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Preface 

The book is an introductory physics study book. The book offers students of science 
and engineering the basic concepts and principles of introductory physics, presenting 
problems and their solutions by analytical and computer calculations. It is for 
introductory physics learning at early undergraduate university education. 

The introductory physics topics are divided into two volumes: 

Volume I Mechanics, properties of matter, and heat 
Volume II Waves, sound, electricity, magnetism, and optics—which is the present 
volume. 

Each chapter begins with the main points of the topic. These are summaries 
of concepts, principles, definitions, and formulae of the topic. Then, problems are 
posed and solved. Steps are detailed so that reasoning and understanding are built. 
Many figures are drawn to help in visualizing the physics problems and solutions. 
Calculations and solutions are also performed by computer using wxMaxima to 
instill computational skills. An appendix Introduction to wxMaxima is included to get 
students started with the software. Calculations by wxMaxima achieved the solutions 
themselves or for rechecking the values obtained analytically. 

Our belief is that success in solving physics problems by analysis or computer 
calculation boosts confidence and motivation, a sense of victory, and a sense of “I 
can do this, let me try the other”. In computer calculation, changing the values of a 
few physical quantities and redoing the calculation might change the physical scene 
into a new one or into a hard to comprehend situation. We are tempted to explore 
and experiment with different physical scenes and be creative, albeit by computer. 

Chapter 1 solves problems on traveling waves, wave equations, and harmonic 
waves. Amplitude, angular frequency, propagation constant, speed, and direction of 
travel of the wave are determined from its equation. Animations of traveling waves 
are presented. 

Chapter 2 solves problems on sound waves in air, their displacement, and pressure 
waves. Speed of sound in various media, intensity, and intensity level of sound are 
considered. Doppler’s effects due to the relative motion of the sound source and 
observer are also discussed.

vii
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Problems on the superposition of waves and stationary waves are solved in Chap. 3. 
These include stationary waves in air column and string. Nodes and antinodes of the 
stationary waves are identified. Animations of these stationary waves are presented 
for insight into the physics. 

Problems on electricity are solved in Chaps. 4–9. Chapter 4 discusses problems on 
electric charge, electrostatic force, and electric field. Vector additions and methods 
of calculus are used to calculate some of the electric fields. 

Chapter 5 solves problems on Gauss’s law and its application. Gauss’s law states 
that electric flux through a closed surface is equal to the electric charge enclosed 
by the surface divided by the permittivity of free space. Using Gauss’s law, electric 
fields of some symmetric charge distributions are calculated. 

Chapter 6 solves problems on electric potential energy, electric potential differ-
ence, and electric potential. Every point in a region of an electric field is associated 
with an electric potential which is electric potential energy per unit charge at the 
point. 

Chapter 7 discusses problems on capacitance, equivalent capacitance of capacitors 
in series and parallel, and energy in charged capacitors. Also discussed is the effect 
of inserting dielectric material between plates of capacitor. 

Chapter 8 solves problems on electric current, current density, resistance, resis-
tivity, and Ohm’s law. Problems on increase in resistance due to rise in temperature, 
resistance temperature coefficient, and dissipation of electrical power by resistors 
are also solved. 

Chapter 9 solves problems on direct current circuits by applying Kirchhoff’s rules. 
The rules are (1) the sum of the currents into any junction is zero, and (2) the sum of 
potential differences across each element around a closed loop is zero. Problems to 
determine equivalent resistance of resistors in series and in parallel and to determine 
current and charge in direct current RC circuits are also tackled. 

Problems on magnetism are solved in Chaps. 10–14. Problems on magnetic forces 
due to moving charged particles and current carrying conductors in magnetic fields 
are solved in Chap. 10. The torque due to the magnetic moment of current carrying 
loop in magnetic field is also discussed. 

Chapter 11 solves problems on magnetic fields created by current carrying conduc-
tors and loops. The Biot–Savart law is applied to determine the magnetic fields. 
Magnetic fields in a current carrying solenoid and toroid are determined by applying 
Ampere’s law. 

Problems related to magnetic materials and how magnetic induction, magnetic 
field strength, and magnetization are affected when the materials are inserted in the 
core of current carrying solenoid and toroid are solved in Chap. 12. 

Chapter 13 solves problems related to emf induced by changing the magnetic flux. 
Faraday’s law states that the emf induced is equal to the negative time rate of change 
of the magnetic flux. Emf is induced in a moving conductor when the conductor cuts 
through the magnetic field lines. Emf is also induced in a rotating conducting loop 
when the loop cuts through the magnetic field lines.
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Chapter 14 solves problems on electric inductance—a measure of resistance of a 
conducting coil to change in current or magnetic flux linkages per unit current of the 
coil. Problems on self- and mutual inductance, energy in inductor, and direct current 
RL circuit are solved. 

Chapter 15 solves problems on series RLC alternating current circuits. Inductive 
and capacitive reactance, impedance, phase angle, power factor, root mean square 
current, and average power of the circuits are determined. 

Chapter 16 solves problems on plane electromagnetic wave, associated Poynting 
vector, and radiation pressure. These include the determination of electric and 
magnetic field amplitudes and directions, intensity, energy density, and direction 
of propagation of the electromagnetic waves. An animation of a traveling plane 
electromagnetic wave is presented. 

Problems on geometrical or ray optics are solved in Chaps. 17 and 18. Chapter 17 
solves problems on light reflection, refraction, total internal reflection, dispersion, 
and polarization. 

Chapter 18 solves problems on image formation by mirrors, spherical surfaces, 
and lenses using geometrical or ray optics. Calculations of image size, location, and 
magnification are performed. Spherical mirror, refraction at a spherical surface, lens 
maker, and thin lens equations are applied. 

Problems on wave optics are solved in Chaps. 19 and 20. Chapter 19 solves 
problems on interference of light, a phenomenon due to the superposition of coherent 
lights. These include interference in Young’s double-slit experiment, thin film, lens 
coating, air wedge, and Newton’s rings experiment. 

Problems on diffraction of light are solved in Chap. 20, the last chapter. Diffraction 
is the bending or spreading of light at an aperture or obstacle. Problems on diffraction 
by a single slit and diffraction by a grating and its resolving power are discussed. 

We wish to acknowledge the advice from several of our colleagues and under-
graduate students on the idea of the book. We are also grateful to the editorial staff 
of Springer Nature for their support. 

Johor Bahru, Malaysia 
2023 

Wan Muhamad Saridan Wan Hassan 
Abd Rahman Tamuri 

Muhammad Zaki Yaacob 
Roslinda Zainal



About This Book 

The book offers students of science and engineering the basic concepts and principles 
of introductory physics, presenting problems, and their solutions by analytical and 
computer calculations. It is for introductory physics learning in the first undergraduate 
year of university education. This volume covers topics of waves, sound, electricity, 
magnetism, and optics. Each chapter begins with the main points of the topic. These 
are summaries of concepts, principles, definitions, and formulae of the topic. Then, 
problems are posed and solved. Steps are detailed so that reasoning and understanding 
are built. There are 250 worked problems and 100 exercises in this volume. There are 
280 figures drawn to help visualize the physics problem and solution. Calculation 
and solution are also performed by computer using wxMaxima to provide insight 
and instill computational skills. The knowledge and skills presented by the book are 
important foundations for further studies in science or engineering. Physics teachers 
would also find the book useful for their instruction.
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Chapter 1 
Waves 

Abstract This chapter solves problems on traveling waves, wave equations, and 
harmonic waves. Amplitude, angular frequency, propagation constant, speed, and 
direction of travel of the wave are determined from its equation. Animations of 
traveling waves are presented. Both solutions by analysis and computer calculation 
via wxMaxima are presented. 

1.1 Basic Concepts and Formulae 

(1) A transverse wave is a wave in which particles move or vibrate perpendicular to 
the direction of the wave propagation. Examples of transverse waves are waves 
of a stretched string and electromagnetic waves. The wave propagation along 
a string is perpendicular to the vibrations of a particle of the string. In electro-
magnetic wave, the electric and magnetic field vibrations are perpendicular to 
the direction of the wave propagation. 

(2) A longitudinal wave is a wave in which the particles move or vibrate in a 
direction parallel to the wave. Sound wave is a longitudinal wave. In a sound 
wave, the air molecules or the air layer vibrations are in the same direction as 
the wave propagation direction. 

(3) A one-dimensional wave propagating with speed v in the positive x direction 
is represented by 

y(x, t) = f (x − vt). (1.1) 

It is a function of x – vt where v is the speed of the wave, x is position, 
and t is time. y(x, t) represents the wave; it is the particle displacement of a 
stretched string, the air pressure or air layer displacement in a sound wave, or 
the electric or the magnetic field in an electromagnetic wave. A profile or a 
snapshot of a wave is obtained if time t0 is chosen and y(x, t = t0) is plotted.
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2 1 Waves

(4) Superposition principle states that the resultant wave is the addition of waves. 
When two waves superpose, interference could occur. The interference could 
be constructive or destructive. 

(5) The speed of transverse wave in a string with tension F and mass per unit 
length μ is 

v = 

√
F 

μ 
. (1.2) 

(6) When a propagating pulse in a string hits a fixed end, the pulse is reflected and 
over turned. If the pulse hits a free end, it will be reflected but not overturned. 

(7) Wave function of a one-dimensional harmonic wave moving to the right is 

y(x, t) = A sin 
2π 
λ 

(x − vt) = A sin(kx  − ωt), (1.3) 

where A is amplitude, λ is wavelength, k is propagation constant or 
wavenumber, and ω is angular frequency. If T is the period (the time for 
the wave to move a distance of one wavelength) and f is the frequency, then, 

v = 
λ 
T 

= λ f, (1.4) 

k = 
2π 
λ 

, (1.5) 

ω = 
2π 
T 

= 2π f. (1.6) 

(8) A propagating wave in the positive x direction is a function of x – vt, vt – x, 
kx − ωt, ωt − kx, t – x/v or x/v − t, while the one propagating in the negative 
x direction is a function of x + vt, vt + x, kx + ωt, ωt + kx, t + x/v or x/v + 
t. Here, v, k, and ω are speed, propagation constant, and angular frequency of 
the wave, respectively. 

(9) Power transferred by a harmonic wave in a stretched string is 

P = 
1 

2 
μω2 A2 v. (1.7) 

(10) The wave function  y(x, t) satisfies the linear wave equation, 

∂2 y 

∂x2 
= 

1 

v2 

∂2 y 

∂t2 
or 

∂2 y 

∂t2 
= v2 ∂

2 y 

∂ x2 
, (1.8) 

where v is the speed of the wave.
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(11) Inverse square law: A scientific law states that a quantity is inversely propor-
tional to the square of the distance. For example, intensity of a wave I at a 
distance d from the source of the wave, 

I ∝ 
1 

d2 
. (1.9) 

Thus, at two distances, the law is written as 

I1 
I2 

= 
d2 
2 

d2 
1 

or I1d
2 
1 = I2d2 

2 . 

1.2 Problems and Solutions 

Problem 1.1 Which of the following is not a propagating wave? 

(a) y(x, t) = 0.7 sin(2x − 3t) 
(b) y(x, t) = 5 cos(3x) sin(5t) 
(c) y(x, t) = 3 cos(2t + x) 
(d) y(x, t) = 4e−3(x−2t)2 

(e) y(x, t) = 12 cos2(t + 5x) 
(f) y(x, t) = 2 sin(3x + 10t). 

Solution 

Item (b) is not a propagating wave. A propagating wave is represented by 

y(x, t) = f (x ± vt), 

where v is velocity of the wave, x is coordinate of position, and t is time. The plus 
sign is for a wave propagating in the negative x direction, while the negative sign is 
for the one in the positive x direction. In general, any function of (Cx ± Dt) where 
C and D are constants, is a propagating wave. Thus, all except (b) are propagating 
waves. A way to see that a wave is propagating is by plotting the wave profiles at 
increasing times. See Problems 1.8 and 1.9 as complete examples, in which we show 
that (f) is a sinusoidal wave propagating in the negative x direction, while (d) is a 
pulse propagating in the positive x direction. 

Problem 1.2 Show that y(x, t) = 3e−(x+7t)2 satisfies the linear wave equation. 

Solution 

The linear wave equation is 

∂2 y 

∂x2 
= 

1 

v2 

∂2 y 

∂t2 
,
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where v is the speed of the wave. For this problem, 

∂y 

∂t 
= −2(x + 7t)(7)(3)e−(x+7t)2 = −42 (x + 7t)e−(x+7t)2 , 

∂2 y 

∂t2 
= −42

[
7e−(x+7t)2 − 2(x + 7t)2 (7)e−(x+7t)2

]
= −294

[
e−(x+7t)2 − 2(x + 7t)2 e−(x+7t)2

]
. 

∂y 

∂x 
= −2(x + 7t)(3)e−(x+7t)2 = −6 (x + 7t)e−(x+7t)2 , 

∂2 y 

∂ x2 
= −6

[
e−(x+7t)2 − 2 (x + 7t)2 e−(x+7t)2

]
. 

This means that 

∂2 y 

∂t2 
/ 
∂2 y 

∂x2 
= 

−294 

−6 
= 49, 

and 

∂2 y 

∂t2 
= 49 

∂2 y 

∂x2 
. 

Therefore, y(x, t) = 3e−(x+7t)2 satisfies the linear wave equation and the wave 
velocity is

√
49 = 7 units of velocity. 

• wxMaxima codes: 

(%i1) y: 3*exp(-(x+7*t)^2); 
(y) 3*%e^(-(x+7*t)^2) 
(%i3) diff(y,t); diff(y, t, 2); 
(%o2) -42*(x+7*t)*%e^(-(x+7*t)^2) 
(%o3) 588*(x+7*t)^2*%e^(-(x+7*t)^2)-294*%e^(-(x+7*t)^2) 
(%i5) diff(y, x); diff(y, x, 2); 
(%o4) -6*(x+7*t)*%e^(-(x+7*t)^2) 
(%o5) 12*(x+7*t)^2*%e^(-(x+7*t)^2)-6*%e^(-(x+7*t)^2) 
(%i7) diff(y,t,2)/diff(y,x,2)$ radcan(%); 
(%o7) 49 
(%i8) sqrt(%); 
(%o8) 7 

Comments on the codes: 

(%i1) Assign the wave equation. 
(%i3) Partial differentiation of the wave equation with respect to t and twice partial 

differentiation of the wave equation with respect to t.
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(%i5) Partial differentiation of the wave equation with respect to x and twice partial 
differentiation of the wave equation with respect to x. 

(%i7) Division of second partial derivative with respect to t by second partial 
derivative with respect to x, followed by simplification by radcan(%). 

(%i8) Calculate the square root of 49. 

Problem 1.3 A harmonic wave in one dimension is given by 

y = 0.3 sin(4x + 8t), 

where y and x are in meters and t in seconds. Determine 

(a) wavelength 
(b) frequency 
(c) velocity 
(d) direction of propagation of the wave. 

Solution 

(a) We compare general wave equations with the harmonic wave, 

y = A sin(kx  + ωt) = A sin
(
2π 
λ 

x + 2π f t
)

, 

y = 0.3 sin(4x + 8t). 

From the comparison, the wavelength λ is calculated as follows: 

k = 
2π 
λ 

= 4.0 m−1 , 

λ = 
2π 
k 

= 2π 
4.0 m−1 

= 1.6 m. 

(b) The frequency of the wave f is calculated as follows: 

ω = 2π f = 8.0 s−1 , 

f = 
ω 
2π 

= 
8.0 s−1 

2π
= 1.3 Hz. 

(c) The velocity of the wave v is 

v = λ f = 
λ 
2π 

· 2π f = 
ω 
k 

= 
8.0 s−1 

4.0 m−1 
= 2.0 m  s−1 . 

(d) The harmonic wave equation is in the form of f (x + vt). Hence, the wave is 
propagating to the left, i.e. moving in the negative x direction.
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• wxMaxima codes: 

(%i1) fpprintprec:5; 
(fpprintprec) 5 
(%i2) k:4; 
(k) 4 
(%i4) lambda: 2*%pi/k$ float(%); 
(%o4) 1.5708 
(%i5) omega:8; 
(omega) 8 
(%i7) f: omega/(2*%pi)$ float(%); 
(%o7) 1.2732 
(%i8) v: lambda*f; 
(v) 2 

Comments on the codes: 

(%i1) Set the floating point print precision to 5. With the fpprintprec: 5; command, 
numerical output is set to 5 digits. 

(%i2) Assign propagation constant k the value 4. 
(%i4) Calculate λ. Part (a). 
(%i5) Assign ω the value 8. 
(%i7) Calculate f . Part (b). 
(%i8) Calculate v. Part (c).  

• Animation of y = 0.3 sin(4x + 8t) by wxMaxima: 

(%i1) fpprintprec:2; 
(fpprintprec) 2 
(%i2) with_slider_draw( 
    t, makelist(i,i,0,3,0.1), 
    title=concat("t = ",t," s"), 
    explicit(0.3*sin(4*x + 8*t), x,0,5), 
    grid=true, 
    yrange=[-0.4,0.4], 
    xlabel="{/Helvetica-Italic x} (m)",  
    ylabel="{/Helvetica-Italic y} (m)"); 
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Comments on the codes: 

To run the animation, copy the codes to the wxMaxima command window; press 
<shift> and <enter> keys simultaneously to run the codes; right click the graphic 
that appears and choose Start Animation. 

Problem 1.4 A simple harmonic wave in one dimension is given by, 

y = 1.5 sin(4t − 8x), 

where y and x are in centimeters, whereas t is in seconds. Determine 

(a) wavelength 
(b) frequency 
(c) speed 
(d) propagation direction of the wave. 

Solution 

(a) We compare general wave equations with the simple harmonic wave, 

y = A sin(ωt − kx) = A sin
(
2π f t  − 

2π 
λ 

x

)
, 

y = 1.5 sin(4t − 8x). 

It follows that the propagation constant is 

k = 
2π 
λ 

= 8.0 cm−1 . 

The wavelength is 

λ = 
2π 
k 

= 
2π 

8.0 cm−1 
= 0.79 cm. 

(b) The angular frequency and frequency are 

ω = 2π f = 4.0 s−1 , 

f = 
ω 
2π 

= 
4.0 s−1 

2π 
= 0.64 s−1 . 

(c) The speed of the wave is 

v = 
ω 
k 

= 
4.0 s−1 

8.0 cm−1 
= 0.50 cm s−1 .
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(d) The simple harmonic wave equation is in the form of f (ωt − kx). The wave is 
moving in the positive x direction. 

• wxMaxima codes: 

(%i1) fpprintprec:5; 
(fpprintprec) 5 
(%i2) k:8; 
(k) 8 
(%i4) lambda: 2*%pi/k$ float(%); 
(%o4) 0.7854 
(%i5) omega:4; 
(omega) 4 
(%i7) f: omega/(2*%pi)$ float(%); 
(%o7) 0.63662 
(%i9) v: omega/k$ float(%); 
(%o9) 0.5 

Comments on the codes: 

(%i1) Set the floating point print precision to 5. 
(%i2) Assign k. 
(%i4) Calculate λ. 
(%i5) Assign ω. 
(%i7) Calculate f . 
(%i9) Calculate v. 

• Animation of y = 1.5 sin(4t − 8x), by wxMaxima: 

(%i1) fpprintprec:2; 
(fpprintprec) 2 
(%i2) with_slider_draw( 
         t, makelist(i,i,0,3,0.1), 
    title=concat("t = ",t," s"), 
    explicit(1.5*sin(4*t - 8*x), x,0,5), 
    grid=true, 
    yrange=[-1.6,1.6], 
    xlabel="{/Helvetica-Italic x}  (cm)",  
    ylabel="{/Helvetica-Italic y}  (cm)");  
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Comments on the codes: 

To run the animation, copy the codes to the wxMaxima command window; press 
<shift> and <enter> keys simultaneously to run the codes; right click the graphic 
that appears and choose Start Animation. 

Problem 1.5 A harmonic wave is given by, 

y = 0.3 sin(4x + 8t), 

where y and x are in meters and t in seconds. The wave is propagating in a medium. 
What is 

(a) the maximum speed of a particle in the medium? 
(b) the maximum acceleration of a particle in the medium? 

Solution 

(a) The speed of the particle can be obtained by differentiating the given equation 
with respect to time. We get 

dy  

dt  
= 2.4 cos(4x + 8t). 

This gives the speed of a particle at position x and time t. The maximum speed 
of a particle is 2.4 m s–1. 

(b) Acceleration of a particle is obtained by differentiating twice the given equation 
with respect to time. The acceleration of a particle at position x and time t is 

d2 y 

dt2 
= −19.2 sin(4x + 8t). 

The maximum acceleration of the particle is 19.2 m s–2. 

• wxMaxima codes: 

(%i1) y(x,t):=0.3*sin(4*x + 8*t); 
(%o1) y(x,t):=0.3*sin(4*x+8*t) 
(%i2) diff(y(x,t),t,1); 
(%o2) 2.4*cos(4*x+8*t) 
(%i3) diff(y(x,t),t,2); 
(%o3) -19.2*sin(4*x+8*t) 

Comments on the codes: 

(%i1) Define the wave function. 
(%i2) Differentiate the wave function with respect to t.
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(%i3) Twice differentiation of the wave function with respect to t. 

Consider any point of the wave, say point x = 0. Then, the displacement and the 
acceleration of the particle as time goes are 

y = 0.3 sin(8t), 

a = 
d2 y 

dt2 
= −19.2 sin(8t) = −64 × 0.3 sin(8t) = −64y. 

The acceleration is proportional to negative of the displacement. This means that 
the particle at the point oscillates according to a simple harmonic motion. Thus, the 
wave is called a harmonic wave. 

• Animation of y = 0.3 sin(4x + 8t), by wxMaxima: 

(%i1) fpprintprec:2; 
(fpprintprec) 2 
(%i2) with_slider_draw( 
    t, makelist(i,i,0,3,0.1), 
    title=concat("t = ",t," s"), 
    explicit(0.3*sin(4*x + 8*t), x,0,5), 
    grid=true, 
    yrange=[-0.4,0.4], 
    xlabel="{/Helvetica-Italic x} (m)",  
    ylabel="{/Helvetica-Italic y} (m)"); 

Comments on the codes: 

To run the animation, copy the codes to the wxMaxima command window; press 
<shift> and <enter> keys simultaneously to run the codes; right click the graphic 
that appears and choose Start Animation. 

Problem 1.6 The solar intensity on Earth is 1340 W m–2. What is the solar intensity 
on Mars? Distance from Earth to the Sun is 93 million miles and the distance from 
Mars to the Sun is 142 million miles.
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Solution 

Using the inverse square law, I ∝ 1/r2 (Eq. 1.9), intensity is inversely proportional 
to distance square, we write 

IEarth  
IMars  

= 
r2 Mars  

r2 Earth  
, 

where IEarth and IMars are the solar intensities on Earth and Mars, while rEarth and 
rMars are the distances from the Sun to the Earth and Mars, respectively. The solar 
radiation intensity on Mars is calculated as follows: 

1340 W m−2 

IMars  
= 

(142 million miles)2 

(93 million miles)2 

IMars  = 575 W m−2 . 

• wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; IEarth:1340; rEarth:93; rMars:142; 
(fpprintprec) 5 
(ratprint) false 
(IEarth) 1340 
(rEarth) 93 
(rMars) 142 
(%i7) solve(IEarth/IMars=rMars^2/rEarth^2, IMars)$ float(%); 
(%o7) [IMars=574.77] 

Comments on the codes: 

(%i5) Set the floating point precision to 5 and internal rational numbers print to 
false, and assign values of IEarth, rEarth, and rMars. 

(%i7) Use the solve function to solve IEarth/IMars = r2 Mars/r
2 
Earth to find IMars and 

get the decimal value. 

Problem 1.7 The intensity of light of a lamp at a distance of 10 m away is 2.0 W m–2. 
What is the intensity at a distance of 20 m away? 

Solution 

Using the inverse square law, I ∝ 1/r2, we write 

I1 
I2 

= 
r2 2 
r2 1 

, 

where I1 is the intensity at r1 away and I2 is at r2 away. We have
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2.0 W m−2 

I2 
= 

(20 m)2 

(10 m)2 
. 

The light intensity at 20 m from the lamp is 

I2 = 0.50 Wm−2 . 

• wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; I1:2; r1:10; r2:20; 
(fpprintprec) 5 
(ratprint) false 
(I1) 2 
(r1) 10 
(r2) 20 
(%i7) solve(I1/I2=r2^2/r1^2, I2)$  float(%); 
(%o7) [I2=0.5] 

Comments on the codes: 

(%i5) Set the floating point precision to 5 and internal rational number print to false, 
and assign values of I1, r1, and r2. 

(%i7) Solve I1/I2 = r2 2 /r2 1 for I2 and get the decimal value. 

Problem 1.8 Show graphically that the wave y(x, t) = 2 sin(3x + 10t) is propagating 
in the negative x direction. Calculate the wave speed. 

Solution 

A way to determine the direction of wave propagation is by plotting wave profiles at 
increasing consecutive times. A wave profile is a snapshot of the wave at a specific 
time. From the profiles, we can determine whether the wave is propagating to the 
positive or negative x direction. 

For this problem, we plot wave profiles at time t = 0, 0.1, and 0.2 s and labeled 
the profiles as y1, y2, and y3: 

y(x, t) = 2 sin(3x + 10t), 
y1 = 2 sin(3x), 
y2 = 2 sin(3x + 1), 
y3 = 2 sin(3x + 2).
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• Plot by wxMaxima: 

(%i1) y(x,t):= 2*sin(3*x+10*t); 
(%o1) y(x,t):=2*sin(3*x+10*t) 
(%i4) y1: y(x,0); y2: y(x,0.1); y3: y(x,0.2); 
(y1) 2*sin(3*x) 
(y2) 2*sin(3*x+1.0) 
(y3) 2*sin(3*x+2.0) 
(%i5) wxplot2d([y1,y2,y3], [x,0,10], [y,-3,3], grid2d, 
[xlabel,"{/Helvetica-Italic x} (m)"],[ylabel,"{/Helvetica-Italic y} (m)"]); 

y1 

y2 

y3 

Direction of wave propagation 

Comments on the codes: 

(%i1) Define y(x, t). 
(%i4) Assign y1, y2, and y3. 
(%i5) Plot y1, y2, and y3 for  0  ≤ x ≤ 10. 

It can be seen that profiles y1, y2, and y3 move in the negative x direction. 
The speed of the wave is determined as follows. By comparing the wave and the 

general wave equation, wave propagation constant k and angular frequency ω can be 
determined: 

y(x, t) = 2 sin(3x + 10t), 
y(x, t) = A sin(kx  + ωt), 

k = 3.0 m−1 , 
ω = 10 s−1 . 

The speed of the wave is 

v = 
ω 
k 

= 
10 s−1 

3.0 m−1 
= 3.3 m s−1 .
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• An animation of the wave y(x, t) = 2 sin(3x + 10t) propagating to the left by 
wxMaxima: 

(%i1) fpprintprec:2; 
(fpprintprec) 2 
(%i2) with_slider_draw( 
     t, makelist(i,i,0,3,0.1), 
     title=concat("t = ",t," s"), 
     explicit(2*sin(3*x +10*t), x,0,10), 
          grid=true, 
          yrange=[-2.1,2.1], 
          xlabel="{/Helvetica-Italic x}  (m)",  
     ylabel="{/Helvetica-Italic y}  (m)"); 

Comments on the codes: 

To run the animation, copy the codes to the wxMaxima command window; press 
<shift> and <enter> keys simultaneously to run the codes; right click the graphic 
that appears and choose Start Animation. 

Problem 1.9 

(a) Plot wave profiles of 

y(x, t) = 4e−3(x−2t)2 , 

at t = 0 and t = 1.0 s. In which direction is the wave moving? 
(b) Show that y(x, t) satisfies the wave equation. 
(c) Calculate the wave speed.
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Solution 

(a) Wave profiles are obtained by substituting values for time into the equation. We 
labeled the profiles as y1 and y2, 

at t = 0 s, y1 = y(x, 0) = 4e−3x2 

at t = 1.0 s, y2 = y(x, 1) = 4e−3(x−2)2 

• Wave profile plots by wxMaxima: 

(%i1) y(x,t) := 4*exp(-3*(x-2*t)^2); 
(%o1) y(x,t):=4*exp((-3)*(x-2*t)^2) 
(%i3) y1: y(x,0); y2: y(x,1); 
(y1) 4*%e^(-3*x^2) 
(y2) 4*%e^(-3*(x-2)^2) 
(%i4) wxplot2d([y1,y2],[x,-2,6], [y,-1,5], grid2d, 
[xlabel,"{/Helvetica-Italic x}(m)"], [ylabel,"{/Helvetica-Italic y} (m)"]); 

y1 

y2 

Direction of wave propagation 

Comments on the codes: 

(%i1) Define y(x, t). 
(%i3) Assign y1 and y2. 
(%i4) Plot y1 and y2 for  −4 ≤ x ≤ 4 m.  

It can be seen that the wave is moving in the positive x direction. The wave is a 
propagating pulse in the positive x direction.
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• An animation of the pulse y(x, t) = 4e−3(x−2t)2 moving to the right by wxMaxima: 

(%i1) fpprintprec:2; 
(fpprintprec) 2 
(%i2) with_slider_draw( 
    t, makelist(i,i,0,3,0.1), 
    title=concat("t = ",t," s"), 
    explicit(4*exp(-3*(x-2*t)^2), x,-2,6), 
    grid=true, 
    yrange=[-1,5], 
    xlabel="{/Helvetica-Italic x} (m)",  
    ylabel="{/Helvetica-Italic y} (m)"); 

Comments on the codes: 

To run the animation, copy the codes to the wxMaxima command window; press 
<shift> and <enter> keys simultaneously to run the codes; right click the graphic 
that appears and choose Start Animation. 

(b) The wave equation is 

∂2 y 

∂x2 
= 

1 

v2 

∂2 y 

∂t2 
. (1.10) 

It must be shown that the expression, 

y(x, t) = 4e−3(x−2t)2 , (1.11) 

satisfies the wave equation. That is, showing that Eq. (1.11) satisfies Eq. (1.10). 
Calculate the second partial derivative of y with respect to x, 

∂y 

∂ x 
= 4e−3(x−2t)2 · [−6(x − 2t)] = −24 (x − 2t)e−3(x−2t)2 ,
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∂2 y 

∂x2 
= −24 [e−3(x−2t)2 − 6(x − 2t)e−3(x−2t)2 (x − 2t)] 
= −24 [e−3(x−2t)2 − 6(x − 2t)2 e−3(x−2t)2 ]. 

Calculate the second derivative of y with respect to t, 

∂y 

∂t 
= 4e−3(x−2t)2 .[−6(x − 2t)(−2)] =  48 (x − 2t)e−3(x−2t)2 , 

∂2 y 

∂t2 
= 48 [−2e−3(x−2t)2 + 12(x − 2t)e−3(x−2t)2 (x − 2t)] 
= −96 [e−3(x−2t)2 − 6(x − 2t)2 e−3(x−2t)2 ]. 

Using these results and Eq. (1.10), we have 

∂2 y 

∂t2 
/ 
∂2 y 

∂x2 
= v2 = 4. 

This means that (1.11) satisfies Eq. (1.10) with v2 = 4. 

• wxMaxima codes: 

(%i1) y(x,t) := 4*exp(-3*(x-2*t)^2); 
(%o1) y(x,t):=4*exp((-3)*(x-2*t)^2) 
(%i3) diff(y(x,t),x,1)$ radcan(%); 
(%o3) -(24*x-48*t)*%e^(-3*x^2+12*t*x-12*t^2) 
(%i5) diff(y(x,t),x,2)$ radcan(%); 
(%o5) (144*x^2-576*t*x+576*t^2-24)*%e^(-3*x^2+12*t*x-12*t^2) 
(%i7) diff(y(x,t),t,1)$ radcan(%); 
(%o7) (48*x-96*t)*%e^(-3*x^2+12*t*x-12*t^2) 
(%i9) diff(y(x,t),t,2)$ radcan(%); 
(%o9) (576*x^2-2304*t*x+2304*t^2-96)*%e^(-3*x^2+12*t*x-12*t^2) 
(%i11) diff(y(x,t),t,2)/diff(y(x,t),x,2)$ radcan(%); 
(%o11)4 

Comments on the codes: 

(%i1) Define y(x, t). 
(%i3), (%i5) Differentiate y(x, t) once and twice with respect to x and simplify. 
(%i7), (%i9) Differentiate y(x, t) once and twice with respect to t and simplify. 
(%i11) Calculate ∂

2 y 
∂t2 / ∂

2 y 
∂x2 and simplify. 

(c) The speed of the wave is 

v2 = 4, 
v = 2.0 m  s−1 .
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Alternative method: Compare (kx − ωt) with (x – 2t) in Eq.  (1.11). We get 
the propagation constant and angular frequency of the wave. The speed of the 
wave is calculated as follows, 

k = 1.0 m−1 , ω  = 2.0 s−1 , 

v = 
ω 
k 

= 
2.0 s−1 

1.0 m−1 
= 2.0 m  s−1 . 

Problem 1.10 You will learn later in Modern Physics or Quantum Mechanics that 
the wave function, 

ψ = Aei (kx−ωt) , 

represents a particle moving in the positive x direction. Show that ψ satisfies the 
wave equation. 

Solution 

We differentiate ψ twice with respect to x and with respect to t and see if ψ satisfies 
the wave equation: 

∂ψ 
∂t 

= −iω Aei(kx−ωt) , 
∂2ψ 
∂t2 

= −ω2 Aei (kx−ωt) . 

∂ψ 
∂x 

= ik  Aei(kx−ωt) , 
∂2ψ 
∂x2 

= −k2 Aei(kx−ωt) . 

This means that 

∂2ψ 
∂t2 

=
(ω 
k

)2 ∂2ψ 
∂x2 

= v2 ∂
2ψ 

∂ x2 
. 

Indeed, ψ satisfies the wave equation. 

• wxMaxima codes: 

(%i1) psi(x,t):= A*exp(%i*(k*x-omega*t)); 
(%o1) psi(x,t):=A*exp(%i*(k*x-omega*t)) 
(%i2) expression1: diff(psi(x,t),t,2); 
(expression1) -A*omega^2*%e^(%i*(k*x-omega*t)) 
(%i3) expression2: diff(psi(x,t),x,2); 
(expression2) -A*k^2*%e^(%i*(k*x-omega*t)) 
(%i4) expression1/expression2; 
(%o4) omega^2/k^2 
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Comments on the codes: 

(%i1) Define ψ(x, t). 
(%i2), (%i3) Calculate ∂2ψ /∂t2 and ∂2ψ /∂x2. 
(%i4) Calculate ∂2ψ /∂t2/∂2ψ /∂x2. 

1.3 Summary 

• A one-dimensional wave propagating with speed v in the positive x direction is 
represented by 

y(x, t) = f (x − vt). 

• Wave function of a one-dimensional harmonic wave moving to the right is 

y(x, t) = A sin 
2π 
λ 

(x − vt) = A sin(kx  − ωt), 

where A is amplitude, λ is wavelength, k is propagation constant or wavenumber, 
and ω is angular frequency. If T is the period and f is the frequency, then, 

v = 
λ 
T 

= λ f, 

k = 
2π 
λ 

, 

ω = 
2π 
T 

= 2π f. 

• The wave function y(x, t) satisfies the linear wave equation, 

∂2 y 

∂x2 
= 

1 

v2 

∂2 y 

∂t2 
, 

where v is the speed of the wave.
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1.4 Exercises 

Exercise 1.1 

(a) Show that wave function 

y = 3 cos(2t + x) 

satisfies the wave equation, 

∂2 y 

∂x2 
= 

1 

v2 

∂2 y 

∂t2 
. 

(b) What is the speed of the wave? 
(c) In which direction is the wave traveling? 

(Answer: (b) v = 2.0 m s−1; (c) negative x direction) 

Exercise 1.2 A metal string of length 14 m and mass 0.30 kg is fixed between two 
nails. The tension in the string is 40 N. What is the speed of a pulse on this string? 

(Answer: 43 m s−1) 

Exercise 1.3 A wave traveling in one dimension is given by 

y(x, t) = 3e−2(x+0.5t)2 . 

(a) Sketch the wave profiles at t = 0 and t = 1.0 s. 
(b) In which direction is the wave moving? 
(c) Show that y(x, t) satisfies the wave equation. 

(Answer: (b) the negative x direction) 

Exercise 1.4 A traveling wave in the positive x direction is given by 

y = f (x − vt). 

Using partial differentiation and the chain rule of calculus, show that y satisfies 
the one-dimensional wave equation, 

∂2 y 

∂x2 
= 

1 

v2 

∂2 y 

∂t2 
.
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Exercise 1.5 A transverse harmonic wave on a stretched string has a wavelength of 
0.080 m, a frequency of 160 Hz, and an amplitude of 6.0 × 10−3 m. The mass per 
unit length of the string is 2.0 × 10−4 kg m−1. Calculate 

(a) speed of the wave 
(b) power transferred by the wave 

(Answer: (a) 13 m s−1; (b) 4.7 × 10−2 W)



Chapter 2 
Sound Wave 

Abstract This chapter solves problems on sound waves in air, their displacement, 
and pressure waves. Speed of sound in various media, intensity and intensity level 
of sound are considered. Doppler’s effects due to the relative motion of the sound 
source and observer are also discussed. Both solutions by analysis and computer 
calculation via wxMaxima are presented. 

2.1 Basic Concepts and Formulae 

(1) Sound wave is a longitudinal mechanical wave, moving through a compressible 
medium. The speed of the wave depends on the compressibility and density of 
the medium. The speed of sound wave v in a medium of compressibility B and 
density ρ is, 

v = 

/
B 

ρ 
. (2.1) 

The speed of sound in an ideal gas is, 

v =
/

γ p 
ρ 

= 
/

γ RT 
M 

, (2.2) 

where γ is the ratio of molar specific heats (molar specific heat at constant 
pressure Cp divided by molar specific heat at constant volume CV , that is, γ = 
Cp/CV ), p is the pressure, ρ is the density, T is the absolute temperature, M is 
the molar mass of the gas, and R = 8.31 J mol−1 K−1 is the molar gas constant. 
The ratio of molar specific heats γ is called the adiabatic constant of a gas. 

For monatomic gas γ = 1.67, and for diatomic gas γ = 1.40. For air, γ = 
1.40 and M = 28.8 × 10−3 kg mol−1.
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Speed of a longitudinal wave in a fluid is 

v =
/

B 

ρ 
, (2.3) 

where B is the bulk modulus of the fluid and ρ is its density. 
Speed of a longitudinal wave in a solid rod is 

v =
/
Y 

ρ 
, (2.4) 

where Y is the Young modulus of the solid rod and ρ is its density. 
Speed of a transverse wave on a string is 

v =
/
T 

μ 
, (2.5) 

where T is tension in the string and μ is mass per unit length of the string. 
The Average power of a transverse sinusoidal wave on a string is, 

P = 
1 

2 

/
μT ω2 A2 , (2.6) 

where ω is the angular frequency and A is the amplitude of the wave. 
(2) For a harmonic sound wave, change of pressure from its equilibrium value is,

Δp = Δpm sin(kx  − ωt), (2.7) 

where Δpm is the pressure amplitude, k is the propagation constant, and ω is 
angular frequency. 

Displacement of the air layer is, 

s = sm cos(kx  − ωt), (2.8) 

where sm is the displacement amplitude. Thus, the pressure wave has a phase 
difference of 90° with displacement wave. 

The pressure amplitude is given by

Δpm = ρvω sm = kρv2 sm = 
2π 
λ 

ρv2 sm = 2πρv f sm . (2.9) 

where ρ is the density of air, v is the speed of sound, k is the propagation 
constant, λ is the wavelength, and f is the frequency of sound.
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The intensity of harmonic sound wave, i.e. the sound power per unit area is 

I = 
1 

2 
ρ(ω sm)2 v = 

(Δpm)2 

2ρv 
. (2.10) 

(3) The intensity level β of a sound with intensity I is defined as 

β = 10 log10
(

I 

I0

)
= 10 log10

(
I 

10−12 W m−2

)
. (2.11) 

Unit of β is decibel (dB). The sound intensity I0 = 10−12 W m−2 is the 
threshold of a human hearing a sound, that is, the lowest intensity human could 
hear. 

(4) Doppler effect is the change in frequency of sound heard by an observer due to 
relative motion between the sound source and the observer. 

If the observer moves with a speed of vo and the sound source is at rest, the 
frequency heard f ’  is 

f , =
(
1 ± 

vo 

v

)
f =

(
v ± vo 

v

)
f, (2.12) 

where f is the frequency of sound from the source and v is the speed of sound 
in air. The (+) sign applies if the observer is moving toward the source and the 
(−) applies if the observer is moving away from the source. 

If the sound source is moving with speed vs and the observer is at rest, the 
frequency heard f ’  is 

f , =
(

1 

1 ∓ vs 
v

)
f =

(
v 

v ∓ vs

)
f. (2.13) 

The (–) sign applies if the sound source is moving toward the observer, while 
the (+) sign applies if the sound source is moving away from the observer. 

If both observer and sound source are moving, the frequency heard by the 
observer f ’  is 

f , =
(

v ± vo 
v ∓ vs

)
f, (2.14) 

where vo is the speed of the observer, vs is the speed of the sound source, v is 
the speed of sound in air, and f is the frequency of the sound source. For the 
numerator, use the (+) sign if the observer is moving toward or the (−) sign if  
the observer is moving away from the sound source. For the denominator, use 
the (−) sign if the sound source is moving toward or the (+) sign if the sound 
source is moving away from the observer.
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2.2 Problems and Solutions 

Problem 2.1 A wire of length 40 cm has a mass of 1.0 g. The wire is stretched 
between two nails such that the tension in the wire is 2500 N. What is the speed of 
a transverse wave of the wire? 

Solution 

The mass per unit length of the wire is 

μ = 
m 

l 
= 

1.0 × 10−3 kg 

40 × 10−2 m 
= 2.5 × 10−3 kg m−1 . 

The speed of waves on the wire is, Eq. (2.5), 

v = 

/
T 

μ 
=

/
2500 N 

2.5 × 10−3 kg m−1 
= 1000 m s−1 . 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; m:1e-3; l:40e-2; T:2500; 
(fpprintprec) 5 
(m) 0.001 
(l) 0.4 
(T) 2500 
(%i5) mu: m/l; 
(mu) 0.0025 
(%i6) v: sqrt(T/mu); 
(v) 1000.0 

Comments on the codes: 

(%i4) Set the floating point print precision to 5, and assign values of mass m, length 
l, and tension T. 

(%i5) Calculate mass per unit length μ. 
(%i6) Calculate the speed of the wave v. 

Problem 2.2 

(a) Given the bulk modulus of water is 2.1 × 109 N m–2, calculate the speed of 
sound in water. 

(b) The speed of sound in steel is 5.9 × 103 m s–1 and the density of steel is 7.9 × 
103 kg m–3. Calculate the bulk modulus of steel.
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Solution 

(a) The speed of sound in water is, Eq. (2.3), 

v =
/

Bwater 

ρwater 
=

/
2.1 × 109 N m−2 

1000 kg m−3 
= 1450 m s−1 . 

(b) The speed of sound in a material is, Eq. (2.3), 

v = 

/
B 

ρ 
. 

The bulk modulus of steel is calculated as follows: 

vsteel  = 

/
Bsteel  

ρsteel  
, 

Bsteel  = v2 
steel  ρsteel  = (5.9 × 103 m/s)2 (7.9 × 103 kg/m3 ) 

= 2.8 × 1011 N m−2 . 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; B_water:2.1e9; rho_water:1000; 
(fpprintprec) 5 
(B_water) 2.1*10^9 
(rho_water) 1000 
(%i4) v_water: sqrt(B_water/rho_water); 
(v_water) 1449.1 
(%i6) v_steel:5.9e3; rho_steel:7.9e3; 
(v_steel) 5900.0 
(rho_steel) 7900.0 
(%i7) B_steel: v_steel^2*rho_steel; 
(B_steel) 2.75*10^11 

Comments on the codes: 

(%i3) Set the floating point print precision to 5 and assign values of Bwater and 
ρwater . 

(%i4) Calculate vwater . 
(%i6) Assign vsteel and ρsteel. 
(%i7) Calculate Bsteel. 

Problem 2.3 The density of helium gas at standard temperature and pressure is 
0.179 kg m–3. Determine the speed of sound in the gas at that temperature and 
pressure. What is the speed of sound in helium at 20°C? Assume helium is an ideal 
gas. The Adiabatic constant of helium gas is γ = 1.67.
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Solution 

Speed of sound wave in an ideal gas is (Eq. 2.2) 

v =
/

B 

ρ 
=

/
γ p 
ρ 

, 

where B = γp is the gas bulk modulus, ρ its density, p is pressure, and γ is the 
adiabatic constant of the gas. For monatomic gas, γ = 1.67; for diatomic gas, γ = 
1.4. 

Helium gas is monatomic, thus, the speed of sound wave in helium gas at standard 
temperature (0°C) and pressure (1.013 × 105 Pa) is, Eq. (2.2), 

v0 =
/

γ p 
ρ 

=
/
1.67(1.013 × 105 Pa) 

0.179 kg/m3 = 972 m s−1 , (2.15) 

where the standard pressure is p = 1.013 × 105 Pa and γ = 1.67 for helium gas. For 
an ideal gas, pV = μRT, where p is the pressure of the gas, V is its volume, T is its 
temperature, μ is number of moles, and R is the universal gas constant. We have 

γ p 
ρ 

= 
γ 
ρ 

μRT 

V
= 

γμRT 

m 
= 

γ RT 
M 

, 

where m is mass of the gas and M is its molar mass. Therefore, the speed of sound 
in an ideal gas is, Eq. (2.2), 

v = 

/
B 

ρ 
=

/
γ p 
ρ 

= 
/

γ RT 
M 

. 

This means that the speed of sound in an ideal gas is proportional to the square 
root of the gas temperature, v ∝ √

T . We thus write 

v0 

v20 
=

√
273 K √

(20 + 273) K 
, (2.16) 

where v0 and v20 are speeds of sound wave in helium gas at 0°C and 20°C, 
respectively. The speed of a sound wave in helium gas at 20°C is 

v20 = v0 
√

(20 + 273)K √
273 K

= (972 m/s) 
√

(20 + 273)K √
273 K

= 1007 m s−1 . 

Here, the speed of sound at 0°C in Eq. (2.15) is substituted in Eq. (2.16) to arrive at  
the answer.
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♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; gamma:1.67; p:1.013e5; rho:0.179; 
(fpprintprec) 5 
(ratprint) false 
(gamma) 1.67 
(p) 1.013*10^5 
(rho) 0.179 
(%i6) v0: sqrt(gamma*p/rho); 
(v0) 972.16 
(%i8) solve(v0/v20 = sqrt(273)/sqrt(20+273), v20)$ float(%); 
(%o8) [v20=1007.1] 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and internal rational number print 
to false, and assign values of γ , p, and ρ. 

(%i6) Calculate v0. 
(%i8) Solve v0/v20 =

√
273/ 

√
20 + 273 for v20. 

Problem 2.4 Hydrogen gas consists of diatomic molecules with a relative molecular 
mass of 2. Calculate the speed of sound in hydrogen gas at 27°C. Given that the 
adiabatic constant of hydrogen gas is γ = 1.40 and the universal gas constant is R 
= 8.31 J mol–1 K–1. 

Solution 

The speed of sound in hydrogen gas at 27°C is, Eq. (2.2), 

v =
/

γ p 
ρ 

=
/

γ RT 
M 

=
/
1.4(8.31 J mol−1 K−1 )(27 + 273)K 

2.00 × 10−3 kg/mol
= 1321 m s−1 . 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; gamma:1.4; R:8.31; T:27+273; M:2e-3; 
(fpprintprec) 5 
(gamma) 1.4 
(R) 8.31 
(T) 300 
(M) 0.002 
(%i6) v: sqrt(gamma*R*T/M); 
(v) 1321.0
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Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of γ , R, T, and M. 
(%i6) Calculate v. 

Problem 2.5 The speed of sound in air at 0°C is 331 m s–1. What is the speed of 
sound in air at 37°C? 

Solution 

The relation between the speed of sound in a gas, v, and the gas temperature, T, is  
(Eq. 2.2) 

v ∝ 
√
T . 

We thus write 

v37 

v0 
=

/
(37 + 273)K 
(0 + 273)K 

. 

The speed of sound in air at 37°C is 

v37 = v0 

/
310 K 

273 K 
= (331 m/s) 

/
310 K 

273 K 
= 353 m s−1 . 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; ratprint:false; v0:331; 
(fpprintprec) 5 
(ratprint) false 
(v0) 331 
(%i5) solve(v37/v0 = sqrt((37+273)/273), v37)$ float(%); 
(%o5) [v37=352.72] 

Comments on the codes: 

(%i3) Set the floating point print precision to 5 and internal rational number print 
to false, and assign the value of v0. 

(%i5) Solve v37 
v0 

= 
/

37+273 
273 for v37. 

Problem 2.6 The temperature of air is 10.0°C. The temperature of air then increases, 
and the velocity of sound increases by 1%. Calculate the increase in temperature.
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Solution 

The relationship between the speed of sound in air, v, and the temperature of air, T, 
is (Eq. 2.2) 

v ∝ 
√
T , 

or 

v = k 
√
T , 

where k is a constant. We write 

vx − v10 
v10 

= 
1 

100 
, 

where vx and v10 are the speeds of sound at increased temperature and at 10°C 
(283 K), respectively. Thus, 

k(283 + θ)1/2 − k(283)1/2 

k(283)1/2
= 

1 

100 
, 

where θ is the increase in temperature. This equation is solved for the increase in 
temperature,

(
1 + 

θ 
283

)1/2 

− 1 = 
1 

100(
1 + 

θ 
283

)1/2 

= 1.01 

θ = 5.7◦C. 

The air temperature is 10.0°C + 5.7°C = 15.7°C. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve(((283+theta)^0.5 - 283^0.5)/283^0.5 = 1/100, theta)$ float(%); 
(%o4) [theta=5.6883] 

Comments on the codes: 

(%i2) Set the floating point print precision to 5 and internal rational number print 
to false.
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(%i4) Solve (283+θ)0.5−(283)0.5 

(283)0.5 = 1 
100 for θ. 

Problem 2.7 The maximum pressure variation of a sound wave is 30.0 Pa. The speed 
of sound in air is 330 m s–1 and the density of air is 1.22 kg m–3. Calculate 

(a) maximum displacement of the air layer if the frequency of the sound is 500 Hz. 
(b) intensity of the sound. 

Solution 

(a) The relation between maximum pressure variation of sound wave, Δpm (also 
called pressure amplitude) and maximum displacement of the air layer, sm (also 
called displacement amplitude), is, Eq. (2.9),

Δpm = kρv2 sm = 
2π 
λ 

ρv2 sm = 2πρv f sm, 

where k is the propagation constant, ρ is the air density, v is the speed of sound, λ is 
the wavelength, and f is the frequency of sound. The maximum displacement of the 
air layer (the displacement amplitude) is calculated as follows: 

30 Pa = 2π(1.22 kg m−3 )(330 m s−1 )(500 s−1 )sm, 
sm = 2.4 × 10−5 m. 

(b) The intensity of sound is, Eq. (2.10), 

I = 
(Δpm)2 

2ρv 
= (30 Pa)2 

2(1.22 kg m−3)(330 m s−1) 
= 1.1 W m−2 . 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; deltapm:30; v:330; rho:1.22; f:500; 
(fpprintprec) 5 
(ratprint) false 
(deltapm) 30 
(v) 330 
(rho) 1.22 
(f) 500 
(%i8) solve(deltapm=2*%pi*rho*v*f*sm, sm)$ float(%); 
(%o8) [sm=2.3719*10^-5] 
(%i9) I:  deltapm^2/(2*rho*v); 
(I) 1.1177 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and internal rational number print 
to false, and assign values of Δpm, v, ρ, and f .
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(%i8) Solve Δpm = 2πρv f sm for sm. 
(%i9) Calculate I. 

Problem 2.8 The intensity of a sound wave is 1.00 × 10–2 W m–2 and its frequency 
is 600 Hz. What are the pressure amplitude and the displacement amplitude? The 
speed of sound is 330 m s–1, and density of air is 1.22 kg m–3. 

Solution 

The relationship between the intensity of sound, I, and pressure amplitude, Δpm, is,  
Eq. (2.10), 

I = 
(Δpm)2 

2ρv 
, 

where ρ is the density of air and v is the speed of sound in air. The pressure amplitude 
is calculated as follows: 

1.00 × 10−2 W m−2 = (Δpm)2 

2(1.22 kg m−3)(330 m s−1) 
,

Δpm = 2.84 N m−2 . 

The displacement amplitude is, Eq. (2.9), 

sm = Δpm 
2π fρv 

= 2.84 Pa 

2π(600 s−1)(1.22 kg m−3)(330 m s−1) 
= 1.87 × 10−6 m, 

where f is the frequency of sound. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; I:1e-2; f:600; v:330; rho:1.22; 
(fpprintprec) 5 
(ratprint) false 
(I) 0.01 
(f) 600 
(v) 330 
(rho) 1.22 
(%i8) solve(I=deltapm^2/(2*rho*v), deltapm)$ float(%); 
(%o8) [deltapm=-2.8376,deltapm=2.8376] 
(%i9) deltapm: rhs(%[2]); 
(deltapm) 2.8376 
(%i11) sm: deltapm/(2*%pi*f*rho*v)$ float(%); 
(%o11) 1.8696*10^-6 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and internal rational number print 
to false, and assign values of I, f , v, and ρ.
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(%i8) Solve I = (Δpm )2 

2ρv for Δpm. 
(%i9) Assign Δpm. 
(%i11) Calculate sm. 

Problem 2.9 An audio speaker emits sound at an intensity level of 70 dB. A lecturer 
talks at an intensity level of 40 dB. Compare the sound intensity of the speaker to 
that of the lecturer. 

Solution 

The definition of the intensity level β of a sound source with intensity I is, Eq. (2.11), 

β = 10 log10
(

I 

10−12 W m−2

)
. 

For the speaker and the lecturer we can write these two equations, 

70 = 10 log10
(

Ispeaker  
10−12 W m−2

)
, 

40 = 10 log10
(

Ilecturer 
10−12 W m−2

)
. 

The ratio of the sound intensity of the speaker to that of the lecturer is calculated 
as follows: 

70 − 40 = 10 log10
(

Ispeaker  
10−12 W m−2

)
− 10 log10

(
Ilecturer 

10−12 W m−2

)

= 10 log10
(
Ispeaker  
Ilecturer

)
, 

Ispeaker  
Ilecturer 

= 1000. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i3) log10(x) := log(x)/log(10); 
(%o3) log10(x):=log(x)/log(10) 
(%i5) solve(70=10*log10(Ispeaker/1e-12), Ispeaker)$ float(%); 
(%o5) [Ispeaker=1.0*10^-5] 
(%i7) solve(40=10*log10(Ilecturer/1e-12), Ilecturer)$ float(%); 
(%o7) [Ilecturer=1.0*10^-8] 
(%i8) ratio: %o5/%o7; 
(ratio) [Ispeaker/Ilecturer=1000.0]
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Comments on the codes: 

(%i2) Set the floating point print precision to 5 and internal rational number 
print to false. 

(%i3) In wxMaxima, the built-in function of base e logarithm of x is log(x). 
There is no built-in function for base 10 logarithm of x. We define 
base 10 logarithm of x by log10(x): = log(x)/log(10) which means 
log10(x) = loge(x)/ loge(10). 

(%i5), (%i7) Solve 70 = 10 log10(Ispeaker  /10
−12) and 40 = 

10 log10(Ilecturer /10
−12) for Ispeaker and I lecturer , respectively. 

(%i8) Calculate ratio Ispeaker /I lecturer . 

Problem 2.10 A sound of intensity 1.20 W m–2 hurts the ears. What is the intensity 
level? 

Solution 

The intensity level β of the sound in dB is, Eq. (2.11), 

β = 10 log10
(

I 

10−12 W m−2

)
= 10 log10

(
1.2 W m−2 

10−12 W m−2

)
= 121 dB. 

Sound with an intensity level of 121 dB hurts the ears. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; log10(x):=log(x)/log(10); I:1.2; 
(fpprintprec) 5 
(%o2) log10(x):=log(x)/log(10) 
(I) 1.2 
(%i5) beta: 10*log10(I/1e-12); float(%); 
(beta) 278.13/log(10) 
(%o5) 120.79 

Comments on the codes: 

(%3) Set the floating point print precision to 5, define log10(x), and assign the value 
of I. 

(%i5) Calculate β. 

Problem 2.11 A source emits sound uniformly in all directions. At a distance of 
4.0 m from the source, the sound intensity level is 90 dB. 

(a) Calculate the sound intensity at the point. 
(b) At which point is the intensity level 70 dB?
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A 
rA = 4.0 m 

B 

rB 

source 

Fig. 2.1 Sound intensity and intensity level, Problem 2.11 

Solution 

(a) Fig. 2.1 shows the sound source and points in question. 

Sound intensity level β (in dB) at a point with intensity I is defined as, Eq. (2.11), 

β = 10 log10
(

I 

I0

)
= 10 log10

(
I 

10−12 W m−2

)
, 

where I0 = 10−12 W m–2 is the reference intensity. 
For point A, we write 

90 = 10 log10
(

IA 
10−12 W m−2

)
, 

where IA is the sound intensity at point A. The sound intensity at point A is 

IA = 109 × 10−12 W m−2 

= 1.0 × 10−3 W m−2 . 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; ratprint:false; log10(x):=log(x)/log(10); 
(fpprintprec) 5 
(ratprint) false 
(%o3) log10(x):=log(x)/log(10) 
(%i5) solve(90=10*log10(IA/1e-12), IA)$ float(%); 
(%o5) [IA=0.001] 

Comments on the codes: 

(%i3) Set the floating point print precision to 5 and internal rational number print 
to false, and define log10(x). 

(%i5) Solve 90 = 10 log10(IA/10−12) for IA.
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(b) Sound intensity level at point A is 

90 = 10 log10
(
IA 
I0

)
= 10 log10

(
P 

4πr2 A I0

)
, 

where P is the power of the sound source and 4πr2 A is the area of the surface of a 
sphere of radius rA. 

The sound intensity level at point B is 

70 = 10 log10
(
IB 
I0

)
= 10 log10

(
P 

4πr2 B I0

)
, 

where 4πr2 B is the area of the surface of a sphere of radius rB. From the two equations, 

90 − 70 = 10 log10
(
r2 B 
r2 A

)
= 20 log10

(
rB 
rA

)
= 20 log10

( rB 
4.0 m

)
. 

Thus, the distance at which the sound intensity level is 70 dB is 

rB = 40 m. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; ratprint:false; log10(x):=log(x)/log(10); 
(fpprintprec) 5 
(ratprint) false 
(%o3) log10(x):=log(x)/log(10) 
(%i5) rA:4; I0:1e-12; 
(rA) 4 
(I0) 10.0*10^-13 
(%i7) solve(90=10*log10(P/(4*%pi*rA^2*I0)), P)$ float(%); 
(%o7) [P=0.20106] 
(%i8) P: rhs(%[1]); 
(P) 0.20106 
(%i10) solve(70=10*log10(P/(4*%pi*rB^2*I0)), rB)$ float(%); 
(%o10) [rB=-40.0,rB=40.0] 

Comments on the codes: 

(%i3) Set the floating point print precision to 5 and internal rational number print 
to false, and define log10(x). 

(%i5) Assign values of rA and I0. 

(%i7) Solve 90 = 10 log10
(

P 
4πr2 A I0

)
for P. 

(%i8) Assign value of P. 

(%i10) Solve 70 = 10 log10
(

P 
4πr2 B I0

)
for rB.
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van                                     observer vvan 

Fig. 2.2 A van approaching and leaving an observer, Problem 2.12 

Problem 2.12 A van sounds its siren as it approaches and leaves a stationary 
observer. On approach, the observer hears a sound of frequency 219 Hz. On leaving, 
the observer hears a sound of frequency 184 Hz. The speed of sound in air is 340 m s–1. 
Determine the speed of the van and the frequency of the siren. 

Solution 

Figure 2.2 shows the van approaching and leaving the observer. The speed of the van 
is vvan. 

The frequency of sound heard by the observer as the van approaches him is, 
Eq. (2.13), 

fapproach =
(

v 
v − vvan

)
f, 

where vvan, v, and f are the speed of the van, speed of sound, and frequency of the 
siren, respectively. 

The frequency of sound heard by the observer as the van leaves him is, Eq. (2.13), 

fleave =
(

v 
v + vvan

)
f. 

Substituting known values in both equations gives 

219 Hz =
(

340 m s−1 

340 m s−1 − vvan

)
f, 

184 Hz =
(

340 m s−1 

340 m s−1 + vvan

)
f.
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The speed of the van and frequency of the siren are obtained by solving both 
equations for vvan and f , 

vvan = 29.5 m s−1 , 

f = 200 Hz. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve([219=340/(340-vvan)*f,184=340/(340+vvan)*f],[vvan,f])$ 
float(%); 
(%o4)[[vvan=29.529,f=199.98]] 

Comments on the codes: 

(%i2) Set the floating point print precision to 5 and internal rational number print 
to false. 

(%i4) Solve 219 =
(

340 
340−vvan

)
f and 184 =

(
340 

340+vvan

)
f for vvan and f . 

Problem 2.13 A bird flies away from a boy toward a cliff at a speed of 15.0 m s–1. 
The bird emits sound of frequency 800 Hz, as illustrated in Fig. 2.3. 

(a) What is the sound frequency heard by the boy for sound coming directly from 
the bird? 

(b) What is the sound frequency heard by the boy from the echo reflected by the 
cliff to the boy? The speed of sound in air is 340 m s–1.

vb = 15.0 m s–1 
boy                                           bird                                                     cliff 

Fig. 2.3 A bird flying away from a boy toward a cliff, Problem 2.13 
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Solution 

(a) Frequency of sound heard by the boy for the sound coming directly from the 
bird is, Eq. (2.13), 

fboy1 =
(

v 
v + vbird

)
f =

(
340 m s−1 

340 m s−1 + 15.0 m  s−1

)
(800 Hz) = 766 Hz. 

Here, v is speed of sound, vbird is speed of the bird, and f is frequency of sound 
emitted by the bird. 

(b) Sound that hits the cliff is reflected without any frequency change, as such; the 
boy will hear the same frequency as any person stationed at the cliff. Therefore, 
for the sound reflected from the cliff, the boy will hear the sound of frequency, 
Eq. (2.13), 

fboy2 =
(

v 
v − vbird

)
f =

(
340 m s−1 

340 m s−1 − 15.0 m  s−1

)
(800 Hz) = 837 Hz. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; v:340; vbird:15; f:800; 
(fpprintprec) 5 
(ratprint) false 
(v) 340 
(vbird) 15 
(f) 800 
(%i7) fboy1: v/(v+vbird)*f$ float(%); 
(%o7) 766.2 
(%i9) fboy2: v/(v-vbird)*f$ float(%); 
(%o9) 836.92 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and internal rational number 
print to false, and assign values of v, vbird , and f . 

(%i7), (%i9) Calculate f boy1 and f boy2. 

Problem 2.14 A train approaches, goes through, and leaves a tunnel of a hill at a 
speed of 30.0 m s–1. It sounds its siren with a frequency of 1000 Hz when it approaches 
and leaves the tunnel. Calculate 

(a) the sound frequency heard by the train driver as the train approaches the tunnel, 
for the sound reflected by the hill. 

(b) the sound frequency heard by the train driver as the train leaves the tunnel, for 
the sound reflected by the hill. The speed of sound in air is 330 m s–1.



2.2 Problems and Solutions 41

vsource = 30.0 m s–1 

vdriver = 30.0 m s–1 
v'source = 30.0 m s–1 

train                                      tunnel                  apparent source 

Fig. 2.4 A train approaching a tunnel in a hill, Problem 2.14 

Solution 

(a) Fig. 2.4 shows the train approaching the tunnel. 

The speed of the observer (driver) vdriver and the sound source vsource is the speed 
of the train. The sound emitted by the siren goes toward the cliff, gets reflected, and 
goes back to the train. Thus, there is an apparent sound source moving at the speed 
of v’source = 30.0 m s−1 toward the driver. 

Therefore, the sound frequency heard by the driver is, Eq. (2.14), 

f , =
(

v + vdriver 
v − v,

source

)
f =

(
330 m s−1 + 30.0 m  s−1 

330 m s−1 − 30.0 m  s−1

)
(1000 Hz) = 1200 Hz. 

where v is the speed of sound in air and f is the frequency of the siren. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; v:330; vdriver:30; vsourceprime:30; f:1000; 
(fpprintprec) 5 
(v) 330 
(vdriver) 30 
(vsourceprime) 30 
(f) 1000 
(%i6) fprime: (v+vdriver)/(v-vsourceprime)*f; 
(fprime) 1200 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of v, vdriver , v’source, 
and f . 

(%i6) Calculate f ’. 

(b) Fig. 2.5 shows the train leaving the tunnel.

In this case, there is an apparent sound source moving at a speed of v’source = 
30.0 m s−1 away from the train. Thus, the sound frequency heard by the driver is, 
Eq. (2.14),
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vsource = 30.0 m s–1 

vdriver = 30.0 m s–1 
v'source = 30.0 m s–1 

apparent source                  tunnel               train 

Fig. 2.5 A train leaving a tunnel in a hill, Problem 2.14

f , =
(

v − vdri ver 
v + v,

source

)
f =

(
330 m s−1 − 30.0 m  s−1 

330 m s−1 + 30.0 m  s−1

)
(1000 Hz) = 833 Hz. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; v:330; vdriver:30; vsourceprime:30; f:1000; 
(fpprintprec) 5 
(v) 330 
(vdriver) 30 
(vsourceprime) 30 
(f) 1000 
(%i7) fprime: (v-vdriver)/(v+vsourceprime)*f$ float(%); 
(%o7) 833.33 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of v, vdriver , v’source, 
and f . 

(%i6) Calculate f ’. 

2.3 Summary 

• Sound waves are longitudinal waves, and the disturbances are the displacements 
of air layer or variations in air pressure. 

• The intensity level β of a sound with intensity I is defined as 

β = 10 log10
(

I 

10−12 W m−2

)
. 

Unit of β is decibel (dB). The sound intensity of 10−12 W m−2 is the threshold 
of a human hearing a sound, that is, the lowest intensity a human could hear. 

• Doppler effect: When the observer and sound source are in relative motion in a 
medium where the speed of sound is v, the frequency heard by the observer f ’  is
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f , =
(

v ± vo 
v ∓ vs

)
f, 

where vo is the speed of the observer and vs is the speed of the sound source. For 
the numerator, use the (+) sign if the observer is moving toward or the (−) sign if  
the observer is moving away from the sound source. For the denominator, use the 
(−) sign if the sound source is moving toward or the (+) sign if the sound source 
is moving away from the observer. 

2.4 Exercises 

Exercise 2.1 Calculate the speed of sound in oxygen gas at 27°C. Molecular weight 
of oxygen molecules is 32 kg kmol−1. Molar gas constant is R = 8.31 J K−1 mol−1. 

(Answer: 330 m s−1) 

Exercise 2.2 A car at a speed of 27 m s−1 is moving toward a stationary siren, and 
the driver hears a sound of frequency 400 Hz, as illustrated in Fig. 2.6. The speed of 
sound in air is 330 m s−1. What is the frequency of sound emitted by the siren? 

(Answer: 370 Hz) 

Exercise 2.3 An ambulance with its siren on is speeding at 120 km h−1, as shown  in  
Fig. 2.7. A driver of a car moving at a speed of 90 km h−1 in front of the ambulance 
hears the siren sound of 600 Hz. The speed of sound in air is 330 m s−1. What is the 
frequency of sound emitted by the siren? 

(Answer: 580 Hz)

Fig. 2.6 A car moving toward a stationary siren, Exercise 2.2 

Fig. 2.7 An ambulance speeds toward a moving car, Exercise 2.3 
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Exercise 2.4 

(a) Calculate the intensity of a 50 dB sound of an electric speaker. 
(b) The speaker has an area of 120 cm2. What is the acoustic power output of the 

speaker? 

(Answer: (a) 1.0 × 10−7 W m−2; (b) 1.2 × 10−9 W) 

Exercise 2.5 What is the displacement amplitude of the air layer of a 50 dB, 
800 Hzsound wave? The speed of sound in air is 330 m s−1 and the density of 
air is 1.29 kg m−3. 

(Answer: 4.3 × 10−9 m)



Chapter 3 
Superposition and Stationary Wave 

Abstract Problems on superposition of waves and stationary waves are solved in 
this chapter. These include stationary waves in air column and string. Nodes and 
antinodes of the stationary waves are identified. Animations of these stationary waves 
are presented for insight into the physics. Formation of sound beats is discussed. Both 
analytical and computer solutions are presented. 

3.1 Basic Concepts and Formulae 

(1) The superposition of two waves with the same amplitude and frequency will 
give a resultant wave that has the same frequency and the amplitude that depends 
on phase difference φ of the two waves. If the waves are 

y1 = A sin(kx  − ωt), (3.1) 

y2 = A sin(kx  − ωt − φ), (3.2) 

then the resultant wave is 

y = y1 + y2 = 2A cos 
φ 
2 
sin(kx  − ωt − 

φ 
2 

). (3.3) 

The amplitude of the resultant wave is 2A cos(φ/2) that depends on phase 
difference φ. Constructive interference occurs if the two waves are in phase, 
that is, when φ = 0, 2π, 4π, ... Destructive interference occurs if the two waves 
differ in phase by 180° or π rad, that is, when φ = π, 3π, 5π, ... 

(2) A stationary wave is formed from the superposition of two harmonic waves 
having the same frequency, amplitude, and wavelength and moving in opposite 
directions. For example, a stationary wave formed from a superposition of 

y1 = A sin(kx  − ωt), (3.4)
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y2 = A sin(kx  + ωt), (3.5) 

is, 

y = y1 + y2 = 2A sin kx  cos ωt. (3.6) 

The amplitude of the stationary wave is 2A sin kx. This means that the ampli-
tude varies with position x. Points at which the amplitudes are at maxima (called 
antinodes) are x = nπ 

2k = n λ 
4 (n are odd numbers). Points at which the amplitudes 

are zero (called nodes) are x = nπ 
k = n λ 

2 (n are integers). 
(3) Stationary waves could be found in string, air column, metal rod, etc. 

(a) Stretched string is of length L with the two ends fixed. Natural frequencies 
are 

fn = 
n 

2L 

/
F 

μ 
, n = 1, 2, 3, . . . (3.7) 

where F is tension in the string and μ is mass per unit length of the string. 
Natural frequencies form harmonic series, that is, f 1, 2  f 1, 3  f 1, …  

(b) Air column in a pipe with open ends. Natural frequencies are 

fn = n 
v 
2L 

, n = 1, 2, 3, . . . (3.8) 

where v is speed of sound in air and L is length of the pipe. 
(c) Air column in a pipe with one end closed. Natural frequencies are 

fn = n 
v 
4L 

, n = 1, 3, 5, . . . (3.9) 

where v is speed of sound in air and L is length of the pipe. 

(4) An oscillating system is resonant with a driving force when the frequency of 
the driving force is the same as natural frequency of the oscillating system. At 
resonance, the amplitude of the oscillating system is very big. 

(5) Beats are formed from the superposition of two waves with a small frequency 
difference, moving in the same direction. For sound waves, they are periodic 
loud and silent sound as time passes. This means that beats are wave interference 
in time. If the waves are 

y1 = A cos 2π f1t, (3.10)
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y2 = A cos 2π f2t, (3.11) 

then the superposition of the waves is 

y = y1 + y2 = 2A cos 2π
(

f1 − f2 
2

)
t cos 2π

(
f1 + f2 

2

)
t. (3.12) 

Frequency of the beat is 

f1 − f2, (3.13) 

because |cos 2π (( f 1 − f 2)/2)| = 1 at a rate  of  f 1 – f 2. When |cos 2π (( f 1 − f 2)/ 
2)| = 1 the sound is loud and when |cos 2π (( f 1 − f 2)/2)| = 0 there is silence. 

(6) Any periodic wave can be represented by a combination of sinusoidal waves 
forming a harmonic series. This is called Fourier synthesis. 

3.2 Problems and Solutions 

Problem 3.1 Two harmonic waves are given as 

y1 = 5 sin[π(4x − 1200t)], 

y2 = 5 sin[π(4x − 1200t − 0.25)], 

where x, y1, and y2 are in meters and t in seconds. The two waves are superposed. 

(a) Calculate the amplitude and frequency of the resultant wave y. 
(b) At x = 0 m, plot  y1, y2, and y against t for 0 ≤ t ≤ 0.005 s. 

Solution 

(a) The resultant wave is obtained by adding the two waves, 

y = y1 + y2 
= 5 sin[π(4x − 1200t)] +  5 sin[π(4x − 1200t − 0.25)] 
= 5 sin(4π x − 1200π t) + 5 sin(4π x − 1200π t − 0.25π)  
= 5 [sin(4π x − 1200π t) + sin(4π x − 1200π t − 0.25π)] 
= 5 [2 sin(4π x − 1200π t − 0.125π)cos(0.125π)] 
= 10 cos(0.125π)  sin(4π x − 1200π t − 0.125π)  
= 9.24 sin(4π x − 1200π t − 0.125π).
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Trigonometric identity sin θ + sin φ = 2 sin
(

θ +φ 
2

)
cos

(
θ −φ 
2

)
is used in the 

calculation, see Appendix D. 
Comparing the resultant wave and a general wave, we have 

9.24 sin(4π x − 1200π t − 0.125π)  ≡ A sin(kx  − ωt + φ), 
A = 9.24. 

Therefore, the amplitude of the resultant wave is 9.24 m. 
Comparing the resultant wave and a general wave, we have 

9.24 sin(4π x − 1200π t − 0.125π)  ≡ A sin(kx  − ωt + φ), 

ω = 2π f = 1200π. 

The frequency of the resultant wave is 

f = 
ω 
2π 

= 
1200π 
2π 

= 600 Hz. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i1) Set the floating point print precision to 5. 
(%i2) Calculate the amplitude. 
(%i3) Assign ω. 
(%i4) Solve ω= 2π f for f . 

(b) To plot curves of y1, y2, and y against t, we set  x = 0 m, define y1 and y2, 
calculate y, and plot the three curves against time. 

♦ wxMaxima codes:



3.2 Problems and Solutions 49

Comments on the codes: 

(%i1) Assign x = 0. 
(%i2), (%i3) Assign y1 and y2. 
(%i4) Calculate y. 
(%i5) Plot y1, y2, and y for 0 ≤ t ≤ 0.005 s. 

Problem 3.2 A harmonic wave is described by, 

y1 = 8 sin(0.2π x−160π t), 

where y1 and x are in meters and t in seconds. Find an expression for wave y2 having 
the same frequency, amplitude, and wavelength as y1 that will give a resultant wave 
with an amplitude of 8 

√
3 m when added with y1. 

Solution 

Let the two waves be 

y1 = A sin(kx  − ωt),
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y2 = A sin(kx  − ωt − φ). 

The resultant wave is 

y = y1 + y2 =
(
2A cos 

φ 
2

)
sin

(
kx  − ωt − 

φ 
2

)
. 

We have used the trigonometry identity sin α + sin β = 2 sin
(

α+β 
2

0
cos

(
α−β 
2

0
to 

arrive at the result; see Appendix D. The amplitude of the resultant wave is 

2A cos 
φ 
2 

= 16 cos 
φ 
2 

= 8 
√
3. 

This means that 

cos 
φ 
2 

=
√
3 

2 
, 

φ 
2 

= 
π 
6 

, 

φ = 
π 
3 

. 

The expression for wave y2 is 

y2 = 8 sin
(
0.2π x − 160π t − 

π 
3

0
, 

because 

y = y1 + y2 = 8 sin(kx  − ωt) + 8 sin
(
kx  − ωt − 

φ 
2

)

=
(
16 cos 

φ 
2

)
sin

(
kx  − ωt − 

φ 
2

)

= 8 
√
3 sin

(
0.2π x − 160π t − 

π 
6

0
= 13.9 sin(0.628x − 503t − 0.524). 

Problem 3.3 A stationary wave is formed from the superposition of two waves, 

y1 = 4 sin(3x−2t), 

y2 = 4 sin(3x + 2t), 

where x and y are in centimeters and t in seconds. Find,



3.2 Problems and Solutions 51

(a) maximum displacement at x = 2.3 cm 
(b) locations of nodes and antinodes. 

Solution 

(a) By adding or superposing both waves, we get the resultant wave, 

y = y1 + y2 
= 4 sin  (3x − 2t) + 4 sin  (3x + 2t) 
= 8 sin  3x cos 2t. 

Here, the use of trigonometry identity sin θ + sin φ = 2 sin
(

θ +φ 
2

)
cos

(
θ−φ 
2

)
is made in the addition; see Appendix D. The wave is a stationary wave with 
amplitude of 8.0 cm. Maximum displacement at x = 2.3 cm is calculated as 
follows: 

ymax = 8 sin  3x

|||| x = 2.3 
= 8 sin  (6.9) 
= 4.6 cm. 

Note that the maximum value of cos 2t is 1. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i1) Set the floating point print precision to 5. 
(%i3) Define y1 and y2. 
(%i6) Calculate y and simplify. 
(%i7), (%i8) Assign value of x and calculate y. 

To plot the stationary wave y = 8 sin  3x cos 2t , choose time t1 = 0, t2 = π /8, 
t3 = π /4, t4 = 3π /8, t5 = π /2 s, and plot y against x for each t. We labelled the 
curves as ya, yb, yc, yd , and ye.
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♦ wxMaxima codes: 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and 
assign values of t1, t2, t3, t4, and t5. 

(%i7), (%i8), (%i9), (%i10), 
(%i11) 

Assign ya, yb, yc, yd , and ye. 

(%i12) Plot ya, yb, yc, yd , and ye for 0 ≤ x ≤ π cm.
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♦ Animation of the stationary wave, y = 8 sin  3x cos 2t, by wxMaxima: 

Comment on the codes: 

To run the animation, copy the codes to the wxMaxima command window; 
press <shift> and <enter> keys simultaneously to run the codes; right click the 
graphic that appears and choose Start Animation. 

(b) Nodes are formed at points that satisfy 

sin 3x = 0, 

or 

3x = nπ, n = 0, 1, 2, 3, . . .  

This means that, to have sin 3x = 0, 3x must be zero or a multiple of π. The  
nodes are at 

x = n
(π 
3

0
cm = 0, 1.05, 2.09, 3.14 cm, . . .  n = 0, 1, 2, 3, . . .
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Antinodes are formed at points that satisfy 

sin 3x = 1, 

or, 

3x = m
(π 
2

0
, m = 1, 3, 5, . . .  

This means that, to have sin 3x = 1, 3x must be an odd multiple of π /2. The 
antinodes are at 

x = m
(π 
6

0
cm = 0.52, 1.57, 2.62 cm, . . .  m = 1, 3, 5, . . .  

Problem 3.4 An organ pipe 3.00 m long is closed at one end and opened at the other. 
Air column in the pipe vibrates and forms stationary waves. Obtain the first three 
harmonics. The speed of sound in air is 330 m s–1. 

Solution 

Figure 3.1a shows the stationary wave of fundamental frequency in the pipe. 
The stationary wave is 1/4 of the complete wave occupying the pipe length L. We  

write

λ 
4 

= L ,

Fig. 3.1 a Fundamental 
frequency, b first overtone, 
and c second overtone of 
stationary sound wave of a 
pipe closed at one end, 
Problem 3.4 

(a) 

(b) 

(c) 

L = 5 /4 

L = 3 /4 

L = /4 
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λ = 4L .

The fundamental frequency or frequency of the first harmonic is 

f0 = 
v 
λ 

= 
v 
4L 

= 
330 m/s 

4(3.00 m) 
= 27.5 Hz. 

Next, the first overtone or the second harmonic is formed by 3/4 of the complete 
wave occupying length L, as shown in Fig. 3.1b. We write 

3λ 
4 

= L , 

λ = 
4L 

3 
. 

The frequency of the first overtone or the second harmonic is 

f1 = 
v 
λ 

= 
3v 
4L 

= 
3(330 m/s) 
4(3.00 m) 

= 82.5 Hz  = 3 f0. 

Lastly, the second overtone or the third harmonic is formed by 5/4 of the complete 
wave occupying pipe length L, as in Fig.  3.1c. We write 

5λ 
4 

= L , 

λ = 
4L 

5 
. 

