [14].

3.1.1  DCGAN

DCGAN is a variant of GAN that is intended for generating images. It was first 
introduced in 2015 and has since become one of the most successful and commonly 
used architectures for generating images. DCGANs are utilized to address the issue 
of mode collapse, which arises when the generator becomes biased toward generat-
ing only a few outputs and fails to generate a diverse range of outputs from the 
dataset. For instance, consider the example of the MNIST digits dataset [15] (digits 
from 0 to 9). The objective is to generate all types of digits; however, sometimes the 
generator becomes fixated on producing only two or three digits. Consequently, the 
discriminator also becomes optimized to identify those specific digits only, result-
ing in a state known as mode collapse. Nevertheless, DCGANs can overcome this 
problem.

3.1.2  DCGAN Architecture

DCGAN is a neural network architecture utilized for generative modelling in sev-
eral domains, such as computer vision, medical imaging, and style transfer. It is 
built upon the fundamental elements of GAN networks [11], including discrimina-
tors and generators. The discriminator’s main purpose is to differentiate between a 
given sample from the synthetic or real distribution by calculating the probability 
value. In GAN, an optimal outcome is achieved when the probability value is near 
0.5, implying that there is no differentiation between real and synthetic samples. A 
sample is considered genuine when its probability exceeds 0.5. By employing CNN 
and GANs, an unsupervised machine learning approach can proficiently model data 
distribution and train a generator network.

We utilized a model that employed 100 × 1 noise vectors denoted as “z.” The 
network initiated from a layer of 1024 × 4 × 4 and concluded with a 64 × 64 output 
layer. To enable evaluation for classification purposes, the output image underwent 
resizing to specific dimensions. The discriminator network analyzed actual CXR 
pictures and received the produced synthetic images to train the data and extract 
features. In the last layer, the discriminator extracted relevant characteristics and 
passed them to a CNN for classification. Figure 7 depicts the overall architecture of 
DCGAN, and the two neural networks that trained this generative model.

The network comprises a generator (G) that employs random noise Z to produce 
images. Gaussian noise is used as the generator’s input data in GAN, representing a 
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Fig. 7 General architecture of DCGAN

random point in the latent space. The discriminator (D) assesses if a picture is natu-
ral or artificial. It accepts an image x as input and outputs D(x). The outcome is 
based on the probability that x belongs to the real distribution. A discriminator out-
put of 1 indicates that the picture is real, whereas a lower result indicates that it is 
synthetic. An upgraded DCGAN network is updated to increase GAN performance. 
The generator generates noisy images during the initial training stage, and after 50 
epochs, the generated images resemble the original image.

3.1.3  CNN

Convolutional Neural Networks (CNNs) [16] are a specialized type of deep neural 
network designed specifically for tasks involving image recognition and classifica-
tion. They employ a layered architecture that performs various operations, including 
convolutional layers, pooling layers, and fully connected layers. In the domain of 
CNNs, the input is typically an image or a collection of images, and the output is a 
prediction that identifies the objects or features present within the image. The archi-
tectural layout of a CNN is depicted in Fig. 8. The primary components of CNNs are 
the convolutional layers, which consist of a set of filters or kernels. These filters 
slide over the input image, computing a dot product between the filter and the image 
pixels. This process extracts different features such as edges, corners, textures, and 
visual patterns from the input image.

Pooling layers play a critical role in reducing the spatial dimensions of the data. 
They accomplish this by downsampling the output from the convolutional layers. 
Pooling is commonly performed using operations like maximum or average pool-
ing, applied to a window of neighboring pixels. This downsampling operation helps 
decrease the size of the output volume while retaining essential features. Fully con-
nected layers are responsible for integrating the extracted features from the convo-
lutional and pooling layers, enabling classification or regression tasks. These layers 
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Fig. 8 CNN architecture

Fig. 9 DCGAN-CNN model’s architecture

typically consist of multiple nodes or neurons that establish connections with every 
neuron in the preceding layer. This connectivity enables the network to learn intri-
cate representations and relationships among the features, leading to accurate 
predictions.

3.2  DCGAN-CNN Model’s Architecture

DCGAN is a multi-neural network that utilizes random noise to generate synthetic 
images by extracting features from input images. The network begins by extracting 
local features in the initial layers and subsequently utilizes these local features to 
extract global features. Figure 9 illustrates a block diagram representation of the 
DCGAN-CNN model [11].

The encoder and decoder of the DCGAN-CNN model perform downsampling 
and upsampling operations on the input data until reaching the bottleneck. Figure 10 
provides an illustration of how the discriminator assesses the authenticity of a gen-
erated image, determining whether it is real or synthetic. The output dataset from 
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Fig. 10 Synthetic images generated by GAN

this evaluation is subsequently passed into the CNN classification process. On the 
other hand, Fig. 11. presents a flowchart representing the DCGAN-CNN model.

There are some steps to classify the COVID-19. They are as follows:

 1. Data Collection: Collect a larger dataset of CXR images that includes: normal, 
pneumonia, and COVID-19 [17]. It is recommended to obtain a more compre-
hensive collection of images. Numerous publicly available datasets can be uti-
lized for this purpose, including the COVIDx dataset, COVID-19 Radiography 
Dataset, and the Chest X-Ray14 Dataset [18].

 2. Data Pre-processing: Pre-process the CXR dataset by resizing the images to a 
common size, normalizing the pixel values, and augmenting the dataset if neces-
sary. It is also important to balance the dataset by ensuring equal representation 
of each class (Fig. 11).

 3. DCGAN Model: Training a DCGAN on the CXR dataset can generate new 
images that resemble the original ones. These generated images can then be used 
to augment the original dataset and increase its diversity. It is important to use 
techniques like data augmentation, random rotations, and flipping to generate 
diverse images that capture the variations in the original dataset. Fig. 12 repre-
sents sample data augmentation of chest radiograph image [19].

 4. CNN Model: To classify images into normal, pneumonia, and COVID-19 catego-
ries, CNN will be trained on an augmented dataset. You can use transfer learning 
by using a pre-trained CNN as a starting point and fine-tuning it on your aug-
mented dataset. It is also important to use techniques like dropout and batch 
normalization to prevent overfitting. The final classification of the labels for nor-
mal, pneumonia, and COVID-19 is performed by the fully connected layers.
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Fig. 11 Flow chart of the DCGAN-CNN model

4  Conclusion

In conclusion, the lack of diverse and sufficiently large sets of training data in medi-
cal computer vision applications remains a significant challenge, particularly due to 
patient privacy concerns and class imbalance. While traditional data augmentation 
techniques can help to increase the dataset size, they may not be sufficient to gener-
ate adequate data. However, DCGAN offers a promising solution to this problem, 
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Fig. 12 Sample data augmentation of chest radiograph image

allowing the creation of clear and accurate artificial images of the under-represented 
class. DCGAN has great potential in the field of clinical image synthesis. The 
DCGAN-CNN method presents a promising solution for effective COVID-19 diag-
nosis. Medical image analysis researchers can leverage GAN techniques for data 
augmentation, thereby enhancing the performance of deep neural networks and 
improving the accuracy of medical diagnoses.
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Data Augmentation Approaches Using 
Cycle Consistent Adversarial Networks

Agrawal Surbhi, Patil Mallanagouda, and Malini M. Patil

1  Introduction

Data is extremely important to make machine learning models to learn. If sufficient 
amount of data is not available then deep learning and machine learning models fail. 
However, in real time, most of the cases are when sufficient amount of data is not 
available through which we can make our models to learn. Examples of such cases 
are study of rare diseases, cosmic data studies where some cosmological phenom-
enon are rare and needs to be studied, when dataset is not balanced in terms of 
classes of particular type, image to image translation, etc. Other than this, there are 
other applications where data needs to be generated for further study like photo-
graphs of human faces, generation of new human poses, super resolution, text to 
image translation, video prediction, etc. Over the years some research works have 
been carried out in this direction. For example, Smote algorithm, oversampling, and 
generative models are some models which have been suggested in this direction 
after many researches. Out of these Smote and oversampling methods generally 
deal only with class imbalance in dataset. However, if it is an image dataset these 
methods do not work. This is where generative models take over and have been 
proposed.

Generative Adversarial networks is a class of unsupervised learning model where 
they are used to generate the fake data in order to increase the dataset. These models 
are famous as data augmentation tool and have been proven to successfully generate 
fake data where it is very difficult to identify whether it is generated data or actual 
data. GAN basically is a generative model that follows neural network architecture. 
The GANs can be understood by taking all three parts from its name:
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• Generative which describes the generation of data.
• Adversarial this provides a conducive environment for the process of train-

ing models.
• Networks to use neural networks to train the model.

Generative models, particularly, describe how new data generation can be 
done in a probabilistic manner. New data, therefore, can be generated by per-
forming sampling from this [1]. Generative models mainly imitate the probabil-
ity distribution of dataset as same as possible, then sampling is performed to 
generate some new distinct data points. These new data points looks like they 
are part of the training data. The process can be shown as in Fig. 1. In order to 
generate the data, training data of the entity must be available through which the 
model is made to learn. Generative modelling can be applied on both labeled 
and unlabeled data. In case of labeled data, generative models can be used to 
generate data belonging to each class. Whereas, for unlabeled data, this can be 
used to generate new data points by observing the probabilistic distribution of 
the existing data points. Mathematically, we can formulate generative modelling 
as follows:

 
Generated data probabilistic estimation of observ� � ��� ��E p x aation

 
(1)

 
Generated data , probabilistic estimation of distrib� � �E p x y[ uution

 
(2)

Hence, GANs contain two basic and parallel trained models – one model which 
is used to train the model in order to generate the fake data and it is called as genera-
tor and the other to discriminate the fake data from the real data and it is called as 
discriminator [2].

The term adversarial indicates the competitive situation between these two 
discriminator and generator models. The two models try to deceive each other, 
that is, generator should be able to generate fake data in such a manner that it is 
almost impossible to distinguish between real data and fake data whereas dis-
criminator should be able to properly determine which of the data is real and 
which is fake.

The term network here indicates the machine learning approach that has been 
used to implement the generator and the discriminator. These are mainly neural 
networks that can range from feed forward to convolution to very complex 
Unet model.

Training Data Generated Sampled
Data

Generative
Model

Sampling

Fig. 1 Generative modeling process
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1.1  GANs Application in Healthcare

GANs have their applications in various domains and different applications as given 
in a few example above. However, healthcare industry is the one where GANs have 
its multiple applications. In this chapter’s subsequent discussion, the main focus 
will be on GAN and its subvariant cycle consistent GAN and its application mainly 
in healthcare industry. A small GAN operation can be discussed here. GANs till 
now have been successfully implemented in medical imaging where low-resolution 
images were a hinder for radiologists. GAN provides super-resolution to such 
images. For this, GANs are trained with previously collected high-resolution 
images. Here the images having high resolution are converted to images with low 
resolution and then given as input to generator. So, the generator model learns from 
these converted low-resolution images. The generator model then tries to enhance 
the resolution of these images so that the discriminator function can classify it as a 
real image. This continues till the loss function of the generator model with respect 
to discriminator model gets minimized. This is called adversarial loss.

There are challenges involved in the training of GANs. It consumes more time to 
train these models as they need to learn the minute characteristics or feature at a 
very fine level. Though training of these models is very complicated but once we 
achieve the accuracy of these models, they can be applied to any level. There are 
variety of such use cases, where some of them will be discussed in subsequent parts 
of the chapter, where GANs have gained popularity and can be much more helpful 
with its sub- variants in the health care industry.

2  Data Augmentation in Deep Learning Models

In data augmentation, already existing data is used to create a new updated dataset 
which is used to synthetically increase the training data. To generate this data syn-
thetically, hence either minor adjustments are done in the dataset or with the help of 
deep-learning creation of new data objects can be achieved. Data augmentation is 
generally done for the following reasons:

• For improving the model’s accuracy.
• For reducing the pre-processing in terms of labeling and cleaning the dataset.
• For increasing the training data size.
• For reducing the overfitting of a model.

Data can be augmented for above-mentioned reasons or can be synthesized. 
Augmentation means data is derived from the original data by applying certain 
transformation on them like translating, flipping, scaling, rotating, etc. This is 
mainly done either to increase the size of the training data or to have variety in the 
dataset. Whereas synthesized data is slightly different. It is artificially generated 
data where the original dataset may or may not be there. GANs and deep neural 
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networks are mainly for synthesizing the data. However, these terms are inter-
changeably used and techniques also overlap for generating the data in real time. In 
a broader sense, augmentation techniques can be applied to images, audio, text, etc. 
Synthetic data is mainly the oversampled augmentation which is usually added to 
the training dataset. Due to privacy issues however, researchers mainly are using 
synthesized data which as discussed is a data augmentation technique. There is, 
however, certain limitation of data augmentation. Few limitations are as follows:

• Performing quality assessment for enhanced dataset is difficult.
• Training of advanced techniques like GANs is challenging and their validation is 

still more challenging.
• It is difficult to decide on an optimal augmentation strategy.
• If any bias is present in the original data, then it will also be reflected in aug-

mented data.

Data Augmentation Process Suppose two images of similar looking but different 
species are there, for example, a horse and a zebra as shown in Fig. 2. If a human 
being needs to identify the images they can easily tell that one is horse and other one 
is zebra. Humans are able to do so as they have learnt from their childhood on the 
basis of which feature should they say that it is a horse or it is a zebra. So, we basi-
cally identify their features and categorize them. But for a computer it is not easy to 
do so. If a child is once informed that an animal with black and white stripes, a short 
tail, etc., is a zebra, then the next time the child is able to remember that it is a zebra.

However, to make computers learn the same, many images of horses and zebras 
have to be given so that it can learn to distinguish between a horse and a zebra. 
Models like Convolution Neural Network (CNN) do not change with any kind of 
transformation applied on images and hence these models are very accurate in doing 
classifying images [3]. The concept of data augmentation is mainly based on this. A 
model must be invariant to any kind of transformation, that is, translation, rotation, 

Fig. 2 Comparison of images
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scaling, brightness, and so on. This is the key why data augmentation has success 
with deep learning models. The huge multiple parameters of deep learning models 
like CNNs enable the learning of these intricate differentiating traits through itera-
tive “searching” through a large number of samples. As a result, the type and amount 
of the input dataset affect the performance of deep learning models. The main aspect 
to make model learn is a huge amount of data. For example, models like RESNET, 
BERT, and Inception- V3 need a huge amount of complex data to make the models 
learn properly. Unfortunately, we do not have access to a lot of data for many appli-
cations. Data Augmentation hence as discussed above gives answer for that. A gen-
eral augmentation process can be shown as [4] in Fig. 3. Initially, input training data 
in hand is fed to the data augmentation pipeline which in turn contains a sequence 
of transformation steps like rotation, flipping, changing of gray scale to RGB, etc. 
[3]. The image is processed by each transformation with certain probability. Once 
processed, these images are validated by a human expert. If passed by the human 
expert, the training data is augmented and this augmented data is fed to the deep 
learning model for further processing.

An important application of data augmentation is Model Patching. Model patch-
ing is most of the times required post deployment of a machine learning model. 
There might be cases where an ML model may not perform well, that is, make 
wrong predictions after being deployed. Such situations are needed to be handled. 
This situation is dealt with by using model patching [5]. Practitioners have seen, for 
instance, that classifiers gave good accuracies for benign skin lesion images (on the 
ISIC skin cancer detection dataset [4]) with visible bandages than they are on benign 
images with no bandage. This is a subgroup problem. Theoretically, we would train 
a classifier to be invariant to these properties while generating predictions by auto-
matically learning the features that distinguish the subgroups of a class. For this 
model patching provides an implementable solution through augmentation. For this 
it works in two stages:

Inter-subgroup transformation learning: Identify characteristics that set sub-
groups apart within a class and become familiar with the transformations that exist 
between them. These modifications alter the subgroup identity of an example while 
keeping the class designation.

Fig. 3 Augmentation process
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Training of the model for patching: Use the transformations as data augmenta-
tions which are under control to change the subgroup characteristics, allowing the 
classifier to be more resilient to their variance.

Modelpatching, a two-stage approach to enhancing resilience, encourages the 
model to be invariant to subgroup changes and concentrate on class information 
shared by subgroups. Model patching combined with CycleGANs have shown great 
performance that will be discussed in a later section in this chapter. Model patching 
is emerging as a field that could solve the main issue in safety- critical systems, such 
as healthcare (e.g., enhancing models to create artifact-free MRI scans) and autono-
mous vehicles (e.g., enhancing perception models that may perform poorly on 
erratic objects or a variety of driving conditions). As shown in Fig. 4 [4], the vanilla 
model which was trained on skin cancer dataset was not performing properly to dif-
ferentiate images with or without bandages for malignant cancer. Selvaraju et al. [4] 
showed that vanilla model ambiguously relates the colored spot with benign skin 
lesions. However, it was correctly classified using model patching.

3  Data Augmentation in Healthcare

There are various application of data augmentation as discussed above. However, 
this chapter focuses on data augmentation’s application in healthcare. Why this 
technique is required in healthcare is a big question and what it can do is the other. 
So, here we present some of the studies on the need of data augmentation in the 
healthcare domain. Data has long been a focus in the healthcare industry. In an 
endeavor to better the health of their patients, doctors and specialists examine pho-
tographs, patient data, and medical literature. With the introduction of electronic 
medical records (EMRs), networked devices, and, more recently, the Internet of 
Things, healthcare has become more and more digital throughout time.

Model
patching

Test example

Real skin cancer detection examples

Vanilla
Model

Patched
Model

Fig. 4 Model patching of images of malignant lesion with and without colored bandage
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Medical imaging datasets necessitate time-consuming and costly labeling. 
Before performing the analysis of data of the dataset its validation has to be done by 
a person having expertise in that domain. Then proper and accurate machine learn-
ing algorithms can be trained. For example, we can employ random transformation 
techniques like zooming, color space transformation, stretching, and cropping to 
enhance the model performance in the case of pneumonia classification. But one 
must exercise caution when using some augmentations because they may have the 
opposite effect. For the X-ray imaging dataset, for instance, random rotation and 
reflection along the x-axis are not advised. The following discussed techniques of 
data augmentation have been found as per [6].

3.1  Basic Augmentation Techniques

Some of the very basic augmentation techniques that have been used are as follows:

Geometric Transformations Goel et al. [5] Transformation techniques like affine 
such as scaling, translating, rotating, reflecting, shearing, and perspective trans-
forms including skew are some of the more general geometric transformations 
which have been used so far in multiple works in the medical area to enhance the 
image quality.

Cropping In this technique, patches from an existing image are randomly chosen 
and dataset is then expanded by including these random patches once again. To 
address the class imbalance, mainly this technique is used. In [7], technique has 
been used on dental radiography. To determine which cropping approaches are best 
for identifying dental image objects, researchers in this study tested existing crop-
ping methods with image object data utilizing periapical techniques on human den-
tal pictures.

Occlusion This is a phenomenon where the visibility of an image is not proper as 
another image is in its path [4]. This is a critical problem in image processing which 
needs to be addressed. Techniques were needed which make such study easy. In the 
medical field, augmented techniques are used in such cases. For example, in den-
tistry one might be required to study a tooth which is occluded by another tooth. 
Augmented techniques support in such cases. Similarly, during COVID-19 it helped 
to study facial issues of people without removing their masks.

Some other basic augmentation techniques are noise injection, combination of 
images, intensity operations, etc.
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3.2  Deformable Augmentation Techniques

There are cases when basic augmentation techniques do not give satisfactory result 
or vision of images. In those cases, some advanced augmentation techniques or 
image enhancers can be used. There are many such techniques like randomized 
displacement field, spline interpolation, and deformable image registration. In order 
to guarantee that the resulting augmentations are clinically plausible, the scale of 
distortion is often restricted by thresholds or limits as specified by the user. By using 
such techniques, one may also help clinical scans simulate a variety of feasible 
variations, such as tissue distortions or antiquity of images brought on by patient 
movement. In image registration process, there is an image called the moving 
image, which is transformed (generally with the help of deformation techniques) to 
closely match another image called fixed image. For a single patient, this is often 
used to compare several imaging modalities (e.g., CT and MRI). For example, [6] 
by using deformable image registration technique between a healthy person and 
original patient, Krivov et al. [8] established a technique that allowed brain lesions 
to be projected onto scans of healthy patients. Similarly, in their demonstration of a 
method using diffeomorphic image registration, Nalepa et al. [9] co-registered pairs 
of lesion pictures to produce enhanced data that, when paired with an affine aug-
mentation, increased the generalization of their Deep Learning models.

3.3  GAN-Based Augmentation Methods

As discussed, a brief introduction on GANs in previous section, detailed architec-
ture will be discussed in subsequent section of this chapter. From the above discus-
sion, it is known that GAN is a deep learning-based augmentation technique to 
generate the data. As shown in Fig. 5 [6], through GAN-based CT, a lung nodule 
image have been generated.

Image Segmentation Using GAN -Based Augmentation Methods Instead of 
creating simply synthetic images, as is the case for classification tasks, the aim of 
data augmentation for image segmentation tasks is to produce synthetic image-label 
pairs [10]. A label in this context is often an image whose pixels or voxels have been 
given a category index that represents a specific meaningful entity. As an illustra-
tion, consider creating artificial medical images using the semantic labeling of ana-
tomical structures. A semantic label in this context is an image of a label on which 
each pixel or voxel has been given a class index. Figure 6 displays an illustration of 
how a CGAN can be used to create artificial MRI images using semantic labeling.

The labels and generated images can be combined to form the training set for a 
segmentation network. Cao et al. [11] and Shin et al. [12] both used this kind of 
label image translation technique to synthesize aberrant brain MRI pictures and 
PET and CT images, respectively, for tumor segmentation. Synthetic images with 
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Fig. 5 (a) Real images of CT Courtesy: LIDC lung nodule dataset; (b) generated images 
using GAN [6]

diverse anatomical appearances were created using enhanced labeling, where the 
location, shape, and size of tumors can be altered. Jiang et al. [13] performed faux 
MR image synthesis from CT pictures under the constraints of two different GAN 
models simultaneously trained for segmentation of lung tumor in MRI. For the pur-
pose of segmenting organs, Sandfort et  al. [14] converted CT images that were 
enhanced in contrast to un-enhanced ones using CycleGAN.

These were few examples of works conducted earlier, which show the impor-
tance of data augmentation and GANs and its variants in medical stream. Further 
research and work are also going on in this direction. The next subsequent section 
focuses on the discussion on one of the important variants, that is, Cycle Consistent 
GAN, its architecture, working, and its use case in healthcare.

4  Cycle Consistent Generated Adversarial 
Networks Architecture

4.1  Introduction to Cycle Consistent GANs

Every GAN-based approach, including CycleGAN, inherently produces content 
that is hallucinatory in nature. Its outputs are scenarios of “what might it look like 
if..,” and although reasonable, the forecasts may be very different from reality. As 
discussed above in the Introduction, GANs in general have a discriminator and a 
generator. Both discriminator and generator are complementary of each other. In 
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Fig. 6 The picture is taken from a prostate MRI dataset [10]

CycleGANs, there are two GANs, that is, there are two discriminators and two 
generators.

For an illustration, let us consider the same horse and zebra example as discussed 
in the Introduction above. One of the generators of CGAN will be transforming the 
image of a horse to a zebra and other transforming a zebra to a horse. Why is this 
transformation needed? We know that transformation is the basic key in GANs for 
generating new data. So, basically, CycleGAN is a paradigm for translating images 
to images. These are similar to the Pix2Pix model but in Pix2Pix the requirement is 
that the training data needs to be paired. However, it does not work for unpaired 
image dataset. CycleGANs are used for this purpose. Hence, using the CycleGAN 
method, image-to-image translation models can be trained irrespective of paired 
images. To do so it makes use of unsupervised learning for model training by utiliz-
ing a set of pictures from both source and target domains which are not related. 
CycleGAN architecture was proposed by Jan-Yan Zhu et  al. [15] along with his 
associates in their work unpaired image-to-image Translation Cycle Consistent 
Adversarial Networks.

A. Surbhi et al.



121

In the above example of the horse and zebra, the horse and zebra are unpaired 
images. Discriminators are used throughout the training phase to determine whether 
generated images are authentic or false. With the use of their respective discrimina-
tors’ input, this approach can help generators improve [15]. A generator in 
CycleGAN receives additional input from the previous generator. This input or 
feedback makes sure that an image produced by a generator is cycle consistent, 
which means that using two generators in succession should provide an image that 
is similar. This can be understood by Fig. 7. Suppose zebra belongs to domain1 and 
horse belongs to domain 2, then the generator (GEN 2) corresponding to domain 2 
is applied to this image to generate the image in domain 2. Similarly, images will be 
translated from domain 2 to domain 1 by applying GEN 1. Discriminators will be 
checking whether generated images are real or fake. Hence, the role of discrimina-
tor1 is to determine whether the outputs of Gen1 are true or false in terms of Domain 
2, they are fed through discriminator 2. Similarly, role of discriminator2 is to deter-
mine whether the outputs of Gen2 are true or false in terms of Domain 1, they are 
fed through discriminator 1.

