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Instability and Evolution 
of Nonlinearly Interacting 
Capillary Gravity Waves Over 
Finite Depth

Shibam Manna, Tanmoy Pal and Asoke Kumar Dhar

Abstract

Two-dimensional coupled nonlinear Schrödinger equa-
tions have been established for nonlinearly interacting 
capillary gravity waves over finite water depths. These 
evolution equations are then used to examine the insta-
bility properties of two Stokes wave trains for unidirec-
tional and bidirectional perturbations. The drawn figures 
exhibit the instability growth rate for distinct water 
depth values and for various angles of the interaction of 
two-wave trains. These figures demonstrate that rogue 
waves can be generated due to modulational instability 
in obliquely propagating waves over a finite water depth. 
Furthermore, it is found that the instability growth rate 
over a limited depth of water for obliquely propagating 
waves is much elevated than that for an infinite depth 
of water, and it enhances as the water depth decreases. 
We have also examined the effect of capillarity on 
Benjamin–Feir's instability.
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1  Introduction

There has been considerable interest in studying the occur-
rence of rogue waves. The concept of rogue waves, intro-
duced by Drapper (1966), can be generated due to both 

nonlinear and statistical effects and may occur in infi-
nite and finite water depths (Shukla et al., 2006). Based 
on two-coupled third-order nonlinear Schrödinger equa-
tions (NLSE), Roskes (1976) has studied the instability 
analysis for surface gravity wave in the presence of second 
wave in deep water. Dhar and Das (1991) have extended 
that result starting from the fourth-order nonlinear evolu-
tion equation. A further extension of that result to include 
capillarity has been performed by Dhar and Das (1993). 
Onorato et al. (2006) have established two-coupled non-
linear Schrödinger equations in the case of two nonlin-
early interacting wave systems in infinite water depths and 
traveling in two different directions. Then, they have stud-
ied the instability analysis in the case of unidirectional per-
turbation. That analysis has been extended by Shukla et al. 
(2006) to obtain the instability growth rate for bidirectional 
perturbations. Laine Pearson (2010) has discussed the inter-
action of two weekly nonlinear wave trains for distinct car-
rier frequencies and traveling in two separate directions, 
similar to obliquely interacting waves. He has demonstrated 
that the instability growth rate for more general two-wave 
trains can be larger than for short crested waves. Kundu 
et al. (2013) have also established nonlinear evolutions 
for two gravity wave packets for a finite depth of water 
and interacting obliquely on the surface of the water. The 
creation of rogue waves due to modulational instability of 
two obliquely propagating wave trains has been discussed 
by Didenkulova (2011), Gramstad and Trulsen (2010), 
Hjelmervik and Trulsen (2009), Onorato et al. (2010, 2011). 
All these investigations that the authors above have per-
formed are for gravity waves. Recently, Manna and Dhar 
have made a paper on two obliquely acting capillary grav-
ity waves in the water of infinite depth (Manna & Dhar, 
2021a), and they have obtained the solutions of coupled 
third-order NLSE in the (x-t) space (Manna & Dhar, 2021b) 
for the same problem. The present paper deals with three-
coupled third-order nonlinear Schrödinger equations for 
obliquely interacting capillary gravity waves over finite 
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where cp = ω/k represents the phase velocity.

3  Derivation of Evolution Equations

Following Kundu et al. (2013) and making dimensionless 
the variables by the relations given by

and finally, using the transformation

we obtain the third-order nonlinear evolution equations con-
sisting of three-coupled equations for crossing sea states

and

in which the forms of P1,P2 are

where cg = cg/cp and the coefficients of Eqs. (9) and (10) 
are available in the Appendix. To render the results accepta-
ble, comparing them with other results is useful. For exam-
ple, in the absence of surface tension, the Eqs. (9) to (11) 
reduce to the corresponding equations of S. Kundu et al. 
(2013). Further, for s = 0 and in the limit d → ∞, the coef-
ficients appearing on the said equations reduce to those of 
Onorato et al. (2006) and Shukla et al. (2006).
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water depth. In this case, two capillary gravity wave trains 
travel obliquely and form equal angles with the direction 
of propagation, which is considered as x axis. Therefore, 
this paper is an extension of the work made by Kundu et al. 
(2013) to include capillarity.

2  Fundamental Equations

We consider the free surface in the undisturbed situation as 
the z = 0 plane, and z axis is taken vertically upwards. We 
take two capillary gravity wave packets of wave numbers 
k1, k2, respectively, which is traveling in the xy plane. Next, 
we take z = η(x, y, t) as the equation of the free surface at 
time t in the perturbed state. The perturbed velocity poten-
tial φ satisfies the three-dimensional Laplace equation

The boundary conditions for the wave motion are given by

Also

where T  is the ratio of the surface tension coefficient to 
the fluid density and g represents the acceleration due to 
gravity.