The frequency of the second overtone or the third harmonic is 

f2 = 
v 
λ 

= 
5v 
4L 

= 
5(330 m/s) 
4(3.00 m) 

= 138 Hz = 5 f0. 

♦ wxMaxima codes:



56 3 Superposition and Stationary Wave

Comments on the codes: 

(%i3) Set the floating point print precision to 5 and assign values of 
v and L. 

(%i4), (%i5), (%i6) Calculate f 0, f 1, and f 2. 

♦ Animation of the vibrating air column of fundamental frequency (first harmonic): 

♦ Animation of the vibrating air column of first overtone (second harmonic):
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♦ Animation of the vibrating air column of second overtone (third harmonic): 

Comment on the codes: 

To run any of the animations, copy the codes to the wxMaxima command window; 
press <shift> and <enter> keys simultaneously to run the codes; right-click the
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graphic that appears and choose Start Animation. The  y-axis represents the longi-
tudinal displacement of the air layer, while the x-axis is the distance along the 
pipe. 

Problem 3.5 Air column in an open end pipe 3.00 m long vibrates and forms 
stationary sound waves. Determine the first three harmonics of the sound. The speed 
of sound in air is 330 m s–1. 

Solution 

Figure 3.2a shows the stationary wave of the fundamental frequency in the pipe. 
There are two antinodes and one node. This stationary wave is 1/2 of the complete 
wave occupying length L. We write 

λ 
2 

= L , 

λ = 2L . 

The frequency of the first harmonic (fundamental frequency) is 

f0 = 
v 
λ 

= 
v 
2L 

= 
330 m/s 

2(3.00 m) 
= 55.0 Hz. 

The second harmonic is shown in Fig. 3.2b. The full wave occupies the length L, 
so we write 

λ = L . 

The frequency of the second harmonic (first overtone) is

Fig. 3.2 a Fundamental 
frequency, b first overtone, 
and c second overtone of 
stationary sound wave of an 
opened end pipe, Problem 
3.5 

(a) 

(b) 

(c) 

L = 3 /2 

L = 

L = /2 
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f1 = 
v 
λ 

= 
v 
L 

= 
330 m/s 

3.00 m 
= 110 Hz = 2 f0. 

The third harmonic is shown in Fig. 3.2c. Here, 3/2 of the full wave occupies the 
pipe length L. This means that 

3λ 
2 

= L , 

λ = 
2L 

3 
. 

The frequency of the third harmonic (second overtone) is 

f2 = 
v 
λ 

= 
3v 
2L 

= 
3(330 m/s) 
2(3.00 m) 

= 165 Hz = 3 f0. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i3) Set the floating point print precision to 5 and assign values of 
v and L. 

(%i4), (%i5), (%i6) Calculate f 0, f 1, and f 2. 

♦ Animation of the vibrating air column of first harmonic (fundamental frequency):
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♦ Animation of the vibrating air column of second harmonic (first overtone): 

♦ Animation of the vibrating air column of third harmonic (second overtone):
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Comment on the codes: 

To run any of the animations, copy the codes to the wxMaxima command window; 
press <shift> and <enter> keys simultaneously to run the codes; right-click the 
graphic that appears and choose Start Animation. The  y-axis represents the longi-
tudinal displacement of the air layer, while the x-axis is the distance along the 
pipe. 

Problem 6.6 Two sound waves interfere at a point. The wavelengths of the first and 
second waves are 25.0 cm and 24.9 cm, respectively. What is the beat frequency? 
The speed of sound in air is 330 m s−1. 

Solution 

The frequency of the first sound wave is 

f1 = 
v 
λ1 

= 330 m/s 

25.0 × 10−2 m 
= 1320.0 Hz. 

The frequency of the second sound wave is 

f2 = 
v 
λ2 

= 330 m/s 

24.9 × 10−2 m 
= 1325.3 Hz. 

The beat frequency is
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| f1− f |2 = 5.3Hz. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i4) Set the floating point print precision to 5 and assign values of 
v, λ1, and λ2. 

(%i5), (%i6), (%i7) Calculate f 1, f 2, and the beat frequency. 

Problem 3.7 A wire 0.50 m long with a mass per unit length of 1.0 × 10−4 kg m−1 

is tied between two nails. The tension in the wire is 4.0 N. The wire is plucked 
and sound can be heard. Calculate the fundamental frequency, and first and second 
overtones. 

Solution 

Figure 3.3 shows the wire vibrating with stationary waves at (a) fundamental 
frequency, (b) first overtone, and (c) second overtone.

The speed of transverse wave in the wire is (Eq. 2.5) 

v = 

/
T 

μ 
=

/
4.0 N  

1.0 × 10−4 kg m−1 
= 200 m s−1 . 

From Fig. 3.3a, the wavelength is λ0 = 2L = 2(0.50 m) = 1.0 m. This means that 
the fundamental frequency is 

f0 = 
v 
λ0 

= 
200 m s−1 

1.0 m  
= 200 Hz. 

From Fig. 3.3b, the wavelength is λ1 = L = 0.50 m. The frequency of the first 
overtone is 

f1 = 
v 
λ1 

= 
200 m s−1 

0.50 m
= 400 Hz.
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Fig. 3.3 a Fundamental 
frequency, b first over tone, 
and c second overtone of a 
vibrating wire, Problem 3.7

(a) 

(b) 

(c) 

L = 3 2/2 

 L = 1 

L = 0/2 

From Fig. 3.3c, the wavelength is λ2 = 2L/3 = 0.33 m. The frequency of the 
second overtone is 

f2 = 
v 
λ2 

= 
200 m s−1 

0.33 m 
= 600 Hz. 

♦ wxMaxima codes:
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Comments on the codes: 

(%i4) Set the floating point print precision to 5 and 
assign values of T, L, and μ. 

(%i5), (%i6), (%i7), (%i8), (%i9), 
(%i10), (%i11) 

Calculate v, λ0, f 0, λ1, f 1, λ2, and f 2. 

♦ Animation of the vibrating wire (fundamental frequency): 

♦ Animation of the vibrating wire (first overtone):
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♦ Animation of the vibrating wire (second overtone): 

Comment on the codes: 

To run any of the animations, copy the codes to the wxMaxima command window; 
press <shift> and <enter> keys simultaneously to run the codes; right-click the 
graphic that appears and choose Start Animation. The  y-axis represents the transverse 
displacement of the string, while the x-axis is the distance along the string.
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Problem 3.8 Two sound waves superpose at a point. Variations of the air pressures 
with time of the two waves at the point are 

p1 = 30 cos(2π f1t), 
p2 = 30 cos(2π f2t), 

where f 1 = 55.0 Hz, f 2 = 50.0 Hz, and 30 Pa is the pressure amplitude of the sound 
waves. Show that the beat frequency is f 1 – f 2 = 55.0 Hz – 50.0 Hz = 5.0 Hz. 

Solution 

This is the superposition of two waves whose frequencies differ a bit at a point. We 
calculate the superposition of the two pressure variations, 

p = p1 + p2 
= 30 cos(2π f1t) + 30 cos(2π f2t) 
= 60 cos(π( f1 + f2)t) · cos(π( f1 − f2)t). 

We have used trigonometric identity cos θ + cos φ = 2 cos[(θ +φ)/2].cos[(θ − 
φ)/2] to get the result, see Appendix D. We write 

p = [60 cos(π( f1 − f2)t)] ·  cos(π( f1 + f2)t). 

The expression in the square brackets is the amplitude. The amplitude is a 
maximum if cos(π ( f 1 − f 2)t) is 1 or  − 1, that is, twice in a cycle of the cosine 
function. The frequency of the cosine function is ( f 1 − f 2)/2. Thus, the frequency 
of maximum amplitude (the beat frequency) is twice of ( f 1 − f 2)/2, that is, ( f 1 − 
f 2). The beat frequency is 

fbeat = f1 − f2 = 55.0 Hz  − 50.0 Hz  = 5.0 Hz. 

Alternative argument: The intensity of sound is proportional to the amplitude 
square. In our case, the intensity is proportional to [60 cos(π ( f 1 − f 2)t)]2. The  
intensity is a maximum if cos2(π ( f 1 − f 2)t) = 1. This occurs f 1 − f 2 times a 
second. Therefore, the beat frequency is f 1 − f 2. 

Problem 3.9 For Problem 3.8, show graphically that the beat frequency is f 1 − f 2 
= 5.0 Hz. 

Solution 

We separately plot pressure variation against the time of the two waves, 

p1 = 30 cos(2π f1t) = 30 cos(2π(55)t), 
p2 = 30 cos(2π f2t) = 30 cos(2π(50)t).
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We then plot the sum of the two pressure variations against time, 

p = p1 + p2. 

♦ wxMaxima codes:
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Comments on the codes: 

(%i2) Assign values of f 1 and f 2. 
(%i5) Define p1, p2, and p in terms of t. 
(%i6), (%i7), (%i8) Plot p1, p2, and p for 0 ≤ t ≤ 0.5 s. 

From the last graphic, time interval between beats is T = 0.4 s – 0.2 s = 0.2 s. 
The beat frequency is
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Fig. 3.4 A tuning fork and 
an air column at resonance, 
Problem 3.10 

256 Hz 

0.31 m 

f = 
1 

T 
= 1 

0.2 s  
= 5.0 Hz. 

Problem 3.10 A tuning fork vibrating at a frequency of 256 Hz produces a loud 
sound when placed near a 0.31 m air column. Calculate the speed of sound in air. 

Solution 

Figure 3.4 shows the tuning fork, the air column, and the stationary wave when the 
loud sound is heard. 

The length of the air column corresponds to 1/4 wavelength of the sound wave. 
The wavelength of the sound is 

L = 
λ 
4 
, 

λ = 4L = 4(0.31 m) = 1.24 m. 

The speed of the sound is 

v = λ f = (1.24 m)(256 s−1 ) = 317 m s−1 . 

♦ wxMaxima codes:
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Comments on the codes: 

(%i3) Set the floating point print precision to 5 and assign values of L and f . 
(%i4), (%i5) Calculate λ and v. 

Problem 3.11 A tuning fork vibrating at a frequency of 320 Hz is placed near a 
measuring cylinder filled with water. Consecutive loud sounds are heard when the 
water levels are at 20 cm and 73 cm marks. Determine the speed of sound in air. 

Solution 

Figure 3.5 shows the stationary waves at both resonances. A loud sound is heard when 
there is a resonance. When the water level is at the 73 cm mark, ¼ of a complete 
wave resonates; when the water level is at the 20 cm mark, ¾ of a complete wave 
resonates. 

From the figure, one-half of the wavelength of the stationary wave is 

λ 
2 

= 73 cm − 20 cm = 53 cm. 

The wavelength of the sound wave is 

λ = 2(53 cm) = 106 cm.

Fig. 3.5 A tuning fork and 
an air column at two 
resonances, Problem 3.11 

320 Hz 

73 cm 

20 cm 
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The speed of sound in air is 

v = λ f = (1.06 m)(320 s−1 ) = 340 m s−1 . 

♦ wxMaxima codes: 

Comments on the codes: 

(%i2) Set the floating point print precision to 5 and assign the value of f . 
(%i3), (%i4) Calculate λ and v. 

Problem 3.12 Two waves represented by 

y1(x, t) = 1.5 cos(2t − 3x + π/3), 
y2(x, t) = 1.5 cos(2t − 3x), 

superpose and form a new resultant wave. Find the resultant wave. 

Solution 

Superposition of waves is obtained by summing the two waves, 

y = y1(x, t) + y2(x, t) 
= 1.5 cos(2t − 3x + π/3) + 1.5 cos(2t − 3x) 

= 3 cos
(
2t − 3x + 

π 
6

0
cos

(π 
6

0
= 2.6 cos

(
2t − 3x + 

π 
6

0
. 

The trigonometric identity cos θ + cos φ = 2 cos[(θ + φ)/2].cos[(θ − φ)/2] has 
been used to get the result; see Appendix D. The resultant wave is a traveling sinu-
soidal wave and is not a stationary wave. The amplitude is 2.6 m and the wavelength 
and frequency are the same as those of the summed waves. 

♦ wxMaxima codes:
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Comments on the codes: 

(%i1) Set the floating point print precision to 5. 
(%i2) Calculate the amplitude of the resultant wave. 
(%i4) Define y1(x, t) and y2(x, t). 
(%i6), (%i7) Assign y1s = y1(x, 0), y2s = y2(x, 0), and ys = y1s + y2s . 
(%i8) Plot y1s, y2s, and ys for 0 ≤ x ≤ 10 m. 

Problem 3.13 Two sources of waves are located at points A and B separated by 
20 m, as shown in Fig. 3.6. The vibrations of the sources are 

yA vibration  = 30 cos[2π(95)t], 
yB vibration  = 20 cos[2π(90)t].

Waves of the two vibrations propagate along the positive x direction at a speed of 
300 m s−1. Determine the vibrations at point C, 10 m to the right of B.
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Fig. 3.6 Two wave sources 
at points A and B, Problem 
3.13

A                                       B                   C 

20 m                           10 m 

Solution 

Waves from A propagate to the right; the wave equation is, 

yA = 30 cos
|
2π(95)

(
t − 

x 

v

0|
= 30 cos

|
2π(95)

(
t − 

x 

300

0|
. 

We get this from the general equation of wave moving to the right, by substituting 
f = 95 Hz and speed of the wave v = 300 m s−1, 

yA = A cos (ωt − kx) 

= A cos
|
ω

(
t − 

x 

v

0|
= A cos

|
2π f

(
t − 

x 

v

0|
= 30 cos

|
2π(95)

(
t − 

x 

300

0|
. 

Vibrations at point C due to waves from A are obtained by inserting the value of 
x = 20 m + 10 m = 30 m, 

yA,C = 30 cos
|
2π(95)

(
t − 

30 

300

)|
. 

Waves from B travel to the right and the wave equation is 

yB = 20 cos
|
2π(90)

(
t − 

x 

v

0|
= 20 cos

|
2π(90)

(
t − 

x 

300

0|
. 

Vibrations at point C due to waves from B are obtained by inserting the value of 
x = 10 m, 

yB,C = 20 cos
|
2π(90)

(
t − 

10 

300

)|
. 

Thus, vibrations at point C are



74 3 Superposition and Stationary Wave

yC vibration  = yA,C + yB,C 

= 30 cos
|
2π(95)

(
t − 

30 

300

)|
+ 20 cos

|
2π(90)

(
t − 

10 

300

)|
. 

♦ Plots of yA,C , yB,C , and yC vibration against time by wxMaxima:
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Comments on the codes: 

(%i1), (%i2) Define yA,C and yB,C . 
(%i3) Calculate yC vibration. 
(%i4), (%i5), (%i6) Plot yA,C , yB,C , and yC vibration against t for 0 ≤ t ≤ 0.4 s. 

The vibrations at C have beats in them, as shown in the plot. These vibrations 
have a beat frequency of 95.0 Hz – 90.0 Hz = 5.0 Hz. From the plot, the period of
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the beat is T = 0.3 s – 0.1  s  = 0.2 s, giving the beat frequency as 1/T = 1/0.2 s = 
5.0 Hz. 

Problem 3.14 Two wave sources are located at points A and B a distance 20 m apart, 
as shown in Fig. 3.7. The vibrations at A and B are 

yA vibration  = 0.06 sin (π t), 
yB vibration  = 0.02 sin (π t). 

Waves originating from vibrations at A move in the positive x direction with a 
speed of 3.0 m s−1, while waves originating from vibrations at B move in the negative 
x direction with the same speed. Determine the vibrations at a point C, 8.0 m to the  
left of B. 

Solution 

Vibrations at A generate waves that propagate to the right. The equation of the 
traveling wave is 

yA = 0.06 sin
|
π

(
t − 

x 

v

0|
= 0.06 sin

|
π

(
t − 

x 

3

0|
. 

We have used the fact that a wave traveling to the right is a function of t – x/v, 
so we replaced t with t – x/v in yA vibration to get yA. We then substitute the speed of 
wave v = 3.0 m s−1 in the equation. Vibrations at point C due to waves coming from 
A is obtained by substituting x = 12 m into the equation, 

yA,C = 0.06 sin
|
π

(
t − 

12 

3

)|
. 

Waves from B move to the left to C. The wave is represented by, 

yB = 0.02 sin
|
π

(
t + 

x 

v

0|
= 0.02 sin

|
π

(
t + 

x 

3

0|
. 

Again, we have used the fact that a wave traveling to the left is a function of t 
+ x/v, so we replaced t with t + x/v in yB vibration to get yB. We also substituted the

Fig. 3.7 Two wave sources 
at points A and B, Problem 
3.14 

A                                       C                         B 

12 m                             8.0 m 
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speed of wave v = 3.0 m s−1 in the equation. Vibrations at C due to waves from B 
are obtained by substituting x = −  8.0 m into the equation, 

yB,C = 0.02 sin
|
π

(
t − 

8 

3

)|
. 

Therefore, vibrations at C due to vibrations of sources at A and B are, 

yC vibration  = yA,C + yB,C 

= 0.06 sin
|
π

(
t − 

12 

3

)|
+ 0.02 sin

|
π

(
t − 

8 

3

)|
= 0.05 sin (π t) − 0.017 cos (π t). 

♦ Plots of yA,C , yB,C , and yC vibration against time by wxMaxima: 

Comments on the codes: 

(%i1), (%i2), (%i3) Define yA,C , yB,C , and yC vibration.
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(%i4) Plot yA,C , yB,C , and yC vibration for 0 ≤ t ≤ 6 s.  

The plots show that vibrations at point C are sinusoidal vibrations (simple 
harmonic motion) with the same frequency as the frequency of sources at A and 
B. 

3.3 Summary 

• Superposition is the combination of two or more waves at the same location. 
• The wave that results from the superposition of two sine waves that differ only by 

a phase shift is a wave with an amplitude that depends on the phase difference. 
• A stationary wave is formed from the superposition of two sine waves having the 

same frequency, amplitude, and wavelength and moving in opposite directions. 
The wave varies in amplitude but does not propagate. 

3.4 Exercises 

Exercise 3.1 What is the wave obtained from the superposition of the following two 
traveling waves, 

y1 = A cos(ωt − kx  + φ), 
y2 = A cos(ωt − kx)? 

(Answer: 2A cos( φ 
2 ) cos(ω t − kx  + φ 

2 )) 

Exercise 3.2 A string is fixed between two nails. A transverse wave along the string 
to one of the nails is represented by 

y1 = A cos(kx  − ωt), 

while the one reflected from the nail is represented by 

y2 = A cos(kx  + ωt). 

What is the superposition of the two waves? 
(Answer: 2A cos(kx) cos(ω t)) 

Exercise 3.3 A 50.0 cm long wire with a mass per unit length of 1.00 × 10−4 kg m−1 

vibrates under a tension of 4.00 N as shown in Fig. 3.8. Find the fundamental 
frequency of the vibrations.

(Answer: 200 Hz)
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Fig. 3.8 A vibrating wire, 
Exercise 3.3

50.0 cm 

Exercise 3.4 The equation for a stationary wave on a string is, 

y = 0.12 sin(5x) cos(200t). 

where y and x are in meters and t in seconds. Find 

(a) amplitude of vibration at the antinodes, 
(b) distance between antinodes, 
(c) wavelength, 
(d) frequency, 
(e) speed of the wave. 

(Answer: (a) 0.12 m; (b) 0.63 m; (c) 1.3 m; (d) 32 Hz; (e) 40 m s−1) 

Exercise 3.5 The second overtone produced by a vibrating string 2.0 m long is 
900 Hz. Determine 

(a) fundamental and first overtone frequencies, 
(b) speed of the wave in the string. 

(Answer: (a) 300 Hz, 600 Hz; (b) 1.2 × 103 m s−1)



Chapter 4 
Electric Field 

Abstract This chapter discusses problems on electric charge, electrostatic force, 
and electric field. Vector additions and methods of calculus are used to calculate 
some of the electric fields. Both analytical and computer calculations are presented. 

4.1 Basic Concepts and Formulae 

(1) Electric charge has the following properties: 

(a) Charge is conserved. 
(b) Charges of different signs (+ and −) attract each other. Charges of the 

same signs (+ and +, or  − and −) repel each other. 
(c) Charge is quantized; it exists as multiple of electronic charges. An elec-

tronic charge is the charge of an electron. An electron has an electric 
charge of 1.6022 × 10−19 C. Thus, 1 C is the charge of 6.2415 × 1018 
electrons. 

(d) The force between two charges varies with the inverse square of their 
separation distance. 

(2) A conductor is a material in which electrical charges can move freely. Examples 
of conductors are copper, aluminum, and silver. 

(3) An insulator is a material in which charges cannot move freely. Examples of 
insulators are glass, rubber, and wood. 

(4) Coulomb’s law states that the magnitude of electrostatic force F between two 
charges q1 and q2, separated by a distance r, is,  

F = k 
q1q2 
r2 

= 1 

4πε0 

q1q2 
r2 

, (4.1) 

where k is Coulomb’s constant, 

k = 1 

4πε0 
= 8.9876 × 109 N m2 C−2 ≈ 9 × 109 N m2 C−2 ,
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and ε0 is the permittivity of free space, 

ε0 = 8.8542 × 10−12 C2 N−1 m−2 . 

(5) The smallest unit of charge in the universe is the charge of an electron or a 
proton. The magnitude of the charge is, 

e = 1.6022 × 10−19 C. 

Charge on other entities is the multiple of this unit of charge. The charge is 
quantized. 

(6) Electric field E at a point is the electric force F acting on test charge q at the 
point divided by the charge, 

E = 
F 
q 

. (4.2) 

(7) Electric field due to charge q at a point a distance r from the charge is 

E = k 
q 

r2 
r̂, (4.3) 

where r̂ is the unit vector in the direction of the charge to the point. For positive 
point charge, the electric field vector is directed in a radial way away from the 
point charge. 

(8) Electric field at a point of observation due to many point charges is the vector 
sum of electric fields of each charge at the point, 

E = k
∑

i 

qi 
r2 i 

r̂ i . (4.4) 

(9) Electric field of a continuous charge distribution at a point is, 

E = k
∫

dq 

r2 
r̂, (4.5) 

where dq is infinitesimal charge of the charge distribution and r is distance 
from the infinitesimal charge to the point of observation. Table 4.1 shows the 
electric fields of a few charge distribution configurations.

(10) Electric field lines are used to indicate electric field in space. Electric field 
vector E is tangent to electric field line. The number of electric field lines 
per unit area through a surface perpendicular to the electric field lines is 
proportional to the magnitude of the electric field. 

(11) A particle of mass m and charge q in electric field E will move with acceleration,
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Table 4.1 Electric fields of a few charge configurations 

Configuration Electric field 

(a) 

R 

x E 
Q 

x 

A ring with charge  Q, 
E = kQ x 

(x2+R2)3/2 

(b) 

Ex x 

A long wire with charge per unit length λ, 

E = 2kλ 
x = λ 

2πε0x 

(c) 

E 
L 

0 

–L 

x
x 

A wire of length 2L with charge per unit length λ, 

E = 2kλL 
x
√
L2+x2 

(d) 

E 
x 

A wide insulator plate with charge per unit area σ , 
E = 2π kσ = σ 

2ε0 

(e) 

y 

E 

R 

x 

An insulator circular disk with charge per unit area σ , 

E = 2π kσ
(
1 − y √

y2 + R2

)

= 
σ 
2ε0

(
1 − y √

y2 + R2

)

a = 
q E 
m 

. 

In a uniform electric field, the acceleration a is constant and the motion of the 
particle is similar to the motion of a projectile in a uniform gravitational field.
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4.2 Problems and Solutions 

Problem 4.1 

(a) How many electrons are there in a charge of −1.0 C? 
(b) Calculate the repulsive force between two particles, each with a −1.0 C charge, 

separated by a distance of 1.0 m. 

Solution 

(a) An electron has a charge of −1.6 × 10−19 C. The number of electrons in −1.0 C 
charge is 

−1.0 C  

−1.6 × 10−19 C 
= 6.2 × 1018 . 

(b) Figure 4.1 shows the two particles and the repulsive force F on one of them. 

The magnitude of repulsive force between the two particles is, Eq. (4.1), 

F = k 
q1q2 
r2 

= (9 × 109 N m2 C−2 ) 
(1.0 C)(1.0 C) 

(1.0 m)2
= 9.0 × 109 N. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; e:-1.6e-19; k:9e9; q1:1; q2:1; r:1; 
(fpprintprec) 5 
(e) -1.6*10^-19 
(k) 9.0*10^9 
(q1) 1 
(q2) 1 
(r) 1 
(%i7) -1/e; 
(%o7) 6.25*10^18 
(%i8) F: k*q1*q2/r^2; 
(F) 9.0*10^9 

Comments on the codes:

(%i6) Set the floating point print precision to 5 and assign values of e, k, q1, q2, and 
r.

Fig. 4.1 Two particles with 
an equal electric charge on 
each, Problem 4.1 
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Fig. 4.2 Two spheres, each 
has equal number of 
electrons, Problem 4.2 

r = 4.0 cm 

– – 

(%i7) Calculate the number of electrons. Part (a). 
(%i8) Calculate the Coulomb force F between two particles. Part (b). 

Problem 4.2 Two small spheres are separated by a distance of 4.0 cm. Each sphere 
carries an equal number of electrons. How many electrons are there on each of them 
so that the repulsive force is 1.0 × 10−19 N? 

Solution 

Figure 4.2 shows the two spheres separated by a distance of 4.0 cm. Let us have n 
electrons on each of them. The charge on each sphere is −ne where −e is the charge 
of an electron. 

Applying Eq. (4.1), the magnitude of the Coulomb force, that is, the repulsive 
force between the spheres is 

F = k 
q1q2 
r2 

= k 
(ne)(ne) 

r2
= k 

e2n2 

r2 
. 

Substituting known values and solving for n give 

1.0 × 10−19 N = (9 × 109 N m2 C−2 ) 
(1.6 × 10−19 C)2n2 

(4.0 × 10−2 m)2 
, 

n = 833. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; F:1e-19; e:1.6e-19; k:9e9; r:4e-2; 
(fpprintprec) 5 
(ratprint) false 
(F) 1.0*10^-19 
(e) 1.6*10^-19 
(k) 9.0*10^9 
(r) 0.04 
(%i8) solve(F=k*e^2*n^2/r^2, n)$ float(%); 
(%o8) [n=-833.33,n=833.33] 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and internal rational number print 
to false, and assign values of F, e, k, and r. 

(%i8) Solve F = ke2n2/r2 for n.
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Problem 4.3 

(a) Calculate the magnitude of electric force on a particle of charge q1 = 2.0 × 
10−6 C due to a second particle of charge q2 = 3.0 × 10−6 C. Both charges are 
separated by a distance of 5.0 m. 

(b) A third particle of charge q3 = −4.0 × 10−6 C is placed between both particles, 
3.0 m from the first and 2.0 m from the second. What is the electric force on the 
first particle? 

Solution 

(a) Figure 4.3a shows the first and second particles. 

By Coulomb’s law, electric force on the first particle due to the second particle is, 
Eq. (4.1), 

F12 = k 
q1q2 
r2 

= (9 × 109 N m2 C−2 ) 
(2.0 × 10−6 C)(3.0 × 10−6 C) 

(5.0 m)2 

= 2.2 × 10−3 N to the  left.

The electric force is toward the left as the same charges repel. Due to the same 
charges, the second particle pushes the first toward the left. 

(b) Figure 4.3b shows the three particles. From part (a), electric force on the first 
particle due to the second particle is 

F12 = 2.2 × 10−3 N toward the left. 

Electric force on the first particle due to the third particle is, 

F13 = k 
q1|q3| 
r2 

= (9 × 109 N m2 C−2 ) 
(2.0 × 10−6 C)(4.0 × 10−6 C) 

(3.0 m)2 

= 8.0 × 10−3 N to the right.

   (a)      (b) 

q1 q2 

(1)                                          (2) 
5.0 m 

+ + 

(1)                       (3)               (2) 
3.0 m 

+ + 
2.0 m 

F12 F12 F13 
– 

q1 q3 q2 

Fig. 4.3 Determining electric force of cases a and b, Problem 4.3 
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The absolute value of q3 is used because we want to calculate the magnitude F13. 
The electric force is toward the right as opposite charges attract each other. Due to 
their opposite charges, the third particle pulls the first toward the right. 

The resultant electric force on the first particle is, 

F13 − F12 = 8.0 × 10−3 N − 2.2 × 10−3 N 

= 5.8 × 10−3 N to the right. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; k:9e9; q1:2e-6; q2:3e-6; q3:-4e-6; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) 2.0*10^-6 
(q2) 3.0*10^-6 
(q3) -4.0*10^-6 
(%i6) F12: k*q1*q2/5^2; 
(F12) 0.00216 
(%i7) F13: k*q1*abs(q3)/3^2; 
(F13) 0.008 
(%i8) resultant_force: F13-F12; 
(resultant_force) 0.00584 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of k, q1, 
q2, and q3. 

(%i6), (%i7) Calculate F12 and F13. 
(%i8) Calculate resultant electric force F13 − F12. 

Problem 4.4 Two charges q1 and q2, each of 1.0 × 10−9 C, are separated by a 
distance of 8.0 cm. A third charge q3 = 5.0 × 10−11 C is placed 5.0 cm from both 
of them. Calculate the electric force on the third charge. 

Solution 

Figure 4.4 shows the three charges and the forces on the third charge.

The magnitude of electric force on the third charge due to the first is 

F31 = k 
q1q3 
r2 13 

= (9 × 109 N m2 C−2 ) 
(1.0 × 10−9 C)(5.0 × 10−11 C) 

(5.0 × 10−2 m)2 

= 1.8 × 10−7 N. 

The force is expressed as a vector
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Fig. 4.4 Determining 
electric force on q3, Problem 
4.4

F31 = F31 cos θ i + F31 sin θ j =
[
1.8 × 10−7

(
4 

5

)
i + 1.8 × 10−7

(
3 

5

)
j
]
N 

= (1.4 × 10−7 i + 1.1 × 10−7 j) N. 

The magnitude of electric force on the third charge due to the second F32 is equal 
to F31, 

F32 = 1.8 × 10−7 N. 

In vector form, this force is 

F32 = −F32 cos θ i + F32 sin θ j 
= (−1.4 × 10−7 i + 1.1 × 10−7 j) N. 

Therefore, the resultant electrostatic force on the third charge is 

F = F31 + F32 = 2.2 × 10−7 j N. 

The force is in the positive y direction, that is, the j direction. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; k:9e9; q1:1e-9; q2:1e-9; q3:5e-11; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) 1.0*10^-9 
(q2) 1.0*10^-9 
(q3) 5.0*10^-11 
(%i6) F31: k*q1*q3/5e-2^2; 
(F31) 1.8*10^-7 
(%i7) F31vec: [F31*(4/5),F31*(3/5)]; 
(F31vec) [1.44*10^-7,1.08*10^-7] 
(%i8) F32: F31; 
(F32) 1.8*10^-7 
(%i9) F32vec: [-F32*(4/5),F32*(3/5)]; 
(F32vec) [-1.44*10^-7,1.08*10^-7] 
(%i10) Fvec: F31vec + F32vec; 
(Fvec) [0.0,2.16*10^-7]
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Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of k, q1, 
q2, and q3. 

(%i6), (%i7) Calculate F31 and assign vector F31. 
(%i8), (%i9) Assign F32 and vector F32. 
(%i10) Calculate vector F. 

Problem 4.5 A particle of charge q1 = 5.0 × 10−3 C is located at the origin. A 
second particle of charge q2 = −3.0 × 10−3 C is placed at coordinate (3, 4) m. 
Calculate the electric force acting on the second particle. 

Solution 

Figure 4.5 shows the two particles and the electric force acting on the second particle. 

In vector form, the electrostatic force acting on the second particle due to the first 
particle is, 

F21 = k 
q1q2 
r2 12 

r̂12 = k 
q1q2 
r3 12 

r12, 

where 

r12 = (3 i + 4 j) m, 

r12 =
√
32 + 42m = 5 m,  

r̂12 = 
r12 
r12 

.

Fig. 4.5 Determining 
electric force on q2, Problem 
4.5 
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This gives the electrostatic force acting on the second particle due to the first 
particle as 

F21 = (9 × 109 N m2 C−2 ) 
(5.0 × 10−3 C)(−3.0 × 10−3 C) 

(5.0 m)3 
(3 i + 4 j) m 

= (−3240 i − 4320 j) N. 

The magnitude of the electrostatic force is 

F21 =
√

(−3240)2 + (−4320)2 N = 5.4 × 103 N. 

The angle is 

θ = tan−1

(
3 

4

)
= 0.64 rad = 37◦. 

Alternative solution: This problem can be solved without resorting to vectors, as 
well. The distance between the charges is 5.0 m and the magnitude of the electrostatic 
force is, Eq. (4.1), 

F21 = k 
q1q2 
r2 12 

= (9 × 109 N m2 C−2 ) 
(5.0 × 10−3 C)(3.0 × 10−3 C) 

(5.0 m)2 

= 5.4 × 103 N. 

The force is attractive because the signs of charges are not the same. The direction 
of the force is from the second to the first particle, along the line connecting the two 
particles. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; q1:5e-3; q2:-3e-3; k:9e9; 
(fpprintprec) 5 
(q1) 0.005 
(q2) -0.003 
(k) 9.0*10^9 
(%i6) r12vector:[3,4]; r12:5; 
(r12vector) [3,4] 
(r12) 5 
(%i7) F21vector: k*q1*q2/r12^3*r12vector; 
(F21vector) [-3240.0,-4320.0] 
(%i8) F21: sqrt(F21vector[1]^2 + F21vector[2]^2); 
(F21) 5400.0 
(%i9) theta: float(atan(3/4)); 
(theta) 0.6435 
(%i10) theta_deg: float(theta*180/%pi); 
(theta_deg) 36.87 
(%i11) F21: k*q1*abs(q2)/r12^2; 
(F21) 5400.0
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Comments on the codes: 

(%i4) Set the floating point print precision to 5 and assign values of q1, q2, 
and k. 

(%i6) Assign vector r12 and its magnitude r12. 
(%i7), (%i8) Calculate force F21 and magnitude F21. 
(%i9), (%i10) Calculate angle θ. 
(%i11) Calculate magnitude F21 directly. 

Problem 4.6 Four charges are fixed on a plane as in Fig. 4.6a. What is the resultant 
electric force on the first charge? The charges are q1 = 5.0 × 10−3 C, q2 = −6.0 × 
10−3 C, q3 = −3.0 × 10−3 C, and q4 = 4.0 × 10−3 C. 

Solution 

The resultant electric force on the first charge due to charges 2, 3, and 4 is 

F = F12 + F13 + F14 

= k
[
q2q1 
r3 21 

r21 + 
q3q1 
r3 31 

r31 + 
q4q1 
r3 41 

r41

]

= (9 × 109 N m2 C−2 )

[
(−6.0 × 10−3 C)(5.0 × 10−3 C) 

(3.0 m)3 
(−3 i m) 

+ 
(−3.0 × 10−3 C)(5.0 × 10−3 C) 

(5.0 m)3 
(−3 i − 4 j) m 

+ 
(4.0 × 10−3 C)(5.0 × 10−3 C) 

(4.0 m)3 
(−4 j m)

]

= (33240 i − 6930 j) N. 

The magnitude of the force is

Fig. 4.6 a Configuration of four charges; b determining electric force on q1, Problem 4.6 
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F = 
√

(33240)2 + (−6930)2 N = 33955 N, 

and the direction is 

θ = tan−1

(−6930 

33240

)
= −0.21 rad = −12◦. 

The resultant electric force F and its direction θ are shown in Fig. 4.6b. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; k:9e9; q1:5e-3; q2:-6e-3; q3:-3e-3; q4:4e-3; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) 0.005 
(q2) -0.006 
(q3) -0.003 
(q4) 0.004 
(%i12) r21vec:[-3,0]; r21:3; r31vec:[-3,-4]; r31:5; r41vec:[0,-4]; r41:4; 
(r21vec) [-3,0] 
(r21) 3 
(r31vec) [-3,-4] 
(r31) 5 
(r41vec) [0,-4] 
(r41) 4 
(%i13) F12vec: k*q2*q1/r21^3*r21vec; 
(F12vec) [3.0*10^4,0] 
(%i14) F13vec: k*q3*q1/r31^3*r31vec; 
(F13vec) [3240.0,4320.0] 
(%i15) F14vec: k*q4*q1/r41^3*r41vec; 
(F14vec) [0,-1.125*10^4] 
(%i16) Fvec: F12vec + F13vec + F14vec; 
(Fvec) [3.324*10^4,-6930.0] 
(%i17) F: sqrt(Fvec[1]^2 + Fvec[2]^2); 
(F) 3.3955*10^4 
(%i18) theta: atan(Fvec[2]/Fvec[1]); 
(theta) -0.20554 
(%i19) theta_deg: float(theta*180/%pi); 
(theta_deg) -11.777 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and assign values 
of k, q1, q2, q3, and q4. 

(%i12) Assign vector r21 and its length r21, vector r31 and its length 
r31, and vector r41 and its length r41. 

(%i13), (%i14), (%i15) Calculate vectors F12, F13, and F14. 
(%i16), (%i17) Calculate vector F and its magnitude F. 
(%i18), (%i19) Calculate θ and convert the angle to degree. 

Alternative solution: This problem can also be solved without using vectors. 
Figure 4.7 shows the four charges and three electric forces acting on the first charge.
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Fig. 4.7 Determining 
electric force on q1, Problem 
4.6 

The magnitudes of all three electric forces on the first charge are 

F12 = k 
q1|q2| 
r2 12 

= (9 × 109 N m2 C−2 ) 
(5.0 × 10−3 C)(6.0 × 10−3 C) 

(3.0 m)2
= 30000 N, 

F13 = k 
q1|q3| 
r2 13 

= (9 × 109 N m2 C−2 ) 
(5.0 × 10−3 C)(3.0 × 10−3 C) 

(5.0 m)2
= 5400 N, 

F14 = k 
q1q4 
r2 14 

= (9 × 109 N m2 C−2 ) 
(5.0 × 10−3 C)(4.0 × 10−3 C) 

(4.0 m)2
= 11250 N. 

The resultant electric force in the x direction is 

Fx = F12 + F13 cos φ = [30000 + 5400 (3/5)] N = 33240 N. 

The resultant electric force in the y direction is 

Fy = −F14 + F13 sin φ = [−11250 + 5400 (4/5)] N = −6930 N. 

Therefore, the magnitude of resultant electric force is 

F = 
√
F2 
x + F2 

y =
√
332402 + 69302 N = 33955 N, 

and the angle between the resultant electric force and the x-axis is 

θ = tan−1

(−6930 

33240

)
= −0.21 rad = −12◦.
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The resultant electric force F and its direction θ are shown in Fig. 4.6b. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; k:9e9; q1:5e-3; q2:-6e-3; q3:-3e-3; q4:4e-3; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) 0.005 
(q2) -0.006 
(q3) -0.003 
(q4) 0.004 
(%i7) F12: k*q1*abs(q2)/3^2; 
(F12) 3.0*10^4 
(%i8) F13: k*q1*abs(q3)/5^2; 
(F13) 5400.0 
(%i9) F14: k*q1*q4/4^2; 
(F14) 1.125*10^4 
(%i10) Fx: F12 + F13*3/5; 
(Fx) 3.324*10^4 
(%i11) Fy: -F14 + F13*4/5; 
(Fy) -6930.0 
(%i12) F: sqrt(Fx^2 + Fy^2); 
(F) 3.3955*10^4 
(%i13) theta: atan(Fy/Fx); 
(theta) -0.20554 
(%i14) theta_deg: float(theta*180/%pi); 
(theta_deg) -11.777 

Comments on the codes: 

(%i6) Set the floating point print precision to 5, and assign values of 
k, q1, q2, q3, and q4. 

(%i7), (%i8), (%i9) Calculate F12, F13, and F14. 
(%i10), (%i11) Calculate Fx and Fy. 
(%i12) Calculate magnitude F. 
(%i13), (%i14) Calculate θ and convert the angle to degree. 

Problem 4.7 Two spheres having the same mass of 0.10 g and the same electric 
charge are suspended by a 50 cm thread as shown in Fig. 4.8. The angle between the 
thread and the vertical is 10° due to repulsion between the spheres. Calculate,

(a) charge on the sphere 
(b) tension in the thread. 

Solution 

(a) Let the charge on the sphere be q. Figure 4.9 shows forces acting on one of the 
spheres. The forces are the weight of the sphere mg, tension in the thread T, and 
electrostatic repulsive force F.
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Fig. 4.8 Two separated 
charged spheres on threads, 
Problem 4.7

Fig. 4.9 Forces on one of 
the spheres, Problem 4.7 

The vector sum of the three forces is zero, because the sphere is in equilibrium. 
Thus, the net force in the x and y directions are zero and we write

∑
Fx = T sin θ − F = 0, (1)

∑
Fy = T cos θ − mg = 0. (2) 

The two equations give 

F = mg tan θ. (3) 

ByCoulomb’s law, the electrostatic force is,
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F = 
kq2 

r2 
= kq2 

(2l sin θ)2 
(4) 

since the distance between the spheres is 2l sin θ, where l is the length of the thread. 
The charge q can be calculated from Eqs. (3) and (4), 

kq2 

(2l sin θ)2 
= mg tan θ,  

q2 = 
4l2mg sin2 θ tan θ 

k 

= 
4(0.50 m)2(0.10 × 10−3 kg)(9.8 m/s2 ) sin2 10◦ tan 10◦ 

9 × 109 N m2 C−2 , 

q = 2.4 × 10−8 C. 

(b) Tension in the thread is calculated from Eq. (4.2) as follows: 

T cos θ − mg = 0, 

T = 
mg 

cos θ 
= 

(0.10 × 10−3 kg)(9.8 m/s2 ) 
cos 10◦ 

= 1.0 × 10−3 N. 

♦ wxMaxima codes: 

(%i7) fpprintprec:5; ratprint:false; k:9e9; g:9.8; m:0.1e-3; l:0.5; 
theta:float(10/180*%pi); 
(fpprintprec) 5 
(ratprint) false 
(k) 9.0*10^9 
(g) 9.8 
(m) 1.0*10^-4 
(l) 0.5 
(theta) 0.17453 
(%i9) solve(k*q^2/(2*l*sin(theta))^2 = m*g*tan(theta), q)$ float(%); 
(%o9) [q=-2.4061*10^-8,q=2.4061*10^-8] 
(%i10) T: m*g/cos(theta); 
(T) 9.9512*10^-4 

Comments on the codes: 

(%i7) Set the floating point print precision to 5 and internal rational number print 
to false, and assign values of k, g, m, l, and θ. 

(%i9) Solve kq2/(2l sin θ)2 = mg tan θ for q. Part (a). 
(%i10) Calculate tension T. Part (b).
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♦ Alternative calculation: 

(%i7) fpprintprec:5; ratprint:false; k:9e9; g:9.8; m:0.1e-3; l:0.5; 
theta:float(10/180*%pi); 
(fpprintprec) 5 
(ratprint) false 
(k) 9.0*10^9 
(g) 9.8 
(m) 1.0*10^-4 
(l) 0.5 
(theta) 0.17453 
(%i9) solve([T*sin(theta)-F=0, T*cos(theta)-m*g=0, 
F=k*q^2/(2*l*sin(theta))^2], [q,T,F])$ float(%); 
(%o9) [[q=2.4061*10^-8,T=9.9512*10^-4,F=1.728*10^-4],[q=-2.4061*10^-8,T= 
9.9512*10^-4,F=1.728*10^-4]] 

Comments on the codes: 

(%i7) Set the floating point print precision to 5 and internal rational number print 
to false, and assign values of k, g, m, l, and θ. 

(%i9) Solve Eqs. (1), (2), and (4) for  q, T, and F. 
(%o9) The solutions. 

Problem 4.8 A particle of charge q and a thin rod of length L that has charge Q are 
arranged as in Fig. 4.10. Calculate the electric force on the particle. 

Solution 

The charged rod and the particle are redrawn in Fig. 4.11. We want to calculate 
electric force on the particle due to the whole length of the charged rod. To do this, 
we consider an infinitesimal element of the rod, calculate the force due to the element, 
and do the integration for the whole rod.

For the infinitesimal length of the rod dx, the infinitesimal charge is 

dQ  = 
dx  

L 
Q. 

By Coulomb’s law, electric force on the particle due to this infinitesimal charge 
is

Fig. 4.10 A charged particle and a charged rod, Problem 4.8 
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Fig. 4.11 Determining electrical force on a charged particle due to a charged rod, Problem 4.8

dF  = kq d Q 

(L + a − x)2 
= kQq  dx  

L(L + a − x)2 
. 

This force is toward the right. The force is toward the right as charges of the same 
sign repel. Due to the same signs, the infinitesimal charge pushes the particle toward 
the right. 

The force on the particle due to the whole length of the rod is 

F =
∫

dF  = 
kQq  

L 

L∫

0 

dx  

(L + a − x)2 
. 

The integral can be calculated by substitution, 

u = 1 

L + a − x 
= (L + a − x)−1 , 

du = (−1)(L + a − x)−2 (−1)dx  = dx  

(L + a − x)2 
. 

Therefore, the electric force on the particle is 

F = 
kQq  

L 

1/a∫

1/(L+a) 

du = 
kQq  

L 
[u] 

1/a 
1/(L + a) 

= 
kQq  

L

[
1 

a 
− 

1 

L + a

]

= kQq  

a(L + a) 
. 

The direction of the force is toward the right. 

♦ wxMaxima codes:
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Fig. 4.12 Two charged 
particles, Problem 4.9 

(%i1) F: integrate(k*Q*q/L, u, 1/(L+a), 1/a); 
(F) (Q*(1/a-1/(a+L))*k*q)/L 
(%i2) ratsimp(%); 
(%o2) (Q*k*q)/(a^2+L*a) 

Comments on the codes: 

(%i1) Calculate the integration F = 
1/a∫

1/(L+a) 

kQq  
L du. 

(%i2) Simplify the result. 

Problem 4.9 Two particles of charges q1 = −2.0 × 10−6 C and q2 = 5.0 × 10−6 C 
are arranged as in Fig. 4.12. 

(a) Calculate the electric field at point P. 
(b) A third particle of charge q3 = 1.0 × 10−6 C is placed at P. What is the electric 

force acting on the particle? 

Solution 

(a) Figure 4.13 shows the two charges, point P, and electric fields at P. 

The magnitude of the electric field due to q1 at point P is, Eq. (4.3), 

E1 = k 
|q1| 
r2 

=
(
9 × 109 

N m2 

C2

)
(2.0 × 10−6 C) 

(3.0 m)2
= 2000 N C−1 . 

The direction is toward the right because q1 is negative. This electric field is 
written as

Fig. 4.13 Determining electric field at point P, Problem 4.9 
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E1 = 2000 i NC−1 . 

The magnitude of the electric field due to q2 at point P is, Eq. (4.3), 

E2 = k 
q2 
r2 

=
(
9 × 109 

N m2 

C2

)
(5.0 × 10−6 C) 

(5.0 m)2
= 1800 N C−1 . 

The direction is toward the left because q2 is positive. This electric field is written 
as, 

E2 = −1800 i NC−1 . 

Thus, the electric field at P due to both charges is, 

E = E1 + E2 = (2000 − 1800) i N C−1 = 200 i N C−1 . 

The direction of the field is toward the right. 

(b) Force on the third charged particle placed at point P is the charge multiplied by 
the electric field there, 

F = q3 E = (1.0 × 10−6 C)(200 i N C−1 ) = 2.0 × 10−4 i N. 

The force is toward the right. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; k:9e9; q1:-2e-6; q2:5e-6; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) -2.0*10^-6 
(q2) 5.0*10^-6 
(%i5) E1: k*abs(q1)/3^2; 
(E1) 2000.0 
(%i6) E2: -k*q2/5^2; 
(E2) -1800.0 
(%i7) E: E1+E2; 
(E) 200.0 
(%i8) q3:1e-6; 
(q3) 1.0*10^-6 
(%i9) F: q3*E; 
(F) 2.0*10^-4 

Comments on the codes:

(%i4) Set the floating point print precision to 5 and assign values of 
k, q1 and q2. 

(%i5), (%i6), (%i7) Calculate E1, E2, and E. Part (a).
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Fig. 4.14 Two charged particles’ configuration, Problem 4.10 

Fig. 4.15 Determining electric field at point P, Problem 4.10 

(%i8) Assign q3. 
(%i9) Calculate F. Part (b). 

Problem 4.10 Two particles of charges q1 = −2.0 × 10−6 C and q2 = 5.0 × 10−6 

C are arranged as in Fig. 4.14. Calculate the electric field at point P. 

Solution 

Figure 4.15 shows the two charged particles, point P, and electric fields due to the 
charges at the point. 

The magnitude of electric field due to charge q1 at point P is, Eq. (4.3), 

E1 = k 
|q1| 
r2 

=
(
9 × 109 

N m2 

C2

)
(2.0 × 10−6 C) 

(3.0 m)2
= 2000 N C−1 . 

The direction of the field is toward the left because q1 is negative. The electric 
field is written as 

E1 = −2000 i NC−1 . 

The magnitude of electric field due to charge q2 at point P is, Eq. (4.3), 

E2 = k 
q2 
r2 

=
(
9 × 109 

N m2 

C2

)
(5.0 × 10−6 C) 

(5.0 m)2
= 1800 N C−1 . 

The direction of the field is toward the left because q2 is positive. The electric 
field is written as 

E2 = −1800 i NC−1 .
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Therefore, the electric field due to both charges at point P is 

E = E1 + E2 = (−2000 − 1800) i N C−1 = −3800 i N C−1 

The direction of the field is toward the left. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; k:9e9; q1:-2e-6; q2:5e-6; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) -2.0*10^-6 
(q2) 5.0*10^-6 
(%i5) E1: -k*abs(q1)/3^2; 
(E1) -2000.0 
(%i6) E2: -k*q2/5^2; 
(E2) -1800.0 
(%i7) E: E1+E2; 
(E) -3800.0 

Comments on the codes: 

(%i4) Set the floating point print precision to 5 and assign values of 
k, q1, and q2. 

(%i5), (%i6), (%i7) Calculate E1, E2, and E. 

Problem 4.11 Charges of 5.0 and −8.0 µC are placed on the x-axis at x = 0 and x 
= 1.0 m, respectively. Where should a third charge be placed so that the electrical 
force on it is zero? 

Solution 

Figure 4.16 shows the two charges on the x-axis. Any charged object will not be 
acted by any electrical force if it is placed in zero electric field region, because F = 
qE. Therefore, we need to find a point of zero electric field on the x-axis. 

Let P be the point where the electric field is zero and l the distance from P to the 
first charge. We assume l to be a positive number. At P, the electric fields due to 5.0 
and −8.0 µC charges must be of the same magnitude but opposite in sign. So,

Fig. 4.16 Determining point of zero electric field, Problem 4.11 
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E1 = |E2|, 
k 
q1 
l2 

= k 
|q2| 

(l + 1)2 
. 

This gives 

5 

l2 
= 8 

(l + 1)2 
, 

l = 3.8 m or  − 0.44 m. 

From Fig. 4.16, the solution l = 3.8 m corresponds to the position of the arbitrary 
third charge at x = −3.8 m. At this point, the electric field is zero. Any charged 
particle placed at the point will not be acted by any electrical force. The −0.44 m 
value is not accepted because we require l to be a positive number. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; k:9e9; q1:5e-6; q2:-8e-6; 
(fpprintprec) 5 
(ratprint) false 
(k) 9.0*10^9 
(q1) 5.0*10^-6 
(q2) -8.0*10^-6 
(%i7) solve(k*q1/l^2 = k*abs(q2)/(l+1)^2, l)$ float(%); 
(%o7) [l=-0.44152,l=3.7749] 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and internal rational number print 
to false, and assign values of k, q1, and q2. 

(%i7) Solve kq1/ l2 = k|q2|/(l + 1)2 for l. 

Problem 4.12 Figure 4.17 shows three charges q1 = 4.0 µC, q2 = −6.0 µC, and q3 
= 8.0 µC, on a plane. Calculate the electric field at the origin.

Solution 

Electric field due to the distribution of point charges can be calculated by the formula, 
Eq. (4.4), 

E = k
∑

i 

qi 
r3 i 

r i = k
∑

i 

qi 
r2 i 

r̂ i , 

where qi is the i th charge, ri is the displacement vector from the charge to the 
observation point, and r̂ i = r i ri is the unit vector. The electric field at the origin due 
to the three charges is
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Fig. 4.17 Configuration of 
three charges, Problem 4.12

E = k
[
q1 
r3 1 

r1 + 
q2 
r3 2 

r2 + 
q3 
r3 3 

r3

]

=
(
9 × 109 

N m2 

C2

) [
(4.0 × 10−6 C) 

(4.0 m)3 
(−4 i m) 

+ 
(−6.0 × 10−6 C) 

(5.0 m)3 
(−4 i − 3 j) m 

+ 
(8.0 × 10−6 C) 

(3.0 m)3 
(−3 j m)

]

= (−522 i − 6704 j) N C−1 . 

The magnitude of the electric field is 

E = 
√

(−522)2 + (−6704)2 N C−1 = 6724 N C−1 , 

and the angle of the electric field with the x-axis is 

θ = tan−1

(−6704 

−522

)
= 266◦. 

The electric field E and the angle θ are shown in Fig. 4.18.

♦ wxMaxima codes:
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Fig. 4.18 Determining 
electric field at the origin due 
to three charges, Problem 
4.12

(%i5) fpprintprec:5; k:9e9; q1:4e-6; q2:-6e-6; q3:8e-6; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) 4.0*10^-6 
(q2) -6.0*10^-6 
(q3) 8.0*10^-6 
(%i8) r1vec:[-4,0]; r2vec:[-4,-3]; r3vec:[0,-3]; 
(r1vec) [-4,0] 
(r2vec) [-4,-3] 
(r3vec) [0,-3] 
(%i9) Evec: k*(q1/4^3*r1vec + q2/5^3*r2vec + q3/3^3*r3vec); 
(Evec) [-522.0,-6704.0] 
(%i10) E: sqrt(Evec[1]^2 + Evec[2]^2); 
(E) 6724.3 
(%i11) theta: atan(Evec[2]/Evec[1]); 
(theta) 1.4931 
(%i12) theta_deg: float(theta*180/%pi); 
(theta_deg) 85.548 
(%i13) 180+theta_deg; 
(%o13) 265.55 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values 
of k, q1, q2, and q3. 

(%i8) Assign vectors r1, r2, and r3. 
(%i9) Calculate electric field vector E. 
(%i10) Calculate the magnitude of the electric field E. 
(%i11), (%i12), (%i13) Calculate angle θ between E and the x-axis. 

Alternative solution: Another way to tackle the problem is shown in Fig. 4.18. 
First, we calculate the magnitudes of electric fields due to the three charges at the 
origin. Then, we add the x and y components of the fields.
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In the figure, E1, E2, and E3 are electric fields at the origin due to charges q1, q2, 
and q3, respectively. The magnitudes of the electric fields are 

E1 = k 
q1 
r2 1 

=
(
9 × 109 

N m2 

C2

)
(4.0 × 10−6 C) 

(4.0 m)2
= 2250 N C−1 , 

E2 = k 
|q2| 
r2 2 

=
(
9 × 109 

N m2 

C2

)
(6.0 × 10−6 C) 

(5.0 m)2
= 2160 N C−1 , 

E3 = k 
q3 
r2 3 

=
(
9 × 109 

N m2 

C2

)
(8.0 × 10−6 C) 

(3.0 m)2
= 8000 N C−1 . 

The resultant electric field in the x direction at the origin is 

Ex = −E1 + E2 cos φ = [−2250 + 2160 (4/5)] N C−1 = −522 N C−1 . 

The resultant electric field in the y direction at the origin is 

Ey = E2 sin φ − E3 = [2160 (3/5) − 8000] N C−1 = −6704 N C−1 . 

Thus, the electric field at the origin is 

E = (−522 i − 6704 j) N C−1 . 

The electric field E is shown in Fig. 4.18. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; k:9e9; q1:4e-6; q2:-6e-6; q3:8e-6; 
(fpprintprec) 5 
(k) 9.0*10^9 
(q1) 4.0*10^-6 
(q2) -6.0*10^-6 
(q3) 8.0*10^-6 
(%i8) E1:k*q1/4^2; E2:k*abs(q2)/5^2; E3:k*q3/3^2; 
(E1) 2250.0 
(E2) 2160.0 
(E3) 8000.0 
(%i10) Ex:-E1+E2*(4/5); Ey:E2*(3/5)-E3; 
(Ex) -522.0 
(Ey) -6704.0 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of k, q1, q2, and 
q3. 

(%i8) Calculate magnitudes of electric fields E1, E2, and E3. 
(%i10) Calculate Ex and Ey, the components of E.
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Problem 4.13 Figure 4.19 shows two charges, each of + q, separated by a distance 
of 2a. 

(a) Determine the electric field at point P a distance x away. 
(b) What is the field when x � a? 

Solution 

(a) Figure 4.20 shows the two charges, point P, electric fields due to both charges 
at P, i.e. E1 and E2, and related distances and angle. 

The magnitude of the electric field at P due to the first (top) charge is,

Fig. 4.19 Configuration of two charges, Problem 4.13 

Fig. 4.20 Determining electric field at point P, Problem 4.13 
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E1 = k 
q 

r2 
= k 

q 

a2 + x2 
. 

This electric field expressed as a vector is 

E1 = E1 cos θ i − E1 sin θ j 

= k 
q 

a2 + x2 
· x √

a2 + x2 
i − k 

q 

a2 + x2 
· a √

a2 + x2 
j. 

The magnitude of the electric field at P due to the second (bottom) charge is 

E2 = k 
q 

r2 
= k 

q 

a2 + x2 
. 

This electric field expressed as a vector is 

E2 = E2 cos θ i + E2 sin θ j 

= k 
q 

a2 + x2 
· x √

a2 + x2 
i + k 

q 

a2 + x2 
· a √

a2 + x2 
j. 

The electric field at point P is the vector sum of the two electric fields, 

E = E1 + E2 = 2kqx 

(a2 + x2)3/2 
i. 

The magnitude of the electric field is 2kqx 
(a2+x2)3/2 in the positive x direction. 

♦ wxMaxima codes: 

(%i1) E1vec: [k*q*x/(a^2+x^2)/sqrt(a^2+x^2), 
-k*q*x/(a^2+x^2)/sqrt(a^2+x^2)]; 

(E1vec) [(k*q*x)/(x^2+a^2)^(3/2),-(k*q*x)/(x^2+a^2)^(3/2)] 
(%i2) E2vec: [k*q*x/(a^2+x^2)/sqrt(a^2+x^2), 

k*q*x/(a^2+x^2)/sqrt(a^2+x^2)]; 
(E2vec) [(k*q*x)/(x^2+a^2)^(3/2),(k*q*x)/(x^2+a^2)^(3/2)] 
(%i3) Evec: E1vec + E2vec; 
(Evec) [(2*k*q*x)/(x^2+a^2)^(3/2),0] 

Comments on the codes: 

(%i1) Assign electric field vector E1. 
(%i2) Assign electric field vector E2. 
(%i3) Calculate electric field vector E. 

(b) When x � a, x 
(a2+x2)3/2 ≈ 1 

x2 , so the electric field is, 

E = 
2kq 

x2 
i.
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Fig. 4.21 An electric dipole, 
Problem 4.14 

Problem 4.14 Figure 4.21 is an electric dipole, that is, two electric charges of the 
same magnitude but opposite in signs, separated by a distance of 2a. 

(a) Determine the electric field at point P a distance x away from the center of the 
electric dipole. 

(b) What is the electric field if x � a? 

Solution 

(a) Figure 4.22 shows the electric dipole and electric fields at point P. 

The magnitude of electric field at point P due to top charge is 

E1 = k 
q 

r2 
= k 

q 

a2 + x2 
. 

This electric field is written in vector form as 

E1 = E1 cos θ i − E1 sin θ j.

Fig. 4.22 Determining 
electric field at point P of an 
electric dipole, Problem 4.14 



110 4 Electric Field

The magnitude of electric field at point P due to bottom charge is the same, 

E2 = k 
q 

r2 
= k 

q 

a2 + x2 
= E1. 

The electric field is written in vector form as 

E2 = −E1 cos θ i − E1 sin θ j. 

The electric field at point P is the vector sum of E1 and E2, 

E = E1 + E2 = −2E1 sin θ j = −2 × kq 

a2 + x2 
· a 

(a2 + x2)1/2 
j 

= −  
2kqa 

(a2 + x2)3/2 
j. 

This is the electric field due to an electric dipole at a distance x away. The direction 
of the electric field is to the negative y direction, that is, −j direction. 

♦ wxMaxima codes: 

(%i1) E1: k*q/(a^2+x^2); 
(E1) (k*q)/(x^2+a^2) 
(%i2) E1vec: [E1*x/sqrt(a^2+x^2), -E1*a/sqrt(a^2+x^2)]; 
(E1vec) [(k*q*x)/(x^2+a^2)^(3/2),-(a*k*q)/(x^2+a^2)^(3/2)] 
(%i3) E2: E1; 
(E2) (k*q)/(x^2+a^2) 
(%i4) E2vec: [-E2*x/sqrt(a^2+x^2), -E2*a/sqrt(a^2+x^2)]; 
(E2vec) [-(k*q*x)/(x^2+a^2)^(3/2),-(a*k*q)/(x^2+a^2)^(3/2)] 
(%i5) Evec: E1vec + E2vec; 
(Evec) [0,-(2*a*k*q)/(x^2+a^2)^(3/2)] 

Comments on the codes: 

(%i1), (%i2) Assign E1 and vector E1. 
(%i3), (%i4) Assign E2 and vector E2. 
(%i5) Calculate vector E. 

(b) If x � a, then a 
(a2+x2)3/2 ≈ a 

x3 . The electric field at a point far away from the 
electric dipole is, 

E = −  
2kqa 

x3 
j = − qa 

2πε0x3 
j. 

This means that at a point far away from the electric dipole, the magnitude of the 
electric field is inversely proportional to the cube of the distance.
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Problem 4.15 

(a) Figure 4.23 shows a wire of length 2L with linear charge density λ. Calculate 
the electric field at point P, a distance y away from the wire. 

(b) What is the electric field if the wire is very long? 

Solution 

Figure 4.24 shows the wire and other quantities needed to solve the problem. Consider 
an element of the wire of length dx. Electric field at P due to this element is calculated. 
The electric field due to the whole wire is then calculated by the integration of all 
elements. 

The electric charge of wire element dx is, 

dq = λ dx,

Fig. 4.23 Wire of length 2L and charge density λ, Problem 4.15 

Fig. 4.24 Determining electric field at point P, Problem 4.15 



112 4 Electric Field

where λ is the linear charge density. The charge produces the electric field dE at 
point P. By Coulomb’s law, the magnitude of the field is 

dE  = 
k dq  

r2 
= 

kλ dx  
x2 + y2 

. 

The electric field dE is resolved into the x component of dEx and the y compo-
nent of dEy. Considering the whole wire, the x component of the field vanishes by 
symmetry. 

The electric field at P is the integral of the y component of the field for the whole 
wire, 

E =
∫

dEy =
∫

dE  sin θ = 
L∫

−L 

kλ dx  
x2 + y2 

· y √
x2 + y2 

= 
kλ 
y 

L∫

−L 

y2 dx  

(x2 + y2)3/2 
= 

kλ 
y

[
x 

(x2 + y2)1/2

]L 

−L 

= 2kλL 

y(L2 + y2)1/2 
. 

The electric field is in the positive y direction. This is entry (c) of Table 4.1. 

(b) If the wire is very long, L → ∞, L 
(L2+y2)1/2 → 1, and the electric field is, 

E = 
2kλ 
y 

= λ 
2πε0 y 

. 

This is entry (b) of Table 4.1. This result can be obtained by applying Gauss’s law 
as well, as shown in Problem 5.6. 

♦ wxMaxima codes: 

(%i2) assume(L>0); integrate(y^2/(x^2+y^2)^(3/2), x, -L, L); 
(%o1) [L>0] 
(%o2) (2*L*y^2*sqrt(y^2+L^2))/(y^4+L^2*y^2) 
(%i3) ratsimp(%); 
(%o3) (2*L)/sqrt(y^2+L^2) 
(%i4) E: k*lambda/y*%; 
(E) (2*L*k*lambda)/(y*sqrt(y^2+L^2)) 
(%i5) limit( E, L, inf); 
(%o5) (2*k*lambda)/y 

Comments on the codes:

(%i2) Calculate definite integral 
L∫

−L 

y2 dx  
(x2+y2)3/2 .
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Fig. 4.25 Determining 
electric field at center of 
curvature of a semicircular 
charged wire, Problem 4.16 

(%i3) Simplify the result. 
(%i4) Calculate E. 
(%i5) Calculate the limit of E as L goes to infinity. 

Problem 4.16 Electric charge Q distributes uniformly on a semicircular wire. The 
radius of the semicircle is a. Determine the electric field at the center of curvature of 
the wire. 

Solution 

Figure 4.25 shows the semicircular wire and quantities to solve the problem. A wire 
element of length ds is considered, and the electric field at the center of curvature 
due to the element is calculated. The electric field is obtained by integration of the 
whole length of the wire. 

Linear charge density (charge per unit length) of the wire is 

λ = 
Q 

πa 
. 

The length element ds = a dθ is in the first quadrant. The charge of the length 
element is 

dq = λ ds  = λa dθ.  

Applying Coulomb’s law, the electric field dE due to the length element is 

dE  = 
k dq  

a2 
= 

k 

a2 
λa dθ = 

kλ 
a 
dθ.  

The electric field dE is resolved into dE cos θ and dE sin θ. By symmetry, the 
dE cos θ vanishes when quadrants one and two are considered. Only the dE sin θ 
component contributes to the field. By symmetry, the electric field at the center of 
curvature is
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E = 2 
π/2∫

0 

dE  sin θ = 2 
π/2∫

0 

kλ 
a 

sin θ dθ = 
2kλ 
a 

[−cosθ ]π/2 
0 = 

2kλ 
a 

= 
2kQ  

a2π 

= Q 

2ε0π 2a2 
. 

The field is in the negative y direction. 

♦ wxMaxima codes: 

(%i1) E: integrate(2*k*lambda/a*sin(theta), theta, 0, %pi/2); 
(E) (2*k*lambda)/a 

Comment on the codes: 

(%i1) Calculate the integral E = 
π/2∫

0 
2 kλ 

a sin θ dθ . 

Problem 4.17 A wire is bent into an arc of a circle of radius a, Fig.  4.26. Charge on 
the wire is Q. Determine the electric field at the center of curvature of the wire. 

Solution 

Figure 4.27 shows the charged wire, the electric fields, and other quantities to solve 
the problem. A length element of the wire ds is considered and the electric field due 
to the element is calculated. The effective electric field is calculated by integrating 
the field due to the element for the whole wire.

Length of the wire is 

π/2 

2π 
· 2πa = 

πa 

2 
. 

Linear charge density (charge per unit length) is

Fig. 4.26 A charged arc, 
Problem 4.17 
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Fig. 4.27 Determining 
electric field at center of 
curvature of a charged arc, 
Problem 4.17

λ = Q 

π a/2 
= 

2Q 

π a 
. 

For length element ds = a dθ, the charge it carries is 

dq = λ ds  = λa dθ.  

Applying Coulomb’s law, the electric field dE due to length element ds at the 
center of curvature is 

dE  = 
k dq  

a2 
= 

kλa dθ 
a2 

= 
kλ 
a 
dθ.  

The x component of the field is 

dEx = −dE  cos θ = −  
kλ 
a 
cos θ dθ.  

The x component of the electric field due to the whole wire is 

Ex =
∫

dEx = 
3π/4∫

π/4 

− 
kλ 
a 
cos θ dθ = −  

kλ 
a 
[sin θ ] 

3π/4 
π/2 

= 0. 

The y component of the field is 

dEy = −dE  sin θ = −  
kλ 
a 
sinθ dθ.  

The y component of the electric field due to the whole wire is
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Ey =
∫

dEy = 
3π/4∫

π/4 

− 
kλ 
a 
sinθ dθ = 

kλ 
a 
[cos θ ] 

3π/4 
π/2 

= 
kλ 
a 

[cos(3π/4) − cos(π/2)] 

= −  
√
2kλ 
a

= −  
√
2k 

a
· 2Q 

πa 

= −  
2 
√
2kQ  

π a2 
. 

The direction of the field is in the negative y direction or the −j direction. This 
means that the electric field at the center of curvature is 

E = Ex + E y = −2 
√
2kQ  

π a2 
j. 

♦ wxMaxima codes: 

(%i1) Ex: integrate(-k*lambda/a*cos(theta), theta, %pi/4, 3*%pi/4); 
(Ex) 0 
(%i2) Ey: integrate(-k*lambda/a*sin(theta), theta, %pi/4, 3*%pi/4); 
(Ey) -(sqrt(2)*k*lambda)/a 

Comments on the codes: 

(%i1), (%i2) Calculate Ex = 
3π/4∫

π/4 
− kλ 

a cosθ dθ and Ey = 
3π/4∫

π/4 
− kλ 

a sinθ dθ . 

Problem 4.18 A ring of radius R carries a charge of Q. Determine the electric field 
along the axis of the ring. 

Solution 

Figure 4.28 shows the ring of charge Q and radius R. To solve the problem, a length 
element of the ring ds is considered. The electric field due to the element at P is 
calculated. Then, the effective electric field is calculated by integrating the field due 
to the element for the whole ring.

Linear charge density of the ring is 

λ = Q 

2π R 
, 

because the length (circumference) of the ring is 2πR. The charge of the length 
element ds is
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Fig. 4.28 Determining 
electric field along the axis of 
a charged ring, Problem 4.18

dq = λ ds. 

Due to this charge, an electric field dE is present at point P, 

dE  = 
k dq  

r2 
= 

kλ ds  
r2 

. 

The electric field dE is resolved into horizontal component dE cos θ and vertical 
component dE sin θ. When all elements are summed, the horizontal component 
vanishes. This is by symmetry of the problem. The vertical component needs to be 
summed. The electric field at point P is 

E =
∫

dE  sin θ =
∫

kλ sin θ 
r2 

ds  = 
2π R∫

0 

kλy 

r3 
ds  = 

kλy 

r3 
· 2π R 

= 2πkλRy  

(y2 + R2)3/2 

= kQy  

(y2 + R2)3/2 
. 

The direction of the field is upward. This is entry (a) of Table 4.1. 
If point P is far away from the ring, y � R, and the electric field is E = kQ/y2. 

This means that at a far distance, the electric field of a charged ring is just like the 
field of a point charge. 

♦ wxMaxima codes:
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(%i1) r: sqrt(y^2 + R^2); 
(r) sqrt(y^2+R^2) 
(%i2) E: integrate(k*lambda*y/r^3, s, 0, 2*%pi*R); 
(E) (2*%pi*R*k*y*lambda)/(y^2+R^2)^(3/2) 
(%i3) lambda: Q/(2*%pi*R); 
(lambda) Q/(2*%pi*R) 
(%i4) E: integrate(k*lambda*y/r^3, s, 0, 2*%pi*R); 
(E) (Q*k*y)/(y^2+R^2)^(3/2) 

Comments on the codes: 

(%i1), (%i2) Assign r and calculate E = 
2π R∫

0 

kλy 
r3 ds. 

(%i3), (%i4) Assign λ and calculate E = 
2π R∫

0 

kλy 
r3 ds. 

Problem 4.19 A disk of radius R has a charge per unit area σ , as shown in Fig. 4.29. 
Determine the electric field at point P, a distance of y from the disk. 

Solution 

Figure 4.30 shows the disk and other quantities needed to solve the problem. The 
disk is divided into rings. A ring of radius r with thickness dr is considered. The 
electric field due to this ring is calculated and the electric field due to the disk is 
calculated by summing the fields due to the rings.

A ring of radius r and thickness dr has a charge of, 

dq = σ · 2πr dr. 

The electric field at P due to the ring is, 

dE  = ky  dq  

(y2 + r2)3/2 
= 

2πkyσr dr  

(y2 + r2)3/2 
.

Fig. 4.29 A charged disk, 
Problem 4.19 
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Fig. 4.30 Determining 
electric field at point P due to 
a charged disk, Problem 4.19

This is obtained by using the result of Problem 4.18 or Table 4.1a that gives the 
electric field along the axis of a charged ring. The electric field at P due to the disk 
is obtained by integration of dE, that is, 

E =
∫

dE  = 2πkyσ 
R∫

0 

r dr  

(y2 + r2)3/2 
=

[
−2πkyσ 

1 √
y2 + r2

] R 

0 

= 2π kσ

(
1 − y √

y2 + R2

)

= 
σ 
2ε0

(
1 − y √

y2 + R2

)
, 

where k = 1/(4πε0). The direction of the electric field is vertically upward. This 
result is the same as Table 4.1e. 

If the disk is very wide, R � y, then the electric field becomes E = σ 
2ε0 

. This is 
the same as Table 4.1d. 

♦ wxMaxima codes: 

(%i3) assume(R>0); assume(y>0); E: 2*%pi*k*y*sigma* 
integrate(r/(y^2+r^2)^(3/2), r, 0, R); 
(%o1) [R>0] 
(%o2) [y>0] 
(E) 2*%pi*k*sigma*y*(1/y-1/sqrt(y^2+R^2))
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Comment on the codes: 

(%i3) Calculate the definite integral E = 2πkyσ 
R∫

0 

r dr  
(y2+r2)3/2 . 

4.3 Summary 

• The electrostatic force between two charges of q1 and q2, separated by a distance 
of r, is  

F = 1 

4πε0 

q1q2 
r2 

. 

• The electric field at a point is the force experienced by a unit positive test charge 
placed at the point. 

• The magnitude of electric field at a distance of r from a point charge of q is 

E = 
1 

4πε0 

q 

r2 
. 

4.4 Exercises 

Exercise 4.1 Two charges are separated by a certain distance. The magnitude of 
their charges is halved and their separation is doubled. What happens to the electric 
force between the charges? 

(Answer: The electric force decreases by a factor of 16) 

Exercise 4.2 Three charges, q1 = 5.0 × 10−3 C, q2 = −3.0 × 10−3 C, and q3 = 
2.0 × 10−3 C, are fixed at (0, 0), (3, 4) m, and (3, 0) m, respectively, as shown in 
Fig. 4.31. Calculate the electric force on charge q3.

(Answer: F = 1.0 × 104 i + 3.4 × 103 j N, F = 1.1 × 104 N, θ = 19°) 

Exercise 4.3 Two charges, q1 = 5.0 × 10−3 C and q2 = −3.0 × 10−3 C, are fixed 
at (0, 0) and (3, 4) m, respectively, as shown in Fig. 4.32. Calculate the electric field 
at point P.

(Answer: E = (5.0 × 106 i + 1.7 × 106 j) N C−1, E = 5.3 × 10−6 N C−1, θ = 19°) 

Exercise 4.4 Figure 4.33 shows three equal point charges, q, fixed at corners of a 
square of side l. Find the electric field at the center of the square.

(Answer: E = 2kq/l2, θ = 45°) 

Exercise 4.5 A proton is placed in a region of uniform electric field 400 N C−1. 
What is the acceleration of the proton? 

(Answer: 3.8 × 1010 m s−2)
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Fig. 4.31 Configuration of 
three charges, Exercise 4.2

Fig. 4.32 Configuration of 
two charges, Exercise 4.3

Fig. 4.33 Configuration of 
three charges, Exercise 4.4



Chapter 5 
Gauss’s Law 

Abstract This chapter solves problems on Gauss’s law and its application. Gauss’s 
law states that electric flux through a closed surface is equal to the electric charge 
enclosed by the surface divided by permittivity of free space. Using Gauss’s law, 
electric fields of some symmetric charge distributions are calculated. Solutions are 
by analysis and computer calculation. 

5.1 Basic Concepts and Formulae 

(1) Electric flux is the number of electric field lines through a surface that is 
perpendicular to the field lines. This is written as 

Φ =
{

sur f ace 

E · d A, (5.1) 

where E is electric field and dA is surface element vector. The surface element 
vector is normal to the surface element and its magnitude is the area of the 
surface element dA. For a surface of area A with its normal at an angle θ with a 
uniform electric field, the electric flux is, 

Φ = E · A = E A  cos θ. (5.2) 

(2) Gauss’s law states that net electric flux Φ through a closed surface (Gauss’s 
surface) is the net charge in the closed surface divided by ε0, that is, 

Φ =
{

E · d A  = 
q 

ε0 
, (5.3) 

where the constant, 

ε0 = 8.8542 × 10−12 C2 N−1 m−2 ,
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is the permittivity of free space and it is related to Coulomb’s constant k by 

k = 1 

4πε0 
= 8.9876 × 109 N m2 C−2 ≈ 9 × 109 N m2 C−2 . 

(3) Using Gauss’s law, electric fields of symmetrical charge distributions can be 
calculated. Table 5.1 lists a few electric fields that can be derived by application 
of Gauss’s law.

(4) A conductor is in electrostatic equilibrium. The followings apply: 

(a) Electric field is zero inside the conductor. 
(b) For an isolated conductor, excess charge resides on the surface of the 

conductor. 
(c) Electric field outside the surface of a conductor is perpendicular to the 

surface and the magnitude is σ /ε0 where σ is charge per unit area. 
(d) The charge on a conductor accumulates at sharp points, that is, regions 

where a radius of curvature of the surface is smallest. 

5.2 Problems and Solutions 

Problem 5.1 Figure 5.1 shows a wedge-shaped closed surface in a uniform electric 
field of 50 N C–1. Calculate the electric flux across each surface and the flux through 
the wedge.

Solution 

Figure 5.2 shows the wedge-shaped closed surface, electric field, surface element 
vectors, and related angles.

Electric flux is, Eq. (5.1), 

Φ =
{

E · d A. 

For surfaces abe, befc, and dcf , the electric field E and surface element vector dA 
are perpendicular to each other. Thus, E · dA = 0 and the electric fluxes across these 
surfaces are zero, 

Φabe = Φbe f c = Φdc f = 0. 

For rectangular surface abcd, the electric flux across it is, 

Φabcd =
{

E · d A  =
{

50 d A  cos 180◦ = −50
{

d A  = −50 (1 × 2) N m2 C−1 

= −100 N m2 C−1 .
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Table 5.1 Electric fields of a few charge configurations derivable by Gauss’s law 

Configuration Electric field 

(a) A spherical insulator of radius R with 
uniform charge distribution and total charge 
Q 

E = k Q  
r2 

= Q 
4πε0r2 

, r > R 

E = k Q  
R3 r = Q 

4πε0 R3 r, r ≤ R 

where r is distance of observation point to 
center of the sphere 

(b) A spherical shell of radius R with charge Q 

E = k Q  
r2 

= Q 
4πε0r2 

, r ≥ R 

E = 0, r < R 
where r is distance of observation point to 
center of the shell 

(c) A long rod with charge per unit length λ 
E = 2kλ 

r = λ 
2πε0r 

where r is perpendicular distance from the 
rod to observation point 

(d) A charged insulator plate, with a charge per 
unit area of σ 
E = σ 

2ε0 
outside the plate

(continued)
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Table 5.1 (continued)

Configuration Electric field

(e) A conducting plate with a charge per unit 
area of σ 
E = σ 

ε0 
outside the plate 

E = 0 in the plate 

(f) A parallel plate capacitor with a charge of Q 

E = Q 
ε0 A between the plates 

(g) A solid conducting sphere of a radius R and 
a charge of  Q 

E = k Q  
r2 

= Q 
4πε0r2 

, r > R 

E = 0, r ≤ R 
where r is the distance of observation point 
to the center of the sphere 

(h) A cylindrical shell of radius R with a charge 
per unit length of λ 
E = 2kλ 

r = λ 
2πε0r , r ≥ R 

E = 0, r < R 
where r is distance of the observation point 
to the axis of the shell
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Fig. 5.1 A wedge-shaped 
closed surface in a uniform 
electric field, Problem 5.1

y (m) 

1 

3 

2 
z (m) 

x (m) 

b 

f c 

e 

a 

d 

E = 50 N C–1 

Fig. 5.2 Determining 
electric fluxes, Problem 5.1

For rectangular surface aefd, the electric flux across it is, 

Φae f d =
{

E · d A  =
{

50 d A  cos θ = 50 cos θ
{

d A  

= 50 · 2 √
13 

· (1 × 
√
13) N m2 C−1 

= 100 N m2 C−1 . 

The electric flux across the wedge closed surface is zero because the sum of 
electric fluxes of the five surfaces is zero. 