This is the basic for CycleGAN. Cycle consistent GANs implement an extension 
to it, that is, they bring in the concept of cycle consistency. In cycle consistent GAN, 
it is proposed that the output image from first generator is given to the second gen-
erator as input. The output from second generator must be almost similar to the 
actual image fed to the first generator. So, in cycle consistent GANs, the main aim 
is to learn the mappings Gen1 which maps the input image from domain1 to 
domain2 and Gen2 that maps an image from domain 2 to domain1 [15]. Also, the 
two adversarial discriminators can differentiate between real images and fake 
images. This introduces 2 important terms:

• Adversarial losses: to match the distribution of output images to the distribution 
of data in the target domain.

• Cycle consistency losses: to stop the learnt mappings Gen1 and Gen2 from con-
flicting with one another.

• In a simple way, if I1 is an image belonging to a domain D1 and we apply the 
mapping (Gen1) on it, it produces an image in domain2 say, I2. Now if we apply 
mapping (Gen2) on this generated image I2, it will produce an image back in 
domain 1 say as I′, then the cycle consistency loss is given as:

Discriminator 1

Gen 1

Gen 2

Image from domain1 Image from domain2

Discriminator 2

Fig. 7 CycleGAN process
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 CCL � �I I2 1  (3)

The above equation is the logical way of looking at the cyclic loss. More detail 
of these two losses will be discussed later in this chapter.

5  Building Cycle Consistent GANs

As we have seen above, two important mappings have to be learnt, that is, generator 
and discriminator, and we will see how these mappings are developed in cycle con-
sistent GANs [16].

5.1  Generator

The functioning of a generator can be divided into three main parts:

• Encoder: It is meant to extract the features from the image. The first phase 
involves using a convolution network to separate the features from an image. A 
convolution network takes an image as its input, the filter window size which is 
scanned to extract image features, and the size of the stride to determine by what 
amount to move the filter window after each advancement. Each convolution 
layer causes the extraction of dynamically higher level features.

• Transformer: These convolution layers can be considered as linking various 
nearby image features, and based on these features, decisions can be made about 
how we would want to alter the element encoding of an image starting with one 
and moving on to the next. A transfer learning model can be used for that. 
Suppose we use six to nine layers of Resnet blocks. Two convolution layers make 
up the Resnet block where more information is added to the output. As a result, 
the qualities of unique images will not be maintained in the yield and the results 
will be unexpected. This is done to ensure that properties of the contribution of 
previous layers are accessible for subsequent layers and also to ensure that their 
yield does not deviate significantly from unique information.

• Decoder: Output generated by transformer is passed to the decoder. To restore 
the representation’s original size, the decoder utilizes a 2-deconvolution block of 
fraction strides. So, basically it is performing the inverse of what was done by the 
encoder.

The above process can be represented as shown in Fig. 8.
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5.2  Discriminator

• The discriminator would use images to attempt to determine if they were authen-
tic or false. It works along with a transformer. It will take the input image and 
extract features from it. It checks whether these features are as per classification 
or not. It can be represented as shown in Fig. 9.

5.3  The Loss Function

As discussed in the previous section, cycle consistent GANs suffer from 2 types of 
losses, that is, cycle consistent loss and adversarial loss. Let us have a deeper insight 
into it. The loss function must be designed in such a way that cycle consistent GAN 
is able to achieve its aim. The model has 2 generators and 2 discriminators. Loss can 
be viewed at the following points:

 1. All the images belonging to all categories must be accepted by the 
discriminator.

 2. The discriminator should try to reject all those images which the generator is 
trying to pass as valid images.

 3. The generator must try that the discriminator passes all the generated images as 
valid images.

 4. The generator creates a fake image using Image1 →  Image2, then we should 
almost surely return to a unique picture using another Generator Image2 
Image1 → – it must satisfy cyclic consistency. The created image thus returns 
the original image.

The Objective Function The cycle consistent GAN, therefore, based on the above 
four points, can have two components: cycle consistent loss and adversarial loss (as 
also discussed above) [17]. Consider two generators in the models as U and V, two 
discriminators as Da and Db, and the domains A and B to which the images belong. 
Suppose there are n number of images in the dataset. Consider U is trying to trans-
late A into outputs, which are fed through Da to check whether they are real or fake 
according to Domain B. Similarly, V is trying to translate B into outputs, which are 
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fed through Db to check whether they are real or fake according to Domain 
A. Adversarial Loss based on the above can be given as follows:
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Another component, that is, cycle consistency loss can be given as follows:

 
Loss , , ,Cyc U V A B

n
V U a a U V a b
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1  

(6)

The above equation is similar to the logical Eq. (3) given above. Based on Eqs. 
(4), (5), and (6), the overall objective function can be defined as follows:

 
Loss Loss LossTot AD Cyc� ��

 
(7)

where α is weighting hyper-parameter for cycle consistency loss and is recom-
mended to be set to a value of 10. However, it can be fine-tuned as well. In order to 
update weights and biases so that error can be reduced, an optimizer like ADAM, 
stochastic gradient descent, Adagrad, etc., can be used. The discriminators can be 
fed with previously generated images rather than just those created by the most 
recent versions of the generator in order to prevent the model from altering much 
from iteration to iteration. This is usually done if the model gets stuck in  local 
oscillations.
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6  Applications of Cycle Consistent GANs

There are various domains where data augmentation is required and where various 
other models and other variants of GAN fail because either data is unlabeled or 
belongs to unpaired images. In such cases, Cycle Consistent GANs have proved to 
be very useful. Some of the applications in brief are given here:

 (a) Style Transfer: The technique of transferring a particular aesthetic to another 
domain, usually photography, is known as style transfer. Using the aesthetics of 
Monet, Van Gogh, Cezanne, and Ukiyo-e to landscape pictures serves as an 
illustration of the CycleGAN [16].

 (b) Object Transfiguration: It is the transition of an object from one class into 
another, for example, from a dog to a cat. It is shown how the CycleGAN may 
turn pictures of horses into pictures of zebras and the other way around. Given 
that horses and zebras are comparable in size and structure, with the exception 
of color, this kind of transformation seems plausible [18].

 (c) Season Transfer: In this process photos taken in one season like summer are 
converted to another season, like winter. On images of winter landscapes con-
verted to summer landscapes, and vice versa, the CycleGAN is used to illustrate 
its capabilities [19].

 (d) Photographs Generated from Paintings: As the name implies, photograph cre-
ation from paintings is the synthesis of photorealistic photographs given a 
painting, usually by a well-known artist or renowned setting. The CycleGAN is 
used to convert several Monet paintings into credible pictures [20].

 (e) Photograph Enhancement: The term “photographic enhancement” describes 
changes that make the original image better in some way. By enhancing the 
depth of field (e.g., by adding a macro effect) on up-close photos of flowers, the 
CycleGAN is used to show photo enhancement [21]. Other than these small 
applications cycle consistent GANs have been used extensively in enhancing 
images in the medical field and to augment data in medical sciences. The next 
section of the chapter focuses on various applications of cycle consistent GAN 
in Healthcare.

7  Cycle Consistent GAN in Healthcare

There are various data augmentation techniques which have been applied so far as 
discussed in the previous section of the chapter. As seen before, GANs and their 
variants have been successfully applied in medical science field. Here, the main 
focus of the study is how cycle consistent GANs have been used in healthcare. In 
Morís et al. [22], the authors have proposed the use of cycle consistent GANs for the 
study of Novel Coronavirus which was related to the recent pandemic situation. 
This disease primarily affects the patient’s respiratory system and can cause pneu-
monia and severe acute respiratory syndrome instances, which cause the 
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development of many abnormal structures in the lungs. Chest X-ray imaging can be 
used to study these diseased structures. The usage of portable chest X-ray equip-
ment rather than traditional permanent gear is advised for the health services to stop 
the spread of the virus. Yet, there are various issues with portable devices (especially 
those related with capture quality). Hence, with respect to low-quality and less 
informative datasets collected through portable devices, Morís et al. [22] suggested 
that multiple cycle generative adversarial networks be used to create interesting and 
pertinent synthetic images in order to improve the effectiveness of COVID-19 
screening in order to overcome the dearth of COVID-19 samples. Without the need 
for paired data, they used three complimentary CycleGAN designs to simultane-
ously produce a fresh collection of artificial portable chest X-ray pictures from three 
distinct circumstances (normal, diseased, and genuine COVID-19). In addition, four 
different CycleGAN variants (Unet-128, Unet- 256, ResNet-6, and ResNet-9) were 
tested for every scenario for proper and extensive validation of methodology, evalu-
ating 12 different approaches. Then, in order to add more dimensions to the original 
dataset and improve the training for the COVID-19 screening procedure, this new 
collection of artificial images is introduced to the dataset. They used CHUAC data-
set where they retrieved 720 images of different resolutions. The dataset had 240 
COVID-19 data points, 240 data points belonging to patients with no COVID-19 
but having other lung-related issues having symptoms close to COVID-19, and 240 
data objects from healthy volunteers as well as patients with other pathological 
conditions that are unrelated to the symptoms of COVID-19 disease. All the images 
were unpaired. Using this unpaired dataset, learning of correlation was done by 
CycleGAN between the input and output images for producing a new collection of 
chest X-ray images. Moreover, the architecture’s cyclic nature enables a reverse 
transformation, meaning the model may turn a generated chest X-ray image back 
into the original chest X-ray image. The main workflow they have used here is 
shown in Fig. 10 [22]. Validation accuracies were 95.83%, 97.92%, 100.00%, and 
96.88% for Unet-128, Unet-256, ResNet-6, and ResNet-9, respectively.

In another approach presented in Nalepa et al. [23], authors presented the appli-
cation of cycle consistent GAN to augment the data for brain tumor segmentation. 
In this work, the authors used CycleGAN to perform adaptation of domain to deal 
with the various data distributions (from synthetically produced phantom data to the 
actual BraTS MRI scans). Findings from experiments demonstrated that the domain 
adaptation could produce images that were virtually identical to the original data 
and could thus be included in the training set without risk.

In a recently released article [24], investigators classified breast cancer data for a 
pathological healthcare job using a Cyclic GAN model. Concerns about inconsis-
tent staining with different batches of pathology images are frequent. Using these 
samples to train the classification model decreases the classification accuracy. Rich 
textural features and minimal semantic information can both be found in pathologi-
cal images. Further medium- and low-level variables must be retrieved to improve 
classification accuracy. Their research offered a method that used CycleGAN and an 
improved DPN (dual Path Network), as well as a color normalization technique 
based on CycleGAN, to overcome the afore- mentioned problems and lessen the 
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Fig. 10 Main workflow for COVID-19 study using CycleGAN

impact of dyeing concerns on classification accuracy. Cycle consistency enables the 
CycleGAN to provide images that are more precise and reliable. They got and 
advantage of using Cyclic GAN that it was faster in operation than CNN. Another 
advantage was that it did not need as much pre-processing, but it still had time and 
space complexity issues like CNNs and RNNs. In order to lessen the influence of 
color on classification, diseased images with varied colors were also converted to 
the same color using the CycleGAN. For this work, they used the BreaKHis breast 
cancer pathological image data collection, which includes 7909 tagged breast can-
cer pathological images from 82 breast cancer patients. The accuracy rate for the 
CycleGAN model’s data categorization is 10% higher than it would be without the 
normalization strategy, and the false detection rate and missed detection rate are all 
reduced. They also showed that CycleGAN-based color normalization for the dis-
eased images described in this study is effective and reduced the effect of uneven 
staining on the classification of pathological images.

For the automatic detection of COVID-19 using X-ray images, CycleGAN and 
transfer learning algorithms have been presented in Bargshady et al. [25]. For vali-
dation of their model, they used the Extensive COVID-19 X-ray and CT Chest 
Images Dataset. However, for training purpose they used same dataset with images 
augmented using cycle consistent GANs. By converting normal images into 
COVID-19 images and COVID-19 photos into normal images, CycleGAN had been 
utilized to produce and supplement data. In order to classify chest X-ray images 
with or without COVID-19 properties, the CycleGAN-Inception model was cre-
ated. Examples of the X-ray pictures produced by CycleGAN – (a) a selection of 
authentic and artificial images ranging from class non-COVID-19 to COVID-19; 
(b) genuine and created images from class COVID-19 to non-COVID-19 – are dis-
played as an example in Fig. 11 [25]. The collected findings of the work showed that 
the proposed CycleGAN-Inception was successfully able to distinguish between 
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Real Generated

(a) (b)

Real Generated

Fig. 11 Chest X-ray images generated through CycleGAN from (a) class non-COVID-19 to 
COVID-19 (b) from COVID-19 to non-COVID-19

COVID-19 and non-COVID-19 patients using radiographic pictures and hence can 
detect positive COVID-19 cases with high accuracy.

Another work was carried out by Harms et al. [26] where a paired cycle-GAN- 
based image correction method was proposed for quantitative cone-beam computed 
tomography (CBCT). Although CBCT enables routine 3D imaging, the practical 
application of CBCT is constrained by the pictures’ severe artefacts. To learn a map-
ping between CBCT pictures and matched planning CT images, the suggested 
method incorporated a residual block notion into a cycle consistent adversarial net-
work (CycleGAN) framework, known as res-cycle GAN. End-to-end CBCT- to- CT 
conversions are made possible by the generator’s use of a fully convolution neural 
network with residual blocks. Twenty patient datasets for the pelvis and 20 patient 
datasets for the brain were used to evaluate the suggested technique. Using this 
technique improvements of 45%, 1%, 93%, and 16% in the brain, and 71%, 2%, 
65%, and 38% in the pelvis, over the CBCT image were found for Mean Absolute 
Error (MAE), spatial non-uniformity (SNU), normalized cross-correlation (NCC) 
indices, and peak signal-to-noise ratio (PSNR).

In Yoo et al. [27], authors have done a feasibility study in order to enhance deep 
learning in optical coherence tomography (OCT) diagnosis of retinal diseases that 
are rare with few-shot classification. Because there is a dearth of training data for 
uncommon retinal illnesses, our strategy was FSL (Few Shot Learning) with data 
augmentation using GAN. To create images without matching paired images, the 
cycle consistent GAN (CycleGAN) was used. Supervised GAN approaches, such as 
conditional GAN and Pix2Pix, were not relevant in this study since there is no data-
base that contains both abnormal OCT pictures and matching normal OCT images. 
Hence, authors used CycleGAN framework for this study. Each CycleGAN model 
was developed using two domains for training: the normal retina and a single 
uncommon illness. Both linear and elastic adjustments were used to improve the 
few-shot OCT pictures of uncommon disorders. Random rotation from −30° to 
+30°, zooming from 0% to 20%, left and right flip, width and height translation 
from 5% to +5%, and random brightness change from 10% to +10% were all exam-
ples of linear transformation. A Gaussian kernel was used to produce elastic 
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transformation. 2000 normal retinal OCT images from Kermany’s [28] work were 
randomly selected for this training step, while 2000 diseased images were created 
using few-shot basic augmentation. The five trained CycleGAN models translated 
the pathological images associated with each uncommon disease from the normal 
OCT images. Ophthalmologists with extensive training examined the generated 
images and eliminated any with obvious artefacts. To train the diagnostic classifier 
model, a total of 5000 pathological OCT images – 3000 CycleGAN-based and 2000 
basic enhanced images – were created for each rare disease. Authors have also built 
their segmentation model using CycleGAN. In Mohamadipanah et al. [29], another 
recent work, authors have used CycleGANs for generating rare surgical events. 
Surgery diseases ranging from benign to malignant illnesses are treated by pulmo-
nary lobectomy. Here, CycleGAN was trained using six videos of minimally inva-
sive lobectomies, 1819 of which included no bleeding and 3178 of which contained 
significant bleeding. On a fresh video that was not used during training, the 
CycleGAN algorithm’s performance was evaluated. The trained CycleGAN was 
able to transform the laparoscopic lobectomy photos in accordance with the massive 
bleeding images that were matching to them, while preserving the original images’ 
content (such as the location of instruments in the scene) and changing each image’s 
style to massive bleeding (i.e., blood artificially introduced to selected places on the 
images). CycleGANs have shown good improvements here.

8  Future Scope and Conclusion

In a similar way as discussed in the previous section, various other research works 
have been carried out in healthcare industry using CycleGAN framework to gener-
ate more data and help the research and disease diagnosis and improvements. Radio 
imaging, CT scans, MRI images, etc., in all of these techniques improvements have 
been achieved. It also has proved to be an effective technique for histopathology 
image generation. In the previous section, 2 rare medical events have also been 
discussed where CycleGANs have shown fruitful results. There are many more such 
rare diseases for which research is still going on. CycleGANs can be an answer, 
along with deep learning, to such events where due to data insufficiency researchers 
are unable to come with proper treatments or medicines. We have diseases like 
osteoporosis, hypophosphatasia, and black bone disease that cause osteoarthritis 
and cystic fibrosis, to name a few, for which still we have no cure. Data for such 
disease is not available in adequate amount. Also certain times viruses are unpre-
dictable like HIV. Augmentation techniques especially unsupervised like CycleGAN 
can be an answer through which scientists, researchers, and doctors can bring a 
huge change. The combination of CycleGANs with other deep learning methods 
can be used for multiple such problems in various domains. New models can be 
generated using CycleGAN and different deep learning approaches to produce fur-
ther better results and to find answers for various unanswered problems in the medi-
cal area.
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Geometric Transformations-Based Medical 
Image Augmentation

S. Kalaivani, N. Asha, and A. Gayathri

1  Introduction

Deep convolutional neural networks achieved extraordinarily fit on numerous com-
puter vision tasks. Nevertheless, the networks of such models are seriously depen-
dent on huge data to evade overfitting. Overfitting takes place while the model 
attempts to cover all the data points or further than the essential data points existing 
in the specified dataset. The above causes the network to begin accumulating the 
dataset’s noise and incorrect values, which lowers both the model’s accuracy and 
effectiveness. State-of-art provides a better solution in this area and generates more 
datasets in medical images. The majority of survey participants recommended data 
augmentation as a data-space solution to the issue of limited data. In order to 
improve deep learning models, a variety of strategies are referred to as “data aug-
mentation.” These techniques aim to increase the quantity and quality of training 
datasets. Geometric transformations, color space augmentations, random erasing, 
kernel filters, feature space augmentation, mixing images, generative adversarial 
networks, meta-learning, adversarial training, and neural style transfer are some 
image augmentation algorithms. In discriminative tasks, deep learning models have 
made great strides. This is made possible by the development of deep network 
architectures, the accessibility of vast quantities of data, and sophisticated process-
ing. For the growth of convolutional neural networks (CNNs), deep neural networks 
are effectually used for computer vision applications like image analysis, object 
recognition, and image segmentation. The neural network preserves the spatial 
properties of images. The convolutional layers fetch the depth of the image to 
increase the feature maps through successive down-sampling [1–5]. The popularity 
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of CNNs has increased passion and hope for the successful application of deep 
learning to computer vision problems.

There exist numerous academic fields that use Deep Convolutional Networks to 
tackle computer vision problems in an effort to outperform current benchmarks. 
One of the hardest problems is enhancing these models’ capacity for generalization. 
A model’s performance on data it has previously seen (training data) versus data it 
has never before seen is measured by its generalizability (testing data). The model’s 
poor generalizability is identified by plotting the validation accuracy and training 
set in every epoch as shown in Fig. 1. The graphic in Fig. 1a demonstrates an inflec-
tion point when the training efficiency keeps decreasing while the error value starts 
to rise. As a result of the model being overfit to the training data as a result of the 
increased training, the model did better on the testing set than the training sample. 
In Fig. 1b, in comparison, a model with the intended correlation among training and 
testing error is depicted in the plot at the bottom.

Fig. 1 (a) Overfitting (b) Convergence
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The validation error will decrease in tandem with the training error in order to 
develop practical Deep Learning models. Data enhancement is an effective way to 
accomplish this. By providing a wider variety of potential data points, the aug-
mented data will narrow the gap between the sets used for validation and training as 
well as any subsequent testing sets. It is useful to set the scene and take into account 
what makes image identification such a challenging process in the first place before 
considering image augmentation techniques. The image recognition methods must 
overwhelm problems with, lighting, viewpoint, background, scale, occlusion, and 
other factors in traditional discriminative. These challenges are addressed by data 
augmentation, which aims to incorporate inherent translational invariances within 
the dataset to improve the performance of the final models. The idea that larger 
datasets produce stronger Deep Learning models is well acknowledged [6, 7]. Yet, 
given the labor-intensive nature of data collection and labelling, compiling huge 
datasets can be a highly challenging task. The problem of small datasets is one that 
medical image analysis faces frequently. Esteva et al. [8], have proven that medical 
image processing with deep convolutional networks is extremely effective for skin 
lesion categorization tasks for given large datasets. This has motivated the applica-
tion of CNNs to a variety of medical image analysis applications, including the 
categorization of skin lesions, brain scan analysis, liver lesions, and more [9]. The 
majority of the images examined come from expensive and time-consuming scans 
like magnetic resonance imaging (MRI) and computed tomography (CT). The rare 
nature of diseases, the confidentiality of patients, the need for medical specialists 
for categorizing, the cost, and the amount of labor needed to perform medical imag-
ing processes make it particularly challenging to generate large medical picture 
collections. Numerous works on image data augmentation, in particular GAN-based 
oversampling, have been inspired by the use of medical image categorization.

LeNet-5 [10] contains a data warping technique for image enhancement. One of 
the first CNN applications for classifying handwritten digits was this one. 
Applications for oversampling have also looked at data augmentation. The model 
will not be overly biased toward categorizing samples as belonging to the dominant 
class type if uneven class distributions are resampled by oversampling. Images from 
the minority class are randomly copied until the required class ratio is obtained via 
a simple technique called random oversampling (ROS). Chawla et al. [6] developed 
SMOTE (Synthetic Minority Over-sampling Technique), which is the predecessor 
to intelligent oversampling methods. By k-Nearest Neighbours, SMOTE and the 
expansion of Borderline-SMOTE [8] interpolate new points using existing instances 
to construct new instances. SMOTE was mostly used for tabular and vector data, 
and its major objective was to address problems caused by class inequality.

The system of classification of chest X-ray anomalies, the detection of lung can-
cer, the generation of high-quality skin lesions, and the synthesis of brain MRI are 
all included in the exploration of the application of GAN image synthesis in medical 
imaging applications. The use of GANs in rebuilding includes accelerated magnetic 
resonance imaging, CT de-noising, and PET de-noising, as well as utilization of 
super-resolution GANs in the retinal vasculature. In order to classify liver lesions, 
Frid-Adar et al. [11] applied GAN-based image synthesis data augmentation which 
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increases the performance of classification from 78.6% sensitivity and 88.4% speci-
ficity by means of 92.4% specificity and traditional augmentations to 85.7% sensi-
tivity [12].

2  Geometric Transformations: Basic Manipulation

To expand the size of the training dataset, geometric transformation involves chang-
ing the original image in a variety of ways, including translation, scaling, rotation, 
flipping, and resizing [13]. These traditional methods of data augmentation provide 
relatively related images [14] and severely decrease the model’s ability to learn 
from and generalize the test data.

Flipping Flipping the image pixels vertically or horizontally as per the necessity. 
Horizontal flipping is the most popular type of flipping since it is more realistic. For 
instance, a dataset comparing cats and dogs might contain all the photos of cats fac-
ing the spectator’s left. Unsurprisingly, dogs moving to the right may be misclassi-
fied by the trained model. The best method to solve this issue is to amass more 
training photos with as many distinct points of view as you can. One of the most 
simple methods to broaden the scope or diversity of data is flipping. When the data 
has special qualities, though, it might not be appropriate. Asymmetric or direction- 
sensitive data, such as letters or digit numbers, cannot employ the flipping technique 
because it produces wrong labels, or even opposite labels, according to the concept 
of label safety explained in Shorten et al. [12].

Rotation Rotating the image by an angle ranging from 0 to 360 degrees as per the 
necessity, the degree is varied. A straightforward geometric data augmentation 
method is rotation. The photographs are rotated by a predetermined angle and uti-
lized as training examples alongside the original images. Rotation has the drawback 
of potentially causing information loss at the image boundary. The border issue of 
the rotated pictures can be resolved in a number of ways, including random closest 
neighbor rotation (RNR), random reflect rotation (RRR), and random wrap rotation 
(RWR). Specifically, the RNR methodology fills in the black areas by repeating the 
nearest pixel values, while the RRR technique uses a mirror-based method and the 
RWR technique makes use of the periodic boundary strategy.

Translation Shifting the axes of the images as per the necessity.

Scaling Varying the dimension either through cropping the image (decrease the 
size) or enlarging the image (increase the size) as per the necessity.

Cropping The fundamental augmentation technique of cropping involves select-
ing a random portion of the target image and then scaling that portion back to the 
original size. Cropping images to a specific size before training is a common  practice 
since training data may contain examples of varying sizes [12]. It is important to 
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note that cropping could result in samples with false labels. When using the crop-
ping technique, for instance, images with multiple objects that are labelled accord-
ing to the object with the dominant size may encounter a problem. In this situation, 
it is feasible to crop the image to show more of the supporting object rather than the 
dominant object.

The training data which contains the positional biases are addressed through 
geometric transformation. In fact, many sound sources of bias might distinguish the 
dissemination of the training data from the testing data. Geometric transformations 
are helpful not just because they are effective at overcoming positional biases but 
also because they are simple to employ. The use of operations like rotation and hori-
zontal flipping is made simple by the abundance of imaging processing packages. 
Geometric transformations have several drawbacks, such as requiring more mem-
ory, costing more to compute, and requiring more training time. To ensure that some 
geometric alterations, such as translation or random cropping, did not change the 
image’s name, they must be manually checked. As a result, there are relatively few 
situations in which geometric transformations can be used.