We look for solutions to the above equations in the form

in which Q represents φ, η, and c.c. indicates complex con-
jugate and ψ1 = k1x + k2y− ωt, ψ2 = k1x − k2y− ωt. In 
the above φ00,φpq,φ

∗
pq are functions of z, x1 = ǫx, y1 = ǫy 

and t1 = ǫt; η00, ηpq, η∗pq are functions of x1, y1 and t1. Here, 
ǫ denotes the slow ordering parameter. The linear dispersion 
relation is given by

where µ = tanh kd, k2 = k21 + k22 and s = Tk2

g
.

The group velocity of each of the two-wave packets is as 
follows
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4  Stability Analysis and Results

The solutions of the uniform wave trains are given by

in which α0,β0,φ0 are real constants, and the frequency 
shifts due to nonlinearity are

Next, we consider the small perturbations αp,βp,φp given 
by

Inserting (15) in three Eqs. (9), (10), (11), linearizing and 
taking Fourier transform defined by
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we obtain the nonlinear dispersion relation given by

where � represents the perturbed frequency and A±,B±,C 
are given by

In Figs. 1 and 2, we have plotted a contour plot of the 
instability growth rate Gr = �i. From the figures, we have 
observed that the instability growth rate increases due to 
the effect of capillarity. Further, in Fig. 1, we have seen 
that the instability growth rate is slightly elevated as com-
pared to Fig. 2. Also, in both subfigures of Fig. 3 and the 
left subfigure of Fig. 4, it is seen that the instability growth 

(17)

[

(

2�− δ1k2σ
)2

− A+

{

A+ + 2
(

µ1 + CB2
+

)

α2
0

}

]

[

(

2�+ δ1k2σ
)2

− A−

{

A− + 2
(

µ1 + CB2
−

)

β2
0

}

]

= 4A+A−(µ2 + CB+B−)
2α2

0β
2
0 ,

(18)

A± = δ2(k1�± k2σ)
2 + δ3(k2�∓ k1σ)

2
,

B± =
{

2+
(

1− µ2
)

cg
}

k1�± 2k2σ ,C =
1

(

γ1�2 + γ2σ 2
) .

Fig. 1  Contour plot of 
instability growth rate 
Gr = �i in (�, σ) plane for 
α0 = β0 = 0.1, h = 2, s = 0 
(left), s = 0.035 (right)

Fig. 2  Contour plot of 
instability growth rate 
Gr = �i in (�, σ) plane for 
α0 = 0.12,β0 = 0.07, h = 2, s = 0 
(left), s = 0.035 (right)
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of water for obliquely interacting wave trains is much 
elevated than the case of modulation in deep water, and it 
increases as the water depth decreases. Further, the insta-
bility growth rate for obliquely propagating wave trains is 
again much higher than the case of modulation for single 
wave trains. We have also investigated the effect of capillar-
ity on modulational instability.

Appendix
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rate increases due to the capillarity effect. Furthermore, 
from these subfigures, we infer that Gr increases with the 
increment of water depth h as well as the wave steepness 
β0 of the second wave, whereas Gr decreases as the angle 
θ between the two waves increases. Finally, from the right 
subfigure of Fig. 4, in the case of infinite depth fluid, the 
reverse effect of capillarity is noticed, and the instability 
growth rate is reduced as compared to finite depth fluid.

5  Conclusion

We have established two-coupled third-order NLSE for 
obliquely propagating capillary gravity waves over finite 
depth, which are valid for any water depth values apart 
from shallow water depth. Based on these NLSE, stability 
analysis is then made for two Stokes wave systems. Figures 
that have been drawn demonstrate the instability growth 
rate for different water depth values and various angles of 
the interaction of two-wave trains. It is observed from the 
graphs that the growth rate of instability over a finite depth 

Fig. 3  Instability growth rate Gr = �i for α0 = β0 = 0.1, θ = 75◦, h = 3, 6, s = 0, 0.035 (left); for 
α0 = β0 = 0.1, h = 2.5, θ = 10◦, 23◦, s = 0, 0.035 (right)

Fig. 4  Instability growth rate Gr = �i for α0 = 0.1, h = 2.5, θ = 15◦, β0 = 0, 0.05, 0.1, s = 0, 0.035 (left); for 
α0 = β0 = 0.1, h → ∞, θ = 75◦, s = 0, 0.035 (right)
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