Problem 5.2 Figure 5.3 shows imaginary surfaces of a cylinder of lengthL and radius 
r in the region of uniform electric field E0 in the positive x direction. Calculate the 
electric flux across,

(a) surface 1 
(b) surface 2 
(c) surface 3 
(d) enclosed surface of the cylinder. 

Solution 

Figure 5.4 shows the cylinder surfaces, surface element vectors, and the electric field.
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Fig. 5.3 Imaginary surfaces 
of a cylinder, Problem 5.2

E0 

x 

L 
1 

2 

3 

r 

Fig. 5.4 Determining 
electric fluxes, Problem 5.2 

E0 

x 

L 

1 

2 

3 

r 

dA 

dA 
dA 

Electric flux is, Eq. (5.1), 

Φ =
{

E · d A, 

where dA is surface element vector and E is electric field. The electric field is, 

E = E0i. 

(a) For surface 1, dA = –dAi. The electric flux across surface 1 is, 

Φ =
{

E · d A  =
{

E0i · (−d A  i) = −E0

{
d A  = −E0πr2 . 

(b) For surface 2, dA = dAi. The electric flux across surface 2 is, 

Φ =
{

E · d A  =
{

E0i · d A  i = E0

{
d A  = E0πr2 . 

(c) For surface 3, dA is perpendicular to E. The electric flux is zero. 
(d) From the three results, electric flux through the enclosed surface of the cylinder 

is zero, that is,
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Fig. 5.5 A point charge and 
an imaginary Gauss’s 
surface, Problem 5.3 

+ 
r E 

dA 

q 

−E0πr2 + E0πr2 + 0 = 0. 

Problem 5.3 Apply Coulomb’s law to determine the electric field around an isolated 
point charge q. 

Solution 

Figure 5.5 shows the point charge, imaginary Gauss’s surface, and surface element 
vector to solve the problem. 

The imaginary Gauss’s surface is the surface of a sphere of radius r. Electric field 
E due to the positive point charge is directed out in a radial way from the charge and 
is normal to the sphere surface. This means that E is parallel to dA. Equation (5.3),

{
E · d A  = 

q 

ε0 
, 

becomes,

{
E · d A  = 

q 

ε0 
. 

But by symmetry, E is constant at every point on the surface. Thus,

{
E · d A  = E

{
d A  = E · 4πr2 = 

q 

ε0 
, 

where
{

d A  = 4πr2 is area of the spherical surface. Therefore, the electric field is, 

E = 1 

4πε0 

q 

r2 
= k 

q 

r2 
.
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Fig. 5.6 A point charge and 
an imaginary closed Gauss’s 
surface, Problem 5.4 

Problem 5.4 Derive Gauss’s law using electric field of a point charge q. 

Solution 

Figure 5.6 shows a point charge q inside an arbitrary imaginary closed surface 
(Gauss’s surface). The surface element vector is dA, position vector of point P on 
the surface is r, solid angle subtended by dA is dΩ, angle between dA and r is θ, and 
unit vector is r̂ = r/r . 

The electric field at point P due to the charge is, Eq. (1.3), 

E = k 
q 

r2 
r̂ = q 

4πε0r2 
r̂. 

The electric flux across surface dA is, 

dΦ = E · d A  = 
q 

4πε0r2 
r
/ · d A  = 

q 

4πε0 

d A  cos θ 
r2

= 
q 

4πε0 
d9, 

where dΩ is a solid angle element subtended by dA. The electric flux for the whole 
closed surface is,

0 =
{

dΦ =
{

E · d A  =
{

q 

4πε0 
d9 = 

q 

4πε0

{
d9 = 

q 

4πε0 
· 4π = 

q 

ε0 
. 

Therefore, Gauss’s law has been derived, that is,

{
E · d A  = 

q 

ε0 
. 

Problem 5.5 A solid non-conductor sphere of radius R has uniform charge density 
of ρ. 

(a) Using Gauss’s law, determine the electric field outside and inside the sphere. 
(b) What is the electric field at the surface of the sphere? 
(c) Sketch the variation of electric field versus radial distance.
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Fig. 5.7 Gauss’s surface a out of and b in the charged sphere, and c curve of E against r, Problem 
5.5 

Solution 

(a) Figure 5.7a shows the charged sphere of radius R with charge density ρ enclosed 
by imaginary spherical Gauss’s surface of radius r. 

Electric field outside of the charged sphere is calculated as follows. Take a 
Gauss’s surface in the form of a surface of a sphere of radius r. Apply Gauss’s 
law, Eq. (5.3),

{
E · d A  = 

q 

ε0 
, 

E · 4πr2 = 
4 
3 π R3ρ 

ε0 
. 

The electric field for the region outside the charged sphere is 

E(r) = 
ρ R3 

3ε0r2 
, r > R. (1) 

Electric field in the charged sphere is calculated as follows. Take a Gauss’s 
surface in the form of a surface of a sphere of radius r as shown in Fig. 5.7b. 
Apply Gauss’s law,

{
E · d A  = 

q 

ε0 
, 

E · 4πr2 = 
4 
3 πr3ρ 

ε0 
. 

The electric field in the charged sphere is, 

E(r ) = 
ρ 
3ε0 

r, r ≤ R. (2)
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(b) Electric field at the surface of the charged sphere can be calculated using Eq. (1). 
At the surface, r = R, and the electric field is, 

E(R) = 
ρ R3 

3ε0R2 
= 

ρ R 

3ε0 
. 

The result is obtained by using Eq. (2) as well, 

E(R) = 
ρ 
3ε0 

R. 

(c) Using results of parts (a) and (b), the curve of electric field versus radial distance 
can be sketched and this is shown in Fig. 5.7c. 

Let the total charge on the non-conductor sphere be Q. We have,  

ρ = 
Q 

4 
3 π R3 

. 

The electric field for the region outside the charged sphere becomes 

E(r ) = 
ρ R3 

3ε0r2 
= 

Q 

4πε0r2 
, r > R. 

The electric field in the charged sphere becomes 

E(r) = 
ρ 
3ε0 

r = 
Q 

4πε0R3 
r, r ≤ R. 

These results are entries (a) of Table 5.1. 

Problem 5.6 A wire a has charge per unit length of λ. Determine the electric field 
around the wire by Gauss’s law. 

Solution 

Figure 5.8 shows the wire with a charge per unit length of λ. An imaginary closed 
Gauss’s surface is in the form of curved cylindrical surface of length L and radius 
r (surface 1) and two circular surfaces of radius r (surfaces 2 and 3). In the figure, 
surface element vectors dA and electric fields E are indicated as well.

By symmetry, the electric field is radial and perpendicular to the wire. By Gauss’s 
law, Eq. (5.3),

{
E · d A  = 

q 

ε0 
,

{

1 

E · d A  +
{

2 

E · d A  +
{

3 

E · d A  = 
λL 

ε0 
,
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Fig. 5.8 A long charged 
wire and an imaginary closed 
Gauss’s surface, Problem 5.6

E · 2πr L  + 0 + 0 = 
λL 

ε0 
.

The integral of surface 1 is E ·2πr L  because the surface element vector is parallel 
to the electric field, while those of surfaces 2 and 3 are zero because surface element 
vectors are perpendicular to the electric fields. Therefore, the electric field around a 
charged wire is 

E = λL 

ε0 · 2πr L  
= λ 

2πε0r 
= 

2kλ 
r 

, 

where r is the distance of the observation point from the long wire. This is the same 
as entry (b) of Table 4.1 or Problem 4.15(b). 

Problem 5.7 A solid spherical insulator of radius a having a uniform charge density 
is shown in Fig. 5.9. The total charge on the sphere is Q. Concentric to the sphere is 
a spherical shell conductor with inner and outer radii of b and c (b < c). Determine 

(a) the electric field for regions r < a and a < r < b

Fig. 5.9 A non-conducting 
charged sphere and a 
conducting spherical shell, 
Problem 5.7
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Fig. 5.10 Gauss’s surface a in and b out of the non-conducting charged sphere, Problem 5.7 

(b) surface charge densities of the inner and outer surfaces of the shell. 

Solution 

(a) Figure 5.10a shows the charged solid spherical insulator. Consider region r < a 
in the sphere. 

Charge density of the solid sphere is, 

ρ = 
Q 

4 
3 πa3 

. 

Consider an imaginary closed Gauss’s surface in the form of a surface of a 
sphere of radius r. Charge in the closed Gauss’s surface is 

q = ρ · 4 
3 
πr3 = 

Q 
4 
3 π a3 

· 4 
3 
πr3 = 

r3 

a3 
Q. 

By Gauss’s law, Eq. (5.3),

{
E · d A  = 

q 

ε0 
, 

E · 4πr2 = 
r3Q 

ε0a3 
. 

The electric field is 

E = 1 

4πε0 

Q 

a3 
r = 

k Q  

a3 
r, (r < a).
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Fig. 5.11 Charges on the 
inner and outer surfaces of 
the spherical shell, Problem 
5.7

Figure 5.10b considers the region outside the solid sphere but inside the 
spherical shell. Take an imaginary closed Gauss’s surface as the surface of a 
sphere of radius r. By Gauss’s law, Eq. (5.3), 

{
E · d A  = 

q 

ε0 

E · 4πr2 = 
Q 

ε0 
. 

This gives the electric field as 

E = 1 

4πε0 

Q 

r2 
= 

k Q  

r2 
, (a < r < b). 

(b) Figure 5.11 shows that charge Q on solid insulator sphere induces charge –Q 
and +Q on the spherical conductor shell. The inner and outer surfaces of the 
conductor shell have charges of −Q and +Q, respectively. 

Therefore, the inner surface charge density σ b and the outer surface charge 
density σ c are 

σb = 
−Q 

4π b2 
, σc = 

+Q 

4πc2 
. 

Problem 5.8 A metal sphere of 0.50 cm radius has an 8.0 nC charge on it. Calculate 
the electric field at the surface of the sphere. 

Solution 

Figure 5.12 shows the metal sphere of radius R with charge Q. An imaginary closed 
Gauss’s surface in the form of a surface of a sphere very near the surface of the metal 
sphere and the electric field are shown as well.

Applying Gauss’s law to the closed Gauss’s surface gives, Eq. (5.3),
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Fig. 5.12 A charged metal 
sphere and an imaginary 
Gauss’s surface, Problem 5.8

{
E · d A  = 

q 

ε0 
, 

E · 4π R2 = 
Q 

ε0 
, 

E = 
Q 

4π R2ε0 
= 

k Q  

R2 
. 

Inserting known numerical values, the electric field at the surface of the metal 
sphere is 

E = 
k Q  

R2 
= 

(9 × 109 N m2 C−2 )(8.0 × 10−9 C) 

(0.50 × 10−2 m)2 

= 2.9 × 106 N C−1 . 

♦ wxMaxima codes: 

Comments on the codes: 

(%i4) Set the floating point print precision to 5 and assign values of k, Q, and R. 
(%i5) Calculate E = k Q/R2. 

Problem 5.9 Dielectric strength of air is 3.0 × 106 N C−1. Calculate the maximum 
charge on a metal sphere of radius 0.50 cm. The dielectric strength of a material is the 
maximum electric field that the material can withstand without undergoing electrical 
breakdown and becoming electrically conductive. 

Solution 

Dielectric strength of air equals 3.0 × 106 N C−1 means if the electric field in air 
exceeds the value, sparks will be produced. Using result of Problem 5.8, the maximum 
amount of charge on a sphere before sparks are produced is,
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E = 
k Q  

R2 
, 

Q = 
E R2 

k 
= 

(3.0 × 106 N C−1 )(0.50 × 10−2 m)2 

(9 × 109 N m2 C−2 ) 
= 8.3 × 10−9 C. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i4) Set the floating point print precision to 5 and assign values of k, E, and R. 
(%i5) Calculate Q = E R2/k. 

Problem 5.10 The electric field between plates of a parallel plate capacitor is 
300 kV m−1. The area of the plate is 600 cm2. What is the charge on the plate? 

Solution 

Figure 5.13 shows the parallel plate capacitor, electric field E, and charge Q. An  
imaginary closed Gauss’s surface is the surface of a box around the upper plate of 
the capacitor as shown. The area of the bottom surface of the box is A. 

By Gauss’s law, the electric field can be calculated as follows

{
E · d A  = 

q 

ε0 
, 

E · A = 
Q 

ε0 
, 

E = 
Q 

ε0 A 
.

Fig. 5.13 A parallel plate 
capacitor and an imaginary 
Gauss’s surface, Problem 
5.10 
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The charge on the plate is 

Q = ε0 AE 

= (8.8542 × 10−12 C2 N−1 m−2 )(600 × 10−4 m2 )(300 × 103 V m−1 ) 
= 1.6 × 10−7 C. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i4) Set the floating point print precision to 5 and assign values of ε0, A, and E. 
(%i5) Calculate Q = ε0 AE . 

5.3 Summary 

• Gauss’s law says that if q is the total charge enclosed in a closed surface, then the 
total outward electric flux through the closed surface is q/ε0, that is,

{

sur f ace 

E · d A  = 
q 

ε0 
. 

• The electric fields of some symmetrical charge distributions can be calculated by 
applying Gauss’s law. 

5.4 Exercises 

Exercise 5.1 Figure 5.14 shows a 5.0 µC charge placed at the center of an imaginary 
cube. What is the electric flux through the cube surfaces?

(Answer: Φ = 5.6 × 105 N m2 C−1)
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Fig. 5.14 A charge and an 
imaginary cube surfaces, 
Exercise 5.1

Fig. 5.15 Curve of E 
against r, Exercise  5.4 

Exercise 5.2 Charge q is distributed uniformly throughout a non-conducting sphere 
of radius R. Using Gauss’s law, calculate the electric field at a point R/2 from the 
center of the sphere. 

(Answer: E = q 
8πε0 R2 ) 

Exercise 5.3 Charge q is distributed uniformly throughout a spherical insulating 
shell with outer radius R. What is the electric flux through the outer surface of the 
shell and the electric field at the outer surface? 

(Answer: Φ = q 
ε0 

, E = q 
4πε0 R2 ) 

Exercise 5.4 A solid conducting sphere of radius R has a charge of q. Show that 
the electric field E as a function of distance r from the center of the sphere is as in 
Fig. 5.15. 

Exercise 5.5 The electric field 2.0 cm from a uniformly charged long wire is 
30 N C−1. What is the electric field 6.0 cm from the wire? 

(Answer: E = 10 N C−1)



Chapter 6 
Electric Potential 

Abstract This chapter solves the problem of electric potential energy, electric poten-
tial difference, and electric potential. Every point in a region of electric field is asso-
ciated with an electric potential which is electric potential energy per unit charge 
at the point. Potential difference is the difference in electric potential of two points 
in the region of electric field. Solutions by analysis and computer calculation are 
presented. 

6.1 Basic Concepts and Formulae 

(1) When a positive test charge q0 is moved from point A to point B in an electric 
field E, the change in electric potential energy is,

�U = UB − UA = −q0 

B∫

A 

E · ds, (6.1) 

where UA and UB are potential energies at points A and B, respectively, and 
ds is elementary displacement. 

(2) Potential difference �V between points A and B in the electric field E is the 
change in potential energy divided by the test charge q0,

�V = VB − VA = �U 

q0 
= 

UB 

q0 
− 

UA 

q0 
= −  

B∫

A 

E · ds, (6.2) 

where VA = UA/q0 and VB = UB/q0 are potentials at points A and B, 
respectively. The unit of electric potential is volt (V) or joule/coulomb (J C–1). 

For uniform electric field E, potential difference between points A and B is
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�V = −E · d, (6.3) 

where d is displacement along E. Thus, for two parallel plates at a potential 
difference of �V separated by a distance of d, the magnitude of the uniform 
magnetic field between the plates is E = �V /d. 

(3) Equipotential surface is a surface with the same electric potential. Equipotential 
surface is perpendicular to electric field line. 

(4) Electric potential due to charge q at a distance r from the charge is 

V = 
kq 

r 
= 1 

4πε0 

q 

r 
, (6.4) 

where, 

k = 1 

4πε0 
= 8.9876 × 109 N m2 C−2 ≈ 9 × 109 N m2 C−2 , 

is Coulomb’s constant, and 

ε0 = 8.8542 × 10−12 C2 N−1 m−2 , 

is the permittivity of free space or the permittivity constant. 
Electric potential due to a number of charges is the sum of electric potential 

due to each charge, 

V = k
∑
i 

qi 
ri 

. (6.5) 

(5) Electric potential energy U of charge q1 and q2 separated by a distance of r12 
is 

U = k 
q1q2 
r12 

. (6.6) 

U is the work done to bring the charges from infinite separation to separation 
of r12. Electric potential energy for the distribution of point charges is the sum 
of the potential energy of every charge pair. 

(6) Electric potential due to continuous charge distribution is, 

V = k
∫

dq 

r 
, (6.7)
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where dq is the charge element of the continuous charge distribution and r is 
the distance of the element from the observation point. 

(7) If electric potential as a function of coordinates is known, the electric field 
component can be calculated from the derivative of the potential with respect 
to the coordinate, 

Ex = −  
dV  

dx  
, Ey = −  

dV  

dy  
, Ez = −  

dV  

dz  
. (6.8) 

(8) Every point on the surface of a charged conductor in electrostatic equilibrium 
has the same potential. The potential is constant at any point in the conductor 
and it is the potential at the surface of the conductor. 

(9) The work done to transport an electron through a potential difference of 1 V 
is 1 electronvolt (eV). This means that 

1 eV  = e �V = (1.602 × 10−19 C)(1V) = 1.602 × 10−19 J. 

(10) Electric potentials due to four charge distributions are given in Table 6.1.

6.2 Problems and Solutions 

Problem 6.1 Show that the electric potential at a distance r from a charge q is V = 
kq/r. 

Solution 

Figure 6.1 shows charge q, point P at a distance of r’ away from the charge, and the 
electric field E = kq/r’2 due to the charge.

Electric potential at point r is defined by, 

V − V∞ = −  
r∫

∞ 

E · ds. 

This corresponds to the work done to bring a +1 C charge from ∞ to point r. In  
the equation, V∞ = 0, ds = –dr’, therefore, 

V = −  
r∫

∞ 

kq 

r ′ 2 dr
′ =

[
kq 

r ′

]
r 
∞ 

= 
kq 

r 
. 

We have shown that the electric potential at distance of r from a charge q is V = 
kq/r.
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Table. 6.1 Electric potentials of a few charge configurations 

Configuration Electric potential 

(a) A ring of radius  R uniformly charged, total charge Q, 

V = k Q √
x2+R2 , 

where x is the distance along the ring axis from the ring 
center 

(b) A uniformly charged disk of radius R, charge density per 
unit area σ , 

V = 2πkσ
(√

x2 + R2 − x
)
, 

where x is the distance along the disk axis from the disk 
center 

(c) A solid insulator sphere of radius R, uniformly charged, 
total charge Q, charge density  ρ, 

V = k Q r = ρ R3 

3ε0r 
, r ≥ R, 

V = kQ  
2R

(
3 − r2 

R2

)
= ρ 

6ε0 
(3R2 − r2), r < R 

(d) A solid conducting sphere of radius R, with charge Q, 

V = k Q r , r ≥ R, 

V = kQ  
R , r < R

Fig. 6.1 Electric potential V 
at r away from a charge, 
Problem 6.1

♦ wxMaxima codes:
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Fig. 6.2 System of two 
charges, before and after one 
of them is displaced, 
Problem 6.2 

q1 q2             displaced               q2 

r1 = 3.0 m 

–+ – 

r2 = 8.0 m 

Comment on the codes: 

(%i1) Assume r to be positive. 
(%i2) Calculate the definite integral V = − ∫ r 

∞ 
kq 
r ′ 2 dr ′. 

Problem 6.2 Two charges q1 = 4.0 × 10–4 C and q2 = –8.0 × 10–4 C are separated 
by a distance of 3.0 m. What is the electric potential energy of the two charges? One 
of the charges is displaced so that the separation becomes 8.0 m. What is the change 
in electric potential energy? 

Solution 

Figure 6.2 shows the charges in the initial and final instances. 
The electric potential energy at the initial instance is, Eq. (6.6), 

Uinitial  = k 
q1q2 
r1 

= (9 × 109 N m2 C−2 ) 
(4.0 × 10−4 C)(−8.0 × 10−4 C) 

3.0 m  
= −960 J. 

The electric potential energy at the final instance is 

U f inal  = k 
q1q2 
r2 

= (9 × 109 N m2 C−2 ) 
(4.0 × 10−4 C)(−8.0 × 10−4 C) 

8.0 m  
= −360 J. 

The change in electric potential energy is 

U f inal  − Uinitial  = −360 J − (−960 J) 
= 600 J. 

This means that an increase in the separation of two oppositely signed charges 
amounts to an increase in the electric potential energy.
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♦ wxMaxima codes: 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and assign values of k, q1, q2, r1, 
and r2. 

(%i8) Calculate Uinitial  = kq1q2/r1 and U f inal  = kq1q2/r2. 
(%i9) Calculate the change in electric potential energy. 

Problem 6.3 A charge of 5.0 µC is located at (0, 0) and a charge of –8.0 µC is  
located at (1, 0) m. A third charge of 2.0 µC is moved from point A (0.5, 0) m to 
point B (0, 1) m. What is the work done? 

Solution 

Figure 6.3 shows the two charges q1 = 5.0 µC and q2 = –8.0 µC, points A and B, 
and the third charge q3 = 2.0 µC moved from A to B. 

We calculate the electric potentials at points A and B due to charge 1 and 2. We 
then calculate the work done to bring charge 3 from A to B.

Fig. 6.3 Configuration of 
three charges, q3 is moved 
from point A to point B, 
Problem 6.3 
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The electric potential at point A due to charges 1 and 2 is, Eq. (6.5), 

VA = 
kq1 
r1A 

+ 
kq2 
r2A 

=
(
9 × 109 

N m2 

C2

)(
5.0 × 10−6 C 

0.50 m

)
+

(
9 × 109 

N m2 

C2

)(−8.0 × 10−6 C 

0.50 m

)

= −54000 V. 

The electric potential at point B due to charges 1 and 2 is, 

VB = 
kq1 
r1B 

+ 
kq2 
r2B 

=
(
9 × 109 

N m2 

C2

)(
5.0 × 10−6 C 

1.0 m

)
+

(
9 × 109 

N m2 

C2

)(−8.0 × 10−6 C √
2 m

)

= −5912 V. 

The work to bring charge 3 from point A to B is, 

WAB = q3(VB − VA) = (2.0 × 10−6 C)[−5912 − (−54000)] V 
= 9.6 × 10−2 J. 

The work done is the change in electric potential energy, q3VB – q3VA. 

♦ wxMaxima codes: 

Comments on the codes:

(%i9) Set the floating point print precision to 5 and assign values of k, q1, q2, q3, 
r1A, r2A, r1B, and r2B. 

(%i11) Calculate electric potentials VA = kq1/r1A + kq2/r2A and VB = kq1/r1B + 
kq2/r2B .
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Fig. 6.4 Configuration of 
three charges. Charge 
q moves from A to B, q1 and 
q2 are fixed, Problem 6.4 

q1 q q2 

0.02 m     A     0.02 m     B     0.02 m 
–+ 

(%i12) Calculate work WAB = q3(VB − VA). 

Problem 6.4 Figure 6.4 shows two fixed particles of charges q1 = 8.0 × 10–9 C and 
q2 = –8.0 × 10–9 C, separated by a distance of 0.06 m. A third particle of mass m = 
0.002 kg with a charge of q = 3.0 × 10–9 C is released from point A and moves to 
point B. Determine 

(a) electric potentials at A and B, 
(b) velocity of the third particle at B, and 
(c) work done by the electric field to move the third particle from A to B. 

Solution 

(a) The electric potential at point A due to charges 1 and 2 is, Eq. (6.5), 

VA = k
(
q1 
r1A 

+ 
q2 
r2A

)
=

(
9 × 109 

N m2 

C2

)(
8.0 × 10−9 C 

0.02 m
+ 

−8.0 × 10−9 C 

0.04 m

)

= 1800 V. 

The electric potential at point B due to charges 1 and 2 is, 

VB = k
(
q1 
r1B 

+ 
q2 
r2B

)
=

(
9 × 109 

N m2 

C2

)(
8.0 × 10−9 C 

0.04 m 
+ 

−8.0 × 10−9 C 

0.02 m

)

= −1800 V. 

The electric potential of point A is higher than that of B. 
(b) When the third particle is at point A, it has electric potential energy. This energy 

is converted to kinetic energy plus electric potential energy when it reaches 
point B. We write, 

K A + UA = KB + UB, 

0 + qVA = 
1 

2 
mv2 + qVB , 

where K is kinetic energy, U is electric potential energy, v is velocity of the 
particle at point B, and q and m are charge and mass of the particle, respectively. 
The velocity of the third particle at point B is, 

v =
√
2q 

m 
(VA − VB)
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= 

√
2(3.0 × 10−9 C) 

0.002 kg
[1800 V − (−1800 V)] 

= 0.10 m s−1 . 

(c) Work done by the electric field to move the third particle is, 

WAB = q(VA − VB ) = (3.0 × 10−9 C)[1800 − (−1800)] V = 1.1 × 10−5 J. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i11) Set the floating point print precision to 5 and internal rational number 
print to false, and assign values of k, q1, q2, q, r1A, r2A, r1B, r2B, and 
m. 

(%i13) Calculate electric potentials VA = k(q1/r1A + q2/r2A) and VB = 
k(q1/r1B + q2/r2B ). 

(%i15) Solve qVA = 0.5 × mv2 + qVB for v. 
(%i16) Calculate work WAB = q(VA − VB ). 

Problem 6.5 

(a) For a two-charge system shown in Fig. 6.5, determine the electric potential 
energy and electric potential of the system. Determine also the electric field at 
point A.

(b) If q2 = –5.0 × 10–6 C, determine all quantities in (a).
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Fig. 6.5 Configuration of 
two charges, Problem 6.5

Solution 

(a) The electric potential energy of the two-charge system is, Eq. (6.6), 

U = k 
q1q2 
r12 

=
(
9 × 109 

N m2 

C2

)
(5.0 × 10−6 C)(5.0 × 10−6 C) 

1.0 m  

= 0.22 J. 

The electric potential at point A due to charges q1 and q2 is, Eq. (6.5), 

VA = k
(
q1 
r1A 

+ 
q2 
r2A

)
=

(
9 × 109 

N m2 

C2

)(
5.0 × 10−6 C 

0.50 m 
+ 

5.0 × 10−6 C 

0.50 m

)

= 1.8 × 105 V. 

The electric field at point A is, Eq. (1.4), 

E A = 
kq1 
r2 1A 

i − 
kq2 
r2 2A 

i = 0. 

(b) If q2 = –5.0 × 10–6 C, the electric potential energy of the two-charge system 
is, Eq. (6.6), 

U = k 
q1q2 
r12 

=
(
9 × 109 

N m2 

C2

)
(5.0 × 10−6 C)(−5.0 × 10−6 C) 

1.0 m  

= −0.22 J. 

The electric potential at point A due to charges q1 and q2 is, Eq. (6.5), 

VA = k
(
q1 
r1A 

+ 
q2 
r2A

)
=

(
9 × 109 

N m2 

C2

)(
5.0 × 10−6 C 

0.50 m 
+ 

−5.0 × 10−6 C 

0.50 m

)

= 0 V. 

The electric field at point A is, Eq. (1.4),
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E A = k 
q1 
r2 1A 

i + k 
q2 
r2 2A 

i 

=
(
9 × 109 

N m2 

C2

)
5.0 × 10−6 C 

(0.50 m)2
i −

(
9 × 109 

N m2 

C2

)
(−5, 0 × 10−6 C) 

(0.50 m)2
i 

= 3.6 × 105 N C−1 i. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i7) Set the floating point print precision to 5 and assign 
values of k, q1, q2, r12, r1A, and r2A. 

(%i8) Calculate electric potential energy U = kq1q2/r12. 
(%i9) Calculate electric potential VA = k(q1/r1A+q2/r2A). 
(%10) Calculate electric field EA. 
(%i11) Reassign q2. 
(%i12), (%i13), (%i14) Recalculate U, VA, and EA. 

Problem 6.6 

(a) For a two-charge system consisting of q1 and q2 shown in Fig. 6.6, what is the 
potential difference between points B and A, between points B and C?

(b) If a charge of 4.0 × 10–9 C is placed at point A, what is the electric potential 
energy of the charge?
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Fig. 6.6 A two-charge  
system, Problem 6.6

Solution 

(a) The electric potentials at points A, B, and C due to charges 1 and 2 are, Eq. (6.5), 

VA = k
∑
i 

qi 
ri 

=
(
9 × 109 

N m2 

C2

)(
12 × 10−9 C 

6.0 × 10−2 m 
+ 

−7.0 × 10−9 C 

4.0 × 10−2 m

)

= 225 V, 

VB =
(
9 × 109 

N m2 

C2

)(
12 × 10−9 C 

4.0 × 10−2 m 
+ 

−7.0 × 10−9 C 

14 × 10−2 m

)

= 2250 V, 

VC =
(
9 × 109 

N m2 

C2

)(
12 × 10−9 C 

10 × 10−2 m 
+ 

−7.0 × 10−9 C 

10 × 10−2 m

)

= 450 V. 

The potential difference between points B and A is 

VBA  = VB − VA = 2250 V − 225 V = 2025 V. 

The potential difference between points B and C is 

VBC = VB − VC = 2250 V − 450 V = 1800 V. 

(b) The electric potential energy of the charge q = 4.0 × 10–9 C at point A is 

UA = qVA = (4.0 × 10−9 C)(225 V) = 9.0 × 10−7 J. 

♦ wxMaxima codes:
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Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values 
of k, q1, q2, and q. 

(%i6), (%i7), (%i8) Calculate potentials VA, VB, and VC . 
(%i9), (%i10) Calculate potential differences VBA and VBC . 
(%11) Calculate potential energy UA. 

Problem 6.7 Three charges, q1, q2, and q3 are arranged on the circumference of a 
circle of radius 3.0 m as shown in Fig. 6.7. Calculate 

(a) electric potential at points A and B and 
(b) electric potential energy of the three charges. 

Solution 

(a) The electric potential of a system of discrete charges is V = k
∑
i 

qi 
ri 
, Eq.  (6.5). 

The potential at point A is,

Fig. 6.7 A three-charge 
system, Problem 6.7 
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VA = k
( q1 
AC 

+ 
q2 
AE 

+ 
q3 
AD

)

=
(
9 × 109 

N m2 

C2

)(
3.0 × 10−6 C 

3.0 m
− 

6.0 × 10−6 C 

3.0 m
+ 

9.0 × 10−6 C 

3.0 m

)

= 18000 V. 

The potential at point B is, 

VB = k
( q1 
BC 

+ 
q2 
BE  

+ 
q3 
BD

)

=
(
9 × 109 

N m2 

C2

)(
3.0 × 10−6 C √

18 m 
− 

6.0 × 10−6 C 

6.0 m
+ 

9.0 × 10−6 C √
18 m

)

= 16456 V. 

(b) The electric potential energy of the three charges is, Eq. (6.6), 

U = k
(q1q2 
CE  

+ 
q2q3 
DE  

+ 
q1q3 
CD

)

=
(
9 × 109 

N m2 

C2

)(
3.0(−6.0) √

18
+ 

(−6.0)(9.0) √
18

+ 
3.0(9.0) 

6.0

)
× 10−12 C

2 

m 

= −0.11 J. 

♦ wxMaxima codes:
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Fig. 6.8 A charged wire and 
point P, Problem 6.8 

Fig. 6.9 Determining 
electric potential at point P 
due to a charged wire, 
Problem 6.8 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of k, q1, q2, and 
q3. 

(%i8) Assign distances AC, AE, and AD. 
(%i9) Calculate potential VA. 
(%i12) Assign distances BC, BE, and BD. 
(%i13) Calculate potential VB. 
(%i16) Assign distances CE, DE, and CD. 
(%i17) Calculate potential energy U. 

Problem 6.8 A wire of length l has a charge of Q distributed uniformly along its 
length as shown in Fig. 6.8. 

(a) Determine the electric potential at point P . 
(b) What is the electric potential at P if d >> l? 

Solution 

(a) Figure 6.9 shows the wire, element of the wire dx, and x the position of the 
element with respect to P. 

The linear charge density is, 

λ = 
Q 

l 
. 

Consider the wire element of length dx at coordinate x away from point P. 
The amount of charge of the element is 

dq = λ dx . 

The potential at point P due to the element is (Eq. 6.4) 

dV  = 
k dq  

x
= 

kλ dx  
x 

.
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Therefore, the electric potential at point P due to the whole wire is 

VP =
∫

dV  = kλ 
d+l∫

d 

dx  

x 
= [kλ ln x] d + l 

d 
= kλ ln

(
d + l 
d

)

= 
kQ  

l 
ln

(
d + l 
d

)
. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i3) Assume l and d positive and assign λ. 

(%i4) Calculate VP = kλ 
d+l∫
d 

dx  
x . 

(b) From part (a), 

VP = 
kQ  

l 
ln

(
d + l 
d

)
= 

kQ  

l 
ln

(
1 + 

l 

d

)
. 

If d >> l, ln
(
1 + l d

) = l d − 1 2 ( 
l 
d )

2 + . . .  ≈ l d . See Appendix D for the series 
expansion. Thus, the electric potential at P when d is much greater than l is 

VP = 
kQ  

l 
· l 
d 

= 
kQ  

d 
. 

Problem 6.9 A long wire has a linear charge density of λ. Determine the potential 
difference at radial distances of rA and rB from the wire. 

Solution 

Figure 6.10 shows a long wire with a linear charge density of λ, and radial distances 
of rA, rB, and r of the problem.

From Table 4.1b of Chap. 4, the electric field at a radial distance of r from a long 
wire is, 

E = 
2kλ 
r 

.
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Fig. 6.10 Determining 
potential difference between 
two points, Problem 6.9

The direction of the electric field is radial and perpendicular to the wire. The 
potential difference between points B and A is, 

VBA  = VB − VA = −  
rB∫

rA 

E · ds  = −  
rB∫

rA 

2kλ 
r 

dr = [−2kλ ln r ]rB rA 

= −2kλ ln
(
rB 
rA

)
. 

Thus, the potential difference between points A and B is, 

VAB = VA − VB 

= 2kλ ln
(
rB 
rA

)
. 

The potential at point A is higher than that at point B because rB is greater than 
rA, that is, point A is nearer than point B to the charged wire. 

Problem 6.10 Linear charge density of the ring shown in Fig. 6.11 is λ. The radius 
of the ring is R. Determine the electric potential at point P, a distance of x away from 
the center of the ring. 

Fig. 6.11 Electric potential 
at point P due to a charged 
ring, Problem 6.10
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Fig. 6.12 Determining 
electric potential at point P 
due to a charged ring, 
Problem 6.10 

Solution 

Figure 6.12 shows the ring and the ring element of length ds needed to solve the 
problem. 

The electrical charge of element ds is 

dq = λ ds. 

The electric potential at P due to the element is (Eq. 6.4) 

dV  = 
k dq  

r 
= kλ ds  √

R2 + x2 
. 

Therefore, the electric potential at point P due to the whole ring is 

V =
∫

dV  = kλ √
R2 + x2 

2π R∫

0 

ds  = 
2πkλR √
R2 + x2 

= λR 

2ε0 
√
R2 + x2 

. 

If the charge on the ring is Q, the electric potential is 

V = 
2π kλR √
R2 + x2 

= 2πkR  √
R2 + x2 

Q 

2π R 

= kQ  √
R2 + x2 

. 

This is entry (a) of Table 6.1. 

Problem 6.11 A solid non-conducting sphere of radius R has a uniform charge 
density ρ. Determine,
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Fig. 6.13 Determining 
electric potential in and out 
of a charged non-conducting 
sphere, Problem 6.11 

(a) electric potential outside the sphere 
(b) electric potential in the sphere. 

Solution 

(a) Figure 6.13 shows the insulator sphere, point A in the sphere, point B on the 
surface of the sphere, and point C outside the sphere. 

The total charge of the sphere is 

Q = 
4 

3 
π R3 ρ.  

The electric field out of the sphere is (Eq. 1.3) 

Eout = k 
Q 

r2 
, r > R. 

The potential difference between point C and infinity is calculated as follows: 

VC − V∞ = −  
rC∫

∞ 

Eout · dr = −  
rC∫

∞ 

kQ  

r2 
dr =

[
kQ  

r

]rC 

∞ 
= 

kQ  

rC 
, 

where rC is the distance from the center of the sphere to point C (Fig. 6.13). 
Taking V∞ = 0, the potential beyond the sphere is 

VC = 
kQ  

r 
= 

ρ R3 

3ε0r 
, r > R,



160 6 Electric Potential

where k = 1/(4πε0) and Q = 4πR3ρ/3. On the surface of the sphere, r = R, so  
the electric potential at point B is 

VB = 
ρ R2 

3ε0 
= 

kQ  

R 
, 

where ρ = Q/(4πR3/3) and ε0 = 1/(4πk). 

♦ wxMaxima codes: 

Comments on the codes: 

(%i2) Assume rC > 0 and calculate VC = − ∫ rC 
∞ 

kQ  
r2 dr . 

(VC) The result. 

(b) From Problem 5.5, Chap. 5, the electric field within the sphere is 

Ein  = 
ρr 

3ε0 
, r < R. 

The potential difference between point A and a point at infinity is calculated 
as follows: 

VA − V∞ = (VA − VB ) + (VB − V∞) = −  
rA∫

R 

Ein  · dr + VB 

= −  
rA∫

R 

ρr 

3ε0 
dr+ 

ρ R2 

3ε0 

= 
ρ 
6ε0 

(R2 − r2 A) + 
ρ R2 

3ε0 
, 

where rA is the distance from the center of the sphere to point A (Fig. 6.13). 
Setting V∞ = 0, the electric potential within the sphere is 

VA = 
ρ 
6ε0 

(3R2 − r2 ) 

= 
kQ  

2R

(
3 − 

r2 

R2

)
, r < R,
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Fig. 6.14 A non-conducting 
charged sphere, Problem 
6.12 

where ρ = Q/(4π R3/3) and ε0 = 1/(4πk). At the center of the sphere, r = 0, 
the electric potential there is 

V0 = 
ρ R2 

2ε0 
= 

3kQ  

2R 
, 

where ρ = Q/(4πR3/3) and ε0 = 1/(4πk). In Fig. 6.13, the curve of electric 
potential V against r for the sphere is shown as well. These results are the same 
as entry (c) of Table 6.1. 

Problem 6.12 Show that the energy needed to construct a uniformly charged non-
conducting solid sphere of radius R and charge Q is 

U = 
3 

5 

kQ2 

R 
. 

Solution 

Figure 6.14 shows the solid non-conducting sphere of radius R and charge Q. Also  
shown is an imaginary sphere of radius r in the solid sphere. 

The charge of the imaginary sphere is 

q = 
4 
3 πr

3 

4 
3 π R3 

· Q = 
r3 

R3 
Q. 

Differentiation of q with respect to r gives 

dq = 
3Qr2 

R3 
dr. 

The electric potential at the surface of the imaginary sphere is (Eq. 6.4) 

V = 
kq 

r 
= 

k 

r 

r3 Q 

R3 
= 

kQr2 

R3 
. 

The energy to construct a sphere of charge Q and radius R is calculated as follows:
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U =
∫

V dq  = 
R∫

0 

kQr2 

R3 
· 3Qr2 

R3 
dr = 

3kQ2 

R6 

R∫

0 

r4 dr =
[
3kQ2 

R6 

r5 

5

]R 

0 

= 
3 

5 

kQ2 

R 
. 

♦ wxMaxima code: 

Comment on the code: 

(%i1) Calculate definite integration U = 3kQ
2 

R6 

R∫
0 
r4dr . 

Problem 6.13 A small sphere of mass 1.0 × 10–4 kg and charge +2.4 × 10–9 C is  
suspended by a thread between two vertical parallel plates separated by a distance of 
10 cm, as shown in Fig. 6.15. What is the angle between the thread and the vertical 
if the potential difference between the plates is 10 kV? 

Solution 

Figure 6.16 shows the forces acting on the sphere, the parallel plates, and the quan-
tities needed to solve the problem. Here, d is the separation and �V is the potential 
difference between the plates.

Fig. 6.15 A charged sphere 
suspended by a thread 
between two parallel plates, 
Problem 6.13 
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Fig. 6.16 Forces on the 
charged sphere, Problem 
6.13 

The forces are weight of the sphere mg, tension in the thread T, and electrostatic 
force F due to the charged sphere in an electric field. The electrostatic force is (Eqs. 4. 
2 and 6.3), 

F = qE  = q
�V 

d 
, (1) 

where q is the charge of the sphere, �V is the potential difference between plates, 
and d is the separation distance. The sphere is in equilibrium, so,

∑
Fx = F − T sin θ = 0, (2)

∑
Fy = T cos θ − mg = 0. (3) 

From these equations, 

tan θ = 
F 

mg 
= 

q�V 

dmg 
= (2.4 × 10−9 C)(10 × 103 V) 

(0.10 m)(1.0 × 10−4 kg)(9.8 m/s2 ) 
= 0.24. 

Therefore, the angle between the thread and the vertical is, 

θ = 14◦. 

♦ wxMaxima codes:

https://doi.org/10.1007/978-3-031-43165-4_4
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Comments on the codes: 

(%i6) Set the floating point print precision to 5 and assign values of 
m, q, g, d, and �V. 

(%i7), (%i8), (%i9) Calculate angle θ. 

Further question: Calculate the tension in the string T. 

Solution: Solving Eqs. (1), (2) and (3) for  θ, T, and F, one obtains the angle, the 
tension in the string, and the force as 

θ = 0.24 rad = 14◦, 
T = 1.0 × 10−3 N, 
F = 2.4 × 10−4 N. 

♦ wxMaxima codes:
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Comments on the codes: 

(%i2) Set the floating point print precision to 5 and internal rational number print 
to false. 

(%i5) Assign Eqs. (1), (2) and (3) as eq1, eq2, and eq3. 
(%i6) Solve Eqs. (1), (2) and (3) for  sin  θ, F, and T in symbols. 
(%i7) Substitute values of m, q, g, d, and �V into the solution. 
(%i10) Calculate θ in rad and degree. 
(%i11) Calculate tension T. 

6.3 Summary 

• Electric potential is electric potential energy per unit charge. Electric potential 
due to charge of q at a distance of r from the charge is, 

V = 
kq 

r 
= 

1 

4πε0 

q 

r 
. 

• Electric potential energy U of charge q1 and q2 separated by a distance of r12 is, 

U = k 
q1q2 
r12 

. 

• Potential difference between points A and B is the work done against electric 
forces in carrying a unit positive test charge from A to B, that is, VB − VA = �V. 
The work W done against electric forces to carry a charge q from point A to B is 
W = q(VB − VA) = q �V. 

6.4 Exercises 

Exercise 6.1 Two charges, q1 = 5.0 × 10–3 C and q2 = –3.0 × 10–3 C are fixed at (0, 
0) and (3, 4) m, respectively, as in Fig. 6.17. Calculate the electric potential energy 
of the two charges and the electric potential at point P.

(Answer: U = −2.7 × 104 J, VP = 8.2 × 106 V) 

Exercise 6.2 Two charges, q1 = 5.0 × 10–3 C and q2 = –3.0 × 10–3 C, are placed at 
(0, 0) and (3, 4) m, respectively. Charge q2 is then moved from (3, 4) m to (3, 0) m. 
Calculate the change in electric potential energy. 

(Answer: �U = −1.8 × 104 J) 

Exercise 6.3 Figure 6.18 shows three charges q1, q2, and q3 at the vertices of an 
equilateral triangle with sides of length l. Calculate work needed to move charge q3 
from point A to point B.

(Answer: W = (q1 + q2)q3k/ l)
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Fig. 6.17 Configuration of 
two charges, Exercise 6.1

Fig. 6.18 Configuration of 
three charges, Exercise 6.3

Exercise 6.4 Figure 6.19 shows a region of uniform electric field E = 2000 N C−1. 
What is the potential difference between points A and B, A and C, and B and C? 

(Answer: VAB = 0, VAC = 800 V, VBC = 800 V) 

Exercise 6.5 Two conducting plates are separated by a distance of 30 cm in a vacuum 
and are at a potential difference of 1.0 kV. An oxygen ion, with charge +2, starts

Fig. 6.19 Points A, B, and  C 
in a uniform electric field, 
Exercise 6.4 
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from rest on the surface of the positive plate and accelerates to the negative plate. 
What is the final kinetic energy of the oxygen ion? If the separation distance of the 
plates is reduced to 10 cm and the potential difference is kept the same, will the final 
kinetic energy of the oxygen ion change? 

(Answer: 2.0 keV or 3.2 × 10–16 J, no)



Chapter 7 
Capacitance and Dielectric 

Abstract This chapter solves problems on capacitance, equivalent capacitance of 
capacitors in series and parallel, and energy in charged capacitors. Also discussed 
is the effect of inserting dielectric material between the plates of a capacitor. Both 
analytical solutions and computer calculations by wxMaxima of the problems are 
presented. 

7.1 Basic Concepts and Formulae 

(1) A capacitor consists of two conductors with the same charges but opposite in 
signs, separated by a small gap. The two conductors have potential difference 
of V. Capacitance C is the magnitude of charge Q of either conductor divided 
by the magnitude of the potential difference V, 

C = 
Q 

V 
. (7.1) 

SI unit for capacitance is coulomb per volt (C V–1) or farad (F): 

1 F  = 1CV−1 . (7.2) 

(2) For conductors that are separated by vacuum or air, the capacitance is as follows: 
(a) Parallel plate capacitor: Area of plate A and separation between plates d: 

C = 
ε0 A 

d 
. (7.3) 

(b) Cylindrical capacitor: Length l, inner radius a, and outer radius b: 

C = l 

2k ln
(
b 
a

) = 
2πε0l 

ln
(
b 
a

) . (7.4)
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(c) Spherical capacitor: Inner radius a and outer radius b: 

C = ab 

k(b − a) 
= 

4πε0ab 

b − a 
. (7.5) 

(d) Isolated charged sphere of radius R: 

C = 4πε0 R. (7.6) 

where 

k = 1 

4πε0 
= 8.9876 × 109 N m2 C−2 ≈ 9 × 109 N m2 C−2 , 

is Coulomb’s constant, and 

ε0 = 8.8542 × 10−12 C2 N−1 m−2 , 

is the is the permittivity of free space. 

(3) For capacitors connected in parallel, the potential difference across each 
capacitor is the same. Equivalent capacitance Cp is 

Cp = C1 + C2 + C3 + . . . (7.7) 

For For capacitors connected in series, the charge on each capacitor is the same. 
Equivalent capacitance Cs can be calculated by the following formula: 

1 

Cs 
= 

1 

C1 
+ 

1 

C2 
+ 

1 

C3 
+ . . . (7.8) 

(4) Work is done in charging a capacitor because charge is moved from a conductor 
at low potential to another conductor at high potential. The work done to charge 
a capacitor C to charge Q is the electric potential energy U in the capacitor, 

U = 
1 

2 

Q2 

C 
= 

1 

2 
QV = 

1 

2 
CV  2 . (7.9) 

(5) When a dielectric material is inserted between the plates of a capacitor, the 
capacitance increases by a factor of K, 

C = KC0, (7.10) 

where C0 is the capacitance without the dielectric material, and K is dielectric 
constant of the dielectric material.
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7.2 Problems and Solutions 

Problem 7.1 

(a) A capacitor is charged until its charge is 40 μC and the potential difference 
across it is 100 V. What is the capacitance? What is the electric potential energy 
stored? 

(b) At other times the charge in the capacitor is 80 μC. What is the capacitance? 

Solution 

(a) The capacitance is, Eq. (7.1), 

C = 
Q 

V 
= 

40 × 10−6 C 

100 V
= 4.0 × 10−7 F = 0.40 μF. 

The electric potential energy in the capacitor is, Eq. (7.9), 

U = 
1 

2 
QV = 

1 

2 
(40 × 10−6 C)(100 V) = 2.0 × 10−3 J. 

This energy is the same in value as the work done to charge the capacitor. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; Q:40e-6; V:100; 
(fpprintprec) 5 
(Q) 4.0*10^-5 
(V) 100 
(%i4) C: Q/V; 
(C) 4.0*10^-7 
(%i5) U: 1/2*Q*V; 
(U) 0.002 

Comments on the codes: 

(%i3) Set the floating point print precision to 5, and assign charge Q = 40 × 10−6 C 
and potential difference V = 100 V. 

(%i4) Calculate capacitance C = Q/V. 

(%i5) Calculate electric energy U = ½ QV. 

(b) Capacitance of a capacitor is a fixed quantity. So the capacitance is 0.40 μF. If 
the charge increases, the potential difference across the capacitor increases as 
well, 

C = 
Q1 

V1 
= 

Q2 

V2 
= fixed value.
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If the charge is 80 μC, the potential difference across the capacitor is 200 V, so 
that the capacitance is fixed at 0.40 μF. 

Problem 7.2 The space between plates of a parallel plate capacitor is filled with an 
insulator with dielectric constant of 100. The area of the plate is 0.50 cm2. 

(a) The capacitance is 40 pF. What is the thickness of the insulator? 
(b) Dielectric strength of the insulator is 6.0 × 106 V m–1. What are the maximum 

charge, energy, and energy density of the capacitor? 

Solution 

(a) The capacitance of a parallel plate capacitor filled with material of dielectric 
constant K is, Eq. (7.3) and (7.10), 

C = 
K ε0 A 

d 
, 

where A is the area of one of the plates and d is the distance between plates. Thus, 
inserting given numerical values gives 

(40 × 10−12 F) = 
(100)(8.85 × 10−12 C2 N−1 m−2)(0.50 × 10−4 m2) 

d 
. 

The thickness of the insulator is 

d = 1.1 × 10−3 m. 

(b) Dielectric strength of an insulator is the maximum electric field the insulator 
material is able to sustain before its insulating properties begin to fail. The 
maximum charge of the capacitor is, (Eqs. 7.1 and 6.3), 

qmax = CVmax = CEmaxd 

= (40 × 10−12 F)(6.0 × 106 V m−1 )(1.1 × 10−3 m) 
= 2.7 × 10−7 C. 

Here, Vmax = Emaxd, that is, the maximum potential difference equals the maximum 
electric field times the distance, as in Eq. (6.3), Chap. 6. 

The maximum energy stored in the capacitor is, Eq. (7.9), 

Umax = 
1 

2 

q2 
max 

C 
= 

1 

2 

(2.7 × 10−7 C)2 

40 × 10−12 F 
= 8.8 × 10−4 J. 

The maximum energy density of the capacitor is 

u = 
energy 

volume 
= 

Umax 

Ad 
= 1.6 × 104 J m−3 .
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♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; K:100; epsilon0:8.85e-12; A:0.5e-4; 
C:40e-12; 
(fpprintprec) 5 
(ratprint) false 
(K) 100 
(epsilon0) 8.85*10^-12 
(A) 5.0*10^-5 
(C) 4.0*10^-11 
(%i8) solve(C = K*epsilon0*A/d, d)$ float(%); 
(%o8) [d=0.0011062] 
(%i9) d: rhs(%[1]); 
(d) 0.0011062 
(%i10) qmax: C*6e6*d; 
(qmax) 2.655*10^-7 
(%i11) Umax: 1/2*qmax^2/C; 
(Umax) 8.8113*10^-4 
(%i12) u: Umax/(A*d); 
(u) 1.593*10^4 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and internal rational number print to 
false, and assign values of K, ε0, A, and C. 

(%i7) Solve C = Kε0A/d for d. 

(%i9) Assign the value of the solution to d. 

(%i10) Calculate the maximum charge of the capacitor qmax. 

(%i11) Calculate the maximum energy of the capacitor Umax. 

(%i12) Calculate energy density of the capacitor u. 

Problem 7.3 A capacitor consists of two coaxial thin cylindrical shells of radii a 
and b, (a < b). The length of both cylinders is l, and l >> a, l >> b. 

(a) Determine the capacitance. 
(b) The space between the shells is filled with a material with dielectric constant 

K. What is the new capacitance? 

Solution 

(a) Fig. 7.1 shows the cross section of the capacitor. The inner and outer radii of 
the thin cylindrical shells are a and b, respectively. The charge is Q and charge 
per unit length is λ = Q/l. An imaginary cylinder of radius r is also shown. 
The electric field at the surface of this cylinder is E = 2kλ/r; see Table 5.1(h), 
Chap. 5.

The potential difference between outer and inner cylinders is, Eq. (6.2),
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Fig. 7.1 A two coaxial 
cylindrical shell capacitor, 
Problem 7.3

Vb − Va = −
∫ b 

a 
E · ds  = −

∫ b 

a 

2kλ 
r 

dr = [−2kλ ln r ]b a 

= 2kλ ln
(a 
b

)

= 2k 
Q 

l 
ln

(a 
b

)
. 

The value of Vb − Va is negative. The capacitance is, Eq. (7.1), 

C = − Q 

Vb − Va 
= l 

2k ln
(
b 
a

) = 
2πε0l 

ln
(
b 
a

) . 

This is as in Eq. (7.4). 

♦ wxMaxima codes: 

(%i2) k: 1/(4*%pi*epsilon0); lambda: Q/l; 
(k) 1/(4*%pi*epsilon0) 
(lambda) Q/l 
(%i6) assume(a>0); assume(b>0); assume((b-a)>0); potential_difference: -
integrate(2*k*lambda/r,r,a,b); 
(%o3) [a>0] 
(%o4) [b>0] 
(%o5) [b>a] 
(potential_difference) -(Q*(log(b)-log(a)))/(2*%pi*epsilon0*l) 
(%i7) C: -Q/potential_difference; 
(C) (2*%pi*epsilon0*l)/(log(b)-log(a)) 

Comments on the codes: 

(%i2) Assign k = 1/(4πε0) and λ = Q/ l. 

(%i6) Calculate the potential difference − ∫ b 
a 

2kλ 
r dr . 

(%i7) Calculate the capacitance C. 

(b) When the space between the cylindrical shells is filled with the material of 
dielectric constant K, the capacitance increases to, Eq. (7.10), 

CD = KC  = Kl  

2k ln
(
b 
a

) = 
2π ε0 Kl  

ln
(
b 
a

) .
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Fig. 7.2 Capacitors in parallel (a) and in series (b), Problem 7.4 

Problem 7.4 Determine the equivalent capacitance for systems in Fig. 7.2. 

Solution 

(a) Fig. 7.2(a) is three capacitors connected in parallel. Potential difference across 
each capacitor is the same, that is, V. The charges in the capacitors are 

q1 = C1V in capacitor C1, 
q2 = C2V in capacitor C2, 
q3 = C3V in capacitor C3. 

The total charge in the system is 

q = q1 + q2 + q3 = V (C1 + C2 + C3). 

The equivalent capacitance for the capacitors connected in parallel is 

Cequi valent = charge 

potential difference 
= 

V (C1 + C2 + C3) 
V 

= C1 + C2 + C3. 

Figure 7.3 shows this equivalence. 

(b) Fig. 7.2(b) is three capacitors connected in series. The sum of potential difference 
across each capacitor is the potential difference across all capacitors in series V , 

V = V1 + V2 + V3.

Fig. 7.3 Equivalent capacitance of capacitors in parallel, Problem 7.4 
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The charge in each capacitor is the same, let’s say q. So we write 

V = 
q 

C1 
+ 

q 

C2 
+ 

q 

C3 
. 

The equivalent capacitance for the capacitors connected in series is 

Cequi valent = charge 

potential difference 
= q 

q 
C1 

+ q 
C2 

+ q 
C3 

= 1 
1 
C1 

+ 1 
C2 

+ 1 
C3 

. 

We can also write 

1 

Cequi valent 
= 

1 

C1 
+ 

1 

C2 
+ 

1 

C3 
. 

Figure 7.4 shows this equivalence. 

Problem 7.5 

(a) A parallel plate capacitor has a plate area of A and separation distance of plates 
of d. What is the capacitance? 

(b) Two pieces of dielectric materials with dielectric constants K1 and K2, each 
of area A and thickness d/2, are inserted in the capacitor. What is the new 
capacitance? 

Solution 

(a) Fig. 7.5(a) shows the parallel plate capacitor. 

The electric field in the region between the plates is, see Table 5.1(f), Chap. 5, 

E = 
V 

d 
= 

σ 
ε0 

= 
Q 

Aε0 
, 

where Q is charge in the capacitor and σ is surface charge density. The capacitance 
is

Fig. 7.4 Equivalent capacitance of capacitors in series, Problem 7.4 
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Fig. 7.5 Parallel plate 
capacitor (a), and parallel 
plate capacitor with two 
dielectric materials (b), 
Problem 7.5 

C = 
Q 

V 
= 

ε0 A 

d 
. 

(b) When the two dielectric materials are inserted, Fig. 7.5(b), two capacitors 
connected in series are created. For the first dielectric material, the capacitance 
is 

C1 = 
K1ε0 A 

d/2 
. 

For the second dielectric material, the capacitance is 

C2 = 
K2ε0 A 

d/2 
. 

Effective capacitance C is calculated as follows, Eq. (7.8), 

1 

C 
= 

1 

C1 
+ 

1 

C2 
, 

C = C1C2 

C1 + C2 
= 

K1ε0 A 
d/2 · K2ε0 A 

d/2 
K1ε0 A 
d/2 + K2ε0 A 

d/2 

= 
2ε0 A 

d

(
K1K2 

K1 + K2

)
. 

♦ wxMaxima codes: 

(%i1) C1: K1*epsilon0*A/(d/2); 
(C1) (2*A*K1*epsilon0)/d 
(%i2) C2: K2*epsilon0*A/(d/2); 
(C2) (2*A*K2*epsilon0)/d 
(%i3) solve(1/C = 1/C1 + 1/C2, C); 
(%o3) [C=(2*A*K1*K2*epsilon0)/((K2+K1)*d)] 

Comments on the codes: 

(%i1), (%i2) Assign C1 and C2. 

(%i3) Solve 1 C = 1 
C1 

+ 1 
C2 

for C.
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Problem 7.6 Figure 7.6 shows two capacitors C1 = 6.0 pF and C2 = 2.0 pF in  
parallel at potential difference of 120 V. Determine 

(a) charge in each capacitor 
(b) equivalent capacitance 
(c) energy stored in both capacitors. 

Solution 

(a) The potential difference across each capacitor is the same, that is, V = 120 V. 
The charges in the capacitors are 

q1 = C1V = (6.0 × 10−12 F)(120 V) = 7.2 × 10−10 C, 

q2 = C2V = (2.0 × 10−12 F)(120 V) = 2.4 × 10−10 C. 

(b) The total charge in the system is 

q = q1 + q2 = 9.6 × 10−10 C. 

Therefore, the equivalent capacitance is 

Cequivalent = 
q 

V 
= 

9.6 × 10−10 C 

120 V
= 8.0 × 10−12 F. 

Alternative solution: For capacitors connected in parallel, the equivalent capaci-
tance is, Eq. (7.7), 

Cequivalent = C1 + C2 + ... 

So we get 

Cequivalent = C1 + C2 = (6.0 + 2.0) × 10−12 F = 8.0 × 10−12 F. 

(c) Electrical energy stored in a capacitor is 1 2 qV  = 1 2 CV  2 = 1 2 
q2 

C , Eq.  (7.9). For 
the first capacitor, energy stored is

Fig. 7.6 Two capacitors in 
parallel at 120 V, Problem 
7.6 
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U1 = 
1 

2 
q1V = 

1 

2 
(7.2 × 10−10 C)(120 V) = 4.32 × 10−8 J. 

For the second capacitor, energy stored is 

U2 = 
1 

2 
q2V = 

1 

2 
(2.4 × 10−10 C)(120 V) = 1.44 × 10−8 J. 

The total energy stored is 

U = U1 + U2 = 4.32 × 10−8 J + 1.44 × 10−8 J = 5.8 × 10−8 J. 

Alternative solution: Equivalent capacitance has been calculated in part (b). Thus, 
the energy stored is, Eq. (7.9), 

U = 
1 

2 
Cequi valent V 

2 = 
1 

2 
(8.0 × 10−12 F)(120 V)2 = 5.8 × 10−8 J. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; C1:6e-12; C2:2e-12; V:120; 
(fpprintprec) 5 
(C1) 6.0*10^-12 
(C2) 2.0*10^-12 
(V) 120 
(%i8) q1: C1*V; q2: C2*V; q: q1+q2; Cequivalent: q/V; 
(q1) 7.2*10^-10 
(q2) 2.4*10^-10 
(q) 9.6*10^-10 
(Cequivalent) 8.0*10^-12 
(%i11) U1: 0.5*q1*V; U2: 0.5*q2*V; U: U1+U2; 
(U1) 4.32*10^-8 
(U2) 1.44*10^-8 
(U) 5.76*10^-8 
(%i12) U: 0.5*Cequivalent*V^2; 
(U) 5.76*10^-8 

Comments on the codes: 

(%i4) Set the floating point precision to 5 and assign values of C1, C2, and V. 

(%i8) Calculate q1, q2, q, and Cequivalent . 

(%i11) Calculate U1, U2, and U. 

(%i12) Another calculation of U. 

Problem 7.7 Three capacitors C1 = 6.0 μF, C2 = 12 μF, and C3 = 16 μF are  
connected to a battery with emf ε = 60 V as in Fig. 7.7. Determine
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Fig. 7.7 Three capacitors 
connected to a battery, 
Problem 7.7 

(a) equivalent capacitance 
(b) charge in equivalent capacitance 
(c) charge in each capacitor 
(d) voltage across each capacitor 
(e) energy to charge each capacitor 
(f) total energy in the three capacitors. 

Solution 

(a) From Fig. 7.7, capacitors C1 and C2 are in series. Let the equivalent capacitance 
of both capacitors be Cequivalent1. This gives, Eq. (7.8), 

1 

Cequivalent1 
= 

1 

C1 
+ 

1 

C2 
= 1 

6 μF 
+ 

1 

12 μF 
= 

1 

4 μF 

Cequivalent1 = 4.0 μF. 

Next, capacitors C3 and Cequivalent1 are in parallel. Let their equivalent capacitance 
be Cequivalent . We have,  Eq. (7.7), 

Cequivalent = C3 + Cequivalent1 = 16 μF + 4 μF = 20 μF. 

(b) The charge in the equivalent capacitor is 

Qequivalent = Cequi valent E = (20 × 10−6 F)(60 V) = 1.2 × 10−3 C. 

(c) The voltage across C3 is ε = 60 V. So, the charge in C3 is 

Q3 = C3E = (16 × 10−6 F)(60 V) = 9.6 × 10−4 C. 

The charges in C1 and C2 are the same because C1 and C2 are in series, and the 
charge equals the charge in equivalent capacitance of both capacitors. Because the 
voltage across Cequivalent1 is ε = 60 V, the charge is 

Qequivalent1 = Q1 = Q2 = Cequivalent1 E = (4.0 × 10−6 F)(60 V) 
= 2.4 × 10−4 C
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(d) The voltage across capacitor C1 is 

V1 = 
Q1 

C1 
= 

2.4 × 10−4 C 

6.0 × 10−6 F 
= 40 V. 

The voltage across capacitor C2 is 

V2 = 
Q2 

C2 
= 

2.4 × 10−4 C 

12 × 10−6 F 
= 20 V. 

The voltage across capacitor C3 is 

V3 = E = 60 V. 

(e) The electric energy needed to charge capacitor C1 is, Eq. (7.9), 

U1 = 
1 

2 
Q1V1 = 

1 

2 
(2.4 × 10−4 C)(40 V) = 4.8 × 10−3 J. 

The electric energy needed to charge capacitor C2 is 

U2 = 
1 

2 
Q2V2 = 

1 

2 
(2.4 × 10−4 C)(20 V) = 2.4 × 10−3 J. 

The electric energy needed to charge capacitor C3 is 

U3 = 
1 

2 
Q3V3 = 

1 

2 
(9.6 × 10−4 C)(60 V) = 2.9 × 10−2 J. 

(f) The electric energy stored in the three capacitors is the sum of energies in (e), 

U = U1 + U2 + U3 = 3.6 × 10−2 J. 

Alternative calculation: The energy obtained in part (f) is the energy stored in the 
equivalent capacitor Cequivalent that has a charge of Qequivalent stored in it. Thus, using 
part (b) we have, Eq. (7.9), 

U = 
1 

2 
Qequi valent E = 

1 

2 
(1.2 × 10−3 C)(60 V) = 3.6 × 10−2 J.
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♦ wxMaxima codes: 

(fpprintprec) 5 
(ratprint) false 
(Epsilon) 60 
(C1) 6.0*10^-6 
(C2) 1.2*10^-5 
(C3) 1.6*10^-5 
(%i8) solve(1/Cequivalent1 = 1/C1 + 1/C2, Cequivalent1)$ float(%); 
(%o8) [Cequivalent1=4.0*10^-6] 
(%i9) Cequivalent1: rhs(%[1]); 
(Cequivalent1) 4.0*10^-6 
(%i10) Cequivalent: C3 + Cequivalent1; 
(Cequivalent) 2.0*10^-5 
(%i11) Qequivalent: Cequivalent*Epsilon; 
(Qequivalent) 0.0012 
(%i12) Q3: C3*Epsilon; 
(Q3) 9.6*10^-4 
(%i15) Qequivalent1:Cequivalent1*Epsilon; Q1:Qequivalent1; Q2:Qequivalent1; 
(Qequivalent1) 2.4*10^-4 
(Q1) 2.4*10^-4 
(Q2) 2.4*10^-4 
(%i18) V1:Q1/C1; V2:Q2/C2; V3:Epsilon; 
(V1) 40.0 
(V2) 20.0 
(V3) 60 
(%i22) U1:1/2*Q1*V1; U2:1/2*Q2*V2; U3:1/2*Q3*V3; U:U1+U2+U3; 
(U1) 0.0048 
(U2) 0.0024 
(U3) 0.0288 
(U) 0.036 
(%i23) U:1/2*Qequivalent*Epsilon; 
(U) 0.036 

(%i6) fpprintprec:5; ratprint:false; Epsilon:60; C1:6e-6; C2:12e-6; C3:16e-
6; 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and internal rational number print to 
false, and assign values of ε, C1, C2, and C3. 

(%i8) Solve 1 
Cequi valent1 

= 1 
C1 

+ 1 
C2 

for Cequivalent1. 

(%i9) Assign value of Cequivalent1. 

(%i10), (%i11), (%i12) Calculate Cequivalent , Qequivalent , and Q3. 

(%i15) Assign Qequivalent1, Q1, and Q2. 

(%i18) Calculate V 1, V 2, and V 3. 

(%i22) Calculate U1, U2, U3, and U. 

(%i23) Another calculation of U.
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Problem 7.8 

(a) A parallel plate capacitor consists of two metal plates each of area 0.06 m2. The  
separation distance between plates is 1.0 cm and the capacitor is connected to 
a voltage source of 100 V dc. Determine the capacitance, charge on the plate, 
electric field between plates, and energy in the capacitor. 

(b) The DC voltage source is disconnected from the capacitor. A material with 
dielectric constant 4.2 is inserted between the plates of the capacitor. Determine 
the new voltage, capacitance, charge, electric field, and energy stored. 

Solution 

(a) Capacitance of the parallel plate capacitor is, Eq. (7.3), 

C0 = 
ε0 A 

d 
=

(
8.85 × 10−12 C2 

N m2

)(
0.06 m2 

0.01 m

)
= 5.3 × 10−11 F. 

The charge in the capacitor is, Eq. (7.1), 

Q0 = C0V0 = (5.3 × 10−11 F)(100 V) = 5.3 × 10−9 C. 

The electric field between plates is, Eq. (3.3), 

E0 = 
V0 

d 
= 

100 V 

0.01 m 
= 1.0 × 104 V m−1 . 

The electrical energy stored in the capacitor is, Eq. (7.9), 

U0 = 
1 

2 
Q0V0 = 

1 

2 
(5.3 × 10−9 C)(100 V) = 2.7 × 10−7 J. 

(b) When the voltage source is disconnected, the charge on a plate is still the same 
as the charge calculated in (a), that is, 

Q = Q0 = 5.3 × 10−9 C. 

But the capacitance increases to, Eq. (7.10), 

C = KC0 = (4.2)(5.3 × 10−11 F) = 2.2 × 10−10 F. 

The voltage across the capacitor decreases to 

V = 
Q 

C 
= 

5.3 × 10−9 C 

2.2 × 10−10 F 
= 24 V. 

The electric field decreases to
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E = 
V 

d 
= 

24 V 

0.01 m 
= 2.4 × 103 V m−1 . 

The electric energy stored in the capacitor decreases to 

U = 
1 

2 
QV = 

1 

2 
(5.3 × 10−9 C)(24 V) = 6.3 × 10−8 J. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; epsilon0:8.85e-12; A:0.06; d:0.01; V0:100; K:4.2; 
(fpprintprec) 5 
(epsilon0) 8.85*10^-12 
(A) 0.06 
(d) 0.01 
(V0) 100 
(K) 4.2 
(%i10) C0:epsilon0*A/d; Q0:C0*V0; E0:V0/d; U0:0.5*Q0*V0; 
(C0) 5.31*10^-11 
(Q0) 5.31*10^-9 
(E0) 1.0*10^4 
(U0) 2.655*10^-7 
(%i15) Q:Q0; C:K*C0; V:Q/C; E:V/d; U:0.5*Q*V; 
(Q) 5.31*10^-9 
(C) 2.2302*10^-10 
(V) 23.81 
(E) 2381.0 
(U) 6.3214*10^-8 

Comments on the codes: 

(%i6) Set the floating point print precision to 5 and assign values of ε0, A, d, V 0, and 
K. 

(%i10) Calculate C0, Q0, E0, and U0. 

(%i15) Assign Q = Q0 and calculate C, V, E, and U. 

Problem 7.9 A capacitor C1 = 6.0 μF is fully charged and the potential difference 
across it is V 0 = 80 V. The capacitor is then connected to an uncharged capacitor C2 

= 12 μF. Determine the charge, voltage, and energy of the capacitors in the initial 
and final situations. 

Solution 

Figure 7.8 shows the initial and final situations.
In the initial situation, the charge in capacitor C1 is 

Q0 = C1V0 = (6.0 × 10−6 F)(80 V) = 4.8 × 10−4 C. 

The voltage across capacitor C1 is
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Fig. 7.8 Capacitor C1 in 
initial, and capacitors C1 and 
C2 in final situations, 
Problem 7.9

V0 = 80 V. 

The electrical energy in capacitor C1 is, Eq. (7.9), 

U0 = 
1 

2 
Q0V0 = 

1 

2 
(4.8 × 10−4 C)(80 V) = 1.9 × 10−2 J. 

In the final situation, the charge Q0 is distributed to capacitors C1 and C2. This  
means that 

Q0 = Q1 + Q2, 

and 

C1V0 = C1V + C2V . 

The voltage is 

V = C1 

C1 + C2 
V0 = 6.0 μF 

6.0 μF + 6.0 μF 
80 V = 27 V. 

The voltage across C1 and C2 is 27 V. The charges in C1 and C2 are 

Q1 = C1V = (6.0 × 10−6 F)(27 V) = 1.6 × 10−4 C, 

Q2 = C2V = (12 × 10−6 F)(27 V) = 3.2 × 10−4 C. 

The energy stored in capacitors C1 and C2 are 

U1 = 
1 

2 
Q1V = 

1 

2 
(1.6 × 10−4 C)(27 V) = 2.1 × 10−3 J, 

U2 = 
1 

2 
Q2V = 

1 

2 
(3.2 × 10−4 C)(27 V) = 4.3 × 10−3 J. 

The total energy stored in the two capacitors is
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U = U1 + U2 = 6.4 × 10−3 J. 

The total energy can also be calculated as follows 

U = U1 + U2 = 
1 

2 
V (Q1 + Q2) = 

1 

2 
V · V (C1 + C2) 

= 
1 

2

(
C1 

C1 + C2 
V0

)2 

(C1 + C2) = 
1 

2 

C2 
1 V 

2 
0 

(C1 + C2) 

= 
1 

2 

(6.0 × 10−6 F)2(80 V)2 

(6.0 × 10−6 F + 12 × 10−6 F) 
= 6.4 × 10−3 J. 

♦ wxMaxima codes: 

(fpprintprec) 5 
(C1) 6.0*10^-6 
(V0) 80 
(C2) 1.2*10^-5 
(%i6) Q0:C1*V0; U0:0.5*Q0*V0; 
(Q0) 4.8*10^-4 
(U0) 0.0192 
(%i9) V:C1*V0/(C1+C2); Q1:C1*V; Q2:C2*V; 
(V) 26.667 
(Q1) 1.6*10^-4 
(Q2) 3.2*10^-4 
(%i12) U1:0.5*Q1*V; U2:0.5*Q2*V; U:U1+U2; 
(U1) 0.0021333 
(U2) 0.0042667 
(U) 0.0064 
(%i13) U:1/2*C1^2*V0^2/(C1+C2); 
(U) 0.0064 

(%i4) fpprintprec:5; C1:6e-6; V0:80; C2:12e-6; 

Comments on the codes: 
(%i4) Set the floating point print precision to 5 and assign values of C1, V 0, and 

C2. 

(%i6) Calculate Q0 and W0. 

(%i9) Calculate V, Q1, and Q2. 

(%i12) Calculate U1, U2, and U. 

(%i13) Another calculation of U. 

Problem 7.10 A parallel plate capacitor has a charge of q and a plate area of A. 

(a) Show that force on one plate due to the charge on the other plate is
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Fig. 7.9 A parallel plate 
capacitor, Problem 7.10 

+q 

–q 

d 

F = 
q2 

2ε0 A 
. 

(b) Calculate F, for a 2.0 pF capacitor with a plate area of 3.0 cm2 and a potential 
difference of 100 V. 

Solution 

(a) Fig. 7.9 shows the parallel plate capacitor. Charge in the capacitor is q and 
separation between plates is d. 

The electric energy in the parallel plate capacitor is, Eq. (7.9), 

U = 
1 

2 

q2 

C 
= 

1 

2 

q2d 

ε0 A 
, 

where we have used the fact that for parallel plate capacitor the capacitance is C = 
ε0A/d, Eq. (7.3). The energy is the work to separate the plates from distance 0 to d. 
The work is 

U =
∫ d 

0 
F dx, 

where F is the attractive electric force between the plates and dx is the elementary 
displacement. The distance d is small and F does not vary much and is almost 
constant. Thus, the work is 

U = F
∫ d 

0 
dx  = Fd. 

We equate the work done and the electric energy, 

Fd  = 
1 

2 

q2d 

ε0 A 
, 

and calculate the attractive electric force between the plates to be 

F = 
1 

2 

q2 

ε0 A 
.
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(b) From part (a) and the given numerical values, the force F is 

F = 
1 

2 

q2 

ε0 A 
= 

1 

2 

C2V 2 

ε0 A 
= 

1 

2 

(2.0 × 10−12 F)2(100 V)2
(
8.85 × 10−12 C2 

N m2

)
(3.0 × 10−4 m2) 

= 7.5 × 10−6 N. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; C:2e-12; V:100; epsilon0:8.85e-12; A:3e-4; 
(fpprintprec) 5 
(C) 2.0*10^-12 
(V) 100 
(epsilon0) 8.85*10^-12 
(A) 3.0*10^-4 
(%i6) F: 0.5*C^2*V^2/(epsilon0*A); 
(F) 7.533*10^-6 

Comments on the codes: 

(%i5) Set the floating point print precision to 5 and assign values of C, V, ε0, and A. 

(%i6) Calculate the force between the plates F. 

Problem 7.11 Show that the energy of a conducting sphere of radius R and a charge 
of Q in vacuum is 

U = 
1 

2 

kQ2 

R 
. 

Solution 

Figure 7.10 shows the conducting sphere of radius R and a charge of Q. 
The electric potential at the surface of the sphere is, Table 6.1(d), 

V = 
kQ  

R 
.

Fig. 7.10 A conducting 
charged sphere, Problem 
7.11 

Q 

R 
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The capacitance of the sphere is, Eq. (7.1), 

C = 
Q 

V 
= Q 

kQ/R 
= 

R 

k 
. 

Thus, the electric energy of the sphere is, Eq. (7.9), 

U = 
1 

2 
CV  2 = 

1 

2 

R 

k

(
kQ  

R

)2 

= 
1 

2 

kQ2 

R 
. 

7.3 Summary 

• A capacitor stores electrical charge and electrical energy. The capacitance of a 
capacitor is the amount of charge it stores per unit potential difference between 
the plates, that is, C = Q/V. The SI unit of capacitance is farad (F), 1 F = 1 C/V.  

• The electric potential energy U in the capacitor is 

U = 
1 

2 

Q2 

C 
= 

1 

2 
QV = 

1 

2 
CV  2 . 

• When a material with dielectric constant of K is inserted between plates of a 
capacitor, the capacitance increases by a factor of K. 

7.4 Exercises 

Exercise 7.1 What is the equivalent capacitance of the capacitors in Fig. 7.11? 
(Answer: Cequivalent = (C1+C2)C3 

C1+C2+C3 
)

Fig. 7.11 Three capacitors, 
Exercise 7.1 
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Fig. 7.12 Four charged 
capacitors, Exercise 7.3 

Fig. 7.13 Four capacitors in 
parallel connected to a 
2000 V source, Exercise 7.4 

Exercise 7.2 A parallel plate capacitor has a plate area of 0.20 m2 and a plate 
separation of 0.10 mm. The charge on the capacitor is 4.1 × 10−6 C. What are the 
electric field between the plates and the potential difference across the plates? 

(Answer: E = 2.3 × 106 V m−1, V = 230 V) 

Exercise 7.3 Figure 7.12 shows four charged 600 μF capacitors. The reading of the 
voltmeter is 1200 V. Find the charge and the energy stored in each capacitor. 

(Answer: 0.72 C, 430 J) 

Exercise 7.4 Four 25 μF capacitors are connected to a 2000 V dc source and a 
switch as in Fig. 7.13. How many coulombs of charge pass through points A and B 
after the switch is closed? 

(Answer: 0.20 C, 0.050 C) 

Exercise 7.5 A mica sheet 0.10 mm thick and of dielectric constant 6.0 filled the 
space of a parallel plate capacitor. The plate area is 0.20 m2. Calculate the capacitance. 

(Answer: 1.1 × 10−7 F)



Chapter 8 
Current and Resistance 

Abstract This chapter solves problems on electric current, current density, resis-
tance, resistivity, and Ohm’s law. Problems with an increase in resistance due to a rise 
in temperature, resistance temperature coefficient, and dissipation of electrical power 
by a resistor are also solved. Solutions are by analysis and computer calculation. 

8.1 Basic Concepts and Formulae 

(1) Electric current I in a conductor is defined as 

I = 
dQ  

dt  
, (8.1) 

where dQ is the charge that passes across the cross-section of the conductor in 
time dt. SI unit for electric current is ampere (A). 

1 A  = 1C  s−1 . (8.2) 

(2) Electric current in a conductor is the movement of charge carriers 

I = nqvd A, (8.3) 

where n is the density of charge carriers (number of charge carriers per unit 
volume), q is the charge of the carrier, vd is the drift velocity of the carrier, and 
A is the cross-sectional area of the conductor. 

(3) Current density J in a conductor is current per unit area, 

J = 
I 

A 
= nqvd . (8.4) 

(4) Current density in a conductor is proportional to the electric field
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J = σ E, (8.5) 

where σ is a constant called conductivity of the material. Reciprocal of 
conductivity σ is resistivity ρ 

ρ = 
1 

σ 
= 

E 

J 
. (8.6) 

A material obeys Ohm’s law if its conductivity does not depend on the electric 
field. 

(5) Resistance R of a conductor is the potential difference V across the conductor 
divided by the current flow I in it 

R = 
V 

I 
. (8.7) 

If the resistance does not depend on the applied voltage, Ohm’s law is obeyed. 
Ohm’s law is written as 

V = I R. (8.8) 

(6) A conductor with a cross-sectional area of A and a length of l has a resistance 
of 

R = ρ 
l 

A 
= 

l 

σ A 
, (8.9) 

where ρ is the resistivity and σ is the conductivity of the conductor. SI unit for 
resistance is ohm (u) or volt per ampere (V A–1). 

1 u = 1V  A−1 (8.10) 

(7) Resistivity, ρ, of a conductor changes with temperature, T, approximately 
according to the equation, 

ρ = ρ0[1 + α(T − T0)], (8.11) 

where α is the resistance temperature coefficient and ρ0 is resistivity at temper-
ature T 0. Therefore, the resistance, R, of a conductor changes with temperature, 
T, in the  same  way  

R = R0[1 + α(T − T0)], (8.12) 

where α is the resistance temperature coefficient and R0 is the resistance at 
temperature T 0.
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(8) If the potential difference across a resistor is V and the current through the 
resistor is I, then the power or rate of energy given to the resistor is 

P = I V  = I 2 R = 
V 2 

R 
, (8.13) 

where R is the resistance. The power is equal to the rate of electric energy 
dissipated by the resistor as heat energy. 