3  Test-Time Augmentation (TTA)

Researchers’ interest in an innovative image augmentation technology has grown 
over the past few years. The scientific community was given a mathematical defini-
tion of TTA by Wang et al. [15]. They frame TTA as an inference issue with prior 
distributions and hidden variables. The images result in the hidden parameters of the 
elaboration process are thus seen as the end product of the process of production 
with concealed parameters. The evaluation of structure-wise uncertainty brought on 
by noise and picture modifications is the ultimate goal. In addition to the methods 
already stated, TTA produces a number of augmented images of the test set, inputs 
these augmented images to the training set, and then outputs an ensemble of such 
predictions as an aggressive response [16]. Figure 2 shows the method of both train 

Fig. 2 Train and test time augmentation method
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Fig. 3 Test-time augmentation framework

and test time augmentation, and Fig.  3. shows the test-time data augmentation 
(TTA) framework.

By assessing network stability and strength as real-world problems, TTA has 
opened up new possibilities for the medical imaging industry. In the instance of 
classification from mammograms, TTA can be utilized for algorithms that alter an 
input instance using affine, pixel-level, or elastic transformations. The academic 
community has concentrated on training data augmentations, but there is still plenty 
to learn about data transformation prior inference. To categorize a single image, 
TTA integrates several inference conclusions using various data augmentations.

4  Synchronous Medical Image Augmentation 
(SMIA) Framework

Chen et al. [17] proposed two methods based on synthesis and stochastic transfor-
mation. In the transform-based SMIA module, a subgroup of SMIA factors with 
such a random number of variables and randomized parameter values is chosen for 
every medical testing image and its tissue segments so as to simultaneously produce 
enhanced samples and the associated tissue segments. In the synthesis-based SMIA 
module, use an equal replacement method to synthesize new medical pictures while 
maintaining the original medical implications by replacing the original tissues at 
random with the enhanced tissues (Fig. 4).
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Fig. 4 Synchronous medical image augmentation (SMIA) framework

5  Random Local Rotation

Alomar et al. [18] introduces a novel data augmentation method in this part that falls 
under the typical data augmentation umbrella. It was influenced by methods that 
concentrated on particular regions of an image, such as the random erasing method.

Let Di represent the practice data. A circular area of an image Ii ε Di, with center 
coordinate (xi, yi) and radius ri. Let dθ ε [0, 2π] be the angle in variance in rotation. 
The first step is for every image Ii from the dataset Di, select the circular area Cxi,yi,ri 
from each image Ii with a randomly generated center (xi, yi) and radius ri.

The content within the circular area Cxi,yi,ri is rotated to an angle dθ, and added 
with to the outer region which is kept constant and is treated as newly generated 
image In. Lastly, image In is used to augment the original training dataset Ii. Two 
ways to add to the dataset are suggested. One way to replace the generated image is 
to the original image in the original dataset where the dataset size is unchanged only 
the data got changed. The other way is to add the generated original image to the 
original dataset.

6  Conclusion

Geometric transformation-based augmentation techniques are basic techniques 
where most of the other techniques are integrated with this during the pre- processing 
steps. Most of the deep learning techniques need more sample for training and it is 
hard to collect in real-time. So all these techniques are efficient to create more sam-
ples from the original image and models are converged with the training and testing 
samples. In this chapter geometric-based augmentation techniques are discussed in 
more detail.
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Generative Adversarial Learning 
for Medical Thermal Imaging Analysis

Prasant K. Mahapatra, Neelesh Kumar, Manjeet Singh, Hemlata Saini, 
and Satyam Gupta

1  Introduction

Currently, most medical practitioners diagnose disorders using computer-aided 
imagery. Generally speaking, low-resolution photos made it difficult to diagnose 
several of the disorders. In order to create artificial images as well as their seg-
mented images, the deep convolutional network will be used. These synthesized 
photos have a high resolution.

Generative adversarial networks (GANs) have emerged, offering new technolo-
gies and a framework for the use of medical pictures. GANs are quickly becoming 
a cutting-edge foundation as a result of achieving increased performances in a num-
ber of medical applications. The technical characteristics of common GAN 
approaches utilized in the medical imaging domain are extensively elucidated. 
Unsupervised learning is accomplished using sophisticated neural networks called 
generative adversarial networks (GANs).

2  What is a GAN (Generative Adversarial Network)?

Generative adversarial networks (GANs), a method for deep learning, allow com-
puters to synthesize new, artificial data from collections of pre-existing data. In 
particular, a GAN can produce high-quality data with little to no labeling through 
competition between the generator and discriminator networks [1, 2].
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There are two competing neural network models in GAN. Using the noise vector 
(usually a low-dimensional random vector sampled from a normal or uniform dis-
tribution typically between 50 and 512 dimensions, and is randomly generated for 
each sample during training) as an input, one creates samples (and so named gen-
erator). The purpose of the noise vector is to introduce randomness into the genera-
tor network and to allow it to produce a diverse set of 2 outputs. By providing 
different random vectors as input to the generator network, we can generate a wide 
range of new data. In order to ensure that the generated outputs are diverse and not 
just copies of the training data, the noise vector is an important factor in the success 
of GANs.

The second model, referred to as the discriminator, is given samples from the 
generator and training data [3]. The generator has been trained to make images that 
closely resemble actual data, while the discriminator has been trained to completely 
distinguish between produced data and true data. The adversarial network’s genera-
tor and discriminator compete against one another until symmetry is established, at 
which point the network is trained.

2.1  Overview of GAN Structure

GANs compete two neural networks against each other to establish the probability 
distribution of a dataset. GAN has two neural networks in it:

• Generator, G.
• Discriminator, D.

A generative network seeks to create artificial images that appear realistic. It 
accepts a random vector as input (let us say a 100-dimensional array of numbers 
from a Gaussian distribution) and produces a highly realistic image that appears to 
be a part of our training set.

On the other hand, the discriminator network accurately determines if an image 
is fake (i.e., created by the generator) or real (i.e., direct from the source of the 
input). These processes are repeated many times, so that the generator and the 
discriminator get better and better at their respective roles with each iteration. Fig. 1 
will help you understand how it works.

2.2  Mathematical Equation

The discriminator examines generated images and real images (i.e., training sam-
ples) separately. It determines if the discriminator’s input image is fake or real. The 
probability that the input x is real is represented by the output D(x). The discrimina-
tor is trained in the same manner as a deep network classifier. We want D(x) = 1 if 
the input is true, that is, image is real. It should be zero if it is a generated image.
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Fig. 1 An illustration of a generative adversarial network (GAN)

The discriminator finds qualities that contribute to realistic images through this 
method. On the other hand, we want the generator to produce images that are identi-
cal to the true image, with D(x) = 1. It backpropagates the desired value all the way 
back to the generator in order to train the generator to generate images that are more 
similar to what the discriminator recognizes as real.

The generator becomes stronger at producing realistic images that the discrimi-
nator cannot tell apart from actual ones as the training goes on. The discriminator 
also grows stronger at picking up even the smallest variations between the two sorts 
of images. The generator eventually creates visuals that are similar to real images as 
the two models converge.

The following formula can be used to mathematically explain it [4]:
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where,

x = real data,
z = noise vector,
G(z;θ_g) = The generator network operates by performing a mapping function from 

the noise vector to a synthetic data point, with the parameters of the generator 
network denoted as θ_g.

D(x;θ_d) = The discriminator network is a function that receives a data point as its 
input and generates a scalar output that denotes whether the input is authentic or 
artificial. The parameters of the discriminator network are represented by θ_d.

p_data(x) = The probability distribution of the actual data.
p_z(z) = The probability distribution function of the noise vector z.

The principal objective of GANs is to enhance the discriminative capacity of the 
discriminator in discerning genuine and synthesized images. The aforementioned 
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process is accomplished via a minimization-maximization methodology, wherein 
the generator endeavors to minimize its objective, while the discriminator strives to 
maximize it. The primary aim of the objective function is to enhance the likelihood 
of detecting artificially generated images as counterfeit and genuine images as 
authentic, thereby optimizing the likelihood of observed data. The cross-entropy 
function is a widely adopted method for computing the loss in deep learning, which 
involves the calculation of p multiplied by the natural logarithm of q. In the context 
of real images, the appropriate label to assign is p, which has a value of 1. In the case 
of generated images, the label is inverted, specifically by subtracting it from one. 
GANs are commonly characterized as a minimax game in which the objective of the 
generator is to minimize the value of V, while the discriminator aims to maximize it.

2.3  Major Applications of GAN

Wherever new, plausible data is required, GANs can be used in a wide range of 
applications. GANs are specifically used to produce new images and videos.

Image Generation: GANs are commonly used for generating realistic images. For 
example, they can be used to generate realistic-looking faces, landscapes, or 
even artwork.

Style Transfer: GANs have the potential to facilitate the transfer of style from one 
image to another, thereby enabling the creation of an entirely new image that 
incorporates the content of one image and the style of another.

Data Augmentation: GANs can be used for generating new data from existing data, 
which can be useful for training machine learning models with limited datasets.

Disease Diagnosis and Prediction: GANs can be used for identifying patterns in 
medical data and predicting the likelihood of a patient developing a certain 
disease.

Medical Image Analysis: GANs can be used for generating synthetic medical 
images, such as CT or MRI scans, which can be used for training machine learn-
ing models. GANs can also be used for image segmentation, enhancing the qual-
ity of medical images, and reducing image noise.

Medical Data Augmentation: GANs have the potential to generate synthetic medi-
cal data, thereby serving as a means of augmenting limited datasets and enhanc-
ing the precision of machine learning models.

Overall, GANs have the potential to revolutionize the field of medicine, by 
improving the accuracy of disease diagnosis, speeding up drug discovery, and 
enabling personalized treatment plans.
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3  Self-supervised Generative Adversarial Learning

We will first define the term “Self-Supervised Learning” and then discuss how it 
enhances GANs. Self-supervised is the most similar to unsupervised learning when 
compared to the prominent families of supervised and unsupervised learning. An 
effective method for learning representations from unlabeled data is self-supervised 
(SS) learning [5]. Self-supervised learning algorithm learns from data itself, with no 
data labeled examples. The algorithm must identify patterns within the dataset to 
facilitate the process of acquiring knowledge from it [4].

With the help of pseudo-labels [5], self-supervised approaches enable the classi-
fier to learn better feature representation [6]. These methods specifically suggest 
learning the model to recognize a geometric transformation that has been done to 
the input image in order to learn an image feature.

There exist several approaches to the implementation of self-supervised learn-
ing. One approach to comprehending the attributes of the data is to employ a neural 
network. Subsequently, the neural network can be employed to forecast the designa-
tions of novel data. The identification of data structure can also be accomplished 
through the utilization of a Convolutional Neural Network (CNN). A CNN can be 
utilized to forecast the outcomes of novel data.

There are some situations where self-supervised learning is superior to super-
vised learning. For example, a CNN trained just through self-supervised learning 
can classify images more accurately than a CNN taught only through supervised 
learning. This is due to the fact that a CNN that is learned only through supervised 
learning is limited by the training set that is made accessible to it. A CNN that has 
been trained only through self-supervised learning can understand the data’s struc-
ture from scratch, improving its ability to generalize to new data [6, 7].

4  Conditional and Unconditional GANs

The issues with training GANs will now be linked to self-supervised learning. 
GANs are a type of unsupervised generative modelling in which you may just input 
data and let the model generate false data from it. Modern GANs, on the other hand, 
use a method called conditional-GANs [8], which convert the generative modelling 
challenge into a supervised learning task that needs labeled data. For easier genera-
tive modelling, conditional-GANs incorporate class labels within the generator and 
discriminator [9].

The term “unconditional GANs” eliminates the necessity for class labels in gen-
erative modelling. This chapter will demonstrate how self-supervised learning tasks 
can do away with labeled data when using GANs.
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5  Thermal Imaging Systems

The surface skin temperature [10] can be measured using thermal imaging devices. 
These systems might contain a temperature reference source in addition to an 
infrared thermal camera [11, 12].

The surface skin temperature of a subject may typically be measured reliably by 
thermal imaging devices without being in immediate contact to the subject under 
evaluation [13]. Thermal imaging systems [14] have advantages over other tech-
niques of measuring temperature since they require a closer proximity or touch 
(Fig. 2).

5.1  Why are Thermal Imaging Devices Beneficial?

There are various advantages of using thermal imaging systems/cameras, which 
are listed below:

 1. 100% non-invasive: The proximity of the evaluator to the subject under scrutiny 
is not a requisite for the operation of thermal imaging devices.

 2. Speed and accuracy: In contrast to traditional forehead or oral thermometers that 
require close proximity or physical contact with the subject under evaluation, 
thermal imaging devices have the potential to provide more rapid and precise 
monitoring of surface skin temperature.

 3. Flexible and cost-effective diagnostic approach: Thermal camera should be 
readily available on the market at reasonable price and the same equipment is 
used to record both thermal and geometric data.

Fig. 2 Shows how to set 
up thermal imaging 
properly to analyze persons 
individually
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6  Need of Data Augmentation in GANs

Generating annotated medical imaging data is a challenging and costly task. The 
creation of deep learning models that can be generalized necessitates the acquisition 
of substantial amounts of data. Standard data augmentation is a commonly employed 
technique aimed at enhancing the generalizability of machine learning models. 
Generative adversarial networks offer a novel method for data augmentation [6, 7].

Insufficient data during the training of GANs often leads to the issue of discrimi-
nator overfitting [15] which in turn causes the training process to diverge. Our pro-
posed approach involves utilizing an adaptive discriminator augmentation technique 
that effectively enhances the stability of training in scenarios where data availability 
is limited [16, 17]. This approach is applicable for both initial training and does not 
necessitate modifications to either loss functions or network architectures. The uti-
lization of unlabeled data holds significant value in the improvement of deep learn-
ing efficacy. GANs are a potent category of neural networks capable of generating 
lifelike novel images based on unannotated source images [15, 18]. GANs have 
been employed in the past to augment data, including the creation of supplementary 
training images for classification purposes and the enhancement of synthetic 
images [19].

In order to overcome overfitting and underfitting [2], data augmentation with 
GANs was demonstrated to boost model accuracy and decrease model loss, hence 
enhancing the generalizability of the model [20] (Fig. 3).

Fig. 3 Thermal image of knee osteoarthritis patient (a) and its augmented GAN-generated 
images (b–e)
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7  Improved Medical Image Generation via 
Self-supervised Learning

In the domain of deep learning, it is customary to utilize extensive labeled datasets 
to effectively train a deep neural network. Various self-supervised learning tech-
niques have been suggested as a means to acquire universal visual characteristics in 
an automated manner, thereby circumventing the laborious and time-intensive pro-
cess of manually annotating vast quantities of data. Self-supervised generative 
adversarial neural networks, also known as unconditional GANs, are utilized for the 
purpose of generating synthetic thermal images.

The widespread use of deep CNNs in computer vision applications can be attrib-
uted to their remarkable ability to extract features from visual data. These applica-
tions include but are not limited to image classification, semantic and instance 
segmentation, object recognition, and image captioning. The efficacy of deep learn-
ing models is notably impacted by the quantity of data utilized during the training 
process, as they have the ability to expand and enhance in intricacy with the incor-
poration of supplementary training data.

8  Methods

Despite the prevalence of comprehensive color image databases for diverse objects 
in the public sphere, there exists a dearth of comparable databases for thermal 
images, with either a lack of availability or restricted representation of object 
categories. The synthesis of thermal images is of great significance due to the ardu-
ous nature and high expenses associated with obtaining authentic data. The process 
of gathering and annotating extensive datasets comprising millions of images is 
arduous, costly, and time-intensive [21].

GANs have demonstrated remarkable efficacy in generating diverse images 
through the use of pre-existing images and stochastic noise, a widely acknowledged 
fact. Currently, unconditional GANs have the ability to generate images that exhibit 
a high degree of realism, diversity, and quality.

8.1  Training Dataset

The selection of an appropriate unlabeled dataset is an essential part of transfer 
learning via self-supervised pre-training.

Our training dataset [22] is based on the knee areas [23] of the human body 
which are captured with a FLIR thermal camera. While diagnosing arthritis, ther-
mography is frequently used to examine deep-bodily joints that are challenging to 
evaluate with a standard X-ray [19, 24]. The size of all thermal images is 312 KB 
with dimensions of 320 × 240 pixels [25] (Fig. 4).

P. K. Mahapatra et al.
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Fig. 4 Generator and discriminator models used in this technique

8.2  Results and Conclusion

The application of thermal imaging technology [26, 27] is employed for the purpose 
of diagnosing infectious skin conditions and investigating a wide range of disorders, 
wherein alterations in body temperature may indicate the presence of inflammation 
in injured tissues or clinical abnormalities that result in changes in blood circula-
tion [23].

The results of the current study indicate that thermal imaging has the potential to 
serve as a dependable diagnostic modality for detecting measurable patterns in skin 
temperatures [28]. It has been shown that changes in pain intensity associated with 
arthritic, repetitive strain, muscular, and circulatory issues can be correlated with 
temperature variance [29–31].
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We believe that this non-intrusive method makes it possible to find the earliest 
clinical features, with high reliability [32].

8.3  GAN Results

The GAN generated fake images from the given thermal images of Knee dataset and 
comparison of generator & discriminator loss on a trained GAN architecture are 
visualised (Figs. 5 and 6).

8.4  Outlook and Conclusions

This chapter has explored various techniques for producing simulated thermal 
images using the provided knee dataset. Future research in the field of data augmen-
tation will focus on various topics, including the development of a taxonomy of 
augmentation methods. To improve the quality of GAN samples, researchers may 
explore novel combinations of meta-learning and data augmentation techniques, 
investigate the correlation between data augmentation and classifier architecture, 

Fig. 5 (a) Different thermal images of knee pair and its lateral view (right and left); (b) Matrix of 
input real image and the GAN-generated fake image matrix
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Fig. 6 Comparison of the generator and discriminator loss on a GAN architecture that trained on 
knee dataset

and apply these concepts to diverse data types. Furthermore, the integration of inno-
vative data augmentation techniques can enhance the variety and magnitude of the 
training dataset, consequently augmenting the efficacy of the GAN model [33].

In our upcoming study, we intend to investigate performance benchmarks for 
geometric and color space augmentations on numerous datasets from various image 
recognition tasks. To show how well these augmentations work in situations when 
there isn’t a lot of data, we are going to impose these dataset’s size restrictions. The 
qualities of the temperature profile that is connected with a thermal image have not 
yet been investigated while creating synthetic thermal images, which may be a 
future course of action.

The GAN framework has undergone several modifications in various research 
articles, utilizing diverse network designs, loss functions, evolutionary techniques, 
and other methodologies. The study has led to a significant improvement in the 
quality of samples generated by GANs. An important avenue for further investiga-
tion pertains to the augmentation of GANs’ sample quality, as well as the assess-
ment of their efficacy across diverse datasets. To advance the exploration of GAN 
sample combinatorics, we aim to employ supplementary augmentation techniques, 
including the transfer of diverse styles onto GAN-generated samples.

Generative Adversarial Learning for Medical Thermal Imaging Analysis
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Future research in generative models with data augmentation should also focus 
on StyleGAN2, StyleGAN2-ADA, DiffAugment, and Variational Autoencoder 
(VAE). Trying to produce high-resolution outputs from GAN samples is one of the 
main challenges. It will be interesting to explore how we might utilize these GAN 
networks to produce high-resolution images as a result.
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Improving Performance of a Brain Tumor 
Detection on MRI Images Using 
DCGAN- Based Data Augmentation 
and Vision Transformer (ViT) Approach

Md. Momenul Haque, Subrata Kumer Paul, Rakhi Rani Paul, 
Nurnama Islam, Mirza A. F. M. Rashidul Hasan, and Md. Ekramul Hamid

1  Introduction

Recent studies and investigations in the fields of machine learning and deep learn-
ing have made significant progress [1] and have emerged as one of the most crucial 
ones for education [2], performance enhancement, health enhancement, and illness 
diagnostics [3], offering a range of solutions and simplifying our lives. A brain 
tumor can develop in any region of the brain or it can be metastatic, indicating that 
it has spread from another part of the body to the brain. Symptoms such as head-
aches, seizures, nausea, and cognitive difficulties are commonly associated with 
brain tumors, although they can vary depending on the tumor’s size, location, and 
type. Chemotherapy, radiation therapy, and surgery are all available treatment 
modalities for brain tumors. The kind of therapy will depend on the nature and loca-
tion of the tumor.

Around the world, an expected 308,102 individuals were determined to have an 
essential cerebrum or spinal cord growth in 2020. In 2020, 251,329 people died due 
to critical, dangerous brain and CNS growth [4]. Brain cancers represent 85–90% of 
all essential focal sensory system (CNS) cancers. Brain and sensory system diseases 
are the tenth leading cause of death in the United States [4].
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There are several challenges associated with obtaining brain tumor datasets. One 
of the main challenges is the limited availability of high-quality data. Brain tumors 
are relatively rare, so there may be few cases to study. Additionally, imaging data 
(such as MRI scans images) is often difficult to acquire and expensive. This can 
make it challenging to collect a large and diverse dataset. Another challenge is the 
complexity and variability of brain tumors. Brain tumors can exhibit substantial 
variations in terms of magnitude, placement, and classification, which present dif-
ficulties in constructing a dataset that accurately captures the diverse array of tumor 
types [5]. Additionally, the imaging data used to diagnose brain tumors can vary, 
depending on the equipment used, the imaging protocol, and the radiologist’s exper-
tise. Lastly, the data is often sensitive, and many privacy concerns must be consid-
ered when collecting and sharing medical data. This can make it difficult to obtain 
patient consent and limit the types of data available for research [5].

The research introduces a solution to this issue by presenting a model named 
Deep Convolutional Generative Adversarial Network (DCGAN) for generating 
MRI images. DCGAN, a type of generative model, has the capability to generate 
images from diverse origins, including MRI scans. The GAN comprises two pri-
mary parts: a generator network is employed to generate novel images, while a 
discriminator network aims to differentiate between the generated images and real 
images. These two networks are trained in an adversarial manner, where the genera-
tor strives to produce images that closely resemble real ones, while the discrimina-
tor aims to accurately classify them as either real or generated. From that point 
onward, the created dataset is utilized for the brain tumor identification model for 
the proposed work. Besides, the review proposes a transformer-based model called 
Vision Transformer (ViT) for brain tumor identification. The proposed model exhib-
its exceptional performance in contrast to convolutional neural network (CNN)-
based models and alternative transfer learning techniques like VGG16, Inception 
V3, and ResNet50. This superiority is attributed to the enhanced efficacy of the ViT 
model resulting from the utilization of extensive datasets, surpassing the perfor-
mance of transfer learning methodologies.

Following is the breakdown of the remaining portions of the paper: While Sect. 
2 provides a summary of the relevant research, Sect. 3 provides a full explanation of 
the suggested system. Section 4 covers the experimental findings and offers a thor-
ough analysis, and Sect. 5 brings the paper to a conclusion with important 
observations.

2  Related Works

This section represents a literature review of recent works on brain tumor detection 
using DCGAN and the ViT. We also present some transfer learning-based detection 
approaches to validate our methods.

Christine Dewi et al. [6] demonstrated that the utilization of DCGAN to generate 
synthetic data proved effective in enhancing the original dataset, leading to a 
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notable enhancement in the accuracy of the traffic sign recognition model. They 
conducted a comparative analysis of various CNN models, such as ResNet50 and 
DenseNet. The findings indicated that DenseNet outperformed other models in 
terms of accuracy and computational efficiency, suggesting its potential as a valu-
able resource for data augmentation in diverse computer vision tasks.

Qiufeng Wu’s et al. [7] demonstrated a data augmentation technique based on 
DCGANs for tomato leaf disease identification. The authors showed the use of 
DCGANs to generate new images that are similar to the original images but with 
minor variations. They then combined the generated images with the original ones 
to form a larger dataset for training deep neural networks. The proposed technique 
is evaluated on a dataset of tomato leaf images using the GoogLeNet architecture. 
The results showed that the augmented dataset generated by the DCGANs improved 
the accuracy of the GoogLeNet model, achieving a top-1 average detection accu-
racy of 94.33%.

Viola et al. [8] presented a new technique called Fault Face that was introduced 
to detect ball-bearing failure using DCGAN method. In this approach, synthetic 
images of ball bearings with different fault types were generated using DCGANs 
and utilized to train a CNN for classification. The authors assessed the effectiveness 
of Fault Face on a dataset comprising vibration signals from ball bearings with vari-
ous faults, including inner race, outer race, and all faults. The results demonstrated 
that the proposed method surpassed several existing approaches, achieving an 
impressive overall accuracy of 98.4%.

A. Chughtai et al. [9] explored the application of DCGANs in generating syn-
thetic brain tumor images for medical imaging purposes. They acknowledged that 
brain tumors contribute significantly to global mortality, and the scarcity of large- 
scale medical imaging datasets poses a challenge for developing accurate predictive 
models. In their study, the authors proposed utilizing DCGAN to generate synthetic 
brain tumor images and conducted a comparative analysis with other Generative 
Adversarial Networks (GANs). The authors suggested that this approach could 
potentially serve as a valuable method for augmenting real-world medical image 
data, leading to improved prediction models.

S. Deepak et al. [10] suggested a technique for categorizing brain cancers using 
CNN and transfer learning approach. The suggested approach extracted deep fea-
tures from the MRI scans of brain tumors using the pre-trained models VGG16 and 
InceptionV3. The Support Vector Machine (SVM) classifier then uses these deep 
characteristics to categorize data. The study showed that the proposed technique 
outperforms previous best in class methods in categorizing brain tumors into four 
distinct categories, with an overall accuracy of 98.69%. The findings suggested that 
classifying brain cancers using transfer learning with pre-trained CNN models 
might be successful.

R. Chelghoum et al. [11] proposed a transfer learning approach for brain tumor 
classification using MRI images and the CNN architectures. The study employed a 
custom dataset consisting of four types of brain cancers (meningioma, glioma, pitu-
itary, and no tumor) and fine-tuned three pre-trained CNN models (VGG16, 
InceptionV3, and ResNet50). The authors sourced the datasets from the publicly 
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accessible The Cancer Genome Atlas (TCGA) dataset. According to the analysis, 
the refined ResNet50 model exhibited higher accuracy (97.46%), AUC-ROC 
(99.75%), and F1-score (97.49%) compared to the other models.

The research papers mentioned above all focus on the utilization of DCGAN for 
brain tumor detection. It is well established that there are various approaches for 
identifying brain tumors, including those based on widely used CNN architecture. 
Additionally, recent studies have highlighted the occasional superior performance 
of the ViT technique compared to traditional CNN models.

2.1  Existing Data Augmentation Algorithms

Some alternative methods are compared to DCGAN for data augmentation tech-
niques. We mention some algorithms and find significant weaknesses compared to 
the GANs.

To discover a probabilistic encoding for the data, a variational autoencoder 
(VAE) is a generative model. An encoder network and the decoder network make up 
its two primary parts. The decoder network maps the dormant space back to the 
initial information space after the encoder network maps the information to an inert 
space. Compared to GANs, VAE produces pictures that are smoother and less crisp, 
and the produced images resemble the training images more frequently [12].

An autoencoder (AE) is a neural network architecture designed to reconstruct 
input data. It consists of two essential components: an encoder network and a 
decoder network. The encoder network transforms the input data into a compressed 
representation, while the decoder network reconstructs the original data from this 
representation. While an autoencoder (AE) can be utilized for image reconstruction, 
it lacks the ability to generate novel images. Instead, it generates images that resem-
ble the patterns observed in the training dataset [13].

The Adversarial Autoencoder (AAE) is a generative model that merges the char-
acteristics of GANs and VAEs. It utilizes the strengths of both GANs and VAEs to 
effectively generate new data samples while also capturing meaningful latent repre-
sentations of the input data. The system is composed of three primary elements: an 
encoder, a decoder, and a discriminator network. While the AAE excels at dimen-
sionality reduction and anomaly detection, it is acknowledged that GANs outper-
form it in generating novel images [14].

Deep Belief Networks (DBNs) are a type of generative model that rely on stacked 
Restricted Boltzmann Machines (RBMs). These networks consist of multiple layers 
of RBMs, with each layer learning a more abstract representation of the data. 
Unsupervised training methods can be applied to DBNs to effectively train higher 
layers using the knowledge gained from lower layers. By leveraging the learned 
features from lower levels, DBNs can establish hierarchical representations of the 
data, enhancing their ability to capture complex patterns and relationships. However, 
it is worth noting that DBNs might excel in generating high-resolution images but 
are challenging to train effectively [12].
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It is possible to employ DCGANs to create brand-new pictures that are compa-
rable to the concepts already present in a dataset. Using this, one may artificially 
inflate the size of a dataset. According to the studies on current data augmentation 
techniques mentioned above, DCGANs are typically thought to be more effective at 
producing images that are different from the training images. Compared to other 
algorithms, DCGANs may produce pictures that are sharper and more lifelike.

2.2  Existing Brain Tumor Detection Algorithms

The utilization of CNNs on brain scan databases, such as MRI images, has emerged 
as a popular and effective approach in applying deep learning for the purpose of 
brain cancer detection. The CNN can learn to identify patterns in the images indica-
tive of a tumor. Once trained, the model can classify new images as either contain-
ing a tumor or not. Additionally, semantic segmentation can be used to localize the 
tumor, providing the exact coordinates of the tumor within the scan [15].

Transferring learning is an additional well-liked current strategy. Transfer learn-
ing is a deep learning technique that uses a pre-built model—typically created on a 
massive dataset—as the foundation for new tasks. When there is little data available 
for the new work, this is especially helpful. Applying a pre-trained CNN that has 
previously been trained on a big dataset of images (like ImageNet) and fine-tuning 
it on a dataset of brain scans is one method of applying transfer learning for brain 
tumor identification. Training the previously learned model on the new dataset 
while maintaining the bulk of the previously trained weights is known as fine- 
tuning. This allows the model to quickly learn the specific brain scans’ specific 
features that indicate a tumor [16]. Another approach is to use pre-trained models in 
semantic segmentation and fine-tune them on the dataset of brain scans to detect the 
tumor. It is worth noting that transfer learning is a powerful technique, but the qual-
ity and size of the dataset are crucial. And it should be validated with clinical data 
and approved by regulatory bodies before it can be used in clinical practice. There 
are several popular algorithms used for transfer learning in deep learning, including:

VGG: The VGG network is a constructed on CNN architecture and trained on the ImageNet 
dataset. It is known for its good performance on image classification tasks and is often used 
as a starting point for fine-tuning new datasets [17].

ResNet: It is well known that the ResNet (Residual Network) design can train incredibly 
deep neural networks without encountering the issue of vanishing gradients. It is frequently 
used to optimize new datasets and was trained on the ImageNet dataset [18].

Inception: Inception architecture is a CNN architecture trained on the ImageNet dataset. It 
is known for its good performance on image classification tasks and is often used as a start-
ing point for fine-tuning new datasets [19].

In this chapter, the authors propose a transformer approach to detect brain tumors. 
Transfer learning and transformer architectures are related but different concepts in 
deep learning. Transfer learning is a procedure where a pre-prepared model, 
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regularly prepared on a huge dataset, is utilized as a beginning stage for another 
errand. The thought behind the approach is to use the information gained from one 
undertaking to further develop execution on a connected errand [20]. This is espe-
cially helpful when there is limited information accessible for the new undertaking. 
In contrast, transformer architectures are a class of neural network architectures first 
introduced in the paper titled “Attention Is All You Need.” These architectures rely 
on the self-attention mechanism, which enables them to effectively process sequen-
tial data. While initially designed for natural language processing tasks, transformer 
architectures have demonstrated remarkable performance in computer vision tasks 
as well. Notable examples of transformer architectures include BERT, GPT-2, and 
RoBERTa, which have been pretrained on extensive text corpora and can be fine-
tuned for specific tasks to achieve state-of-the-art results. It is important to note that 
transfer learning, a technique applicable to various neural network architectures, 
including Transformers, allows leveraging pretrained models for downstream tasks. 
In our study, we specifically employ the ViT algorithm, which outperforms both 
CNN and transfer learning-based approaches in terms of efficiency and training 
observations.

3  Proposed Methodology’s

A proposed system for brain tumor detection using ViT likely involves a few steps. 
At first, we need to collect the dataset of brain scans (such as MRI images) and 
annotate them to indicate the presence or absence of a tumor. Then the collected 
data is pre-processed to ensure it is suitable for the ViT model. Subsequently, the 
approach involves a series of procedures such as image resizing, intensity normal-
ization, and noise reduction. These operations are performed to ensure the data is 
appropriately prepared for subsequent analysis. The resulting dataset is then utilized 
to augment the sample size through various data augmentation techniques, thereby 
enhancing the diversity and quantity of samples available for further processing. 
During the data augmentation phase, we employ the DCGAN network to expand the 
sample size. After that, a suitable ViT model is selected, which is a pre-trained 
model such as ViT, then fine-tuned on the brain scan dataset. The ViT model is then 
trained on the brain scan dataset. This involves adjusting the model’s parameters to 
optimize its performance on the task of detecting brain tumors.

The trained model then evaluated on a separate dataset of brain scans to measure 
its performance (presented in Fig. 1). After the completion of training and evalua-
tion, the next step involves deploying the model within a clinical environment. This 
deployment process entails seamlessly integrating the model into an established 
imaging system like an MRI scanner. The objective is to enable automatic classifi-
cation of brain scans, distinguishing between those that exhibit the presence of a 
tumor and those that do not.
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Fig. 1 Proposed system workflow

3.1  Proposed Workflow

The brain tumor detection method we propose comprises several essential steps, 
which are thoroughly discussed in this section. These steps are instrumental in 
enhancing the system’s performance. The block diagram depicted in Fig. 1 illus-
trates the proposed system’s architecture and the following steps are: Data 
Acquisition, Data Preprocessing, Data Augmentation, Brain Tumor Detection, and 
Model Evaluation. The GANS are comprised of three distinct parts: the latent 
spaces, the generator, and the discriminator.

3.1.1  Data Acquisition

Data acquisition for brain tumor detection using MRI would involve acquiring a 
large number of MRI scans of the brain [16]. These scans are collected from patients 
who have been diagnosed with brain tumors, as well as from patients without brain 
tumors (i.e., healthy controls). To ensure that the dataset is representative of the 
population, it is important to collect scans from individuals from various age groups, 
genders, and ethnic backgrounds. Additionally, it is important to collect scans from 
patients with different types and grades of brain tumors. The collected scans are 
annotated with information about the presence or absence of a tumor, as well as the 
location, size, and grade of the tumor if it is present. It is worth noting that data col-
lection and annotation are crucial steps and oftentimes the most time-consuming 
and complex ones. Therefore, it is important to have a well-designed data collection 
and annotation plan to ensure the quality and representativeness of the data. 
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Collecting data from a diverse population is important, but it also increases the 
complexity of data acquisition, as different patients may have different characteris-
tics and different types of brain tumors. Medical data, such as brain scans or elec-
tronic health records, are often stored in different locations and in different formats, 
making it difficult to access and consolidate the data. Overall, collecting medical 
data requires a well-designed plan, a dedicated team, resources, and a significant 
amount of time and effort to ensure that the collected data is representative, high- 
quality, and compliant with regulatory and ethical standards.

3.1.2  Data Preprocessing

Medical data often presents challenges in terms of noise and inconsistency, making 
it challenging to ensure data quality. For instance, scans acquired from various 
machines may exhibit variations in resolution or contrast, posing difficulties in 
image comparison. In the context of brain tumor detection using ViT, data pre- 
processing assumes a crucial role. The aim of pre-processing is to prepare the data 
in a format suitable for ViT while ensuring its high quality. Some common pre- 
processing methods are used in brain tumor detection. Resizing images to a consis-
tent size can help to ensure that the deep learning model can process the images 
efficiently [8]. This is especially important for images that have different resolutions 
or aspect ratios. Normalizing image intensities can help ensure that the deep learn-
ing model is not affected by image brightness or contrast. This can be done by 
converting the images to a standardized scale, such as zero mean and unit variance. 
To make tumors more visible and minimize picture noise, image enhancing tech-
niques like histogram equalization, contrast stretching, or filtering might be used. 
The act of finding and eliminating any outliers or inaccuracies from the data is 
known as data cleaning. This can include removing any images that could be of bet-
ter quality or have been mislabeled.

3.1.3  Data Augmentation

Data augmentation is a significant methodology for growing the preparation dataset 
by acquainting irregular changes with the pictures. In the context of brain tumor 
detection, data augmentation can generate novel images of brain scans featuring 
tumors with varying locations, sizes, and orientations [21]. One effective method 
for implementing data augmentation in this domain involves leveraging GANs, spe-
cifically DCGANs.

3.1.3.1 DCGAN: Deep Convolutional Generative Adversarial Network

DCGANs belong to the category of GANs and leverage deep convolutional neural 
networks to produce novel images. Neural generator architecture and neural dis-
criminator architecture make up the two neural architectures that make up DCGANs 
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[10]. The generator network is prepared to generate brand-new photos that are iden-
tical to the authentic photographs in the dataset. Using a succession of transposed 
convolutional layers, it converts a random noise vector into a picture as input. By 
changing its loads and predispositions, the generator network figures out how to 
deliver new images that are equivalent to genuine ones.

The generator network is specifically designed to generate synthetic images that 
closely resemble the real images present in the dataset. It typically consists of trans-
posed convolutional layers, batch normalization layers, and fully connected layers 
[22]. A mathematical equation for the output of the generator network can be repre-
sented as:

 
G ,z f z w� � � � �  (1)

In this context, z refers to the random noise vector utilized as an input for the gen-
erator network. The set of weights and biases of the network is denoted as w, while 
f(z, w) represents the function that embodies the neural network. This function 
encompasses various components such as transposed convolutions, batch normal-
ization, and fully connected layers.

To generate images that closely resemble the authentic images in the dataset, the 
generator network undergoes a training process. The loss function for the generator 
network typically comprises both the adversarial loss and the reconstruction loss, 
which are combined to optimize the network’s performance. The loss sustained 
when the discriminator network can distinguish between the created pictures and 
the genuine ones is known as the advertisement loss. The unfortunate circumstance 
known as recreation results in the separation of manufactured pictures from genuine 
ones (Fig. 2):

 
Loss G Loss ad Loss� � � � � � � �re

 (2)

In the context of the given scenario, L (ad) represents the adversarial loss, while L 
(re) denotes the reconstruction loss. The adversarial loss is the loss that is incurred 

Fig. 2 Proposed architecture of DCGAN algorithm

Improving Performance of a Brain Tumor Detection on MRI Images Using…



166

when the discriminator network can recognize the created images from the real 
images. The adversarial loss is typically represented as the negative log-likelihood 
of the discriminator network assigning the label “real” to the generated images. The 
adversarial loss can be represented as:

 
Loss ad D G� � � � � �� �� �log z

 (3)

where D(x) is the output of the discriminator network for the input image x, and 
G(z) is the output of the generator network for the input noise vector z.

The loss of reconstruction evaluates the difference between the created images 
and the authentic images. This misfortune is usually estimated utilizing either the 
Root Mean Square (RMS) or the Structural Similarity Index Measure (SSIM) [18] 
between the generated and real images. The reconstruction loss can be defined as:

 
Loss G ,re MSE z x� � � � �� �

 (4)

In this context, G(z) refers to the output of the generator network when given an 
input noise vector z, while x denotes the real image. The training parameters for the 
generator network are outlined in Table 1.

The primary objective in training the discriminator network is to enable it to 
accurately identify the generated images as authentic representations. It accepts an 
image as information and determines the likelihood that the image is real or coun-
terfeit. The discriminator network figures out how to recognize the created images 
from the real images by changing their loads and predispositions [21]. It commonly 
comprises a progression of convolutional layers, cluster standardization layers, and 
complete associated layers. The output of the discriminator network is the probabil-
ity that the input image is real or fake. A mathematical equation for the output of the 
discriminator network can be represented as:

 
D Sigmoid ,x f x w� � � � �� �

 (5)

In the context of the neural network, x denotes the input image, w represents the 
weights and biases of the network, f(x, w) represents the neural network’s functional 
representation, which can encompass convolutional, batch normalization, and fully 
connected layers. The activation function sigmoid (f(x, w)) is responsible for trans-
forming the neural network’s output into a probability value ranging between 0 and 

Table 1 Model training 
parameters for a 
generator network

Model parameters Value

Total parameter 27, 265, 281
Trainable parameter 27, 265, 281
Non-trainable parameter 0
Activation function Leaky ReLU, tanh
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1. In the given context, x represents the input image, w symbolizes the collection of 
weights and biases within the network, f(x, w) indicates the neural network’s repre-
sentation, encompassing convolutional, batch normalization, and fully connected 
layers. In conclusion, sigmoid (f(x, w)) means the enactment capability utilized to 
change over the result of the neural network into a likelihood going somewhere in 
the range of 0 and 1:

 
Loss D D D� � � � � �� � � �� �� � � �� �y x y xlog log )1 1

 (6)

where y is the label of the input image (1 for real images, 0 for generated images), 
and D(x) is the output of the discriminator network for the input image x. The 
weights and biases of the network are adjusted during the training process to mini-
mize the loss function and improve the discriminator network’s abilities [17]. 
Table 2 represents the model training parameters for a generator network.

The discriminator and generator networks compete for training time. The gen-
erator seeks to make pictures that can deceive the discriminator while the discrimi-
nator strives to accurately identify the created images. The discriminator becomes 
better at recognizing the created images as training goes on, while the generator gets 
better at producing images that look like the genuine photos. The generator network 
eventually learns to produce new images that are identical to genuine photos.

3.1.4  Brain Tumor Detection

Brain tumor detection using ViT is a transformer-based approach that utilizes the 
power of ViT models to detect tumors in brain images. Specifically created for 
image identification tasks, the ViT is a transformer model.

3.1.4.1 Vision Transformer (ViT)

Since it can learn fine-grained features and global relationships between picture 
patches, the deep learning model architecture known as Vision Transformer (ViT) 
has become popular and useful for image classification tasks [23]. Specifically cre-
ated for image identification applications, the ViT is a transformer model. It is based 
on the transformer architecture, which was created primarily for problems related to 
natural language processing but was modified for use with image age identification 

Table 2 Model training 
parameters of 
discriminator network

Model parameters Value

Total parameter 582,785
Trainable parameter 582,785
Non-trainable parameter 0
Activation function Leaky ReLU, Sigmoid
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applications. The Transformer Encoder, which comprises of a number of multi-head 
self-attention and feed-forward layers, is a ViT’s primary component [9]. ViT learns 
features more quickly and effectively by using self-attention techniques to record 
the connections between several picture patches (refer to Fig. 3).

The visual transformer isolates an image into fixed-size patches, accurately 
installs every one, and incorporates positional inserting to contribute to the trans-
former encoder. Besides, ViT models beat CNNs by nearly multiple times with 
regards to computational productivity and exactness [24].

Partition the image into fixed-size patches, standardize the image patches, create 
lower-level linear representations from these smoothed image patches, integrate 
positional embeddings, feed the sequence as an input to a cutting-edge transformer 
encoder, include positional embeddings, feed the sequence as an input to a high- 
performing transformer encoder, pretrain the ViT model using image descriptors, 
which is further refined on a comprehensive dataset, and adapt the downstream 
dataset for image categorization [25]. The transformer encoder is composed of a 
series of multi-head self-attention layers and feed-forward layers (shown in Fig. 3). 
Each self-attention layer can be represented mathematically as [26]:

 

Attention , , SoftmaxQ V K
QK

d
V

T

� � � �

�
�

�

�
�

 (7)

In this scenario, Q, K, and V correspond to the query, key, and value matrices, 
respectively, while d represents the dimension of the key matrix.

 
f x W bx� � � �

 (8)

Fig. 3 Vision Transformer (ViT) internal architecture
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Here, x denotes the input, W represents the weight matrix, and b indicates the 
bias vector. The pooling layer is typically implemented as either global average 
pooling or global maximum pooling. The fully connected layer accepts the pooled 
feature map as input and generates a probability distribution across the potential 
classes [27]. This can be represented mathematically as:

 
y W W x b b� �� �� � �Softmax Pooling2 1 1 2  (9)

where y represents the output of the last layer, which is a probability distribution 
over the possible classes and x denotes the input image. W1 and W2 refer to the 
weight matrices, while b1 and b2 represent the bias vectors. Pooling refers to the 
pooling function applied in the model.

In ViT, the loss function commonly used is a composite of cross-entropy loss and 
a regularization term. The cross-entropy loss quantifies the disparity between the 
predicted class probabilities of the model and the actual class labels. Meanwhile, 
the regularization term is incorporated to mitigate the risk of overfitting.

In a ViT, an input image is typically divided into several patches, then processed 
independently [19]. This is done by applying a sliding window operation over the 
image, where a specific-size window (e.g., 16  ×  16 pixels) is moved across the 
image, extracting a patch at each location. These patches are then fed into the trans-
former layer for further processing (refers to Fig. 4). Model training parameters of 
the ViT are demonstrated in Table 3.

Fig. 4 Input images convert into several patches in a layer

Table 3 Model training 
parameters of the Vision 
Transformer (ViT)

Model parameters Value

Patch size 20
Patches per image 144
Projection dimension 64
Number of head 4
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3.2  Model Evolution Metrics

The effectiveness of the ViT model is evaluated using a number of accepted tech-
niques. Accuracy is the proportion of samples that are properly categorized, making 
it the most fundamental assessment metric. To assess the effectiveness of a classifi-
cation model, a confusion matrix is a popular table. The output presents the count of 
predictions produced by the model on a specific dataset, categorized as TP: True 
Positives, TN: True Negatives, FP: False Positives, and FN: False Negatives.

4  Experimental Results and Discussions

4.1  Dataset Description

Here we use the public brain tumor dataset, actual name is “Brain MRI,” which 
contains 98 normal case images and 155 brain tumor-positive case images from dif-
ferent people (sample images shown in Figs. 5 and 6) [28]. Each image is captured 
from a different angle and has other characteristics. The dataset is divided into two 
portions, with 80% allocated for training the model and 20% reserved for evaluating 
its performance. Furthermore, an additional 10% of the data is designated for vali-
dating the model’s performance. After that, we apply to resize the images into 
128 × 128 dimensions and normalize the method for data augmentation. In the data 
augmentation stage, we generate the augmented images to improve the detection 
model’s performance more than before.

Fig. 5 Brain tumor positive dataset samples
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Fig. 6 Brain tumor negative dataset samples

4.2  Data Augmentation Analysis

DCGANs can be used for data augmentation by training the generator architecture 
to create new images from the preparation information. The generated images can 
be included in the training set, thereby expanding the dataset and offering supple-
mentary samples for the model to learn from. This augmentation of the dataset aids 
in enhancing the model’s performance and mitigating overfitting by providing 
diverse and additional training examples [22]. Another way to use DCGAN for data 
augmentation is to utilize the generator network to create images like the test infor-
mation and then use them to increase the test set. This can help improve the model’s 
robustness and make it more resilient to variations in the test data. Moreover, there 
is an option to fine-tune the generator network on a particular dataset, allowing for 
the generation of new images that exhibit similar characteristics. This approach 
proves beneficial, especially when working with datasets that have limited data 
availability. Moreover, it is essential to evaluate the generated images’ quality and 
assess the model’s performance on the expanded dataset to validate the efficacy of 
the data augmentation procedure.

In this data-augmented process, we have generated 1000 brain tumor-positive 
images and 972 brain tumor-negative images (sample images are illustrated in 
Figs. 7 and 8). Also, the images differ from the training images, and the loss is pretty 
high compared to the real images. Now, our dataset becomes 1155 images for brain 
tumor-positive patients and 1070 images for brain tumor-negative patients.

As we can see from Figs. 9 and 10, the dissemination of created images is almost 
equivalent to that of real images. In this study, we train a DCGAN on brain MRI 
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Fig. 7 Generated brain tumor-positive dataset samples through the DCGAN approach

Fig. 8 Generated brain tumor-negative dataset samples through the DCGAN approach

Fig. 9 Density comparison between real images and generated images for brain tumor- 
positive case
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Fig. 10 Density comparison between real images and generated images for brain tumor nega-
tive case

images to generate synthetic images of brain tumors. We compare the losses of the 
DCGAN model for the real world and generated images of both brain tumor posi-
tive (in Fig. 9) and negative (in Fig. 10) cases. We compare the density curves of the 
real and generated images using kernel density estimation (KDE) and plot the 
results. The density curves of the real and generated images are plotted for both 
brain tumor positive and negative cases.

For the brain tumor-positive case (in Fig. 9), the density curve of the real images 
presents a peak at the location of the tumor, indicating a higher density of pixels in 
that area. However, the density curve of the generated images presents a peak at a 
different location, indicating that the generated images may not be as accurate as the 
real images.

For the brain tumor negative case (in Fig. 10), the density curve of the real images 
presents a relatively uniform pixel density distribution. In contrast, the density curve 
of the generated images presents a similar distribution with a slight peak at the cen-
ter of the brain, indicating that the generated images are more accurate and realistic. 
The difference in the density curves of the real and generated images for brain 
tumor-positive cases may be due to the complexity of the tumor structure and the 
limited number of positive cases in the dataset. The generated images may not accu-
rately capture the subtle details of the tumor, resulting in a different peak location in 
the density curve.

4.3  Classification Performance Analysis

In this section, we discuss the performance metrics for comparing the performance 
of different machine learning models. Here are some commonly used performance 
metrics [29] in machine learning:
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• Accuracy Score: This metric measures the proportion of accurate predictions 
made by a model out of all the predictions made:

 
Acc

TP TN

TP TN FP FN
�

�
� � �  (10)

• Precision Score: This metric calculates the proportion of true positives among all 
the positive predictions made by a model:

 
PS
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�

�  (11)

• Recall Score: This metric determines the proportion of true positives among all 
the positive instances present in the dataset:
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�  (12)

• F1 score: This metric represents the harmonic mean of precision and recall, pro-
viding a comprehensive evaluation of the overall performance of the model:
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 (13)

• AUC-ROC Score: This measures the area under the receiver operating character-
istic (ROC) curve, which plots the true positive rate against the false positive rate 
for different classification thresholds. AUC-ROC is a good measure of how well 
a model can distinguish between positive and negative instances [30].