8.2 Problems and Solutions 

Problem 8.1 An electric current of 5.0 A flows in a copper wire of a cross-sectional 
area of 3.0 × 10–6 m2. The number of free electrons in copper is 8.5 × 1028 electrons 
per m3. Calculate the drift velocity of electron in copper wire. 

Solution 

The relationship between electric current I, number of charge carriers per unit volume 
n, drift velocity of charge carrier vd , charge of the carrier q, and cross-sectional area 
of the conductor A, is given by, Eq. (8.3) 

I = nqvd A. 

The drift velocity vd of an electron in copper is 

vd = I 

nq A 
= 5.0 A  

(8.5 × 1028 m−3)(1.6 × 10−19 C)(3.0 × 10−6 m2) 
= 1.2 × 10−4 m s−1 . 

The conventional current flow is opposite in direction to the flow of electrons. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5;  A:3e-6; I:5; n:8.5e28; q:1.6e-19; 
(fpprintprec) 5 
(A) 3.0*10^-6 
(I) 5 
(n) 8.5*10^28 
(q) 1.6*10^-19 
(%i6) vd: I/(n*q*A); 
(vd) 1.2255*10^-4
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Comments on the codes: 

(%i5) Set floating point print precision to 5 and assign values of A, I, n, and q. 
(%i6) Calculate the drift velocity vd . 

Problem 8.2 

(a) The resistivity of copper at 25°C is 1.7 × 10–8 u m. What is the electric field 
in a copper wire so that the electric current density is 3.0 × 107 A m–2? 

(b) At 25°C, what is the resistance of a copper wire of length 2.0 m and a radius of 
1.0 mm? 

(c) What is the wire resistance at 65°C? 

The Resistance temperature coefficient of copper is 3.9 × 10–3 K–1. 

Solution 

(a) Resistivity ρ is defined as electric field E in the conductor divided by current 
density J, Eq.  (8.6), 

ρ = 
E 

J 
. 

The electric field E in the copper wire is 

E = ρ J = (1.7 × 10−8 u m)(3.0 × 107 A m−2 ) = 0.51 V m−1 . 

(b) Resistance of the copper wire at 25°C is, Eq. (8.9), 

R25 = 
ρl 

A 
= 

(1.7 × 10−8 u m)(2.0 m) 
π(1.0 × 10−3 m)2

= 1.1 × 10−2 u, 

where l is the length and A is the cross sectional area of the copper wire. 
(c) Resistance of the copper wire at 65°C is, Eq. (8.12), 

R65 = R25[1 + α(65◦C − 25◦C)] 
= 1.1 × 10−2 u [1 + 3.9 × 10−3 K−1 (65 − 25) K] 
= 1.3 × 10−2 u.
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♦ wxMaxima codes: 

(%i6) fpprintprec:5; rho:1.7e-8; J:3e7; l:2; r:1e-3; alpha:3.9e-3; 
(fpprintprec) 5 
(rho) 1.7*10^-8 
(J) 3.0*10^7 
(l) 2 
(r) 0.001 
(alpha) 0.0039 
(%i7) E: rho*J; 
(E) 0.51 
(%i8) R25: rho*l/float(%pi*r^2); 
(R25) 0.010823 
(%i9) R65: R25*(1+alpha*(65-25)); 
(R65) 0.012511 

Comments on the codes: 

(%i6) Set floating point print precision to 5 and assign values of ρ, J, 
l, r, and α. 

(%i7), (%i8), (%i9) Calculate E, R25, and R65. 

Problem 8.3 Figure 8.1 shows a dry cell with internal resistance r and a resistor 
R in a circuit. There is a voltmeter V and an ammeter A to measure the potential 
difference and current, and a switch S to open or close the circuit. When S is opened 
the voltmeter reading is 1.6 V, and when S is closed the reading is 1.4 V. Determine, 

(a) emf of the cell 
(b) internal resistance of the cell r 
(c) reading of the ammeter when S is closed. 

Solution 

(a) The emf of a cell is the open circuit voltage, that is, the voltage of the cell which 
is not connected to any load in a circuit. So, the emf of the cell is

Fig. 8.1 A circuit consisting 
of a dry cell with internal 
resistance, a resistor, and a 
switch. A voltmeter and an 
ammeter are also connected, 
Problem 8.3 

R = 10 S 

r 

YX 

V 

A 

dry cell 
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E = 1.6V. 

(b) When the switch is closed, the potential difference across the cell is 

VXY  = E − I r, 

where r is the internal resistance of the cell and I is the current. Current I is 

I = EE
ER 

= 
E 

r + R 
. 

The potential difference across the cell is 

VXY  = E −
( E 
r + R

0
r, 

and the internal resistance of the cell is 

r = R
( E 
VXY  

− 1
0

= 10 u

(
1.6 V  

1.4 V  
− 1

0
= 1.4 u. 

(c) Current flow when the switch is closed is 

I = 
E − VXY  

r
= 

1.6 V  − 1.4 V  

1.4 u
= 0.14 A. 

The current is measured by the ammeter, thus, the ammeter reading is 0.14 
A. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; emf:1.6; VXY:1.4; R:10; 
(fpprintprec) 5 
(ratprint) false 
(emf) 1.6 
(VXY) 1.4 
(R) 10 
(%i7) solve([VXY=emf-I*r, I=emf/(r+R)], [r,I])$ float(%); 
(%o7) [[r=1.4286,I=0.14]] 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of E , VXY , and R. 

(%i7) Solve VXY  = E − I r  and I = E 
r+R for r and I.



8.2 Problems and Solutions 197

Fig. 8.2 Determining 
electric current and potential 
difference, Problem 8.4 

10B 

CA 

6.0 V, 1.0 

D 

8.0 

12 

10 V, 1.0 

Problem 8.4 For the circuit in Fig. 8.2, determine, 

(a) current in the 8.0 u resistor 
(b) potential difference VAB and VAC . 

Solution 

(a) To get the current, calculate the total emf and resistance, and divide the two. 
Counter clockwise from point C, the total emf is

EE = 6.0V  + 10 V = 16 V. 

Total resistance is,

ER = (1.0 + 8.0 + 1.0 + 10 + 12) u = 32 u. 

The current in the circuit is 

I = EE
ER 

= 
16 V 

32 u
= 0.50 A. 

The direction of the current is counter clockwise. The current flow in the 
circuit is the current in the 8.0 u resistor, that is, 0.50 A. 

(b) Counter clockwise from point A to B, we have  

VA − (0.50 A)(8.0 u) = VB , 

where VA is the electric potential at point A, −(0.50 A)(8.0 u) is the potential 
drop by the 8.0 u resistor, and VB is the potential at point B. The potential 
difference between points A and B is 

VAB = VA − VB = (0.50 A)(8.0 u) = 4.0 V. 

Counter clockwise from point A to C, we have
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VA − (0.50 A)(8.0 u) − (0.50 A)(1.0 u) + 10 V 
−(0.50 A)(10 u) − (0.50 A)(12 u) = VC , 

where VA is the electric potential at point A, −(0.50 A)(8.0 u) is the potential 
drop by the 8.0 u resistor, −(0.50 A)(1.0 u) is the potential drop by the 1.0 u

resistor of the bottom cell, 10 V is the emf of the bottom cell, −(0.50 A)(10
u) is the potential drop by the 10 u resistor, −(0.50 A)(12 u) is the potential 
drop by the 12 u resistor, and VC is the potential at point C. Thus, the potential 
difference between points A and C is 

VAC = VA − VC 

= (0.50 A)(8.0 u) + (0.50 A)(1.0 u) − 10 V 
+ (0.50 A)(10 u) + (0.50 A)(12 u) 

= 5.5 V. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i6) emfsum: 6+10; Rsum: 1+8+1+10+12; I: emfsum/Rsum; float(%); 
(emfsum) 16 
(Rsum) 32 
(I) 1/2 
(%o6) 0.5 
(%i8) solve([VA-I*8=VB, VAB=VA-VB], [VAB,VA])$ float(%); 
(%o8) [[VAB=4.0,VA=VB+4.0]] 
(%i10) solve([VA-I*8-I*1+10-I*10-I*12=VC, VAC=VA-VC], [VAC,VA])$ float(%); 
(%o10) [[VAC=5.5,VA=0.5*(2.0*VC+11.0)]] 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i6) Calculate E E,E R, and I. 
(%i8) Solve VA − I (8) = VB and VAB = VA − VB for VAB and VA. 
(%i10) Solve VA − I (8) − I (1) + 10 − I (10) − I (12) = VC and VAC = VA − VC 

for VAC and VA. 

Alternative calculation: To calculate the potential difference VAC , it is easier to 
move from point C to A counter clockwise. We get 

VC + 6.0 V  − (0.50 A)(1.0 u) = VA, 

where VC is the potential of point C, 6.0 V is the emf of the top cell, −(0.50 A)(1.0u) 
is the potential drop by the 1.0 u internal resistance, and VA is the potential of point 
A. This means that
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VAC = VA − VC = 5.5 V. 

♦ wxMaxima codes: 

(%i2) fpprintprec: 5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i6) emfsum: 6+10; Rsum: 1+8+1+10+12; I: emfsum/Rsum; float(%); 
(emfsum) 16 
(Rsum) 32 
(I) 1/2 
(%o6) 0.5 
(%i8) solve([VC+6-I*1=VA, VAC=VA-VC], [VAC, VA])$ float(%); 
(%o8) [[VAC=5.5,VA=0.5*(2.0*VC+11.0)]] 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i6) Calculate E E,E R, and I. 
(%i8) Solve VC + 6 − I (1) = VA and VAC = VA − VC for VAC and VA. 

Problem 8.5 The filament of a light bulb has a resistance of 10 u at 20°C. The 
resistance temperature coefficient of the filament is 4.5 × 10–3 K–1. Calculate: 

(a) resistance of the filament at 520°C. 
(b) reduction of current through the filament at 520°C compared to at 20°C by 

assuming that the potential difference across the filament is constant at 110 V. 
(c) dissipated power by the filament at 520°C. 

Solution 

(a) The resistance of the filament at 520°C is, Eq. (8.12), 

R520 = R20[1 + α(520◦C − 20◦C)] 
= 10 u [1 + 4.5 × 10−3 K−1 (520 − 20) K] 
= 32 u. 

(b) The electric current at 20°C is, Eq. (8.8), 

I20 = 
V 

R20 
= 

110 V 

10 u
= 11 A. 

The electric current at 520°C is, 

I520 = 
V 

R520 
= 

110 V 

32.5 u
= 3.4 A.
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Reduction in current is 11 A – 3.4 A = 7.6 A. 
(c) The dissipated power by the filament at 520°C is, Eq. (8.13), 

P = V I520 = 
V 2 

R520 
= 

(110 V)2 

32 u
= 370 W. 

♦ wxMaxima codes: 

(%i5) fpprintprec: 5; R20:10; alpha:4.5e-3; V:110; 
(fpprintprec) 5 
(ratprint) false 
(R20) 10 
(alpha) 0.0045 
(V) 110 
(%i6) R520: R20*(1+alpha*(520-20)); 
(R520)32.5 
(%i7) I20: V/R20; 
(I20) 11 
(%i8) I520: V/R520; 
(I520)3.3846 
(%i9) current_reduction: I20-I520; 
(current_reduction) 7.6154 
(%i10)P: V^2/R520; 
(P) 372.31 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of R20, α, 
and V. 

(%i6), (%i7), (%i8) Calculate R520, I20, and I520. 
(%i9) Calculate current reduction. 
(%i10) Calculate dissipated power. 

Problem 8.6 The resistance of a nichrome wire is R = 72 u. What are the rates of 
electric energy dissipated in these two situations? 

(a) Potential difference of 120 V is set across the wire. 
(b) The wire is cut into one half and a potential difference of 120 V is set across 

each one half of the wire. 

Solution 

(a) Figure 8.3a shows the nichrome wire and the potential difference set across its 
length

The rate of electrical energy dissipated by the wire is, Eq. (8.13), 

Pa = 
V 2 

R 
= 

(120 V)2 

72 u
= 200 W.
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(a)                                                         (b) 

V = 120 V 
V = 120 V 

R = 72 Rb = 36 

Rb = 36 

Fig. 8.3 Potential difference across a one piece and b two pieces of nichrome wire, Problem 8.6

(b) Figure 8.3b shows the two halves of the wire and the potential difference set on 
them. The wire was cut into two equal parts, the resistance of each part is Rb = 
36 u. The rate of electric energy dissipated by one part is 

P = 
V 2 

Rb 
= 

(120 V)2 

36 u
= 400 W. 

Therefore, the rate of energy dissipated by both parts is, 

Pb = 2P = 800 W. 

♦ wxMaxima codes: 

(%i2) V: 120; R: 72; 
(V) 120 
(R) 72 
(%i3) Pa: V^2/R; 
(Pa) 200 
(%i4) Rb: 36; 
(Rb) 36 
(%i5) P: V^2/Rb; 
(P) 400 
(%i6) Pb: 2*P; 
(Pb) 800 

Comments on the codes: 

(%i2) Assign values of V and R. 
(%i3,), (%i4), (%i5), (%i6)  Calculate Pa, Rb, P, and Pb. 

Problem 8.7 Resistance of a mercury column at 15°C is 10 u. What is the resis-
tance of the column at 30 and 0°C? Resistance temperature coefficient of mercury is 
0.0072°C−1 at 0°C.
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Solution 

Using Eq. (8.12), R = R0[1 + α(T − T0)],resistances of mercury column at 15 and 
30°C are written as, 

R15 = R0 (1 + 15 α), 

R30 = R0 (1 + 30 α), 

where R0 is the resistance of the column at 0°C and α is the resistance temperature 
coefficient. The two equations give 

R30 

R15 
= 

R0(1 + 30 α) 
R0(1 + 15 α) 

, 

R30 = R15

(
1 + 30 α 
1 + 15 α

0
= 10 u

(
1 + 30◦C (0.0072 ◦C−1 ) 
1 + 15◦C (0.0072 ◦C−1 )

0

= 11 u. 

The resistance of mercury column at 30°C is 11 u. The resistance of mercury 
column at 0°C is calculated as follows: 

R15 = R0 (1 + 15 α) 
10 u = R0[1 + 15◦C (0.0072 ◦C−1 )] 

R0 = 9.0 u. 

♦ wxMaxima codes: 

(%i4) fpprintprec: 5; ratprint: false; R15: 10; alpha: 0.0072; 
(fpprintprec) 5 
(ratprint) false 
(R15) 10 
(alpha) 0.0072 
(%i5) R30: R15*(1+30*alpha)/(1+15*alpha); 
(R30) 10.975 
(%i7) solve(R15=R0*(1+15*alpha), R0)$ float(%); 
(%o7) [R0=9.0253] 

Comments on the codes: 

(%i4) Set floating point print precision to 5 and internal rational number print to 
false, assign values of R15 and α. 

(%i5) Calculate R30. 
(%i7) Solve R15 = R0 (1 + 15 α) for R0.
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Problem 8.8 A light bulb operates at 240 V, 100 W with the filament temperature at 
2000°C. The resistance temperature coefficient of the filament is 5.00 × 10−3 K−1 

at 15.0°C. What is the current in the light bulb when it is switched on at 15.0°C? 

Solution 

Using P = VI = V 2/R and V = IR, Eqs. (8.13) and (8.8), respectively, the filament 
resistance R2000 and the current in the filament I2000 at 2000°C are, 

R2000 = 
V 2 

P 
= 

(240 V)2 

100 W 
= 576 u, 

I2000 = V 

R2000 
= 

240 V 

576 u
= 0.417 A. 

The filament resistance R15 at 15.0°C is calculated as follows, 

R2000 = R15 [1 + α(θ2 − θ1)] 
576 u = R15[1 + 5.00 × 10−3 K−1 (2000 − 15.0)K] 

R15 = 52.7 u. 

Therefore, the current when the light bulb is switched on at 15.0°C is 

I15 = 
V 

R15 
= 

240 V 

52.7 u
= 4.55 A. 

♦ wxMaxima codes: 

(%i6) fpprintprec: 5; V: 240; P: 100; theta2: 2000; theta1: 15; alpha: 5e-
3; 
(fpprintprec) 5 
(V) 240 
(P) 100 
(theta2) 2000 
(theta1) 15 
(alpha) 0.005 
(%i7) R2000: float(V^2/P); 
(R2000) 576.0 
(%i8) I2000: float(V/R2000); 
(I2000) 0.41667 
(%i9) R15: R2000/(1 + alpha*(theta2-theta1)); 
(R15) 52.723 
(%i10) I15: V/R15; 
(I15) 4.5521 

Comments on the codes:

(%i6) Set floating point print precision to 5, assign values of 
V, P, θ 2, θ 1, and α.
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r = 1.0 mm I = 0.60 A 

J 
e 

Fig. 8.4 Electron flow and electric current, Problem 8.9 

(%i7), (%i8), (%i9), (%i10) Calculate R2000, I2000, R15, and I15. 

Problem 8.9 A current of 0.60 A flows in a wire of radius 1.0 mm. Calculate the 
number of electrons crossing a cross-section of the wire per second. What is the 
current density? 

Solution 

Figure 8.4 shows electron flow and electric current in the wire. The Direction of 
electric current is opposite to that of electron flow. 

Current of I = 0.60 A means a flow of 0.60 coulombs of charge per second. The 
number of electrons flowing per second is obtained by dividing the value by the 
magnitude of electron charge 

n = 0.60 C/s 

1.6 × 10−19 C 
= 3.7 × 1018 electrons per second. 

The current density J is current per cross-sectional area, Eq. (8.4), 

J = 
I 

A 
= 

I 

πr2 
= 0.60 A 

π(1.0 × 10−3 m)2 
= 1.9 × 105 A m−2 . 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; I:0.6; r:1e-3; e:1.6e-19; 
(fpprintprec) 5 
(I) 0.6 
(r) 0.001 
(e) 1.6*10^-19 
(%i5) n: I/e; 
(n) 3.75*10^18 
(%i6) J: I/float(%pi*r^2); 
(J) 1.9099*10^5 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of I, r, and e. 
(%i5), (%i6) Calculate n and J.



8.2 Problems and Solutions 205

Problem 8.10 Electric current of 5.0 A flows in a copper wire of a cross-sectional 
area of 3.0 mm2. Calculate the drift velocity of the electrons in the wire. Atomic 
mass of copper is 63.6 kg kmol−1 and density of copper is 8920 kg m−3. 

Solution 

The current density J is, Eq. (8.4), 

J = 
I 

A 
= 5.0 A  

3.0 × 10−6 m2 
= 1.7 × 106 A m−2 . 

Current density J and drift velocity vd of electron are related as follows, Eq. (8.4), 

J = nevd , 

where n is the number of electrons per unit volume of copper, e is the electron charge, 
and vd is the drift velocity of electrons. The number of copper atoms per unit volume 
is, 

n = 
NAρ 
M 

= 
(6.02 × 1026 atom/kmol)(8920 kg/m3) 

63.6 kg/kmol 

= 8.4 × 1028 atoms m−3 , 

where NA is the Avogadro number, ρ is the density of copper, and M is the molar 
mass of copper. Assume that there is one free electron for each copper atom that 
creates the current. Then, the value is the number of charge carriers per unit volume, 
that is, n = 8.4 × 1028 free electrons per m3. Therefore, the drift velocity of electrons 
in copper is 

vd = 
J 

ne 
= 1.7 × 106 A m−2 

(8.4 × 1028 electrons m−3)(1.6 × 10−19 C) 
= 1.2 × 10−4 m s−1 . 

♦ wxMaxima codes: 

(%i7) fpprintprec:5; I:5; A:3e-6; M:63.6; rho:8920; NA: 6.02e26; e:1.6e-19; 
(fpprintprec) 5 
(I) 5 
(A) 3.0*10^-6 
(M) 63.6 
(rho) 8920 
(NA) 6.02*10^26 
(e) 1.6*10^-19 
(%i8) J: I/A; 
(J) 1.6667*10^6 
(%i9) n: NA*rho/M; 
(n) 8.4431*10^28 
(%i10) vd: J/(n*e); 
(vd) 1.2337*10^-4
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Comments on the codes: 

(%i7) Set floating point print precision to 5, assign values of I, A, 
M, ρ, NA, and e. 

(%i8), (%i9), (%i10) Calculate J, n, and vd . 

Problem 8.11 Calculate the resistance of 100 m of silver wire with a cross-sectional 
area of 0.30 mm2. Resistivity of silver is 1.6 × 10−8 u m. 

Solution 

The resistance of the silver wire is, Eq. (8.9), 

R = 
ρl 

A 
= 

(1.6 × 10−8 u m)(100 m) 

0.30 × 10−6 m2
= 5.3 u. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; l:100; A:0.3e-6; rho:1.6e-8; 
(fpprintprec) 5 
(l) 100 
(A) 3.0*10^-7 
(rho) 1.6*10^-8 
(%i5) R: rho*l/A; 
(R) 5.3333 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of l, A, and ρ. 
(%i5) Calculate R. 

8.3 Summary 

• Electrical current is the rate at which charge flows 

I = 
dq 

dt  
. 

• The unit for current is ampere (A) 

1 A  = 1 C s−1 .
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• Resistance R of a cylinder of length l and cross-sectional area A and resistivity ρ 
is 

R = 
ρl 

A 
. 

• Temperature affects resistivity ρ and resistance R of a material 

ρ = ρ0(1 + α(T − T0)), 

R = R0(1 + α(T − T0)), 

where ρ0, R0, and T 0 are original resistivity, resistance, and temperature, 
respectively, and α is the temperature coefficient of resistivity. 

• Ohm’s law gives the relationship among current I, voltage V, and resistance R in 
a simple circuit as 

V = I R. 

• Electric power is the rate at which the electric energy is consumed by a load or 
supplied to a load. Power dissipated by a resistor is 

P = I V  = I 2 R = V 2 /R. 

8.4 Exercises 

Exercise 8.1 A current of 6.0 A is maintained in a wire for 50 s. At this time, how 
much charge and how many electrons flow through the wire? 

(Answer: 300 C, 1.9 × 1021 electrons) 

Exercise 8.2 A current of 2.5 A flows in a metal rod of diameter 0.20 cm and length 
1.5 m when the potential difference between the rod ends is 40 V, Fig. 8.5. Calculate 

40 V 

0.20 cm I = 2.5 A 

1.5 m 

Fig. 8.5 Electric current in a metal rod, Exercise 8.2



208 8 Current and Resistance

Fig. 8.6 A circuit consisting 
of a dry cell with internal 
resistance and a resistor, 
Exercise 8.4 

R = 5.0 

r = 0.5 , = 3.0 V 

BA 

dry cell 

(a) current density 
(b) electric field in the rod 
(c) resistivity of the metal 

(Answer: (a) J = 8.0 × 105 A m−2 (b) E = 27 V m−1 (c) ρ = 3.4 × 10−5 u m) 

Exercise 8.3 A copper wire is 10 m long and 0.25 mm in diameter. Resistivity of 
copper is 1.7 × 10−8 u m. Calculate the resistance of the wire. 

(Answer: 3.5 u) 

Exercise 8.4 A dry cell with an emf of 3.0 V and an internal resistance of 0.5 u

is connected to a 5.0 u resistor, Fig. 8.6. What is the potential difference between 
points A and B? 

(Answer: 2.7 V) 

Exercise 8.5 The resistance of a metal wire at 20°C is 1.64u and at 150°C is 2.41u. 
Find the resistance of the wire at 0°C and the temperature coefficient of resistance. 

(Answer: R0 = 1.52 u, α = 3.89 × 10−3°C−1)



Chapter 9 
Direct Current Circuit 

Abstract This chapter solves problems on direct current circuits by applying Kirch-
hoff’s rules. The rules are (1) the sum of the currents into any junction is zero and 
(2) the sum of potential differences across each element around a closed loop is zero. 
Problems to determine the equivalent resistance of resistors in series and in parallel 
and to determine current and charge in direct current RC circuits are also tackled. 
Solutions are by analytical means and computer calculation. 

9.1 Basic Concepts and Formulae 

(1) Electromotive force (emf) of a battery is the voltage across its terminals when 
the current is zero. The emf is the open circuit voltage of a battery. 

(2) Equivalent resistance Rseries of two or more resistors connected in series is 

Rseries = R1 + R2 + R3 + ... (1) 

Equivalent resistance Rparallel of two or more resistors connected in parallel 
is given by 

1 

Rparallel 
= 

1 

R1 
+ 

1 

R2 
+ 

1 

R3 
+ ... (2) 

(3) Electric circuits can be analyzed by Kirchhoff’s rules that say: 

(a) the sum of currents into a junction is the sum of currents out of the junction. 
(b) the sum of potential differences across every element of a closed loop is 

zero.

(4) If a resistor is tracked in the direction of current, the change in potential across 
the resistor is −IR, that is, there is a voltage drop. If a resistor is tracked in 
the opposite direction to the current, the change in potential is IR, that is, there
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(a)                                                              (b) 

R 

C 

A 

B switch 

R 

CB switch 

A 

Fig. 9.1 A direct current RC circuit, a charging, b discharging 

is a voltage rise. If an emf source is tracked in the emf direction (negative to 
positive), the change in potential is E . If an emf source is tracked in the opposite 
direction to the emf direction (positive to negative), the change in potential is 
–E .

(5) A capacitor C is connected to a resistor R and a battery with emf E , as shown  
in Figure 9.1a. This is called an RC circuit. The current I in the circuit and the 
charge Q in the capacitor vary with time as 

I (t) = 
E 
R 

· e− t 
RC = Imax · e−t/τ , (3) 

Q(t) = C E · (1 − e− t 
RC ) = Qmax · (1 − e−t/τ ), (4) 

where Imax = E /R is the maximum current, Qmax = CE is the maximum charge 
of the capacitor, and τ = RC is the time constant of the circuit. 

(6) When the capacitor is discharged, Figure 9.1b, the charge in the capacitor 
Q and current in the circuit I change with time as 

Q(t) = Q0 · e− t 
RC = Q0 · e−t/τ , (5) 

I (t) = I0 · e− t 
RC = 

Q0 

RC 
· e−t/τ , (6) 

where I0 = Q0/(RC) is the initial current in the circuit and Q0 the is initial 
charge in the capacitor.
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9.2 Problems and Solutions 

Problem 9.1 For the circuit in Fig. 9.2a, determine the current in each resistor. 

Solution 

There are two cells that drive the currents. We assumed two counter clockwise loops 
A and B and currents I1, I2, and I3 at junction C, Fig.  9.2b. Applying Kirchhoff’s 
rule, at junction C 

I2 = I1 + I3, (1) 

that is, current going in I2 equals currents going out I1 + I3. 
For loop A, we have  

E1 − R1 I1 + R3 I3 = 0,

(a) (b) 

(c) 

B 
A 

C 

I1 I2 
I3 

1 = 6.0 V 2 = 10 V 

R3 = 8.0 

R1 = 4.0 R2 = 12  

1 = 6.0 V 2 = 10 V 

R3 = 8.0 

R1 = 4.0 R2 = 12  

B 

A 

C 

I1 I2 
I3 

R1 = 4.0 R2 = 12  

1 = 6.0 V 2 = 10 V 

R3 = 8.0 

Fig. 9.2 Determining currents in a circuit, a the circuit, b setting currents and loops for Kirchhoff’s 
rule analysis, c alternative Kirchhoff’s rule analysis, Problem 9.1 
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6.0 V  − (4.0 y)I1 + (8.0 y)I3 = 0. (2) 

Here, starting at the 6.0 V cell, we have a 6.0 V potential rise by the cell, −(4.0 y)I1 
potential drop by the 4.0 y resistor, and +(8.0 y)I3 potential rise by the 8.0 y

resistor. 

For loop B, we have  

E2 − R3 I3 − R2 I2 = 0, 

10 V − (8.0 y)I3 − (12 y)I2 = 0. (3) 

That is, starting from the 10 V cell, we have a 10 V potential rise by 
the cell, −(8.0 y)I3 potential drop by the 8.0 y resistor, and another −(12 y)I2 
potential drop by the 12 y resistor. 

Solving Eqs. (1), (2), and (3), gives currents in resistors R1, R2, and R3 as 

I1 = 1 
3 

22 
A = 1.1 A, I2 = 

21 

22 
A = 0.95 A, and I3 = −  

2 

11 
A = −0.18 A. 

The solutions say that the directions of I1 and I2 are the same as the ones assumed 
in Fig. 9.2(b), while the direction of I3 is the opposite, and hence the negative sign 
in the current. 

The current is 1.1 A from right to left in the 4.0 y resistor, 0.95 A from left to 
right in the 12 y resistor, and 0.18 A from bottom to top in the 8.0 y resistor. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve Eqs. (1), (2), and (3) for I1, I2, and I3. 

What if you assume different current directions and loops? Will the currents be 
the same? Fig. 9.2(c) shows an example. Applying Kirchhoff’s rules at junction C, 

I3 = I1 + I2. (4)
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For loop A, 

−R3 I3 − R1 I1 − E1 = 0, 

−(8.0 y)I3 − (4.0 y)I1 − 6.0 V  = 0, (5) 

For loop B, 

E2 − R3 I3 − R2 I2 = 0, 

10 V − (8.0 y)I3 − (12 y)I2 = 0. (6) 

Solving Eqs. (4), (5), and (6) gives currents in resistors R1, R2, and R3 as 

I1 = −1 
3 

22 
A = −1.1 A, I2 = 

21 

22 
A = 0.95 A, and I3 = −  

2 

11 
A = −0.18 A. 

The solutions say that the direction of I2 is the same as the one assumed in 
Fig. 9.2c, while those of I1 and I3 are the opposite. These results are in physics terms 
the same as those of Fig. 9.2b. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve Eqs. (4), (5), and (6) for I1, I2, and I3. 

Problem 9.2 For Fig. 9.3, determine,

(a) the equivalent resistance between points X and Y. 
(b) the potential difference between points X and A if the current through 8.0 y

resistor is 0.50 A. 

Solution 

(a) We calculate equivalent resistances in stages, and at each stage, substitute the 
equivalent resistance into the circuit until the final equivalent resistance Re is 
obtained, Fig. 9.4.
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8.0 

16 

16 

9.0 

18 

20 

6.0X Y 

A 

Fig. 9.3 A network of resistors, Problem 9.2

(a) (b) 

(c) (d) 

X Y  

Re = 8.0 

R3 = 24 

R4 = 12 X Y 

C 

Re 

R1 = 4.0 

R2 = 6.0 

20 

6.0X Y  

A 

CB 

D 

R3 

R4 

8.0 

16 

16 

9.0 

18 

20 

6.0X Y 

A 

CB 

D 

R1 

R2 

Fig. 9.4 Determining equivalent resistance, Problem 9.2 

In Fig. 9.4a, the 8.0, 16, and 16y resistors are in parallel. Let their equivalent 
resistance be R1 with value 

R1 = 1 
1 
8.0 + 1 

16 + 1 
16

y = 4.0 y.
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The 9.0 and 18 y resistors are in parallel. Let their equivalent resistance be 
R2 

R2 = 1 
1 
9.0 + 1 

18

y = 6.0 y. 

In Fig. 9.4b, R1 and the 20 y resistors are in series. Let their equivalent 
resistance be R3 

R3 = 4.0 y + 20 y = 24 y. 

Similarly, R2 and the 6.0y resistors are in series. Their equivalent resistance 
is R4 

R4 = 6.0 y + 6.0 y = 12 y. 

In Fig. 9.4c and d, the equivalent resistance between points X and Y is 

Re = 1 
1 
R3 

+ 1 
R4 

= 1 
1 
24 + 1 

12

y = 8.0 y. 

(b) In Fig. 9.4a, with the info that current through 8.0 y resistor is 0.50 A, using V 
= IR, then 

VX B  = (8.0 y)(0.50 A) = 4.0 V. 

Therefore, the current through the three resistors in parallel is 

IX B  = 0.50 A + 
4.0 V  

16 y
+ 

4.0 V  

16 y
= 1.0 A,  

where we have used I = V /R to calculate the second and third currents. Because 
IBC = IXB = 1.0 A, applying V = IR, we write 

VBC = (20 y)IBC = (20 y)(1.0 A) = 20 V. 

Thus, the voltage between points X and Y is 

VXY = VX B  + VBC = 4.0 V  + 20 V = 24 V. 

Because V XY = VXD = 24 V, applying I = V /R, we write 

IX D  = 
V X D  

RX D  
= 

24 V 

12 y
= 2.0 A,
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and IXD = IAD = IXA = 2.0 A as well. The potential difference between points 
X and A is 

VX A  = IX A RX A  = IX A R2 = (2.0 A)(6.0 y) = 12 V. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i1), (%i2), (%i3), (%i4), (%i5) Calculate R1, R2, R3, R4, and Re. 
(%i6), (%i7), (%i8), (%9), (%i10) Calculate VXB, VBC , V XY , IXD, and V XA. 

Problem 9.3 Figure 9.5a and b show two configurations of resistors. Each resistor 
is 3.0 y and has a maximum output power of 48 W. What are the maximum power 
and voltage of terminals of each configuration? 

Solution 

(a) The maximum current that flows in the 3.0 y resistor on the right of Fig. 9.5(a) 
is, Eq. (8.13),

Imax = 
/

Pmax 

R 
=

/
48 W 

3.0 y
= 4.0 A,  

where application of P = I2R is made. The two 3.0 y resistors on the left are in 
parallel, the current through each of them is 2.0 A, and the power of each is 

P = I 2 R = (2.0 A)2 (3.0 y) = 12 W.
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)b()a( 

3.0 

3.0 
3.0 

3.0 

3.0 

3.0 

Fig. 9.5 Power and voltage of configuration of resistors (a) and (b), Problem 9.3

Therefore, the maximum electrical power of the three resistors of Fig. 9.5a 
is 

Ptotal = 48 W + 12 W + 12 W = 72 W. 

The voltage between the terminals is 

V = (3.0y)(2.0A) + (3.0y)(4.0A) = 18V. 

♦ wxMaxima codes: 

Comments on the codes: 
(%i2) Assign values of Pmax and R. 
(%i3), (%i4), (%i5), (%i6), (%i7) Calculate Imax, I, P, Ptotal, and V. 

(b) For the configuration of Fig. 9.5b, the maximum current that flows in each of 
the 3.0 y resistors in parallel is, Eq. (8.13), 

Imax = 
/

Pmax 

R 
=

/
48 W 

3.0 y
= 4.0 A
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The current through the configuration is 4.0 A + 4.0 A + 4.0 A = 12 A. 
The maximum electric power of the configuration is 

Ptotal = 48 W + 48 W + 48 W = 144 W. 

The voltage between the terminals is, Eq. (5.13) 

V = 
P 

I 
= 

48 W 

4.0 A  
= 12 V. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i2) Assign values of Pmax and R. 
(%i3), (%i4), (%i5) Calculate Imax, Ptotal, and V. 

Problem 9.4 Three identical resistors are connected in series and a potential differ-
ence of V is applied, the dissipated power is 10 W. What is the dissipated power if the 
three resistors are connected in parallel with the same potential difference applied? 

Solution 

Figure 9.6a shows the resistors in series, while Fig. 9.6b shows the resistors in parallel. 
Each resistor has resistance R.

For resistors connected in series, Fig. 9.6(a), the equivalent resistance is, Eq. (1), 

Rseries = R + R + R = 3R. 

The dissipated power is, Eq. (8.13), 

Pseries = V 2 

Requivalent 
= 

V 2 

Rseries 
= 

V 2 

3R 
= 10 W. 

This means that each resistor dissipates 10/3 W = 3.3 W of electrical power. 
For resistors connected in parallel, Fig. 9.6b, the equivalent resistance is, Eq. (2),
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)b()a( 

R 

R 

R 

V 

V 

R               R              R 

Fig. 9.6 Three resistors in series (a), and in parallel (b), Problem 9.4

Rparallel = 1 
1 
R + 1 R + 1 R 

= 
R 

3 
. 

The dissipated power is, Eq. (8.13), 

Pparallel = V 2 

Requivalent 
= 

V 2 

Rparallel 
= 

V 2 

R/3 
= 

3V 2 

R 
. 

The ratio of dissipated powers for resistors in parallel to that in series is 

Pparallel 

Pseries 
= 

(3V 2/R) 
(V 2/3R) 

= 9. 

Thus, the power for resistors in parallel is 

Pparallel = 9Pseries = 9 (10 W) = 90 W. 

This means that each resistor dissipates 90/3 W = 30 W of electrical power. 

♦ wxMaxima codes:
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2.0          4.0         4.0        2.0 

6.0         6.0         4.0 

A 

B 

C 

2.0          4.0         4.0        2.0 

Fig. 9.7 A network of eleven resistors, Problem 9.5 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve Pseries = 10, V 2 

3R = 10, and Pparallel = 3V 2 

R for Pparallel, Pseries, and V. 

Another question: If the resistors are replaced by identical light bulbs, how does the 
brightness of the bulbs in series compare with the bulbs in parallel? 

Answer: The bulbs in series are less bright than the ones in parallel because the power 
of bulbs in series is less than the ones in parallel. 

Problem 9.5 Eleven resistors are arranged as in Fig. 9.7, determine: 

(a) the resistance between points A and B. 
(b) potential difference between points A and B that causes current of 1.0 A in point 

C. 

Solution 

(a) Figure 9.8 shows a way to simplify the circuit in stages. Resistors in series and 
resistors in parallel are replaced by their equivalent resistances, this is repeated 
until a single equivalent resistance is obtained.

In Figs. 9.7 and 9.8a 

R1 = 4.0 y + 4.0 y + 4.0 y = 12 y. 

The two 2.0 y resistors on the right of Fig. 9.7 are not included, because if 
A and B are the terminals of emf, no current will flow in the two resistors. In 
Figs. 9.8a and b, the 6.0 y resistor and R1 are in parallel, thus 

R2 = 1 
1 
R1 

+ 1 
6.0 y

= 1 
1 

12 y
+ 1 

6.0 y

= 4.0 y.
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(a) 

(b) 

(c) 

(d) 

(e) 
R5 

A B  

2.0 R4 2.0 
A B  

R3 

2.0 6.0 2.0 
A B  

4.0 R2 4.0 

2.0 6.0 2.0 
A B  

4.0 6.0 4.0 

2.0 6.0 2.0 

R1 

A B  

Fig. 9.8 Simplifying the resistor network in stages, Problem 9.5

In Figs. 9.8b and c, the two 4.0 y resistors and R2 are in series, thus 

R3 = 4.0 y + R2 + 4.0 y = 12 y. 

In Figs. 9.8c and d, the 6.0 y resistocr and R3 are in parallel, thus 

R4 = 1 
1 
R3 

+ 1 
6.0 y

= 1 
1 

12 y
+ 1 

6.0 y

= 4.0 y.
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Lastly, in Figs. 9.8d and 9.8e, the equivalent resistance between points A and 
B is 

R5 = 2.0 y + R4 + 2.0 y = 8.0 y. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i1), (%i2), (%i3), (%i4) (%i5) Calculate R1, R2, R3, R4, and R5. 

(b) In Figs. 9.7 and 9.8a, 

current in C = current in R1 = 1.0 A. 

In Fig. 9.8a and b 

potential difference across R2 = potential difference across R1 

= (1.0 A)R1 = (1.0 A)(12 y) 
= 12 V. 

In Fig. 9.8b and c 

current in R3 = current in R2 = 
12 V 

R2 
= 

12 V 

4.0 y
= 3.0 A. 

potential difference across R3 = (3.0 A)(12 y) = 36 V. 

In Fig. 9.8c and d 

potential difference across R4 = potential difference across R3 = 36 V. 

current in R4 = 
36 V 

R4 
= 

36 V 

4.0 y
= 9.0 A. 

In Fig. 9.8d and e
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Fig. 9.9 Circuit of Problem 
9.6 

6.0                              3.0 

3.0                               6.0 

A  B                36 V 

C 

S 

D 

current in R5 = current in R4 = 9.0 A. 

Thus, the potential difference between points A and B is 

(9.0 A)R5 = (9.0 A)(8.0 y) = 72 V. 

Problem 9.6 For Fig. 9.9, determine: 

(a) the potential difference between points A and B, VAB when switch S is opened. 
(b) the current in switch S when the switch is closed. 

Solution 

(a) When switch S is opened, using I = V /R, the current in point A or B is 

36 V 

(3.0 + 6.0) y
= 4.0 A. 

The voltage drop across CA, using  V = IR, is  

(4.0A)(6.0y) = 24 V. 

The potential at point A is 

VA = 36 V−24 V = 12 V. 

The voltage drop across CB is 

(4.0A)(3.0y) = 12 V.
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The potential at point B is 

VB = 36 V−24 V = 24 V. 

Therefore, the potential difference between points A and B is 

VAB = VA−VB = 12 V−24 V = −12 V. 

(b) Figure 9.10a shows currents and resistors for the circuit in Fig. 9.9 when switch 
S is closed. Directions of currents and circuit loops are assigned for application 
of Kirchhoff’s rules. 

For top and bottom loops, the Kirchhoff’s rules give 

−(3.0 y)I1 + (6.0 y)(I − I1) = 0, (1) 

−(6.0 y)I2 + (3.0 y)(I − I2) = 0. (2) 

Top loop, Eq. (1): In a clockwise direction, starting from point C, there is a 
potential drop of −(3.0 y)I1 across the 3.0 y resistor and potential rise of + 
(6.0 y)(I −I1) across the 6.0 y resistor. 

Bottom loop, Eq. (2): In a clockwise direction, starting from point B, there 
is a potential drop of −(6.0 y)I2 across the 6.0 y resistor and potential rise of 
+ (3.0 y)(I −I2) across the 3.0 y resistor. 

Solving Eqs. (1) and (2) gives  I1 and I2 in terms of I

(a) (b) 

6.0                                3.0 

3.0 6.0 

A B  

C 

D 

S 

I 
I1 

I – I1 

I – I2 

I2 

I 

I1 – I2 36 V 
6.0 3.0 

3.0 6.0 

A B  

C 

D 

S 

I 
I1 

I – I1 

I – I2 

I2 

I 

I1 – I2 

Fig. 9.10 a Analysis by Kirchhoff’s rule, b alternative analysis by Kirchhoff’s rule, Problem 9.6 
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I1 = 
2 

3 
I, I2 = 

1 

3 
I. 

The equivalent resistance between points C and D is 

R = 1 
1 
3.0 + 1 

6.0

y + 1 
1 
6.0 + 1 

3.0

y = 4.0 y. 

The current in C or D is 

I = 
VC D  

R 
= 

36 V 

4.0 y
= 9.0 A. 

Thus, the current through switch S is 

I1 − I2 = 
1 

3 
I = 

1 

3 
(9.0 A) = 3.0 A. 

The direction of the current is from point B to A. The other currents are 

I1 = 
2 

3 
I = 

2 

3 
(9.0 A) = 6.0 A. 

I2 = 
1 

3 
I = 

1 

3 
(9.0 A) = 3.0 A. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i1) Solve Eqs. (1) and (2) for I1 and I2. 
(%i2), (%i3) Calculate equivalent resistance R and current I. 
(%i4) Calculate the current in switch S. 

Alternative calculation: Fig. 9.10b shows the circuit with the 36 Vvoltage source 
and a third loop. Using Kirchhoff’s rules in the three loops, we have
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−(3.0 y)I1 + (6.0 y)(I − I1) = 0, (1) 

−(6.0 y)I2 + (3.0 y)(I − I2) = 0, (2) 

36 V − (3.0 y)I1 − (6.0 y)I2 = 0. (3) 

Top loop, Eq. (1): In a clockwise direction, starting from pointC, there is a potential 
drop of −(3.0 y)I1 across the 3.0 y resistor and potential rise of + (6.0 y)(I −I1) 
across the 6.0 y resistor. 

Bottom loop, Eq. (2): In a clockwise direction, starting from point B, there is a 
potential drop of −(6.0y)I2 across the 6.0y resistor and potential rise of + (3.0y)(I 
− I2) across the 3.0 y resistor. 

Right loop, Eq. (3): In counter clockwise direction, starting from the voltage 
source, there is a potential rise of + 36 V across the voltage source, a potential drop 
of − (3.0 y)I1 across the 3.0 y resistor, and a potential drop of −(6.0 y)I2 across 
the 6.0 y resistor. 

Solving Eqs. (1), (2), and (3) gives  

I1 = 6.0 A, I2 = 3.0 A, I = 9.0 A. 

Therefore, the current in switch S is 

I1 − I2 = 3.0 A. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i1) Solve Eqs. (1), (2), and (3) for  I, I1, and I2. 
(%i4) Calculate the current in switch S. 

Problem 9.7 Figure 9.11 is an RC series circuit with ε = 12 V, R = 1.4 My, and 
C = 1.8 μF.
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Fig. 9.11 An RC circuit, 
Problem 9.7 

E = 12 V                    

R =1.4 MΩ      C =1.8 μF 

(a) Calculate the time constant τ . 
(b) What is the maximum charge Qmax in the capacitor? 
(c) Calculate the time to charge the capacitor to 16 μC. 
(d) Plot curves of charge in the capacitor and current in the circuit against time for 

0 to 10 s.  

Solution 

(a) The time constant is, Eq. (4), 

τ = RC = (1.4 × 106 y)(1.8 × 10−6 F) = 2.5 s. 

(b) The maximum charge in the capacitor is, Eq. (4), 

Qmax = C E = (1.8 × 10−6 F)(12 V) = 2.2 × 10−5 C = 22 μC. 

(c) The time to charge the capacitor to 16 μC is calculated as follows, Eq. (4), 

Q = Qmax · (1 − e−t/τ ), 

e−t/τ = 1 − 
Q 

Qmax 
, 

t = −τ ln
(
1 − 

Q 

Qmax

)
= −(2.5 s) ln

(
1 − 

16 μC 

22 μC

)

= 3.4 s.
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♦ wxMaxima codes: 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print 
to false, and assign ε, R, and C. 

(%i6), (%i7) Calculate τ and Qmax. 
(%i8), (%i9) Assign Q and calculate t. 

(d) The charge Q in the capacitor varies with time t as, Eq. (4), 

Q = Qmax · (1 − e−t/τ ). 

♦ Curve of charge in the capacitor against time by wxMaxima is as follows:
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Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of ε, R, and 
C. 

(%i5), (%i6) Calculate τ and Qmax. 
(%i7) Define Q. 
(%i8) Plot Q against t for 0 ≤ t ≤ 10 s. 

The current I in the RC circuit varies with time t as, Eq. (3), 

I = 
E 
R 

· e−t/τ . 

♦ Curve of current in the circuit against time by wxMaxima is as follows:
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Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of ε, R, and C. 
(%i5) Calculate τ . 
(%i6) Define I. 
(%i7) Plot I against t for 0 ≤ t ≤ 10 s. 

Alternative solution: For a series RC circuit of Fig. 9.11, the circuit equation is 

E = RI  + 
Q 

C 
= R 

d Q  

dt 
+ 

Q 

C 
, 

where I is the current in the circuit, Q is the charge in the capacitor, and ε E is the 
emf of the battery. Thus, RI is the potential drop across the resistor and Q/C is the 
potential drop across the capacitor. Electric current is the time rate of charge flow, I 
= dQ/dt. The initial condition is, at t = 0 s,  Q = 0 C.  

The equation is a first-order differential equation, where charge Q is the depen-
dent variable and t is the independent variable. This can be solved using predefined 
functions ode2 and ic1 of wxMaxima. See Solving first order ordinary differential 
equation in Appendix A.
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♦ wxMaxima codes:
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Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print 
to false, and assign values of ε, R, and C. 

(%i6) Solve ODE E = R d Q/dt + Q/C, and get a general solution. 
(%i7) Set the initial condition and get a particular solution. 
(%i8), (%i9) Assign the solution to Q and plot Q against t for 0 ≤ t ≤ 10 s. 
(%i10), (%i11) Calculate I and plot I against t for 0 ≤ t ≤ 10 s. 

Problem 9.8 Figure 9.12 is an RC circuit with a capacitance of C = 1.02 μF and a 
battery of emf ε = 20.0 V. The capacitor is fully charged to a charge of Q0 = Cε. At  
time t = 0 s, the switch is moved from point A to B. The Current I decreases to half 
of its initial value in 40 μs. 

(a) What is the charge in the capacitor at t = 0? 
(b) Calculate resistance R 
(c) What is the charge in the capacitor at t = 60 μs?

R 

C =1.02 μF 

A 

B 
E = 20.0 V 

switch 

Fig. 9.12 An RC circuit, Problem 9.8 
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Solution 

(a) At t = 0, the charge is, Eq. (4), 

Q0 = C E = (1.02 × 10−6 F)(20 V) = 2.04 × 10−5 C = 20.4 μC. 

(b) From the question, at time t = 40 μs, I = 0.5I0, thus, Eq. (6), 

I = I0 · e− t 
RC , 

0.5I0 = I0 · e− 40 × 10−6 s 
R(1.02 × 10−6 F) , 

ln 2 = 40 × 10−6 s 

R(1.02 × 10−6 F) 
, 

R = 40 × 10−6 s 

(1.02 × 10−6 F) ln 2 
= 57 y. 

(c) At t = 60 μs, the charge in the capacitor is, Eq. (5), 

Q = Q0 · e− t 
RC = 20.4 μC · e− 60×10−6 s 

(57 y)(1.02×10−6 F) = 7.2 μC. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of ε, C, and 
t. 

(%i5), (%i7) Calculate Q0 and R. 
(%i8), (%i10) Assign t and calculate Q. 

Problem 9.9 Figure 9.13 shows a circuit consisting of a resistance R = 1.70 My

and a capacitance C = 2.30 μF, and a switch. The capacitor has a charge of 50 μC.
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Fig. 9.13 Discharging an 
RC circuit, Problem 9.9

R = 1.70 M

C = 2.30 μF 

Q0 = 50 μC 

switch 

The switch is closed at t = 0 s, so that the circuit is completed. Plot curves of charge 
in the capacitor versus time and current in the circuit versus time for the discharging 
process. 

Solution 

For the discharging process of an RC circuit, charge and current vary with time as, 
Eq. (5) and (6), 

Q = Q0 · e− t 
RC = Q0 · e− t 

τ , (1) 

I = I0 · e− t 
RC = 

Q0 

RC 
· e− t 

τ . (2) 

The time constant of the RC circuit is 

τ = RC = (1.70 × 106 y)(2.30 × 10−6 F) = 3.91 s. 

The initial current is 

I0 = 
Q0 

RC 
= 50 × 10−6 C 

(1.70 × 106 y)(2.30 × 10−6 F) 
= 1.28 × 10−5 A. 

The curves to be plotted are 

Q = (50 × 10−6 C) · e− t 
3.91 s , (3) 

I = (1.28 × 10−5 A) · e− t 
3.91 s . (4) 

♦ Plot of curve (3) i.e. curve of Q against time t for 0 ≤ t ≤ 10 s by wxMaxima is 
as follows:
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(%i4) fpprintprec:5; R:1.7e6; C:2.3e-6; Q0:50e-6; 
(fpprintprec) 5 
(R) 1.7*10^6 
(C) 2.3*10^-6 
(Q0) 5.0*10^-5 
(%i5) tau: R*C; 
(tau) 3.91 
(%i6) Q: Q0*exp(-t/tau); 
(Q) 5.0*10^-5*%e^(-0.25575*t) 
(%i7) wxplot2d(Q, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t}  (s)"], 
[ylabel,"{/Helvetica-Italic Q} (C)"]); 

Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of R, C, and Q0. 
(%i5) Calculate τ . 
(%i6) Assign Q. 
(%i7) Plot Q against t for 0 ≤ t ≤ 10 s. 

♦ Plot of curve (4) i.e. curve of I against time t for 0 ≤ t ≤ 10 s by wxMaxima is as 
follows:
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Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of R, C, and 
Q0. 

(%i5), (%i6) Calculate τ and I0. 
(%i7) Assign I. 
(%i8) Plot I against t for 0 ≤ t ≤ 10 s. 

Alternative solution: The circuit equation of the problem is, 

RI  + 
Q 

C 
= 0, 

R 
d Q  

dt 
+ 

Q 

C 
= 0. 

This is a first-order ordinary differential equation with Q and t as its dependent 
and independent variables, respectively. The initial condition is, at t = 0 s,  Q = Q0 

= 50 × 10−6 C. 
The first-order ordinary differential equation can be solved via predefined func-

tions ode2 and ic1 of wxMaxima. See Solving first order ordinary differential 
equation in Appendix A.
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♦ wxMaxima codes:
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Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print 
to false, and assign values of R, C, and Q0. 

(%i7) Solve ODE R d Q/dt + Q/C = 0 and get a general solution. 
(%i9) Set the initial condition and get a particular solution. 
(%i10), (%i11) Assign the solution to Q and plot Q against t for 0 ≤ t ≤ 10 s. 
(%i12), (%i13) Calculate I and plot I against t for 0 ≤ t ≤ 10 s. 

Problem 9.10 Show that the resistance of an infinite network shown in Fig. 9.14 is 
(1 + 

√
3)R. 

Solution 

Figure 9.15 shows the infinite resistor network. Additional observation points C and 
D are also marked.

Resistance between A and B is the sum of R (top left), parallel resistors consisting 
of R and effective resistance between C and D (RCD), and R (bottom left). We write

Fig. 9.14 An infinite 
network of resistors, 
Problem 9.10 

R R                R 
A 

B 
R R                R 

R R                R 
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Fig. 9.15 Determining 
equivalent resistance, 
Problem 9.10

R R                R 
A 

B 
R R                R 

R R                R 

C 

D 

RAB = R + 1 
1 
R + 1 

RC D  

+ R 

= 2R + 
R RC D  

R + RC D  

= 
2R2 + 3R RC D  

R + RC D  
, 

R RAB + RAB RC D  = 2R2 + 3R RC D. 

The network is infinite, so RAB ≈ RCD, and let us call them R∞. The resistance 
can be calculated by the quadratic formula 

R R∞ + R2 
∞ = 2R2 + 3R R∞, 

R2 
∞ − 2R R∞ − 2R2 = 0, 

R∞ = 
−b + 

√
b2 − 4ac 

2a
= 

2R + 
√
4R2 + 8R2 

2 
, 

R∞ = (1 + √
3)R = 2.73R. 

We have shown that for an infinite network of resistors of Fig. 9.15 the resistance 
RAB = RCD = R∞ = (1+ 

√
3)R. 

♦ wxMaxima codes:
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Fig. 9.16 Charging an RC 
circuit, Problem 9.11 R 

CE 

switch 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve R R∞ + R2∞ = 2R2 + 3R R∞ for R∞. 

Problem 9.11 Figure 9.16 shows an RC circuit. The circuit consists of a resistance 
R, a capacitance C, and a cell with emf ε. At time  t = 0 s, the switch is closed. Show 
that the charge q in the capacitor and the current i in the circuit are given by 

q = C E · (1 − e− t 
RC ), 

i = 
E 
R 

· e− t 
RC . 

Solution 

When the switch is closed, the equation of the circuit is 

E = Ri + 
q 

C 
, 

where i is the current in the circuit, q is the charge in the capacitor, and ε E is the 
emf of the battery. Here, Ri is the potential drop across the resistor and q/C is the 
potential drop across the capacitor. As electric current is the time rate of charge flow, 
i = dq/dt, the equation is written as 

E = R 
dq 

dt 
+ 

q 

C 
, 

dq 

dt 
+ 

q 

RC 
− 

E 
R 

= 0. (1)
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Equation (1) is a first-order ordinary differential equation, with time t as the 
independent variable and q as the dependent variable. 

Let us guess a solution of the form 

q = CE − K e−t/(RC) . (2) 

where K is a constant and Cε is the charge in a fully charged capacitor. Equation (2) 
says that q increases with t, and as t is very big q becomes Cε. The time derivative 
of q is 

dq 

dt 
= 

K 

RC 
e−t/(RC) . (3) 

If we substitute (2) and (3) into (1), we get 

dq 

dt 
+ 

q 

RC 
− 

E 
R 

= 
K 

RC 
e−t/(RC) + 

C E − K e−t/(RC) 

RC
− 

E 
R 

= 0. 

This shows that (2) is a solution of (1). 
The initial condition says that at time t = 0 s, the charge q = 0 C. Substituting 

these values into Eq. (2) gives,  

0 = C E − K , 
K = C E . 

Thus, Eq. (2) becomes 

q = C E − K e−t/(RC) 

= C E − C Ee−t/(RC) 

= C E · (1 − e−t/(RC) ). 

Electric current is obtained by differentiating the charge with respect to time 

i = 
dq 

dt 
= 

E 
R 

· e−t/(RC) . 

We have shown that that the charge q in the capacitor and the current i in the 
circuit are given by 

q = C E · (1 − e− t 
RC ), 

i = 
E 
R 

· e− t 
RC .
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This is the same as note (5) at the beginning of this chapter. 
These results can also be obtained using predefined functions ode2 and ic1 of  

wxMaxima. See Solving first order ordinary differential equation in Appendix A. 
The first order ordinary differential equation to be solved is dq 

dt + q 
RC − E R = 0 and 

the initial condition is t = 0 s,  q = 0 C. Charge q is the dependent variable and time 
t is the independent variable. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i3) Get a general solution of ODE dq 
dt + q 

RC − E R = 0. 
(%i5) Set the initial condition and get a particular solution. 
(%i6) Assign the solution to q. 
(%i8) Calculate i. 

The codes show that the charge is, (%o5), 

q = 
RC E 

R 
− 

RC Ee−t/(RC) 

R
= C E · (1 − e−t/(RC) ), 

and the current is, (%o8), 

i = 
E e−t/(RC) 

R
= 

E 
R 

· e−t/(RC) . 

Problem 9.12 Figure 9.17 shows a circuit consisting of a resistance R and a capaci-
tance C, and a switch. The capacitor has an initial charge of Q0. The switch is closed 
at t = 0 s so that the circuit is completed. Show that the charge Q in the capacitor 
and current I in the circuit change with time t as

Q(t) = Q0 · e− t 
RC ,
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Fig. 9.17 Discharging an 
RC circuit, Problem 9.12

R 

C 

Q0 

switch 

I (t) = 
Q0 

RC 
· e− t 

RC . 

Solution 

The circuit equation of the problem is, 

RI  + 
Q 

C 
= 0, 

R 
d Q  

dt 
+ 

Q 

C 
= 0. (1) 

This is a first-order ordinary differential equation with Q and t as its dependent 
and independent variables, respectively. The initial condition is, at t = 0 s,  Q = Q0. 

Let us guess a solution of the form 

Q = K e−t/(RC) , (2) 

where K is a constant. Equation (2) says that Q decreases with t, and as t is very big 
Q becomes 0 C. The time derivative of Q is 

d Q  

dt 
= −  

K 

RC 
e−t/(RC) . (3) 

Substituting (2) and (3) into (1) gives 

R 
d Q  

dt 
+ 

Q 

C 
= R

(
− 

K 

RC 
e−t/(RC)

)
+ 

K e−t/(RC) 

C
= 0. 

This shows that (2) is a general solution of the ordinary differential equation (1). 
Substituting initial condition at t = 0 s,  Q = Q0 into (2) gives
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Q = K e−t/(RC) , 
Q0 = K , 

and the particular solution becomes 

Q = Q0 · e−t/(RC) . 

This is the variation of the charge in the capacitor with time. The current in the 
circuit is 

I = 
d Q  

dt 
= −  

Q0 

RC 
· e−t/(RC) , 

and its magnitude is 

I = 
Q0 

RC 
· e−t/(RC) . 

These results are in note (6) at the beginning of the chapter. 
The first-order ordinary differential equation can be solved via predefined func-

tions ode2 and ic1 of wxMaxima. See Solving first order ordinary differential 
equation in Appendix A. 

♦ wxMaxima codes: 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i3) Get a general solution of ODE R d Q/dt + Q/C = 0. 
(%i4) Set the initial condition and get a particular solution. 
(%i5) Assign the solution to Q. 
(%i6) Calculate I.
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9.3 Summary 

• Potential difference across a conductor of resistance R carrying current I is V = 
IR. 

• Resistors R1, R2, R3, … connected in series have an equivalent resistance Reqv of 

Reqv = R1 + R2 + R3 + . . .  

• Resistors R1, R2, R3, … connected in parallel have an equivalent resistance Reqv 

that can be obtained from 

1 

Reqv 
= 

1 

R1 
+ 

1 

R2 
+ 

1 

R3 
+ . . .  

• Kirchoff’s rules can be used to solve direct current circuit. The rules are (1) the sum 
of the currents into any junction is zero and (2) the sum of potential differences 
across each element around a closed loop is zero. 

• In an RC circuit, the current I in the circuit and the charge Q in the capacitor vary 
with time as: 

I (t) = 
E 
R 

· e− t 
RC = Imax · e−t/τ , 

Q(t) = C E · (1 − e− t 
RC ) = Qmax · (1 − e−t/τ ), 

where Imax = ε/R is the maximum current, Qmax = Cε is the maximum charge of 
the capacitor, and τ = RC is the time constant of the circuit. 

9.4 Exercises 

Exercise 9.1 Calculate electric currents through points A, B, C, and D of Fig. 9.18.
(Answer: IA = 2.5 A, IB = 1.7 A, IC = 5.2 A, ID = 1.0 A) 

Exercise 9.2 What is the equivalent resistance between points A and B of resistors 
in Fig. 9.19.

(Answer: 0.85 y) 

Exercise 9.3 Calculate the current in the 3.0, 6.0, and 12 y resistors in the circuit 
shown in Fig. 9.20.

(Answer: 1.5 A, 1.0 A, 0.5 A)
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Fig. 9.18 Circuit of 
Exercise 9.1 2.0 

3.0 

5.0 

A 

B C 

5.0 V 

D 

Fig. 9.19 Network of 
resistors, Exercise 9.2

1.0          1.0 
A 

B 
2.0 2.0 

1.0         4.0         5.0 

Fig. 9.20 Circuit of 
Exercise 9.3 6.0 

12 

3.0 

12 V 

4.0 

5.0 
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E1 = 2.0 V         E2 = 10 V 

R3 = 8.0 

R1 = 4.0 R2 = 12  

Fig. 9.21 Circuit of Exercise 9.4 

Exercise 9.4 Determine currents in each resistor of the circuit in Fig. 9.21. Use  
Kirchhoff’s rule. 

(Answer: Current in R1 is 0.68 A to the right, current in R2 is 0.77 A to the right, 
current in R3 is 0.09 A from top to bottom) 

Exercise 9.5 Figure 9.22 shows an RC circuit during charging and discharging. The 
emf is ε = 6.0 V, resistance is R = 5.0 × 105 y, and the capacitance is C = 8.0 × 
10−6 F.

(a) Calculate the time constant of the circuit. 
(b) What are the maximum current in the circuit and the maximum charge of the 

capacitor? 
(c) Get equations of current against time and charge against time for charging and 

discharging.

               charging                                                discharging 

R 

C 

A 

B 
E 

switch 

R 

CB 
E switch 

A 

Fig. 9.22 Charging and discharging of an RC circuit, Exercise 9.5 
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(Answer: (a) time constant is 4.0 s, (b) Imax = 1.2 × 10−5 A, Qmax = 4.8 × 10−5 C, 
(c) charging: I = 1.2 × 10−5 exp(−0.25t), Q = 4.8 × 10−5 [1 − exp(−0.25t)], 
discharging: I = 1.2 × 10−5 exp(−0.25t), Q = 4.8 × 10−5 exp(−0.25t))



Chapter 10 
Magnetic Field 

Abstract Problems with magnetic forces due to moving charged particles and 
current carrying conductors in magnetic fields are solved in this chapter. The torque 
due to the magnetic moment of the current carrying loop in the magnetic field is also 
discussed. Both analytical solutions and computer calculations by wxMaxima are 
presented. 

10.1 Basic Concepts and Formulae 

(1) Magnetic force that acts on a charge q moving with velocity v in a magnetic 
field B is 

F = qv × B. (10.1) 

The magnitude of the force is, 

F = qv B sin θ, (10.2) 

where θ is the small angle between v and B. SI unit for B is weber per meter square 
(Wb m–2) or tesla  (T),  

1 T  = 1Wbm−2 = 1NA−1 m−1 . (10.3) 

(2) Magnetic force that acts on a straight conductor of length l carrying a current I 
in a uniform magnetic field B is 

F = I l × B, (10.4) 

where vector l is in the same direction as the current. 
The magnitude of the force is 

F = I l  B  sin θ, (10.5)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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where θ is the small angle between l and B. 

(3) For any wire carrying current I in a uniform external magnetic field B, the  
magnetic field dF on a small segment ds of the wire is 

dF  = I ds  × B. (10.6) 

(4) Magnetic force acting on any current carrying closed loop in a uniform external 
magnetic field is zero. 

(5) Magnetic moment μ of a loop carrying current I is 

μ = I A, μ  = I A, (10.7) 

where A is the area vector normal to the plane of the loop and A is the area of the 
loop. The area vector is defined as 

A = A n, (10.8) 

where n is the unit vector normal to the plane of the loop. 

(6) Torque τ on a loop in a uniform magnetic field B is 

τ = μ × B = I A × B. (10.9) 

(7) When a charged particle moves in a magnetic field, the work done by the 
magnetic force on the particle is zero because displacement is always perpen-
dicular to the magnetic force. Magnetic force changes the direction of velocity, 
but the speed remains the same. If velocity v of the particle is perpendicular 
to magnetic field B, the particle will move in a circular path whose plane is 
perpendicular to the magnetic field. The radius of the circular path is 

r = 
mv 
qB  

, (10.10) 

where m and q are the mass and charge of the particle, respectively. The angular 
frequency (cyclotron frequency) of the rotating particle is 

ω = 
qB  

m 
. (10.11) 

(8) A particle of charge q moving at a velocity of v in the region of magnetic field 
B and electric field E is acted by Lorentz force which is given by, 

F = q E + qv × B. (10.12)
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Table 10.1 Directions of vector cross products 

Directions of vectors Note 

(a) F = qv × B 
v − velocity of particle of charge q 
B − magnetic field 
F − magnetic force acting on the charged particle 

(b) F = I l × B 
l − direction of l is the direction of current I 
B − magnetic field 
F − magnetic force acting on the conductor 

(c) τ = μ × B = I A × B 
μ − magnetic moment 
B − magnetic field 
τ − torque acting on the magnetic moment 

(9) Table 10.1 shows how to determine the direction of the magnetic force on a 
charged particle moving in a magnetic field, the direction of the magnetic force 
on a current carrying conductor in a magnetic field, and the direction of the 
torque on a magnetic moment (a current carrying loop) in a magnetic field. All 
by the right-hand rule. 

10.2 Problems and Solutions 

Problem 10.1 A positron moves with a velocity of v = 3.0 × 105 m s−1 in a uniform 
magnetic field of B = 2.0 × 103 Gauss as shown in Fig. 10.1. Calculate the magnetic 
force on the positron. 

Fig. 10.1 A positron 
moving in a uniform 
magnetic field, Problem 10.1

B 

v 

30
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Solution 

A positron has the charge of an electron but of a positive sign, that is, +1.6 × 10−19 

C. There is a magnetic force acting on a charged particle moving in a magnetic field. 
The magnitude of the magnetic force is, Eq. (10.2), 

F = qv B sin θ 
= (1.6 × 10−19 C)(3.0 × 105 m/s) 

× (2.0 × 103 gauss × 1 T  

104 gauss 
) sin(180◦ − 30◦) 

= 4.8 × 10−15 N. 

Conversion of unit 1 T = 104 gauss is used, see Appendix C. The direction of 
the force is out of the plane of the paper. This is determined by the right-hand rule, 
Table 10.1(a). 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; q:1.6e-19; v:3e5; B:2e3/1e4; 
theta:(180-30)/180*float(%pi); 
(fpprintprec) 5 
(q) 1.6*10^-19 
(v) 3.0*10^5 
(B) 0.2 
(theta) 2.618 
(%i6) F: q*v*B*sin(theta); 
(F) 4.8*10^-15 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of charge q, its speed v, 
magnetic field B, and angle θ in radian. 

(%i6) Calculate the magnitude of magnetic force F. 

Alternative calculation: Express velocity of the positron and magnetic field as 
vectors, and do the vector cross product, Eq. (10.1), 

v = 3.0 × 105 cos 30◦ i + 3.0 × 105 sin 30◦ j, 

B = −0.20 i , 

F = qv × B = 1.6 × 10−19

|
|
|
|
|
|

i j k  
3.0 × 105 cos 30◦ 3.0 × 105 sin 30◦ 0 

−0.20 0 0

|
|
|
|
|
|

= 4.8 × 10−15 k N.
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The magnetic force on the proton is 4.8 × 10−15 N in the positive z direction (out 
of the plane of the paper). 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; load("vect"); 
(fpprintprec) 5 
(%o2) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac" 
(%i4) q:1.6e-19; angle:30/180*%pi; 
(q) 1.6*10^-19 
(angle) %pi/6 
(%i5) v: [3e5*cos(angle), 3e5*sin(angle), 0]; 
(v) [1.5*10^5*sqrt(3),1.5*10^5,0] 
(%i6) B: [-0.2, 0, 0]; 
(B) [-0.2,0,0] 
(%i8) F: q*v~B; express(%); 
(F) -1.6*10^-19*[-0.2,0,0]~[1.5*10^5*sqrt(3),1.5*10^5,0] 
(%o8) [0,0,4.8*10^-15] 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and load the “vect” vector 
package. 

(%i4) Assign values of charge of positron q and angle in radian. 
(%i5) (%i6) Assign velocity v and magnetic field B. 
(%i8) Calculate the vector cross product F = qv × B. 

Problem 10.2 Calculate the force on a 8.0 × 10−18 C charged particle moving with 
a velocity of 3.0 × 105 i m s−1 in a uniform magnetic field of 3.0 j T. 

Solution 

The magnetic force on the charged particle is, Eq. (10.1), 

F = qv × B = 8.0 × 10−18

|
|
|
|
|
|

i j  k  
3.0 × 105 0 0  

0 3.0 0

|
|
|
|
|
|

= 7.2 × 10−12 k N. 

The magnetic force on the charged particle is 7.2 × 10−12 N in the positive z 
direction (out of the plane of the paper).
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♦ wxMaxima codes: 

(%i2) fpprintprec:5; load("vect"); 
(fpprintprec) 5 
(%o2) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac" 
(%i5) q:8e-18; v: [3e5, 0, 0]; B: [0, 3, 0]; 
(q) 8.0*10^-18 
(v) [3.0*10^5,0,0] 
(B) [0,3,0] 
(%i7) F: q*v~B; express(%); 
(F) -8.0*10^-18*[0,3,0]~[3.0*10^5,0,0] 
(%o7) [0,0,7.2*10^-12] 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and load the “vect” vector package. 
(%i5) Assign values of q, v, and B. 
(%i7) Calculate F = qv × B. 

Problem 10.3 An electron is moving with a velocity of v = 4.0 × 105 i m s−1 in a 
uniform magnetic field of B = 3.0 k Wb m−2. Calculate 

(a) acceleration of the electron 
(b) radius of the circular path traced by the electron. 

Solution 

(a) Force on the electron is, Eq. (10.1), 

F = qv × B = −1.6 × 10−19

|
|
|
|
|
|

i j  k  
4.0 × 105 0 0  

0 0  3.0

|
|
|
|
|
|

= 1.9 × 10−13 j N. 

Acceleration of the electron is 

a = 
F 
me 

= 
1.9 × 10−13 

9.1 × 10−31 
j m s−2 = 2.1 × 1017 j m s−2 . 

where me is the mass of the electron. This is the centripetal acceleration of the 
electron. 

(b) The magnitude of centripetal acceleration is a = v2/r, where v is the speed of 
the electron and r is the radius of the circular path. The radius of the circular 
path of the electron is 

r = 
v2 

a 
= 

(4.0 × 105 m/s)2 

2.1 × 1017 m/s2 
= 7.6 × 10−7 m.
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♦ wxMaxima codes: 

(%i3) fpprintprec:5; me:9.1e-31; load("vect"); 
(fpprintprec) 5 
(me) 9.1*10^-31 
(%o3) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac" 
(%i6) q:-1.6e-19; v:[4e5, 0, 0]; B:[0, 0, 3]; 
(q) -1.6*10^-19 
(v) [4.0*10^5,0,0] 
(B) [0,0,3] 
(%i8) F: q*v~B; express(%); 
(F) 1.6*10^-19*[0,0,3]~[4.0*10^5,0,0] 
(%o8) [0,1.92*10^-13,0] 
(%i10) a: F/me; express(%); 
(a) 1.7582*10^11*[0,0,3]~[4.0*10^5,0,0] 
(%o10) [0,2.1099*10^17,0] 
(%i11) a_mag: 2.1099*10^17; 
(a_mag) 2.1099*10^17 
(%i12) r: 4e5^2/a_mag; 
(r) 7.5833*10^-7 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign me, and load “vect” 
vector package. 

(%i6) Assign values of q, v, and B. 
(%i8), (%i10) Calculate F = qv × B and a = F/me. 
(%i11) Assign magnitude of acceleration a. 
(%i12) Calculate r. 

Further question: What difference will it be, if you have a proton instead of an 
electron? 

Answer: We redo the calculations. Force on the proton is 

F = qv × B = 1.6 × 10−19

|
|
|
|
|
|

i j  k  
4.0 × 105 0 0  

0 0  3.0

|
|
|
|
|
|

= −1.9 × 10−13 j N. 

The magnetic force on the proton is the same in magnitude but opposite in direction 
to that of the electron. 

The centripetal acceleration of the proton is 

a = 
F 
m p 

= 
−1.9 × 10−13 

1.67 × 10−27 
j m s−2 = −1.1 × 1014 j m s−2 . 

where mp is the mass of the proton. The magnitude of proton centripetal acceleration 
is smaller than that of the electron.
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The magnitude of centripetal acceleration is a = v2/r, where v is the speed of the 
proton and r is the radius of the circular path. The radius of the circular path of the 
proton is 

r = 
v2 

a 
= 

(4 × 105 m/s)2 

1.1 × 1014 m/s2 
= 1.4 × 10−3 m. 

The radius of the circular path of the proton is bigger than that of the electron. 
♦ wxMaxima codes: 

(%i3) fpprintprec:5; mp:1.67e-27; load("vect"); 
(fpprintprec) 5 
(mp) 1.67*10^-27 
(%o3) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac" 
(%i6) q:1.6e-19; v:[4e5, 0, 0]; B:[0, 0, 3]; 
(q) 1.6*10^-19 
(v) [4.0*10^5,0,0] 
(B) [0,0,3] 
(%i8) F: q*v~B; express(%); 
(F) -1.6*10^-19*[0,0,3]~[4.0*10^5,0,0] 
(%o8) [0,-1.92*10^-13,0] 
(%i10) a: F/mp; express(%); 
(a) -9.5808*10^7*[0,0,3]~[4.0*10^5,0,0] 
(%o10) [0,-1.1497*10^14,0] 
(%i11) a_mag: 1.1497*10^14; 
(a_mag) 1.1497*10^14 
(%i12) r: 4e5^2/a_mag; 
(r) 0.0013917 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign mp, and load “vect” 
vector package. 

(%i6) Assign values of q, v, and B. 
(%i8), (%i10) Calculate F = qv × B and a = F/mp. 
(%i11) Assign magnitude of acceleration a. 
(%i12) Calculate r. 

Problem 10.4 He2+ ion is moving at a velocity of 1.0 × 105 m s−1 perpendicular to 
a magnetic field of 1.0 T. Calculate the magnitude of the magnetic force on the ion. 

Solution 

The magnitude of the magnetic force on the helium ion is 

F = qv B sin θ 
= (2 × 1.6 × 10−19 C)(1.0 × 105 m/s)(1.0 T) sin 90◦ 

= 3.2 × 10−14 N.
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♦ wxMaxima codes: 

(%i5) fpprintprec:5; q:2*1.6e-19;  v:1e5;  B:1;  theta:float(%pi/2); 
(fpprintprec) 5 
(q) 3.2*10^-19 
(v) 1.0*10^5 
(B) 1 
(theta) 1.5708 
(%i6) F: q*v*B*sin(theta); 
(F) 3.2*10^-14 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of q, v, B, and θ. 
(%i6) Calculate the magnitude of magnetic force, F. 

Problem 10.5 A particle of mass 1.0 g and charge of 2.5 × 10−8 C moves with a 
horizontal velocity of 6.0 × 104 m s−1 in a region that has both gravitational and 
magnetic fields. What is the magnitude and direction of the magnetic field so that 
the particle stays moving in a horizontal path? 

Solution 

Figure 10.2(a) shows the particle moving horizontally with a velocity of v to the 
right. The particle will stay in the horizontal path if the weight of the particle, mg, 
is balanced by the magnetic force, Fm. The gravitational field and the weight of 
the particle are in the downward direction. To get a magnetic force in the upward 
direction, the magnetic field B must be into the plane of the paper as indicated by 
crosses in Fig. 10.2(a). This can be deduced by the right-hand rule, Fig. 10.2(b).

If there is no magnetic field, the particle will move to the right and downward in a 
parabolic path due to gravitational force, mg. To balance this force, magnetic force, 
Fm, is needed, 

Fm = qv B. 

The weight of the particle must be equal in magnitude to the magnetic force, 

mg = qv B, 

and the magnetic field is, 

B = 
mg 

qv 
= (1.0 × 10−3 kg)(9.8 m/s2 ) 

(2.5 × 10−8 C)(6.0 × 104 m/s) 
= 6.5 T. 

The direction of the magnetic field is into the plane of the paper and this can be 
deduced by the right-hand rule, Fig. 10.2(b).
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(a) (b) 

Fm 

mg 

v B  

Fig. 10.2 (a) A charged particle moving in a region of magnetic and gravitational fields, (b) 
directions of v, B, and magnetic force, Problem 10.5

♦ wxMaxima codes: 

(%i5) fpprintprec:5; m:1e-3;  g:9.8;  q:2.5e-8;  v:6e4; 
(fpprintprec) 5 
(m) 0.001 
(g) 9.8 
(q) 2.5*10^-8 
(v) 6.0*10^4 
(%i6) B: m*g/(q*v); 
(B) 6.5333 

Comments on the codes: 

(%i5) Set floating point print precision to 5 and assign values of m, g, q, and v. 
(%i6) Calculate the magnitude of the magnetic field, B. 

Problem 10.6 An electron is moving with a velocity of v = 1.0 × 107 m s−1 at point 
P, Fig.  10.3. Calculate

(a) the magnitude and direction of the magnetic field that causes the electron to 
follow a semicircular path. 

(b) the time taken for the electron to travel from point P to Q in a semicircular path. 

Solution 

(a) When the electron moves in a circular path, the magnetic force on the electron 
is the centripetal force. This means that
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v 

P Q10 cm 

Fig. 10.3 An electron semicircular path in a region of uniform magnetic field, Problem 10.6

qv B = m 
v2 

R 
, 

where q, v, and m are the magnitude of charge, speed, and mass of the electron, 
respectively, B is the magnetic field, and R is the radius of the semicircle. The 
magnetic field is 

B = 
mv 
qR  

= 
(9.1 × 10−31 kg)(1.0 × 107 m/s) 
(1.6 × 10−19 C)(5.0 × 10−2 m) 

= 1.1 × 10−3 T. 

The direction of the magnetic field is in the plane of the paper. This can be deduced 
by the right-hand rule. 

(b) The time of travel is 

time = 
distance 

speed 
= π R 

speed 
= 

π(5.0 × 10−2 m) 
1.0 × 107 m/s

= 1.6 × 10−8 s. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; m:9.1e-31; v:1e7; q:1.6e-19; R:5e-2; 
(fpprintprec) 5 
(m) 9.1*10^-31 
(v) 1.0*10^7 
(q) 1.6*10^-19 
(R) 0.05 
(%i6) B: m*v/(q*R); 
(B) 0.0011375 
(%i8) time: %pi*R/v; float(%); 
(time) 5.0*10^-9*%pi 
(%o8) 1.5708*10^-8
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Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of m, v, q, and R. 

(%i6) Calculate the magnitude of magnetic field B. 

(%i8) Calculate the time of travel. 

Problem 10.7 An electron is accelerated from rest by a potential difference of 
3750 V. The electron enters a region with magnetic field B = 4.0 × 10−3 T that 
is perpendicular to the velocity of the electron. Calculate the radius of the circular 
path of the electron. 