• Cohen’s Kappa: It is a statistical measure utilized to evaluate the degree of con-
sensus among two or more raters when rating categorical data. This measure 
quantifies the level of inter-rater reliability while considering the likelihood of 
chance agreement. It is expressed on a scale of −1 to 1, where values closer to 1 
indicate a significant level of agreement surpassing chance, values close to 0 
indicate agreement no better than chance, and values below 0 indicate disagree-
ment surpassing chance expectation [31]:
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where

Po = Relative observed agreement among raters
Pe = The hypothetical probability of chance agreement.
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Tables 4 and 5 illustrate the result analysis of different brain tumor detection 
algorithms and performance parameters of different brain tumor detection algo-
rithms, respectively.

Table 4 shows that the ViT with a DCGAN-based data augmentation algorithm 
gets the highest accuracy and minimum loss compared to all other models. Moreover, 
Table 5 also illustrates the superiority of the proposed ViT with a DCGAN-based 
data augmentation algorithm compared to other well-known models in the litera-
ture. Table 6 presents the training parameters for the ViT algorithm we consider in 
this study. Lastly, Table 7 presents the loss of generating new images from training 
images using the DCGAN algorithm.

Table 4 Result analysis of different brain tumor detection algorithms

Applied different algorithms
Testing 
accuracy

Testing 
loss

Cohen’s 
Kappa AUC

CNN 96.85% 0.2015 0.937072 0.968602
VGG16 98.12% 0.3022 0.970111 0.985168
ResNet50 95.54% 0.3235 0.958136 0.978957
Inception V3 56.69% 5.2223 0.000970 0.500482
Vision transformer (ViT) (without 
DCGAN)

86.27% 0.6234 0.714628 0.860484

Vision transformer (ViT) (with 
DCGAN)

99.33% 0.0610 0.977524 0.988797

Table 5 Performance parameters of different brain tumor detection algorithms

Applied different algorithms Precision Recall F1 score

CNN 0.97 0.97 0.97
VGG16 0.98 0.98 0.98
ResNet50 0.97 0.98 0.97
Inception V3 0.51 0.60 0.55
Vision transformer (ViT) (without DCGAN) 0.86 0.86 0.86
Vision transformer (ViT) (with DCGAN) 0.99 0.99 0.99

Table 6 Training parameters for the proposed Vision Transformer (ViT)

Parameters Value

Batch size 7
Epochs 120
Learning rate 0.001
Weight decay 0.0001
Image size 240 × 240
Optimizer Adam
Loss function Sparse categorical
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Fig. 11 The figure is presented in (a) Validation loss vs training loss, and (b) accuracy curve of the 
CNN algorithm

Table 7 Data augmentation 
losses of the DCGAN 
algorithm

Class(s) (Brain tumor) Loss Value

Yes Discriminator loss 0.0049
Generator loss 5.0134

No Discriminator loss 0.0159
Generator loss 4.8392

The different model training and validation loss and accuracy curves are illus-
trated in Figs. 11, 12, 13, 14, 15, and 16. According to the analysis of Figs. 11–16, 
the ViT outperformed the other training model, as demonstrated by the model loss 
and accuracy curve. Specifically, our model achieved a lower loss and higher accu-
racy than the different models, as evidenced by the visual comparison of the below- 
mentioned respective curves. This improvement can be attributed to a better 
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augmentation approach using DCGAN, which allowed our model to learn more 
effectively from the training data and generalize better to unseen data compared to 
the CNN, VGG16, ResNet50, InceptionV3, and ViT model without data augmenta-
tion using DCGAN approach.

Based on the information provided, it seems that the confusion matrix (Fig. 17) 
shows that the ViT model with the DCGAN algorithm has the highest accuracy 
compared to other transfer learning models such as CNN, VGG16, ResNet50, and 
Inception V3, as well as the ViT model without the DCGAN algorithm. Furthermore, 
the analysis suggests that the ViT model outperforms both the CNN and transfer 
learning methods. Increasing the number of samples can improve the performance 
of the ViT model, and the use of DCGAN with the ViT model can result in better 
performance in brain tumor detection.

Overall, the ViT model with the DCGAN algorithm has shown promising results 
for detecting brain tumors and could be used in future applications. However, it is 

Fig. 12 The figure is presented in (a) Validation loss vs training loss, and (b) accuracy curve of the 
VGG16 algorithm
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Fig. 13 The figure is presented in (a) Validation loss vs training loss, and (b) accuracy curve of the 
VGG16 algorithm
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Fig. 14 The figure is presented in (a) Validation loss vs training loss, and (b) accuracy curve of the 
Inception V3 algorithm
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Fig. 15 The figure is presented in (a) Training loss vs validation loss, and (b) accuracy curve of 
the Vision Transformer (ViT) before applying the DCGAN algorithm
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Fig. 16 The figure is presented in (a) Training loss vs validation loss, and (b) accuracy curve of 
the Vision Transformer (ViT) after applying the DCGAN algorithm
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Fig. 17 Normalized confusion matrices were generated for different algorithms including (a) 
CNN algorithm, (b) VGG16 algorithm, (c) ResNet50 algorithm, (d) Inception V3 algorithm, (e) 
Vision Transformer with DCGAN algorithm, and (f) Vision Transformer without DCGAN 
algorithm
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Table 8 Accuracy comparative analysis between proposed method and existing method

Author references Method(s) Performance score

Deepak and Ameer 
[32]

Pre-trained 
GoogLeNet

98%

Majib et al. [33] VGG-SCNet Precision: 99.2%, recall: 99.1%,
F1-score: 99.2%

Toğaçar et al. [34] BrainMRNet 96.05%
Zaw et al. [35] Naïve Bayes 94%
Hossain et al. [36] CNN 97.87%
Younis et al. [37] CNN, VGG16 CNN: 96%,

VGG 16: 98.5%
Kora et al. [28] VGG16 98.16%
Fidon et al. [22] CNN Accuracy: 84%, precision: 91%, recall: 96%, 

F1-score: 83%
Liu et al. [25] G-ResNet 95%
Amin et al. [38] Inceptionv3 Greater than 94%
Our proposed 
method

Proposed: CNN,
Proposed: VGG16,
Proposed: ResNet50,
Proposed: 
InceptionV3,
Proposed:
ViT (without 
DCGAN),
Proposed:
ViT (with DCGAN)

96.85%,
98.12%,
95.54%,
56.69%,
86.27%,
99.33%

essential to keep in mind that the performance of any model depends on various 
factors, such as the size and quality of the dataset, the choice of hyperparameters, 
and the specific problem being addressed.

4.4  Comparative Assessment of the Proposed Approach 
and Established Methods

Our research findings indicate that the proposed model surpassed the performance 
of the existing model across multiple evaluation metrics, including accuracy, preci-
sion, recall, F1-score, and computational efficiency. These results provide compel-
ling evidence that the proposed model offers a more effective solution for brain 
tumor detection compared to the existing model. Compared to CNNs, ViT has 
shown promising results in achieving high accuracy on various image classification 
benchmarks, with some studies showing that it outperforms CNNs on large-scale 
datasets. However, it is important to note that ViT requires a large amount of train-
ing data and computational resources to achieve its full potential.

Our proposed model for brain tumor detection demonstrated better accuracy than 
an existing model, according to the results presented in Table  8. These findings 
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suggest that the proposed model has the potential to be an effective tool for health-
care professionals in detecting brain tumors and that further investigation and vali-
dation of the model are warranted to confirm its efficacy.

5  Conclusion

It is possible to use ViT for brain tumor detection, as we have shown it to be effec-
tive in image classification tasks. ViT can learn fine-grained features and global 
relationships between image patches, which can help detect subtle differences in 
medical images such as MRI scans. Without the DCGAN image-generated approach, 
ViT performs lower than CNN and other transformer learning approaches. An 
increasing number of images improves model learning, improves the model’s per-
formance, and provides perfect detection results compared to the others.

However, it is worth noting that using ViT for brain tumor detection would 
require a large dataset of labeled MRI scans to train the model and evaluate its per-
formance. Additionally, it is important to consider the ethical and legal implications 
of using such models, especially in medical imaging. The model should be validated 
by experts in the field and meet the standards of regulatory bodies before it can be 
used in a clinical setting. In summary, ViT can be a promising approach for brain 
tumor detection. Still, it is important to note that it would require a large dataset, 
validation, and regulatory approval before being used in clinical practice.
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Combining Super-Resolution GAN and DC 
GAN for Enhancing Medical Image 
Generation: A Study on Improving CNN 
Model Performance

Mahesh Vasamsetti, Poojita Kaja, Srujan Putta, and Rupesh Kumar

1  Introduction

One of the common known cancers is skin cancer [5], and effective treatment 
depends on early detection. Skin cancer can have a terrible impact on one’s health 
and well- being. It is a severe and sometimes fatal condition. One such cancer is 
skin cancer [6] which affects the skin, the biggest organ in the body. It attacks when 
aberrant skin cells multiply and grow out of control, frequently developing a cancer-
ous tumor. Skin cancer is typical cancer, and its frequency has recently increased. 
Cancer can be caused by various factors, including sun exposure and ultraviolet 
(UV) radiation. Skin cancer can take many different forms [7], each with its own 
specific characteristics, such as melanoma, squamous cell carcinoma, basal cell car-
cinoma [8].

Traditional diagnostic techniques, however, are frequently pricy and time con-
suming. So, in this project, we use one of the neural networks called GANs 
(Generative Adversarial Networks) to present a viable remedy for this issue [9], a 
cost-effective way to detect skin cancer quickly and accurately.

GANs are composed of two networks: the generator and the discriminator. The 
generator network produces data fed into the discriminator network, which evalu-
ates whether or not the generated data is fake or real. This back-and-forth between 
the two networks allows GANs to learn how to develop increasingly realistic data 
over time. Here we use two types of GANs: DC GAN and super-resolution GAN. A 
particular generative model called DCGAN (Deep Convolutional Generative 
Adversarial Network) employs deep learning methods to produce new images from 
a given dataset.

M. Vasamsetti (*) · P. Kaja · S. Putta · R. Kumar 
ECE Department, SRM University, Amaravati, Andhra Pradesh, India
e-mail: rupesh.k@srmap.edu.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Solanki, M. Naved (eds.), GANs for Data Augmentation in Healthcare, 
https://doi.org/10.1007/978-3-031-43205-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43205-7_11&domain=pdf
mailto:rupesh.k@srmap.edu.in
https://doi.org/10.1007/978-3-031-43205-7_11


188

It works by training two neural networks, the discriminator and the generator, 
against each other in an adversarial process. The generator creates new images 
while the discriminator evaluates them based on their proximity to the original data-
set. This process allows DCGANs to generate realistic images and can be used in 
applications like image-to-image translation or image synthesis. Super-resolution 
GAN, or SRGAN, is a type of GAN specifically designed to enhance the resolution 
of images. SRGANS use deep neural networks to generate high-resolution images 
from low-resolution images, which can be especially useful for works such as 
upscaling low-resolution images for high-resolution images [10].

GANs have various applications in various fields. Here are a few examples:

 1. Image and video generation: GANs help produce new images and videos similar 
to real ones. GANs have applications in fields such as art, entertainment, and 
advertising.

 2. Text-to-image synthesis: GANs can generate images from textual descriptions. 
GANs have applications in fields like e-commerce, where product images can be 
generated automatically based on text descriptions.

 3. Music generation: GANs can generate new music similar to existing themes. 
This has applications in fields such as music production and composition.

 4. Data augmentation: GANs are used to produce new information and can be used 
to generate new information, which is data that can be used to augment existing 
datasets [37]. GANs have applications in fields such as computer vision, where 
larger datasets can improve the performance of machine-learning models.

 5. Simulation and modelling: GANs are used to produce synthetic data that can be 
used to train and test simulation and modelling systems [38]. GANs have appli-
cations in fields such as robotics, where simulated environments can be used to 
test and improve robot performance.

 6. Anomaly detection: GANs can detect anomalies in data by comparing accurate 
data to generated data. This has applications in fields such as fraud detection and 
cybersecurity. These are some applications of GANs in various fields.

2  Related Work

In this chapter, the main focus was on the usage of GAN in image processing fields 
like image super-resolution, image-to-image translation, and cartoon generation. In 
this chapter, they discuss the challenges faced by GAN and their approach to over-
coming them. This chapter also promises future enhancements in image processing 
and GAN and gives scope for tasks like face reconstruction [29]. The chance of 
survival for skin cancer patients is high when it is detected in early stages but in 
most cases, it is undetected until advanced stages. So, this chapter addresses the 
problem of early detection of cancer using GAN image processing. Collecting data-
sets is the major issue for medical image processing, and in this chapter, they 
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compensate for it by generating synthetic images from the given dataset and adding 
them to the existing dataset thereby increasing the accuracy of the detection [11].

Interstitial lung disease is a chronic lung disease and detection also becomes 
tough because of the diversity of causes and the irregular patterns of the lung tissues 
involved, so it becomes a big problem to detect the issue. In this chapter, the HRCT 
images will be correctly classified using the universal datasets available regarding 
lung diseases which help them easily diagnose the disease. It also uses deep learn-
ing techniques which may also help them cure several lung diseases [12].

Even though medical imaging is essential in various clinical applications, it does 
contain a few limitations like cost and radiation dose. In this chapter, an FCN (Fully 
Conventional Network) is trained to generate a target image given a source image. 
To get more realistic images, the FCN will implement an adversarial learning strat-
egy and application of auto-context model to train the image gradient difference- 
based loss function to get less blurry images [13].

This chapter uses GANs to synthesize cells imaged by fluorescence microscopy. 
These generate new models with casual dependencies between image channels and 
can generate multi-channel images. They generate two different techniques and 
compare them to a sensible baseline. At the end interpolating across the latent space 
allowing us to predict temporal evolution from static images [14].

The chance of survival for brain tumor patients is high when it is detected in 
early stages but in most cases, it is undetected until advanced stages. This chapter 
proposes a method for segmenting brain tumors in MRI images using a GAN. The 
GAN is trained on both normal and tumor images to generate new tumor images. 
The key difference of this chapter is that it focuses on tumor segmentation rather 
than image generation [15].

This chapter focuses on skin cancer classification using ECOC SVM (Support 
Vector Machine) and deep convolutional neural networks on RGB images collected 
from the Internet. The pretrained AlexNet model is used to extract features, and a 
proposed algorithm achieves high accuracy, sensitivity, and specificity on a total of 
3753 images, including four types of skin cancers. The results show maximum 
accuracy for actinic keratosis, high sensitivity for squamous cell carcinoma, and 
high specificity for squamous cell carcinoma. Still, some measures fall slightly 
below the maximum for basal cell carcinoma, melanoma, and squamous cell carci-
noma [16].

The chapter demonstrates using a deep convolutional neural network to classify 
skin lesions. The CNN is trained on a dataset of 129,450 clinical images and tested 
against 21 board-certified dermatologists on biopsy-proven clinical images for two 
binary classification tasks. The CNN performs comparably to dermatologists, show-
ing potential for extending the reach of dermatologists beyond the clinic via mobile 
devices [17].

This chapter comprehensively reviews GANs in medical image analysis, includ-
ing image generation, segmentation, registration, and synthesis. The chapter’s 
authors use a GAN to learn the distribution of regular data and use it to detect 
anomalies. They also introduce a novel marker discovery approach that identifies 
regions of the image that are most responsible for anomaly detection. The authors 
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show that their method can be applied to several domains, including medical imag-
ing, and can accurately detect anomalies [39].

The chapter’s authors use a GAN to generate synthetic medical images similar to 
authentic medical images. They also introduce a novel loss function that encourages 
the generated images to have similar statistical properties as the authentic images. 
The authors show that their method can be applied to several medical imaging 
modalities, including MRI and CT, and can generate high-quality images useful for 
training machine learning models [40].

The chapter’s authors use dual GANs to generate synthetic medical images simi-
lar to authentic medical images. They also introduce a novel loss function that 
encourages the generated images to have similar statistical properties as the authen-
tic images. The authors show that their method can be applied to several medical 
imaging modalities, including MRI and CT, and can generate high-quality images 
useful for training machine learning models. Compared to other methods, the dual 
GAN approach generates more diverse images with higher visual quality [41].

The authors summarize the types of GANs used for medical image analysis, 
internal GANs, cycle-consistent GANs, and adversarial autoencoders. They also 
discuss the applications of GANs in medical image analysis, such as generating 
synthetic images for data augmentation, segmenting medical images, and register-
ing medical images. The authors highlight the potential of GANs to improve the 
accuracy and efficiency of medical image analysis algorithms. However, they also 
note that several problems must be overcome, like better evaluation metrics and 
more diverse and representative datasets [42].

The chapter’s authors propose a context-aware generative adversarial network 
(CA- GAN) that can synthesize medical images while preserving the contextual 
information of the images. They introduce a novel loss function that encourages the 
generated images to have statistical properties similar to the authentic images while 
preserving the contextual information. They demonstrate their method’s effective-
ness using several medical imaging modalities, including MRI and CT. The authors 
show that their way can generate more diverse images with higher visual quality 
than other methods. They also show that their method can be used for data augmen-
tation, improving the performance of medical image analysis algorithms. Finally, 
they discuss the limitations of their method and provide recommendations for future 
research [43].

3  Methodology

3.1  Dataset

In our study, we used the International Skin Imaging Collaboration’s (ISIC) skin 
cancer dataset, which was made available by Kaggle (ISIC) [18]. The collection 
includes 2357 photos of oncological disorders, both benign and malignant, that 
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were grouped according to the ISIC categorization. Actinic keratosis, nevus, basal 
cell carcinoma, melanoma, dermatofibroma, squamous cell carcinoma, pigmented 
benign keratosis, and seborrheic keratosis are among the different skin conditions 
represented in the dataset. We have used four classes from this dataset which are 
basal cell carcinoma, melanoma, squamous cell carcinoma, and pigmented benign 
keratosis; three of them are cancerous, and the fourth is noncancerous. Figure 1 
contains the images of each class from the dataset.

Melanoma: Skin cancer called melanoma develops in the cells that make mela-
nin, the pigment that gives skin, hair, and eyes their color [19]. The face, neck, arms, 
and legs are among the body parts most frequently affected by melanoma, though it 
can develop anywhere on the body [20]. Additionally, melanoma can develop in the 
eyes and other body regions with pigment-producing cells.

Basal Cell Carcinoma: Basal cells, which make up the lowest layer of the epider-
mis (the skin’s outer layer), are where basal cell carcinoma (BCC), a kind of skin 
cancer, occurs. The most frequent type of skin cancer, BCC is typically brought on 
by UV radiation from the sun or tanning beds. BCC typically manifests as a tiny, 
glossy lump or nodule on the skin that frequently has blood vessels that are visible. 
It could also resemble a white, waxy scar or a red, scaly spot [21].

Squamous Cell Carcinoma: Squamous cells, which are the flat, thin cells that 
make up the skin’s outer layer, are where squamous cell carcinoma (SCC), a specific 
kind of skin cancer, originates [22]. SCC can form on skin areas that have been 
damaged or exposed to radiation, but it is typically brought on by exposure to ultra-
violet (UV) radiation from the sun or tanning salons [23]. SCC often manifests as a 
sore or patch that is red, scaly, and may bleed or crust over. Additionally, it could 
resemble a wart or a raised, scaly lump [24].

Fig. 1 (a) Melanoma, (b) basal cell carcinoma, (c) squamous cell carcinoma, and (d) pigmented 
benign keratosis
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Pigmented Benign Keratosis: Seborrheic keratosis, also known as pigmented 
benign keratosis (PBK), is a common noncancerous skin growth that often mani-
fests as a raised brown or black lesion on the skin. The majority of people with PBK 
are middle-aged or older, and it frequently runs in families [25]. Although PBK 
typically causes no symptoms and is painless, it can be ugly and may be mistaken 
for melanoma, a more dangerous form of skin cancer [26]. A biopsy may be carried 
out to confirm the diagnosis of PBK, which is typically made based on how the 
condition appears.

3.2  Algorithm

Our entire process consists of three phases. The first phase is about balancing the 
dataset. Initially, basal cell carcinoma contains 376 images, squamous cell carci-
noma contains 181 images, and melanoma contains 438 images. We train a DCGAN 
model on basal cell carcinoma and squamous cell carcinoma to generate synthetic 
images and increase each class’s size to 500 images. The second phase involves 
using SRGAN to upscale the images generated by the DCGAN model which are 
64 × 64 resolution to 255 × 255 resolution. This technique is used to increase the 
details of the images. Finally, in the third phase, we train a ResNet18 model on both 
the original dataset and the synthetic images generated by the DCGAN model. 
Figure 2 shows the entire flow chart of this process.

3.2.1  DCGAN

Over the initial GAN [27], the Deep Convolutional Generative Adversarial Networks 
(DCGAN) [28] provide a significant improvement. Using DCGAN, it is now easier 
to produce high-quality images and achieve stability during the training phase. 
Training and generation are the two steps of the DCGAN synthetic image- generating 
process. The generator creates images during training by taking samples from an 
N-dimensional normal distribution and applying sequential up-sampling operations 

Fig. 2 Flow chart
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to a random input noise vector. Contrarily, the discriminator seeks to distinguish 
between the pictures produced by the generator and those in the training set [29].

BatchNorm [29] to normalize the extracted feature scale and Leaky ReLU [30] 
to prevent vanishing gradients are two essential elements that DCGAN includes. 
Convolutional stride takes the role of all max pooling in DCGAN, and transposed 
convolution is used for up-sampling. Fully linked layers are eliminated, and batch 
normalization is used in their place. ReLU is used in the generator whereas Leaky 
ReLU is used in the discriminator, with the exception of the output, which uti-
lizes tanh.

3.2.2  SRGAN

SRGAN aims to produce a high-resolution image from a low-resolution image. A 
generator network is used in the SRGAN [31], and it uses residual blocks to pre-
serve data from earlier layers and enable the network to make adaptive selections 
from a broader range of characteristics. With SRGAN, we feed the low-resolution 
image as input to the generator network as opposed to typical GANs, where random 
noise is supplied as the generator input. The discriminator network is relatively 
conventional and functions similarly to how a discriminator would result in a typical 
GAN.  The perceptual loss function is what makes SRGANs unique. SRGANs 
employ the perceptual/content loss function to get where they are going while the 
discriminator and generator are trained using the GAN architecture. The perceptual 
loss function is intended to assist the SRGAN in building a loss function that accom-
plishes its objective by identifying the perceptually essential properties. So, in addi-
tion to the content loss, the adversarial loss also contributes to the adjustment of the 
weights [32]. The output of a previously trained VGG (Visual Geometry Group) 
network is compared pixel- by- pixel to describe the content loss as a VGG loss. Only 
when the input images are comparable will the actual VGG output and the fake 
VGG output be similar [32]. The idea is that pixel-by-pixel comparison will enhance 
the primary goal of obtaining super-resolution. The combined effects of the content 
loss and the GAN loss are favorable. The resulting images with super-resolution are 
evident and accurate representations of their high-resolution counterparts. The per-
ceptual loss function minimizes information loss during the image upscaling pro-
cess, producing moving and identical images to high-resolution images 
(Figs. 3 and 4).

3.2.3  ResNet18

ResNet-18 is a deep convolutional neural network with 18 layers. It is a member of 
the ResNet network family, renowned for its intricate structure and superior perfor-
mance on image recognition tasks single convolutional layer. It is the first layer in 
the ResNet-18 design, with 18 layers (Fig. 5).
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Update Discriminator (D)

Update Discriminator (D)

Start Training Loop

Initialize Discriminator

Initialize Generator

Model Initialization

Create DataLoader

Create Dataset

Data Preparation

Training Loop

Backpropagate Real Loss Backpropagate Fake Loss

Backpropagate Generator Loss

Update Generator (G)

Update Generator (G)

Calculate Generator Loss

Calculate Fake LossCalculate Real LossSave Losses for Plotting

Save Generated Images

Check Generator Output

Output and Visualization

Fig. 3 Flow chart of DCGAN

Fig. 4 Flow chart of SRGAN

In total [33], there are then four blocks of layers. The size of the input picture is 
cut in half by the first convolutional layer, which has a kernel size of 7 × 7 and a 
stride of 2. The image size is further decreased by passing the output of the first 
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Fig. 5 Flow chart of 
ResNet18
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convolutional layer through a max pooling layer with a kernel size of 3 × 3 and a 
stride of 2 [34]. In ResNet-18, each layer block comprises two or three convolu-
tional layers followed by a shortcut link that adds the output of the convolutional 
layers to the block’s input. This shortcut link helps avoid the vanishing gradients 
problem in deep neural networks [33].

Due to the shortcut link, the network may also learn residual functions, hence the 
name “ResNet.” ResNet-18’s last layer block has three convolutional layers instead 
of the first two-layer blocks’ two each. The total quantity of filters in each one 
increases from 64 in the first block to 512 in the last block as we move further into 
the network. A global average pooling layer in ResNet-18 receives the output of the 
previous convolutional layer and averages the output features across spatial dimen-
sions. The final output classification probabilities are produced by processing the 
result of the global intermediate pooling layer via a fully linked layer with an activa-
tion function based on softmax [35].

3.3  Results

3.3.1  DCGAN

We have trained DCGAN with learning rate of 0.001 on melanoma class which 
contains 438 images for 700 epochs, basal cell carcinoma contains 376 images for 
700 epochs, and squamous cell carcinoma contains 181 images for 700 epochs. 
After training the DCGAN for 700 epochs on melanoma images, the generated 
images are displayed in Fig. 6.

Discriminator and generator loss during training on melanoma pictures which 
were trained for 700 epochs are displayed in Fig. 7.

Fig. 6 Real images (left side), generated images (right side)
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Fig. 7 Generator and discriminator loss during training

Fig. 8 Real images (left side), generated images (right side)

After the training process was completed, Fig. 6 displayed a total of 62 syntheti-
cally generated images that resembled skin lesions. After training the DCGAN for 
700 epochs on basal cell carcinoma images, the generated images are displayed 
in Fig. 8.

Discriminator and generator loss during training on basal cell carcinoma images 
which were trained for 700 epochs are displayed in Fig. 9.

After the training process was completed, Fig. 8 displayed a total of 124 syn-
thetically generated images that resembled skin lesions. After training the DCGAN 
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Fig. 9 Discriminator and generator loss during training

Fig. 10 Real images (left side), generated images (right side)

for 700 epochs on squamous cell carcinoma images, the generated images are dis-
played in Fig. 10.

Discriminator and generator loss during training on squamous cell carcinoma 
images which were trained for 700 epochs are displayed in Fig. 11.

After the training process was completed, Fig. 10 displayed a total of 319 syn-
thetically generated images that resembled skin lesions. However, these images did 
not possess enough realism to deceive a dermatologist. Although they appeared 
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Fig. 11 Discriminator and generator loss during training

Fig. 12 Melanoma

diverse in nature, capturing the diversity of the training set used by the discriminator 
[36], several imperfections were observed. One notable issue was the presence of a 
noisy periodic pattern, which was visible in an 8x8 grid of blocks across the image. 
Additionally, other artefacts were also visible in the images, detracting from their 
overall quality.

3.3.2  SRGAN

The SRGAN was utilized to upscale low-resolution images generated by the 
DCGAN.  Specifically, the DCGAN produced synthetic images of size 64  ×  64. 
when trained on the original dataset. These images were then fed into the SRGAN 
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Fig. 13 Basal cell carcinoma

Fig. 14 Squamous cell carcinoma

for super-resolution upscaling. The SRGAN upscaled image of the Melanoma class 
image was shown in Fig. 11 when trained on original dataset [9] (Fig. 12).

The upscaled image of the basal cell carcinoma class image is displayed in 
Fig. 13 after SRGAN was trained on the original dataset [9].

The upscaled image of the squamous cell carcinoma class image is displayed in 
Fig. 14 after SRGAN was trained on the original dataset [9].

3.3.3  ResNet18

Two ResNet-18 models were trained to classify skin cancer. The first model was 
trained using the original dataset for four epochs and achieved an accuracy of 73%. 
This model was trained using the standard approach of feeding the original dataset 
into the network during training. The second model was also trained for four epochs, 
but in addition to the original dataset, it was also trained with fake images generated 
by another DCGAN. The original dataset was updated with these simulated photos 
in order to speed up the model (Table 1).

This approach of using fake images to augment the dataset is known as data 
augmentation, and it is the most used technique in machine learning. The idea is to 
produce additional examples of training which could help in learning more robust 
characteristics for the model and minimize overfitting.
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Table 1 Results

Architecture Original Dataset (Accuracy) Original + Generated images (Accuracy)

Resnet18 82% 85%

Fig. 15 Confusion Matrix of ResNet18 trained on the original dataset

The second model’s accuracy was evaluated after it had been trained using the 
new dataset and compared to the first model’s accuracy. Results indicate that the 
second model outperformed the first model in accuracy. This shows that the model’s 
performance was enhanced by introducing fake photos for data augmentation.

This study evaluated the performance of a ResNet18 model trained on an original 
dataset. We compared it to a ResNet18 model trained on the original dataset and 
generated images. The confusion matrix of ResNet18 trained on the original dataset 
is shown in Fig. 15.

We evaluated the performance of both models on 16 unseen images for each 
class. Adding created images to the primary dataset improved the model’s general-
ization. The confusion matrix of ResNet18 trained on the original dataset and gener-
ated images are shown in Fig. 16. Confusion matrix 1,2,3,4 indicates the squamous 
cell carcinoma class, pigmented benign keratosis class, melanoma class, and basal 
cell carcinoma class. As it is commonly known, using generated images with 
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Fig. 16 Confusion matrix of ResNet18 trained on generated images and original dataset

original images for training can enhance the model’s ability to generalize; our work 
indicates that applying image super-resolution techniques to the generated images 
as a substitute for traditional image processing techniques on the original images 
leads to an increase in image details and further improving the generalization of the 
model when trained with these images.

3.4  Conclusion

The proposed approach for generating synthetic skin lesion images involved using 
a combination of different deep-learning techniques. Firstly, a DCGAN was trained 
on the original dataset to generate 64 × 64 images of skin lesions. These images 
were then upscaled using an SRGAN to improve their resolution. Here, it is essen-
tial that you keep mindful that the images from DCGAN are not perfectly similar to 
the original images in terms of quality. Despite these imperfections, the generated 
images demonstrated that the proposed solution successfully generated synthetic 
skin lesions. However, the flaws highlight the ongoing challenges in generating 
highly realistic images using GANs. This was solved using SRGAN. SRGANs have 
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delivered outstanding outcomes in image upscaling by including the perceptual loss 
function in the GAN architecture, creating new possibilities for using low- resolution 
images in various applications. SRGANs are anticipated to advance in sophistica-
tion and power over the next few years with sustained research and development, 
revolutionizing how humans see and interpret images. SRGANs have several uses 
in many industries, such as satellite imaging, surveillance, and medical imaging. 
SRGANs, for instance, can help create high-resolution images of medical scans, 
facilitating more precise treatment and patient diagnosis in the health industry. 
SRGANs can be used in the surveillance industry to improve low-resolution secu-
rity camera video, making recognizing criminals and solving crimes simpler. The 
proposed approach shows promise in generating synthetic skin lesion images that 
can enhance the performance of skin lesion classifiers. However, extra research 
must be done to address the limitations in the amount of the artificial pictures and 
explore the potential of this approach in other medical imaging applications.
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GAN for Augmenting Cardiac MRI 
Segmentation

Pawan Whig, Pavika Sharma, Rahul Reddy Nadikattu, 
Ashima Bhatnagar Bhatia, and Yusuf Jibrin Alkali

1  Introduction

Cardiac magnetic resonance imaging (MRI) segmentation is an important task in 
medical imaging that involves separating different regions of the heart from each 
other in order to provide accurate diagnosis and treatment planning [1] as shown in 
Fig. 1. Deep-learning-based segmentation methods have shown promising results in 
recent years, but the performance of these methods is highly reliant on the avail-
ability and excellence of training data [2–8].

In this context, data augmentation techniques can be useful in increasing the 
diversity and quantity of training data, leading to better performance of deep 
learning- based segmentation methods. Generative adversarial networks (GANs) 
have shown great potential in data augmentation for medical image segmentation, 
but their application to cardiac MRI segmentation is relatively unexplored [9].

This chapter proposes the use of GANs for augmenting cardiac MRI segmenta-
tion data. Specifically, we develop a GAN-based data augmentation method that 
generates synthetic cardiac MRI images and evaluates the impact of this augmenta-
tion on the performance of a deep learning-based segmentation network. The 
proposed method aims to address the challenges of limited training data and 
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Fig. 1 Cardiac MRI segmentation

variability in cardiac anatomy, leading to improved segmentation accuracy and 
robustness [9].

GANs (Generative Adversarial Networks) have emerged as a powerful tool for 
medical image analysis, particularly in the realm of data augmentation techniques 
for medical image segmentation. Section 3 describes the methodology used in this 
study, including the dataset description, network architecture of GAN, and segmen-
tation network architecture. Section 4 presents the results of our experiments, 
including a comparison of the performance of the segmentation network with and 
without GAN augmented data. Section 5 discusses the impact of our proposed 
method on cardiac MRI segmentation and provides directions for future research. 
Finally, Sect. 6 concludes the chapter.

1.1  Overview of Cardiac MRI Segmentation

Cardiac MRI segmentation involves the separation of different regions of the heart, 
such as the left ventricle, right ventricle, and myocardium, from each other in order 
to aid in the diagnosis and treatment planning of various cardiovascular diseases.

Accurate segmentation is critical for determining cardiac function and identify-
ing abnormalities in the heart. However, the variability in cardiac anatomy and 
image quality makes segmentation a challenging task [2–8].

Deep learning-based segmentation, as shown in Fig. 2, often relies on advanced 
methods, such as convolutional neural networks (CNNs), to achieve high-precision 

delineation of regions of interest in medical images.
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Fig. 2 Deep learning-based segmentation

1.2  Challenges in Cardiac MRI Segmentation

The heart is a complex organ with different shapes, sizes, and orientations, and this 
variability can make it difficult to develop a segmentation method that works well 
across all patients. Additionally, cardiac MRI images can suffer from various arti-
facts, such as noise, motion, and partial volume effects, which can further compli-
cate segmentation [2–8].

Another challenge is the limited availability of annotated training data. Cardiac 
MRI images are typically acquired during the course of clinical exams, which are 
time-consuming and expensive. This can make it difficult to obtain a large amount 
of training data, particularly for rare or complex cardiac pathologies.

1.3  Introduction to GANs and Data Augmentation

GANs are a specific kind of deep learning model that is composed of two networks: 
a generator and a discriminator. The generator is responsible for generating artificial 
images, while the discriminator’s role is to differentiate between real and artificial 
images. The generator learns to produce synthetic images that resemble the real 
images used during training, while the discriminator learns to recognize the dispari-
ties between real and synthetic images [2–8].

GANs have been used in various image synthesis and manipulation tasks, such 
as style transfer, image-to-image translation, and data augmentation. In the context 
of medical image segmentation, GANs can be used to generate synthetic images 
that mimic the variability in cardiac anatomy and image quality, leading to a more 
diverse and representative training set. Data augmentation techniques, such as 
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Fig. 3 GANs and data augmentation

GANs, can help to overcome the challenge of limited annotated training data, lead-
ing to improved segmentation accuracy and robustness [2–8] as shown in Fig. 3.

2  Literature Review of Cardiac MRI Segmentation

Segmentation of the heart in cardiac MRI is a challenging problem due to the vari-
ability in cardiac anatomy, image quality, and the presence of pathologies. Over the 
years, several approaches have been proposed to address this problem, ranging from 
traditional methods based on edge detection and thresholding to deep learning- 
based methods. Literature review of cardiac MRI segmentation is shown in Table 1.

One of the earliest approaches for cardiac MRI segmentation was the active con-
tour method proposed in 1988. This method involves fitting a deformable contour to 
the edges of the heart in the image, and has been shown to be effective in segment-
ing the myocardium. However, this method is sensitive to initial conditions and can 
fail in the presence of noise or pathology.

In recent years, deep learning-based methods, such as convolutional neural net-
works (CNNs), have gained prominence in cardiac MRI segmentation. These meth-
ods have achieved state-of-the-art performance on various datasets and 
challenges [2–8].

To overcome challenges in cardiac MRI segmentation, several data augmenta-
tion techniques have been proposed, including the use of GANs. For example, a 
GAN-based data augmentation method was introduced, which generated synthetic 
images that captured the variability in cardiac anatomy and image quality. This 
approach demonstrated better performance compared to traditional data augmenta-
tion techniques and showed robustness to different imaging protocols and patholo-
gies [10].
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Table 1 Literature review of cardiac MRI segmentation

Approach Description Advantages Limitations

Active contour Deformable contour 
method that fits to the 
edges of the heart in 
the image

Effective in segmenting 
the myocardium

Sensitive to initial 
conditions, can fail in the 
presence of noise or 
pathology

CNN-based Deep learning-based 
methods using 
convolutional neural 
networks

State-of-the-art 
performance, improved 
accuracy and robustness

Require a large amount of 
annotated training data, can 
be limited by generalization 
to different imaging 
protocols and pathologies

GAN-based 
data 
augmentation

Generative adversarial 
network-based 
techniques for 
augmenting training 
data

Captures variability in 
cardiac anatomy and 
image quality, better 
performance than 
traditional data 
augmentation techniques

Can be computationally 
expensive and time- 
consuming to generate 
synthetic images

Multi-modal 
fusion

Combining 
information from 
multiple imaging 
modalities, such as 
T1-weighted and 
T2-weighted MRI

Improved accuracy and 
robustness of the 
segmentation

Requires availability of 
multi-modal data, may 
increase computational 
complexity

Multi-task 
learning

Training the model to 
perform multiple 
related tasks, such as 
segmenting the 
myocardium and left 
ventricle

Improved accuracy and 
efficiency

Can be limited by the 
availability of annotated 
training data for multiple 
tasks

Attention 
mechanisms

Techniques that allow 
the model to 
selectively attend to 
different regions of the 
image

Improved accuracy and 
robustness of the 
segmentation

May increase 
computational complexity, 
can be limited by the 
availability of annotated 
training data for attention 
mechanisms

In addition to data augmentation, other techniques have been explored to improve 
the accuracy and robustness of cardiac MRI segmentation. These include multi-
modal fusion, multi-task learning, and attention mechanisms. For instance, a multi-
modal attention network was developed to combine information from both 
T1-weighted and T2-weighted MRI, enhancing the accuracy of the segmentation [11].

Overall, while significant progress has been made in cardiac MRI segmentation 
using deep learning-based methods, there are still challenges to be addressed, par-
ticularly in improving the generalizability of the models to different imaging proto-
cols and pathologies. Data augmentation techniques, such as GANs, show promise 
in addressing these challenges, and future research should focus on developing 
more effective and efficient methods for cardiac MRI segmentation [2–8].
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2.1  GAN Image Analysis

GANs, a form of deep learning models, have demonstrated potential in various 
medical image analysis tasks, including the segmentation of images. GANs com-
prise two neural networks: a generator and a discriminator. The generator network 
learns to generate synthetic images that closely resemble the real images from the 
training dataset, while the discriminator network learns to differentiate between real 
and synthetic images. By engaging in an adversarial training process, the generator 
and discriminator networks collaborate to generate synthetic images of exceptional 
quality [12] (Fig. 4).

In the context of medical image analysis, GANs can be used for data augmenta-
tion, as well as for image synthesis and segmentation. GAN-based data augmenta-
tion has been shown to improve the performance of deep learning models for 
medical image segmentation, particularly when there is limited annotated training 
data available. GANs can also be used for image synthesis, which involves generat-
ing new images that are similar to the real images in the dataset. This can be useful 
in cases where there are limited or no training images available for certain patholo-
gies or imaging modalities [13].

Preprocessing

(d) Skin lesion synthesis

(a) low dose CT denoising (b) Cross modality transfer (MR → CT) (c) Vessel to fundus image

(e) Organ segmentation

(g) Abnormality Detection

IoU (lungs): 91.4%
IoU (heart): 88.9%

(f) Domain adaptation
Train on S (All Seq.) Train S (No GE/SWI) Train S,D.A to T (ours) Manual

Healthy data Unseen data Anomalies

Training the GAN

Model Model

Identifying anomalies

Fig. 4 GANs for medical image analysis
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2.2  Data Augmentation Techniques for Medical 
Image Segmentation

Data augmentation techniques are commonly used in medical image analysis to 
increase the amount of training data available for deep learning models. These tech-
niques involve applying a series of transformations to the original images to create 
new, synthetic images that are similar to the original images but differ in certain 
aspects, such as rotation, scaling, or intensity.

Some of the commonly used data augmentation techniques for medical image 
segmentation include:

• Rotation and flipping: Rotating the image by a certain angle or flipping it hori-
zontally or vertically.

• Scaling and cropping: Scaling the image up or down, or cropping a portion of 
the image.

• Elastic deformation: Applying a nonlinear deformation to the image to simulate 
tissue deformation.

• Intensity adjustment: Adjusting the intensity values of the image to simulate 
variations in imaging conditions.

While these techniques can be effective in increasing the amount of training data 
available, they have certain limitations. For example, they may not capture the full 
range of anatomical variability in the images, and they may not be effective in cases 
where there is significant variation in imaging protocols or pathologies [14]. GAN- 
based data augmentation techniques have been shown to address some of these limi-
tations by capturing the underlying distribution of the training data and generating 
new images that are similar to the real images in terms of anatomical variability and 
imaging conditions.

3  Methodology

3.1  Dataset Description

The dataset used in this study consists of cardiac MRI images of 100 patients with 
various cardiac conditions. The images were acquired using a Siemens 1.5 T MRI 
scanner and have a resolution of 256 × 256 pixels. The images were manually anno-
tated by expert radiologists to obtain ground truth segmentations of the left ventricle 
[15, 16] as shown in Fig. 5.
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Fig. 5 Introduction to 
methodology

3.2  Network Architecture of GAN

The GAN used in this study consists of a generator network and a discriminator 
network. The generator network is a CNN that takes a noise vector as input and 
generates synthetic images. The discriminator network is also a CNN that takes an 
image as input and outputs a binary classification score, indicating whether the 
image is real or synthetic [17].

3.3  Training Procedure of GAN for Augmentation

The training of the GAN involved two main steps. Firstly, the generator network 
was trained to generate artificial images that closely resemble the real images in the 
training dataset. Then, the discriminator network was trained to differentiate 
between real and synthetic images. Both networks were trained simultaneously 
using an adversarial loss function, aiming to guide the generator in generating 
images that are difficult to distinguish from real ones. In the second step, the trained 
generator network was used to augment the training dataset by generating synthetic 
images. The augmented dataset was then used to train a segmentation network.
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3.4  Segmentation Network Architecture

The segmentation network used in this study is a U-Net architecture, which consists 
of an encoder and decoder network. The decoder network consists of a series of up- 
sampling and convolutional layers that reconstruct the segmentation mask from the 
encoded features [18, 19].

3.5  Segmentation Training Procedure

The segmentation network was trained using a cross-entropy loss function, which 
measures the similarity between the predicted segmentation mask and the ground 
truth mask. The training was stopped after 100 epochs or when the validation loss 
stopped improving. The trained network was then evaluated on a test set of 20 
images, and the segmentation performance was quantified using metrics such as the 
Dice coefficient and the Jaccard index.

Advantages to Using GAN for Cardiac MRI Segmentation
There are several advantages to using GANs for cardiac MRI segmentation.

First, GANs can effectively address the problem of limited data in medical image 
segmentation. In many cases, it is challenging to obtain a large dataset of labeled 
medical images, which is necessary to train a robust segmentation model. GANs 
can generate synthetic images that are similar to the real images, which can be used 
to augment the training data. This can lead to improved segmentation accuracy and 
generalization to new data [20, 21].

Second, GANs can produce high-quality segmentations that are more accurate 
than traditional segmentation methods. Traditional segmentation methods often rely 
on handcrafted features and heuristics, which may not capture the complex and vari-
able nature of medical images as shown in Fig. 6. GANs, on the other hand, can 
learn to extract features from the images automatically, allowing for more accurate 
and robust segmentations.

Third, GANs can generate segmentations in real time, which can be important in 
clinical settings where time is critical. Traditional segmentation methods may take 
several minutes or even hours to produce a segmentation, which may not be feasible 
in some clinical scenarios. GANs, on the other hand, can produce segmentations in 
a matter of seconds, making them a more practical option in clinical settings 
[22, 23].

Fourth, GANs can be trained to segment multiple structures simultaneously, 
which can be useful in cardiac MRI segmentation where multiple structures may be 
of interest. Traditional segmentation methods often focus on segmenting a single 
structure, such as the myocardium, but may not be able to accurately segment other 
structures, such as the atria or ventricles. GANs, on the other hand, can be trained to 
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Fig. 6 High-quality segmentations using GAN

segment multiple structures simultaneously, leading to more comprehensive and 
accurate segmentations.

Finally, GANs can be trained to generate segmentations for different imaging 
modalities, such as T1-weighted or T2-weighted MRI.  This can be important in 
clinical settings where multiple imaging modalities may be used to assess cardiac 
function. GANs can be trained to generate segmentations for each modality, allow-
ing for more comprehensive and accurate assessments of cardiac function.

GANs offer several advantages for cardiac MRI segmentation, including the 
ability to address the problem of limited data, produce high-quality segmentations, 
generate segmentations in real time, segment multiple structures simultaneously, 
and generate segmentations for different imaging modalities. These advantages 
make GANs a promising approach for improving cardiac MRI segmentation and 
advancing our understanding of cardiac function [24, 25].

Drawbacks to Using GAN for Cardiac MRI Segmentation
While there are many potential advantages to using GANs for cardiac MRI segmen-
tation, there are also several potential drawbacks that must be considered.

One major drawback of using GANs is the potential for overfitting to the training 
data. GANs can generate synthetic images that are very similar to the training data, 
but may not be representative of the broader population. This can lead to poor gen-
eralization to new data, which can be a significant problem in clinical settings where 
the training data may not be fully representative of the patient population [26, 27].

Another potential drawback of GANs is the difficulty of training and tuning the 
models. GANs are notoriously difficult to train and require careful tuning of hyper-
parameters to achieve good results. This can be time-consuming and requires a sig-
nificant amount of expertise and resources.
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Furthermore, GANs can be susceptible to mode collapse, where the generator 
produces limited variations of the same image, leading to poor diversity in the gen-
erated images. This can limit the effectiveness of GAN-based approaches for aug-
menting data and improving segmentation accuracy.

Additionally, GANs require a large amount of computing resources and can be 
computationally expensive to train. This can limit the scalability of GAN-based 
approaches and make them less accessible to researchers and practitioners with lim-
ited computing resources.

Finally, GAN-based approaches for cardiac MRI segmentation may be limited 
by the quality and availability of the training data. If the training data is of poor 
quality or limited in quantity, the performance of the GAN-based model may be 
suboptimal. Furthermore, the performance of the GAN-based model may be limited 
by the difficulty of accurately labeling the training data, particularly for complex 
structures such as the heart.

In conclusion, while GANs offer many potential benefits for cardiac MRI seg-
mentation, there are also several potential drawbacks that must be considered. These 
include the potential for overfitting, the difficulty of training and tuning the models, 
the risk of mode collapse, the computational cost of training, and limitations of the 
training data. It is important for researchers and practitioners to carefully evaluate 
these factors when considering the use of GAN-based approaches for cardiac MRI 
segmentation.

4  Results

4.1  Comparison of Performance of Segmentation Network 
with and Without Augmented Data

Deep learning-based segmentation networks have shown promising results in recent 
years, but they require a large amount of labeled data for training. However, obtain-
ing labeled medical images is time-consuming and expensive, which limits the 
amount of data that can be used for training. Therefore, data augmentation tech-
niques have been developed to increase the amount of training data without incur-
ring additional labeling costs.

In this study, we evaluated the performance of a segmentation network trained 
with and without the use of augmented data generated by a GAN. The goal of the 
GAN-based data augmentation is to create additional training data that is similar to 
the original data but has small variations.

The dataset used in this study consisted of cardiac MRI images, which were 
manually annotated to obtain the ground truth segmentation masks. The segmenta-
tion network used was a U-Net architecture, which is commonly used for medical 
image segmentation. The network was trained with and without the use of aug-
mented data, and the performance was evaluated using two metrics, the Dice 
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coefficient and the Jaccard index. These metrics are commonly used to evaluate the 
accuracy of segmentation algorithms, and they measure the similarity between the 
predicted segmentation mask and the ground truth segmentation mask.

The results showed that the use of GAN-based augmented data led to a signifi-
cant improvement in the segmentation performance. The Dice coefficient increased 
from 0.78 to 0.84, which corresponds to an improvement of 7.7%, and the Jaccard 
index increased from 0.65 to 0.72, which corresponds to an improvement of 10.8%. 
These results demonstrate the effectiveness of using GAN-based data augmentation 
for improving the performance of cardiac MRI segmentation.

The improved performance can be attributed to the increased amount of training 
data, which allows the network to learn more robust and discriminative features. 
The GAN-based data augmentation also introduces small variations in the data, 
which makes the network more robust to noise and other variations in the input data. 
Furthermore, the GAN-based data augmentation can help to reduce overfitting, 
which occurs when the network memorizes the training data instead of learning 
generalizable features.

This research study demonstrated that GAN-based data augmentation can sig-
nificantly improve the performance of segmentation networks for medical image 
analysis. The results are particularly relevant for clinical applications, where accu-
rate segmentation is essential for disease diagnosis and treatment planning. The use 
of GAN-based data augmentation can reduce the need for large amounts of labeled 
data, which can lower the cost and time required for data acquisition and annotation.

4.2  Comparison of Performance of GAN Augmentation 
with Other Data Augmentation Techniques

In addition to evaluating the performance of GAN-based data augmentation for car-
diac MRI segmentation, we also compared it with other commonly used data aug-
mentation techniques, such as rotation, flipping, and scaling. These techniques are 
used to generate additional training data by applying simple transformations to the 
original images.

The results of the comparison showed that GAN-based augmentation outper-
forms these techniques in terms of segmentation accuracy. Specifically, the Dice 
coefficient for GAN-based augmentation was 0.84, while the Dice coefficient for 
rotation, flipping, and scaling were 0.79, 0.80, and 0.81, respectively. Similarly, the 
Jaccard index for GAN-based augmentation was 0.72, while the Jaccard index for 
rotation, flipping, and scaling were 0.67, 0.68, and 0.70, respectively.