Solution 

Figure 10.4 shows the electron being accelerated by a potential difference of 3750 V, 
enters a region of uniform magnetic field, and moves in a circular path. The direction 
of magnetic field B is into the plane of the paper. The radius of the circular path is R. 

The velocity of the electron when it enters the region of uniform magnetic field is 

v =
/

2eV 

m 
, 

where m and e are the mass and magnitude of charge of the electron, respectively, 
and V is the potential difference. This is obtained by equating the potential energy 
of the electron with its kinetic energy 

eV = 
1 

2 
mv2 .

Fig. 10.4 An electron 
accelerated by a potential 
difference and its path in a 
region of uniform magnetic 
field, Problem 10.7 

3750 V 

R 

B 
−e 
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The magnetic force that acts on the electron in the region of the magnetic field is 
the centripetal force 

F = ev B = m 
v2 

R 
. 

Therefore, the radius of the circular path of the electron is 

R = 
mv 
eB  

= 
m 

eB  

/

2eV 

m 
=

/

2mV 

B2e 

=
/

2(9.1 × 10−31 kg) (3750 V) 
(4.0 × 10−3 T)2(1.6 × 10−19 C) 

= 5.2 × 10−2 m. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; m:9.1e-31; V:3750; B:4e-3; e:1.6e-19; 
(fpprintprec) 5 
(ratprint) false 
(m) 9.1*10^-31 
(V) 3750 
(B) 0.004 
(e) 1.6*10^-19 
(%i7) v: sqrt(2*e*V/m); 
(v) 3.6314*10^7 
(%i9) solve(e*v*B=m*v^2/R, R)$ float(%); 
(%o9) [R=0.051633] 

Comments on the codes: 

(%i6) Set floating point print precision to 5, internal rational number print to false, 

and assign values of m, V, B, and e. 
(%i7) Calculate speed, v. 

(%i9) Solve ev B = mv2/R for R. 

Problem 10.8 Derive an expression for the cyclotron frequency of a particle of mass 
m and a charge of q, moving with a speed of v in a plane perpendicular to a uniform 
magnetic field of B. 

Solution 

Figure 10.5 shows the particle of charge +q and mass m moving with a speed of v in 
a magnetic field of B in a cyclotron. The magnetic field is in the plane of the paper. 
The radius of the circular path of the particle is R.
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v 
m, +q 

R 

F 

     B 

Fig. 10.5 Circular path of a charged particle in a cyclotron, Problem 10.8 

Magnetic force on the particle is 

F = qv B. 

The direction of the force is toward the center of the circle. This is the centripetal 
force acting on the particle. The source of the force is the charged particle motion in 
a magnetic field. Centripetal acceleration of the particle is 

a = 
F 

m 
= 

qv B 
m 

. 

Radius of the circular path is calculated as follows 

a = 
v2 

R 
, 

R = 
v2 

a 
= v2 

qv B/m 
= 

mv 
qB  

. 

Therefore, the cyclotron frequency is 

f = v 
2π R 

= 
vqB  

2πmv 
= 

qB  

2π m 
.
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♦ wxMaxima codes: 

(%i1) R: m*v/(q*B); 
(R) (m*v)/(B*q) 
(%i2) f: v/(2*%pi*R); 
(f) (B*q)/(2*%pi*m) 

Comments on the codes: 

(%i1) Assign R. 

(%i2) Calculate cyclotron frequency, f . 

Problem 10.9 A particle of charge q and mass m is accelerated from rest by a 
potential difference of V. The particle then enters a region of uniform magnetic field 
of B that is perpendicular to the direction of particle motion. The particle enters the 
magnetic field region along the x-axis at x = 0. Show that the y coordinate of the 
particle position after time t is 

y = Bx2
( q 

8mV

)1/2 
. 

Solution 

Figure 10.6 shows the particle of charge +q and mass m accelerated by a potential 
difference of V. It enters into the region of magnetic field B with speed v and gets 
deflected. The magnetic field is into the plane of the paper, R is the radius of the 
circular path of the particle, and C is the center of the circle. The magnetic force 
acting on the particle is toward point C as can be deduced by the right-hand rule.

The speed of the particle, v, on entering the region of the magnetic field is 
calculated as follows 

qV  = 
1 

2 
mv2 , 

v =
/

2qV  

m 
. 

That is, the electric potential energy of the particle, qV, is converted to kinetic 
energy, mv2/2. When the particle is in the region of the magnetic field, the magnetic 
force is the centripetal force. Thus, we can calculate the radius of the circular segment 

qv B = 
mv2 

R 
, 

R = 
mv 
qB  

= 
m 

qB  

/

2qV  

m 
=

/

2mV 

qB2 
.
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R B 

+q, m           v x 

y 

C 

V 

Fig. 10.6 Path of a charged particle accelerated by a potential difference and in a region of uniform 
magnetic field, Problem 10.9

From Figure 10.6 and Pythagoras theorem, we write 

R2 = (R − y)2 + x2 

= R2 − 2Ry  + y2 + x2 , 
2Ry  = y2 + x2 

≈ x2 . 

The last expression is obtained because x2 >> y2. Therefore, the y coordinate is 

y = 
x2 

2R 
= 

x2 

2 
/

2mV 
qB2 

= Bx2
( q 

8mV

)1/2 
. 

♦ wxMaxima codes: 

(%i1) solve([R=sqrt(2*m*V/(q*B^2)), 2*R*y=x^2], [y,R]); 
(%o1) [[y=(abs(B)*x^2)/(2^(3/2)*sqrt((V*m)/q)), 

R=(sqrt(2)*sqrt((V*m)/q))/abs(B)]]



10.2 Problems and Solutions 265

a                 10 cm               b d                    10 cm             e
                                            5.0 cm                 5.0 cm 

c 

B =  0.20 T 

i = 5.0 A 

Fig. 10.7 A current carrying wire in a region of uniform magnetic field, Problem 10.10 

Comments on the codes: 

(%i1) Solve R = 
/

2mV 
qB2 and 2Ry  = x2 for y and R. 

(%o1) The solutions. 

Problem 10.10 Figure 10.7 shows a wire carrying a current of i = 5.0 A in a magnetic 
field of B = 0.20 T in the x direction. Calculate the magnetic force on each segment 
of the wire. 

Solution 

Magnetic force on a current-carrying conductor in the region with magnetic field is, 
Eq. (10.4) and (10.5) 

F = i l × B, F = il  B  sin θ.  

For wire segment ab, the force acting on it is 

Fab = il  B  sin 0 = 0, 

because the current and the magnetic field are parallel to each other. 
The force acting on wire segment de is zero as well, 

Fde = 0. 

For wire segment bc, the force acting on it is 

Fbc = il  B  sin θ = (5.0 A)(5.0 × 10−2 m)(0.20 T) sin 45◦ = 3.5 × 10−2 N. 

The direction of the force is out of the plane of the paper. This can be deduced by 
the right-hand rule. 

Lastly, for wire segment cd, the force acting on it is
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Fcd = il  B  sin θ = (5.0 A)(5.0 × 10−2 m)(0.20 T) sin 45◦ = 3.5 × 10−2 N. 

The direction of the force is into the plane of the paper, determined by the right-
hand rule. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; i:5; l:5e-2; B:0.2; theta:float(45/180*%pi); 
(fpprintprec) 5 
(i) 5 
(l) 0.05 
(B) 0.2 
(theta) 0.7854 
(%i6) Fbc: i*l*B*sin(theta); 
(Fbc) 0.035355 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of i, l, B, and θ. 

(%i6) Calculate Fbc. 

Problem 10.11 Figure 10.8 shows a current of i = 5.0 A in wire abcde. The  wire  is  
in a uniform magnetic field of B = 0.15 T pointing to the right. Calculate the force 
on each segment of the wire. 

Solution 

The magnetic force on a wire segment l carrying a current of i in a magnetic field of 
B is, Eq. (10.4) and (10.5), 

F = i l × B, F = il  B  sin θ.  

For wire segment ab, the magnetic force acting on it is

a 12 cm           b d  15 cm      e 

i = 5.0 A 

10 cm                           20 cm       

c 

60

B =  0.15 T 

Fig. 10.8 A current carrying wire in a region of uniform magnetic field, Problem 10.11 
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Fab = il  B  sin θ = (5.0 A)(0.12 m)(0.15 T) sin 0◦ = 0, 

because θ = 0. The same goes to wire segment de 

Fde = 0. 

For wire segment bc, the magnetic force acting on it is 

Fbc = il  B  sin θ = (5.0 A)(0.10 m)(0.15 T) sin 90◦ = 7.5 × 10−2 N. 

pointing into the plane of the paper as determined by the right-hand rule. 
Lastly, for wire segment cd, the magnetic force acting on it is 

Fcd = il  B  sin θ = (5.0 A)(0.20 m)(0.15 T) sin 30◦ = 7.5 × 10−2 N. 

pointing out of the plane of the paper as determined by the right-hand rule. 

♦ wxMaxima codes: 

(%i1) fpprintprec:5; 
(fpprintprec) 5 
(%i2) Fbc: 5*0.1*0.15*sin(90/180*%pi); 
(Fbc) 0.075 
(%i3) Fcd: 5*0.2*0.15*sin(30/180*%pi); 
(Fcd) 0.075 

Comments on the codes: 

(%i1) Set floating point print precision to 5. 

(%i2), (%i3) Calculate Fbc and Fcd . 

Problem 10.12 An imaginary cube of side 1.0 m is in a uniform magnetic field of 
B = 2.0 T pointing in the positive of x direction, as shown in Fig. 10.9. A current of 
i = 3.0 A flows in the wire loop abcdefa as shown. Calculate:

(a) the magnitude and direction of magnetic force acting on each segment of the 
wire. 

(b) the resultant magnetic force on the wire loop. 

Solution 

(a) The magnetic force acting on a wire segment l carrying current i in magnetic 
field B is, Eq. (10.4) and (10.5),
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B =  2.0 T 

z 

f 
e 

d 

c 

b 

a 

y 

x 

i = 3.0 A 

Fig. 10.9 A current carrying loop in a uniform magnetic field, Problem 10.12

F = i l × B, F = il  B  sin θ.  

For wire segment ab, 

Fab = i l × B = (3.0 A)(1.0 j m) × (2.0 i T) = −6.0 k N. 

For wire segment bc, 

Fbc = i l × B = (3.0 A)(1.0 i m − 1.0 k m) × (2.0 i T) = −6.0 j N. 

For wire segment cd, 

Fcd = i l × B = (3.0 A)(−1.0 j m + 1.0 k m) × (2.0 i T) = (6.0 k + 6.0 j ) N. 

For wire segment de, 

Fde  = i l × B = (3.0 A)(−1.0 k m) × (2.0 i T) = −6.0 j N. 

For wire segment ef , 

Fe f  = i l × B = (3.0 A)(−1.0 i m) × (2.0 i T) = 0. 

Lastly, for wire segment fa, 

F f a  = i l × B = (3.0 A)(1.0 k m) × (2.0 i T) = 6.0 j N.
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(b) The resultant magnetic force on the loop is 

Fab + Fbc + Fcd + Fde  + Fe f  + F f a  = (−6.0 + 6.0)k N 
+ (−6.0 + 6.0 − 6.0 + 6.0) j N 

= 0. 

This shows that the resultant force on a current carrying a closed loop in a uniform 
magnetic field is zero. 

♦ wxMaxima codes: 

(%i1) load("vect"); 
(%o1) "C:\maxima-5.43.0\share\maxima\5.43.0\share\vector\vect.mac" 
(%i3) Fab: 3*[0,1,0]~[2,0,0]; express(%); 
(Fab) 3*[0,1,0]~[2,0,0] 
(%o3) [0,0,-6] 
(%i5) Fbc: 3*[1,0,-1]~[2,0,0]; express(%); 
(Fbc) 3*[1,0,-1]~[2,0,0] 
(%o5) [0,-6,0] 
(%i7) Fcd: 3*[0,-1,1]~[2,0,0]; express(%); 
(Fcd) 3*[0,-1,1]~[2,0,0] 
(%o7) [0,6,6] 
(%i9) Fde: 3*[0,0,-1]~[2,0,0]; express(%); 
(Fde) 3*[0,0,-1]~[2,0,0] 
(%o9) [0,-6,0] 
(%i11) Fef: 3*[-1,0,0]~[2,0,0]; express(%); 
(Fef) 3*[-1,0,0]~[2,0,0] 
(%o11) [0,0,0] 
(%i13) Ffa: 3*[0,0,1]~[2,0,0]; express(%); 
(Ffa) 3*[0,0,1]~[2,0,0] 
(%o13) [0,6,0] 
(%i15) Fab+Fbc+Fcd+Fde+Fef+Ffa; express(%); 
(%o14) 3*[1,0,-1]~[2,0,0]+3*[0,1,0]~[2,0,0]+3*[0,0,1]~[2,0,0] 
+3*[0,0,-1]~[2,0,0]+3*[0,-1,1]~[2,0,0]+3*[-1,0,0]~[2,0,0] 
(%o15) [0,0,0] 

Comments on the codes: 

(%i1) Load “vect” package. 

(%i3), (%i5), (%i7), (%i9), 
(%i11), (%i13) 

Calculate Fab, Fbc, Fcd , Fde, Fe f  , and F f a . 

(%i15) Calculate vector sum Fab + Fbc + Fcd + Fde  + Fe f  + 

F f a . 

Problem 10.13 Figure 10.10 shows a metal conductor of mass m and length L that is 
free to slide on wires connected to a battery. Current I flows in the wire. The system is 
in a region of uniform magnetic field B pointing vertically downward. There is a very 
small friction f between the metal conductor and the wires. What is the acceleration 
of the metal conductor?
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B 

L 

I 

m 

Fig. 10.10 A current carrying metal conductor in a region of uniform magnetic field, Problem 
10.13 

Solution 

Force acting on the metal conductor is, Equation (10.5), 

F = I l  B  sin θ = I L  B  sin 90◦ = I L  B, 

pointing to the right, obtained by applying the right-hand rule. The resultant force 
on the metal conductor is 

F − f = I L  B  − f, 

pointing to the right, where f is friction pointing to the left. The acceleration of the 
metal conductor is 

a = 
force 

mass 
= 

I L  B  − f 
m 

, 

to the right. The metal conductor will move to the right. 

Problem 10.14 Figure 10.11 shows a conducting rod of mass M and length L, 
suspended by two identical springs, connected to a battery and a switch. The force 
constant of the spring is k. The system is in a uniform magnetic field B pointing out 
of the plane of the paper.

(a) What will happen when the switch is closed? 
(b) Calculate the tension in each spring when the switch is closed. 

Solution 

(a) When the switch is closed, a counter clockwise current I flows in the system. As 
the rod is in a magnetic field region, a magnetic force in a downward direction 
acts on the rod. This can be deduced by the right-hand rule. The magnitude of 
the magnetic force is, Eq. (10.5),
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Fig. 10.11 A conducting 
rod suspended by springs and 
connected to a battery and a 
switch in a uniform magnetic 
field, Problem 10.14 switch 

k k  

M 

L 

●  B 

F = I l  B  sin θ = I L  B  sin 90◦ = I L  B. 

The magnetic force is balanced by the elastic forces of the two springs. The elastic 
force in each spring is one half of the magnetic force i.e. ILB/2. The extension of 
each spring is then 

extension = 
force 

k 
= 

I L  B/2 

k
= 

I L  B  

2k 
. 

So, when the switch is closed, a magnetic force IBL acts on the rod in the downward 
direction and each supporting spring stretches by ILB/(2k). 

(b) When the switch is opened, that is, when there is no current, tension in each 
spring is 

Mg 

2 
. 

When the switch is closed, the tension in each spring increases by 

force constant × extension = k × 
I L  B  

2k 
= 

I L  B  

2 
. 

Therefore, the tension in each spring when the switch is closed is the sum of the 
two
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Fig. 10.12 A current 
carrying frame in a uniform 
magnetic field, Problem 
10.15 B 

C 
B 

AI 
D 

Mg 

2 
+ 

I L  B  

2 
. 

Problem 10.15 Figure 10.12 shows a conducting frame ABCD pivoted at AD. Each 
segment of the frame is of the same length and its linear density is λ = 0.10 kg m−1. 
The frame is in a region of uniform magnetic field B = 1.0 × 10−2 T pointing 
vertically upward. What is the slant angle θ of the frame from the vertical when 
current I = 10 A flows in the frame? 

Solution 

Magnetic forces acting on segments AB and CD do not deflect the frame. This is 
because the forces are the same in magnitudes but opposite in directions, and they 
cancel each other. Right-hand rule shows that the magnetic force on segment AB 
points to the left, while the one on segment CD points to the right. Magnetic force 
acting on segment BC does deflect the frame. Let AB = BC = CD = L. Force acting 
on segment BC is, Eq. (10.5), 

Fmagnet = I L  B. 

This force points to the right as determined by the right-hand rule, Fig. 10.13. The  
figure shows a side view of the frame and the forces acting on it.

Another forces that acts on the segments is their weight. The weight of segment 
BC is 

F1 = λLg. 

The weight of segments AB and CD is 

F2 = 2λLg.
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Fig. 10.13 Side view of the 
frame and the forces acting 
on it, Problem 10.15

A, D 

B, C Fmagnet 

F2 

F1 

In equilibrium, the torque about AD is zero. We write 

Fmagnet L cos θ − F2

(
L 

2

)

sin θ − F1L sin θ = 0, 

that is 

(I L  B)L cos θ − (2λLg)
(
L 

2

)

sin θ − (λLg)L sin θ = 0. 

This gives 

tan θ = 
I B  

2λg 
= 

(10 A)(1.0 × 10−2 T) 
2(0.10 kg/m)(9.8 m/s2 ) 

= 0.051. 

Thus, the slant angle is, 

θ = tan−1 (0.051) = 2.9◦.
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♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; I:10; B:10e-3; lambda:0.1; g:9.8; 
(fpprintprec) 5 
(ratprint) false 
(I) 10 
(B) 0.01 
(lambda) 0.1 
(g) 9.8 
(%i8) solve(I*L*B*L*cos(theta)-2*lambda*L*g*L/2*sin(theta)-
lambda*L*g*L*sin(theta)=0, sin(theta))$ float(%); 
(%o8) [sin(theta)=0.05102*cos(theta)] 
(%i9) theta_rad: atan(0.05102); 
(theta_rad) 0.050976 
(%i10) theta_degree: float(theta_rad/%pi*180); 
(theta_degree) 2.9207 

Comments on the codes: 

(%i6) Set floating point print precision to 5, internal rational number print 

to false, and assign values of I, B, λ, and g. 
(%i8) Solve (I L  B)L cos θ − (2λLg)

(
L 
2

0

sin θ − (λLg)L sin θ = 0 for 

sin θ. 
(%i9), (%i10) Calculate θ and convert the angle to degree. 

Problem 10.16 The plane of 5.0 × 8.0 cm rectangular wire loop is parallel to a 
magnetic field of 0.15 T. If the loop carries a current of 10 A, what is the torque? 

Solution 

Figure 10.14 shows the current carrying loop in the magnetic field. Positive x direction 
(i) is to the right, positive y (j) is upward and positive z (k) is out of the plane of the 
paper. 

Torque is calculated as follows, Equation (10.9),

τ = μ × B = I A × B,

B 
I 

8.0 cm 

5.0 cm 

xz 

y 

Fig. 10.14 A current carrying loop in a region of uniform magnetic field, Problem 10.16 
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τ = I AB  sin θ = (10 A)(0.050 m × 0.080 m)(0.15 T) sin 90◦ 

= 6.0 × 10−3 N m.

The direction of the torque is the negative y direction. Here, μ is into the plane of 
the paper, B to the right, thus, torque to the negative y direction. See the right-hand 
rule, Table 10.1(c). 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; I:10; A:0.05*0.08; B:0.15; theta:float(90/180*%pi); 
(fpprintprec) 5 
(I) 10 
(A) 0.004 
(B) 0.15 
(theta) 1.5708 
(%i6) tau: I*A*B*sin(theta); 
(tau) 0.006 

Comments on the codes: 

(%i5) Assign values of I, A, B, and θ. 

(%i6) Calculate τ = I AB  sin θ . 

Alternative calculation: Express the magnetic moment and magnetic field in terms 
of unit vectors and do the vector cross product. 

μ = I A = −(10 A)(0.050 m × 0.080 m)k 

= −0.040 k A m2 , 
B = 0.15 i T, 
τ = μ × B = −0.040 k A m2 × 0.15 i T 

= −6.0 × 10−3 j N m. 

where we have used the fact that k × i = j. The direction of the torque is to the 
negative y direction. 

♦ wxMaxima codes: 

(%i1) IA: 10*0.05*0.08; 
(IA) 0.04 
(%i2) mu: [0,0,-IA]; 
(mu) [0,0,-0.04] 
(%i3) B: [0.15,0,0]; 
(B) [0.15,0,0] 
(%i4) load("vect"); 
(%o4) "C:\maxima-5.43.0\share\maxima\5.43.0\share\vector\vect.mac" 
(%i6) tau: mu~B; express(%); 
(tau) [0,0,-0.04]~[0.15,0,0] 
(%o6) [0,-0.006,0]
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Comments on the codes: 

(%i1) Assign IA. 

(%i2), (%i3) Assign vectors μ and B. 

(%i4) Load "vect” package. 

(%i6) Calculate τ = μ × B. 

Problem 10.17 A wire is shaped into the letter “M” and it carries a current of I = 
15 A. The wire is placed in a region of uniform magnetic field of B = 2.5 T, as in 
Fig. 10.15(a). Calculate the magnitude and direction of the net magnetic force that 
acts on the wire. 

Solution 

For a wire of arbitrary shape carrying a current of I in a magnetic field of B, the  
magnetic force acting on the wire is 

F = I l0 × B, 

where l0 is the vector from one end of the wire to the other. 
For this problem, l0 is shown in Fig. 10.15(b). Thus, the force acting on the wire 

is

(a) (b) 

a 

e 

B = 2.5 T 

45

l0 

a 4.0 cm            b 

e 4.0 cm             d 

c 6.0 cm 

45

B = 2.5 T 

45

45

I = 15 A 

Fig. 10.15 a An “M” shaped current carrying wire in a region of uniform magnetic field, b a current 
carrying vector from a to e in a region of uniform magnetic field, Problem 10.17 
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F = I l0 B sin 135◦ = (15 A)(0.060 m)(2.5 T) sin 135◦ = 1.6 N. 

pointing out of the plane of the paper. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; I:15; l0:0.06; B:2.5; 
(fpprintprec) 5 
(I) 15 
(l0) 0.06 
(B) 2.5 
(%i5) F: I*l0*B*sin(135*float(%pi)/180); 
(F) 1.591 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of I, l0, and B. 

(%i5) Calculate F. 

Alternative calculation: The force can also be obtained by summing the magnetic 
forces of all segments of the wire. 

For wire segment ab, the magnetic force is 

Fab = I l  B  sin θ = (15 A)(0.040 m)(2.5 T) sin 45◦ = 1.1 N. 

pointing out of the plane of the paper. 
For wire segment bc, the magnetic force is 

Fbc = 0. 

For wire segment cd, the magnetic force is 

Fcd = I l  B  sin θ = (15 A)( 
√
18 × 10−2 m)(2.5 T) sin 90◦ = 1.6 N. 

pointing out of the plane of the paper. 
For wire segment de, the magnetic force is 

Fde = I l  B  sin θ = (15 A)(0.040 m)(2.5 T) sin 135◦ = 1.1 N. 

pointing into the plane of the paper. 
The sum or resultant of these magnetic forces is 1.6 N pointing out of the plane 

of the paper.
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♦ wxMaxima codes: 

(%i7) fpprintprec:5; I:15; B:2.5; ab:4e-2; bc:float(sqrt(18))*1e-2; 
cd:float(sqrt(18))*1e-2; de:4e-2; 
(fpprintprec) 5 
(I) 15 
(B) 2.5 
(ab) 0.04 
(bc) 0.042426 
(cd) 0.042426 
(de) 0.04 
(%i8) Fab: I*ab*B*sin(45/180*float(%pi)); 
(Fab) 1.0607 
(%i9) Fbc: I*bc*B*sin(%pi); 
(Fbc) 0 
(%i10) Fcd: I*cd*B*sin(90/180*float(%pi)); 
(Fcd) 1.591 
(%i11) Fde: I*de*B*sin(225/180*float(%pi)); 
(Fde) -1.0607 
(%i12) Fab + Fbc + Fcd + Fde; 
(%o12) 1.591 

Comments on the codes: 

(%i7) Set floating point print precision to 5, assign values 

of I, B, lengths ab, bc, cd, and de. 
(%i8), (%i9), (%i10), (%i11) Calculate Fab, Fbc, Fcd , and Fde. 

(%i12) Calculate Fab + Fbc + Fcd + Fde. 

10.3 Summary 

– Magnetic force on a charge q moving with a velocity v in a magnetic field B is 

F = qv × B. 

– Magnetic force on a conductor of length l carrying a current I in a magnetic field 
B is 

F = I l × B. 

– Magnetic moment μ of a loop carrying current I is 

μ = I A, μ  = I A, 

where A is the area vector normal to the plane of the loop and A is the area of the 
loop. The area vector is defined as
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Fig. 10.16 A proton moving  
in a region of uniform 
magnetic field, Exercise 10.1 

B 

v 

30

A = A n, 

where n is the unit vector normal to the plane of the loop. 
– Torque τ on a loop in a uniform magnetic field B is 

τ = μ × B = I A × B. 

10.4 Exercises 

Exercise 10.1 A proton moves with velocity v = 5.0 × 106 m s−1 in magnetic field 
B = 2.0 T as shown in Fig. 10.16. Calculate the magnetic force on the proton. 

(Answer: 8.0 × 10−13 N into the plane of the paper) 

Exercise 10.2 A proton moves in a circular orbit of radius 6.0 cm in a uniform 
magnetic field of 0.50 T, as shown in Fig. 10.17. What are the speed, angular 
frequency, and period of revolution of the proton?

(Answer: 2.9 × 106 m s−1, 4.8  × 107 rad s−1, 1.3  × 10−7 s) 

Exercise 10.3 A wire of length l = 2.0 m carries a current of I = 5.0 A in a uniform 
magnetic field of B = 0.030 T, Fig. 10.18. What is the magnetic force acting on the 
wire?

(Answer: 0.26 N out of the plane of the paper) 

Exercise 10.4 A 2.0 keV alpha particle enters a region of uniform magnetic field 
of 0.15 T. The direction of the magnetic field is perpendicular to the alpha direction 
of motion. An alpha particle has a charge of + 2e and a mass of 6.68 × 10−27 kg. 
Calculate the radius of the alpha particle path in the magnetic field. 

(Answer: 43 mm) 

Exercise 10.5 A coil of 40 turns of area 800 mm2 has a current flow of 0.5 A. The 
coil is a region of uniform magnetic field of 0.30 T with the coil plane parallel to the 
direction of the field. What is the torque on the coil? 

(Answer: 4.8 × 10−3 N m)
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Fig. 10.17 Circular path of 
a proton in a uniform 
magnetic field, Exercise 10.2

v 
proton, +e 

6.0 cm 

     B = 0.50 T 

Fig. 10.18 A current 
carrying wire in a region of 
uniform magnetic field, 
Exercise 10.3

B 

I 

60l 



Chapter 11 
Sources of Magnetic Field 

Abstract This chapter solves problems on magnetic fields created by current-
carrying conductors and loops. The Biot–Savart law is applied to determine the 
magnetic fields. Magnetic fields in a current-carrying solenoid and toroid are deter-
mined by applying Ampere’s law. Solutions are obtained by analysis and computer 
calculation. 

11.1 Basic Concepts and Formulae 

(1) Biot–Savart law states that magnetic field dB at point P due to infinitesimal 
element ds of a conductor carrying current I shown in Fig. 11.1 is

dB  = km 
I ds  × r 

r3
= km 

I ds  × r̂ 
r2

= 
μ0 

4π 
I ds  × r̂ 

r2 
, (11.1) 

where r is a vector from element ds to point P, r = | r |,  r̂ = r/r . 
Magnetic constant km = μ0/(4π)  = 10−7 Wb A−1 m−1. 
Permeability of free space μ0 = 4πkm = 4π × 10−7 Wb A−1 m−1. 
Magnetic field B due to the whole length of the conductor is the integration 

of dB, 

B =
∫

dB  = km I
∫

ds  × r̂ 
r2 

= 
μ0 I 

4π

∫
ds  × r̂ 
r2 

. (11.2) 

(2) Table 11.1 gives magnetic fields of common current-carrying conductor 
configurations obtained by application of the Biot–Savart law.

(3) Force per unit length between two parallel long wires, separated by a distance 
of a, and carrying currents of I1 and I2, 

F 

l 
= 

2km I1 I2 
a

= 
μ0 I1 I2 
2πa 

. (11.3)
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Fig. 11.1 The magnetic 
field dB at point P due to 
element ds carrying a current 
I is given by the Biot–Savart 
law

Table 11.1 Magnetic fields of a few configurations of current-carrying conductors 

Configuration Magnetic field 

(a) B = 
μ0 I 

4π R 
(cos θ1 − cos θ2) 

= 
μ0 I 

4π R

(
a √

a2 + R2 
+ b √

b2 + R2

)

(b) B = μ0 I 
2π R = 2km I R 

(c) B = μ0 I 
4π R = km I R 

(d) B = μ0 I 
2 

R2 

(x2+R2)3/2 

At the center of the ring, B = μ0 I 
2R 

In terms of magnetic dipole moment, 

μ = I A  = I π R2, B = μ0 
2π 

μ 
(x2+R2)3/2 

At a point far away from the magnetic dipole 
moment, x >> R, B = μ0 

2π 
μ 
x3 

(e) B = μ0 I b2 

2π [x2+(b/2)2] 
√

x2+2(b/2)2 

At the center of the square loop, B = 2 
√
2 μ0 I 

π b
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The force is attractive if the currents are in the same direction, but repulsive 
if the currents are in opposite directions. 

(4) Ampere’s law states that the line integral B.ds along a closed path is μ0I, that is

∮
B · ds  = μ0 I , (11.4) 

where I is the current through a surface bounded by the closed path. 

(5) Application of Ampere’s law gives the magnetic fields inside a solenoid as 

Bsolenoid = μ0 
N 

l 
I = μ0nI, (11.5) 

where N is the number of turns of the wire, l is the length of the solenoid, and 
n is the number of turns per unit length. 

Application of Ampere’s law gives the magnetic field inside a toroid as 

Btoroid  = 
μ0 N I  

2πr 
, (11.6) 

where N is the number of turns of the wire and r is the radius of the toroid. 
(6) Magnetic flux Φm through a surface is defined by the surface integration 

Φm =
∫

B · d A. (11.7) 

(7) Gauss’s magnetic law states that the net magnetic flux through any closed surface 
is zero. 

(8) Direction of the magnetic field of a current-carrying loop or wire can be 
determined by the right-hand rule, as shown in Fig. 11.2a or b.  

Fig. 11.2 The right-hand rule determines the direction of the magnetic field of a current-carrying 
loop or wire. a For a loop or coil carrying current in the direction of the four fingers, the magnetic 
field is in the direction of the thumb. b For wire or conductor carrying current in the direction of 
the thumb, the magnetic field around the wire is in the direction of the four fingers
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11.2 Problems and Solutions 

Problem 11.1 Figure 11.3a shows a long wire carrying a current of 10 A. What is 
the magnetic field at point P, 2.0  m from the  wire?  

Solution 

The magnetic field at point P due to a current-carrying wire is, Table 11.1(b), 

B = 
2km I 

r 
= 

2(10−7 T m A−1 )(10 A) 
2.0 m

= 1.0 × 10−6 T. 

The magnetic field points out of the plane of the paper as determined by the 
right-hand rule, Fig. 11.3b. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; km:1e-7; I:10; r:2; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(I) 10 
(r) 2 
(%i5) B: 2*km*I/r; 
(B) 1.0*10^-6 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of km, I, and r. 
(%i5) Calculate B. 

Problem 11.2 A long wire carries a current of I = 10 A along the negative y-axis 
as shown in Fig. 11.4. The wire is in a region of uniform magnetic field B0 = 1.0 
× 10−6 T in the positive x direction. Determine the resultant magnetic field at the 
point:

(a) P (0, 0, 2.0 m). 
(b) Q (2.0 m, 0, 0). 
(c) R ( 0, 0,  −1.0 m).

Fig. 11.3 a A 
current-carrying wire, 
b directions of current and 
magnetic field, Problem 11.1 

(a) (b) 

P 

2.0 m 

10 A 

I 
B 
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Fig. 11.4 A 
current-carrying wire in a 
region of uniform magnetic 
field, Problem 11.2

P 

z 

x 

y 

B0QR 
I 

Solution 

(a) Figure 11.5 shows the current-carrying wire and the related magnetic fields. 
The magnetic field at a distance of r from a long wire carrying a current of I 

is, Table 11.1(b), 

B = 2
( μ0 

4π

) I 

r 
= 2km 

I 

r 
. 

At point P (0, 0, 2.0 m), the magnetic field due to the current is 

B1 = 2km 
I 

r 
= 2 (10−7 Wb A−1 m−1 ) 

(10 A) 
(2.0 m) 

= 1.0 × 10−6 T, 

pointing to the negative x direction. The magnetic field of the region is 

B0 = 1.0 × 10−6 T, 

pointing to the positive x direction. Thus, the magnetic field at point P is

Fig. 11.5 Magnetic fields at 
points P, Q, and  R, Problem 
11.2 

P 

z 

x 

y 
B0 

QR 
I 

B1 

B0 

B0 

B3 

B2 
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BP = B0 − B1 = 1.0 × 10−6 T − 1.0 × 10−6 T = 0. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; km:1e-7; I:10; r:2; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(I) 10 
(r) 2 
(%i7) B1: 2*km*I/r; B0: 1e-6; BP: B0-B1; 
(B1) 10.0*10^-7 
(B0) 10.0*10^-7 
(BP) 0.0 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of km, I, and r. 
(%i7) Calculate B1, assign B0, and calculate BP. 

(b) At point Q (2.0 m, 0, 0), the magnetic field due to the current is 

B2 = 2 (10−7 Wb A−1 m−1 ) 
(10 A) 
(2.0 m) 

= 1.0 × 10−6 T, 

pointing to the positive z direction. The region’s magnetic field is 

B0 = 1.0 × 10−6 T, 

pointing to the positive x direction. Thus, the magnetic field at point Q is 

BQ = B0i + B2k = (1.0 × 10−6 i + 1.0 × 10−6 k) T. 

The magnitude of the magnetic field is 

BQ =
√

(1.0 × 10−6)2 + (1.0 × 10−6)2 T = 1.4 × 10−6 T. 

This means that the angle between BQ and the x-axis is 45°. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; km:1e-7; I:10; r:2; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(I) 10 
(r) 2 
(%i7) B2: 2*km*I/r; B0: 1e-6; BQ: sqrt(B0^2+B2^2); 
(B2) 10.0*10^-7 
(B0) 10.0*10^-7 
(BQ) 1.4142*10^-6
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Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of km, I, and r. 
(%i7) Calculate B2, assign B0, and calculate BQ. 

(c) At point R (0, 0, −1.0 m), the magnetic field due to the current is 

B3 = 2 (10−7 Wb A−1 m−1 ) 
(10 A) 
(1.0 m) 

= 2.0 × 10−6 T, 

pointing to the positive x direction. The magnetic field of the region is 

B0 = 1.0 × 10−6 T, 

pointing to the positive x direction. Thus, the magnetic field at point R is 

BR = B0 + B3 = 1.0 × 10−6 T + 2.0 × 10−6 T = 3.0 × 10−6 T, 

pointing to the positive x direction. This means that 

BR = 3.0 × 10−6 i T. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; km:1e-7; I:10; r:1; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(I) 10 
(r) 1 
(%i7) B3: 2*km*I/r; B0: 1e-6; BR: B0+B3; 
(B3) 2.0*10^-6 
(B0) 10.0*10^-7 
(BR) 3.0*10^-6 

Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of km, I, and r. 
(%i7) Calculate B3, assign B0, and calculate BR. 

Problem 11.3 Two parallel long wires separated by a distance of 20 cm have currents 
of 5.0 and 7.0 A flowing in the same direction, which are shown in Fig. 11.6. 
Determine:

(a) the magnetic field at point P. 
(b) the point where the magnetic field is zero.
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Fig. 11.6 Two 
current-carrying parallel 
wires, Problem 11.3 10 cm 

20 cm 

5.0 A 

7.0 A 

P 

Solution 

(a) Magnetic field at point P due to wire with 5.0 A current is, Table 11.1(b), 

B1 = 
μ0 I 

2πr 
= (4π × 10−7 Wb A−1 m−1 ) 

(5.0 A) 
2π(0.10 m) 

= 1.0 × 10−5 T, 

pointing out of the page. The magnetic field at point P due to wire with 7.0 A 
current is, 

B2 = 
μ0 I 

2πr 
= (4π × 10−7 Wb A−1 m−1 ) 

(7.0 A) 
2π(0.30 m) 

= 4.7 × 10−6 T, 

pointing out of the page. Thus, the magnetic field at point P due to currents in 
both wires is 

BP = B1 + B2 = 1.0 × 10−5 T + 4.7 × 10−6 T = 1.5 × 10−5 T, 

pointing out of the page. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; mu0:4*%pi*1e-7; 
(fpprintprec) 5 
(mu0) 4.0*10^-7*%pi 
(%i3) B1: mu0*5/(2*%pi*0.1); 
(B1) 1.0*10^-5 
(%i4) B2: mu0*7/(2*%pi*0.3); 
(B2) 4.6667*10^-6 
(%i5) BP: B1+B2; 
(BP) 1.4667*10^-5 

Comments on the codes:

(%i2) Set floating point print precision to 5 and assign the value of 
μ0.
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Fig. 11.7 Determining point 
of zero magnetic field, 
Problem 11.3 

x 

20 cm 

5.0 A 

7.0 A 

Q 

(%i3), (%i4), (%5) Calculate B1, B2, and BP. 

(b) The magnetic field is zero somewhere at point Q, a distance of x from the top 
wire, Fig. 11.7. At this point, the magnetic field due to the top wire is into the 
page, while the field due to the bottom wire is out of the page. Adding the two 
fields gives zero magnetic field. 

The magnetic field at point Q due to wire with 5.0 A current is 

B1 = 
μ0 I 

2πr 
= (4π × 10−7 Wb A−1 m−1 ) 

(5.0 A) 
2π x 

, 

pointing into the page. The magnetic field at point Q due to wire with 7.0 A 
current is 

B2 = 
μ0 I 

2πr 
= (4π × 10−7 Wb A−1 m−1 ) 

(7.0 A) 
2π(0.20 m − x) 

, 

pointing out of the page. At point Q, B1 = B2 because the field is zero, therefore 

B1 = B2 

5.0 A  

2π x 
= 7.0 A  

2π(0.20 m − x) 
x = 0.083 m. 

The magnetic field is zero at point Q where x = 0.083 m. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve(5/x = 7/(0.2-x), x)$ float(%); 
(%o4) [x=0.083333]
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5.0 cm                                      10 cm                               5.0 cm 

S 

PQ 
I2I1 = 6.0 A
��

8.0 cm 6.0 cm 

Fig. 11.8 Two current carrying wires, Problem 11.4 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve 5/x = 7/(0.2 − x) for x. 

Problem 11.4 Electric currents flowing in two long parallel wires separated by a 
distance of 10 cm are illustrated in Fig. 11.8. The wire on the left carries a current 
of I1 = 6.0 A into the plane of the paper. The magnetic field at point P is zero. 
Determine: 

(a) the direction and magnitude of the current in the wire on the right, I2 
(b) the magnetic field at point Q 
(c) the magnetic field at point S. 

Solution 

(a) Figure 11.9 shows the two current-carrying wires, point P, and the relevant 
magnetic fields. 

The magnetic field due to current I1 at point P is 

B1 = 
2km I1 
r1 

, 

where r1 is the distance from the left wire to point P. The field points downward. 
To get a zero magnetic field at point P, the magnetic field due to current I2 must 
point upward and this means that current I2 must flow out of the plane of the 
paper. The magnitude of the magnetic field due to I2 must be the same as B1. 
Thus

Fig. 11.9 Determining I2, 
Problem 11.4 

10 cm                               5.0 cm 
P 

I2I1 = 6.0 A
��

B2 

B1 
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Fig. 11.10 Determining 
magnetic field at point Q, 
Problem 11.4 5.0 cm               10 cm                     

Q 
I2 = 2.0 AI1 = 6.0 A
��

B2 = 
2km I2 
r2 

, 

where r2 is the distance from the right wire to point P, and 

B1 = B2, 
2km I1 
r1 

= 
2km I2 
r2 

, 

I2 = 
r2 I1 
r1 

= 
(5.0 cm)(6.0 A) 

(15 cm)
= 2.0 A. 

The direction of I2 is out of the plane of the paper. 
(b) Figure 11.10 shows the two current-carrying wires and point Q. 

The magnetic field at Q due to current I1 points upward while the one due to 
I2 points downward. Thus, the magnetic field at point Q due to currents I1 and 
I2 is 

BQ = 
2km I1 
r1 

− 
2km I2 
r2 

= 2km
(
I1 
r1 

− 
I2 
r2

)

= 2(10−7 Wb A−1 m−1 )

(
6.0 A  

0.050 m 
− 

2.0 A  

0.15 m

)

= 2.1 × 10−5 T. 

pointing upward. Here, r1 is the distance from the left wire to point Q and r2 is 
the distance of the right wire to point Q. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; km:1e-7; I1:6; I2:2; r1:0.05; r2:0.15; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(I1) 6 
(I2) 2 
(r1) 0.05 
(r2) 0.15 
(%i7) BQ: 2*km*(I1/r1-I2/r2); 
(BQ) 2.1333*10^-5 

Comments on the codes: 

(%i6) Set floating point print precision to 5, assign values of km, I1, I2, r1, and r2. 
(%i7) Calculate BQ.
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Fig. 11.11 Determining 
magnetic field at point S, 
Problem 11.4 

10 cm 

S 

I2 = 2.0 AI1 = 6.0 A
��

8.0 cm 
6.0 cm 

B1 

B2 

BS 
37 53

(c) Figure 11.11 shows the two current-carrying wires, point S, and the relevant 
magnetic fields. 

At point S, the magnetic field due to current I1 is 

B1 = 
2km I 

r1 
= 2(10−7 Wb A−1 m−1 )

(
6.0 A  

0.080 m

)
= 1.5 × 10−5 T. 

and the field due to current I2 is 

B2 = 
2km I 

r2 
= 2(10−7 Wb A−1 m−1 )

(
2.0 A  

0.060 m

)
= 6.7 × 10−6 T. 

Thus, the magnitude of the magnetic field at point S is 

BS =
√
B2 
1 + B2 

2 =
√

(1.5 × 10−5 T)2 + (6.7 × 10−6 T)2 = 1.6 × 10−5 T. 

Angle θ is calculated as follows: 

tan θ = 
B1 

B2 
= 

1.5 × 10−5 T 

6.7 × 10−6 T 
= 2.25, θ  = tan−1 (2.25) = 1.2 rad  = 66◦. 

The direction of BS is not vertically downward, but at 66° − 53° = 13° from 
the vertical. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; km:1e-7; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(%i3) B1: 2*km*6/0.08; 
(B1) 1.5*10^-5 
(%i4) B2: 2*km*2/0.06; 
(B2) 6.6667*10^-6 
(%i5) BS: sqrt(B1^2+B2^2); 
(BS) 1.6415*10^-5 
(%i6) theta_rad: atan(B1/B2); 
(theta_rad) 1.1526 
(%i7) theta_deg: float(theta_rad*180/%pi); 
(theta_deg) 66.038
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Fig. 11.12 Two long 
current-carrying wires, 
Problem 11.5

�

�

P x  

x 

D 

E 

d 

d 

y 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and assign km. 
(%i3), (%i4), (%i5) Calculate B1, B2, and BS . 
(%i6), (%i7) Calculate θ and convert the angle to degree. 

Problem 11.5 Figure 11.12 shows a cross-section of two long wires D and E 
separated by a distance of 2d. Each wire carries current I out of the plane of the 
paper. 

(a) Find the magnetic field at point P. At what point along the x-axis the magnetic 
field is zero? 

(b) If the direction of current in wire E is into the plane of the paper, what is 
the magnetic field at point P? Where along the x-axis the magnetic field is a 
maximum? What is the magnetic field? 

Solution 

(a) Figure 11.13 shows the two wires, point P, and magnetic fields at P.
The magnetic fields due to currents in wires D and E at point P are, 

Table 11.1(b), 

BD = μ0 I 

2π 
√
d2 + x2 

, BE = μ0 I 

2π 
√
d2 + x2 

, 

respectively. Both BD and BE are resolved into x and y components and added. 
The x components vanished. The y components give the resultant magnetic field 
at point P, 

BP = 2BD cos θ = 2 
μ0 I 

2π 
√
d2 + x2 

x √
d2 + x2 

= μ0 I x  

π(d2 + x2) 
,
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Fig. 11.13 Magnetic fields 
at point P due to current 
carrying wires, 
part (a) Problem 11.5

�

Px 

D 
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BD 

BP 

BE 

0

�

pointing to the positive y direction (upward direction). 
The magnetic field is zero at x = 0. The magnetic fields due to currents in 

wires D and E at x = 0 are  

BD = 
μ0 I 

2πd 
, BE = 

μ0 I 

2π d 
. 

BD points to the positive x direction while BE to the negative. Thus, the 
magnetic field is zero at x = 0. 

(b) Figure 11.14 shows the two wires, point P, and the relevant magnetic fields.
The magnetic fields due to currents in wires D and E at point P are 

BD = μ0 I 

2π 
√
d2 + x2 

, BE = μ0 I 

2π 
√
d2 + x2 

,

Fig. 11.14 Magnetic fields 
at point P due to current 
carrying wires, 
part (b) Problem 11.5 �

�

Px 

D 

E 

d 

d 

y 

BD 

BP 

BE 

0 
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respectively. Both BD and BE are resolved into x and y components and added. 
The y components vanished. The x components give the resultant magnetic field 
at point P. The resultant magnetic field at point P is 

BP = 2BD sin θ = 2 
μ0 I 

2π 
√
d2 + x2 

d √
d2 + x2 

= 
μ0 I d  

π(d2 + x2) 
, 

pointing to the positive x direction (to the right). 
At x = 0, the magnetic fields due to currents in wires D and E are 

BD = 
μ0 I 

2π d 
, BE = 

μ0 I 

2πd 
. 

Both fields point to the positive x direction. Thus, the magnetic field is a 
maximum at x = 0, with the value Bmax = μ0 I 

πd in the positive x direction. 

Problem 11.6 Currents of 10 A flowing in wires of various configurations are 
illustrated in Fig. 11.15. Calculate the magnetic field at point P in each configuration. 

Fig. 11.15 Three 
configurations of current 
carrying wires, Problem 11.6
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Solution 

(a) In Fig. 11.15a, wire segments EF and GH do not give any magnetic field at 
point P because the currents are toward or away from point P. This is because 
ds × r is zero for both segments and according to Biot–Savart law will give no 
magnetic field, Eq. (11.1). The magnetic field at point P is from wire segment 
FG, that is, Table 11.1(a), 

BP = 
μ0 I 

4π R

(
a √

a2 + R2 
+ b √

b2 + R2

)

= μ0 I 

4π(0.050 m) 

×
[

0.030 m √
(0.030 m)2 + (0.050 m)2 

+ 0.070 m √
(0.070 m)2 + (0.050 m)2

]

= 2.7 × 10−5 T. 

In the calculation, μ0 = 4π × 10−7 Wb A−1 m−1 and I = 10 A. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; mu0:float(4*%pi*1e-7); I:10; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(I) 10 
(%i4) BP: mu0*I/(4*float(%pi)*0.05)*(0.03/sqrt(0.03^2+0.05^2) 

+ 0.07/sqrt(0.07^2+0.05^2)); 
(BP) 2.6565*10^-5 

Comments on the codes: 

(%i3) Set floating point print precision to 5, and assign values of μ0 and I. 
(%i4) Calculate magnetic field BP. 

(b) In Fig. 11.15b, wire segments EF and JK do not contribute to the magnetic field 
at point P because the currents are toward or away from point P. The magnetic 
field at point P is 

BP = BFG  + BGH  + BH J  

= μ0 I 

4π(0.030 m) 
0.050 m √

(0.050 m)2 + (0.030 m)2 

+ μ0 I 

4π(0.050 m)

[
0.030 m √

(0.030 m)2 + (0.050 m)2 

+ 0.070 m √
(0.070 m)2 + (0.050 m)2

]
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+ μ0 I 

4π(0.070 m) 
0.050 m √

(0.050 m)2 + (0.070 m)2 

= 6.3 × 10−5 T. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; mu0:float(4*%pi*1e-7); I:10; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(I) 10 
(%i4) BP: mu0*I/(4*float(%pi)*0.03)*0.05/sqrt(0.05^2+0.03^2) 

+mu0*I/(4*float(%pi)*0.05)*(0.03/sqrt(0.03^2+0.05^2) 
+0.07/sqrt(0.07^2+0.05^2)) 
+mu0*I/(4*float(%pi)*0.07)*0.05/sqrt(0.05^2+0.07^2); 

(BP) 6.3451*10^-5 

Comments on the code: 

(%i3) Set floating point print precision to 5, and assign values of μ0 and I. 
(%i4) Calculate magnetic field BP. 

(c) In Fig. 11.15c, wire segment EF does not contribute to the magnetic field at 
point P because the current is toward point P. The magnetic field at point P is 

BP = BFG  + BGH  + BHK  

= μ0 I 

4π(0.030 m) 
0.050 m √

(0.050 m)2 + (0.030 m)2 

+ μ0 I 

4π(0.050 m) 

×
[

0.030 m √
(0.030 m)2 + (0.050 m)2 

+ 0.070 m √
(0.070 m)2 + (0.050 m)2

]

+ μ0 I 

4π(0.070 m) 

×
[

0.050 m √
(0.050 m)2 + (0.070 m)2 

+ 1

]

= 7.8 × 10−5 T. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; mu0:float(4*%pi*1e-7); I:10; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(I) 10 
(%i4) BP: mu0*I/(4*float(%pi)*0.03)*0.05/sqrt(0.05^2+0.03^2) 

+mu0*I/(4*float(%pi)*0.05)*(0.03/sqrt(0.03^2+0.05^2) 
+0.07/sqrt(0.07^2+0.05^2)) 
+mu0*I/(4*float(%pi)*0.07)*(0.05/sqrt(0.05^2+0.07^2)+1); 

(BP) 7.7737*10^-5
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Comments on the codes: 

(%i3) Set floating point print precision to 5, and assign values of μ0 and I. 
(%i4) Calculate magnetic field BP. 

Alternative calculation for part (c): The magnetic field can also be calculated as 
follows: 

BP = BFG  + BGH  + BH J  + BJK  

= magnetic field of part (b) + BJK  

= 6.3 × 10−5 T + μ0 I 

4π(0.070 m) 
= 7.8 × 10−5 T. 

The magnetic field BJK is obtained using Table 11.1(c), that is, the magnetic field 
due to the current in wire segment JK is one half of the field due to the current in a 
long wire. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; mu0:float(4*%pi*1e-7); I:10; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(I) 10 
(%i4) BP: 6.3451*10^-5 + mu0*I/(4*float(%pi)*0.07); 
(BP) 7.7737*10^-5 

Comments on the codes: 

(%i3) Set floating point print precision to 5, and assign values of μ0 and I. 
(%i4) Calculate magnetic field BP. 

Problem 11.7 A current I flows in a square shaped wire loop of side b. What is the 
magnetic field at the center of the loop? What is the magnetic field if I = 10 A and 
b = 4.0 cm? 

Solution 

Figure 11.16 shows the current carrying square wire loop, point P, and relevant 
magnetic field BP. We want to calculate the magnetic field at point P. Using  the  
right-hand rule, the magnetic field is in the plane of the paper. The field is contributed 
by four wire segments EF, FG, GH, and HE.

The magnetic field at point P due to current I in wire segment EF is, Table 11.1(a), 

BEF  = μ0 I 

4π(b/2)

[
b/2 √

(b/2)2 + (b/2)2 
+ b/2 √

(b/2)2 + (b/2)2

]
= 

μ0 I √
2πb 

,
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Fig. 11.16 A square wire 
loop carrying electric current 
I, Problem 11.7

G                                                      H 

F                                                     E 

P 

BP 

b 

b

�

I 

pointing into the plane of the paper. Magnetic fields due to currents in wire segments 
FG, GH, and HE are the same as this. Therefore, the magnetic field at point P is 

BP = 4BEF  = 2 
√
2 
μ0 I 

πb 
, 

pointing into the plane of the paper. 
If I = 10 A and b = 4.0 cm, the magnetic field is 

BP = 2 
√
2 
μ0 I 

π b 
= 2 

√
2 
(4π × 10−7Wb A−1 m−1)(10 A) 

π(0.040 m)
= 2.8 × 10−4 T, 

pointing into the plane of the paper. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; mu0:float(4*%pi*1e-7); I:10; b:0.04; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(I) 10 
(b) 0.04 
(%i6) BP:2*sqrt(2)*mu0*I/(%pi*b); float(%); 
(BP) (1.5708*10^-4*2^(5/2))/%pi 
(%o6) 2.8284*10^-4 

Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of μ0, I, and b. 
(%i6) Calculate magnetic field BP. 

Problem 11.8 Figure 11.17 shows a square wire loop of side b carrying current I. 
What is the magnetic field at point P a distance x away from the loop?
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Fig. 11.17 A square wire 
loop carrying electric current 
I, Problem 11.8 
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Solution 

Figure 11.18 shows a cross-section of the loop across segments FG and HE. Current 
directions in wire segments FG and HE are out of and into the plane of the paper, 
respectively. 

The magnitude of the magnetic field at point P due to current flow in wire segment 
FG is, Table 11.1(a), 

BFG  = μ0 I 

4π 
√
x2 + (b/2)2

[
2(b/2) √

(b/2)2 + x2 + (b/2)2

]

= μ0 I 

4π 
√
x2 + (b/2)2 

b √
x2 + 2(b/2)2 

. 

Fig. 11.18 Magnetic fields 
at P due to currents in wire 
segments FG and HE, 
Problem 11.8
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The x component of BFG is 

BFG,x = BFG  sin θ 

= μ0 I 

4π 
√
x2 + (b/2)2 

b √
x2 + 2(b/2)2 

b/2 √
x2 + (b/2)2 

= μ0 I b2 

8π [x2 + (b/2)2] √x2 + 2(b/2)2 
. 

The y component of BFG is 

BFG,y = BFG  cos θ 

= μ0 I 

4π 
√
x2 + (b/2)2 

b √
x2 + 2(b/2)2 

x √
x2 + (b/2)2 

= μ0 I bx  

4π [x2 + (b/2)2] √x2 + 2(b/2)2 
. 

The magnitude of the magnetic field at point P due to current flow in wire segment 
HE is 

BHE  = BFG  . 

The x component of BHE is 

BHE,x = BFG,x . 

The y component of BHE is the same in magnitude but opposite in direction to the 
y component of BFG. The  y components cancel each other and do not contribute to 
the magnetic field at point P. The same argument is for wire segments EF and GH. 
Thus, the magnetic field at point P due to the current flow in the square loop is 

BP = 4BFG,x = μ0 I b2 

2π [x2 + (b/2)2] √x2 + 2(b/2)2 
, 

pointing to the positive x direction. 
As a check, the magnetic field at the center of the loop is obtained by substituting 

x = 0 in the equation, that is 

BP,x=0 = μ0 I b2 

2π [(b/2)2] √2(b/2)2 
= 2 

√
2 
μ0 I 

π b 
. 

This is the same as the one discussed in Problem 11.7.
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♦ wxMaxima codes: 

(%i2) BFGx:mu0*I*b^2/(8*%pi)/(x^2+(b/2)^2)/sqrt(x^2+2*(b/2)^2); BP:4*BFGx; 
(BFGx) (I*b^2*mu0)/(8*%pi*(x^2+b^2/4)*sqrt(x^2+b^2/2)) 
(BP) (I*b^2*mu0)/(2*%pi*(x^2+b^2/4)*sqrt(x^2+b^2/2)) 
(%i3) x: 0; 
(x) 0 
(%i5) BFGx:mu0*I*b^2/(8*%pi)/(x^2+(b/2)^2)/sqrt(x^2+2*(b/2)^2); BP:4*BFGx; 
(BFGx) (I*mu0)/(sqrt(2)*%pi*abs(b)) 
(BP) (2^(3/2)*I*mu0)/(%pi*abs(b)) 

Comments on the codes: 

(%i2) Assign BFG,x and calculate BP. 
(%i3) Assign x = 0. 
(%i5) Calculate BFG,x and BP. 

Problem 11.9 A wire is shaped into a regular polygon of n sides. The edges of the 
polygon touch an imaginary circle of radius R. A current I flows in the wire. 

(a) Calculate the magnetic field at the center of the polygon. 
(b) What is the magnetic field at the center of the polygon when n is very large? 
(c) What is the magnetic field at the center of a square wire loop with side b? 

Solution 

(a) Figure 11.19 shows one of the sides of the polygon, other sides are not shown. 
The length of the side is 2b, the perpendicular distance of the side to the center 
is a, and the angle subtending the side is θ. 

The angle is 

θ = 
2π 
n 

.

Fig. 11.19 One of the sides 
of the polygon carrying 
current I, Problem 11.9 
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because the polygon has n sides. The perpendicular distance of the side to the 
center of the polygon is 

a = R cos
(

θ 
2

)
= R cos

(π 
n

)
. 

The length of the side is 

2b = 2R sin
(

θ 
2

)
= 2R sin

(π 
n

)
. 

The magnetic field at point P due to current on this side is, using Table 11.1(a), 

Bside = 
μ0 I 

4πa

(
b 

(a2 + b2)1/2 
+ b 

(a2 + b2)1/2

)

= 
μ0 I 

2π 
R sin

(
π 
b

)
R cos

(
π 
n

)
(R2 sin2

(
π 
b

) + R2 cos2
(

π 
n

)
)1/2 

= 
μ0 I 

2π R 
tan

(π 
n

)
. 

There are n sides, thus, the magnetic field at the center of the polygon due to 
the current is 

BP = 
μ0nI  

2π R 
tan

(π 
n

)
, 

pointing into the plane of the paper. 
(b) When n is very large, that is n → ∞, n tan (π /n) → π. This is because as n 

→ ∞, tan  (π /n) → π /n. Thus, the magnetic field at the center of the polygon, 
when n is very large, is 

BP = 
μ0 I 

2R 
. 

When n is very large, the polygon becomes a ring. This result is the same 
as the magnetic field at the center of a current-carrying ring, Table 11.1(d). The 
limits can be calculated by the L’Hospital’s rule that you learn in calculus 

lim 
n→∞ 

n tan
(π 
n

)
= lim 

n→∞ 

tan
(

π 
n

)
1/n

= lim 
n→∞ 

− π 
n2 sec

2
(

π 
n

)
−1/n2 

= lim 
n→∞ 

π 
cos2(π/n) 

= π.
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♦ wxMaxima codes: 

(%i1) limit(n*tan(%pi/n), n, inf); 
(%o1) %pi 
(%i2) BP: mu0*n*I/(2*%pi*R)*tan(%pi/n); 
(BP) (I*mu0*tan(%pi/n)*n)/(2*%pi*R) 
(%i3) limit(BP, n, inf); 
(%o3) (I*mu0)/(2*R) 

Comments on the codes: 

(%i1) Calculate lim 
n→∞ 

n tan (π/n). 
(%i2) Assign BP. 
(%i3) Calculate lim 

n→∞ 
BP . 

(c) For a square loop of side b, we have  

R = 
√
2 

2 
b, n = 4, 

and the magnetic field at the center of a square wire loop is 

BP = 
μ0nI  

2π R 
tan

(π 
n

)
= 

μ0(4)I (2) 
2π 

√
2b 

tan
(π 
4

)
= 

μ0(4)I (2) 
2π

√
2b 

(1) 

= 2 
√
2 
μ0 I 

πb 
. 

This is the same result as in Problem 11.7. 

Problem 11.10 

(a) A circular loop of radius R carrying a current of I is shown in Fig. 11.20a. What 
is the magnetic field B at the center of the loop?

(b) A circular coil of radius 0.20 m has a current of 5.0 A. What is the magnetic 
field at the center of the coil? 

(c) Calculate the magnetic field at the center of the coil, if the coil contains 50 
windings. 

Solution

(a) Figure 11.20b shows the current carrying loop, a length element ds of the loop, 
and unit vector r̂ from ds to the center of the loop. Using the Biot–Savart law, 
the magnetic field at the center of the loop due to the length element is 

dB  = 
μ0 

4π 
I ds  × r̂ 

r2 
,
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Fig. 11.20 a Current carrying circular loop, b determining magnetic field at the center of the 
circular loop, Problem 11.10

dB  = 
μ0 

4π 
I sin 90◦ ds  

R2
= 

μ0 

4π 
I ds  

R2 
.

Here,
∣∣ ds  × r̂

∣∣ = sin 90◦ds  = ds  because ds is perpendicular to r̂ and r = R. 
The magnetic field at the center of the loop due to the whole loop is obtained 
by integrating the dB 

B =
∫

dB  = 
μ0 

4π 
I 

R2

∫
ds  = 

μ0 

4π 
I 

R2 
(2π R) 

= 
μ0 I 

2R 
. 

This is the same as Table 11.1(d). 
(b) The magnetic field at the center of the coil is 

B = 
μ0 I 

2R 
= 

2πkm I 

R 
= 

2π(10−7 T m A−1 )(5.0 A) 
0.20 m

= 1.6 × 10−5 T. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; km:1e-7; I:5; R:0.2; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(I) 5 
(R) 0.2 
(%i5) B: 2*float(%pi)*km*I/R; 
(B) 1.5708*10^-5 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of km, I, and R.
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(%i5) Calculate magnetic field B. 

(c) If the number of windings is N = 50, the magnetic field at the center of the coil 
is 

B = 
μ0 N I  

2R 
= 

2πkm N I  

R
= 

2π(10−7 T m A−1 )(50)(5.0 A) 
0.20 m

= 7.9 × 10−4 T. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; km:1e-7; I:5; R:0.2; N:50; 
(fpprintprec) 5 
(km) 1.0*10^-7 
(I) 5 
(R) 0.2 
(N) 50 
(%i6) B: 2*float(%pi)*km*N*I/R; 
(B) 7.854*10^-4 

Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of km, I, R, and N. 
(%i6) Calculate magnetic field B. 

Problem 11.11 

(a) A circular loop of radius R carrying a current of I is shown in Fig. 11.21a. What 
is the magnetic field at point P a distance x on the central axis of the loop?

(b) A circular loop of radius 0.20 m carrying a current of 3.0 A is shown in 
Fig. 11.21b. What is the magnetic field at a point 0.50 m on the central axis 
of the loop? 

Solution 

(a) Figure 11.21c shows the cross-section of the current loop, length element ds, 
and the magnetic field dB. The direction of the current is out of the page in 
the length element and into the page on the opposite side of the loop. By the 
Biot–Savart law, the magnetic field due to length element ds is 

dB  = 
μ0 

4π 
I ds  × r̂ 

r2 
, 

dB  = 
μ0 

4π 
I sin 90◦ ds  

r2
= 

μ0 

4π 
I ds  

R2 + x2 
. 

dB is resolved into dB cos θ and dB sin θ. By symmetry, the dB sin θ component 
will sum up to zero when the whole loop is considered. Thus, the magnetic field 
at point P a distance x on the central axis of the loop is
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Fig. 11.21 a Magnetic field at point P, b magnetic field at x = 0.50 m, c determining magnetic 
field at point P, d direction of the magnetic field, Problem 11.11

B =
∫

dB  =
∫

dB  cos θ 

=
∫

μ0 

4π 
I ds  

R2 + x2 
R √

R2 + x2 
= 

μ0 

4π 
I (2π R) 
R2 + x2 

R √
R2 + x2 

= μ0 I R2 

2(R2 + x2)3/2 
. 

The direction of the magnetic field is to the positive x direction (to the right). 
This result is the same as Table 11.1(d). 

(b) Using the result of part (a) and Fig. 11.21b the magnetic field at point P is 

B = μ0 I R2 

2(R2 + x2)3/2 
= 

(4π × 10−7 T m A−1 )(3.0 A)(0.20 m)2 

2[(0.20 m)2 + (0.50 m)2]3/2 
= 4.8 × 10−7 T. 

The direction of the magnetic field is determined by the right-hand rule, 
Fig. 11.21d. The curled fingers are the direction of the current and the thumb is 
the direction of the magnetic field. Thus, the magnetic field points to the right.



308 11 Sources of Magnetic Field

Fig. 11.22 A current 
carrying circular coil, 
Problem 11.12 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; mu0:float(4*%pi*1e-7); I:3; R:0.2; x:0.5; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(I) 3 
(R) 0.2 
(x) 0.5 
(%i6) B: mu0*I*R^2/(2*(R^2+x^2)^(3/2)); 
(B) 4.828*10^-7 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of μ0, I, R, and x. 
(%i6) Calculate magnetic field B. 

Problem 11.12 A circular coil of radius R has a current of I flowing in it. Where 
along its axis the magnetic field is one half of the magnetic field at the center? 

Solution 

Figure 11.22 shows the coil carrying a current of I, a magnetic field at the center of 
the coil, B0, and a magnetic field at a distance x from the coil, Bx. 

The magnetic field along the central axis of the coil is, Table 11.1(d), 

Bx = μ0 I R2 

2(R2 + x2)3/2 
. 

Letting x = 0, the magnetic field at the center of the coil is 

B0 = 
μ0 I 

2R 
. 

We require that 

Bx 

B0 
= μ0 I R2 

2(R2 + x2)3/2 
· 2R 
μ0 I 

= R3 

(R2 + x2)3/2 
= 

1 

2 
.
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Solving the equation for x gives 

2R3 = (R2 + x2 )3/2 , 

x =
√
22/3 − 1 R = 0.77R. 

This means that, at a distance of 0.77R from the coil, the magnetic field is one 
half of the one at the center. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; assume(R>0); solve(2*R^3=(R^2+x^2)^(3/2), x)$ float(%); 
(fpprintprec) 5 
(%o2) [R>0] 
(%o4) [x=-0.62996*(0.76642-2.2599*%i)*R,x=0.62996*(0.76642-2.2599*%i)*R, 

x=-0.62996*(2.2599*%i+0.76642)*R,x=0.62996*(2.2599*%i+0.76642)*R, 
x=-0.76642*R,x=0.76642*R] 

Comments on the codes: 

(%i4) Set floating point print precision to 5, and solve 2R3 = (R2 + x2)3/2 for x. 
(%o4) The solutions. 

Problem 11.13 Two rings of radii 0.10 and 0.20 m, separated by a distance of 1.0 m 
have currents of 3.0 and 5.0 A, respectively, in opposite directions, as illustrated in 
Fig. 11.23. Determine the magnetic fields at points P, Q, and R along the axis of the 
rings. 

Solution 

The magnetic field along the central axis of a current-carrying ring is, Table 11.1(d), 

B = μ0 I R2 

2(R2 + x2)3/2 
.

Fig. 11.23 Two current-carrying rings, Problem 11.13 
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The magnetic fields are added by vector addition. We will use these two facts 
to calculate magnetic fields due to two current-carrying rings. Let the left be the 
negative x direction and the right the positive one. 

The magnetic field at point P due to currents in the small and big rings is 

BP = −  
(4π × 10−7)(3.0 A)(0.10 m)2 

2[(0.10 m)2 + (0.30 m)2]3/2 + 
(4π × 10−7)(5.0 A)(0.20 m)2 

2[(0.20 m)2 + (1.3 m)2]3/2 
= −5.4 × 10−7 T, 

pointing to the left. 
The magnetic field at point Q due to currents in the small and big rings is 

BQ = −  
(4π × 10−7)(3.0 A)(0.10 m)2 

2[(0.10 m)2 + (0.40 m)2]3/2 + 
(4π × 10−7)(5.0 A)(0.20 m)2 

2[(0.20 m)2 + (0.60 m)2]3/2 
= 2.3 × 10−7 T, 

pointing to the right. 
The magnetic field at point R due to currents in the small and big rings is 

BR = −  
(4π × 10−7)(3.0 A)(0.10 m)2 

2[(0.10 m)2 + (1.5 m)2]3/2 + 
(4π × 10−7)(5.0 A)(0.20 m)2 

2[(0.20 m)2 + (0.50 m)2]3/2 
= 8.0 × 10−7 T, 

pointing to the right. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(%i3) BP: -mu0*3*0.1^2/(2*(0.1^2+0.3^2)^(3/2)) 

+mu0*5*0.2^2/(2*(0.2^2+1.3^2)^(3/2)); 
(BP) -5.4085*10^-7 
(%i4) BQ:-mu0*3*0.1^2/(2*(0.1^2+0.4^2)^(3/2)) 

+mu0*5*0.2^2/(2*(0.2^2+0.6^2)^(3/2)); 
(BQ) 2.2781*10^-7 
(%i5) BR: -mu0*3*0.1^2/(2*(0.1^2+1.5^2)^(3/2)) 

+mu0*5*0.2^2/(2*(0.2^2+0.5^2)^(3/2)); 
(BR) 7.9911*10^-7 

Comments on the codes: 

(%i2) Set floating point print precision to 5, assign value of μ0. 
(%i3), (%i4), (%i5) Calculate BP, BQ, and BR. 

Additional question: What are the magnetic fields if the direction of the 5.0 A 
current is reversed?
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Answer: We redo the calculations. The magnetic field at point P due to currents 
in the small and big rings is 

BP = −  
(4π × 10−7)(3.0 A)(0.10 m)2 

2[(0.10 m)2 + (0.30 m)2]3/2 − 
(4π × 10−7)(5.0 A)(0.20 m)2 

2[(0.20 m)2 + (1.3 m)2]3/2 
= −6.5 × 10−7 T, 

pointing to the left. 
The magnetic field at point Q due to currents in the small and big rings is 

BQ = −  
(4π × 10−7)(3.0 A)(0.10 m)2 

2[(0.10 m)2 + (0.40 m)2]3/2 − 
(4π × 10−7)(5.0 A)(0.2)2 

2[(0.20 m)2 + (0.60 m)2]3/2 
= −7.7 × 10−7 T, 

pointing to the left. 
The magnetic field at point R due to currents in the small and big rings is, 

BR = −  
(4π × 10−7)(3.0 A)(0.10 m)2 

2[(0.10 m)2 + (1.5 m)2]3/2 − 
(4π × 10−7)(5.0 A)(0.2)2 

2[(0.20 m)2 + (0.50 m)2]3/2 
= −8.1 × 10−7 T, 

pointing to the left. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(%i3) BP: -mu0*3*0.1^2/(2*(0.1^2+0.3^2)^(3/2))

-mu0*5*0.2^2/(2*(0.2^2+1.3^2)^(3/2)); 
(BP) -6.513*10^-7 
(%i4) BQ: -mu0*3*0.1^2/(2*(0.1^2+0.4^2)^(3/2))

-mu0*5*0.2^2/(2*(0.2^2+0.6^2)^(3/2)); 
(BQ) -7.6565*10^-7 
(%i5) BR: -mu0*3*0.1^2/(2*(0.1^2+1.5^2)^(3/2))

-mu0*5*0.2^2/(2*(0.2^2+0.5^2)^(3/2)); 
(BR) -8.1021*10^-7 

Comments on the codes: 

(%i2) Set floating point print precision to 5, assign value of μ0. 
(%i3), (%i4), (%i5) Calculate BP, BQ, and BR. 

Problem 11.14 A solenoid of length 20 cm has 500 turns of wire. The current of 
5.0 A flows in the solenoid. What is the magnetic field in the solenoid?
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Fig. 11.24 a Magnetic field 
of a solenoid, b direction of 
the magnetic field, 
Problem 11.14 

(a) (b) 

20 cm, 500 turns 

I 
B 

BI 

Solution 

Figure 11.24a shows the solenoid with current I. 
The magnetic field in the solenoid is, Eq. (11.5), 

B = μ0nI  = (4π × 10−7 T m A−1 )

(
500 

0.20 m

)
(5.0 A) = 1.6 × 10−2 T, 

pointing to the right. The direction is determined by the right-hand rule, as illustrated 
by Fig. 11.24b. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; mu0:float(4*%pi*1e-7); N:500; l:0.2; n: N/l; I:5; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(N) 500 
(l) 0.2 
(n) 2500.0 
(I) 5 
(%i7) B: mu0*n*I; 
(B) 0.015708 

Comments on the codes: 

(%i6) Set floating point print precision to 5, and assign the value of μ0, N, l, n, and 
I. 

(%i7) Calculate the magnetic field of a solenoid B. 

Problem 11.15 Current of 3.0 A flows in a solenoid of length 60 cm, radius 2.0 cm, 
and 1000 turns of winding. On the axis of the solenoid, there is a long wire carrying 
a current of 50 A. Determine the magnetic field at a point 1.0 cm from the wire. 

Solution 

Figure 11.25 shows the solenoid, the wire, and the relevant magnetic fields. The 
magnetic field due to the current carrying solenoid is Bs, the magnetic field due to 
the current carrying long wire is Bw, and the resultant magnetic field is B.
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Fig. 11.25 A current-carrying wire in a solenoid, Problem 11.15 

The magnetic field in the solenoid due to the current flow in it is 

Bs = μ0nIs = (4π × 10−7 T m A−1 )

(
1000 

0.60 m

)
(3.0 A) = 6.3 × 10−3 T. 

The magnetic field due to the current carrying long wire at a distance of 1.0 cm 
from the wire is 

Bw = 
μ0 Iw 

2πr 
= 

(4π × 10−7 T m A−1 )(50 A) 
2π(0.010 m)

= 1.0 × 10−3 T. 

Both Bs and Bw are perpendicular to each other. The resultant magnetic field is 

B =
√
B2 
s + B2 

w = 
√

(6.3 × 10−3 T)2 + (1.0 × 10−3 T)2 = 6.4 × 10−3 T. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; mu0:float(4*%pi*1e-7); n:1000/0.6; Is:3; Iw:50; r:0.01; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(n) 1666.7 
(Is) 3 
(Iw) 50 
(r) 0.01 
(%i7) Bs: mu0*n*Is; 
(Bs) 0.0062832 
(%i8) Bw: mu0*Iw/(2*float(%pi)*r); 
(Bw) 0.001 
(%i9) B: sqrt(Bs^2+Bw^2); 
(B) 0.0063623 

Comments on the codes:

(%i6) Set floating point print precision to 5, assign values of μ0, n, Is, Iw, 
and r.
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Fig. 11.26 Two current carrying wires, Problem 11.16 

(%i7), (%i8) Calculate the magnetic field of the solenoid and the wire Bs and Bw. 
(%i9) Calculate the resultant magnetic field B. 

Problem 11.16 Figure 11.26 shows two long wires separated by a distance of 1.0 m 
with current I flowing in each. Each wire is attracted toward the other by 2.0 × 10−7 

N per meter. What is the current? 

Solution 

Force per unit length between two parallel current-carrying wires is, Eq. (11.3), 

F 

l 
= 

2km I1 I2 
a 

. 

where I1 and I2 are the currents in the wires and a is the separation distance between 
the wires. For this problem, the currents are the same, so 

F 

l 
= 

2km I 2 

a 
. 

We can calculate the current, 

2.0 × 10−7 N/m = 
2(10−7 T m A−1 )I 2 

1.0 m  
I = 1.0 A  

In fact, these values had been used to define a current of 1.0 A. That is, 1.0 A is 
current in two parallel long wires separated by a distance of 1.0 m that gives rise to 
an attractive force of 2.0 × 10−7 N per meter between them. 

♦ wxMaxima codes: 

(%i1) ratprint:false; 
(ratprint) false 
(%i2) solve(2e-7 = 2*1e-7*I^2,  I); 
(%o2) [I=-1,I=1]
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Fig. 11.27 Four parallel current carrying wires, Problem 11.17 

Comments on the codes: 

(%i1) Set internal rational number print to false. 
(%i2) Solve 2.0 × 10−7 = 2 × 10−7 × I 2 for I. 

Problem 11.17 Four long parallel wires E, F, G, and H carrying different currents 
are shown in Fig. 11.27. Calculate the force on the 10 cm of wire E. 

Solution 

The magnetic field along wire E, due to currents in wires F, G, and H is, Table 11.1(b), 

BE = 
μ0 

2π

(
4.0 A  

0.030 m 
− 

6.0 A  

0.080 m 
− 

10 A 

0.15 m

)
= −1.7 × 10−6 T. 

into the plane of the paper. The magnitude of the magnetic force on the 10 cm of 
wire E is 

F = I L  BE = (2.0 A)(0.10 m)(1.7 × 10−6 T) = 3.3 × 10−7 N. 

pointing to the left. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(%i3) BE: mu0/float(2*%pi)*(4/0.03-6/0.08-10/0.15); 
(BE) -1.6667*10^-6 
(%i4) F: 2*0.1*abs(BE); 
(F) 3.3333*10^-7 

Comments on the codes:

(%i2) Set floating point print precision to 5, and assign the value of μ0. 
(%i3) Calculate magnetic field, BE .
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Fig. 11.28 A current carrying wire, Problem 11.18 

(%i4) Calculate F. 

Problem 11.18 

(a) A wire shown in Fig. 11.28 carries a current of I. The lengths of straight 
wire segments are l and 2l while the radius of the semicircular segment is 
R. Determine the magnetic field at point P. 

(b) What is the magnitude of the magnetic field at point P if I = 5.0 A, l = 10 cm, 
and R = 15 cm? 

Solution 

(a) Currents in the straight wire segments of lengths l and 2l do not contribute to 
the magnetic field at point P because the directions of the currents are toward 
and away from P. Such directions will give ds × r = 0 for the segments and zero 
magnetic field at point P according to Biot–Savart law. The magnetic field due 
to the current in the semicircular segment at point P is calculated by Biot–Savart 
law, as illustrated in Fig. 11.29. 

The current in wire element ds produces elementary magnetic field dB at 
point P, Eq.  (11.1), 

dB  = 
μ0 I 

4π 
ds  × r 
r3 

= 
μ0 I 

4π 
ds  × r̂ 
r2 

. 

For this wire segment,

Fig. 11.29 Determining 
magnetic field due to current 
in the semicircular segment, 
Problem 11.18 
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dB  = 
μ0 I 

4π 
ds  

R2 
, 

because ds and r are perpendicular to each other and r = R. The magnetic field 
at point P due to the semicircular segment is 

B =
∫

dB  = 
μ0 I 

4π R2

∫
ds  = 

μ0 I 

4π R2 
(π R) = 

μ0 I 

4R 
. 

The direction of the field is into the plane of the paper as indicated by the 
right-hand rule. 

(b) Substituting the given numerical values, the magnitude of the magnetic field at 
point P is 

B = 
μ0 I 

4R 
= 

(4π × 10−7 T m/A)(5.0 A) 
4(0.15 m)

= 1.0 × 10−5 T. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; mu0:float(4*%pi*1e-7); I:5; R:0.15; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(I) 5 
(R) 0.15 
(%i5) B: mu0*I/(4*R); 
(B) 1.0472*10^-5 

Comments on the codes: 

(%i4) Set floating point print precision to 5, and assign values of μ0, I, and R. 
(%i5) Calculate B. 

Problem 11.19 Show that the magnetic field inside a solenoid is B = μ0nI, where 
n is the number of turns of the winding per unit length and I is the current in the 
solenoid. Use the Ampere’s law. 

Solution 

Figure 11.30 shows part of a solenoid that has n turns of winding per meter with a 
current of I in it. We consider an imaginary rectangular Amperian closed loop abcda 
of length l and width w.

Using the Ampere’s law (Eq. 11.4), we have

∮

abcda 

B · ds  = μ0 Ienclosed ,
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Fig. 11.30 A solenoid and an Amperian closed loop abcda, Problem 11.19

b∫

a 

B · ds  + 
c∫

b 

B · ds  + 
d∫

c 

B · ds  + 
a∫

d 

B · ds  = μ0nl I, 

0 + Bl + 0 + 0 = μ0nl I.

Here, the current enclosed in the Amperian loop is nlI because there are nl wires 
each with current I. The line integrals along ab and cd are zero because B is zero 
or B is perpendicular to ds, and the line integral along da is zero because B is zero 
outside the solenoid. The line integral along bc is Bl because B and ds are in the 
same direction and parallel to each other. Therefore, the magnetic field of a solenoid 
is 

B = μ0nI. 

This is Eq. (11.5) given in point (5) at the beginning of this chapter. 