The improved performance of GAN-based augmentation can be attributed to 
several factors. First, GAN-based augmentation generates data that is more diverse 
and realistic than the simple transformations used in rotation, flipping, and scaling. 
GAN-based augmentation can create data that has variations in texture, contrast, 
and shape, which are important for training robust segmentation networks. Second, 
GAN-based augmentation can generate data that is specific to the dataset and the 
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segmentation task. This is important because medical image datasets often have 
specific characteristics and variations that are unique to the imaging modality, 
patient population, and disease type. Finally, GAN-based augmentation can gener-
ate data that is more effective at reducing overfitting. The generated data has small 
variations that are not present in the original data, which can help the network to 
learn more generalizable features.

The comparison of GAN-based data augmentation with other commonly used 
data augmentation techniques showed that GAN-based augmentation is a more 
effective technique for improving the performance of cardiac MRI segmentation. 
The improved performance can be attributed to the increased diversity and realism 
of the generated data, the specificity of the generated data to the dataset and seg-
mentation task, and the effectiveness of the generated data in reducing overfitting. 
These results suggest that GAN-based data augmentation has great potential for 
improving the accuracy and robustness of segmentation networks for medical image 
analysis.

5  Discussion

5.1  Impact of GAN Augmentation on Cardiac 
MRI Segmentation

The results of this study demonstrate the effectiveness of GAN-based data augmen-
tation for improving the performance of cardiac MRI segmentation. The use of 
GAN-generated data led to a significant improvement in segmentation accuracy, as 
measured by the Dice coefficient and Jaccard index. The GAN-generated data was 
able to capture the variability in the cardiac MRI images and enable the segmenta-
tion network to better generalize to new data.

The improved performance of the segmentation network has important implica-
tions for clinical practice. Accurate segmentation of cardiac MRI images is crucial 
for the diagnosis and treatment of various cardiac diseases. For example, accurate 
segmentation can help identify areas of myocardial infarction, assess cardiac func-
tion, and detect abnormalities in the heart valves. The improved segmentation accu-
racy can lead to better diagnosis and treatment decisions, and ultimately improve 
patient outcomes.

5.2  Limitations of the Study

There are several limitations of this study that should be noted. First, the dataset 
used in this study was relatively small and limited to a specific population. The 
generalizability of the results to other datasets and populations is not clear. Second, 
the performance of the GAN-based data augmentation was compared with other 
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commonly used data augmentation techniques, but other more advanced techniques 
may exist that were not considered in this study. Third, the segmentation network 
architecture used in this study was relatively simple and may not be optimal for all 
cardiac MRI segmentation tasks.

5.3  Future Directions

Future research in this area should focus on addressing the limitations of this study 
and exploring new directions for improving the performance of cardiac MRI seg-
mentation. One area of research could be the development of more advanced GAN 
architectures that are better suited for medical image data. Additionally, more work 
is needed to determine the optimal combination of data augmentation techniques for 
different cardiac MRI segmentation tasks.

Another important area of research is the development of more robust segmenta-
tion network architectures that are better able to handle the variability in cardiac 
MRI data. This could include the development of more complex architectures that 
incorporate attention mechanisms, multi-scale features, and other advanced 
techniques.

Finally, more work is needed to evaluate the impact of improved segmentation 
accuracy on clinical outcomes. This could involve the development of automated 
systems for diagnosing and treating cardiac diseases based on cardiac MRI segmen-
tation results. Overall, the development of more accurate and reliable segmentation 
techniques has the potential to revolutionize the field of cardiology and improve 
patient outcomes.

6  Conclusion

In this chapter, we have discussed the use of GANs for augmenting cardiac MRI 
segmentation. We reviewed the challenges associated with cardiac MRI segmenta-
tion and the limitations of traditional data augmentation techniques. We then pre-
sented the GAN architecture and explained how it can be used to generate realistic 
synthetic images that can be used to augment the training data. We presented the 
methodology used for our study, including the dataset used, the GAN architecture, 
and the segmentation network architecture. We then discussed the results of our 
study, which demonstrated the effectiveness of GAN-based data augmentation for 
improving the accuracy of cardiac MRI segmentation. The improved accuracy of 
cardiac MRI segmentation has important implications for clinical practice. Accurate 
segmentation of cardiac MRI images is crucial for the diagnosis and treatment of 
various cardiac diseases. For example, accurate segmentation can help identify 
areas of myocardial infarction, assess cardiac function, and detect abnormalities in 
the heart valves. The improved segmentation accuracy can lead to better diagnosis 
and treatment decisions, and ultimately improve patient outcomes.
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7  Future Scope

One promising direction for future research is the development of more advanced 
GAN architectures that are better suited for medical image data. For example, recent 
research has explored the use of CycleGANs and other advanced GAN architectures 
for generating medical images. These architectures may be able to generate more 
realistic synthetic images and further improve the performance of cardiac MRI seg-
mentation. Another area for future research is the development of more robust seg-
mentation network architectures that are better able to handle the variability in 
cardiac MRI data. This could involve the development of more complex architec-
tures that incorporate attention mechanisms, multi-scale features, and other 
advanced techniques.
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WGAN for Data Augmentation

Mallanagouda Patil, Malini M. Patil, and Surbhi Agrawal

1  Introduction

This chapter discusses the contribution of Wasserstein Generative Adversarial 
Networks (WGANs) as the data augmentation technique. Augmentation is the 
inclusion of new artificial information derived by using the available training data 
with some modification in order to enhance the size and quality of data sets and 
improve the operation of deep learning models. This additional data can be anything 
ranging from text to video, and its use in machine learning models would help refine 
their performance. The chapter starts with an introduction to generative adversarial 
networks (GANs), architecture of GANs with the probability theory behind their 
working, followed by their advantages and limitations that lead the way for WGANs. 
The chapter then examines the issues that motivated WGANs followed by their 
architecture and contribution to data augmentation along with pros and cons. The 
second half of the chapter describes a case study and concludes with the future 
scope and the open research issues. To begin with, GANs are introduced in the next 
section.

1.1  Generative Adversarial Networks (GANs)

GAN is a neural network which follows an unsupervised machine learning tech-
nique with two components as generator (Gen) and discriminator [1]. The discrimi-
nator (Dis) is trained with the real training samples. Generator creates the fake input 
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samples and the discriminator takes these samples as input and determines whether 
it is real or fake. Generator takes Gaussian (or random) noise as input and studies a 
map task or function which associates the input to the expected target, the real dis-
tribution. The discriminator’s part is to decide and examine the produced image 
quality by Gen. Generally the GANs are implemented as Convolutional Neural 
Networks (CNNs). Technically speaking, Dis is a binary classifier receiving input 
images from Gen and results into a probability. This probability from Dis decides 
whether the data is actual or fake. This scenario is usually applied in image genera-
tion and classification. With a bird view, GANs are thought as neural networks that 
try to generate actual samples of the data set being studied. For instance, when 
images of digits manually written by hand are fed, GANs study how to produce the 
actual images of additional handwritten digits. Much effectively, these networks can 
even learn to produce the actual or realistic images of human beings and so on. 
Architecture of GANs is discussed in the next section.

1.2  Architecture of GANs

Apart from image classification, GANs also find their application in improving the 
resolution of the low quality images thus enhancing the resolution. One significant 
matter about the GANs is that both the Gen and Dis know that the generated data 
are fake. These two components, Gen and Dis, are given training in turns, that is 
why the name adversarial. The architecture of GANs is shown in Fig. 1. Let us see 
the working of GANs. Basically, these adversarial networks learn the probability 
distributions of the given data. For instance, in the case of GANs being given train-
ing on handwritten digits, learn the probability distributions of the images of hand-
written digits. Then GANs can effortlessly sample the identified distribution of the 

Fig. 1 Architecture of generative adversarial networks
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data to generate the actual images. For this, they find out the similarity among the 
generated and actual images. But there are situations where there is insufficient data 
to create the model. In such cases, GANs can learn from existing data and are also 
capable of generating the data never seen before. GANs can be considered as an 
approach to unsupervised and even semi-supervised learning as per Donahue et al. 
[2]. In the semi-supervised technique, some of the data is labelled while the rest are 
not. In this case, GANs can generate the unlabeled data.

Coming to the components of GANs, the Gen is actually a deep learning model 
that studies the underlying probability distribution of the data set. More particularly, 
Gen takes random noise (Gaussian noise) as input and builds up a correlation func-
tion that associates the input to the expected results as shown in the Fig. 2, which 
depicts how the handwritten digits are classified [3]. Here the Dis computes the 
accuracy and the loss or cost function. It uses the accuracy to refine its own perfor-
mance whereas the cost function is back propagated to the Gen. The Gen makes use 
of this cost function and adjusts its parameters accordingly to improve the quality of 
performance. The digits are classified by the discriminator by computing the prob-
ability that how close are the actual and the generated images.

However, the key component in this setup is the loss or cost function. The cost 
function is a difference between the actual and the produced probability functions. 
Then questions arise, from where does this cost function come and who uses it. The 
answer is Dis and Gen, respectively. Dis provides the cost function to the Gen and 
the Gen improves its performance based on the feedback factor in the cost function. 
Also, how to know if the generated images look similar to the realistic handwritten 
digits? The answer for this question is Dis again. Dis is also a deep learning model 
that provides feedback to the generator by using the process known as back propa-
gation. The job of Dis is to determine and examine the quality of images generated 
from the Gen as shown in Fig. 3. Basically it decides whether image or data gener-
ated by the Gen is real or fake depending on the probability being computed.

Fig. 2 Generator and discriminator for classification of handwritten digits
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Fig. 3 Discriminator

In the Fig. 3, the Dis is seen to be computing the probability that the generated 
image from Gen is real (0.9) or fake (0.1). In the initial stage, the Gen tries hard to 
generate data that resembles the actual data and later when trained with enough 
training samples, the discriminator can easily distinguish real images from the fake 
ones less errors. As Dis is a binary classifier, we can determine its performance with 
Binary Cross-Entropy (BCE) error or loss as shown in Eq. 1:

 
BCELoss � � � � � �� � �� �

�
�1

1 1
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y p y p

n

N

i i i ilog log
 

(1)

In Eq. 1, the probability of class 1 and class 0 are pi and (1 pi) respectively. N is 
the size of the sample. The BCE loss function represents how much the predicted 
probabilities deviate from the real ones [4]. This BCE loss function is a valuable 
indication to the generator network. The generator by itself is ignorant about its own 
generated data whether they actually look like realistic ones or not. It uses the BCE 
loss function and finds the difference between the actual and the generated data. 
Thus, the generator can get the feedback on its generated data by using this BCE 
loss function of the discriminator.

The functioning of this setup goes like this. At the initial stages, when the genera-
tor is inefficient, the discriminator can effortlessly do its work of classifying the data 
as fake, yielding a low BCE component. With low BCE loss, the generator perfor-
mance will not improve. But, the generator with continuous effort refines its perfor-
mance. Once the performance of the generator increases, the discriminator begins to 
commit more blunders. This results into wrongly classifying the fake data as the real 
one. This way, the BCE loss rises from lower to higher. Once the BCE loss becomes 
more, the generator can improve its ability to generate the quality data. Therefore, 
the discriminator’s BCE loss signals the image quality output from generator.

The BCE loss function of the discriminator acts as trigger for quality data pro-
duced by the generator. The main goal of the generator is to fine-tune its parameters, 
mainly the weights associated with the input in such way that the BCE loss of the 
discriminator is exaggerated productively thus making fool of the discriminator. 
However, we thought the discriminator to be perfect in its work from the beginning. 
This assumption of discriminator being perfect is not true. The discriminator also 
needs training but not at the same time as the generator. That is why the term adver-
sarial. In most cases, since the job of the discriminator is to classify the data, the 
training process is easy and direct. The discriminator is provided with a set of tagged 
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actual and fake data. The next step is to apply BCE loss to fine-tune the parameters 
related to the discriminator as well (as in the case of generator). The main objective 
of discriminator’s learning process is to significantly recognize an actual and fake 
data thus outputting the accurate probability. This way, the training process prevents 
the generator from making a fool of the discriminator. In the next section, we will 
discuss about the probability theory behind the generator and the discriminator.

1.3  Probability Theory Behind the Generator 
and Discriminator

When generator and discriminator compete with each other, they get better in their 
performance. Generator learns the probability of joint distribution P(A/B) of the 
output variable B and the input variable A. It uses Bayes theorem [5] to compute the 
conditional probability of B given A, that is, P(B/A) as shown in the Eq. 2:

 
P B A P A,B P A/ /� � � � � � �  

(2)

where the probability of joint distribution is given in eq. 3:

 
P B A P B P A B/ /� � � � � � �  

(3)

We know P (A, B) = P (B/A)P (A) and P (B, A) = P (B)P (A/B) where P(A, B) can 
also take the form as P(A and B). When we equate both P(B, A) and P(A, B), we will 
get Eq. 4:
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By using Eqs. 2, 3, and 4, the Bayes theorem can be derived as depicted in Eq. 5:

 
P A B P A P B|A P B/ /� � � � � � � � �  

(5)

Joint probability [5] is the chance of multiple events happening at the identical 
time denoted by P(A and B). It is the probability of the intersection of two or more 
events with the conditions: (1) Both the events must be happening at the same time 
and (2) both the events should not be dependent on each other.

If the above two conditions are met, then P (A, B) = P (A) P (B) where the joint 
probability is given by P (A, B). Discriminator learns P(B/A = a) which is the con-
ditional probability [6] of target variable B given the probability of occurrence of 
A. In this case, B is the conditional probability of the event B given the event A has 
already happened and is denoted by P(B/A). The next section examines the advan-
tages and limitations of GANs.
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1.4  Advantages and Limitations of GANs

GANs take random noise as input from a multidimensional space and generate dis-
tinct data that resemble the exact features of the actual data set. Some of the advan-
tages of GANs are as follows.

 1. GANs generate data that resemble the actual one. They can generate data start-
ing from text to video that are very difficult to differentiate from realistic ones. 
That is the main reason behind their different applications in the real world.

 2. As labelling of data sets is a costly task, GANs do not require labelled data. 
These networks can generate any kind of data.

 3. The adversarial training process in these networks can generate the quality data, 
for example, the sharpest images. This is possible as both the generator and dis-
criminator can be trained using the feedback method known as 
backpropagation.

 4. Blurry images produced from these adversarial networks study and understand 
the probability distribution of the available data faster compared to the CNN 
deep learning models. This makes way for GANs to be applied as an augmenta-
tion technique to enhance the learning of CNNs with the additional data 
generated.

Even though GANs find their applications in the world of deep learning models 
in most of the scenarios for generating quality data, their accomplishment has hit 
some limitations as there are situations where they cannot achieve their target with 
an expected accuracy and stability. Although several works have been done in the 
past to improve the stability [7] of learning, GANs fail to provide the stable learning 
process. Since their inception, GANs are being invariably used in the domain of 
machine learning for designing and implementing several applications. Even 
though, these networks with their two adversarial network models have achieved 
tremendous response from the industry, there are some cases of shortcomings. 
These failures are due to the two main reasons as mode collapse and convergence 
failure as per Tolstikhin et al. [8]. These limitations along with others are examined 
in detail as follows.

 1. Mode Collapse: While the two network models of GANs are in the learning 
process, the generator’s performance may degrade or collapse to a point where it 
always generates the similar data as output. This type of general failure is usually 
called as the Mode Collapse. Although the generator can make fool of its respec-
tive Dis, it stops depicting the composite structure of the realistic data distribu-
tion. As a result, the generator gets frozen to a lesser space with terribly low 
diversity. Every repetition of Gen optimizes much for a specific Dis which not at 
all copes to train to get out of fooling loop. Due to this, the generator revolves 
around a minimum list of target types. In such a situation, the adversarial network 
stops to generate distinctive data thus reiterating an analogous design or quality 
of outputs.
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 2. Failure to Converge: GANs occasionally face convergence failure. Convergence 
of a function is the process of approaching to a limit as one or more parameters 
increase or decrease. When the generator enhances its performance with the 
learning process, the discriminator performance degrades as it cannot easily 
make out the dissimilarity between the actual and the fake data. In convergence 
failure, the network fails to generate superior or reasonable results.

 3. Vanishing Gradients: GANs suffer from vanishing gradients as shown in Fig. 6. 
Ongoing work on GANs has recommended that when the discriminator is more 
responsive and satisfactory, the learning process of the generator can crash due 
to the gradients that start vanishing slowly [9]. This is because the most favor-
able and responsive discriminator cannot provide the required information to the 
generator to move ahead and advance itself. Thus, the vanishing gradients affect 
the performance of GANs.

Nonetheless, these adversarial networks were problematic to get scaled up or 
trained and as discussed the learning process confronts two main issues, especially 
the non-convergence and mode collapse. The practical solution to have GANs 
resolve these two issues will be to remodel the GAN architecture with an extra com-
petent design. Therefore, to overcome all these issues along with others, there were 
eventually different architectures and models proposed for these adversarial net-
works. These limitations and challenges had made the course of actions for one of 
the variants of GANs called WGANs based on the transport model. WGANs are 
discussed in the next part.

2  Wasserstein Generative Adversarial Networks (WGANs)

In this section, we will introduce WGANs as an alternative technique for data 
augmentation. WGANs were introduced by Arjovsky [10] in 2017. These networks 
propose a divergence minimization perspective and are motivated by the gap in 
between the real data probability data and the parameterized probability data. 
Wasserstein distance and loss are the two main ingredients of WGANs that make 
them advantageous compared to GANs. Wasserstein distance between two distribu-
tions is the effort required to transform one distribution into the other. The cost or 
loss function associated with the Wasserstein distance pursue to elevate the rift 
between the actual and the generated data. The discriminator in WGANs is also 
called as the critic. In general as discussed in previous sections in terms of discrimi-
nator, the critic provides the feedback mechanism to the generator to enhance the 
working and quality of model as a whole. The generalized form of the cost is shown 
in Eq. 6.

Cost Mean Critic Rate on Actual Data Mean Critic Rate on Fak� � �– ee Data� �  
(6)
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This Wasserstein cost function is basically developed to avoid the issue of van-
ishing gradients even when the critic, that is, the discriminator, is trained for the 
matchless and elevated performance. This loss function removes the problem of 
mode collapse by allowing the discriminator to be trained to an optimal point with 
no concern about the vanishing gradients. When the discriminator does not get 
stopped at the local minimum point, it grasps the technique to dismiss the generated 
outputs on which the generator gets sustained. Due to this reason, the generator 
needs to undertake a new plan which is something new. There comes the role of 
Wasserstein distance that gets hold of the fact that the objective functions assemble 
or converge faster when compared to the GANs.

Let us discuss some theory and the mathematical background behind the 
Wasserstein distance. There are three fundamental techniques to calculate the gap 
between the two data distribution points in mathematical statistics and machine 
learning as kullback leibler (KL) divergence, jensen shannon (JS) divergence, and 
Wasserstein distance. The JS divergence (typically named as the GAN cost) is the 
most used technique at the beginning in the early GAN models. Nonetheless this 
technique comes with some problems when dealing with the gradients that can 
make way for unpredictable and unstable training. Therefore, here comes the use of 
the Wasserstein distance to handle such recurrent problems. This distance is also 
known as Earth Mover (EM) distance [11]. Fundamentally, the working of WGAN 
is mathematically represented as shown in Eq. 7:

 
max ]~ ~w W

x P w z p z wE f x f g z
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(7)

Here, the term max indicates the restraint on the critic. The discriminator being 
addressed as critic comes with reasons. The logic behind this convention is that 
there is no Sigmoid activation function in WGAN discriminator to cap the output to 
the values 0 or 1 (meaning actual or fake). As a substitute, the WGAN discriminator 
model delivers a value in the range that makes it to perform less stringently as 
a critic.

Coming back to Eq. 7, the first portion indicates the actual data, whereas the 
second portion indicates the estimated or generated data. The generator tries to find 
the point θ that tries to lessen the EM distance between the actual and the estimated 
probability distributions. In the above equation, the discriminator goal is to exagger-
ate the gap in between the actual and the estimated distributions as its objective is to 
strongly differentiate the distributions accordingly. In turn, the generator model’s 
objective is to lessen the distance between the actual data and estimated data as it 
mainly works toward making the generated data as real as possible and thus making 
fool of the discriminator. Looking at the generator and discriminator losses is obvi-
ously important, but only for understanding if the training is stable or not. Finally, 
the quality of the images produced is important and you should implement some 
specific metrics to evaluate that, and check mostly those metrics to perform hyper 
parameters tuning. So too much time should not be spent trying to get “good values” 
on the discriminator and generator losses. The next section of the chapter lists out 
the motivational factors for WGANs.
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2.1  Motivation for WGANs

Stable distance metric is the requirement in GANs that use J S distance metric 
where the curve flattens at some point of time resulting in the Gradient value of 
zero. This is the first motivation to come up with a distance metric to solve the issue 
of extreme conditions as well as gradient loss. So the gradient loss is the main moti-
vation for WGANs. Wasserstein distance evaluates to a stable value even if the two 
distributions are far apart or overlap with each other. Other motivations for WGANs 
include (1) Convergence of two points in the real and parameterized probability 
distributions. (2) In pursuit of reliable gradient. The authors in Wei et  al. [12] 
observed that in order to handle the vanishing gradients in GANs, gradient penalty 
can be used at the appropriate points and applying this penalty only at the decided 
sample points is not enough. (3) Minimum distance leading to coupling between the 
real and generated probability distributions. (4) WGANs are inspired by the 
Transport Model where the distance is measured to compute the total cost in shift-
ing the consignment from one point to another. With these motivational factors, the 
next section describes the architecture of WGANs in detail.

2.2  Architecture of WGANs

To know the real architecture of WGANs, it is necessary to go through the deep 
background that leads to the invention of WGANs. As discussed, for computing the 
similarity between the data distributions, the statistics in machine learning intro-
duces three main methods, especially KL divergence [13], JS divergence, and EM 
distance. To determine the closeness between the estimated data and the actual data, 
there were initially variational autoencoders that used KL divergence method. In 
this method, the goal of autoencoders is to lessen the gap between the two data dis-
tributions P and Q with P being the unknown data and Q being the real one. The 
problem with KL divergence is that if the two probability density functions have no 
overlaps, then KL divergence may blow up. This is proved by the fact that the prob-
ability of both the generated and the real distributions at some point X will evaluate 
to infinity and KL divergence fails. This resulted in the invention of JS divergence 
(used by GANs) to overcome the limitations of variational autoencoders. 
Mathematically, at some point x, the JS divergence evaluates to the value log2 
instead of infinity as in the case of KL divergence.

Normally when you approximate any distribution P with the known distribution 
Q, then it is very unlikely that these distributions will overlap with each other. So in 
the situation where they are not overlapping with each other, using the KL diver-
gence as the means of approximation will not lead to the expected results whereas 
in JS divergence, it can be handled even when P and Q are far way and do not over-
lap. So that is the point where GANs are advantageous compared to variational 
autoencoders. The advantage is that in the case of GANs, the cost function of the 
generator for the responsive discriminator has JS divergence [14] factor as one of 
the parameters and this helps in targeting the situation where P and Q are not 
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overlapping and are far away distributions. That is why the GANs have an upper 
hand over variational auto encoders. At the beginning, the JS divergence is the much 
applied technique in earlier GANs. But this method induces problems when han-
dling the gradients that vanish slowly thus making way for an unstable learning 
process. There comes the usage of EM distance [11] or Wasserstein distance to 
avoid such repeating challenges. EM distance is the price of the outstanding travel 
plan to transfer the weight at prediction stage to associate to the actual weight and 
is used in various applications. WGANs use the Wasserstein distance to compute the 
similarity between the actual and the estimated data. The architecture of such 
WGANs is shown in Fig. 4.

The two models generator and discriminator (also called as critic in WGANs) 
battle against each other while they get trained. The generator struggles to make 
fool of the critic, whereas the critic model tries to find the mistakes in the generated 
data by comparing them with the real ones thus making sure that it is not the one to 
be tricked for. This impressive competition of minimum and maximum between 
these two networks inspires both of them to drive their performance to newer 
heights. As shown in Fig. 4, the critic takes input as the generated data from the 
generator. Meanwhile it gets trained on the real samples and computes the EM dis-
tance between the two distributions to decide whether the generated data is real or 
fake. The next section examines the role of WGANs in data augmentation.

2.3  WGANs for Data Augmentation

Wasserstein distance or Earth Mover (EM) distance [11] is considered as the 
expected cost or energy to shift one shape of distribution to another. Here, the simi-
larity between the two probability distributions is determined by measuring the dis-
tance between them horizontally rather than vertically as in the case of KL and JS 

Fig. 4 Architecture of WGANs
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divergences. Because of this reason, Wasserstein distance metric is advantageous 
compared to KL and JS divergences. The value ranges evaluated are 0 to infinity and 
0 to log2 in KL and JS divergences, respectively. The Wasserstein distance can be 
informally understood as the lowest energy or cost required to shift and transfer a 
stack full of soil in the form of one data distribution to another form. This energy or 
cost is determined by eq. 8:

 C M N� �  (8)

where M is the quantity of dirt shifted and N is the distance of the two shifting points.
To understand EM distance in detail, let us take a general scenario where the 

probability distribution is discrete [9]. Let us consider the distributions P and Q, 
each having 4 blocks or stacks of soil. Let P and Q have 10 trowels or shovels of 
soil. Suppose each soil stack has been allocated with the following numbers of trow-
els. P4 = 4, P3 = 1, P2 = 2, P1 = 3, Q4 = 3, Q3 = 4, Q2 = 2, and Q1 = 1.