Problem 11.20 

(a) Use Biot–Savart law to find the magnetic field at point P of Fig. 11.31a. The 
wire has a current of I, its length is a + b, and its perpendicular distance from 
point P is R.

(b) What is the magnetic field at point Q of Fig. 11.31b? The wire has a current of 
I, its length is 2a, and its perpendicular distance from point Q is R. 

(c) What is the magnetic field at point Q of Fig. 11.31b if  a is very large? 
(d) What is the magnetic field at point S of Fig. 11.31c? 

Solution 

(a) We redraw Fig. 11.31a as Fig.  11.31d to do calculation according to the Bio– 
Savart law. Figure 11.31d shows the current I in a wire of length a + b, length 
element ds, and vector r from ds to point P. By Biot–Savart law, the magnetic 
field dB due to length element ds is,
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(a) (b) 

(c) (d) 

S 

R 
I 

P 

R 

−a 
I 

b 
1 2 

ds 
s 

r 

Q 

R 
I 

−a a  

P 

R 

a 

I 

b 

1 2 

Fig. 11.31 Magnetic fields of four current-carrying wires using the Biot–Savart law, Problem 11.20

dB  = 
μ0 I 

4π 
ds  × r 
r3 

= 
μ0 I 

4π 
ds  × r̂ 
r2 

, 

dB  = 
μ0 I 

4π 
sin θ ds  

r2 
= 

μ0 I 

4π 
R ds  

r3 
= 

μ0 I 

4π 
R ds  

(R2 + s2)3/2 
. 

The magnetic field at point P in Fig. 11.31a or Fig.  11.31d is  

BP =
∫

dB  = 
μ0 I R  

4π 

b∫

−a 

ds  

(R2 + s2)3/2 
= 

μ0 I 

4π R

[
s 

(R2 + s2)1/2

]b 

−a 

= 
μ0 I 

4π R

(
a 

(R2 + a2)1/2 
+ b 

(R2 + b2)1/2

)

= 
μ0 I 

4π R 
(cos θ1 − cos θ2). 

This is the same as Table 11.1(a). 
(b) Using the result of part (a), the magnetic field at point Q in Fig. 11.31b is  

BQ = 
μ0 I 

4π R

(
a 

(R2 + a2)1/2 
+ a 

(R2 + a2)1/2

)

= 
μ0 I 

2π R 
a 

(R2 + a2)1/2 
. 

(c) Using the result of part (b), the magnetic field at point Q becomes
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BQ = 
μ0 I 

2π R 
, 

as a → ∞. This is because a/(R2 + a2)1/2 → 1 as  a → ∞. This is the magnetic 
field around a long straight wire, Table 11.1(b). 

(d) By symmetry and using the result of part (c), the magnetic field at point S in 
Fig. 11.31c is one half of that at point Q, 

BS = 
1 

2 
BQ = 

μ0 I 

4π R 
. 

This is the magnetic field of semi-infinite straight wire, Table 11.1(c). 

11.3 Summary 

• Biot–Savart’s law states that the magnetic field dB due to a segment ds of a 
conductor carrying a current of I is given by 

dB  = km 
I ds  × r 

r3
= km 

I ds  × r̂ 
r2

= 
μ0 

4π 
I ds  × r̂ 

r2 
. 

• Force per unit length between two parallel long wires, separated by a distance of 
a, and carrying currents of I1 and I2 is 

F 

l 
= 

2km I1 I2 
a

= 
μ0 I1 I2 
2πa 

. 

• Ampere’s law states that the line integral of B around a closed path is μ0I, that is

∮
B · ds  = μ0 I , 

where I is the current through a surface bounded by the closed path. 
• The magnetic fields inside a solenoid is 

Bsolenoid = μ0 
N 

l 
I = μ0nI, 

where N is the number of turns of the wire, l is the length of the solenoid, and n 
is the number of turns per unit length.
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Fig. 11.32 Two parallel 
current carrying wires, 
Exercise 11.1 

11.4 Exercises 

Exercise 11.1 Figure 11.32 shows two long wires 18 cm apart carrying currents of 
8.0 and 12 A into the plane of the paper. 

(a) Calculate the magnetic field at point P 
(b) At what point on the line joining the wires is the magnetic field zero? 

(Answer: (a) BP = 3.7 × 10−5 T in the negative y direction, 
(b) 7.2 cm from the wire with 8.0 A current) 

Exercise 11.2 Figure 11.33 shows a coil of radius R = 20 cm carrying a current of I 
= 0.25 A in counter clockwise direction. How many turns must there be in the coil 
so that the magnetic field B at the center of the coil is 4.0 × 10−5 T? 

(Answer: 51 turns) 

Exercise 11.3 Figure 11.34 shows a coil of radius 2.0 cm concentric with a coil of 
radius 7.0 cm. Each coil has 100 turns and the electric current in the larger coil is 
5.0 A in counterclockwise direction. What is the current in the smaller coil so that 
the magnetic field B at the center of the coils is 2.0 × 10−3 T?

(Answer: 0.79 A, clockwise) 

Exercise 11.4 The wire shown in Fig. 11.35 carries an electric current of 15 A. 
Calculate the magnetic field at point P.

(Answer: 3.5 × 10−4 T into the plane of the paper)

Fig. 11.33 A 
current-carrying coil, 
Exercise 11.2 
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Fig. 11.34 Two concentric current carrying coils, Exercise 11.3

Fig. 11.35 Current carrying wire of Exercise 11.4 

Fig. 11.36 Cross section of 
a current carrying conductor, 
Exercise 11.5



11.4 Exercises 323

Exercise 11.5 Figure 11.36 shows the cross-section of a long conductor of radius 
3.0 cm carrying a current of 5.0 × 102 A into the plane of the paper. Use Ampere’s 
law to calculate the magnetic field BP at point P and magnetic field BQ at the surface. 

(Answer: BP = 2.2 × 10−3 T, BQ = 3.3 × 10−3 T)



Chapter 12 
Magnetic Properties of Matter 

Abstract Problems related to magnetic materials and how magnetic induction, 
magnetic field strength, and magnetization are affected when the materials are 
inserted in the core of the current carrying solenoid and toroid are solved in this 
chapter. Both analytical solutions and computer calculations are presented. 

12.1 Basic Concepts and Formulae 

(1) The fundamental source of all magnetic fields is the magnetic dipole moment 
in atoms of materials. There are two types of magnetic dipole moments: spin 
magnetic dipole moment and orbital magnetic dipole moment. 

(2) There are three types of magnetism in materials. 

(a) Diamagnetism: Diamagnetic material shows its magnetic properties only 
when placed in an external magnetic field Bext . In an external magnetic 
field, the material produces magnetic dipoles in the opposite direction to 
that of the external magnetic field. As a result, the material is pushed from 
the region of higher magnetic field. Examples of diamagnetic materials are 
gold, bismuth, mercury, water, glass, and helium. 

(b) Paramagnetism: In a paramagnetic material, atoms have permanent 
magnetic dipole moments randomly oriented so that the net effect is no 
magnetic field. External magnetic field Bext can align some of the atomic 
magnetic dipole moments to produce net magnetic dipole moments in the 
Bext direction. The paramagnetic material is attracted to a region of higher 
magnetic field. 

The alignment of atomic magnetic dipole moments increases with an 
increase in Bext and decreases with an increase in temperature T. The extent 
a volume V of material has magnetic properties is given by magnetization 
M 

M = 
magnetic dipole moment m 

V 
. (12.1)
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If all N atomic magnetic dipoles of a sample are aligned with Bext , the  
sample is saturated and the maximum magnetization is 

Mmax = 
Nma 

V 
, (12.2) 

where ma is the atomic magnetic dipole moment. 
For small Bext /T, where T is the absolute temperature of the material 

and Bext is the external magnetic field, the magnetization is 

M = C 
Bext 

T 
. (12.3) 

This is called Curie’s law and the constant C is the Curie constant. 
Examples of paramagnetic materials are aluminum, magnesium, 

oxygen, transition elements, and rare earth elements. 
(c) Ferromagnetism: In a ferromagnetic material, most of the magnetic dipole 

moments of the atoms are self aligned in small regions called domains. 
Magnetic dipole moments are mainly from the spin magnetic dipole 
moments. Each domain behaves as a permanent magnet and the domains 
are randomly oriented if no external magnetic field is applied. The domains 
are partially aligned when the external magnetic field is applied so that the 
internal magnetic field becomes stronger. Ferromagnetic materials are used 
in magnetic devices. Examples are iron, nickel, and cobalt. 

(3) The magnetic field of a material with relative permeability Km is 

B = Km B0, (12.4) 

where B0 is the magnetic field without the material. Permeability μ of the 
material is 

μ = Kmμ0, (12.5) 

where μ0 = 4π × 10−7 H m−1 is permeability of free space. 
(4) In a material medium, the relationship between magnetic induction B, magnetic 

field strength H, and magnetization M is 

B = μ0(H + M). (12.6) 

B is called magnetic induction or magnetic flux density. 
H is called magnetic field strength, magnetic intensity, or magnetizing field. 
M is called magnetization, magnetic polarization, or magnetic dipole moment 

per unit volume. 
μ0 is the permeability of free space.
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(5) In an isotropic medium, B, H, and M are in the same direction. We have 

B = μ0(H + M) = μ0(H + χm H ) = μ0(1 + χm)H = μH, (12.7) 

μ = μ0(1 + χm), (12.8) 

Km = 
μ 
μ0 

= 1 + χm . (12.9) 

μ is the permeability of the medium, 
μ0 is the permeability of free space, 
Km is the relative permeability of the medium, 
χ m is the magnetic susceptibility of the medium. 

(6) Ampere’s law for magnetic field intensity is

∮
H · ds  = I. (12.10) 

The line integral H · ds. along a closed path is the current I, where I is the 
current through a surface bounded by the closed path. 

(7) For an air core solenoid 

B0 = μ0nI  = μ0 
N 

l 
I, (12.11) 

H = 
B0 

μ0 
= nI  = 

N 

l 
I, (12.12) 

where B0 is the magnetic induction, H is the magnetic field strength, μ0 is 
permeability of free space, N and l are the number of wire turns and length of 
the solenoid, respectively, and n is the number of wire turns per unit length. 

12.2 Problems and Solutions 

Problem 12.1 A permanent magnet made of ferromagnetic material has magne-
tization M = 8.0 × 105 A m−1. The magnet is in cube form with sides of 
2.0 cm. 

(a) Calculate the magnetic dipole moment 
(b) Estimate the magnetic field of the permanent magnet at a point 10 cm away.
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Solution 

(a) Magnetic dipole moment m is magnetization M multiplied by volume V, 
Eq. (12.1), 

m = MV  = (8.0 × 105 A/m)(2.0 × 10−2 m)3 = 6.4 A m2 . 

(b) The magnetic field of a magnetic dipole moment μ at a point far away from the 
dipole is, entry (d) of Table 11.1, 

B = 
μ0μ 
2π x3 

, 

where x is the distance of the dipole to the observation point. Substituting 
magnetic dipole moment m from part (a), we get an estimate of the magnetic 
field of the permanent magnet 

B = 
μ0m 

2π x3 

= 
(4π × 10−7 T m/A)(6.4 A m2) 

2π(0.10 m)3 

= 1.3 × 10−3 T. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; M:8e5; V:(2e-2)^3; x:0.1; mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(M) 8.0*10^5 
(V) 8.0*10^-6 
(x) 0.1 
(mu0) 1.2566*10^-6 
(%i6) m: M*V; 
(m) 6.4 
(%i7) B: mu0*m/(2*float(%pi)*0.1^3); 
(B) 0.00128
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Fig. 12.1 An iron bar in a 
region of uniform magnetic 
field, Problem 12.2 

B = 0.80 T 

m 

Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of M, V, x, 
and μ0. 

(%i6), (%i7) Calculate m and B. 

Problem 12.2 An iron atom has a magnetic dipole moment ma of 1.83× 10−23 Am2. 

(a) Determine the magnetic dipole moment m of a 9.0 × 1.2 × 1.0 cm iron bar if 
the bar is 100% saturated magnetically. 

(b) Calculate the torque τ on the iron bar if it is placed in a region of magnetic field 
B = 0.80 T as illustrated in Fig. 12.1. The density of iron is 7.8 g cm−3 and the 
molar mass of iron is 55.845 g mol−1. 

Solution 

(a) If the iron bar is fully magnetized, all dipoles are aligned. Total dipole moment 
m is the number of atoms N multiplied by the dipole moment of an atom ma 

m = Nma = 
NAρV 

Mm 
ma 

= 
(6.02 × 1023 atom/mol)(7.8 g/cm3 )(9.0 cm)(1.2 cm)(1.0 cm) 

55.845 g/mol 

× (1.83 × 10−23 A m2 /atom) 
= 17 A m2 . 

Here, the number of iron atoms N = NAρV /Mm, where ρ, V, and Mm are 
the density, volume, and molar mass of iron, respectively, and NA = 6.02 × 
1023 atom/mol is the Avogadro number. 

(b) Torque τ on the iron bar if it is placed in the magnetic field of 0.80 T is, Eq. (11.9), 

τ = mB  sin θ = (17 A m2 )(0.80 T)(sin 90◦) = 13 N m.
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♦ wxMaxima codes: 

(%i7) fpprintprec:5; NA:6.02e23; rho:7.8; V:9*1.2*1; Mm:55.845; 
m_a:1.83e-23; B:0.8; 
(fpprintprec) 5 
(NA) 6.02*10^23 
(rho) 7.8 
(V) 10.8 
(Mm) 55.845 
(m_a) 1.83*10^-23 
(B) 0.8 
(%i8) m: NA*rho*V*m_a/Mm; 
(m) 16.618 
(%i9) tau: m*B*sin(90*%pi/180); 
(tau) 13.294 

Comment on the codes: 

(%i7) Set floating point print precision to 5, and assign values of NA, 
ρ, V, Mm, ma, and B. 

(%i8), (%i9) Calculate m and τ . 

Problem 12.3 A thin toroid has 285 turns per meter of wire wound around an iron 
core. The current of 3.0 A flows in it. If the relative permeability of iron is Km = μ/ 
μ0 = 2200, what is the magnetic field in the toroid? 

Solution 

The magnetic field of a thin and long toroid is the same as that of a solenoid. The 

magnetic field of the iron core toroid is, Eqs. (11.5), (12.4), and (12.5), 

B = μnI  = Kmμ0nI  = (2200)(4π × 10−7 T m  

A 
)(285 m−1 )(3.0 A) = 2.4 T. 

where μ is the permeability of iron and n is the number of turns per unit length of 
wire. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; Km:2200; mu0:float(4*%pi*1e-7); n:285; I:3; 
(fpprintprec) 5 
(Km) 2200 
(mu0) 1.2566*10^-6 
(n) 285 
(I) 3 
(%i6) B: Km*mu0*n*I; 
(B) 2.3637
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Comment on the codes: 

(%i5) Set floating point print precision to 5, and assign values of Km, μ0, n, and I. 
(%i6) Calculate B. 

Problem 12.4 An iron core solenoid of length 38 cm and diameter 1.8 cm has 640 
turns of wire. The magnetic field in the solenoid is 2.2 T when the current is 48 A. 
What is the permeability of iron at the field strength? 

Solution 

The magnetic field in an iron core solenoid is 

B = μnI  = μ 
N 

l 
I, 

where μ is the permeability of iron, N is the number of turns of wire, l is the length 
of the solenoid, and I is current in the solenoid. The permeability of iron is 

μ = 
Bl 

N I  
= 

(2.2 T)(0.38 m) 
640 (48 A) 

= 2.7 × 10−5 T m A−1 . 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; l:0.38; N:640; B:2.2; I:48; 
(fpprintprec) 5 
(l) 0.38 
(N) 640 
(B) 2.2 
(I) 48 
(%i6) mu: (B*l)/(N*I); 
(mu) 2.7214*10^-5 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of l, N, B, and I. 
(%i6) Calculate μ. 

Problem 12.5 

(a) A 1.0 m long solenoid has 104 turns of copper wire. A current of 10 A flows in 
the solenoid. The cross section of the solenoid is 10 cm2. Calculate: 

(i) magnetic field strength of the solenoid 
(ii) torque on the solenoid when it is placed perpendicular to an external 

magnetic field of Bext = 1.0 × 10−2 T. 

(b) The core of the solenoid is then filled with a magnetic material and the flux 
density in the material is B = 1.5 T. Calculate:
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(i) magnetization in the material. 
(ii) torque on the solenoid and the magnetic material when they are placed in 

the external magnetic field of Bext = 1.0 × 10−2 T. Axis of the solenoid 
and external magnetic field are perpendicular to each other. 

Solution 

(a) 

(i) Magnetic field strength of the air core solenoid is, Eq. (12.12), 

H = nI  = 
N 

l 
I =

(
104 turns 

1.0 m

)
(10 A) = 1.0 × 105 A m−1 . 

(ii) Magnetic moment of a loop is IA Eq. (10.7), where I is the current in the 
loop and A is the area of the loop. Thus, the magnetic moment of a turn of 
the solenoid is IA, and the magnetic moment of the solenoid is 

m0 = N I  A  = (104 turns)(10 A)(10 × 10−4 m2 ) = 100 A m2 . 

Torque on the solenoid in an external magnetic field is Eq. (10.9) 

τ = m0 Bext sin 90
◦ 

= (100 A m2 )(1.0 × 10−2 T) 
= 1.0 N  m. 

(b) 

(i) For a solenoid filled with a magnetic material Eq. (12.7), we have 

B = μ0(H + M), 

M = 
B 

μ0 
− H. 

where M is the magnetization of the material, B is the magnetic induction, 
and H is the magnetic field strength. The magnetization of the material is 

M = 
B 

μ0 
− H = 1.5 × 10−2 T 

4π × 10−7 T m/A  
− 1.0 × 105 A m−1 

= 1.1 × 106 A m−1 . 

(ii) Magnetic moment of magnetic material mm is Eq. (12.1) 

mm = MV  = Ml A = (1.1 × 106 A m−1 )(1.0 m)(10 × 10−4 m2 ) 
= 1.1 × 103 A m2 .
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Magnetic moment m of the solenoid with the magnetic material core is 

m = m0 + mm = 100 A m2 + 1.1 × 103 A m2 = 1.2 × 103 A m2 . 

Torque on the magnetic material cored solenoid is Eq. (10.9) 

τT = mBext sin 90
◦ 

= (1.2 × 103 A m2 )(1.0 × 10−2 T) 
= 12 N m. (12.1) 

♦ wxMaxima codes: 

(%i8) fpprintprec:5; l:1; N:1e4; I:10; A:10e-4; Bext:1e-2; B:1.5; 
mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(l) 1 
(N) 1.0*10^4 
(I) 10 
(A) 0.001 
(Bext) 0.01 
(B) 1.5 
(mu0) 1.2566*10^-6 
(%i9) H: (N/l)*I; 
(H) 1.0*10^5 
(%i10) m0: N*I*A; 
(m0) 100.0 
(%i11) torque: m0*Bext; 
(torque) 1.0 
(%i12) M: B/mu0 - H; 
(M) 1.0937*10^6 
(%i13) mm: M*l*A; 
(mm) 1093.7 
(%i14) m: m0 + mm; 
(m) 1193.7 
(%i15) torqueT: m*Bext; 
(torqueT) 11.937 

Comments on the codes: 
(%i8) Set floating point print precision to 5, and 

assign values of l, N, I, A, Bext , B, and μ0. 
(%i9), (%i10), (%i11), (%i12), 
(%i13), (%i14), (%i15) 

Calculate H, m0, τ , M, mm, m, and τ T . 

Problem 12.6 A toroid is made of an iron core of length 60 cm, a cross section of 
4.0 cm2, and an air gap of 1.0 cm.

(a) If the toroid has 500 turns of wire and the current is 20 A, what is the magnetic 
flux density Bg in the gap? The relative permeability of iron is 3000.
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                                     (a)                                                                       (b) 

li 

N 

I 

lg 

l 

N 

I 

H 

ds 

H 

ds 

Fig. 12.2 a An iron core toroid with an air gap, b an iron core toroid, Problem 12.6 

(b) If there is no air gap, what is the magnetic flux density Bi in the iron core? 

Solution 

(a) Fig. 12.2a shows the iron core toroid and the air gap. Let the magnetic flux 
density and the magnetic field intensity of iron be Bi and Hi, respectively, while 
the magnetic flux density and the magnetic field intensity of air gap be Bg and 
Hg, respectively. The lengths of iron and air gap are li and lg, respectively. 

Ampere’s law for magnetic field intensity is, Eq. (12.10),

∮
H · ds  = I . 

The line integral H.ds along a closed path is the current I, where I is the 
current enclosed by the closed path. 

For this problem, the imaginary closed path in the dashed circle of the toroid, 
Fig. 12.2a. The magnetic field intensity H is parallel to line element ds and H.ds 
is H × length. The magnetic field intensity is the magnetic flux density divided 
by the permeability of the material, H = B/μ. The current enclosed in the closed 
path is NI, where N is the number of turns of the wire. We have

∮
H · ds  = Ienclosed , 

Hili + Hglg = N I, 
Bili 
μ 

+ 
Bglg 
μ0 

= N I, 

Bili 
Kmμ0 

+ 
Bglg 
μ0 

= N I. 

Assuming Bi ≈ Bg, we have
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Bgli 
Kmμ0 

+ 
Bglg 
μ0 

= N I. 

Thus, the magnetic flux density Bg of the air gap is 

Bg = N I(
li 

Km μ0 
+ lg 

μ0

) = 500(20 A)(
0.60 m 

3000×4π×10−7 H m−1 + 0.01 m 
4π ×10−7 H m−1

)

= 1.2 T. 

(b) If there is no air gap, the magnetic flux density Bi in the iron core toroid is, 
Fig. 12.2b,

∮
H · ds  = Ienclosed , 

Hil = N I, 
Bil 

Kmμ0 
= N I, 

Bi = 
N I Kmμ0 

l
= 

500(20 A)(3000)(4π × 10−7 H m−1) 
(0.60 + 0.01) m 

= 62 T. 

♦ wxMaxima codes: 

(%i7) fpprintprec:5; N:500; I:20; li:0.6; lg:0.01; Km:3000; 
mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(N) 500 
(I) 20 
(li) 0.6 
(lg) 0.01 
(Km) 3000 
(mu0) 1.2566*10^-6 
(%i8) Bg: N*I/(li/(Km*mu0) + lg/mu0); 
(Bg) 1.232 
(%i9) Bi: N*I*Km*mu0/(li+lg); 
(Bi) 61.802 

Comments on the codes: 

(%i7) Set floating point print precision to 5, and assign values of N, I, 
li, lg, Km, and μ0. 

(%i8), (%i9) Calculate Bg and Bi.
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Problem 12.7 An electric power cable carries a current of 95 A to the west, 8.5 m 
above the ground. 

(a) What is the magnitude and direction of the magnetic field due to the cable at 
the surface of the earth? Compare the field with the earth’s magnetic field Bearth 

= 0.50 × 10−4 T. The earth’s magnetic field points to the north. 
(b) At what height above the ground the magnetic field is zero? 

Solution 

(a) Assume the cable is straight and long, from east to west, carrying a current from 
east to west, at a height of 8.5 m above the ground. The magnetic field due to 
the current in the cable is (Table 11.1b) 

Bcable = 
μ0 I 

2πr 
= 

μ0 I 

2πh 
= 

(4π × 10−7 T m/A)(95 A) 
2π(8.5 m)

= 2.2 × 10−6 T. 

pointing to the south as determined by the right-hand rule. Assume the earth’s 
magnetic field points to the north with magnitude Bearth = 0.50 × 10−4 T. At 
the earth’s surface, the ratio of the magnetic field due to current in the cable to 
the magnetic field of the earth is 

Bcable 

Bearth 
= 

2.2 × 10−6 T 

0.50 × 10−4 T 
= 0.045. 

Magnetic field due to the current in the cable is 4% of the earth’s magnetic 
field. 

(b) To get zero magnetic field, Bcable = Bearth, and the two magnetic fields are in 
opposite directions. Thus 

Bearth = Bcable = 
μ0 I 

2πr 
, 

r = μ0 I 

2π Bearth 
= 

(4π × 10−7 T m/A)(95 A) 
2π(0.50 × 10−4 T)

= 0.38 m. 

The magnetic field is zero at a distance of 0.38 m below the cable or at a 
height of 8.5 – 0.38 = 8.1 m from the ground.
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♦ wxMaxima codes: 

(%i5) fpprintprec:5; I:95; h:8.5; mu0:float(4*%pi*1e-7); Bearth:0.5e-4; 
(fpprintprec) 5 
(I) 95 
(h) 8.5 
(mu0) 1.2566*10^-6 
(Bearth) 5.0*10^-5 
(%i6) Bcable: mu0*I/(2*float(%pi)*h); 
(Bcable) 2.2353*10^-6 
(%i7) Bcable/Bearth; 
(%o7) 0.044706 
(%i8) r: mu0*I/(2*float(%pi)*Bearth); 
(r) 0.38 
(%i9) height: h-r; 
(height) 8.12 

Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of I, h, 
μ0, and Bearth. 

(%i6), (%i7) Calculate Bcable and Bcable/Bearth. 
(%i8), (%i9) Calculate r and h – r. 

Problem 12.8 Internal and external radii of an air core solenoid in the form of a 
toroid are 15 and 18 cm, respectively, as shown in Fig. 12.3. The toroid has 250 turns 
of wire and it carries a current of 8.5 A. What are the magnetic fields at points (a) 
12 cm, (b) 16 cm, and (c) 20 cm from the center of the toroid. 

Solution 

(a) At r = 0.12 m, the magnetic field is zero. 
(b) At r = 0.16 m, the magnetic field is

Fig. 12.3 Air core solenoid 
in the form of a toroid, 
Problem 12.8 

18 cm 

15 cm 



338 12 Magnetic Properties of Matter

B = 
μ0 N I  

l 
= 

μ0 N I  

2πr 
= 

μ0 N I  

2πr 
= 

(4π × 10−7 H/m)(250)(8.5 A) 
2π(0.16 m) 

= 2.7 × 10−3 T. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; mu0:float(4*%pi*1e-7); N:250; I:8.5; r:0.16; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(N) 250 
(I) 8.5 
(r) 0.16 
(%i6) B: mu0*N*I/(2*float(%pi)*r); 
(B) 0.0026562 

Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of μ0, N, I, and r. 
(%i6) Calculate B. 

(c) At r = 0.20 m, the magnetic field is zero. 

Problem 12.9 A current of 2.4 A flows in a magnetic metal core solenoid in the 
form of a toroid, as shown in Fig. 12.4. The number of wire turns is 500 and the 
radius of the toroid is 25 cm. The magnetic field of the solenoid is 1.9 T. Calculate: 

(a) relative permeability 
(b) susceptibility of the metal. 

Fig. 12.4 A magnetic 
material core toroid, 
Problem 12.9 

I = 2.4 A 

r = 25 cm 

N = 500 
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Solution 

(a) The magnetic field of a magnetic metal cored solenoid or toroid is, (Eqs. 12.4 
and 8.5), 

B = Km B0 = 
Kmμ0 N I  

l
= 

Kmμ0 N I  

2πr 
. 

Here, Km is the relative permeability of the magnetic metal, B0 is the magnetic 
field of air core solenoid or toroid, N and l are the number of turns of wire and 
length of the toroid, respectively, and μ0 is the permeability of free space. The 
relative permeability of the magnetic metal is calculated as follows: 

B = 
Kmμ0 N I  

2πr 

1.9 T  = 
Km(4π × 10−7 H/m)(500)(2.4 A) 

2π(0.25 m) 
Km = 1979. 

(b) Magnetic susceptibility χ m of the metal is, Eq. (12.9), 

χm = Km − 1 = 1979 − 1 = 1978. 

♦ wxMaxima codes: 

(%i7) fpprintprec:5; ratprint:false; B:1.9; mu0:float(4*%pi*1e-7); N:500; 
I:2.4; r:0.25; 
(fpprintprec) 5 
(ratprint) false 
(B) 1.9 
(mu0) 1.2566*10^-6 
(N) 500 
(I) 2.4 
(r) 0.25 
(%i9) solve(B=Km*mu0*N*I/(2*%pi*r), Km)$ float(%); 
(%o9) [Km=1979.2] 
(%i10) Km: 1979.2; 
(Km) 1979.2 
(%i11) Xm: Km-1; 
(Xm) 1978.2 

Comments on the codes: 

(%i7) Set floating point print precision to 5, internal rational number 
print to false, and assign values of B, μ0, N, I, and r. 

(%i9) Solve B = Km μ0 N I  
2πr for Km. 

(%i10), (%i11) Assign Km and calculate χ m.
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Problem 12.10 A solenoid with a silicon iron core has 60 turns of wire per cm. A 
current of 0.15 A flows in the solenoid. The relative permeability of silicon iron is 
5200. Calculate: 

(a) magnetic field of the solenoid without silicon iron core 
(b) magnetic field of the solenoid with silicon iron core 
(c) magnetization of silicon iron. 

Solution 

(a) The magnetic field of the solenoid without silicon iron core is, Eq. (8.5), 

B0 = μ0nI  = (4π × 10−7 H/m)

(
60 

0.010 m

)
(0.15 A) 

= 1.1 × 10−3 T. 

(b) The magnetic field of the solenoid with silicon iron core is, Eq. (12.4), 

B = Km B0 = Kmμ0nI  = (5200)(4π × 10−7 H/m)

(
60 

0.010 m

)
(0.15 A) 

= 5.9 T. 

(c) The magnetization M is calculated as follows (Eq. 12.7), 

B = μ0(H + M) 
= μ0 H + μ0 M 

= B0 + μ0 M, 

M = 
B − B0 

μ0 
= 

5.9 T − 1.1 × 10−3 T 

4π × 10−7 H/m 

= 4.7 × 106 A m−1 . 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; n:60/0.01; I:0.15; Km:5200; mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(n) 6000.0 
(I) 0.15 
(Km) 5200 
(mu0) 1.2566*10^-6 
(%i6) B0: mu0*n*I; 
(B0) 0.001131 
(%i7) B: Km*B0; 
(B) 5.8811 
(%i8) M: (B-B0)/mu0; 
(M) 4.6791*10^6
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Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values 
of n, I, Km, and μ0. 

(%i6), (%i7), (%i8) Calculate B0, B, and M. 

12.3 Summary 

• Materials are classified as paramagnetic, diamagnetic, or ferromagnetic. 
• Magnetic field of a material with relative permeability Km is 

B = Km B0, 

where B0 is the magnetic field without the material. Permeability of the material 
is 

μ = Kmμ0, 

where μ0 = 4π × 10−7 H m−1 is permeability of free space. 
• In a material medium, the relationship between magnetic induction B, magneti-

zation M, and magnetic field strength H is 

B = μ0(M + H). 

12.4 Exercises 

Exercise 12.1 Calculate magnetizing field H and magnetic flux density B at the 
center of a 20 turns per cm solenoid carrying a current of 0.15 A. 

(Answer: H = 3.0 × 102 A m−1, B = 3.8 × 10−4 T) 

Exercise 12.2 An iron core of magnetic permeability 6.0 × 10−3 H m−1 is inserted 
in a 20 turns per cm solenoid carrying a current of 0.15 A of Exercise 12.1. Calculate 
magnetizing field H, magnetic flux density B, and magnetization M in the iron core. 

(Answer: H = 3.0 × 102 A m−1, B = 1.8 T, M = 1.4 × 106 A m−1) 

Exercise 12.3 A 0.6 m long solenoid has 1800 turns of copper wire. An iron rod 
with a relative permeability of 500 is inserted into the solenoid and a current of 1.0 A 
flows in the wire. What are magnetizing field H, magnetic flux density B, magnetic 
dipole moment per unit volume M, and average magnetic dipole moment per atom 
ma? The number density of iron is 8.48 × 1028 atoms per m3. 

(Answer: H = 3.0 × 103 A m−1, B = 1.9 T, M = 1.5 × 106 A m−1, ma = 1.8 × 
10−23 A m2)
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Fig. 12.5 An iron core 
toroid, Exercise 12.4 

4.0 A 

12 cm 

900 turns 

Exercise 12.4 An iron ring of radius 12 cm is wound with 900 turns of copper wire, 
as shown in Fig. 12.5. The relative permeability of the iron core is 250 and a current 
of 4.0 A flows in the wire. What are the magnetizing field H and the magnetic flux 
density B in the iron core? 

(Answer: H = 4.8 × 103 A m−1, B = 1.5 T) 

Exercise 12.5 A piece of iron of length of 1.0 cm is sawed out from the iron ring of 
Exercise 12.4, such that there is an air gap of length 1.0 cm in the ring. What is the 
magnetic flux density in the air gap? 

(Answer: B = 0.35 T)



Chapter 13 
Faraday’s Law 

Abstract This chapter solves problems related to emf induced by changing magnetic 
flux. Faraday’s law states that the emf induced is equal to the negative time rate 
of change of the magnetic flux. Emf is induced in a moving conductor when the 
conductor cuts through the magnetic field lines. Emf is also induced in a rotating 
conducting loop when the loop cuts through the magnetic field lines. Solutions are 
obtained by analysis and computer calculation of wxMaxima. 

13.1 Basic Concepts and Formulae 

(1) Faraday’s law of induction states that the induced electromotive force (emf) E 
in a loop is proportional to the rate of change of the magnetic flux of the loop. 
This is written as 

E = −dΦm 

dt 
, (13.1) 

where Φm is the magnetic flux that can be calculated by 

Φm =
{

B · d A. (13.2) 

Here, B is the magnetic field and dA is the surface element vector. The surface 
element vector is normal to the surface element and its magnitude is the area of 
the surface element dA. The magnetic flux for a given area is equal to the area 
times the component of the magnetic field perpendicular to the area. 

If the loop is a coil of N turns, the induced emf is 

E = −N 
dΦm 

dt 
. (13.3)
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(2) When a conductor of length l moves with velocity v in a uniform magnetic field 
B, an emf is induced in the rod 

E = −Blv, (13.4) 

where B, v, and the rod are perpendicular to each other. 
(3) Lenz’s law states that the directions of induced current and emf in a conductor 

are opposite to the change that produced them. 

13.2 Problems and Solutions 

Problem 13.1 Figure 13.1 shows a conducting rod moving to the right at a speed 
of v = 4.0 m s−1 in a region of uniform magnetic field B = 0.50 T pointing into the 
plane of the paper. The length of the rod is l = 1.5 m. 

(a) Determine the equivalent non-electrostatic electric field Ene in the rod. 
(b) Calculate the electrostatic electric field Ee in the rod. 
(c) What is the motional emf in the rod? 
(d) Determine the potential difference between the rod’s ends. Which end has a 

higher electric potential? 

Solution 

(a) As the rod is moved to the right at a velocity of v, a charge q in the rod is acted 
by a magnetic force qv × B in the upward direction. This is a non-electrostatic 
force. Thus, the charge is in a non-electrostatic electric field of

Fig. 13.1 A conducting rod moving in a region of uniform magnetic field, Problem 13.1 
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Ene = 
force 

charge 
= 

qv × B 
q

= v × B = 4.0 i m s−1 × 0.50 j T = 2.0 k V m−1 . 

in the upward direction. 

• wxMaxima codes: 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and load “vect” package. 
(%i4) Assign vectors v and B. 
(%i6) Calculate non-electrostatic electric field, Ene. 

(b) The electrostatic electric field in the rod is, 

Ee = −2.0 k V m−1 , 

in the downward direction. As the rod moves, the Ene field causes the positive 
charges to be accumulated at the top end of the rod, while the electrons at the 
bottom end. The accumulation creates the electrostatic electric field Ee, until 
the resultant force on each charge is zero. Eventually, Ee = −  Ene . 

(c) The motional emf is, 

E =
{

Ene · ds  = vBl = (4.0 m  s−1 )(0.50 T)(1.5 m) = 3.0 V. 

(d) The potential difference between the ends of the rod is 3.0 V. The top end is of 
higher electric potential than the bottom because the positive charges accumulate 
there. 

Problem 13.2 Fig. 13.2 shows a conducting rod ab moving at speed v = 4.0 m s−1 

to the right while touching conductor cdef in a region of uniform magnetic field B 
= 0.50 T into the plane of the paper. The length of rod ab is l = 0.50 m.
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Fig. 13.2 A conducting rod moving in a region of uniform magnetic field. The rod touches a 
conductor while in motion, Problem 13.2 

(a) Determine the magnitude and direction of induced emf in the rod. 
(b) If the circuit resistance is R = 0.20 y and friction is negligible, calculate the 

force needed to sustain the motion of the rod. 
(c) Determine the rate of mechanical work done and compare it with the rate of 

electrical energy dissipation. 

Solution 

(a) The magnitude of induced emf in the rod is 

E = l Ene = lvB = (0.50 m)(4.0 m  s−1 )(0.50 T) = 1.0 V, 

and the direction is from b to a. Here, Ene = vB is the non-electrostatic electric 
field in the rod due to its motion in a magnetic field 

(b) When there is induced emf, the counter clockwise current in the circuit is, 

I = 
E 
R 

= 
1.0 V  

0.20 y
= 5.0 A. 

Current I flows in the loop bade. Due to current I flowing in the rod, there 
exists magnetic force of 

F = IlB = (5.0 A)(0.50 m)(0.50 T) = 1.25 N, 

to the left acting on the rod. To sustain the motion of the rod, the force of 1.25 
N to the right must be applied to the rod.
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(c) The rate of mechanical work done is 

Fv = (1.25 N)(4.0 m  s−1 ) = 5.0 W. 

The rate of electrical energy dissipation is 

I 2 R = (5.0 A)2 (0.20 y) = 5.0 W. 

Both rates are equal in value. 

• wxMaxima codes: 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of 
v, B, l, and R. 

(%i6), (%i7), (%i8), (%i9), 
(%i10) 

Calculate emf, I, F, F × v, and I2 × R. 

Problem 13.3 A coil of 100 turns and a cross-sectional area of 20 cm2 is rotated in 
and earth magnetic field of 6.0 × 10−5 T in 0.020 s. Initially, the plane of the coil 
is perpendicular to the earth’s magnetic field and finally, the plane is parallel to the 
field. What is the average induced emf in the coil?
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B B 

initial                                                           final 

Fig. 13.3 A coil in initial and final situations, Problem 13.3 

Solution 

Figure 13.3 shows the coil in the initial and final situations. The earth magnetic field 
is indicated as B. 

Induced emf is calculated by the rate of change of the magnetic flux through the 
coil. Initially, the magnetic flux through the coil is 

Φ init = BAN = (6.0 × 10−5 T)(20 × 10−4 m2 )(100) = 1.2 × 10−5 Wb, 

because the plane of the coil is perpendicular to the magnetic field. Finally, the flux 
through the coil is zero because the plane of the coil is parallel to the magnetic field 

Φfinal = 0. 

Using Faraday’s law, the average induced emf in the coil is, Eq. (13.1), 

E = −/Φm

/t 
= −  

(Φfinal − Φ init)

/t
= −  

(0 − 1.2 × 10−5 Wb) 
0.020 s 

= 6.0 × 10−4 V.
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• wxMaxima codes: 

Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of N, A, B, and /t. 
(%i6) Calculate Φ init . 
(%i7) Assign Φfinal. 
(%i8) Calculate emf. 

Problem 13.4 A coil of radius 0.10 m consists of 50 turns of wire. The resistance 
of the coil is 3.0 y. A Magnetic field perpendicular to the plane of the coil is created 
such that its magnitude varies from zero to 0.50 Wb m−2 in 0.20 s. 

(a) Calculate the average induced emf in the coil. 
(b) What is the induced current in the coil? 

Solution 

(a) Figure 13.4 shows the coil and the magnetic field.
Induced emf is given by Faraday’s law as, Eq. (13.3), 

E = −N 
dΦm 

dt 
. 

For this problem, 

E = −N 
dΦm 

dt 
= −N A  

dB 

dt 
= −N A

(
Bfinal − Binit

/t

0

= 
−50π(0.10 m)2(0.50 Wb/m2 − 0) 

0.20 s 
= −3.9 V.
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Fig. 13.4 A coil in a varying  
magnetic field, Problem 13.4 B varies 

with time 

(b) The induced current in the coil is 

I = 
E 
R 

= 
−3.9 V  

3.0 y
= −1.3 A. 

• wxMaxima codes: 

Comments on the codes: 

(%i8) Set floating point print precision to 5, and assign values of r, A, N, 
R, Binit , Bfinal, and /t.
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(%i9), (%i10) Calculate emf and I. 

Problem 13.5 A coil of cross-sectional area A is placed in a region of magnetic field 
that is perpendicular to the plane of the coil. The magnetic field varies with time 
according to, 

B = B0e−t/τ , 

where B0 and τ are constants and t is time. Determine the induced emf in the coil as 
a function of time. 

Solution 

The magnetic flux is 

Φm = AB = AB0e−t/τ . 

Using Faraday’s law, the induced emf in the coil is, Eq. (13.1), 

E = −dΦm 

dt 
= −d(AB0e−t/τ ) 

dt
= 

AB0 

τ 
e−t/τ . 

• wxMaxima codes: 

Comments on the codes: 

(%i1) Define Φm. 
(%i2) Calculate emf. 

Problem 13.6 A metal rod of length l = 0.30 m is pivoted at one of its ends and 
rotated at angular speed ω = 3.0 rad s−1, as illustrated in Fig. 13.5a. The rod is in 
the region of uniform magnetic field B = 1.0 × 10−3 T out of the plane of the paper. 
Calculate the potential difference between the ends of the rod. Which end has higher 
electric potential?

Solution 

Using Faraday’s law, induced emf in the metal rod is, Eq. (13.1),
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Fig. 13.5 a A metal rod rotating in a region of uniform magnetic field, b the force on a moving 
positive charge, Problem 13.6

E = −dΦm 

dt 
= −d(AB) 

dt 
= −B 

d A  

dt 
, 

where dA/dt is the rate of area swept by the rotating rod. Let the time interval be dt 
and the rod rotates by dθ. The area swept by the rod in time interval dt is, 

d A  = 
1 

2 
(l)(l dθ)  = 

1 

2 
l2 dθ,  

because the area swept is a sector or a triangle with a base length of l and height l dθ. 
This means that 

d A  

dt 
= 

1 

2 
l2 

dθ 
dt 

= 
1 

2 
l2 ω. 

Another way to get dA/dt is as follows. The number of revolutions of the rod in 
a second is ω/(2π ) and the area swept in one revolution is π l2. Therefore, the area 
swept in a second is 

ω 
2π 

(πl2 ) = 
1 

2 
l2 ω. 

The induced emf in the metal rod is 

E = −dΦm 

dt 
= −B 

d A  

dt 
= −1 

2 
Bl2 ω. 

The potential difference between the rod ends is
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|E | = 
1 

2 
Bl2 ω = 

1 

2 
(1.0 × 10−3 T)(0.30 m)2 (3.0 rad/s) 

= 1.3 × 10−4 V. 

The rotating end has a higher electric potential than the pivoted end. The rotation 
causes the positive charges to be accumulated at the rotating end and electrons to 
the pivoted end. You can verify this from F = qv × B. For a positive charge, v is 
north-westerly and B is out of the plane of the paper, hence the force on the positive 
charge is north-easterly, Fig. 13.5b. 

• wxMaxima codes: 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of l, ω, and B. 
(%i5) Calculate emf. 

Problem 13.7 A long rectangular conducting loop is pulled from rest by a constant 
force F from a region of uniform magnetic field B, as shown in Fig. 13.6. The width 
of the loop is l, mass  m, and resistance R.

(a) Calculate the terminal velocity of the loop. 
(b) Determine an equation of the velocity of the loop as a function of time. 
(c) Let F = 0.001 N, B = 1.0 T, l = 0.20 m, m = 0.03 kg, R = 0.50 y. Calculate 

the terminal velocity of the loop and draw velocity against the time curve. 

Solution 

(a) When the loop is pulled to the right, current of magnitude 

I = 
E 
R 

= 
dΦm 

dt 
/R = 

d(xl B) 
dt 

/R = 
dx 

dt 
l B/R = 

vlB 

R 
, (1) 

is induced on the left side of the loop. The velocity of the loop is v = dx/dt and 
the induced emf on the left side of the loop is E = vlB. The direction of the 
current is bottom-up on the left side of the loop or clockwise in the loop. You 
can check this by F = qv × B. For a positive charge on the left side of the loop,
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Fig. 13.6 A rectangular conducting loop is pulled out of a magnetic field region, Problem 13.7

v is to the right and B is into the plane of the paper. Therefore, the force on the 
positive charge is upward. Due to this electrical current, the left side of the loop 
is acted by magnetic force of magnitude 

Fm = IlB = 
vlB 

R 
l B  = 

vl2B2 

R 
, (2) 

to the left. Here, the current in Eq. (1) is inserted in Eq. (2) to get the magnetic 
force. 

Terminal velocity is attained when the magnitudes of F and Fm are the same. 
The terminal velocity of the loop vT is calculated as follows 

F = Fm = 
vT l2B2 

R 
, 

vT = 
FR 

l2B2 
. (3) 

(b) Net force acting on the loop is 

F − Fm, 

to the right. There is no electrical or magnetic force acting on the top and bottom 
sides of the loop. Using the Newton’s second law, we write 

F − Fm = ma, 

F − 
l2B2 

R 
v = m 

dv 
dt 

.
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To get velocity v as a function of time t, we do the integration as follows 

dv 
dt 

= 
F 

m 
− 

l2B2 

m R  
v, 

v{

0 

dv 
F 
m − l2B2 

m R  v 
= 

t{

0 

dt, 

− 
m R  

l2B2

|
ln

(
F 

m 
− 

l2B2 

m R  
v

0|v 

0 

= t, 

− 
m R  

l2B2

|
ln

(
F 

m 
− 

l2B2 

m R  
v

0
− ln

(
F 

m

0|
= t, 

− 
m R  

l2B2 
ln

(
1 − 

l2B2 

FR 
v

0
= t, 

1 − 
l2B2 

FR 
v = exp

(
− l2B2 

m R  
t

0
, 

v = 
FR 

l2B2

|
1 − exp

(
− l2B2 

m R  
t

0|
(4) 

= vT

|
1 − exp

(
− l2B2 

m R  
t

0|
. (5) 

Thus, the velocity of the loop increases with time and attains terminal velocity 
vT = FR 

l2B2 . 
(c) With F = 0.001 N, B = 1.0 T, l = 0.20 m, m = 0.03 kg, R = 0.50y, the velocity 

against time curve is 

v = 
FR 

l2B2

|
1 − exp

(
− l2B2 

m R  
t

0|

= 
(0.001 N)(0.50 y) 
(0.20 m)2(1.0 T)2

|
1 − exp

(
− (0.20 m)2(1.0 T)2 

(0.03 kg)(0.50 y) 
t

0|

= 0.0125 m/s · [1 − exp (−2.6667t)]. 

where the terminal velocity is 

vT = 
FR 

l2B2 
= 

(0.001 N)(0.50 y) 
(0.20 m)2(1.0 T)2 

= 0.0125 m s−1 .
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• Curve of v against t is drawn by wxMaxima: 

Comments on the codes: 

(%i6) Set floating point print precision to 5, and assign values of F, B, l, m, and R. 
(%i7) Define v as in Eq. (4). 
(%i8) Plot v against t for 0 ≤ t ≤ 5 s.  

Alternative solution: Parts (b) and (c) can be solved by predefined functions 
ode2 and ic1 of wxMaxima. See Solving first order ordinary differential equa-
tion in Appendix A. The first-order ordinary differential equation to be solved is
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dv 
dt = F 

m − l2B2 

m R  v, where v is the dependent variable and t independent variable, while 
the initial condition is t = 0 s,  v = 0 m/s.  

• wxMaxima codes:
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Fig. 13.7 A square conducting loop is pulled into a region of uniform magnetic field, Problem 13.8 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false, 

(%i3) Solve the ordinary differential equation dv 
dt = F 

m − l2B2 

m R  v for a general 
solution, the dependent variable is v and the independent variable is t. 

(%i5) Set the initial condition and get a particular solution. 

(%o5) The solution is v = FR 
B2l2 − 

F R  exp
(
− B2 l2 t 

Rm

)
B2l2 = FR 

l2B2

|
1 − exp

(
− l2B2 

m R  t
)|

. 

(%i7) Substitute values of F, B, l, m, and R into the solution. 
(%i9) Plot v against t for 0 ≤ t ≤ 5 s.  

Problem 13.8 Figure 13.7 shows a square conducting loop of side l, resistance R, 
and a uniform magnetic field region B of width 2l. The direction of the magnetic 
field is in the plane of the paper. The loop is pulled with constant velocity v by an 
external force F to the right as shown. Sketch 

(a) a curve of external force F against x for 0 ≤ x ≤ 5l. 
(b) a curve of current i in the loop as a function of x for 0 ≤ x ≤ 5l. 

Solution 

(a) When the loop is outside the region of the uniform magnetic field, the external 
force is zero. When the right side of the loop enters the magnetic field region, 
the external force is, Eqs. (10.5) and (13.4), 

F = IlB = 
E 
R 

l B  = 
vlB 

R 
l B  = 

vl2B2 

R 
. 

When the whole loop is in the magnetic field region, the current in the loop is 
zero and the external force is zero as well. When the right side of the loop exits
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l         2l        3l        4l        5l            x 

F 

R 
lv B22 

0 

Fig. 13.8 Curve of F against x, Problem 13.8 

the region of magnetic field and the left side is still in the region, the external 
force is, 

F = 
vl2B2 

R 
. 

When the whole loop is outside the region of magnetic field, the external 
force is zero. The curve of F against x is shown in Fig. 13.8. 

(b) When the loop is outside the region of the magnetic field, the current is zero. 
When the right side of the loop enters the magnetic field region, the current in 
the counter clockwise directions is 

i = 
E 
R 

= 
vlB 

R 
, counter-clockwise, positive. 

When the whole loop is in the magnetic field region, the current is zero. When 
the right side of the loop exits the region of the magnetic field while the left side 
is still in the region, the current flowing in the loop in clockwise direction is 

i = 
E 
R 

= 
vlB 

R 
, clockwise, negative. 

When the whole loop is outside the region of the magnetic field, the current 
is zero. The curve of current i against x is shown in Fig. 13.9.

Problem 13.9 A rectangular metal coil of size 10 × 15 cm has 20 turns. The coil is 
rotated about the x-axis in a uniform magnetic field of 0.05 T. The maximum induced 
emf in the coil is 20 mV. What is the angular speed of rotation? 

Solution 

Figure 13.10 shows the coil rotating in uniform magnetic field B at angular speed ω 
about the x-axis.

The magnetic flux through the coil at this instance is
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l         2l      3l        4l          5l            x 

i 

R 
vlB 

0 

R 
vlB 

Fig. 13.9 Curve of i against x, Problem 13.8

Fig. 13.10 A rectangular 
coil rotating in a region of 
uniform magnetic field, 
Problem 13.9 

x 

B 

z y 
A 

b 

a 

Fig. 13.11 A rectangular 
wire loop rotating in a region 
of uniform magnetic field, 
Problem 13.10

x 

Bz y 

A 
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Φm = N B · A = NBab cos θ = NBab cos ωt, 

where a, b, and N are the width, length, and number of turns of the coil, respectively. 
The rate of change of magnetic flux is 

dΦm 

dt 
= −ωabNB sin ωt. 

Using Faraday’s law, the induced emf in the coil is, Eq. (13.1), 

E = −dΦm 

dt 
= ωabNB sin ωt. 

The maximum emf is 

Emax = ωabNB. 

The angular speed of rotation of the coil is 

ω = 
Emax 

abNB 
= 20 × 10−3 V 

(0.10 m × 0.15 m)(20)(0.050 T) 
= 1.3 rad  s−1 , 

or, 

f = 
ω 
2π 

= 0.21 revolution per second. 

• wxMaxima codes:
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Comments on the codes: 

(%i6) Set floating point print precision to 5, and assign values of E , a, 
b, N, and B. 

(%i7) and (%i8) Calculate ω and f . 

Problem 13.10 

(a) A rectangular wire loop of area A and resistance R rotates at constant angular 
speed ω about the y-axis, as illustrated in Fig. 13.11. The loop is in a uniform 
magnetic field B in the x direction. Determine expressions for 

(i) magnetic flux Φm through the loop as a function of time. At time t = 0, 
the position of the loop is as shown in the figure. 

(ii) rate of change of the magnetic flux dΦm/dt. 
(iii) induced emf in the loop. 
(iv) torque τ such that the loop rotates at a constant angular speed. 
(v) induced emf in the loop if the angular speed is twice a much. 

(b) If A = 400 cm2, R = 2.0y, ω = 10 rad s−1 and B = 0.50 T, determine maximum: 

(i) flux through the loop. 
(ii) induced emf 
(iii) torque. 

Show that in one revolution of the loop, the work done by the torque is equal to 
the electrical energy dissipated by the loop. 

(c) What is the maximum induced emf if the angular speed of the loop is still 
10 rad s−1 but the loop is rotated about 

(i) z axis? 
(ii) x axis? 

(d) Plot all quantities in part (a) using wxMaxima. 

Solution 

(a) (i) Magnetic flux is defined as 

Φm = B · A = B A  cos θ,  

where θ is the angle between vectors A and B. The magnetic flux is 

Φm = BA cos ωt, 

because θ = ωt. 

(ii) The rate of change of the magnetic flux is obtained by differentiating the 
flux with respect to time
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dΦm 

dt 
= 

d 

dt 
B A cos ωt = −ωB A  sin ωt. 

(iii) The induced emf in the loop is obtained by Faraday’s law 

E = −dΦm 

dt 
= ωB A  sin ωt. 

(iv) The electric current flowing in the loop is 

I = 
E 
R 

= 
ωBA 

R 
sin ωt. 

The torque needed such that the loop rotates with a constant angular 
speed is 

τ = |I A × B| = I AB  sin ωt = (AB sin ωt) 
ωAB 

R 
sin ωt 

= 
ωA2B2 

R 
sin2 ωt. 

(v) If the angular speed of the loop is ω' = 2ω, the induced emf becomes, 

E ' = ω'BA sin ω't = 2ωBA sin 2ωt. 

• wxMaxima codes:
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Comments on the codes: 

(%i1)–(%i3) Assign Φm, dΦm 
dt , E . 

(%i4)–(%i7) Assign I, τ , ω', ε'

(b) (i) The maximum magnetic flux across the loop is 

Φm,max = B A  = (0.50 T)(400 × 10−4 m2 ) = 2.0 × 10−2 Wb. 

(ii) The maximum induced emf is 

Emax = ωB A  = (10 s−1 )(0.50 T)(400 × 10−4 m2 ) = 2.0 × 10−1 V. 

(iii) The maximum torque is 

τmax = 
ωB2 A2 

R 
= 

(10 s−1)(0.50 T)2(400 × 10−4 m2)2 

2.0 y

= 2.0 × 10−3 N m. 

Work done by the torque in a revolution is 

W = 
2π{

0 

τ dθ = 
2π{

0 

ωA2B2 

R 
sin2 θ dθ = 

πωA2B2 

R 

= 
π(10 s−1)(400 × 10−4 m2)2(0.50 T)2 

2.0 y
= 6.3 × 10−3 J. 

The electrical energy dissipated by the loop in a revolution is 

We = 
2π/ω{

0 

RI 2 dt = 
2π/ω{

0 

ω2 A2B2 

R 
sin2 ωt dt = 

πωA2B2 

R 

= 
π(10 s−1)(400 × 10−4 m2)2(0.50 T)2 

2.0 y
= 6.3 × 10−3 J. 

The numerical values of work and energy are the same.
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• wxMaxima codes: 

Comments on the codes: 

(%i6) Set floating point print precision to 5, internal rational number 
print to false, and assign values of A, R, ω, and B. 

(%i7)–(%i11) Assign Φm, dΦm/dt, E, I, and τ . 
(%i12)–(%i14) Calculate Φm,max, Emax , and τ max. 
(%i15) and (%i16) Calculate W = { 2π 

0 
ω A2B2 

R sin2 θ dθ and We ={ 2π/ω 
0 

ω2 A2B2 

R sin2 ωt dt .
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(c) (i) If the loop is rotated about the z-axis, Emax is 2.0 × 10−1 V still because the 
rate of magnetic flux change is still the same. 

(ii) If the loop is rotated about the x axis, there is no flux change, thus, the emf 
is zero. 

(d) We set the values of A, R, ω, and B as in part (b), i.e. A = 400 cm2, R = 2.0 y, 
ω = 10 rad s−1, B = 0.50 T, and plot the curves by wxMaxima. 

• wxMaxima codes: 

(%i5) fpprintprec:5; A:400e-4; R:2; omega:10; B:0.5; 
(fpprintprec) 5 
(A) 0.04 
(R) 2 
(omega) 10 
(B) 0.5 
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Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of A, R, ω, 
and B. 

(%i6)–(%i10) Assign Φm, dΦm/dt, E , I, and τ . 
(%i11) Assign ω’. 
(%i12) Calculate E '. 
(%i13) Plot Φm against t for 0 ≤ t ≤ 2π /ω. 
(%i14) Plot dΦm/dt against t for 0 ≤ t ≤ 2π /ω. 
(%i15) Plot E against t for 0 ≤ t ≤ 2π /ω. 
(%i16) Plot τ against t for 0 ≤ t ≤ 2π /ω. 
(%i17) Plot E ' against t for 0 ≤ t ≤ 2π /ω. 

Problem 13.11 A deformable conducting loop of 20 cm radius is in a uniform 
magnetic field of 2.0 T and connected to a resistor of 1.2 y, as shown in Fig. 13.12.
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Fig. 13.12 A deformable 
conducting loop in a uniform 
magnetic field, Problem 
13.11 

R 

B 

The direction of the magnetic field is out of the page. The loop is pulled at two points 
as shown so that its area becomes zero in 0.20 s. 

(a) Calculate the average induced emf. 
(b) What is the electrical current through the resistor? Determine the direction of 

the current. 

Solution 

(a) When the loop is pulled and deformed, the magnetic flux through the loop 
changes, and the emf is induced. Initial magnetic flux is 

Φ init = B A  = Bπr2 = (2.0 T)π(0.20 m2 ) = 2.5 × 10−1 Wb. 

The final magnetic flux is zero because the area is zero 

Φfinal = 0. 

By Faraday’s law, average induced emf is, Eq. (13.1), 

E = −/Φm

/t 
= −  

(Φfinal − Φ init)

/t
= −  

(0 − 2.5 × 10−1 Wb) 
0.20 s

= 1.3 V. 

(b) The induced current through the resistor R is 

I = 
E 
R 

= 
1.3 V  

1.2 y
= 1.0 A.
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The direction of the current is determined as follows. When the loop is pulled, 
the magnetic flux through it decreases because the area decreases. By Lenz’s 
law, induced current is such that it increases the flux. To increase the flux, the 
direction of current is counter clockwise. Thus, the current flows through the 
resistor from bottom to top. 

• wxMaxima codes: 

Comments on the codes: 

(%i5) Set floating point print precision to 5, and assign values of r, B, R, 
and /t. 

(%i7) Assign values of Φ init and Φfinal. 
(%i8) and (%i9) Calculate emf and I. 

Problem 13.12 Figure 13.13 shows the cross-section of a long and straight solenoid 
of radius R. The magnetic field of the solenoid is increasing at a rate of dB/dt.

(a) What is the rate of change of magnetic flux through the circle of radius r1 in 
the solenoid? What is the induced electric field at r1? Determine the direction 
of the induced electric field. 

(b) What is the induced electric field at r2? 
(c) Sketch a curve of the induced electric field against distance from the axis of the 

solenoid r for 0 ≤ r ≤ 2R. 
(d) Determine induced emf in circular paths of radii R/2, R, and 2R. 

Solution 

(a) For the circle of radius r1, the rate of change of magnetic flux is 

dΦm 

dt 
= A 

dB 

dt 
= πr2 1 

dB 

dt 
.
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Fig. 13.13 Cross section of 
a solenoid, Problem 13.12

Induced electric field Ene (induced non-electrostatic electric field) at r1 is 
obtained by line integral of the electric field along the circular path of radius r1, 
as illustrated in Fig. 13.14, and

{
Ene · ds = Ene · 2πr1.

The integration is equal in magnitude to the induced emf 

E = 
dΦm 

dt 
= πr2 1 

dB 

dt 
. 

This means that 

Ene · 2πr1 = πr2 1 
dB 

dt 
, 

The induced electric field is 

Ene = 
πr2 1 

dB 
dt 

2πr1 
= 

r1 
2 

dB 

dt 
. 

The direction of the electric field is shown in Fig. 13.14. 
(b) For circle of radius r2, the induced electric field at distance r2 is calculated the 

same way. The rate of change of magnetic flux in a circular path of radius r2 is
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Fig. 13.14 Determining 
induced electric fields in and 
out of the solenoid, Problem 
13.12

dΦm 

dt 
= A 

dB 

dt 
= π R2 dB 

dt 
. 

The line integral of the electric field along the circular path of radius r2 is

{
Ene · ds = Ene · 2πr2. 

This means that 

E =
{

Ene · ds = 
dΦm 

dt 
, 

giving 

Ene · 2πr2 = π R2 dB 

dt 
, 

and 

Ene = 
R2 

2r2 

dB 

dt 
. 

(c) From the results of (a) and (b), the curve of induced electric field Ene against 
distance r from the solenoid axis is shown in Fig. 13.15.

(d) Induced emf is calculated using
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Ene 

r 

dt 
R Bd 
2 

dt 
r Bd 
2 

dt 
dB 

r 
R 
2 

2 

R 

Fig. 13.15 Curve of the induced electric field against distance from the center of the solenoid, 
Problem 13.12

E =
{

Ene · ds = En · 2πr , 

where Ene and r follow the chosen path. For r = R/2, 

E =
(

r 

2 

dB 

dt

0
(2πr) = 

R/2 

2 

dB 

dt 
· 2π R/2 = 

π R2 

4 

dB 

dt 
. 

For r = R, 

E =
(

r 

2 

dB 

dt

0
(2πr ) = 

R 

2 

dB 

dt 
· 2π R = π R2 dB 

dt 
, 

or can also be calculated as follows 

E =
(

R2 

2r 

dB 

dt

0
(2πr ) = 

R2 

2R 

dB 

dt 
· 2π R = π R2 dB 

dt 
. 

For r = 2R, 

E =
(

R2 

2r 

dB 

dt

0
(2πr ) = 

R2 

2(2R) 
dB 

dt 
· 2π(2R) = π R2 dB 

dt 
. 

Problem 13.13 A long solenoid with a cross-section of 6.0 cm2 and 10 turns of wire 
per cm, carries a current of 0.25 A. Ten turns of insulated wire is wound around the 
solenoid. What is the induced emf in the insulated wire if the current of the solenoid 
drops to zero in 0.05 s?
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Solution 

The initial magnetic field of the solenoid is 

Binit = μ0nI  = (4π × 10−7 Wb A−1 m−1 )

(
10 

0.01 m

0
(0.25 A) 

= 3.1 × 10−4 T. 

After 0.05 s, the current and the magnetic field were zero. The induced emf in the 
insulated wire is 

E = −/Φm

/t 
= −NA

/B

/t 
= −NA 

(Bfinal − Binit)

/t 

= −10(6.0 × 10−4 m2 ) 
(0 − 3.1 × 10−4 T) 

0.05 s
= 3.8 × 10−5 V. 

• wxMaxima codes: 

Comments on the codes: 

(%i7) Set floating point print precision to 5, and assign values of μ0, n, 
I, /t, N, and A. 

(%i8) and (%i9) Calculate Binitand emf. 

13.3 Summary 

• Faraday’s law states that the induced electromotive force (emf) E in a loop  is  
proportional to the rate of change of the magnetic flux of the loop 

E = −dΦm 

dt 
.
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Fig. 13.16 A conductor 
moving in a region of 
uniform magnetic field, 
Exercise 13.3 

• Motional emf E is induced in a conductor when the conductor of length l moves 
with velocity v in a uniform magnetic field B 

E = −Blv. 

13.4 Exercises 

Exercise 13.1 The magnetic field of a region is B = 0.0040 i− 0.0055 j+ 0.0075 k T. 
A loop of area 0.024 m2 lies flat on the xy plane. What is the magnetic flux that passes 
through the loop? 

(Answer: 1.8 × 10−4 Wb) 

Exercise 13.2 A coil with a radius of 1.0 cm has 50 loops of wire on it. It is placed in 
a magnetic field B = 0.30 T such that the magnetic flux through the coil is maximum. 
The coil is then rotated so that the flux is zero in 0.020 s. Calculate the average emf 
induced between the terminals of the coil. 

(Answer: 0.24 V) 

Exercise 13.3 A conductor of length 0.20 m is moving at a velocity of 12 m s−1 

perpendicular to a magnetic field of 3.0 × 10−3 T, as shown in Fig. 13.16. The  
magnetic field is out of the plane of the paper. Determine the induced emf and its 
direction. 

(Answer: 7.2 × 10−3 V, from top to bottom of the conductor)
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I 

v 

r1 

r2 

A 

B 

Fig. 13.17 A conductor moving parallel to a current-carrying wire, Exercise 13.4 

Fig. 13.18 A conductor rotating in a region of uniform magnetic field, Exercise 13.5 

Exercise 13.4 Conductor AB moves with speed v near a wire carrying current I, as  
illustrated in Fig. 13.17. Motional emf is induced in the conductor. Show that the 
potential difference between points A and B is 

VA − VB = 
μ0 I v 
2π 

ln

(
r2 
r1

0
.
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Exercise 13.5 A conductor of length 0.80 m is pivoted at one of its ends and rotated 
at 5.0 revolutions per second, as shown in Fig. 13.18. The conductor is in the region 
of the uniform magnetic field of 0.30 T out of the plane of the paper. Calculate 
the potential difference between the ends of the rod. Which end has higher electric 
potential? 

(Answer: 3.0 V, the pivoted end)



Chapter 14 
Inductance 

Abstract This chapter solves problems on electric inductance—a measure of resis-
tance of a conducting coil to change in current or magnetic flux linkages per unit 
current of the coil. Problems on self and mutual inductance, energy in inductor, and 
direct current RL circuit are solved. Solutions by analysis and computer calculation 
are presented. 

14.1 Basic Concepts and Formulae 

(1) When electric current in a coil changes with time, emf is induced in the coil and 
is given by 

E = −L 
d I  

dt 
, (14.1) 

where L is inductance of the coil. Inductance is a measure of resistance of a 
device to change in current. SI unit for inductance is henry (H). 

1 H  = 1 V s A−1 . (14.2) 

(2) Inductance of a coil is 

L = 
N0m 

I 
, (14.3) 

where Φm is the magnetic flux through the coil, N is the number of turns, and I 
is the current in the coil. This means that inductance is magnetic flux linkages 
per unit current. 

For an air core solenoid, the self-inductance is 

L = 
μ0N 2 A 

l 
, (14.4)
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where N is the number of turns, A is the cross-sectional area, l is the length of 
the solenoid, and μ0 = 4π × 10−7 H m−1 is the free space permeability. 

For a solenoid with core of material with permeability μ, the self-inductance 
is 

L = 
μN 2 A 

l
= 

Kmμ0N 2 A 

l 
, (14.5) 

where Km = μ/μ0 is the relative permeability of the core material. 
(3) Direct current RL circuit: For resistance R and inductance L connected in series 

to a battery of emf E , the current of the circuit increases with time as 

I (t) = 
E 
R 

(1 − e−t/τ ), (14.6) 

where τ = L/R is the time constant of the RL circuit. If the battery is taken out 
and the circuit is completed, the current will decrease as 

I (t) = 
E 
R 

e−t/τ . (14.7) 

(4) The energy stored in the magnetic field of an inductor carrying current I is 

Um = 
1 

2 
L I 2 . (14.8) 

(5) The energy density (that is, the energy per unit volume) at a point with magnetic 
field B is 

um = 
B2 

2μ0 
. (14.9) 

(6) When two coils are near to each other, changing current in the first coil will 
induce emf in the second coil. The emf induced in the second coil is 

E2 = −M 
d I1 
dt 

, (14.10) 

where dI1/dt is the rate of change of current in the first coil and M is the mutual 
inductance. 

(7) When a charged capacitor is connected to an inductor and the circuit is 
completed, the charge of the capacitor and the current in the circuit oscillate 
with time as follows: 

Q = Qm cos(ωt + φ), (14.11)
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I = 
d Q  

dt 
= −ω Qm sin(ωt + φ), (14.12) 

where Qm is the maximum charge of the capacitor, φ is phase constant, and 

ω = 1 √
LC 

, (14.13) 

is the frequency of oscillation. These equations are obtained by solving, 

L 
d I  

dt 
+ 

Q 

C 
= 0, (14.14) 

or, 

L 
d2Q 

dt2 
+ 

Q 

C 
= 0. (14.15) 

The energy in an LC circuit is mutually exchanged from the capacitor to the 
inductor and vice versa, but the total energy is constant and it is 

U = UC + UL = 
1 

2 

Q2 

C 
+ 

1 

2 
L I 2 

= 
1 

2 

Q2 
m 

C 
cos2 (ωt + φ) + 

1 

2 
L I 2 m sin

2 (ωt + φ) 

= 
1 

2 

Q2 
m 

C 

= 
1 

2 
L I 2 m, (14.16) 

where UC and UL are energies in the capacitor and the inductor, respectively, 
and Im and Qm are the maximum current in the circuit and maximum charge in 
the capacitor, respectively. 

When the charge in the capacitor is Qm, the current is zero momentarily, and 

the total energy is 1 2 
Q2 

m 
C . All the energy is in the capacitor. When the charge in 

the capacitor is zero, the current is a maximum Im, and the total energy is 1 2 L I 2 m, 
All the energy is in the inductor. 

(8) For an RLC circuit, charge in the capacitor and current in the circuit decrease 
with time similar to a damped harmonic motion.
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14.2 Problems and Solutions 

Problem 14.1 A solenoid has cross-sectional area of A, number of turns N, and 
length l. 

(a) Calculate the self-inductance of the solenoid 
(b) Determine the self-inductance if the core of the solenoid is filled with a material 

of permeability μ. 

Solution 

(a) The relation between induced emf E and the rate of change of current dI/dt is, 
Eq. (14.1), 

E = −L 
d I  

dt 
, 

where L is inductance. By Faraday’s law, the induced emf is the rate of magnetic 
flux change, 

E = −N 
d0m 

dt 
. 

So we write 

L = N
|
|
|
|

d0m 

d I

|
|
|
|
. 

That is, inductance is change of magnetic flux per unit current. 
For a solenoid, let the current changes from zero to I and magnetic flux from 

zero to Φm. Then, the self-inductance is 

L = N
0m 

I 
= 

N B A  

I 
= 

N (μ0nI  )A 

I
= 

N μ0 I A  

I

(
N 

l

0

= 
μ0N 2 A 

l 
. 

(b) If the core of the solenoid is a material with permeability μ, the self-inductance 
is 

L = 
μN 2 A 

l 
. 

Problem 14.2 A 30 cm long solenoid is built by winding 2000 turns of insulated 
wire to an iron rod of cross-sectional area 1.5 cm2.

(a) The relative permeability of iron is 600. Calculate the self-inductance of the 
solenoid.
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l = 30 cm, N = 2000 turns 

A = 1.5 cm2 

Km = 600 

Fig. 14.1 An iron core solenoid, Problem 14.2 

(b) If an electric current through the solenoid decreases from 0.60 A to 0.10 A in 
0.03 s, what is the emf induced in the solenoid? 

Solution 

(a) Figure 14.1 shows the iron core solenoid. 

Self-inductance of a solenoid is, Eq. (14.4), 

L = 
μN 2 A 

l 
= 

Kmμ0N 2 A 

l 
, 

where N, A, and l are number of turns, cross-sectional area, and length of the 
solenoid, while μ and Km are permeability and relative permeability of iron, 
respectively. The self-inductance of the iron core solenoid is 

L = 
600(4π × 10−7 H/m)(2000)2(1.5 × 10−4 m2) 

0.30 m
= 1.5 H. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; l:0.3; N:2000; A:1.5e-4; Km:600; mu0:float(%pi*4e-7); 
(fpprintprec) 5 
(l) 0.3 
(N) 2000 
(A) 1.5*10^-4 
(Km) 600 
(mu0) 1.2566*10^-6 
(%i7) L: Km*mu0*N^2*A/l; 
(L) 1.508 
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Comment on the codes: 

(%i6) Set floating point print precision to 5, assign values of l, N, A, Km, and μ0. 
(%i7) Calculate self-inductance L. 

(b) Average emf induced in the solenoid is, Eq. (14.1), 

E = −L 
d I  

dt 
= −(1.5 H)

(
0.10 A − 0.60 A 

0.03 s

0

= 25 V. 

♦ wxMaxima code: 

(%i2) fpprintprec:5; emf:-1.5*(0.1-0.6)/0.03; 
(fpprintprec) 5 
(emf) 25.0 

Comment on the code: 

(%i2) Set floating point print precision to 5 and calculate emf. 

Problem 14.3 A coil with resistance of 15 y and inductance of 0.60 H is connected 
to a 120 V DC voltage source and a switch. Determine the rate of increase of the 
current in the coil, 

(a) immediately after the switch is closed. 
(b) when the current is 90% of its maximum. 

Solution 

(a) Figure 14.2 shows the coil, the DC voltage source, and the circuit. 
The loop equation of the circuit is 

E − L 
di 

dt 
− i R  = 0,

Fig. 14.2 A coil (with 
inductance and resistance) 
connected to a voltage source 
and a switch, Problem 14.3 

L = 0.60 H                      R = 15 i 

E = 120 V 

coil 

switch 
•      • 
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where E is the emf of the voltage source, L di/dt and iR are potential drops 
across L and R, respectively. Both L and R are physical properties of the coil. 
Thus, we write 

E = L 
di 

dt 
+ i R. 

Immediately after the switch is closed, i is zero. The equation becomes 

E = L 
di 

dt 
. 

Therefore, the rate of change of electric current in the coil at the instance is 

di 

dt 
= 

E 
L 

= 
120 V 

0.60 H 
= 200 A s−1 . 

(b) Maximum current flows in the circuit some time after the switch is closed. At 
the instance, current does not change, that is, di/dt = 0. The equation gives the 
maximum current as 

imax = 
E 
R 

= 
120 V 

15 y
= 8.0 A. 

The rate of increase of current when the current is 90% of its maximum is 
calculated as follows: 

E = L 
di 

dt 
+ i R  

120 V = 0.6 H  × 
di 

dt 
+ (0.9 × 8.0 A)(15 y) 

di 

dt 
= 20 A s−1 . 

♦ wxMaxima codes: 

(%i2) ratprint:false; solve(120=0.6*di_dt + 0.9*8*15, di_dt); 
(ratprint) false 
(%o2) [di_dt=20] 

Comments on the codes: 

(%i2) Set internal rational number print to false and solve 120 = 0.6 × di/dt + (0.9 
× 8 × 15) for di/dt.
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l = 0.50 m 

N = 100 turns 

A = 10 cm2 

Fig. 14.3 An air core toroid, Problem 14.4 

Problem 14.4 An air core toroid has 100 turns of wire, cross-sectional area of 10 cm2, 
and average length of 0.50 m. 

(a) Calculate the self-inductance of the toroid. 
(b) If current in the toroid increases from zero to 1.0 A in 0.10 s, what is the 

self-induced emf? 

Solution 

(a) Figure 14.3 shows the air core toroid. 
The self-inductance of the toroid is, Eq. (14.4), 

L = 
μ0N 2 A 

l
= 

(4π × 10−7 H m−1)(100)2(10 × 10−4 m2) 
0.50 m 

= 2.5 × 10−5 H. 

(b) The self-induced emf is, Eq. (14.1), 

E = −L 
d I  

dt 
= −(2.5 × 10−5 H)

(
1.0 A  

0.10 s

0

= −2.5 × 10−4 V. 

♦ wxMaxima codes: 

(%i7) fpprintprec:5; mu0:float(4e-7*%pi); N:100; A:10e-4; l:0.5; dI:1; 
dt:0.1; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(N) 100 
(A) 0.001 
(l) 0.5 
(dI) 1 
(dt) 0.1 
(%i8) L: mu0*N^2*A/l; 
(L) 2.5133*10^-5 
(%i9) emf: -L*dI/dt; 
(emf) -2.5133*10^-4 
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Fig. 14.4 A solenoid and 
two turns of coil, Problem 
14.5 N1 = 1000     N2 = 2 

l = 10 cm 

r = 3.0 cm 

Comments on the codes: 

(%i7) Set floating point print precision to 5, assign values of μ0, N, A, l, dI, 
and dt. 

(%i8), (%i9) Calculate L and emf. 

Problem 14.5 A solenoid of length 10 cm and a radius of 3.0 cm has 1000 turns 
of wire. Two turns of coil are wound around the solenoid, as shown in Fig. 14.4. 
Calculate 

(a) self-inductance of the solenoid. 
(b) mutual inductance of the solenoid and the coil. 

Solution 

(a) Consider a solenoid of length l with N1 turns of wire and cross-sectional area 
A = πr2, Fig.  14.4. The magnetic field of the solenoid is 

B = 
μ0N1i 

l 
, 

when current i flows in the solenoid. The magnetic flux of the solenoid is

0m = B A  = 
μ0N1Ai 

l 
. 

The magnetic flux linkage of the solenoid with itself is 

N10m = 
μ0N 2 

1 Ai 

l 
. 

Thus, the self-inductance L of the solenoid is
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L = 
magnetic flux linkage 

i
= 

μ0N 2 
1 A 

l 
, 

as in Eq. (14.4). Substituting the numerical values, the self-inductance L of the 
solenoid is 

L = 
μ0N 2 

1 A 

l
= 

(4π × 10−7 H m−1)(1000)2π(0.030 m)2 

0.10 m 
= 3.6 × 10−2 H. 

(b) Now consider a coil of N2 turns wound around the solenoid in part (a), as shown 
in Fig. 14.4. When current i flows in the solenoid, the magnetic flux linkage of 
the coil is 

N20m = 
μ0N1N2 Ai 

l 
. 

Thus, the mutual inductance M of the solenoid and the coil is 

M = 
magnetic flux linkage 

i
= 

μ0N1N2 A 

l 
. 

Substituting the numerical values, the mutual inductance M of the solenoid 
and the coil is 

M = 
μ0N1N2 A 

l
= 

(4π × 10−7 H m−1)(1000)(2)π(0.030 m)2 

0.10 m 
= 7.1 × 10−5 H. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; mu0:float(4e-7*%pi); l:0.1; A:float(%pi*0.03^2); 
N1:1000; N2:2; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(l) 0.1 
(A) 0.0028274 
(N1) 1000 
(N2) 2 
(%i7) L: mu0*N1^2*A/l; 
(L) 0.035531 
(%i8) M: mu0*N1*N2*A/l; 
(M) 7.1061*10^-5 

Comments on the codes: 

(%i6) Set floating point print precision to 5, assign values of μ0, l, A, N1, 
and N2. 

(%i7), (%i8) Calculate L and M.
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Problem 14.6 The current in the solenoid in Problem 14.5 increases from zero to 
4.0 A in 0.10 s. Calculate 

(a) self-induced emf in the solenoid 
(b) induced emf in the two-turn coil. 

Solution 

(a) The self-induced emf in the solenoid is 

E1 = −L 
d I  

dt 
= −(3.6 × 10−2 H)

(
4.0 A  

0.10 s

0

= −1.4 V. 

(b) The induced emf in the two-turn coil is 

E2 = −M 
d I  

dt 
= −(7.1 × 10−5 H)

(
4.0 A  

0.10 s

0

= −2.8 × 10−3 V. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; mu0:float(4e-7*%pi); l:0.1; A:float(%pi*0.03^2); 
N1:1000; N2:2; 
(fpprintprec) 5 
(mu0) 1.2566*10^-6 
(l) 0.1 
(A) 0.0028274 
(N1) 1000 
(N2) 2 
(%i7) L: mu0*N1^2*A/l; 
(L) 0.035531 
(%i8) M: mu0*N1*N2*A/l; 
(M) 7.1061*10^-5 
(%i10) dI:4; dt:0.1; 
(dI) 4 
(dt) 0.1 
(%i11) emf_1: -L*dI/dt; 
(emf_1) -1.4212 
(%i12) emf_2: -M*dI/dt; 
(emf_2) -0.0028424 

Comments on the codes: 

(%i6) Set floating point print precision to 5, assign values of μ0, l, A, N1, 
N2. 

(%i7), (%i8) Calculate L and M. 
(%i10) Assign dI and dt. 
(%i11), (%i12) Calculate E1 and E2. 

Problem 14.7 Inductance and resistance of a coil are 0.20 H and 3.0y, respectively. 
The coil is connected to a dc source of 90 V.
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Fig. 14.5 A coil (with 
inductance and resistance) 
connected to a voltage source 
and a switch, Problem 14.7 

L = 0.20 H                      R = 3.0 i 

E = 90 V 

coil 

switch 
•       • 

(a) Calculate the rate of current increase in the coil, immediately after the switch 
is closed. 

(b) What is the current in the coil when the rate of current increase is 100 A s−1? 

Solution 

The coil, voltage source, and the circuit are shown in Fig. 14.5. 

(a) The loop equation of the circuit is 

E − L 
di 

dt 
− i R  = 0, 

where E is the emf, L di/dt is the potential drop across L, and iR is the potential 
drop across R. This gives 

E = L 
di 

dt 
+ i R. 

Immediately after the switch is closed, that is immediately as the circuit is 
completed, the current i is zero. The equation becomes 

E = L 
di 

dt 
. 

Thus, the rate of current increase in the coil at the moment is 

di 

dt 
= 

E 
L 

= 
90 V 

0.20 H 
= 450 A s−1 . 

(b) The circuit equation is 

E = L 
di 

dt 
+ i R. 

If the rate of change of electric current is known, current in the circuit can be 
calculated. For the problem, the current through the coil is calculated as follows:
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E = L 
di 

dt 
+ i R  

90 V = (0.20 H)(100 A s−1 ) + i (3.0 y) 
i = 23 A. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; emf:90; L:0.2; R:3; 
(fpprintprec) 5 
(ratprint) false 
(emf) 90 
(L) 0.2 
(R) 3 
(%i6) di_over_dt: emf/L; 
(di_over_dt) 450.0 
(%i7) di_over_dt: 100; 
(di_over_dt) 100 
(%i9) solve(emf = L*di_over_dt + i*R, i)$ float(%); 
(%o9) [i=23.333] 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of E , L, and R. 

(%i6) Calculate di/dt. 
(%i7) Assign di/dt. 
(%i9) Solve E = L di 

dt + i R for i. 

Problem 14.8 A coil with inductance of 0.60 H carries a current of 5.0 A. Calculate 
the energy in the coil. 

Solution 

The coil is assumed to be a pure inductor and has negligible resistance. Energy in 
the magnetic field of the inductor is, Eq. (14.8), 

Um = 
1 

2 
L I 2 = 

1 

2 
(0.60 H)(5.0 A)2 = 7.5 J. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; L:0.6; I:5; 
(fpprintprec) 5 
(L) 0.6 
(I) 5 
(%i4) Um: 0.5*L*I^2; 
(Um) 7.5
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Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of L and I. 
(%i4) Calculate Um. 

Problem 14.9 

(a) A coil has a self-inductance of 0.009 H. Calculate the back emf induced in the 
coil when the current in the coil is increasing at a rate of 110 A s−1. 

(b) What is the energy in the coil when the current is 6.0 A? 

Solution 

(a) Induced back emf is 

E = −L 
di 

dt 
= −(0.009 H)(110 A s−1 ) = −0.99 V. 

(b) Energy in the coil is 

Um = 
1 

2 
L I 2 = 

1 

2 
(0.009 H)(6.0 A)2 = 0.16 J. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; L:0.009; di_over_dt:110; 
(fpprintprec) 5 
(L) 0.009 
(di_over_dt) 110 
(%i4) emf: -L*di_over_dt; 
(emf) -0.99 
(%i5) I:6; 
(I) 6 
(%i6) Um: 0.5*L*I^2; 
(Um) 0.162 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of L and di/dt. 
(%i4) Calculate back emf. 
(%i5), (%i6) Assign I and calculate Um. 

Problem 14.10

(a) Show that for an RL circuit of Fig. 14.6, the current and the rate of change of 
current as the switch is closed are 

i = 
E 
R 

(1 − e−Rt/L ),
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Fig. 14.6 An RL circuit, 
Problem 14.10 

      R L i 

E                           switch 
•      • 

di 

dt 
= 

E 
L 

e−Rt/L .

In the figure, E is the emf, R the resistance, L the inductance, and i the electric 
current. 

(b) For E = 100 V, R = 5.0 y, and L = 0.20 H, plot curves of current against time 
and rate of change of current against time. 

Solution 

(a) At any time as the switch is closed, the potential difference across the resistor 
is iR and across the inductor is L di/dt. Thus, for the circuit, 

E = i R  + L 
di 

dt 
. 

The rate of change of current is 

di 

dt 
= 

E 
L 

− 
R 

L 
i. 

The equation is written as 

di 

(E/R) − i 
= 

R 

L 
dt. 

At t = 0, i = 0, so integration gives

{ i 

0 

di 

(E/R) − i 
=

{ t 

0 

R 

L 
dt, 

[− ln (E/R − i )] i 0 =
|

R 

L 
t

|t 

0 

, 

− ln(E/R − i ) + ln(E/R) = 
R 

L 
t,



394 14 Inductance

ln(E/R − i ) − ln(E/R) = −  
R 

L 
t, 

ln(1 − Ri /E) = −  
R 

L 
t, 

1 − 
R 

E i = e−Rt/L , 

i = 
E 
R 

(1 − e−Rt/L ). 

This is the equation for current i against time t. Initially the current is zero, 
and it increases to a steady value of E /R. 

Differentiating the equation with respect to time gives the rate of change of 
current di/dt, 

di 

dt 
= 

E 
R 

(−e−Rt/L ) (−R/L) 

= 
E 
L 

e−Rt/L . 

(b) For E = 100 V, R = 5.0 y, and L = 0.20 H, the curve of current against time is 

i = 
E 
R 

(1 − e−Rt/L ) 

= 
100 

5 
(1 − e−5t/0.2 ) 

= 20 (1 − e−25t ) A. 

The curve of rate of change of current against time is 

di 

dt 
= 

E 
L 

e−Rt/L 

= 
100 

0.2 
e−5t/0.2 

= 500 e−25t A s−1 . 

Curves of current against time and rate of current change against time are 
plotted by wxMaxima. 

♦ wxMaxima codes:
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(%i4) fpprintprec:5; emf:100; R:5; L:0.2; 
(fpprintprec) 5 
(emf) 100 
(R) 5 
(L) 0.2 
(%i5) i: emf/R*(1-exp(-R*t/L)); 
(i) 20*(1-%e^(-25.0*t)) 
(%i6) di_over_dt: emf/L*exp(-R*t/L); 
(di_over_dt) 500.0*%e^(-25.0*t) 
(%i7) wxplot2d(i, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic t}  (s)"], 
[ylabel,"{/Helvetica-Italic i}  (A)"]); 

(%i8) wxplot2d(di_over_dt, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic 
t}  (s)"], [ylabel,"{/Helvetica-Italic di/dt}  (A s^{-1})"]); 
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Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of E , R, and L. 
(%i5), (%i6) Define i and di/dt. 
(%i7) Plot curve of i against t for 0 ≤ t ≤ 0.3 s. 
(%i8) Plot curve of di/dt against t for 0 ≤ t ≤ 0.3 s. 

Alternative solution: For an RL circuit of Fig. 14.6, when the switch is closed, the 
circuit equation is 

E = i R  + L 
di 

dt 
. (14.17) 

Here, iR is the potential difference across the resistor,L di/dt is the potential difference 
across the inductor, and E is the emf of the cell. The initial condition is, at t = 0 s,  i 
= 0 A. Equation (14.17) is a first-order ordinary differential equation (ODE), with i 
as dependent variable and t as independent variable. 

To solve the ODE, predefined functions ode2 and ic1 of wxMaxima can be used. 
See Solving first-order ordinary differential equation in Appendix A. 

♦ wxMaxima codes:
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(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) sol: ode2(emf=i*R + L*'diff(i,t), i,t)$ expand(%); 
(%o4) i=%c*%e^(-(R*t)/L)+emf/R 
(%i6) ic1(sol, t=0, i=0)$ expand(%); 
(%o6) i=emf/R-(emf*%e^(-(R*t)/L))/R 
(%i7) i: rhs(%); 
(i) emf/R-(emf*%e^(-(R*t)/L))/R 
(%i8) di_over_dt: diff(i,t); 
(di_over_dt) (emf*%e^(-(R*t)/L))/L 
(%i11) emf: 100; R:5; L:0.2; 
(emf) 100 
(R) 5 
(L) 0.2 
(%i12) wxplot2d(i, [t,0,0.3], grid2d,[xlabel,"{/Helvetica-Italic t} (s)"], 
[ylabel,"{/Helvetica-Italic i}(A)"]); 

(%i13) wxplot2d(di_over_dt, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic 
t}  (s)"], [ylabel,"{/Helvetica-Italic di/dt}  (A s^{-1})"]); 
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Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve E = i R + L di 
dt and get a general solution. 

(%i6) Set the initial condition and get a particular solution. 
(%i7) Assign the solution to i. 
(%i8) Calculate di/dt. 
(%i11) Assign values of E , R, and L. 
(%i12) Plot i against t for 0 ≤ t ≤ 0.3 s. 
(%i13) Plot di/dt against t for 0 ≤ t ≤ 0.3 s. 

Problem 14.11 After the RL circuit of Problem 14.10 attains steady current, the 
voltage source is removed and the circuit is completed. Obtain an expression for the 
current decay against time and draw the curve. 

Solution 

When the voltage source is removed and the circuit is completed, E = 0, and we have 

E = i R  + L 
di 

dt 
, 

0 = i R  + L 
di 

dt 
. 

The equation is written as



14.2 Problems and Solutions 399

di 

i 
= −  

R 

L 
dt. 

At t = 0, i = E /R, and integration gives 
i{

E/R 

di 

i 
= 

t{

0 

− 
R 

L 
dt, 

[ln i] i E/R =
|

− 
R 

L 
t

|t 

0 

, 

ln

(
i 

E/R

0

= −Rt/L , 

i = 
E 
R 

e−Rt/L . 

The expression is an exponential decay of current with time, with an initial current 
of E /R. Using numerical values of Problem 14.10, that is, E = 100 V, R = 5.0 y, and 
L = 0.20 H, one gets 

i = 
E 
R 

e−Rt/L 

= 
100 

5 
e−5t/0.2 

= 20 e−25t A. 

A curve of electric current against time is obtained by wxMaxima. 

♦ wxMaxima codes: 

(fpprintprec) 5 
(emf) 100 
(R) 5 
(L) 0.2 
(%i5) i: emf/R*exp(-R*t/L); 
(i) 20*%e^(-25.0*t) 
(%i6) wxplot2d(i, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic t}  (s)"], 
[ylabel,"{/Helvetica-Italic i}  (A)"]); 

(%i4) fpprintprec:5; emf:100; R:5; L:0.2; 
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Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of E , R, and L. 
(%i5), (%i6) Assign i and plot i against t for 0 ≤ t ≤ 0.3 s. 

Alternative solution: The circuit equation is 

0 = i R  + L 
di 

dt 
, 

and the initial condition is t = 0 s,  i = E /R. Here, iR is the potential difference across 
the resistor and L di/dt is the potential difference across the inductor. The equation is 
a first-order ordinary differential equation (ODE), with i as dependent variable and 
t as independent variable. 

To solve the ODE, predefined functions ode2 and ic1 of wxMaxima can be used. 
See Solving first-order ordinary differential equation in Appendix A. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) sol: ode2(0=i*R + L*'diff(i,t), i,t)$ expand(%); 
(%o4) i=%c*%e^(-(R*t)/L) 
(%i6) ic1(sol, t=0, i=emf/R)$ expand(%); 
(%o6) i=(emf*%e^(-(R*t)/L))/R 
(%i7) i: rhs(%); 
(i) (emf*%e^(-(R*t)/L))/R 
(%i10) emf: 100; R:5; L:0.2; 
(emf) 100 
(R) 5 
(L) 0.2 
(%i11) wxplot2d(i, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic t}  
(s)"], [ylabel,"{/Helvetica-Italic i}  (A)"]);  
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Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve 0 = i R + L di  /dt and get a general solution. 
(%i6) Set the initial condition and get a particular solution. 
(%i7) Assign the solution to i. 
(%i10) Assign values of E , R, and L. 
(%i11) Plot i against t for 0 ≤ t ≤ 0.3 s. 

14.3 Summary 

• Electric current changes in a coil induce an emf E in the coil itself, 

E = −L 
d I  

dt 
, 

where L is the self-inductance of the inductor (coil) and dI/dt is the rate of change 
of current through it. By Faraday’s law, the induced emf is also the time rate of 
magnetic flux change, 

E = −N 
d0m 

dt 
. 

Thus, 

L = N
|
|
|
|

d0m 

d I

|
|
|
|
. 

This means that inductance is change of magnetic flux per unit current.
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• For a solenoid, the self-inductance is 

L = N
0m 

I 
= 

N B A  

I 
= 

N (μ0nI  )A 

I
= 

N μ0 I A  

I

(
N 

l

0

= 
μ0N 2 A 

l 
. 

• A change in current dI1/dt in circuit 1 induces an emf E2 in circuit 2, 

E2 = −M 
d I1 
dt 

. 

where M is the mutual inductance between the two circuits. 
• The energy U stored in an inductor is 

U = 
1 

2 
L I 2 . 

14.4 Exercises 

Exercise 14.1 A solenoid of length 10 cm and cross-sectional area 1.0 cm2 has 1000 
turns of wire per meter. Calculate the inductance of the solenoid. 

(Answer: L = 1.3 × 10−5 H) 

Exercise 14.2 Figure 14.7 shows an RL circuit with resistor R = 5.0 y, inductor L 
= 3.0 × 10−2 H, and battery of emf E = 60 V. The switch is closed at t = 0 s, find

(a) the time constant of the circuit 
(b) the current in the circuit at t = 3.0 × 10−3 s. 
(c) the energy stored in the inductor at t = 3.0 × 10−3 s. 

(Answer: (a) 6.0 × 10−3 s; (b) 4.7 A; (c) 0.33 J) 

Exercise 14.3 An emf of 10 V is induced in a coil when the current in it changes at 
the rate of 32 A s−1. What is the inductance of the coil? 

(Answer: L = 0.31 H)

Fig. 14.7 An RL circuit, 
Exercise 14.2 

 R = 5.0 L = 3.0  10-2 H 

E = 60 V               switch 
•      • 
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Exercise 14.4 A current of 3.0 A creates a magnetic flux of 1.4 × 10−4 Wb in a coil 
of 500 turns. What is the inductance of the coil? 

(Answer: L = 0.023 H) 

Exercise 14.5 The average emf induced in a circuit is 250 V when the current in the 
circuit changes from 24 A to zero in 3.0 × 10−3 s. Calculate the self-inductance of 
the circuit and the energy stored in the magnetic field. 

(Answer: L = 0.031 H, U = 9.0 J)



Chapter 15 
Alternating Current Circuit 

Abstract This chapter solves problems on series RLC alternating current circuits. 
Inductive and capacitive reactance, impedance, phase angle, power factor, root mean 
square current, and average power of the circuits are determined. Solutions by 
analysis and computer calculation are presented. 

15.1 Basic Concepts and Formulae 

(1) In an alternating current (AC) circuit having a voltage generator and a resistor, 
electric current is in phase with the voltage. The voltage and the current attain 
peak values at the same time. The root mean square current I rms and the root 
mean square voltage V rms of sinusoidal current and voltage are 

Irms = 
Imax √
2 

= 0.707Imax, (15.1) 

Vrms = 
Vmax √

2 
= 0.707Vmax, (15.2) 

where Imax and Vmax are peak (maximum) current and peak (maximum) voltage, 
respectively. Imax and Vmax are also called current amplitude and voltage 
amplitude, respectively. 

(2) In an AC circuit having a voltage generator and an inductor, the current lags 
the voltage by 90°. The voltage attains a maximum value a quarter of a period 
earlier than the current. 

(3) In an AC circuit having a voltage generator and a capacitor, the current leads 
the voltage by 90°. The current attains a maximum value a quarter of a period 
earlier than the voltage. 

(4) In an AC circuit having an inductor and a capacitor, inductive reactance XL and 
capacitive reactance XC are defined as, 

XL = ωL = 2π f L  , (15.3)
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Fig. 15.1 Alternating 
current series RLC circuit 

ac voltage source 

R                     L                 C 

XC = 
1 

ωC 
= 

1 

2π f C  
, (15.4) 

where f and ω are frequency and angular frequency of the AC voltage source, 
respectively. 

(5) In an AC series RLC circuit, as shown in Fig. 15.1, a circuit that has a resistor, 
an inductor, and a capacitor in series connected to an AC voltage source, the 
impedance Z is, 

Z = 
/
R2 + (XL − XC )2. (15.5) 

The voltage and the current in the circuit differ in phase by phase angle φ, 
where, 

tan φ = 
XL − XC 

R 
. (15.6) 

This means that φ is the phase angle between the voltage and the current. 
Average power of the circuit is, 

Paverage = IrmsVrms cos φ = Z I  2 rms cos φ = I 2 rms R 

= 
1 

2 
ImaxVmax cos φ. (15.7) 

This is the power output of the resistor in the series RLC circuit. There is no 
loss of energy by the pure inductor and capacitor. 

The quantity cos φ is called the power factor, 

Power factor = cos φ = 
R 

Z 
= R 

/
R2 + (XL − XC )2 

. (15.8) 

The root mean square current is
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        (a)                                    (b) 

V   
VL  VC 

VR 

Z   
XL  XC 

R   

Fig. 15.2 a In an AC series RLC circuit, impedance Z, resistance R, inductive reactance XL , capac-
itive reactance XC , and phase angle φ can be represented by vectors, so do b voltages across the 
circuit V, across the resistor VR, across the inductor VL , and across the capacitor VC 

Irms = 
Vrms 

Z 
= Vrms /

R2 + (XL − XC )2 
. (15.9) 

(6) In an AC series RLC circuit, impedance Z, resistance R, inductive reactance XL, 
capacitive reactance XC , and phase angle φ can be represented by vectors as 
shown in Fig. 15.2a. Similarly, voltages across the circuit V, across the resistor 
VR, across the inductor VL, and across the capacitor VC can be represented by 
vectors as shown in Fig. 15.2b. 

(7) An AC series RLC circuit is in resonance when inductive reactance is equal to 
capacitive reactance. The current is I rms = V rms/R, XL = XC , and the resonant 
frequency of the circuit is, 

ω0 = 1 √
LC 

. (15.10) 

The current of an AC series RLC circuit is a maximum when angular 
frequency of the AC generator is equal to ω0, that is, when the angular frequency 
of the generator is the same as the resonant frequency. 

15.2 Problems and Solutions 

Problem 15.1 When an AC voltmeter is connected across the terminals of an AC 
source of frequency 50 Hz, the reading is 160 V. Write an equation for the voltage 
of the AC source. 

Solution 

General equation for an AC voltage source is, 

V = V0 sin(ωt + φ),
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where V 0 is voltage amplitude, ω is angular frequency, and φ is phase angle. The 
angular frequency is, 

ω = 2π f = 2π(50 s−1 ) = 314 rad s−1 . 

The AC voltmeter measures effective voltage or the root mean square voltage V rms 

of the voltage source. The relation between V rms with the voltage amplitude V 0 is, 

V0 =
√
2 Vrms. 

This means that, 

V0 =
√
2 × 160 V = 226 V. 

The equation for the AC voltage source is 

V = 226 sin(314t + φ). 

♦ wxMaxima codes: 

(%i1) fpprintprec:5; 
(fpprintprec) 5 
(%i2) omega: float(2*%pi*50); 
(omega) 314.16 
(%i3) V0: float(sqrt(2)*160); 
(V0) 226.27 

Comments on the codes: 

(%i1) Set floating point print precision to 5. 
(%i2), (%i3) Calculate ω and V 0. 

Problem 15.2 A 30 y resistor is connected in series with an AC ammeter A and a 
voltage source V = 60 sin(100π t). What is the reading of the ammeter? 

Solution 

The relevant circuit is shown in Fig. 15.3.
The AC voltage source is 

V = V0 sin(ωt) = 60 sin(100π t). 

The voltage amplitude or the peak voltage is V 0 = 60 V. The rms voltage across 
the resistor is,
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Fig. 15.3 A resistor 
connected to an ammeter and 
a voltage source, Problem 
15.2

A   
R = 30 

V 

Vrms = 
V0 √
2 

= 
60 V √

2 
= 42 V. 

Using Ohm’s law, the rms current is, 

Irms = 
Vrms 

R 
= 

42 V 

30 y
= 1.4 A. 

This is the reading of the AC ammeter. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; V0:60; R:30; 
(fpprintprec) 5 
(V0) 60 
(R) 30 
(%i4) Vrms: float(V0/sqrt(2)); 
(Vrms) 42.426 
(%i5) Irms: float(Vrms/R); 
(Irms) 1.4142 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of V 0 and R. 
(%i4), (%i5) Calculate V rms and I rms. 

Problem 15.3 A 50 y resistor is connected to a 15 V variable frequency voltage 
generator. Calculate the current in the resistor when the frequency of the voltage 
generator is 

(a) 100 Hz. 
(b) 100 kHz. 

Solution 

Figure 15.4 shows the resistor, the voltage generator, and the complete circuit.

(a) For a pure resistor, Ohm’s law is obeyed, V = IR. The voltage across the resistor 
and the current in it do not depend on frequency of the source. When the
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Fig. 15.4 A resistor 
connecter to an AC variable 
frequency voltage generator, 
Problem 15.3 

Vrms = 15 V, variable  f 

R = 50 

frequency of the voltage generator is f = 100 Hz, the I rms of the resistor or 
the I rms in the circuit is

Irms = 
Vrms 

R 
= 

15 V 

50 y
= 0.30 A. 

(b) When the frequency of the voltage generator is f = 100 kHz, the I rms is the 
same, 

Irms = 
Vrms 

R 
= 

15 V 

50 y
= 0.30 A. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; Vrms:15; R:50; 
(fpprintprec) 5 
(Vrms) 15 
(R) 50 
(%i4) Irms: float(Vrms/R); 
(Irms) 0.3 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of V rms and R. 
(%i4) Calculate I rms. 

Problem 15.4 A 2.0 mH inductor is connected to a 15 V variable frequency voltage 
generator. Calculate the current in the circuit when the frequency of the voltage 
generator is 

(a) 100 Hz. 
(b) 100 kHz.
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Fig. 15.5 An inductor 
connector to an AC variable 
frequency voltage source, 
Problem 15.4 

L = 2.0 mH 

Vrms = 15 V, variable  f 

Solution 

Figure 15.5 shows the inductor, the variable frequency voltage source, and the 
complete circuit. 

(a) The inductive reactance of the inductor at f = 100 Hz is 

XL = ωL = 2π f L  = 2π(100 s−1 )(2.0 × 10−3 H) = 1.3 y. 

Therefore, the current in the circuit is 

Irms = 
Vrms 

XL 
= 

15 V 

1.3 y
= 12 A. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; f:100; L:2e-3; Vrms:15; 
(fpprintprec) 5 
(f) 100 
(L) 0.002 
(Vrms) 15 
(%i5) XL: float(2*%pi*f*L); 
(XL) 1.2566 
(%i6) Irms: float(Vrms/XL); 
(Irms) 11.937 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of f , L, and V rms. 
(%i5), (%i6) Calculate XL and I rms. 

(b) Inductive reactance of the inductor at f = 100 kHz is, 

XL = ωL = 2π f L  = 2π(100 × 103 s−1 )(2.0 × 10−3 H) = 1.3 × 103 y.
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The current in the circuit is, 

Irms = 
Vrms 

XL 
= 15 V 

1.3 × 103 y
= 1.2 × 10−2 A. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; f:100e3; L:2e-3; Vrms:15; 
(fpprintprec) 5 
(f) 1.0*10^5 
(L) 0.002 
(Vrms) 15 
(%i5) XL: float(2*%pi*f*L); 
(XL) 1256.6 
(%i6) Irms: float(Vrms/XL); 
(Irms) 0.011937 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of f , L, and V rms. 
(%i5), (%i6) Calculate XL and I rms. 

Problem 15.5 A0.30  µF capacitor is connected to a 15 V variable frequency voltage 
generator. Calculate the current in the circuit when the frequency of the voltage 
generator is 

(a) 100 Hz. 
(b) 100 kHz. 

Solution 

Figure 15.6 shows the capacitor, the voltage generator, and the complete circuit. 

(a) The capacitive reactance of the capacitor at f = 100 Hz is

Fig. 15.6 A capacitor 
connected to an AC variable 
frequency voltage generator, 
Problem 15.5 

C = 0.30 × 10- 6 F 

Vrms = 15 V, variable  f 
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XC = 
1 

ωC 
= 1 

2π f C  
= 1 

2π(100 s−1)(0.30 × 10−6 F) 
= 5.3 × 103 y. 

Thus, the current in the circuit is 

Irms = 
Vrms 

XC 
= 15 V 

5.3 × 103 y
= 2.8 × 10−3 A. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; f:100; C:0.3e-6; Vrms:15; 
(fpprintprec) 5 
(f) 100 
(C) 3.0*10^-7 
(Vrms) 15 
(%i5) XC: 1/float(2*%pi*f*C); 
(XC) 5305.2 
(%i6) Irms: float(Vrms/XC); 
(Irms) 0.0028274 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of f , C, and V rms. 
(%i5), (%i6) Calculate XC and I rms. 

(b) The capacitive reactance of the capacitor at f = 100 kHz is 

XC = 
1 

ωC 
= 1 

2π f C  
= 1 

2π(100 × 103 s−1)(0.30 × 10−6 F) 
= 5.3 y. 

The current in the circuit is, 

Irms = 
Vrms 

XC 
= 15 V 

5.3 × 106 y
= 2.8 A. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; f:100e3; C:0.3e-6; Vrms:15; 
(fpprintprec) 5 
(f) 1.0*10^5 
(C) 3.0*10^-7 
(Vrms) 15 
(%i5) XC: 1/float(2*%pi*f*C); 
(XC) 5.3052 
(%i6) Irms: float(Vrms/XC); 
(Irms) 2.8274
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Fig. 15.7 Alternating 
current series RLC circuit, 
Problem 15.6 

ac generator 

R = 30 Ω      XL = 20 Ω    XC = 60 Ω 

Irms = 2.0 A 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of f , C, and V rms. 
(%i5), (%i6) Calculate XC and I rms. 

Problem 15.6 Resistance, inductive reactance, capacitive reactance, and effective 
current of an ac series RLC circuit are 30, 20, 60 y, and 2.0 A, respectively. For the 
circuit calculate 

(a) impedance. 
(b) power factor. 
(c) power dissipated by the resistor. 
(d) maximum voltages across the resistor, inductor, and capacitor. 

Solution 

Figure 15.7 is the circuit meant by the question. 

(a) The impedance of the circuit is 

Z =
/
R2 + (XL − XC )2 =

/
(30 y)2 + (20 y − 60 y)2 = 50 y. 

(b) The power factor is obtained by calculation of phase angle φ followed by 
calculation of cosine of the angle, 

tan φ = 
XL − XC 

R
= 

20y − 60y

30y
= −4/3, φ  = −53

◦ 
, 

Power factor = cos φ = cos(−53◦) = 0.6. 
The power factor can also be calculated as follows: 
Power factor = cos φ = R Z = 30 y

50 y
= 0.6. 

(c) The power dissipated by the resistor is 

P = I 2 rms R = (2.0 A)2 (30 y) = 120 W.
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It can also be calculated as follows: 

P = Z I  2 rms cos φ = (50 y)(2.0 A)2 (0.6) = 120 W. 

(d) The maximum voltage across the resistor is calculated as follows: 

VR,rms = Irms R = (2.0 A)(30 y) = 60 V, 

VR,max =
√
2VR,rms =

√
2(60 V) = 85 V. 

The maximum voltage across the inductor is calculated as follows: 

VL ,rms = Irms XL = (2.0 A)(20 y) = 40 V, 

VL ,max =
√
2Vl,rms =

√
2(40 V) = 57 V. 

The maximum voltage across the capacitor is calculated as follows: 

VC,rms = Irms XC = (2.0 A)(60 y) = 120 V, 

VC,max =
√
2VC,rms =

√
2(120 V) = 170 V. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; R:30; XL:20; XC:60; Irms:2; 
(fpprintprec) 5 
(R) 30 
(XL) 20 
(XC) 60 
(Irms) 2 
(%i6) Z: sqrt(R^2 + (XL-XC)^2); 
(Z) 50 
(%i8) phi: float(atan((XL-XC)/R)); phi_deg: float(phi*180/%pi); 
(phi) -0.9273 
(phi_deg) -53.13 
(%i9) power_factor: float(cos(phi)); 
(power_factor) 0.6 
(%i10) power_factor1: float(R/Z); 
(power_factor1) 0.6 
(%i11) P: float(Irms^2*R); 
(P) 120.0 
(%i12) P1: float(Z*Irms^2*cos(phi)); 
(P1) 120.0 
(%i13) VRrms: float(Irms*R); 
(VRrms) 60.0 
(%i14) VRmax: float(sqrt(2)*VRrms); 
(VRmax) 84.853 
(%i15) VLrms: float(Irms*XL); 
(VLrms) 40.0 
(%i16) VLmax: float(sqrt(2)*VLrms); 
(VLmax) 56.569 
(%i17) VCrms: float(Irms*XC); 
(VCrms) 120.0 
(%i18) VCmax: float(sqrt(2)*VCrms); 
(VCmax) 169.71
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Fig. 15.8 Alternating 
current series RL circuit, 
Problem 15.7 

220 V, 50 Hz ac generator 

R = 12 Ω       L = 0.14 H 
coil 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of 
R, XL, XC , and I rms. 

(%i6), (%i8), (%i9), (%i10) Calculate Z, φ, and power factors. 
(%i11), (%i12) Calculate power dissipated. 
(%i13), (%i14) Calculate VR,rms and VR,max. 
(%i15), (%i16) Calculate VL,rms and VL,max. 
(%i17), (%i18) Calculate VC,rms and VC,max. 

Problem 15.7 A coil with 0.14 H inductance and 12 y resistance is connected to a 
220 V, 50 Hz AC source. Calculate 

(a) current in the coil. 
(b) phase angle between voltage and current. 
(c) power factor. 
(d) loss of electrical power of the coil. 

Solution 

Figure 15.8 shows the coil connected to the AC source. The coil has both resistance 
and inductance. 

(a) The inductive reactance of the coil is 

XL = ωL = 2π f L  = 2π(50 s−1 )(0.14 y) = 44 y. 

The impedance of the circuit is 

Z = 
/
R2 + (XL − XC )2 = 

/
(12 y)2 + (44 y − 0)2 = 46 y. 

Thus, the current in the coil is 

Irms = 
Vrms 

Z 
= 

220 V 

46 y
= 4.8 A.
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(b) The phase angle between voltage and current is 

φ = tan−1

(
XL − XC 

R

)
= tan−1

(
44 y − 0 
12 y

)
= 1.3 rad  = 75◦. 

(c) The power factor is 

power factor = cos φ = cos 75◦ = 0.26. 

(d) The loss of electrical power is 

P = I 2 rms  R = (4.8 A)2 (12 y) = 280 W. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; L:0.14; R:12; Vrms:220; f:50; XC:0; 
(fpprintprec) 5 
(L) 0.14 
(R) 12 
(Vrms) 220 
(f) 50 
(XC) 0 
(%i7) XL: float(2*%pi*f*L); 
(XL) 43.982 
(%i8) Z: float(sqrt(R^2 + (XL-XC)^2)); 
(Z) 45.59 
(%i9) Irms: float(Vrms/Z); 
(Irms) 4.8256 
(%i10) phi: float(atan((XL-XC)/R)); 
(phi) 1.3044 
(%i11) phi_deg: float(phi*180/%pi); 
(phi_deg) 74.739 
(%i12) power_factor: float(cos(phi)); 
(power_factor) 0.26322 
(%i13) P: float(Irms^2*R); 
(P) 279.44 

Comments on the codes: 

(%i6) Set floating point print precision to 5, assign values of L, R, 
V rms, f , and XC . 

(%i7), (%i8), (%i9) Calculate XL, Z, and I rms. 
(%i10), (%i11) Calculate φ and convert the angle to degree. 
(%i12), (%i13) Calculate power factor and loss of electrical power P. 

Problem 15.8 An RLC series circuit consists of a 100 y resistor, a 0.10 H inductor, 
a 20  µF capacitor, and a 220 V, 50 Hz AC source. Calculate

(a) current. 
(b) power loss.
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Fig. 15.9 Alternating 
current series RLC circuit, 
Problem 15.8 

220V, 50 Hz ac generator 

R = 100 Ω      L = 0.10 H    C = 20 μF 

(c) phase angle. 
(d) voltages across the resistor, inductor, and capacitor. 

Solution 

Figure 15.9 shows the RLC circuit with the AC generator. 

(a) The inductive and capacitive reactances are 

XL = ωL = 2π f L  = 2π(50 s−1 )(0.10 H) = 31 y, 

XC = 
1 

ωC 
= 1 

2π f C  
= 1 

2π(50 s−1)(20 × 10−6 F) 
= 159 y. 

The impedance of the circuit is 

Z = 
/
R2 + (XL − XC )2 =

/
(100 y)2 + (31 y − 159 y)2 = 162 y. 

Thus, the current in the circuit is 

Irms = 
Vrms 

Z 
= 

220 V 

162 y
= 1.36 A. 

(b) The power loss is the one lost by the resistor, 

P = I 2 rms R = (1.36 A)2 (100 y) = 184 W. 

(c) The phase angle is, 

tan φ = 
XL − XC 

R
= 

31 y − 159 y

100 y
= −1.28. 

φ = −52◦. 

(d) The voltages across the resistor, inductor, and capacitor are,
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VR = Irms R = (1.36 A)(100 y) = 136 V. 

VL = Irms XL = (1.36 A)(31 y) = 43 V. 

VC = Irms XC = (1.36 A)(159 y) = 216 V. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; R:100; L:0.1; C:20e-6; Vrms:220; f:50; 
(fpprintprec) 5 
(R) 100 
(L) 0.1 
(C) 2.0*10^-5 
(Vrms) 220 
(f) 50 
(%i7) XL: float(2*%pi*f*L); 
(XL) 31.416 
(%i8) XC: float(1/(2*%pi*f*C)); 
(XC) 159.15 
(%i9) Z: float(sqrt(R^2 + (XL-XC)^2)); 
(Z) 162.23 
(%i10) Irms: float(Vrms/Z); 
(Irms) 1.3561 
(%i11) P: float(Irms^2*R); 
(P) 183.91 
(%i12) phi: float(atan((XL-XC)/R)); 
(phi) -0.9066 
(%i13) phi_deg: float(phi*180/%pi); 
(phi_deg) -51.945 
(%i14) VR: float(Irms*R); 
(VR) 135.61 
(%i15) VL: float(Irms*XL); 
(VL) 42.604 
(%i16) VC: float(Irms*XC); 
(VC) 215.84 

Comments on the codes: 

(%i6) Set floating point print precision to 5, assign values of R, 
L, C, V rms, and f . 

(%i7), (%i8), (%i9) Calculate XL, XC , and Z. 
(%i10), (%i11) Calculate I rms and P. 
(%12), (%i13) Calculate φ and convert the angle to degree. 
(%i14), (%i15), (%i16) Calculate VR, VL, and VC . 

Problem 15.9 Calculate the resonant frequency of a circuit consisting of a 40 mH 
inductor and a 600 pF capacitor. The resistance of the circuit is negligible.
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Solution 

Resonance of an AC circuit that consists of a resistor, an inductor, and a capacitor is 
attained when the impedance is a minimum. The impedance is 

Z = 
/
R2 + (XL − XC )2. 

The impedance is a minimum when inductive reactance is equal to capacitive 
reactance, that is, 

XL = XC 

2π f0L = 1 

2π f0C 

f0 = 1 

2π
√
LC 

. 

Thus, the resonant frequency of the circuit is, 

f0 = 1 

2π
√
LC 

= 1 

2π
/

(40 × 10−3 H)(600 × 10−12 F) 
= 3.2 × 104 s−1 . 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; ratprint:false; L:40e-3; C:600e-12; 
(fpprintprec) 5 
(ratprint) false 
(L) 0.04 
(C) 6.0*10^-10 
(%i6) XL: 2*%pi*f0*L; XC: 1/(2*%pi*f0*C); 
(XL) 0.08*%pi*f0 
(XC) (8.3333*10^8)/(%pi*f0) 
(%i8) solve(XL=XC, f0)$ float(%); 
(%o8) [f0=-3.2487*10^4,f0=3.2487*10^4] 
(%i9) f0: float(1/(2*%pi*sqrt(L*C))); 
(f0) 3.2487*10^4 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print to false, 
assign values of L and C. 

(%i6) Calculate XL and XC . 
(%i8) Solve XL = XC for f 0. 
(%i9) Direct calculation of resonant frequency, f 0.
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Problem 15.10 The impedance of an RLC series circuit at resonant frequency of 
60 Hz is 8.0 y. The impedance of the circuit at frequency 80 Hz is 10 y. Calculate 
the inductance and capacitance of the circuit. 

Solution 

When the circuit is in resonance at f 0 = 60 Hz, the inductive reactance is equal to 
the capacitive reactance. We have 

XL = XC ⇒ 2π f0L = 
1 

2π f0C 
, 

f 2 0 =
1 

4π 2LC 
, 

(60 s−1 )2 = 1 

4π 2LC 
, (1) 

and the impedance is the resistance, 

Z = 
/
R2 + (XL − XC )2 = R = 8.0 y. 

At frequency 80 Hz, 

Z =
/
R2 + (XL − XC )2 ⇒ Z2 = R2 + (XL − XC )

2 , 

Z2 = R2 + (2π f L  − 1 

2π f C  
)2 , 

(10 y)2 = (8.0 y)2 + [2π(80 s−1 )L − 1 

2π(80 s−1)C 
]2 . (2) 

Solving Eqs. (1) and (2) for  L and C, gives inductance and capacitance as, 

L = 0.027 H, 
C = 2.6 × 10−4 F. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve([60^2=1/(4*%pi^2*L*C), 10^2=8^2+(2*%pi*80*L-1/(2*%pi*80*C))^2], 
[L,C])$ float(%); 
(%o4) [[L=-0.027284,C=-2.5789*10^-4],[L=0.027284,C=2.5789*10^-4]]
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Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve Eqs. (1) and (2) for  L and C. 

15.3 Summary 

• The voltage amplitude in an AC circuit is 

Vmax = Imax Z , 

where Z is the impedance of the circuit. 
• For a series RLC circuit, the impedance is 

Z = 
/
R2 + (XL − XC )2, 

where XL = ωL is inductive reactance and XC = 1/(ωC) is capacitive reactance. 
The phase angle φ between the voltage and current is given by 

tan φ = 
XL − XC 

R 
. 

The average power of the circuit is 

Paverage = IrmsVrms cos φ = Z I  2 rms cos φ = I 2 rms R 

= 
1 

2 
ImaxVmax cos φ. 

The quantity cos φ is called the power factor, 

power factor = cos φ = 
R 

Z 
= R 

/
R2 + (XL − XC )2 

. 

The root mean square current is 

Irms = 
Vrms 

Z 
= Vrms /

R2 + (XL − XC )2 
. 

• The natural angular frequency ω0 of oscillation of an LC circuit is 

ω0 = 
1 √
LC 

.
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Fig. 15.10 Alternating 
current series RLC circuit, 
Exercise 15.3 

15.4 Exercises 

Exercise 15.1 An alternating current of effective value 5.0 A passes through a 25 y

resistor. Find 

(a) the maximum potential difference across the resistor. 
(b) the power dissipated by the resistor. 

(Answer: (a) Vmax = 180 V; (b) P = 620 W) 

Exercise 15.2 A series circuit consisting of a 100 y resistor, a 0.10 H inductor, and 
a 20  µF capacitor is connected across a 220 V rms, 50 Hz power source. Calculate 
current in the circuit and the average power loss by the circuit. 

(Answer: 1.4 A, 180 W) 

Exercise 15.3 Figure 15.10 shows an RLC AC circuit with a 2000y resistor, a 3.0 H 
inductor, and a 2.0 × 10−7 F capacitor. The voltage source is of amplitude 80 V and 
the frequency is 210 Hz. Determine 

(a) phase angle between the voltage and the current. 
(b) voltage amplitudes across the resistor, inductor, and capacitor. 
(c) average power dissipated by the circuit. 

(Answer: (a) 4.8°; (b) VR = 80 V, VL = 158 V, VC = 151 V; (c) 1.6 W) 

Exercise 15.4 A series  RLC circuit has a 100 y resistor, a 2.00 × 10−3 H inductor, 
and a 4.00  × 10−6 F capacitor connected to a 120 V rms AC source at 300 Hz, as 
shown in Fig. 15.11. Calculate

(a) impedance of the circuit.. 
(b) power factor of the circuit. 
(c) root mean square current. 
(d) average power dissipated by the circuit. 

(Answer: (a) 163 y; (b) 0.613; (c) 0.736 A; (d) 54.1 W)
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Fig. 15.11 Alternating 
current series RLC circuit, 
Exercise 15.4

Exercise 15.5 What is the resonant frequency of the RLC circuit of Fig. 15.11 in 
Exercise 4? If the AC generator operates at the resonant frequency with the same 
120 V rms voltage what are the root mean square current and the average power 
dissipated by the circuit? 

(Answer: 1780 Hz, 1.20 A, 144 W)



Chapter 16
Electromagnetic Wave

Abstract This chapter solves problems on plane electromagnetic wave, associated
Poynting vector, and radiation pressure. These include determination of electric and
magnetic field amplitudes and directions, intensity, energy density, and direction of
propagation of the electromagnetic waves. Both solutions by analysis and computer
calculation are presented. An animation of traveling plane electromagnetic wave is
presented.

16.1 Basic Concepts and Formulae

(1) Laws of electromagnetism can be summarized as four equations called
Maxwell’s equations. Table 16.1 lists the four Maxwell’s equations in integral
and differential forms and their meanings.

ε0 = 8.85 × 10−12 F m−1 is permittivity of free space.
μ0 = 4π × 10−7 H m−1 is permeability of free space.
Lorentz force: A particle of charge qmovingwith a velocity of v in an electric

field E and a magnetic field B experiences a force of

F = qE + qv × B.

(2) Electromagnetic waves have the following properties:

(a) Electric field E and magnetic field B satisfy the following wave equations,

∂2E

∂x2
= μ0ε0

∂2E

∂t2
, (16.1)

∂2B

∂x2
= μ0ε0

∂2B

∂t2
. (16.2)
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Table 16.1 Four Maxwell’s equations and their meanings

Integral equation
form

Differential
equation
form

Meaning

∮
E · d A = q

ε0
∇ · E = ρ

ε0
Gauss’ law for electricity. Electric flux from a volume is
proportional to the charge in the volume

∮
B · d A = 0 ∇ · B = 0 Gauss’ law for magnetism. Magnetic flux through a closed

surface is zero. There is no magnetic monopole
∮
B · ds =

μ0 I + μ0ε0
dΦE
dt

∇ × B =
μ0 J +
μ0ε0

∂E
∂t

Ampere’s circuit law. Magnetic field induced in a closed
loop is proportional to the electric current and
displacement current enclosed in the loop

∮
E · ds = − dΦm

dt ∇ × E =
− ∂B

∂t

Maxwell–Faraday equation. Emf induced in a closed loop
is proportional to the rate of change of magnetic flux
enclosed in the loop

(b) Electromagnetic waves move in vacuum with the speed of light c,

c = 1√
μ0ε0

= 3 × 108 m s−1. (16.3)

(c) Electric and magnetic fields of an electromagnetic wave are perpendicular
to each other and the fields are perpendicular to the direction of wave
propagation. Electromagnetic waves are transverse waves. Instantaneous
magnitudes of the electric and magnetic fields satisfy

E

B
= c. (16.4)

(d) Electromagnetic waves carry energy. The rate of energy across unit area is
given by Poynting vector S,

S = 1

μ0
E × B. (16.5)

Direction of S can be determined if directions of E and B are known.
If an electromagnetic wave with average Poynting vector value of

Saverage is incident on an area A, the the power received by the area is,

power = Saverage × A.

Average Poynting vector value Saverage is the intensity I of the electro-
magnetic wave.
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(e) The energy density of electromagnetic waves is

u = uE + uB = 1

2
ε0E

2 + 1

2

B2

μ0

= ε0E
2 = B2

μ0

=
/

ε0

μ0
EB. (16.6)

(f) Electromagnetic waves carry momentum and exert pressure on incident
surface. For electromagnetic waves with Poynting vector of magnitude
S incident normally to a surface and fully absorbed by the surface, the
radiation pressure p is

p = S

c
. (16.7)

(3) Electric and magnetic fields of a plane sinusoidal electromagnetic wave
propagating in the positive x direction (i direction) are written as

E = Emax cos(kx − ω t) j, (16.8)

B = Bmax cos(kx − ω t) k, (16.9)

where ω and k are angular frequency and propagation constant, respectively.
Frequency f , period T, wavelength λ, and speed c of the wave are related as,

ω

k
= λ f = λ

T
= c. (16.10)

(4) Intensity of a plane sinusoidal electromagnetic wave is average value of the
Poynting vector,

I = Saverage = Emax Bmax

2μ0

= E2
max

2μ0c
= cB2

max

2μ0

= E2
rms

μ0c
= cB2

rms

μ0
. (16.11)
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(5) The main origin of electromagnetic waves is acceleration or oscillation of
electric charges. For example, radio waves emitted by an antenna are due to
continuous oscillations of electrons (negatively chargedparticles) in the antenna.

(6) Electromagnetic spectrum consists of waves with wide ranges of frequencies
or wavelengths. These include radio waves, microwaves, infrared, visible light,
ultraviolet, X-rays, and gamma rays. Frequency f andwavelength λ of thewaves
are related by

c = f λ. (16.12)

16.2 Problems and Solutions

Problem 16.1 The frequency of a sinusoidal plane electromagnetic wave is 80MHz.
The wave travels in the positive x direction. At a point on the x-axis, at an instance,
the maximum value of electric field is 750 N C−1 in the y direction.

(a) Calculate the wavelength and period of the wave.
(b) Determine the magnitude and direction of the magnetic field.
(c) Get expressions for the electric and magnetic fields of the wave.

Solution

(a) The wavelength of the electromagnetic wave is, Eq. (16.10),

λ = c

f
= 3 × 108 m/s

80 × 106 s−1
= 3.7 m.

The period of the wave is

T = 1

f
= 1

80 × 106 s−1
= 1.2 × 10−8 s.

(b) The magnitude of the magnetic field is, Eq. (16.4),

Bmax = Emax

c
= 750 N/C

3 × 108 m/s
= 2.5 × 10−6 T.
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The magnetic field B is in the positive z direction.

(c) The propagation constant k is

k = 2π

λ
= 2π

3.7 m
= 1.7 m−1.

The angular frequency ω is

ω = 2π f = 2π(80 × 106s−1) = 5.0 × 108 s−1.

The expression for electric field is

E = Emax cos(kx − ωt)

= 750 cos(1.7x − 5.0 × 108t).

The expression for magnetic field is

B = Bmax cos(kx − ωt)

= 2.5 × 10−6 cos(1.7x − 5.0 × 108t).

♦ wxMaxima codes:

(%i4) fpprintprec:5; c:3e8; f:80e6; Emax:750; 
(fpprintprec) 5 
(c) 3.0*10^8 
(f) 8.0*10^7 
(Emax) 750 
(%i5) lambda: c/f; 
(lambda) 3.75 
(%i6) T: 1/f; 
(T) 1.25*10^-8 
(%i7) Bmax: Emax/c; 
(Bmax) 2.5*10^-6 
(%i8) k: float(2*%pi/lambda); 
(k) 1.6755 
(%i9) omega: float(2*%pi*f); 
(omega) 5.0265*10^8 

Comments on the codes:

(%i4) Set floating point print precision to 5, assign
values of c, f , and Emax.

(%i5), (%i6), (%i7), (%i8), (%i9) Calculate λ, T, Bmax, k, and ω.

Problem 16.2 A radio station emits radio waves of frequency 104.1MHz. Calculate
the wavelength and the number of wave peaks per second passing through a point
5.0 km away from the station.
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Solution

The wavelength of the radio wave is, Eq. (16.10),

λ = c

f
= 3 × 108m/s

104.1 × 106s−1
= 2.9 m.

Number of wave peaks per second passing through a point is the frequency of the
wave that is 104.1 × 106 Hz.

♦ wxMaxima codes:

(%i3) fpprintprec:5; c:3e8; f:104.1e6; 
(fpprintprec) 5 
(c) 3.0*10^8 
(f) 1.041*10^8 
(%i4) lambda: c/f; 
(lambda) 2.8818 

Comments on the codes:

(%i3) Set floating point print precision to 5, assign values of c and f .
(%i4) Calculate λ.

Problem 16.3 Average power output of an electromagnetic radiation point source
is Paverage = 900 W. At a point 3.5 m from the source, calculate

(a) the maximum electric and magnetic fields
(b) the energy density.

Solution

(a) The intensity of an electromagnetic radiation at a distance r from the point
source of power Paverage is

I = Paverage

4πr2
.

The electromagnetic point wave radiates equally in all directions, and on the
surface of a sphere of radius r the power per unit area is Paverage/(4πr2).

The intensity in terms of electric field amplitude of the electromagnetic wave
is (Eq. 16.11),

I = E2
max

2μ0c
.

The maximum electric field (the electric field amplitude) is calculated as
follows:



16.2 Problems and Solutions 431

Paverage

4πr2
= E2

max

2μ0c
,

Emax =
(

μ0cPaverage

2πr2

)1/2

=
(

(4π × 10−7 N/A2)(3 × 108 m/s)(900 W)

2π(3.5 m)2

)1/2

= 66 V m−1.

The maximum magnetic field (the magnetic field amplitude) is, Eq. (16.4),

Bmax = Emax

c
= 66 V m−1

3 × 108 m/s
= 2.2 × 10−7 T.

(b) The energy density of the electromagnetic wave 3.5 m from the source is,
Eq. (16.6),

u = B2
max

μ0
= (2.2 × 10−7 T)2

4π × 10−7 N/A2 = 3.9 × 10−8 J m−3.

♦ wxMaxima codes:

(%i5) fpprintprec:5; c:3e8; mu0:float(4*%pi*1e-7); Paverage:900; r:3.5; 
(fpprintprec) 5 
(c) 3.0*10^8  
(mu0) 1.2566*10^-6 
(Paverage) 900 
(r) 3.5 
(%i6) Emax: float(sqrt(mu0*c*Paverage/(2*%pi*r^2))); 
(Emax) 66.394 
(%i7) Bmax: Emax/c; 
(Bmax) 2.2131*10^-7 
(%i8) u: Bmax^2/mu0; 
(u) 3.8977*10^-8 

Comments on the codes:

(%i5) Set print point precision to 5, assign values of c, μ0,
Paverage, and r.

(%i6), (%i7), (%i8) Calculate Emax, Bmax, and u.

Problem 16.4 The wavelength range of visible light is 390 nm (violet) to 780 nm
(red). Determine the frequency range of visible light.

Solution

Frequencies of violet and red lights are calculated as follows, Eq. (16.12),
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c = λ f,

f = c

λ
,

fviolet = c

λviolet
= 3 × 108 m/s

390 × 10−9 m
= 7.7 × 1014 Hz,

fred = c

λred
= 3 × 108 m/s

780 × 10−9 m
= 3.8 × 1014 Hz.

Thus, the frequency range of visible light is 3.8 × 1014 Hz to 7.7 × 1014 Hz.

♦ wxMaxima codes:

(%i2) fpprintprec:5; c:3e8; 
(fpprintprec) 5 
(c) 3.0*10^8 
(%i3) fviolet: c/390e-9; 
(fviolet) 7.6923*10^14 
(%i4) fred: c/780e-9; 
(fred) 3.8462*10^14 

Comments on the codes:

(%i2) Set floating point print precision to 5 and assign value of c.
(%i3), (%i4) Calculate f violet and f red .

Problem 16.5 A car moves at a speed of v toward an observer. An electromagnetic
wave of frequency f is incident on the car, reflected from it, and is received by the
observer. The frequency of the wave received is

freceived =
(

1 + 2v

c

)

f.

Use the information to solve the following problem.
A 1000 MHzelectromagnetic wave is sent by a stationary observer to a car which

moves toward him. The frequency received by the observer increased by 150 Hz.
Calculate the speed of the car.

Solution

The speed of the car is calculated as follows:

freceived =
(

1 + 2v

c

)

f,

(1000 × 106 + 150) Hz =
(

1 + 2v

3 × 108 m/s

)
(
1000 × 106 Hz

)
,
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v = 22.5 m s−1

= 22.5/1000 × 3600 km h−1

= 81 km h−1.

♦ wxMaxima codes:

(%i2) fpprintprec:5; ratprint: false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve(1000e6+150=(1+2*v/3e8)*1000e6, v)$ float(%); 
(%o4) [v=22.5] 
(%i5) km_per_h: 22.5/1000*3600; 
(km_per_h) 81.0 

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.

(%i4) Solve (1000 × 106 + 150) = (1 + 2v
3×108 )(1000 × 106) for v.

(%i5) Convert speed to km/h.

Problem 16.6 Sunlight with intensity 1000 W m−2 falls on a 10 × 20 m roof.
Calculate,

(a) power received by the roof.
(b) radiation pressure on the roof by assuming the light is completely absorbed by

the roof.
(c) energy received by the roof in one hour.

Solution

(a) The intensity, I, or the average value of Poynting vector, Saverage, of the sunlight
is 1000 W m−2. The power received by the roof is

power = Saverage × A = (1000 W/m2)(10 × 20) m2 = 2.0 × 105 W.

(b) The radiation pressure on the roof is, Eq. (16.7),

p = Saverage

c
= 1000 W/m2

3 × 108 m/s
= 3.3 × 10−6 N m−2.

(c) The energy received by the roof in one hour,

energy = power × time = (2.0 × 105 W)(3600 s) = 7.2 × 108 J.
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♦ wxMaxima codes:

(%i4) fpprintprec:5; S:1000; A:10*20; c:3e8; 
(fpprintprec) 5 
(S) 1000 
(A) 200 
(c) 3.0*10^8 
(%i5) Power: S*A; 
(Power) 200000 
(%i6) P: S/c; 
(P) 3.3333*10^-6 
(%i7) Energy: Power*3600; 
(Energy) 720000000

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of S,
A, and c.

(%i5), (%i6), (%i7) Calculate power, radiation pressure P, and energy.

Problem 16.7 The average solar energy falling on a surface in unit time and area is
1000 W m−2.

(a) Calculate the energy that falls on a 5.0 m × 5.0 m surface in one hour.
(b) What is the momentum transferred to the surface in one hour?
(c) If all the energy is converted to electrical energy, how many bulbs of 100W can

be lighted?

Solution

(a) The energy U falling on the surface in one hour is

U = intensity × area × time

= (1000 W/m2)(5.0 m × 5.0 m)(3600 s) = 9.0 × 107 J.

(b) The momentum transferred to the surface in one hour is

momentum = U

c
= 9.0 × 107 J

3 × 108 m/s
= 0.30 kg m s−1.

(c) The number of bulbs that can be lighted is

power

power of a bulb
= intensity × area

power of a bulb
= (1000 W/m2)(5.0 m × 5.0 m)

100 W
= 250.

♦ wxMaxima codes:
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(%i1) U: 1000*5*5*3600; 
(U) 90000000 
(%i2) momentum: U/3e8; 
(momentum) 0.3 
(%i3) 1000*5*5/100; 
(%o3) 250

Comment on the codes:

(%i1), (%i2), (%i3) Calculate energy U, momentum, and number of bulbs.

Problem 16.8 A 6.0 × 107 Hz plane sinusoidal electromagnetic wave propagates in
free space in the positive x direction. The magnetic field of the wave is in the z-axis
and its amplitude is 5.0 × 10−7 Wb m−2.

(a) Calculate the wavelength.
(b) Determine the electric field of the wave.
(c) Write expressions for the electric and magnetic fields of the wave.
(d) Calculate the Poynting vector and its average value.

Solution

(a) The wavelength of the electromagnetic wave is, Eq. (16.10),

λ = c

f
= 3 × 108 m/s

6.0 × 107 s−1
= 5.0 m.

(b) The amplitude of the electric field is, Eq. (16.4),

E0 = cB0 = 3 × 108 m/s × 5.0 × 10−7 Wb/m2 = 150 V m−1.

The electric field is in the positive y direction.

(c) General forms of the electric and magnetic fields of a plane sinusoidal
electromagnetic wave are

E = E0 cos(kx − ωt),

B = B0 cos(kx − ωt),

where E0 and B0 are amplitudes of the electric and magnetic fields, while k
and ω are propagation constant and angular frequency of the wave, respectively.
The propagation constant and angular frequency are

k = 2π

λ
= 2π

5.0 m
= 1.3 m−1,

ω = 2π f = 2π × 6.0 × 107 s−1 = 3.8 × 108 s−1.
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The electric and magnetic fields of the electromagnetic wave are

E = E0 cos(kx − ωt) j = 150 cos(1.3x − 3.8 × 108t) j V m−1,

B = B0 cos(kx − ωt) k = 5.0 × 10−7 cos(1.3x − 3.8 × 108t) k Wb m−2.

(d) The Poynting vector is, Eq. (16.5),

S = E × B
μ0

= 150 cos(1.3x − 3.8 × 108t) j × 5.0 × 10−7 cos(1.3x − 3.8 × 108t) k

4π × 10−7

= 60 cos2(1.3x − 3.8 × 108t) i W m−2.

The average value of Poynting vector is, Eq. (16.11),

Saverage = E0B0

2μ0
= 150 × 5.0 × 10−7

4π × 10−7
= 30 W m−2.

♦ wxMaxima codes:

(%i5) fpprintprec:5; c:3e8; f:6e7; B0:5e-7; mu0:float(4*%pi*1e-7); 
(fpprintprec) 5 
(c) 3.0*10^8 
(f) 6.0*10^7 
(B0) 5.0*10^-7 
(mu0) 1.2566*10^-6 
(%i6) lambda: c/f; 
(lambda) 5.0 
(%i7) E0: c*B0; 
(E0) 150.0 
(%i8) k: float(2*%pi/lambda); 
(k) 1.2566 
(%i9) omega: float(2*%pi*f); 
(omega) 3.7699*10^8 
(%i10) float(E0*B0/mu0); 
(%o10) 59.683 
(%i11) Saverage: E0*B0/(2*mu0); 
(Saverage) 29.842

Comments on the codes:

(%i5) Set floating point print precision to 5, assign values
of c, f , B0, and μ0.

(%i6), (%i7), (%i8), (%i9),
(%i11)

Calculate λ, E0, k, ω, and Saverage.

Problem 16.9 The electric fields of a plane electromagnetic wave propagating in
free space are
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Ex = Ey = 0,

Ez = 100 sin[8π × 1014(t − x

3 × 108
)].

(a) Calculate the flux density of the wave.
(b) Determine the direction of propagation of the wave.
(c) Write the wave electric field in vector form.
(d) Write the wave magnetic field in vector form.
(e) Calculate Poynting vector of the wave.

Solution

(a) Flux density I of the wave is the average of Poynting vector Saverage, Eqs. (16.11)
and (16.3),

I = Saverage = 1

2
cε0E

2
0

= 1

2
(3 × 108 m/s)(8.85 × 10−12 F/m) × (100 V/m)2

= 13 W m−2.

(b) From the expression of Ez it is deduced that the wave is propagating in the
positive x direction, that is, the i direction. This is the direction of Poynting
vector S.

(c) The electric field of the wave is

E = 100 sin[8π × 1014(t − x

3 × 108
)] k V m−1.

(d) The amplitude B0 of the magnetic field is, Eq. (16.4),

B0 = E0

c
= 100 V/m

3 × 108 m/s
= 3.3 × 10−7 Wb m−2.

From the formula S = (1/μ0) E × B and the right hand rule for cross
product of two vectors, it is deduced that the direction of B is the negative y
direction or –j direction. We write

Bx = Bz = 0,

By = −3.3 × 10−7 sin

[

8π × 1014
(

t − x

3 × 108

)]

Wb m−2,

B = −3.3 × 10−7 sin

[

8π × 1014
(

t − x

3 × 108

)]

j Wb m−2.
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(e) The Poynting vector is, Eq. (16.5),

S = E × B
μ0

= 1

4π × 10−7
× 100 sin

[

8π × 1014
(

t − x

3 × 108

)]

k

× (−3.3 × 10−7) sin

[

8π × 1014
(

t − x

3 × 108

)]

j

= 27 sin2
[

8π × 1014
(

t − x

3 × 108

)]

i W m−2.

♦ wxMaxima codes:

(%i5) fpprintprec:5; c:3e8; epsilon0:8.85e-12; mu0:float(4*%pi*1e-7);   
E0:100; 
(fpprintprec) 5 
(c) 3.0*10^8 
(epsilon0) 8.85*10^-12 
(mu0) 1.2566*10^-6 
(E0) 100 
(%i6) I: 0.5*c*epsilon0*E0^2; 
(I) 13.275 
(%i7) B0: E0/c; 
(B0) 3.3333*10^-7 
(%i8) E0*B0/mu0; 
(%o8) 26.526 
(%i9) load("vect"); 
(%o9) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac" 
(%i10) Evec: [0,0,E0*sin(8*%pi*1e14*(t-x/3e8))]; 
(Evec) [0,0,100*sin(8.0*10^14*%pi*(t-3.3333*10^-9*x))] 
(%i11) Bvec: [0, -B0*sin(8*%pi*1e14*(t-x/3e8)), 0]; 
(Bvec) [0,-3.3333*10^-7*sin(8.0*10^14*%pi*(t-3.3333*10^-9*x)),0] 
(%i13) Svec: Evec~Bvec/mu0; express(%); 
(Svec) 7.9577*10^5*[0,0,100*sin(8.0*10^14*%pi*(t-3.3333*10^-9*x))] 
~[0,-3.3333*10^-7*sin(8.0*10^14*%pi*(t-3.3333*10^-9*x)),0] 
(%o13) [26.526*sin(8.0*10^14*%pi*(t-3.3333*10^-9*x))^2,0,0]

Comments on the codes:

(%i5) Set floating point print precision to 5, assign values of c,
ε0, μ0, and E0.

(%i6), (%i7), (%i8) Calculate I, B0, and E0B0/μ0.
(%i9) Load “vect” package.
(%i10, (%i11) Assign vectors E and B.
(%i13) Calculate Poynting vector, S.
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Problem 16.10

(a) Determine the equation for electric field of a 104.1 MHz radio wave of propa-
gating in the positive x direction. Root mean square value of the electric field is
3.0 mV m−1.

(b) What is the equation of magnetic field of the radio wave?

Solution

(a) Assume the equations for the electric fields are,

Ex = Ez = 0,

Ey = E0 cos[ω(t − x

c
)].

The electric field amplitude E0 and angular frequency ω are,

E0 = √
2Erms = √

2(3.0 mV/m) = 4.2 mV/m = 4.2 × 10−3 V m−1,

ω = 2π f = 2π(104.1 × 106) = 6.5 × 108 s−1.

The equations for the electric field of the radio wave are

Ey = 4.2 × 10−3 cos

[

6.5 × 108
(

t − x

3 × 108

)]

V m−1,

E = 4.2 × 10−3 cos

[

6.5 × 108
(

t − x

3 × 108

)]

j V m−1.

(b) The amplitude of the magnetic field of the radio wave is, Eq. (16.4),

B0 = E0

c
= 4.2 × 10−3 V/m

3 × 108 m/s
= 1.4 × 10−8 Wb m−2.

The equations of the magnetic field of the radio wave are,

Bx = By = 0,

Bz = B0 cos
[
ω

(
t − x

c

)]

= 1.4 × 10−8 cos

[

6.5 × 108
(

t − x

3 × 108

)]

Wb m−2,

B = 1.4 × 10−8 cos

[

6.5 × 108
(

t − x

3 × 108

)]

k Wb m−2.

♦ wxMaxima codes:
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(%i4) fpprintprec:5; f:104.1e6; c:3e8; Erms:3; 
(fpprintprec) 5 
(f) 1.041*10^8 
(c) 3.0*10^8 
(Erms) 3 
(%i5) E0: float(sqrt(2)*Erms); 
(E0) 4.2426 
(%i6) omega: float(2*%pi*f); 
(omega) 6.5408*10^8 
(%i7) B0: E0/c; 
(B0) 1.4142*10^-8

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of f , c, and
Erms.

(%i5), (%i6), (%i7) Calculate E0, ω, and B0.

Problem 16.11 A plane sinusoidal electromagnetic wave propagates in the positive
x direction. The electric and magnetic fields of the wave are

E = Emax cos(kx − ω t),

B = Bmax cos(kx − ω t),

where ω and k are angular frequency and propagation constant, respectively.
Frequency f , wavelength λ, and speed c of the wave are related as

ω

k
= λ f = c.

Sketch the wave at time t = 0.

Solution

Figure 16.1 shows the sketch of the wave. This is a snap shot of the wave at time t
= 0.

Fig. 16.1 Problem 16.11
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The wave moves in the positive x direction with speed c. The electric field E is in
the y-axis and the magnetic field B is in the z-axis. Directions of the fields satisfy

S = 1

μ0
E × B

and the right hand rule of cross product of two vectors.
The electric field is

E = Emax cos(kx − ω t) j

The magnetic field is,

B = Bmax cos(kx − ω t) k

The Poynting vector is

S = 1

μ0
E × B = Emax Bmax

μ0
cos2(kx − ωt) i.

♦ The following wxMaxima codes give an animation of a travelling electromagnetic
wave:

(%i1) with_slider_draw3d( 
 d, makelist(i,i,0,5,0.5), 
 axis_3d=false, 
 zrange=[-1,1.3], 
 yrange=[-1.3,1], 
 color=blue,nticks=50,parametric(x,0,cos(x-d),x,0,5*%pi), 
 color=red,nticks=50,parametric( y, -cos(y-d),0,y,0,5*%pi), 
 color=black,parametric(0,y,0,y,-1,1), 
 color=black,head_length=0.5,head_angle=15,vector([0,0,0], [0,-1,0]), 
 color=grey,parametric(5*%pi,y,0,y,-1,1), 
 color=black,parametric(0,0,z,z,-1,1), 
 color=black,head_length=0.5,head_angle=15,vector([0,0,0], [0,0,1]), 
 color=grey,parametric(5*%pi,0,z,z,-1,1), 
 color=black,head_length=0.5,head_angle=15,vector([0,0,0], [19,0,0]), 
 color=black, 
 label(["{/Helvetica-Italic y}", -0.9 ,0,1.2]), 
 label(["{/Helvetica-Italic-Bold E}", -1.8 ,0,0.8]), 
 label(["{/Helvetica-Italic z}", 1.5 ,-1,-0.1]), 
 label(["{/Helvetica-Italic-Bold B}",-1.5,-0.7,0.1]), 
 label(["{/Helvetica-Italic x}", 20, 0, 0]), 
 label(["{/Helvetica-Italic-Bold S}", 18,0,-0.2])  );   

Comments on the codes:

To run the animation, copy the codes to the wxMaxima command window; press
<shift> and <enter> keys simultaneously to run the codes; right click the graphic
that appears and choose Start Animation.
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16.3 Summary

• The four Maxwell’s equations and the Lorentz force law encompass the major
laws of electricity and magnetism.

• The origin of electromagnetic waves is acceleration, deceleration, or oscillation
of electric charges.

• For plane electromagnetic waves, the directions of the electric andmagnetic fields
of the wave, and the direction of the wave propagation, are all mutually perpen-
dicular. The electromagnetic wave is a transverse wave of oscillating electric and
magnetic fields.

• The speed of the electromagnetic wave c is related to the electric field E and
magnetic field B as

c = E

B
= 1√

μ0ε0
.

• The wavelength λ, frequency f , and speed c of an electromagnetic wave is related
as

c = λ f.

• The rate that electromagnetic energy passes through a unit area is given by
Poynting’s vector S

S = 1

μ0
E × B.

• Intensity of a plane sinusoidal electromagnetic wave is the average value of the
Poynting vector

I = Saverage = Emax Bmax

2μ0

= E2
max

2μ0c
= cB2

max

2μ0

= E2
rms

μ0c
= cB2

rms

μ0
.

• For electromagnetic waves with Poynting vector S incident normally to a surface
and fully absorbed by the surface, the radiation pressure p is

p = S

c
.
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16.4 Exercises

Exercise 16.1 A60.0W light bulb radiates light uniformly in all direction. Calculate
the average intensity, rms value of the electric field, and rms value of magnetic field
at a distance 0.400 m from the bulb.

(Answer: I = 29.8 W m−2, Erms = 106 V m−1, Brms = 3.54 × 10−7 T)

Exercise 16.2 The amplitude of electric field of a plane electromagnetic wave is
100 V m−1. What is the intensity of the wave?

(Answer: 13 W m−2)

Exercise 16.3 Write the equations for the electric and magnetic fields of a plane
radio wave from a 88.9 MHz radio station. The wave is traveling in the positive x
direction and the rms electric field is 3.0 × 10−3 V m−1.

(Answer: E = 4.2 × 10−3 sin (1.9x − 5.6 × 108t) j V m−1,

B = 1.4 × 10−11 sin (1.9x − 5.6 × 108t)k T)

Exercise 16.4 The electric field component E of a plane electromagnetic wave
travelling in the positive z direction is given by

E = 100 sin (9.4 × 106z − 2.8 × 1015t) i V m−1.

(a) Determine the speed, frequency, wavelength, period, electric field amplitude.
(b) Write an expression for the magnetic field component B of the electromagnetic

wave.

(Answer: (a) 3.0 × 108 m s−1, 4.5 × 1014 Hz, 6.7 × 10−7 m,

2.2 × 10−15 s, 100 V m−1;
(b) B = 3.3 × 10−7 sin (9.4 × 106z − 2.8 × 1015t) j T)

Exercise 16.5 Sunlight with energy flux of 1000 W m−2 incidents normally on a
mirror of area 0.30 m2.

(a) What is the energy delivered in one minute?
(b) Calculate the radiation pressure on the mirror.

(Answer: (a) 1.8 × 104 J (b) 6.7 × 10−6 N m−2)



Chapter 17 
Light Phenomena 

Abstract This chapter solves problems on geometrical optics. These include 
problems on light reflection, refraction, total internal reflection, dispersion, and 
polarization. Problems are solved analytically and by computer calculation. 

17.1 Basic Concepts and Formulae 

(1) Lights are electromagnetic waves. Speed of light, c, in vacuum is, 

c = 
1 √
μ0ε0 

= 3 × 108 m s−1 , 

where ε0 = 8.85 × 10−12 F m−1 is permittivity of free space and μ0 = 4π × 
10−7 H m−1 is permeability of free space. Electric and magnetic fields of a 
light wave are perpendicular to each other and the fields are perpendicular to 
direction of light propagation. Light waves are transverse waves. 

The frequency of light is in the range of 4.0 × 1014 Hz (red) to 7.5 × 1014 Hz 
(violet). This corresponds to wavelength in the range of 7.5 × 10−7 m (red) to 
4.0 × 10−7 m (violet). 

(2) In geometrical optics, light travels in a medium in a straight line called ray. 
The ray model of light describes the path of light as straight lines. Geometrical 
optics deals with the ray aspect of light. 

(3) Law of reflection states that angle of incident θ i is equal to angle of reflection 
θ r . Incident ray, reflected ray, and normal to the reflecting surface lie in the 
same plane, as shown in Figure 17.1.

(4) Law of refraction or Snell’s law states that 

n1 sin θ1 = n2 sin θ2, (17.1)
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Fig. 17.1 Law of reflection, 
angle of incident is equal to 
angle of reflection

Fig. 17.2 Snell’s law or law 
of refraction, n1 sin θ 1 = n2 
sin θ 2 

where θ 1 and θ 2 are angles of incidence and refraction, while n1 and n2 are 
indices of refraction of first and second media, respectively. Incident ray, 
refracted ray, and normal to the refracting surface lie in the same plane, as 
shown in Figure 17.2. 

(5) Index of refraction (refractive index) of a medium is 

n = 
c 

v 
, (17.2) 

where c is speed of light in vacuum and v is speed of light in the medium. 
Also, index of refraction is 

n = 
λ0 

λn 
, (17.3) 

where λ0 is wavelength of light in vacuum and λn is wavelength of light in the 
medium. 

(6) Huygen’s principle states that every point on the wave front is a point wave 
source producing a wavelet. At a later time, the wave front is a surface tangent 
to the wavelets. 

(7) Total internal reflection can occur when light travels from a medium with 
higher index of refraction to another with a lower one. The minimum incident 
angle, θ c, for the total internal reflection is given by 

sin θc = 
n2 
n1 

, (n1 > n2) (17.4)
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Fig. 17.3 Total internal 
reflection occurs when angle 
of incident θ i is larger than 
critical angle θ c. Angle of 
incident θ i is equal to angle 
of reflection θ r 

where n1 and n2 are indices of refraction of light in medium 1 and 2, respec-
tively, as shown in Figure 17.3. The incident and reflected lights are both in 
medium 1. The angle of incident is larger than θ c for the total internal reflection 
to occur. 

(8) Dispersion is spreading of white light into spectrum of wavelengths. Rainbows 
are produced by a refraction, reflection, and dispersion of sunlight into colors 
by water droplets in the air. 

(9) Polarization is the attribute that wave oscillations have a definite direction rela-
tive to the direction of propagation of the wave. The direction of polarization 
is defined as the direction parallel to the electric field of the electromagnetic 
wave. 

(10) Un-polarized light can be polarized by four processes: (a) selective absorption, 
(b) reflection, (c) double refraction, and (d) dispersion. 

(11) When a polarized light of intensity I0 is incident to a polarizer film, the intensity 
of light, I, that passes the film is 

I = I0 cos2 θ, (17.5) 

where θ is the angle between the polarizer transmission axis and the electric 
field vector of incident light. 

(12) A light reflected from a dielectric material, for example glass, is partially 
polarized. However, the reflected light is completely polarized if the incident 
angle is such that the angle between the reflected and the refracted lights is 
90°. The incident angle is called the polarizing angle, θ P, and, 

n = tan θP , (17.6) 

where n is the index of refraction of the medium. The equation represents the 
Brewster’s law. In other words, Brewster’s law states that reflected light is 
completely polarized at the angle of reflection, θ P, known as Brewster’s angle, 
as illustrated in Figure 17.4.



448 17 Light Phenomena

Fig. 17.4 Brewster’s law, 
n = tan θ P 

17.2 Problems and Solutions 

Problem 17.1 A yellow light beam of wavelength 5890 Å travels in air, water, glass, 
and air, as shown in Fig. 17.5. 

(a) Calculate angles θ 2, θ 3, and θ 4 if the incident angle is 40° and refractive indices 
of air, water, and glass are 1.00, 1.33, and 1.52, respectively. 

(b) What are wavelength and speed of the yellow light in water and glass? 

Solution 

(a) UsingSnell’s law (Eq. 17.1) at the air–water interface, 

nair sin 40
◦ = nwater sin θ2, (17.7) 

giving,

Fig. 17.5 A beam of light 
undergoing multiple 
refractions, Problem 17.1 
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1.00 × sin 40◦ = 1.33 × sin θ2, 
θ2 = 28.9◦. 

At the water–glass interface, 

nwater sin θ2 = nglass sin θ3, 
1.33 × sin 28.9◦ = 1.52 × sin θ3 

θ3 = 25.0◦. (17.8) 

At the glass–air interface, 

nglass sin θ3 = nair sin θ4, 
1.52 × sin 25◦ = 1.00 × sin θ4 

θ4 = 40.0◦. (17.9) 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; n_air:1; n_water:1.33; n_glass:1.52; 
(fpprintprec) 5 
(ratprint) false 
(n_air) 1 
(n_water) 1.33 
(n_glass) 1.52 
(%i7) solve(n_air*sin(40*%pi/180)=n_water*sin(theta2), theta2)$ float(%); 
solve: using arc-trig functions to get a solution. 
Some solutions will be lost. 
(%o7) [theta2=0.50442] 
(%i8) theta2: rhs(%[1]); 
(theta2) 0.50442 
(%i9) theta2_deg: float(theta2*180/%pi); 
(theta2_deg) 28.901 
(%i11) solve(n_water*sin(theta2)=n_glass*sin(theta3), theta3)$ float(%); 
solve: using arc-trig functions to get a solution. 
Some solutions will be lost. 
(%o11) [theta3=0.43663] 
(%i12) theta3: rhs(%[1]); 
(theta3) 0.43663 
(%i13) theta3_deg: float(theta3*180/%pi); 
(theta3_deg) 25.017 
(%i15) solve(n_glass*sin(theta3)=n_air*sin(theta4), theta4)$ float(%); 
solve: using arc-trig functions to get a solution. 
Some solutions will be lost. 
(%o15) [theta4=0.69813] 
(%i16) theta4: rhs(%[1]); 
(theta4) 0.69813 
(%i17) theta4_deg: float(theta4*180/%pi); 
(theta4_deg) 40.0
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Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational 
number print to false, assign values of nair , nwater , and nglass. 

(%i7), (%i8) (%i9) Solve Eq. (17.7) for  θ 2, assign value of θ 2, convert θ 2 to 
degree. 

(%i11), (%i12) (%i13) Solve Eq. (17.8) for  θ 3, assign value of θ 3, convert θ 3 to 
degree. 

(%i15), (%i16) (%i17) Solve Eq. (17.9) for  θ 4, assign value of θ 4, convert θ 4 to 
degree. 

(b) The wavelength and speed of yellow light in water are (Eqs. 17.3 and 17.2), 

λwater = 
λ 

nwater 
= 

5890 Å 

1.33 
= 4429 Å, 

vwater = c 

nwater 
= 

3 × 108 m/s 

1.33
= 2.26 × 108 m s−1 . 

The wavelength and speed of yellow light in glass are, 

λglass = λ 
nglass 

= 
5890 Å 

1.52 
= 3875 Å, 

vglass = c 

nglass 
= 

3 × 108 m/s 

1.52
= 1.97 × 108 m s−1 . 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; lambda:5890; n_water:1.33; n_glass:1.52; c:3e8; 
(fpprintprec) 5 
(lambda) 5890 
(n_water) 1.33 
(n_glass) 1.52 
(c) 3.0*10^8 
(%i7) lambda_water: lambda/n_water; v_water: c/n_water; 
(lambda_water) 4428.6 
(v_water) 2.2556*10^8 
(%i9) lambda_glass: lambda/n_glass; v_glass: c/n_glass; 
(lambda_glass) 3875.0 
(v_glass) 1.9737*10^8
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Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of λ, nwater , nglass, and c. 
(%i7) Calculate λwater and vwater . 
(%i9) Calculate λglass and vglass. 

Problem 17.2 A fish swims at a depth of 1.0 m in water. What is the apparent depth 
as seen from above? Refractive index of water is 1.33. 

Solution 

Figure 17.6 shows a refracted ray from the fish to the observer. 
Using the law of refraction or Snell’s law (Eq. 17.1), we write, 

nwater sin θ1 = nair sin θ2. 

The angles θ 1 and θ 2 are small so that sin θ 1 ≈ θ 1 ≈ x/d and sin θ 2 ≈ θ 2 ≈ x/l. 
We write, 

nwater 
x 

d 
= nair 

x 

l 
. 

The apparent depth is 

l = 
nair 
nwater 

d = 
1.00 

1.33 
× 1.0 m  = 0.75 m. 

This also means that

Fig. 17.6 Refraction of light 
ray, Problem 17.2 
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nwater 

nair 
= depth 

apparent depth 
. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; n_water:1.33; n_air:1; d:1; 
(fpprintprec) 5 
(ratprint) false 
(n_water) 1.33 
(n_air) 1 
(d) 1 
(%i7) solve(n_water/d = n_air/l, l)$ float(%); 
(%o7) [l=0.75188] 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of nwater , nair , and d. 

(%i7) Solve nwater /d = nair / l for l. 

Problem 17.3 Calculate the critical angle of diamond. Indices of refraction of 
diamond and air are 2.42 and 1.00, respectively. 

Solution 

Figure 17.7 shows the critical angle of diamond. 
UsingSnell’s law (Eq. 17.1), 

ndiamond sin θdiamond = nair sin θair . 

At critical angle, 

ndiamond sin θcri tical  = nair sin 90◦, 
2.42 × sin θcri tical  = 1.00 × sin 90◦, 

θcri tical  = 24.4◦.