To make the distribution P look like the distribution Q as shown in Fig. 5, the 
following actions need to be taken.

 1. First move 2 trowels from P1 to P2 so that (P1, Q1) converge.
 2. Nest move 2 trowels from P2 to P3 so that (P2, Q2) converge.
 3. Finally move 1 trowel from Q3 to Q4 so that (P3, Q3) and (P4, Q4) converge.

If we indicate the cost to match Pi and Qi as Ci, then Ci  +  1 is evaluated as 
in Eq. 9:

 C C P Qi i i i� � � �1  (9)

For this example, the Ci’s are computed as: C0 = 0

 C1 0 3 1 2� � � �  

Fig. 5 Step wise plan to match P with Q. (Courtesy: Lilian Weng)

WGAN for Data Augmentation



234

 C2 2 2 2 2� � � �  

 C3 2 1 4 1� � � � �  

 C4 1 4 3 0� � � � �  

Finally, the Wasserstein distance is calculated using the formula

 
W � � �Ci 5

 

which is the effort required to transform one distribution into the other. For continu-
ous probability distributions with probability density functions (pdfs), the EM or 
Wasserstein distance formula is given in Eq. 10:

 
W P P E x yr g P P x yr g

, || ||, ,� � � � �� �� �inf ( )� �  

(10)

As per Eq.  10, the product(Pr, Pg) is the list of available joint distributions 
between the real (Pr) and the generated Pg probability distributions.

The distribution (Pr, Pg) is joint distribution that explains one soil transmission 
mechanism. The term γ(x, y) indicates the amount (in terms of percentage) of soil or 
dirt that should be shifted from position x to position y such that the soil at position 
x pursues the same probability distribution as the soil at position y. For this reason, 
we need to take the marginal distribution of x, that is, sum with respect to x keeping 
y as constant, and it adds up to Pg as shown in the Eq. 11:

 
P y x yg � � � � � �� ,

 
(11)

Once shifting the decided quantity of dirt from each available position x to the 
target position y is over, the result is the exact position y with the probability distri-
bution Pg. Similarly, the marginal distribution over y (i.e., sum with respect to y 
keeping x as constant) adds up to Pr as shown in Eq. 12:

 

P x x yr
y

� � � � ��� ,

 

(12)

Let us suppose the starting point as x and target point as y, then the sum quantity 
of soil transferred is γ(x, y). In this case, the transmission gap is the absolute value 
of (x − y), that is, |x − y|. Energy required is given as cost by Eq. 13:

 
Cost ,� � � � �x y x y�

 
(13)

The expected energy (EE) computed by  taking the mean of all the (x, y) pairs can 
be quantified in Eq. 14:

 
EE ,,x y x y x y x y� � � � � � �� ��

 
(14)
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At the end, the lesser cost is considered as the EM distance. When compared to 
the KL or JS divergences, Wasserstein distance can still provide a mindful and 
refined representation of the distance even when data distributions are in lower 
dimensional folds without any overlap. The KL divergence evaluates to infinity if 
the input distribution data are disjoint. Divergence with respect to Jensen-Shannon 
divergence extends KL divergence to calculate a symmetrical score and distance 
measure of one probability distribution from another. Furthermore, the Wasserstein 
distance can be used as an error function for GANs to improve the learning process. 
As sometimes it is unmanageable to bankrupt all the available joint probability dis-
tributions in the product (Pr, Pg) to evaluate the infimum inf γ(Pr, Pg), the research-
ers have suggested a brilliant changeover of the Wasserstein parameters based on 
the Kantorovich-Rubinstein duality function as depicted in Eq. 15:

 
WD , supr , ,P P

K
E f x E f xr g x x Pg� � � � ��� �� � � ��� ��� � � �

1
Pr

 
(15)

The term supr is the supremum and is the opposite of infimum (inf) as the pur-
pose of WD(Pr, Pg) is to quantify the least upper bound, that is, the highest value [9]. 
The cost f in this advanced shape of the Wasserstein function Eq. 15 is applied to 
captivate the pre-requisite condition of absolute value of f is less than or equal to K, 
thus showing that it is aligned to Lipschitz continuous function. In WGANs, the 
critic is given training to learn the Lipschitz continuous function to make way for 
evaluating EM distance. As and when the cost function reduces during the learning 
process, the EM gap becomes shorter. This way the output of Gen advances nearer 
to the actual distribution of data. So the learning of Lipschitz continuous function 
by the critic in WGANs would result in the generation of quality data.

However, this quality output gain is accompanied by its opponent. It is difficult 
to manage the Lipschitz continuity of the function f while training the critic for the 
sake of getting everything worked out. One of the solutions for this is to bracket the 
weights to a lower window size such as −0.01 to 0.01 once after each gradient 
change. This results in a compressed parameter space so that the function f catches 
its range in terms of bottom and higher levels to conserve the Lipschitz continuity. 
The next section examines the pros and cons of WGANs compared to other data 
augmentation techniques.

3  Pros and Cons of WGANs Over Other Data 
Augmentation Techniques

The most significant promising practical application of WGANs is their proficiency 
to assess the Wasserstein distance consistently by having the discriminator trained 
to the optimal point. The plots of these learning graphs are not only applied for 
unraveling the bugs and search for hyper parameter, but also connect exceptionally 
well with the estimated quality of the sample.
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Moreover in WGANs, the discriminator acts like a critic rather than a classifier. 
Here the word “critic” means that it is trying to calculate the Wasserstein gap 
between the distributions P and Q where P is the estimated probability distribution 
from the generator and Q is the real distribution. The discriminator is not outputting 
the probability but the distance. So there is no Sigmoid layer at the output layer. 
Output is taken out directly without any activation function. For Wasserstein dis-
tance to be computed, the discriminator needs to be trained more number of times 
than the generator. Usually it is a 1:5 ratio. This means that the learning process of 
discriminator is five times more compared to its counterpart. In contrast with the 
original GAN technique, the WGAN algorithm initiates the following actions on the 
data set:

 1. When each gradient is updated on the critic functionality, the WGAN algorithm 
caps the hyper parameters such as weights to a lesser and fixed bounds.

 2. WGAN Algorithm Applies an Advanced Cost Borrowed with EM Gap without 
any Logarithmic Dependency

Discriminator network is not directly acting as a monitor or critic but as an 
apprentice for computing and concluding the Wasserstein metric between the actual 
and the generated probability distributions. WGANs allow us to get the critic trained 
till some point of optimality. Then on the completion of this training, the WGAN 
model simply delivers the computes cost or loss function to the generator. Later, the 
generator can be trained as any other neural network without the need for managing 
and balancing the capability of both the generator and the critic. The quality of gra-
dients used for empowering and training the generator depends on how better the 
discriminator acts as critic in its performance. The comparison of the gradients in 
GANs and WGANs is shown in Fig. 6 where there are linear gradients appearing in 
the case of WGANs.

Tests conducted using WGAN method show the following important advantages 
over the standard traditional GANs:

 1. Stability related to optimizing of a process being refined.
 2. Improved cost function between the converged output of generator and the 

expected quality of the sample.

Coming to the other side of WGANs, they are not so excellent in their perfor-
mance. As per Arjovsky et al. [10], the original authors of the WGANs research 
suggested that the capping of weights is a dreadful way to impose a Lipschitz con-
tinuity constraint. The WGAN models still experience the training that is unstable 
and converge slowly in some cases after weight capping where the capping window 
is too large. WGANs also suffer from the gradients that vanish slowly when the cap-
ping is too small. But as per Cheng et al. [15], the authors have mentioned that there 
are some enhancements possible by absolutely compensating the weight capping 
with the new technique called as the gradient penalty to overcome the limitations of 
WGANs. With all the knowledge accumulated so far, a case study on data augmen-
tation using WGANs is discussed in the next section.
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Fig. 6 Comparison of gradients in GANs and WGANs. (Courtesy: Margaret Maynard-Reid)

4  Data Augmentation Using WGANs: A Case Study

This section explains a chest X-Ray data set augmentation for COVID-19 detection 
using WGANs. It is proved that the WGAN estimated images are of far better qual-
ity than actual data obtained from reasoning test with existing COVID-19 analysis 
models. Use of WGANs in data augmentation can lead to an impressive and impon-
derous solving. The WGAN network in this case study is trained with two data sets 
from the X-ray repository.

 1. The first one with the general or common and pneumonia images.
 2. The second one with the general or common, pneumonia, and COVID-19 images.

By using Wasserstein distance between the produced and the real data, WGANs 
are capable of generating new and advanced X-ray images that are do not dependent 
on the image labels. These independent data generated would advance the accuracy 
of WGAN models thus resulting in the authentic classification of the COVID-19 
and pneumonia cases excluding the common ones. Although there is an increased 
number of supervised deep learning models that have attained the encouraging 
results in the diagnostics of medical as well the agricultural [16] domains of imag-
ing data, they need a heavy quantity of labeled data to study, generalize, and catego-
rize them in order to categorize COVID-19, pneumonia, and normal flu with higher 
accuracy. But in the case of WGANs, they are capable of generating and estimating 
unknown area related data with no regard to the category of the image input data. 
Due to these reasons, an unsupervised data augmentation appeared where there are 
no labelled data available in the data set. Such a WGAN architecture with the gen-
erator and the critic is shown in Fig. 7.
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Fig. 7 WGAN Architecture for COVID-19 detection

As shown in Fig.  7, during every repetition i, generator GN takes White or 
Gaussian noise vector input zi and a set xi with actual learning image data. Next the 
input data images are encoded with the CNN layers and transformed into a low 
dimensionality depiction just before mixing these low dimensional abstraction of 
the data with the predetermined zi vector. This mixing occurs when input image 
data passes through a thick nonlinear hidden layer. It is done with an intention to use 
the complete image depiction with critic but to also obtain a lesser depiction of the 
image data that is input via GN. This is done to produce quality estimation and 
generalization of the quality image data. Two-way input to the generator (i.e., noise 
and training image data) also encourages the trained generator to make use of the 
image data from various categories and generate a deep range of image data to 
aggregate the required training data category. In this case, a 1  ×  1 convolution 
method is used to help lower the number of channels in the WGAN model. After 
calculating the Wasserstein distance between the real and generated distributions, 
the loss is back propagated to both the critic and generator to minimize the error. A 
well-trained generator in WGAN learns the map function GN (z): z > =x from the 
latent space depictions z to the actual X-ray image data.

In general, the optimization [17] of the generator and the discriminator in GANs 
can be thought of as min max game as shown in Eq. 16:

 
min max log log~ ~GN CR x p x z p zC x C GN z

z
 

data � � � �� ��� �� � � � �� ��� ��1
 

(16)

In this process, the generator during its training is made to learn how to lessen the 
accuracy of the critic CR’s capability to differentiate actual and produced images 
with critic working for boosting the probability of assigning actual learning image 
data. While in the training phase, GN advances the process of generating more real-
istic image data while CR tries its level best to accurately recognize the difference 
between the actual and produced images. Generated and categorized images are 
shown in Figs. 8 and 9, respectively.
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Fig. 8 Generated images. (Courtesy: Patrik Rogalla et al.)

COVID-19

Pneumonia

Fig. 9 Classified images. (Courtesy: Patrik Rogalla et al.)
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Fig. 8 demonstrates the output of generator at the beginning, middle, and final 
phases from one direction to the other direction, respectively. For this, the generator 
is trained with both the data sets [17].

As shown in Fig. 9, note that there are markings on the top left part of the images 
related to COVID-19 cases. Similarly, a symbol R is located on the images related 
to pneumonia. These pneumonia-related images are persistent to the data images 
coming from the corresponding data set.

As shown in Fig. 9, note that there are markings on the top left part of the images 
related to COVID-19 cases. Similarly, a symbol R is located on the images related 
to pneumonia. These pneumonia-related images are persistent to the data images 
coming from the corresponding data set.

5  Conclusion and Future Scope

The chapter introduced WGANs as one of the data augmentation techniques. 
WGANs are an alternative to traditional GAN models. They provide the learning 
process of probability distributions in very large dimensional spaces. The chapter 
has done a comprehensive investigation regarding the Wasserstein or Earth Mover 
distance in contrast with the popular probability distances and divergences applied 
in order to learn the distributions. Dropping of mode issue in GANs is tremendously 
decreased in WGANs. The issues with the KL and JS divergences can be overcome 
with the introduction of Wasserstein or EM distance in generating and estimating 
the quality data. WGANs particularly avoid the learning issues related to GANs. 
The research on WGANs proved to be fruitful and can be shown that there can be 
an advancement in learning stability in the deep neural networks. Also the issues 
like mode collapse and convergence can be managed competently. These network 
models also deliver the substantial learning graphs that are useful not only for test-
ing but also for searching the hyper parameters. Although WGANs provide the 
means for generating and estimating the best quality data, they still suffer with an 
unstable learning process and slower convergence process when the window cap is 
much higher. Vanishing gradients also pose issues when the window cap is too low. 
These fluctuating issues of gradients can be handled by compensating weight cap-
ping with what is known as gradient penalty. Gradient penalty is the smooth varia-
tion of the Lipschitz constraint that can be enforced on the critic’s output. The 
ongoing and future research issues with WGANs include the following: (1) WGANs 
can be made even faster compared to the other data augmentation techniques, and 
(2) resolving the gradient issues efficiently by accommodating new and advanced 
constraints like Lipschitz.
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Image Segmentation in Medical Images 
by Using Semi-Supervised Methods

S. Selva Kumar, S. P. Siddique Ibrahim, and S. Kalaivani

1  Introduction

Many medical image-based clinical applications depend on accurate image segmen-
tation. In current history, deep neural networks have been successful at segmenting 
images well, but they need a lot of annotated training data. For medical images, it is 
hard to get a lot of annotated examples because it is time-consuming and expensive 
to get medical specialists to annotate a lot of segmentation covers, requiring per- 
pixel records. Image augmentation has been proven to be a good and effective way 
to deal with this problem. Image augmentation is a collection of methods used to 
increase the amount and quality of training datasets for deep learning models. In 
medical imaging, augmentation transforms the images and the labels, making the 
training data look distorted. Transformations like rotations, reflections, and elastic 
deformations are often used in augmentation methods to make training images look 
like one training example. When neural networks are subjected to training with a 
substantial quantity of labeled samples, the connections between visual elements 
and segmentation become comprehended. The masks become more resistant to 
changes in the form and intensity of the objective as well as the structures that sur-
round it. However, segmentation algorithms that have only been exposed to a lim-
ited number of annotated examples accomplish inefficiently on test images, 
including variances not detected throughout training. These differences in shape are 
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caused by differences in how populations are built, and differences in intensity are 
caused by differences in (1) image acquisition, (2) tissue properties and composi-
tions, and (3) scanner protocols, particularly in Magnetic Resonance Imaging 
(MRI). The semi-supervised data augmentation algorithms have achieved high per-
formance in segmentation over a huge amount of annotated data [1].

1.1  Semi-Supervised Learning

Semi-supervised learning (SSL) approaches use unlabeled data to supplement the 
restricted labeled data used for training. The primary objective is to prevent overfit-
ting while also making training more consistent through the utilization of unlabeled 
data. Let x represent the image and y represent the image pixel label map. The train-
ing Dataset D, which is used for training, includes both the label maps and the 
image pairs, D = {X, Y} where X = {xi, i = 1,2,3…n}, and Y = {yi, i = 1,2,3…n}, 
where i represents the image index. Suppose there are two datasets in our hands, an 
unlabeled dataset Du = {Xu, Yu} and a labeled dataset DL = {XL, YL}. The label maps 
YL are identified and usually arise from physical segmentation by specialists on 
images XL, while YU are unknown. Then build a model for manual segmentation 
where label map y from image x with a network parameterized by Θ. In supervised 
learning, minimize the loss (L) with stochastic gradient descent (SGD) and achieve 
the optimized segmentation. The unlabeled dataset DU was introduced in semi- 
supervised learning to achieve optimization:

 

min log log ,
, , ,�

� � �
YU

L ,YU |, |, |� � � � �
� �
�� ��
i L

n

j
i j i

i U j
i j ip y x p y x�� �.

 

(1)

The cross-entropy for unlabeled data are mentioned in the second term in Eq. 1 
and λ has represented the weights of unlabeled term data. The network factors (Θ) 
and the unidentified label maps YU need to be considered when optimizing the loss 
function.

The SSL is classified into the small categories shown in Fig. 1.

Fig. 1 Categories of semi-supervised learning (SSL) methods
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2  Self-Training Semi-Supervised Learning (SSL) Methods

In self-training, the learner labels examples on their own as part of a semi- supervised 
learning procedure that has not been labeled and retraining itself on an expanded set 
of examples that have been labeled. A labeled data collection is used to train a “base 
learner” in the self-training process. Then, it tries repeatedly to label the instances 
in the unlabeled set about which it is most confident. Then, it adds these self-labeled 
examples to its labeled training set. As a result of the insufficiency of the labeled set 
for learning, it is impossible to avoid misclassifying some unlabeled data.

2.1  Network-Based Cardiac MR Image Segmentation

The network-based cardiac MR image segmentation method [2] obtained the loss 
function by alternatively updating the values of both network parameters (Θ) and 
the unlabeled dataset (YU) shown in Fig. 2. The early values are attained by training 
the network for several epochs using only labeled (YL) maps. First, the network 
parameter values are fixed Θ̂ , then it optimizes the unlabeled image term loss func-
tion. In this step, segmentation is done on the unlabeled images based on the current 
network. If the unlabeled data value (YU

� ) is fixed, then it estimates the network 
parameters (Θ). These actions are performed by training on both the labeled training 
data and the estimated segmentations (YU

� ) to update the network’s parameters 
(Table 1).

The strategy incorporated unlabeled data, which improved segmentation perfor-
mance, particularly with a minimal training set. Segmenting a single subject takes 

Fig. 2 Fully convolutional network architecture
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Table 1 Network-based Cardiac MR image segmentation procedure

Step 1: Utilize the network to determine the softmax probability and a conditional random field 
(CRF) to evaluate the probability map for a more precise segmentation (unlabeled data 
segmentation is improved with CRF)
Step 2: Similar to supervised learning, SGD can be used to optimize the cross-entropy loss 
function
Step 3: Do steps 1 and 2 alternatively until the network parameters improved significantly 
when the segmentations were updated, and vice versa

just a few seconds when the network has been properly trained. The main drawback 
of this method is that if a bias or fault (over- or under-segmentation) happens, the 
network will learn a mistake in the first segmentation of the unlabeled input.

2.2  Self-Paced and Self-Consistent Co-training Method

The minimization of entropy is one method that has been suggested for enhancing 
knowledge in semi-supervised classification problems [3]. The self-paced and self- 
consistent co-training method extends the concept of semi-supervised entropy regu-
larization and self-paced learning [4] and [5]. This method considers three dissimilar 
losses: (1) supervised loss (pixel-wise), (2) self-placed co-training loss, and (3) self- 
consistency loss.

2.2.1  Self-Paced Learning

The self-paced learning model is erudite during training by accumulating more 
complicated examples. In the typical self-paced learning model, a self-paced regu-
larize is included in calculating the weights applied to each instance in the learning 
goal at a specified learning speed [6]. In this self-paced method, high-confidence 
parts of unclear images are looked at first, followed by those with less confidence. 
The main objective of the self-paced co-training is to minimize the segmentation 
loss by using the cross-entropy loss. The self-paced co-training method is based on 
the Jensen-Shannon divergence (JSD). The standard JSD method is used to mea-
sure the inter-model agreement. The Jensen-Shannon divergence (JSD) algorithm 
dynamically modifies the significance of individual pixels during the training pro-
cess of various segmentation networks. Furthermore, when labeled data is narrow, 
then utilize a self-consistency cost based on chronological assembling to standard-
ize individual models’ training further and boost execution. The self-paced and 
self-consistent co-training method has a drawback. The task at hand necessitates 
the operation of numerous segmentation networks, thereby rendering the computa-
tional requirements more challenging to fulfill. This constraint can be overcome by 
using parallel calculation techniques to increase speed training and implication, but 
it could also be solved by making a single model that uses the information from 
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Fig. 3 Self-paced and consistent co-training design for semi-supervised segmentation

several models. Another big problem with this method is that you have to find a 
balance between different loss terms that may fight with each other throughout the 
training (Fig. 3).

3  Adversarial Training Method

In computer security, an “adversary” attempts to trick or mislead a machine learning 
model. Adversarial machine learning is another approach that may be used to under-
mine the efficacy of any machine learning model by tricking it into using incorrect 
data. Adversarial training, in which a network is trained with examples of attacks 
from the other side, is one of the few ways to protect against attacks from the other 
side that can stand up to a strong attack [7].

In biomedical image analysis, semantic segmentation is one of the most impor-
tant problems. An important question is how to use unlabeled images to train good 
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segmentation models. It is not a new idea to use unlabeled and labeled data to train 
a learning model. It added an unsupervised learning task to help train a neural net-
work in a supervised way. Both unsupervised and supervised learning tasks use the 
same intermediate layers. Despite the fact that unsupervised and supervised learn-
ing is intended to accomplish separate things, the unsupervised learning component 
can on occasion lend a hand to the supervised learning component by way of the 
mutual model parameters. Using annotated and unannotated data would be ideal for 
serving the same goal. The big problem is that there are no real facts for unlabeled 
data, so back-propagation faults cannot be directly calculated after the forward pass. 
An adversarial network is used to train a deep neural network to calculate estimated 
faults for unannotated data [8].

3.1  Deep Adversarial Network (DAN)

The deep adversarial network (DAN) method is used in image segmentation for 
both labeled and unlabeled medical images [9]. The DAN contains two network 
models: (1) an evaluation network (EN) and (2) a segmentation network (SN). The 
segmentation network conducts the segmentation process, and the evaluation net-
work determines the image segmentation quality. The architecture of the DAN 
model is represented in Fig. 4. First, SN is trained with labeled images along with 
ground truth images. Then, EN has been trained to assign dissimilar scores to 
labeled and unlabeled image segmentations according to its training. The 

Fig. 4 The architecture of the deep adversarial network (DAN)
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enhancement of segmentation quality in SN training was achieved by utilizing the 
feature map of the image learned in EN.

The information given to EN as input is critical to the entire adversarial training 
system. The segmentation probability maps provide EN with the opportunity to 
investigate helpful morphological aspects of the segmented biological objects and 
evaluate the segmentation quality, which might be a simple form for EN to use as 
input. Combining segmentation probability maps with the input image correspond-
ing to them is a strategy to build input for EN that is more effective than other 
methods. The purpose of the evaluation network (EN) is to assess the quality of 
segmentation by analyzing the correlations between the input image and the result-
ing segmentation.

There are two different methods for combining the segmentation probability map 
and the input image. First, put them together directly or turn them into two feature 
maps before concatenating them. Since EN uses different model parameters to pro-
cess evidence from the segmentation files and the input image, it is feasible that the 
facts from the raw image data are used to make decisions. The deep adversarial 
network can efficiently use unlabeled image data to train biomedical image segmen-
tation neural networks for improved simplification and resilience.

3.2  SGNet Image Segmentation

The SGNet used an adversarial network learning approach to unlabeled data [10]. 
This approach in GAN consists of two segments called the generator G and the 
discriminator D with a fully convolutional design similar to that of the widely used 
U-Net. This approach proposed a new semi-supervised method that utilized the con-
volutional deep learning method for segmenting the medical OCT B images. The 
unlabeled images train through an adversarial network along with supervised train-
ing data. The discriminator network uses unlabeled images and it is very effective in 
semi-supervised loss. The segmentation network act as an encoder of the segmenta-
tion network and it trained the images adversarial and semi-supervised manner. This 
work is an attempt to train the unlabeled image by using adversarial learning and 
balancing both cross-entropy loss and semi-supervised loss. Figure 5 depicts the 
working principles of SGNet segmentation architecture.

3.3  Multi-path and Progressive Upscaling GAN-Based Method

The photo-realistic single image super-resolution using a generative adversarial net-
work (SRGAN) is used to remove low features on diverse scales of the medical 
images [10, 11]. The multipath method images upscale by using two steps, in the 
first step extract the shallow features after that extracts deep features in the images 
these two steps are achieved by using ResNet34 architecture. In this architectural 
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Fig. 5 The architecture of the SGNet segmentation method

approach, the initial extraction of superficial attributes in magnetic resonance (MR) 
images is achieved through the utilization of a low-resolution rendition of the dis-
tinctive high-resolution image as an input. The two blocks of the convolutional layer 
are constructed and the first block act as batch normalization and activate ReLU the 
next block is again the batch normalization layer. In the deep feature extraction 
phase, this phase low-resolution images are upscaled by 2× the features extracted 
from the upscaled version of images. The three loss functions considered in this 
work are content loss, generator loss, and mean square loss. This method improves 
the overall quality of low-resolution images into high-resolution MR images.

4  Conclusion

Due to the exertion of compiling large-scale labeled datasets, the clinical applica-
tion of effective deep-learning methods for medical image investigation is limited. 
This chapter discussed some novel methods to handle both labeled and unlabeled 
medical images for segmentation. The semi-supervised learning methods are very 
limited in literature but they are more effective and handled the medical images.
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