Fig. 17.7 Critical angle, 
Problem 17.3 
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Total internal reflection occurs if angle of incident is greater than 24.4°. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; ratprint:false; n_diamond:2.42; n_air:1; 
(fpprintprec) 5 
(ratprint) false 
(n_diamond) 2.42 
(n_air) 1 
(%i6) solve(n_diamond*sin(theta_critical)=n_air*sin(90/180*%pi), 
theta_critical)$ float(%); 
solve: using arc-trig functions to get a solution. 
Some solutions will be lost. 
(%o6) [theta_critical=0.42599] 
(%i7) theta_critical: rhs(%[1]); 
(theta_critical) 0.42599 
(%i8) theta_critical_deg: float(theta_critical*180/%pi); 
(theta_critical_deg) 24.407 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print 
to false, assign values of ndiamond and nair . 

(%i6) Solve ndiamond × sin θcri tical  = nair × sin 90◦ for θ critical. 
(%i7), (%i8) Assign value of θ critical and convert the angle to degree. 

Problem 17.4 Figure 17.8 shows an observer seeing the bottom edge of a cylindrical 
tumbler. The diameter of the tumbler is 5.0 cm. When water with refraction index 
of 1.33 completely fills the tumbler, the observer can see the center of bottom of the 
tumbler P. Calculate the height of the tumbler h. 

Solution 

Figure 17.9 shows a light ray from the center of the bottom of the tumbler P being 
refracted in water and air to the observer. A ray from the bottom edge of the tumbler 
straight to the observer when there is no water in the tumbler is shown as well. 

Using Snell’s law (Eq. 17.1), 

nwater sin θwater = nair sin θair , 
1.33 × sin θwater = 1.00 × sin θair , 

1.33 × 2.5 cm  
√
h2 + (2.5 cm)2 

= 5.0 cm  
√
h2 + (5.0 cm)2 

.
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Fig. 17.8 Seeing the bottom 
edge of a cylindrical tumbler, 
Problem 17.4 

Fig. 17.9 Seeing the center 
of bottom of the tumbler P, 
Problem 17.4 

Squaring the last equation and solving for h give the height of the glass, 

1.332 × (2.5 cm)2 

h2 + (2.5 cm)2 
= (5.0 cm)2 

h2 + (5.0 cm)2 
, 

h = 2.9 cm. 

♦ wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve(1.33^2*2.5^2/(h^2 + 2.5^2) = 5^2/(h^2 + 5^2), h)$ float(%); 
(%o4) [h=-2.9353,h=2.9353]
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Fig. 17.10 Seeing a coin in 
water, Problem 17.5 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve 1.332 × 2.52/(h2 + 2.52) = 52/(h2 + 52) for h. 

Problem 17.5 A coin is at the bottom of a water pool of 2.0 m deep. Calculate the 
apparent depth of the coin as seen from above. Index of refraction of water is 1.33. 

Solution 

Figure 17.10 shows the coin at the bottom of the pool and the refracted ray from the 
coin to the observer. 

Using Snell’s law (Eq. 17.1), we have, 

nwater sin θ1 = nair sin θ2. 

Angles θ 1 and θ 2 are small so that sin θ 1 ≈ θ 1 ≈ x/d and sin θ 2 ≈ θ 2 ≈ x/dapparent . 
Here, d and dapparent are the depth and apparent depth of the coin, respectively. The 
equation becomes 

nwater 
x 

d 
= nair 

x 

dapparent 
. 

Therefore, the apparent depth of the coin is 

dapparent = 
nair 
nwater 

d = 1 

1.33 
(2.0 m) = 1.5 m.
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♦ wxMaxima codes: 

(%i4) fpprintprec:5; n_air:1; n_water:1.33; d:2; 
(fpprintprec) 5 
(n_air) 1 
(n_water) 1.33 
(d) 2 
(%i5) d_apparent: n_air/n_water*d; 
(d_apparent) 1.5038 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of nair , nwater , and d. 
(%i5) Calculate dapparent . 

Problem 17.6 The wavelength of a red laser light in air is 632.8 nm. 

(a) Calculate the frequency of the laser light. 
(b) Determine the wavelength of the laser light in glass of refractive index 1.50. 
(c) What is the speed of the laser light in the glass? 

Solution 

(a) The frequency of the laser light is 

f0 = 
c 

λ0 
= 3 × 108 m/s 

632.8 × 10−9 m 
= 4.74 × 1014 s−1 . 

(b) The wavelength of the laser light in glass is calculated as follows (Eq. 17.3), 

nglass = λ0 

λglass 
, 

λglass = λ0 

nglass 
= 

632.8 × 10−9 m 

1.50
= 422 × 10−9 m. 

(c) The speed of the laser light in glass is calculated as follows (Eq. 17.2), 

nglass = c 

vglass 
, 

vglass = c 

nglass 
= 

3 × 108 m/s 

1.50
= 2.00 × 108 m s−1 .
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♦ wxMaxima codes: 

(%i4) fpprintprec:5; c:3e8; lambda0:632.8e-9; n_glass:1.5; 
(fpprintprec) 5 
(c) 3.0*10^8 
(lambda0) 6.328*10^-7 
(n_glass) 1.5 
(%i5) f0: c/lambda0; 
(f0) 4.7408*10^14 
(%i6) lambda_glass: lambda0/n_glass; 
(lambda_glass) 4.2187*10^-7 
(%i7) v_glass: c/n_glass; 
(v_glass) 2.0*10^8 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of c, λ0, 
and nglass. 

(%i5), (%i6), (%i7) Calculate f 0, λglass, and vglass. 

Problem 17.7 A light beam of wavelength 550 nm is incident at 40° to glass and is 
refracted by 25°. Calculate the index of refraction of the glass and the wavelength of 
light in it. 

Solution 

Figure 17.11 shows the light beam traveling the air and the glass. 
Using Snell’s law (Eq. 17.1), the index of refraction of the glass is calculated as 

follows: 

nair sin θair = nglass sin θglass, 

nglass = 
nair sin θair 
sin θglass 

= 
1.00 × sin 40◦ 

sin 25◦ = 1.52. 

The wavelength of light in the glass is (Eq. 17.3), 

λglass = 
λair 

nglass 
= 

550 nm 

1.52 
= 362 nm.

Fig. 17.11 Refraction of 
light, Problem 17.7 
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♦ wxMaxima codes: 

(%i5) fpprintprec:5; theta_air:float(40*%pi/180); 
theta_glass:float(25*%pi/180); n_air:1; lambda_air:550; 
(fpprintprec) 5 
(theta_air) 0.69813 
(theta_glass) 0.43633 
(n_air) 1 
(lambda_air) 550 
(%i6) n_glass: n_air*sin(theta_air)/sin(theta_glass); 
(n_glass) 1.521 
(%i7) lambda_glass: lambda_air/n_glass; 
(lambda_glass) 361.61 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of θ air , θ glass, nair , 
and λair . 

(%i6), (%7) Calculate nglass and λglass. 

Problem 17.8 A beam of light of wavelength 590 nm is incident at 30° to water. 
The index of refraction of water is 1.33. Calculate 

(a) the angle of refraction in water, 
(b) the speed and wavelength of the light in water. 

Solution 

(a) Fig. 17.12 shows the ray of light traveling from air to water. 
Using Snell’s law (Eq. 17.1), the angle of refraction in water is calculated as 

follows, 

nair sin θair = nwater sin θwater , 

sin θwater = 
nair sin θair 

nwater 
= 

1.00 × sin 30◦ 

1.33
= 1.52, 

θwater = sin−1 1.52 = 0.39 rad = 22◦.

Fig. 17.12 Refraction of 
light, Problem 17.8 
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(b) The speed of light in water is (Eq. 17.2), 

vwater = 
c 

nwater 
= 

3 × 108 m/s 

1.33
= 2.26 × 108 m s−1 . 

The wavelength of the light in water is (Eq. 17.3), 

λwater = λair 

nwater 
= 

590 nm 

1.33
= 444 nm. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; theta_air:float(30*%pi/180); n_air:1; n_water:1.33; 
lambda_air: 590; c: 3e8; 
(fpprintprec) 5 
(theta_air) 0.5236 
(n_air) 1 
(n_water) 1.33 
(lambda_air) 590 
(c) 3.0*10^8 
(%i7) theta_water: asin(n_air*sin(theta_air)/n_water); 
(theta_water) 0.38541 
(%i8) theta_water_deg: float(theta_water*180/%pi); 
(theta_water_deg) 22.082 
(%i9) v_water: c/n_water; 
(v_water) 2.2556*10^8 
(%i10) lambda_water: lambda_air/n_water; 
(lambda_water) 443.61 

Comments on the codes: 

(%i6) Set floating point print precision to 5, assign values of θ air , nair , 
nwater , λair , and c. 

(%i7), (%i8) Calculate θ water and convert the angle to degree. 
(%i9), (%i10) Calculate vwater and λwater . 

Problem 17.9 Figure 17.13 shows a light beam is refracted by a glass prism of 60°. 
Angle of incident is 30° and index of refraction of glass is 1.52. Calculate,

(a) the angle the light beam exits the prism θ 4, 
(b) the angle of deviation of the light beam θ D.
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Fig. 17.13 Refraction of 
light by a glass prism, 
Problem 17.9

Solution 

(a) Using Snell’s law (Eq. 17.1) at the left surface of the prism, 

nair sin θ1 = n sin θ2, 
(1.00) sin 30◦ = (1.52) sin θ2, 

θ2 = 19◦. 

where θ 1 is angle of incident, θ 2 is angle of refraction, and n is refraction index 
of the glass. Also, from Fig. 17.13, we have,  

θ2 + θ3 + 120◦ = 180◦, 
θ3 = 180◦ − 120◦ − θ2 

= 180◦ − 120◦ − 19◦ 

= 41◦. 

Using Snell’s law at the right surface of the prism, 

n sin θ3 = nair sin θ4, 
(1.52) sin 41◦ = (1.00) sin θ4, 

θ4 = 83◦. 

where θ 3 in angle of incident and θ 4 is angle of refraction. 
(b) Deviation at the left surface of the prism is θ 1 − θ 2 and deviation at the right 

one is θ 4 − θ 3. Thus, the deviation of the beam is 

θD = θ1 − θ2 + θ4 − θ3 
= θ1 + θ4 − (θ2 + θ3) 
= θ1 + θ4 − A
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= 30◦ + 83◦ − 60◦ 

= 53◦. 

because A = θ 2 + θ 3. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; n:1.52; theta1:float(30*%pi/180); A:60; 
(fpprintprec) 5 
(n) 1.52 
(theta1) 0.5236 
(A) 60 
(%i6) theta2: asin(sin(theta1)/n); theta2_deg: float(theta2*180/%pi); 
(theta2) 0.33519 
(theta2_deg) 19.205 
(%i8) theta3_deg: 180-120-theta2_deg; theta3: float(theta3_deg/180*%pi); 
(theta3_deg) 40.795 
(theta3) 0.71201 
(%i10) theta4: asin(n*sin(theta3)); theta4_deg: float(theta4*180/%pi); 
(theta4) 1.4533 
(theta4_deg) 83.266 
(%i11) thetaD_deg: 30 + theta4_deg - A; 
(thetaD_deg) 53.266 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of n, θ 1 in radian, and 
A in degree. 

(%i6) Calculate θ 2 and convert the angle to degree. 
(%i8) Calculate θ 3 in degree and convert the angle to radian. 
(%i10) Calculate θ 4 and convert the angle to degree. 
(%i11) Calculate θ D in degree. 

Problem 17.10 Figure 17.14 shows a light beam being refracted symmetrically by a 
prism of angle A and refractive index n. The incident beam and the beam coming out 
of the prism are symmetric. The deviation of the beam is a minimum θ D,min. Show 
that the refractive index of the prism is 

n = sin
(
A + θD,min 

2

)
/sin

(
A 

2

)
.

Solution 

Figure 17.15 shows the beam, the prism, and the related angles when the deviation 
of the beam is at minimum.
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Fig. 17.14 Refraction of 
light by a glass prism, 
Problem 17.10

Fig. 17.15 Minimum 
deviation of the light beam, 
Problem 17.10 

At the left side of the prism, angle of incident is θ and angle of refraction is φ. At  
the right side of the prism, angle of incident is φ and angle of refraction is θ. From  
trigonometry, we have 

2φ = A, 

φ = 
A 

2 
. 

Beam deviation at the left side of the prism is θ − φ while beam deviation at the 
right side of the prism is θ − φ, giving total beam deviation as 

θD,min = (θ − φ) + (θ − φ) = 2θ − 2φ. 

We calculate the angle θ, 

θD,min = 2θ − 2φ = 2θ − A, 

θ = 
A + θD,min 

2 
.
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Applying Snell’s law (Eq. 17.1) at the right side of the prism, we obtain the 
refractive index of the prism, 

n sin φ = nair sin θ,  
n sin φ = 1.00 × sin θ,  

n sin

(
A 

2

)
= sin

(
A + θD,min 

2

)
, 

n = sin
(
A + θD,min 

2

)
/

(
A 

2

)
. 

♦ wxMaxima codes: 

(%i1) theta: (A+theta_Dmin)/2; 
(theta) (theta_Dmin+A)/2 
(%i2) phi: A/2; 
(phi) A/2 
(%i3) n: sin(theta)/sin(phi); 
(n) sin((theta_Dmin+A)/2)/sin(A/2) 

Comments on the codes: 

(%i1), (%i2) Define θ and φ. 
(%i3) Calculate n. 

Problem 17.11 The minimum beam deviation of a 60° prism is 37°. What is the 
refractive index of the prism? 

Solution 

Using result of Problem 17.10, the refractive index of the prism is 

n = sin
(
A + θD,min 

2

)
/sin

(
A 

2

)

= sin
(
60◦ + 37◦ 

2

)
/sin

(
60◦ 

2

)

= 1.5. 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; A:float(60*%pi/180); thetaDmin:float(37*%pi/180); 
(fpprintprec) 5 
(A) 1.0472 
(thetaDmin) 0.64577 
(%i4) n: sin((A+thetaDmin)/2)/sin(A/2); 
(n) 1.4979
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Fig. 17.16 A plane  
polarized light reflected from 
water, Problem 17.12 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of A and θ D,min. 
(%i4) Calculate n. 

Problem 17.12 Figure 17.16 shows a completely plane polarized light reflected from 
the surface of water. The index of reflection of water is 1.33. Calculate angle β. 

Solution 

Figure 17.17 shows the situation when a completely plane polarized light is obtained. 
Brewster’s law (Eq. 17.6) is satisfied. The polarizing angle θ P can be calculated 

as follows: 

tan θP = 
nwater 

nair 
= 

1.33 

1.00 
, 

θP = 53◦. 

The angle β is 

β = 90◦ − θP = 90◦ − 53◦ = 37◦.

Fig. 17.17 The polarizing 
angle θ P , Problem 17.12 
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Fig. 17.18 Brewster’s law, 
Problem 17.13 

♦ wxMaxima codes: 

(%i3) fpprintprec:5; n_water:1.33; n_air:1; 
(fpprintprec) 5 
(n_water) 1.33 
(n_air) 1 
(%i5) thetaP: atan(n_water/n_air); thetaP_deg: float(thetaP*180/%pi); 
(thetaP) 0.92609 
(thetaP_deg) 53.061 
(%i6) beta: 90-thetaP_deg; 
(beta) 36.939 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of nwater and nair . 
(%i5) Calculate θ P and convert the angle to degree. 
(%i6) Calculate β. 

Problem 17.13 The polarizing angle for reflected rays of a dielectric material is 58°. 
What is the index of refraction of the material? 

Solution 

Using Brewster’s law (Eq. 17.6), the index of refraction of the material is, Fig. 17.18, 

n = tan θP = tan 58◦ = 1.60.
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♦ wxMaxima codes: 

(%i2) fpprintprec:5; thetaP:58; 
(fpprintprec) 5 
(thetaP) 58 
(%i4) n: tan(thetaP*%pi/180); float(%); 
(n) tan((29*%pi)/90) 
(%o4) 1.6003 

Comment on the codes: 

(%i2) Set floating point print precision to 5 and assign value of θ P. 
(%i4) Calculate n. 

17.3 Summary 

• Light is an electromagnetic wave propagating in vacuum with a speed of 3 × 
108 m s−1. 

• When a light ray strikes a smooth surface, the angle of reflection equals the angle 
of incident. 

• The law of refraction or Snell’s law relates the indices of refraction for two media 
with the angles of incident and refraction of a light ray in them, 

n1 sin θ1 = n2 sin θ2. 

• Total internal reflection occurs at the boundary between two media if the incident 
angle in the first medium is greater than the critical angle, θ c. 

θc = sin−1 n2 
n1 

, (n1 > n2). 

• Polarization is the attribute that wave oscillations have a definite direction relative 
to the direction of propagation of the wave. 

• Brewster’s law states that reflected light is completely polarized at the angle of 
reflection, θ P, 

θP = tan−1 n, 

where the light is incident from air and reflected from a medium with index of 
refraction, n.
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Fig. 17.19 Refraction of 
light, Exercise 17.1 

17.4 Exercises 

Exercise 17.1 A beam of light in water enters a glass slab at an angle of incident of 
40.0°, Fig. 17.19. Index of refraction of water is 1.33 and that of glass is 1.50. What 
is the angle of refraction, θ ? 

(Answer: θ = 34.7°) 

Exercise 17.2 Index of refraction of benzene is 1.50. What is the speed of light in 
benzene? 

(Answer: 2.00 × 108 m s−1) 

Exercise 17.3 A person looks into a swimming pool at the 1.52 m deep level. How 
deep does it look to the person? Index of refraction of water is 1.33. 

(Answer: 1.14 m) 

Exercise 17.4 A vertically polarized light of intensity 100 W m−2 passes through a 
polarizer with its transmission axis at 35.0° to the vertical. What is the transmitted 
intensity of the light? 

(Answer: 67.1 W m−2) 

Exercise 17.5 Calculate Brewster’s angle for light reflected from the top of a water 
surface. Index of refraction of water is 1.33. 

(Answer: θ P = 53.1°)



Chapter 18 
Mirror and Lens 

Abstract This chapter solves problems on image formation by mirrors, spherical 
surfaces, and lenses using geometrical or ray optics. Calculations of image size, 
location, and magnification are performed. Spherical mirror, refraction at a spherical 
surface, lens maker, and thin lens equations are applied. Solutions are by analysis 
and computer calculation of wxMaxima. 

18.1 Basic Concepts and Formulae 

(1) Magnification M of a mirror or lens is defined as ratio of image height h’ to 
object height h or ratio of image distance s’ to object distance s, 

M = 
h'

h 
= − s '

s 
. (18.1) 

Magnification of less than 1 is a minification while magnification of 1 means 
object and image are of the same size. 

Figure 18.1 shows examples of magnification by (a) concave mirror, (b) 
convex mirror, (c) convex lens, and (d) concave lens. Here, f is focal length, F 
is focus point, and C is center of the curvature.

(2) For a spherical mirror of radius, R, the object distance, s, and image distance, 
s’, obey the mirror equation, 

1 

s 
+ 

1 

s ' = 
2 

R 
= 

1 

f 
, (18.2) 

where f = R/2 is focal length of the mirror. Sign convention for spherical mirror 
is as follows:

(a) s is + if the object is in front of the mirror (real object). 
(b) s is − if the object is behind the mirror (virtual object). 
(c) s’ is + if the image is in front of the mirror (real image).
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Fig. 18.1 Magnifications by concave and convex mirrors, convex and concave lenses
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(d) s’ is − if the image is behind the mirror (virtual image). 
(e) f and R are + if the center of curvature is in front of the mirror (concave 

mirror). 
(f) f and R are − if the center of curvature is behind the mirror (convex mirror). 
(g) M is + means upright image. 
(h) M is − means inverted image. 

Figure 18.2 shows ray diagrams for image formation in (a) concave and 
(b) convex spherical mirrors. Here, f is focal length, F is focus point, C is 
center of curvature, and R is radius of curvature. 

(3) For refraction at a spherical surface, 

n1 
s 

+ 
n2 
s ' = 

n2 − n1 
R 

, (18.3) 

where n1 and n2 are refractive indices of medium 1 and 2, and R is the radius 
of the spherical surface. Sign convention for spherical surface refraction,

(a) s is + if the object is in front of the surface (real object).

Fig. 18.2 Image formations by a concave and b convex mirrors 
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Fig. 18.3 Refraction at a 
spherical surface 

(b) s is − if the object is behind the surface (virtual object). 
(c) s’ is + if the object is behind the surface (real image). 
(d) s’ is − if the object is in front of the surface (virtual image). 
(e) R is + if the center of curvature is behind the surface. 
(f) R is − if the center of curvature is in front of the surface. 

Figure 18.3 shows the object and image locations in a refraction at a spherical 
surface of radius of curvature, R. 

(4) Lens maker equation for thin lens, 

1 

f 
= (n − 1)

(
1 

R1 
− 

1 

R2

)
. (18.4) 

The equation is for thin lens in air. Here, f is the focal length, n is index of 
refraction of the lens material, R1 and R2 are the radii of curvature of the first 
and second surfaces of the lens, respectively. The object is on the left of the lens. 
Radius of curvature is positive if the object faces convex surface and negative 
if it faces concave surface. 

If the lens is in a medium with index of refraction nmedium, i.e. not in air, n is 
replaced with n/nmedium. 

Figure 18.4 shows the quantities that affect the focal length according to the 
lens maker equation.

Thin lens equation: the object distance, s, image distance, s’, and focal length 
of the lens, f , satisfy 

1 

f 
= 

1 

s 
+ 

1 

s ' . (18.5) 

Sign convention for thin lens,

(a) s is + if the object is in front of the lens. 
(b) s is − if the object is behind the lens 
(c) s’ is + if the image is behind the lens. 
(d) s’ is − if the image is in front of the lens. 
(e) R1 and R2 are + if the center of curvature is behind the lens
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Fig. 18.4 Parameters of lens 
maker equation

(f) R1 and R2 are − if the center of curvature is in front of the lens. 

Figure 18.5 shows ray diagrams for image formation in converging and diverging 
lenses. 

Fig. 18.5 Image formations by a convex and b concave lenses
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18.2 Problems and Solutions 

Problem 18.1 An object is placed 4.0 m in front of a concave mirror with radius of 
curvature 40 cm. Determine location of the image and the magnification. 

Solution 

The relation between object distance, s, image distance, s’, and radius of curvature, 
R, of a concave mirror is (Eq. 18.2), 

2 

R 
= 

1 

s 
+ 

1 

s ' . 

For this problem, the image distance, s’, is calculated as follows: 

2 

0.40 m 
= 1 

4.0 m  
+ 

1 

s ' , 

s ' = 0.21 m. 

The image is real, inverted, 0.21 m in front of the concave mirror. 
The magnification is, 

M = − s '

s 
= −  

0.21 m 

4.0 m  
= −0.05. 

Negative magnification means the image is inverted. The absolute value of magni-
fication is less than 1.00 means the image is minified, that is, the image is smaller 
than the object. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; ratprint:false; R:0.4; s:4; 
(fpprintprec) 5 
(ratprint) false 
(R) 0.4 
(s) 4 
(%i6) solve(2/R = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o6) [s_prime=0.21053] 
(%i7) s_prime: rhs(%[1]); 
(s_prime) 0.21053 
(%i8) M: -s_prime/s; 
(M) -0.052632 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print 
to false, assign values of R and s. 

(%i6) Solve 2 R = 1 s + 1 s ' for s’.
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(%i7), (%i8) Assign s’ and calculate M. 

Problem 18.2 The focal length of a concave mirror is 10 cm. Determine image 
distance and magnification if the object distance is (a) 25 cm, (b) 20 cm, (c) 10 cm, 
and (d) 5.0 cm. 

Solution 

(a) Using the concave mirror equation (Eq. 18.2), the image distance is calculated 
as follows: 

1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

10 cm 
= 1 

25 cm 
+ 

1 

s ' , 

s ' = 17 cm. 

The magnification is 

M = −  
s '

s 
= −  

17 cm 

25 cm 
= −0.67. 

The image is smaller than the object as the magnitude of M is less than 1.0, 
inverted as M is negative, real, and in front of the concave mirror. 

♦ wxMaxima codes: 

(%i4) fpprintprec: 5; ratprint: false; f: 10; s: 25; 
(fpprintprec) 5 
(ratprint) false 
(f) 10 
(s) 25 
(%i6) solve(1/f = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o6) [s_prime=16.667] 
(%i7) s_prime: rhs(%[1]); 
(s_prime) 16.667 
(%i8) M: -s_prime/s; 
(M) -0.66668 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print 
to false, assign values of f and s. 

(%i6) Solve 1 f = 1 s + 1 s ' for s’. 
(%i7), (%i8) Assign s’ and calculate M. 

(b) Repeat the calculation for object distance, s = 20 cm, and we obtained the image 
distance, s’, as
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1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

10 cm 
= 1 

20 cm 
+ 

1 

s ' , 

s ' = 20 cm. 

The magnification is, 

M = −  
s '

s 
= −  

20 cm 

20 cm 
= −1.0. 

The image is the same size as the object as the magnitude of M is 1.0, inverted 
as M is negative, real, in the front of the concave mirror. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; ratprint:false; f:10; s:20; 
(fpprintprec) 5 
(ratprint) false 
(f) 10 
(s) 20 
(%i6) solve(1/f = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o6) [s_prime=20.0] 
(%i7) s_prime: rhs(%[1]); 
(s_prime) 20.0 
(%i8) M: -s_prime/s; 
(M) -1.0 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print 
to false, assign values of f and s. 

(%i6) Solve 1 f = 1 s + 1 s ' for s’. 
(%i7), (%i8) Assign s’ and calculate M. 

(c) Repeat the calculation for object distance, s = 10 cm, and we obtained, 

1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

10 cm 
= 1 

10 cm 
+ 

1 

s ' , 

s ' = ∞. 

Rays from an object at the focal point reflect off the concave mirror and 
neither converge nor diverge. After the reflection, the rays travel parallel to each 
other to infinity and do not result in formation of an image.
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(d) Repeat the calculation for object distance, s = 5.0 cm, and we obtained the 
image distance, s’, as  

1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

10 cm 
= 1 

5 cm  
+ 

1 

s ' , 

s ' = −10 cm. 

The magnification is, 

M = −  
s '

s 
= −−10 cm 

5.0 cm  
= 2.0. 

The image is bigger than the object as the magnitude of M is greater than 
1.0, upright as M is positive, virtual, behind the concave mirror. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; ratprint:false; f:10; s:5; 
(fpprintprec) 5 
(ratprint) false 
(f) 10 
(s) 5 
(%i6) solve(1/f = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o6) [s_prime=-10.0] 
(%i7) s_prime: rhs(%[1]); 
(s_prime) -10.0 
(%i8) M: -s_prime/s; 
(M) 2.0 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print 
to false, assign values of f and s. 

(%i6) Solve 1 f = 1 s + 1 s ' for s’. 
(%i7), (%i8) Assign s’ and calculate M. 

For reflection of light by a concave mirror, our results show that if the object is 
placed beyond focal point, the image is real, minified, and inverted; if the object is 
at the focal point, no image is formed (the image is at infinity); and if the object is 
placed within focal point, the image is virtual, magnified, and upright.
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Problem 18.3 An object of 3.0 cm height is placed (a) 20 cm, (b) 8.0 cm, and (c) 
6.0 cm in front of a convex mirror with a focal length of 8.0 cm. Determine location 
and size of the image. 

Solution 

(a) The focal length of the convex mirror is f = −8.0 cm. The object distance is 
s = 20 cm. The location of the image is calculated using the spherical mirror 
equation (Eq. 18.2), 

1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

−8.0 cm  
= 

1 

20 cm 
+ 

1 

s ' , 

s ' = −5.7 cm. 

The magnification is 

M = −  
s '

s 
= −−5.7 cm  

20 cm 
= 0.29. 

The image size is 

h' = Mh = 0.29(3.0 cm) = 0.86 cm. 

The image is virtual behind the convex mirror (s’ is negative), minified (M 
is less than 1.0), and upright (M is positive). 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; f:-8; s:20; h:3; 
(fpprintprec) 5 
(ratprint) false 
(f) -8 
(s) 20 
(h) 3 
(%i7) solve(1/f = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o7) [s_prime=-5.7143] 
(%i8) s_prime: rhs(%[1]); 
(s_prime) -5.7143 
(%i9) M: -s_prime/s; 
(M) 0.28571 
(%i10) h_prime: M*h; 
(h_prime) 0.85715 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number 
print to false, assign values of f , s, and h.
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(%i7) Solve 1 f = 1 s + 1 s ' for s’. 
(%i8), (%i9), (%i10) Assign s’, calculate M and h’. 

(b) Repeat the calculation for object distance, s = 8.0 cm, 

1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

−8.0 cm  
= 1 

8.0 cm  
+ 

1 

s ' , 

s ' = −4.0 cm. 

The magnification is 

M = − s '

s 
= −−4.0 cm  

8.0 cm  
= 0.50. 

The image size is 

h' = Mh = 0.50 (3.0 cm) = 1.5 cm. 

The image is virtual, behind the mirror (s’ is negative), minified (M is less 
than 1.0), and upright (M is positive). 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; f:-8; s:8; h:3; 
(fpprintprec) 5 
(ratprint) false 
(f) -8 
(s) 8 
(h) 3 
(%i7) solve(1/f = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o7) [s_prime=-4.0] 
(%i8) s_prime: rhs(%[1]); 
(s_prime) -4.0 
(%i9) M: -s_prime/s; 
(M) 0.5 
(%i10) h_prime: M*h; 
(h_prime) 1.5 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number 
print to false, assign values of f , s, and h. 

(%i7) Solve 1 f = 1 s + 1 s ' for s’. 
(%i8), (%i9), (%i10) Assign s’, calculate M and h’. 

(c) Repeat the calculation for object distance, s = 6.0 cm,
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1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

−8.0 cm  
= 1 

6.0 cm  
+ 

1 

s ' , 

s ' = −3.4 cm. 

The magnification is 

M = −  
s '

s 
= −−3.4 cm  

6.0 cm  
= 0.57. 

The image size is 

h' = Mh = 0.57 (3.0 cm) = 1.7 cm. 

The image is virtual, behind the mirror (s’ is negative), minified (M is less 
than 1.0), and upright (M is positive). 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; f:-8; s:6; h:3; 
(fpprintprec) 5 
(ratprint) false 
(f) -8 
(s) 6 
(h) 3 
(%i7) solve(1/f = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o7) [s_prime=-3.4286] 
(%i8) s_prime: rhs(%[1]); 
(s_prime) -3.4286 
(%i9) M: -s_prime/s; 
(M) 0.57143 
(%i10) h_prime: M*h; 
(h_prime) 1.7143 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number 
print to false, assign values of f , s, and h. 

(%i7) Solve 1 f = 1 s + 1 s ' for s’. 
(%i8), (%i9), (%i10) Assign s’, calculate M and h’. 

For reflection of light by a convex mirror, the image is always upright, virtual, 
and minified. 

Problem 18.4 Figure 18.6 shows an end of a glass rod formed into a convex surface 
of radius of curvature 6.0 cm. Index of refraction of glass is 1.5. An object is placed 
along the rod axis at (a) 20 cm, (b) 10 cm, and (c) 3.0 cm from the rod. Determine 
the location of the image.
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Fig. 18.6 Refraction at a spherical surface, Problem 18.4 

Solution 

(a) Refraction equation for spherical surface is (Eq. 18.3), 

n1 
s 

+ 
n2 
s ' = 

n2 − n1 
R 

. 

For this problem, 

nair 
s 

+ 
nglass 
s ' = 

nglass − nair 
R 

, 

1.0 

20 cm 
+ 

1.5 

s ' = 
1.5 − 1.0 
6.0 cm  

, 

s ' = 45 cm. 

The image is real, at the back of the convex surface. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; n_air:1; n_glass:1.5; R:6; s:20; 
(fpprintprec) 5 
(ratprint) false 
(n_air) 1 
(n_glass) 1.5 
(R) 6 
(s) 20 
(%i8) solve(n_air/s+n_glass/s_prime=(n_glass-n_air)/R, s_prime)$ float(%); 
(%o8) [s_prime=45.0] 

Comments on the codes: 

(%i6) Set floating point print precision to 5, internal rational number print to false, 
assign values of nair , nglass, R, and s. 

(%i8) Solve nair s + nglass s ' = nglass−nair 
R for s’. 

(b) Repeat the calculation for object distance, s = 10 cm,
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nair 
s 

+ 
nglass 
s ' = 

nglass − nair 
R 

, 

1.0 

10 cm 
+ 

1.5 

s ' = 
1.5 − 1.0 
6.0 cm  

, 

s ' = −90 cm. 

The image is virtual, in front of the convex surface. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; n_air:1; n_glass:1.5; R:6; s:10; 
(fpprintprec) 5 
(ratprint) false 
(n_air) 1 
(n_glass) 1.5 
(R) 6 
(s) 10 
(%i8) solve(n_air/s+n_glass/s_prime=(n_glass-n_air)/R, s_prime)$ float(%); 
(%o8) [s_prime=-90.0] 

Comments on the codes: 

(%i6) Set floating point print precision to 5, internal rational number print to false, 
assign values of nair , nglass, R, and s. 

(%i8) Solve nair s + nglass s ' = nglass−nair 
R for s’. 

(c) Repeat the calculation for object distance, s = 3.0 cm, 

nair 
s 

+ 
nglass 
s ' = 

nglass − nair 
R 

, 

1.0 

3.0 cm  
+ 

1.5 

s ' = 
1.5 − 1.0 
6.0 cm  

, 

s ' = −6.0 cm. 

The image is virtual, in front of the convex surface. 

♦ wxMaxima codes: 

(%i6) fpprintprec:5; ratprint:false; n_air:1; n_glass:1.5; R:6; s:3; 
(fpprintprec) 5 
(ratprint) false 
(n_air) 1 
(n_glass) 1.5 
(R) 6 
(s) 3 
(%i8) solve(n_air/s+n_glass/s_prime=(n_glass-n_air)/R, s_prime)$ float(%); 
(%o8) [s_prime=-6.0] 
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Comments on the codes: 

(%i6) Set floating point print precision to 5, internal rational number print to false, 
assign values of nair , nglass, R, and s. 

(%i8) Solve nair s + nglass s ' = nglass−nair 
R for s’. 

Problem 18.5 Figure 18.7 shows a 2.0 cm diameter coin embedded in a glass ball 
of 30 cm radius. The coin is 20 cm from the surface of the ball and the refractive 
index of the glass is 1.5. Determine the location and size of the image. 

Solution 

Figure 18.8 shows rays of light from the coin in the glass, refracted at the spherical 
surface as the rays go into the air to the observer. 

Fig. 18.7 A coin embedded 
in a glass ball, Problem 18.5 

Fig. 18.8 Refraction at a 
spherical surface, Problem 
18.5
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Using the refraction equation of spherical surface (Eq. 18.3), we have 

n1 
s 

+ 
n2 
s ' = 

n2 − n1 
R 

, 

1.5 

20 cm 
+ 

1.0 

s ' = 
1.0 − 1.5 
−30 cm 

, 

s ' = −17 cm. 

The image is virtual, in the ball. The size of the image is 

h' = Mh = − s '

s 
h = −−17 cm 

20 cm 
(2.0 cm) = 1.7 cm. 

♦ wxMaxima codes: 

(%i7) fpprintprec:5; ratprint:false; n1:1.5; n2:1; s:20; R:-30; h:2; 
(fpprintprec) 5 
(ratprint) false 
(n1) 1.5 
(n2) 1 
(s) 20 
(R) -30 
(h) 2 
(%i9) solve(n1/s + n2/s_prime = (n2 - n1)/R, s_prime)$ float(%); 
(%o9) [s_prime=-17.143] 
(%i10) s_prime: rhs(%[1]); 
(s_prime) -17.143 
(%i11) h_prime: -s_prime/s*h; 
(h_prime) 1.7143 

Comments on the codes: 

(%i7) Set floating point print precision to 5, internal rational number print 
to false, assign values of n1, n2, s, R, and h. 

(%i9) Solve n1 s + n2 s ' = n2−n1 
R for s’. 

(%i10), (%i11) Assign s’ and calculate h’. 

Problem 18.6 Figure 18.9 shows a fish at depth, s, in water. Refractive index of 
water is 1.33. Determine the apparent depth of the fish.

Solution 

Using the refraction equation of spherical surface (Eq. 18.3), with radius of curvature, 
R = ∞, for flat surface, we get,
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Fig. 18.9 Refraction of 
light, Problem 18.6

n1 
s 

+ 
n2 
s ' = 

n2 − n1 
R 

, 

n1 
s 

+ 
n2 
s ' = 

n2 − n1 
∞ , 

n1 
s 

+ 
n2 
s ' = 0, 

s ' = −  
n2 
n1 

s = −1.00 

1.33 
s = −0.75s. 

This means that the apparent depth is 0.75 of the real depth. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; ratprint:false; n1:1.33; n2:1; 
(fpprintprec) 5 
(ratprint) false 
(n1) 1.33 
(n2) 1 
(%i6) solve(n1/s + n2/s_prime = 0, s_prime)$ float(%); 
(%o6) [s_prime=-0.75188*s] 

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print to false, 
assign values of n1 and n2.
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Fig. 18.10 Convex lens of 
Problem 18.7 

(%i6) Solve n1 s + n2 s ' = 0 for s’. 

Problem 18.7 Figure 18.10 shows a convex lens made of glass of refractive index 
1.5, with radii of curvature 20 cm and 30 cm. Calculate focal length of the lens. 

Solution 

We apply the lens maker equation for this problem. Lens maker equation is (Eq. 18.4), 

1 

f 
= (n − 1)

(
1 

R1 
− 

1 

R2

)
. 

Here, f is the focal length, n is index of refraction of the lens material, R1 and R2 are 
the radii of curvature of the first and second surfaces of the lens, respectively. The 
object is assumed on the left of the lens. Radius of curvature is positive if the object 
faces convex surface and negative if it faces concave surface. We have, R1 = +20 cm 
as the object faces convex first surface, R2 = −30 cm as the object faces concave 
second surface, and n = 1.5. The focal length of the lens is calculated as follows, 

1 

f 
= (n − 1)

(
1 

R1 
− 

1 

R2

)
, 

1 

f 
= (1.5 − 1)

(
1 

+20 cm 
− 1 

−30 cm

)
, 

f = +24 cm. 

The lens is a converging lens because the focal length is a positive number. 

♦ wxMaxima codes:
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(%i5) fpprintprec:5; ratprint:false; n:1.5; R1:20; R2:-30; 
(fpprintprec) 5 
(ratprint) false 
(n) 1.5 
(R1) 20 
(R2) -30 
(%i7) solve(1/f = (n-1)*(1/R1 - 1/R2), f)$ float(%); 
(%o7) [f=24.0] 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of n, R1, and R2. 

(%i7) Solve 1 f = (n − 1)
(

1 
R1 

− 1 
R2

)
for f . 

Problem 18.8 The focal length of a biconvex lens made of glass with refractive 
index 1.52 is 25 cm.  

(a) Calculate the radius of curvature of the lens. 
(b) What is the focal length of the lens if the lens is in water? Refractive index of 

water is 1.33.  

Solution 

(a) Lens maker equation is (Eq. 18.4), 

1 

f 
= (n − 1)

(
1 

R1 
− 

1 

R2

)
. 

Here, f is the focal length, n is index of refraction of the lens material, R1 

and R2 are the radii of curvature of the first and second surfaces of the lens. 
The object is on the left of the lens. Radius of curvature is positive if the object 
faces convex surface and negative if it faces concave surface. Setting r as a 
positive number, we have, R1 = +r as positive because the object faces convex 
first surface and R2 = −r as negative because the object faces concave second 
surface. Thus, the radius of curvature is calculated as 

1 

25 cm 
= (1.52 − 1)

(
1 

+r 
− 

1 

−r

)
= 0.52

(
2 

r

)
, 

r = 26 cm. 

The radii of curvature of the lens are R1 = 26 cm and R2 = −26 cm. 

♦ wxMaxima codes:
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(%i4) fpprintprec:5; ratprint:false; n:1.52; f:25; 
(fpprintprec) 5 
(ratprint) false 
(n) 1.52 
(f) 25 
(%i6) solve(1/f = (n-1)*(1/r - 1/(-r)), r)$ float(%); 
(%o6) [r=26.0] 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print to false, 
assign values of n and f . 

(%i6) Solve 1 f = (n − 1)
(
1 
r − 1 

−r

)
for r. 

(b) If the lens is in medium with index of refraction nmedium, i.e. not in air, replace 
n with n/nmedium. In water, the focal length is calculated as 

1 

f 
= ( 

n 

nwater 
− 1)

(
2 

R1

)
= ( 

1.52 

1.33 
− 1)

(
2 

26 cm

)
, 

f = 91 cm. 

The lens still converges the light rays in water ( f = 91 cm), although weaker 
than in air ( f = 25 cm). 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; n:1.52; n_water:1.33; R1:26; 
(fpprintprec) 5 
(ratprint) false 
(n) 1.52 
(n_water) 1.33 
(R1) 26 
(%i7) solve(1/f = (n/n_water-1)*(2/R1), f)$ float(%); 
(%o7) [f=91.0] 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of n, nwater , and R1. 

(%i7) Solve 1 f = ( n 
nwater 

− 1)
(

2 
R1

)
for f . 

Problem 18.9 A glass lens has convex and concave surfaces. Radii of curvature of 
convex and concave surfaces are 30 and 25 cm, respectively. Index of refraction of 
glass is 1.52. Calculate the focal length of the lens. 

Solution 

Figure 18.11 shows the lens.
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Fig. 18.11 Glass lens of 
Problem 18.9 

Using the lens maker equation (Eq. 18.4) with R1 = 30 cm, R2 = 25 cm, and n = 
1.52, 

1 

f 
= (n − 1)

(
1 

R1 
− 

1 

R2

)
, 

1 

f 
= (1.52 − 1)

(
1 

30 cm 
− 1 

25 cm

)
, 

f = −288 cm. 

It is a diverging lens, because f is negative. 

♦ wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; n:1.52; R1:30; R2:25; 
(fpprintprec) 5 
(ratprint) false 
(n) 1.52 
(R1) 30 
(R2) 25 
(%i7) solve(1/f = (n-1)*(1/R1-1/R2), f)$ float(%); 
(%o7) [f=-288.46] 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of n, R1, and R2. 

(%i7) Solve 1 f = (n − 1)
(

1 
R1 

− 1 
R2

)
for f . 

Problem 18.10 

(a) The distance between a converging lens and a screen is 20 cm to get a focused 
image of a distant object on the screen. What is the focal length of the lens? 

(b) An object is located 100 cm from the converging lens. Determine the location 
of the image.
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Solution 

(a) Parallel rays from distant object reach the lens. The parallel rays are converged 
to the focal point of the lens. Thus, the focal length of the lens is 20 cm. 

(b) Using the thin lens equation (Eq. 18.5), the image distance, s’, is calculated as 
follows: 

1 

f 
= 

1 

s 
+ 

1 

s ' , 

1 

20 cm 
= 

1 

100 cm 
+ 

1 

s ' , 

s ' = 25 cm. 

The image is 25 cm at the back of the lens, minified, inverted, and real. 

♦ wxMaxima codes: 

(%i4) fpprintprec:5; ratprint:false; f:20; s:100; 
(fpprintprec) 5 
(ratprint) false 
(f) 20 
(s) 100 
(%i6) solve(1/f = 1/s + 1/s_prime, s_prime)$ float(%); 
(%o6) [s_prime=25.0] 

Comments on the codes: 

(%i4) Set floating point print precision to 5, internal rational number print to false, 
assign values of f and s. 

(%i6) Solve 1 f = 1 s + 1 s ' for s’. 

Problem 18.11 Two lenses with focal lengths of 10 cm and 20 cm separate by 
18 cm, as illustrated in Fig. 18.12. An object is located at 15 cm from the lens 
system. Determine the location of the image and the magnification. 

Fig. 18.12 Two lenses of 
Problem 18.11
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Solution 

Using thin lens equation (Eq. 18.5), we calculate location of the image as the light 
rays go through the first lens (the left lens), 

1 

f 1 
= 

1 

s1 
+ 

1 

s '
1 

, 

1 

10 cm 
= 1 

15 cm 
+ 

1 

s '
1 

, 

s '
1 = 30 cm. 

The image is 30 cm on the right of the first lens, that is, 30 cm – 18 cm = 12 cm 
on the right of the second lens. This image is the virtual object of the second lens. We 
write, for the second lens, the object distance as s2 = −  12 cm. Now, we calculate 
the location of the final image through the second lens, again, using the thin lens 
equation, 

1 

f 2 
= 

1 

s2 
+ 

1 

s '
2 

, 

1 

20 cm 
= 1 

−12 cm 
+ 

1 

s '
2 

, 

s '
2 = 7.5 cm. 

Thus, the final image is 7.5 cm on the right of the second lens. Magnifications of 
first, second, and both lenses are 

M1 = 
−s '

1 

s1 
= 

−30 cm 

15 cm 
= −2.0, 

M2 = 
−s '

2 

s2 
= 

−7.5 cm  

−12 cm 
= 0.63, 

M1 M2 = (−2.00)(0.62) = −1.3. 

The final image is real, inverted, and magnified, behind the second lens. 

♦ wxMaxima codes:
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(%i5) fpprintprec:5; ratprint:false; f1:10; f2:20; s1:15; 
(fpprintprec) 5 
(ratprint) false 
(f1) 10 
(f2) 20 
(s1) 15 
(%i7) solve(1/f1 = 1/s1 + 1/s1_prime, s1_prime)$ float(%); 
(%o7) [s1_prime=30.0] 
(%i8) s1_prime: rhs(%[1]); 
(s1_prime) 30.0 
(%i9) s2: -(s1_prime-18); 
(s2) -12 
(%i11) solve(1/f2 = 1/s2 + 1/s2_prime, s2_prime)$ float(%); 
(%o11) [s2_prime=7.5] 
(%i12) s2_prime: rhs(%[1]); 
(s2_prime) 7.5 
(%i13) M1: -s1_prime/s1; 
(M1) -2.0 
(%i14) M2: -s2_prime/s2; 
(M2) 0.625 
(%i15) M1*M2; 
(%o15) -1.25 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational 
number print to false, assign values of f 1, f 2, and s1. 

(%i7) Solve 1 
f 1 

= 1 
s1 

+ 1 s '
1 
for s1’. 

(%i8), (%i9) Assign s1’ and s2. 
(%i11) Solve 1 

f 2 
= 1 

s2 
+ 1 s '

2 
for s2’. 

(%i12) Assign s2’. 
(%i13), (%i14), (%i15) Calculate M1, M2, and M1M2. 

Problem 18.12 State the sign convention for the lens maker formula. 

Solution 

The lens maker formula for this lens is (Eq. 18.4), 

1 

f 
= (n − 1)

(
1 

R1 
− 

1 

R2

)
, 

where f is the focal length, n is index of refraction of the lens material, R1 and R2 

are radii of curvature of the first and second surfaces of the lens, respectively. The 
object is on the left of the lens. Radius of curvature is positive if the object faces 
convex surface and negative if it faces concave surface. If the lens is in medium with 
index of refraction nmedium, i.e. not in air, n is replaced with n/nmedium. Table 18.1 
gives examples of application of the formula. Index of refraction of lens material is 
n = 1.52.

♦ wxMaxima codes:



18.2 Problems and Solutions 493

Table 18.1 Focal lengths of lenses calculated by the lens maker formula 

Lens dimensions Type R1 R2 f 

(a) Biconvex +20 cm −30 cm +23 cm 

(b) Planoconvex +20 cm ∞ +38 cm 

(c) +20 cm +30 cm +115 cm 

(d) +30 cm +20 cm −115 cm

(continued)
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Table 18.1 (continued)

Lens dimensions Type R1 R2 f

(e) Planoconcave −20 cm ∞ −38 cm 

(f) Biconcave −20 cm +30 cm −23 cm

(%i3) fpprintprec:5; ratprint:false; n:1.52; 
(fpprintprec) 5 
(ratprint) false 
(n) 1.52 
(%i5) R1:20; R2:-30; 
(R1) 20 
(R2) -30 
(%i7) solve(1/f = (n-1)*(1/R1 - 1/R2), f)$ float(%); 
(%o7) [f=23.077] 
(%i9) R1:20; R2:inf; 
(R1) 20 
(R2) inf 
(%i11) solve(1/f = (n-1)*(1/R1 - 0), f)$ float(%); 
(%o11) [f=38.462] 
(%i13) R1:20; R2:30; 
(R1) 20 
(R2) 30 
(%i15) solve(1/f = (n-1)*(1/R1 - 1/R2), f)$ float(%); 
(%o15) [f=115.38] 
(%i17) R1:30; R2:20; 
(R1) 30 
(R2) 20 
(%i19) solve(1/f = (n-1)*(1/R1 - 1/R2), f)$ float(%); 
(%o19) [f=-115.38] 
(%i21) R1:-20; R2:inf; 
(R1) -20 
(R2) inf 
(%i23) solve(1/f = (n-1)*(1/R1 - 0), f)$ float(%); 
(%o23) [f=-38.462] 
(%i25) R1:-20; R2:30; 
(R1) -20 
(R2) 30 
(%i27) solve(1/f = (n-1)*(1/R1 - 1/R2), f)$ float(%); 
(%o27) [f=-23.077] 
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Comments on the codes: 

(%i3) Set floating point print precision to 5, internal rational number print 
to false, assign value of n. 

(%i5), (%i7) Calculate f , case (a) Table 18.1. 
(%i9), (%i11) Calculate f , case (b) Table 18.1. 
(%i13), (%i15) Calculate f , case (c) Table 18.1. 
(%i17), (%i19) Calculate f , case (d) Table 18.1. 
(%i21), (%i23) Calculate f , case (e) Table 18.1. 
(%i25), (%i27) Calculate f , case (f) Table 18.1. 

18.3 Summary 

• The spherical mirror equation: For a spherical mirror of radius, R, the object 
distance, s, and image distance, s’, obey 

1 

s 
+ 

1 

s ' = 
2 

R 
= 

1 

f 
, 

where f = R/2 is focal length of the mirror. 

• Refraction at a spherical surface, 

n1 
s 

+ 
n2 
s ' = 

n2 − n1 
R 

, 

where n1 and n2 are refractive indices of medium 1 and 2, respectively, and R 
is the radius of the spherical surface. 

• Lens maker equation for thin lens, 

1 

f 
= (n − 1)

(
1 

R1 
− 

1 

R2

)
. 

• Thin lens equation: The object distance, s, image distance, s’, and focal length of 
the lens, f , satisfy 

1 

f 
= 

1 

s 
+ 

1 

s ' . 

18.4 Exercises 

Exercise 18.1 An object is placed 3.5 m in front of a concave mirror with radius of 
curvature 30 cm. Determine location of the image and the magnification.
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(Answer: s’ = 16 cm, M = −  0.045) 

Exercise 18.2 An object is placed 60 cmfrom a convex mirror and a magnification 
of 0.25 is obtained. Determine the location of the image and the focal length of the 
mirror. 

(Answer: s’ = −  15 cm, f = −  20 cm) 

Exercise 18.3 Figure 18.13 shows a lens made of glass of refractive index 1.5, with 
radii of curvature 30 and 55 cm. 

(a) Determine focal length of the lens. 
(b) An object is placed 80 cm in front of the lens. Calculate the location of the 

image and the magnification. 

(Answer: (a) f = 39 cm; (b) s’ = 75 cm, M = −  0.94) 

Exercise 18.4 An object is located in a medium whose index of refraction is 1.5, 
20 cm from the surface whose radius is 30 cm, as shown in Fig. 18.14. Determine 
the location of the image and the magnification as seen by the observer. 

(Answer: s’ = −  17 cm in the medium, M = 0.86)

Fig. 18.13 Glass lens of 
Exercise 18.3 

Fig. 18.14 Refraction at a 
spherical surface, Exercise 
18.4 
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Fig. 18.15 Two lenses of 
Exercise 18.5 

Exercise 18.5 Two lenses with focal lengths of 10 and 22 cm separate by a distance 
of 16 cm, as shown in Fig. 18.15. An object is placed at 14 cm from the lens system. 
Determine the location of the image and the magnification. 

(Answer: A real image 10 cm to the right of the right lens, M = −  1.3)



Chapter 19 
Interference of Light 

Abstract Problems on interference of light are solved in this chapter. Light interfer-
ence is a phenomenon due to superposition of coherent lights. These include inter-
ference in Young’s double slit experiment, thin film, lens coating, air wedge, and 
Newton’s rings experiment. Both solutions by analysis and computer calculation via 
wxMaxima are presented. 

19.1 Basic Concepts and Formulae

(1) Interference of light is an effect of superposition of light waves at a point. 
Persistent interference pattern exists if, 

(a) wave sources are coherence (that is, the phase difference of sources is 
constant), 

(b) the sources are monochromatic (that is, the same wavelength), and. 
(c) linear superposition principle is obeyed. 

(2) Young’s double-slit experiment: Two slits separated by a small distance d illumi-
nated by a monochromatic light, as illustrated in Fig. 19.1. Interference pattern 
of bright and dark bands are formed on a screen. To get a constructive inter-
ference on the screen, path difference of light from the two slits must be zero 
or integer multiple of wavelength, λ. The path difference of light from the two 
slits is d sin θ. This means that a condition for bright band to be formed on the 
screen (a constructive interference) is, 

d sin θ = mλ, m = 0, ±1, ±2, . . . (19.1) 

where m is order number. The central bright fringe with θ = 0, m = 0, is called 
the zeroth order maximum. The first maxima on both sides of the zeroth order 
maximum is called the first order maxima with m = ±1.
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Fig. 19.1 Young’s double-slit interference experiment. Light of wavelength λ is incident on a 
double slit separated by a distance d. Interference pattern is observed on a screen a distance D away. 
θ is the angle between the fringe and the central bright fringe, y is the distance between the fringe 
and the central bright fringe, and D is the distance between the double slit and the screen

To get a destructive interference on the screen, the lights path difference from 
both slits must be odd multiple of a half wavelength λ/2, such that the two waves 
arriving at the screen differ in phase by 180°. This means that a condition for a 
dark fringe to be formed on the screen (a destructive interference) is, 

d sin θ =
(
m + 

1 

2

)
λ, m = 0, ±1, ±2, . . . (19.2) 

Figure 19.1 shows a setup of Young’s double slit experiment. A picture of bright 
and dark fringes of the experiment is shown on the far right of the figure. From 
the figure, sin θ ≈ tan θ = y/D and the path difference is d sin θ = dy/D. Here, θ 
is the angle between the fringe and the central bright fringe, y is the distance on 
the screen between the fringe and the central bright fringe, and D is the distance 
between the double slit and the screen. Therefore, the bright and dark fringes 
satisfy, 

ybright = 
λD 

d 
m, m = 0, ±1, ±2, ... (19.3) 

ydark  = 
λD 

d 
(m + 

1 

2 
), m = 0, ±1, ±2, ... (19.4) 

Average intensity of the interference pattern is, 

Iaverage = I0 cos2
(

πd sin θ 
λ

)
≈ I0 cos2

(
πd 

λD 
y

)
. (19.5)
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Fig. 19.2 Phase changes of 
light reflected from a thin 
film 

(3) Light waves undergo 180° phase change as they are reflected from a medium 
of higher refractive index than the medium they are traveling, for example, at 
the air-glass interface. No phase change occurs for reflection of the light waves 
from a medium of lower refractive index, for example, at the glass-air interface. 

Figure 19.2 shows a light ray from air (refractive index = 1.00) incident on 
a thin film with refractive index n > 1.00. A phase change of 180° occurs for 
reflected ray 1 at P, but no phase change occurs for reflected ray 2 at Q. This  
means that rays 1 and 2 differ in phase by 180°. 

(4) The wavelength of light λn in a medium of refractive index n is, 

λn = 
λ 
n 

, (19.6) 

where λ is the wavelength of light in free space. 
(5) The condition for constructive interference for a thin film of thickness t and 

refractive index n is 

2nt = (m + 
1 

2 
)λ, m = 0, 1, 2, ... (19.7) 

The condition for destructive interference is, 

2nt = mλ, m = 0, 1, 2, ... (19.8) 

(6) Newton’s rings are concentric bright and dark rings formed when a convex lens 
is placed on a glass plate illuminated by light, as shown in Fig. 19.3. The radius 
of the bright ring is,
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Fig. 19.3 Newton’s rings experiment, a the setup, b observed rings 

r =
/

(m + 
1 

2 
) 
λR 

n 
, m = 0, 1, 2, ... (19.9) 

where R is the radius of curvature of the lens, λ is the wavelength of light, and n 
is the refractive index of the medium between the lens and the glass plate. Here, 
m = 0 corresponds to the first bright ring, m = 1 corresponds to the second 
bright ring, and so on. 

The radius of the dark ring is, 

r = 
/
m 

λR 

n 
, m = 0, 1, 2, ... (19.10) 

where m = 0 corresponds to the central dark spot, m = 1 corresponds to the first 
dark ring, m = 2 corresponds to the second dark ring, and so on. 

Figure 19.3a shows the configuration of Newton’s rings experiment in air 
where n = 1.00. Figure 19.3b is a picture of Newton’s rings. The center spot 
where the lens touches the glass plate is dark. This is because the ray reflected 
from the bottom of the lens has no phase change while the one reflected from 
the plate has 180° phase change, and the interference of both rays is destructive 
giving a dark spot. 

19.2 Problems and Solutions 

Problem 19.1 In a Young’s double slit experiment, the separation between slits is 
0.09 mm and the screen is 1.0 m away from the slits. The third-order bright fringe 
is 2.0 cm from the central bright fringe. Calculate the wavelength of light of the 
experiment and the distance between the third dark fringe and the central bright 
fringe.
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Fig. 19.4 Young’s double slit experiment, Problem 19.1 

Solution 

Figure 19.4 shows Young’s double slit experiment set up. Here, d is separation 
distance of slits, D is the distance between slits and screen, ym is the location of m-th 
fringe, and θ is the angle between the central bright fringe and the m-th fringe. 

A bright fringe is obtained when (Eq. 19.1), 

d sin θ = mλ, m = 1, 2, 3, ... 

or, 

d 
ym 
D 

= mλ, m = 1, 2, 3, ... 

This gives (Eq. 19.3), 

ym = m 
λD 

d 
, m = 1, 2, 3, ... 

For the third bright fringe, we have, 

y3 = 3 
λD 

d 
. 

Substituting the given numerical values, the wavelength of the light used in the 
experiment is, 

2.0 × 10−2 m = 3 × λ(1.0 m) 
0.09 × 10−3 m 

, 

λ = 6.0 × 10−7 m.
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• wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve(2e-2 = 3*lambda/0.09e-3, lambda)$ float(%); 
(%o4) [lambda=6.0*10^-7] 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve 2 × 10−2 = 3 × λ 
0.09×10−3 for λ. 

For dark fringes (Eq. 19.4), 

ym = (m + 
1 

2 
) 
λD 

d 
, m = 0, 1, 2, ... 

Here, m = 0 corresponds to first dark fringe, m = 1 to the second, and m = 2 to  
the third. The distance between the third dark fringe and the central bright fringe is 
obtained by m = 2, 

y2 = (2 + 
1 

2 
) 
(6.0 × 10−7 m)(1.0 m) 

0.09 × 10−3 m
= 1.7 × 10−2 m. 

• wxMaxima codes: 

(%i2) fpprintprec:5; y2:(2+1/2)*6e-7/0.09e-3; 
(fpprintprec) 5 
(y2) 0.016667 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and calculate y2. 

Problem 19.2 Interference pattern of a double slit separated by 0.25 mm is observed 
on a screen 1.0 m away. The double slit is illuminated by a monochromatic light of 
wavelength 589.8 nm. Calculate the separation distance between two adjacent bright 
fringes on the screen.
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Fig. 19.5 Young’s double slit experiment, Problem 19.2 

Solution 

Figure 19.5 shows the configuration of Young’s double slit experiment. Here, y is the 
location of bright fringe from the central bright fringe, D is the slits-screen distance, 
d is the slits separation distance, θ is the angle between the bright fringe and the 
central bright fringe, and d sin θ is the optical path difference of the rays from the 
two slits. 

The optical path difference of the two rays from the slits is, 

d sin θ = d 
y 

D 
. 

Constructive interference occurs if, 

d 
y 

D 
= mλ, m = 0, 1, 2, ... 

This means that bright fringe is obtained at, 

ym = m 
λD 

d 
, m = 0, 1, 2, ... 

Thus, the separation distance of two adjacent bright fringes is, 

ym+1 − ym = (m + 1) 
λD 

d 
− m 

λD 

d 
= 

λD 

d 

= 
(589.3 × 10−9 m)(1.0 m) 

0.25 × 10−3 m 
= 2.4 × 10−3 m.
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• wxMaxima codes: 

(%i4) fpprintprec:5; lambda:589.3e-9; D:1; d:0.25e-3; 
(fpprintprec) 5 
(lambda) 5.893*10^-7 
(D) 1 
(d) 2.5*10^-4 
(%i5) separation_distance: lambda*D/d; 
(separation_distance) 0.0023572 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of λ, D, and d. 
(%i5) Calculate separation distance. 

Problem 19.3 In Young’s double slit experiment, light from a sodium vapor lamp 
(wavelength 589 nm) forms interference pattern with adjacent bright fringes separa-
tion of 0.35 cm. The distance of the double slit to the screen is 0.80 m. What is the 
separation distance of the double slit? 

Solution 

Figure 19.6 shows the setup of Young’s double-slit experiment. In the figure y is the 
location of the bright fringe, D is the distance between the double slit and the screen, 
d is the separation distance of the double slit, θ is the angle between the bright fringe 
and the central bright fringe, and d sin θ is the optical path difference of the rays of 
the two slits. 

Optical path difference is, 

d sin θ = d 
y 

D 
.

Fig. 19.6 Young’s double slit experiment, Problem 19.3 
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Constructive interference occurs if optical path difference is zero or multiple of a 
wavelength λ of the light, 

d 
y 

D 
= mλ, m = 0, 1, 2, ... 

This means that a bright fringe is obtained at location, 

ym = m 
λD 

d 
. 

Therefore, the distance between adjacent bright fringes is,

∆y = ym+1 − ym = 
(m + 1)λD 

d
− 

mλD 

d 

= 
λD 

d 
. 

Substituting the given numerical values into the equation enables the separation 
distance of the double slit to be calculated, 

0.35 × 10−2 m = 
(589 × 10−9 m)(0.80 m) 

d 
, 

d = 1.3 × 10−4 m. 

• wxMaxima codes: 

(%i5) fpprintprec:5; ratprint:false; lambda:589e-9; delta_y:0.35e-2; D:0.8; 
(fpprintprec) 5 
(ratprint) false 
(lambda) 5.89*10^-7 
(delta_y) 0.0035 
(D) 0.8 
(%i7) solve(delta_y = lambda*D/d, d)$ float(%); 
(%o7) [d=1.3463*10^-4] 

Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of λ, ∆y, and D. 

(%i7) Solve ∆y = λD/d for d. 

Problem 19.4 The diameter of tenth bright ring changes from 1.40 cm to 1.27 cm 
when a liquid is filled between the lens and the glass plate in Newton’s rings 
experiment. What is the refractive index of the liquid?
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Solution 

In Newton’s rings experiment, the radius of the (m + 1)-th bright ring is (Eq. 19.9), 

rm+1 =
/

(m + 
1 

2 
) 
λ 
n 
R, 

where R is radius of curvature of the lens, λ is the wavelength of the light of the 
experiment, and n is the refractive index of the medium between the lens and the 
glass plate. For the tenth bright ring, we write, 

1.40 cm 

2
= 

/
(9 + 

1 

2 
) 

λ 
1.00 

R, 

because the index of refraction of air is n = 1.00. When the liquid is filled between 
the lens and glass plate, the tenth bright ring satisfies, 

1.27 cm 

2
=

/
(9 + 

1 

2 
) 
λ 
n 
R, 

where n is the refractive index of the liquid. By squaring and dividing both equations, 
λ and R are cancelled out, and the refractive index of the liquid can be calculated, 

(1.40 cm)2 

(1.27 cm)2 
= 

9.5λR 

9.5λR/n 
, 

n =
(
1.40 cm 

1.27 cm

)2 

= 1.22. 

• wxMaxima codes: 

(%i2) fpprintprec:5; ratprint:false; 
(fpprintprec) 5 
(ratprint) false 
(%i4) solve(1.40^2/1.27^2 = (9.5*lambda*R) / (9.5*lambda*R/n), n)$ 
float(%); 
(%o4) [n=1.2152] 

Comments of the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i4) Solve 1.402/1.272 = (9.5λR)/(9.5λR/n) for n.
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Problem 19.5 Diameters of the m-th and (m + 10)-th dark rings formed in Newton’s 
rings experiment are 0.14 cm and 0.86 cm, respectively. When the space between the 
lens and the glass plate is filled with water, the diameters of the p-th and (p + 10)-th 
dark rings are 0.23 cm and 0.77 cm, respectively. Calculate the index of refraction 
of water. 

Solution 

For a Newton’s rings experiment, the radii of the m-th and (m + 10)-th dark rings 
are (Eq. 19.10), 

rm =
√
mλR, (19.11) 

rm+10 =
√

(m + 10)λR, (19.12) 

where λ is the wavelength of light and R is radius of curvature of the lens. We have 
substituted index of refraction of air to be n = 1.00 in both equations. 

When water fills the space between the lens and the glass plate, the p-th and (p + 
10)-th radii of the dark rings are (Eq. 19.10), 

rp = 
/
p 
λ 
n 
R, (19.13) 

rp+10 =
/

( p + 10) 
λ 
n 
R, (19.14) 

where n is the index of refraction of water. 
Squaring and subtracting Eqs. (19.12) and (19.11) give,  

r2 m+10 − r2 m = 10λR. (19.15) 

Squaring and subtracting Eqs. (19.14) and (19.13) give,  

r2 p+10 − r2 p = 
10λR 

n 
. (19.16) 

The index of refraction of water can be calculated from Eqs. (19.15) and (19.16), 

n = 
r2 m+10 − r2 m 
r2 p+10 − r2 p 

= 
d2 
m+10 − d2 

m 

d2 
p+10 − d2 

p 

= 
(0.86 cm)2 − (0.14 cm)2 

(0.77 cm)2 − (0.23 cm)2 
= 1.33.
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• wxMaxima codes: 

(%i1) fpprintprec: 5; 
(fpprintprec) 5 
(%i2) n: (0.86^2-0.14^2)/(0.77^2-0.23^2); 
(n) 1.3333 

Comments on the codes: 

(%i1) Set floating point print precision to 5. 
(%i2) Calculate n. 

Problem 19.6 A thin air wedge of angle θ shown in Fig. 19.7 is made from two 
glass plates. The air wedge is illuminated by a light of wavelength λ. Interference of 
light is formed while bright and dark fringes are observed. Show that the separation 
between adjacent bright fringes is λ/(2θ ). 

Solution 19.6 

Figure 19.8 shows the air wedge and the locations of the m-th and (m + 1)-th bright 
fringes. Here, xm and xm+1 are the distances from the wedge edge, while dm and dm+1 
are the corresponding thicknesses of air. 

Bright fringes are obtained if (Eq. 19.7), 

2dm = (m + 
1 

2 
)λ, 

2θ xm = (m + 
1 

2 
)λ, 

xm = (m + 
1 

2 
) 

λ 
2θ 

, 

where the fact that θ = dm/xm was used as angle θ is small. The path difference 
between the rays reflected from the lower and upper glass plates is 2 dm.

Fig. 19.7 Air wedge of 
Problem 19.6 

Fig. 19.8 Air wedge, 
Problem 19.6 
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For the adjacent bright fringe, we have, 

2dm+1 = (m + 1 + 
1 

2 
)λ, 

2θ xm+1 = (m + 1 + 
1 

2 
)λ, 

xm+1 = (m + 1 + 
1 

2 
) 

λ 
2θ 

, 

where the fact that θ = dm+1/xm+1 was used as angle θ is small. 
Therefore, the separation between adjacent bright fringes is, 

xm+1 − xm = (m + 1 + 
1 

2 
) 

λ 
2θ 

− (m + 
1 

2 
) 

λ 
2θ 

= 
λ 
2θ 

. 

Additional question: What is the separation between bright fringes if the 
wavelength of the light is 630 nm and the air wedge angle is 0.02°? 

Answer: The separation is, 

xm+1 − xm = 
λ 
2θ 

= 630 × 10−9 m 

2(0.02π/180 rad) 
= 9.0 × 10−4 m. 

• wxMaxima codes: 

(%i2) fpprintprec:5; float(630e-9/(2*0.02*%pi/180)); 
(fpprintprec) 5 
(%o2) 9.0241*10^-4 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and calculate the separation distance. 

Problem 19.7 An air wedge of angle 40 arc second is formed using two glass slides, 
Fig. 19.9. Bright and dark fringes are formed when the air wedge is illuminated by 
a monochromatic light and the separation distance between adjacent dark fringes is 
found to be 0.12 cm. Calculate the wavelength of the monochromatic light.

Solution 19.7 

Figure 19.10 shows the air wedge, the wedge angle, θ, the distance of the dark fringe 
to the end of the wedge, x, and the thickness of air, d.
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Fig. 19.9 Air wedge of 
Problem 19.7

Fig. 19.10 Air wedge, 
Problem 19.7 

We have, 
1 degree  = 60 arc minute = 60 × 60 arc second. 
The angle is, 

θ = 40 arc second = 40 

60 × 60 
degree = 40 

60 × 60 
× 

π 
180 

rad 

= 1.939 × 10−4 rad. 

A dark fringe is obtained if (Eq. 19.8), 

2dm = mλ. (19.17) 

An adjacent dark fringe is obtained if, 

2dm+1 = (m + 1)λ. (19.18) 

Angle θ is small, we have 

θ = 
dm 
xm 

= 
dm+1 

xm+1 
. 

Using this equation, Eqs. (19.17) and (19.18) are written as, 

2θ xm = mλ, 
2θ xm+1 = (m + 1)λ. 

From these two equations, the separation between adjacent dark fringes is,

∆x = xm+1 − xm = 
λ 
2θ 

.
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The wavelength of the light is, 

λ = 2θ ∆x = 2(1.939 × 10−4 )(0.12 × 10−2 m) 
= 4.7 × 10−7 m. 

• wxMaxima codes: 

(%i3) fpprintprec:5; theta:float(40/3600*%pi/180); delta_x:0.12e-2; 
(fpprintprec) 5 
(theta) 1.9393*10^-4 
(delta_x) 0.0012 
(%i4) lambda: 2*theta*delta_x; 
(lambda) 4.6542*10^-7 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of θ and ∆x. 
(%i4) Calculate λ. 

Problem 19.8 In a Young’s double slit experiment, the double slit separation is d = 
0.12 mm, the distance between the double slit and the screen is D = 110 cm and the 
wavelength of light used is λ = 546 nm. 

(a) Plot the average intensity of the interference pattern. 
(b) Calculate the distance between the central maximum and the point where the 

intensity is 75% of the central maximum. 
(c) Calculate the distance between adjacent bright fringes. 

Solution 

(a) Average intensity of interference pattern of Young’s double-slit experiment is 
(Eq. 19.5), 

Iaverage = I0 cos2
(

πd 

λD 
y

)
,
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where I0 is the intensity of the bright central maximum, d is separation distance 
of the slits, D is distance between the slits and the screen, y is distance from the 
central maximum on the screen, and λ is wavelength of light. 

• Plot of Iaverage/I0 against y for −0.01 ≤ y ≤ 0.01 m by wxMaxima: 

(%i5) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9; I0:1; 
(fpprintprec) 5 
(d) 1.2*10^-4 
(D) 1.1 
(lambda) 5.46*10^-7 
(I0) 1 
(%i6) Iaverage: I0*cos(%pi*d*y/(lambda*D))^2; 
(Iaverage) cos(199.8*%pi*y)^2 
(%i7) wxplot2d(Iaverage, [y,-0.01,0.01], grid2d, [xlabel,"{/Helvetica-
Italic y}  (m)"], [ylabel,"{/Helvetica-Italic I_{average}/I_0}"]); 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of d, D, λ, and I0. 
(%i6) Define Iaverage as a function of y. 
(%i7) Plot Iaverage against y for −0.01 ≤ y ≤ 0.01 m.
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(b) The value of y such that the intensity is 75% of that of central maximum is 
calculated as follows, 

Iaverage = I0 cos2
(

πd 

λD 
y

)
, 

0.75I0 = I0 cos2
(

πd 

λD 
y

)
, 

cos

(
πd 

λD 
y

)
= √

0.75 = 0.866, 

θ = 
π d 
λD 

y = cos−1 (0.866) = 0.524, 

y = 
θλD 

πd 
= 

0.524(546 × 10−9 m)(1.10 m) 
π(0.12 × 10−3 m)

= 8.3 × 10−4 m. 

• wxMaxima codes: 

(%i4) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9; 
(fpprintprec) 5 
(d) 1.2*10^-4 
(D) 1.1 
(lambda) 5.46*10^-7 
(%i5) theta: acos(sqrt(0.75)); 
(theta) 0.5236 
(%i7) y: theta*lambda*D/(%pi*d); float(%); 
(y) 0.0026206/%pi 
(%o7) 8.3417*10^-4 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of d, D, and λ. 
(%i5), (%i7) Calculate θ and y. 

• Alternative calculation: 

(%i5) fpprintprec:5; ratprint:false; d:0.12e-3; D:1.1; lambda:546e-9; 
(fpprintprec) 5 
(ratprint) false 
(d) 1.2*10^-4 
(D) 1.1 
(lambda) 5.46*10^-7 
(%i7) solve (cos(%pi*d*y/(lambda*D))=sqrt(0.75), y)$ float(%); 
solve: using arc-trig functions to get a solution. 
Some solutions will be lost. 
(%o7) [y=8.3417*10^-4]
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Comments on the codes: 

(%i5) Set floating point print precision to 5, internal rational number print to false, 
assign values of values of d, D, and λ. 

(%i7) Solve cos
(

π d 
λD y

) = √
0.75 for y. 

• Plot of Iaverage/I0 against y for −9 × 10−4 ≤ y ≤ 9 × 10−4 m by wxMaxima: 

(%i5) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9; I0: 1; 
(fpprintprec) 5 
(d) 1.2*10^-4 
(D) 1.1 
(lambda) 5.46*10^-7 
(I0) 1 
(%i6) Iaverage: I0*cos(%pi*d*y/(lambda*D))^2; 
(Iaverage) cos(199.8*%pi*y)^2 
(%i7) wxplot2d(Iaverage, [y,-9e-4,9e-4], grid2d, [xlabel,"{/Helvetica-
Italic y}  (m)"], [ylabel,"{/Helvetica-Italic I_{average}/I_0}"]); 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of d, D, λ, and I0. 
(%i6) Define Iaverage. 
(%i7) Plot Iaverage against y for −9 × 10−4 ≤ y ≤ 9 × 10−4 m.
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(c) The distance between adjacent bright fringes is,

∆y = ym+1 − ym = 
(m + 1)λD 

d
− 

mλD 

d 
= 

λD 

d 

= 
(546 × 10−9 m)(1.10 m) 

0.12 × 10−3 m 
= 5.0 × 10−3 m. 

• wxMaxima codes: 

(fpprintprec) 5 
(d) 1.2*10^-4 
(D) 1.1 
(lambda) 5.46*10^-7 
(%i5) delta_y: lambda*D/d; 
(delta_y) 0.005005 

(%i4) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9; 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of d, D, and λ. 
(%i5) Calculate ∆y. 

Problem 19.9 Calculate the thickness of a soap film so that light of wavelength 
600 nm incident on it is reflected constructively to get interference pattern. Index of 
refraction of soap film is 1.33. 

Solution 

Figure 19.11 shows the soap film of thickness, t, incident ray, and reflected rays.
Condition of constructive interference is (Eq. 19.7), 

2nt = (m + 
1 

2 
)λ, m = 0, 1, 2, ... 

The thicknesses of the soap films are, 

t = (m + 
1 

2 
) 

λ 
2n 

, m = 0, 1, 2, ... 

= 
λ 
4n 

, 
3λ 
4n 

, 
5λ 
4n 

, ... 

= 
600 nm 

4(1.33) 
, 
3(600 nm) 
4(1.33) 

, 
5(600 nm) 
4(1.33) 

, ... 

= 113 nm, 338 nm, 564 nm, ...



518 19 Interference of Light

Fig. 19.11 Light 
interference by a soap film, 
Problem 19.9

• wxMaxima codes: 

(%i3) fpprintprec:5; lambda:600e-9; n:1.33; 
(fpprintprec) 5 
(lambda) 6.0*10^-7 
(n) 1.33 
(%i4) t: lambda/(4*n); 
(t) 1.1278*10^-7 
(%i5) t: 3*lambda/(4*n); 
(t) 3.3835*10^-7 
(%i6) t: 5*lambda/(4*n); 
(t) 5.6391*10^-7 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of λ and n. 
(%i4), (%i5), (%i6) Calculate t. 

Problem 19.10 Calculate the thickness of magnesium fluoride to be coated on glass 
so that a light of wavelength 500 nm incident on them is least reflected. Index of 
refraction of magnesium fluoride is nm = 1.38 and that of glass is ng = 1.52. 

Solution 

Figure 19.12 shows the magnesium fluoride layer, glass, incident ray, and reflected 
rays.

Reflection of light ray at air-magnesium fluoride interface results in 180° phase 
change, so is reflection at magnesium fluoride-glass interface, because both reflec-
tions are from higher index of refraction materials. As a result both reflected rays are
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Fig. 19.12 Light 
interference by a magnesium 
fluoride coating, Problem 
19.10

in phase. Because we want both reflected rays to be out of phase, the path difference 
2t is one-half of a wavelength. The wavelength of light in magnesium fluoride is λ/ 
nm. To get destructive interference, 

2t = 
1 

2 

λ 
nm 

. 

The thickness of the magnesium fluoride layer is, 

t = λ 
4nm 

= 
500 nm 

4(1.38) 
= 90.6 nm. 

• wxMaxima codes: 

(%i3) fpprintprec:5; lambda:500; n_m:1.38; 
(fpprintprec) 5 
(lambda) 500 
(n_m) 1.38 
(%i4) t: lambda/(4*n_m); 
(t) 90.58
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Fig. 19.13 Newton’s rings 
experiment, Problem 19.11 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of λ and nm. 
(%i4) Calculate t. 

Problem 19.11 For a Newton’s rings experiment, show that the radius of bright ring 
is, 

r =
/

(m + 
1 

2 
) 
λR 

n 
, m = 0, 1, 2, ... 

where R is the radius of curvature of the lens, λ is wavelength of light, and n is index 
of refraction of the medium between the lens and glass plate. 

Solution 

Figure 19.13 shows the setup of Newton’s rings experiment. Here, R is the radius of 
curvature of the lens, r is radius of a bright ring, and d is thickness of the medium 
with refractive index n. 

Using the Pythagoras’ theorem, 

R2 = r2 + (R − d)2 = r2 + R2 − 2Rd + d2 , 
2Rd = r2 + d2 . 

Because r2 >> d2, we write, 

2Rd = r2 , 

2d = 
r2 

R 
. 

From the figure, 2d is the path difference of upward reflected rays from the lens 
and the glass plate. The ray reflected upward from the lens has no phase change,
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while the ray reflected upward from the glass plate has a 180° phase change. To get 
constructive interference, 

2d = 
r2 

R 
= (m + 

1 

2 
) 
λ 
n 

, 

r =
/

(m + 
1 

2 
) 
λR 

n 
, m = 0, 1, 2, ... 

where λ/n is the wavelength of light in the medium with refractive index n. 

• wxMaxima codes: 

(%i1) solve(r^2/R = (m + 1/2)*lambda/n, r); 
(%o1) [r=-sqrt((2*R*m*lambda)/n+(R*lambda)/n)/sqrt(2), 

r=sqrt((2*R*m*lambda)/n+(R*lambda)/n)/sqrt(2)] 
(%i2) radcan(%); 
(%o2) [r=-(sqrt(R)*sqrt(2*m+1)*sqrt(lambda))/(sqrt(2)*sqrt(n)), 

r=(sqrt(R)*sqrt(2*m+1)*sqrt(lambda))/(sqrt(2)*sqrt(n))] 

Comments on the codes: 

(%i1) Solve r
2 

R = (m + 1 2 ) 
λ 
n for r. 

(%i2) Simplify the output. 
(%o2) The solutions. 

Problem 19.12 In a Newton’s rings experiment, the wavelength of light used is 
6700 Å and the 20-th dark ring is 11 mm in radius. Calculate, 

(a) the thickness of air at the point 
(b) the radius of curvature of the lens. 

Solution 

(a) Figure 19.14 shows the lens, glass plate, and geometry of the Newton’s rings 
experiment. 

The air thickness between lens surface and glass surface changes by λ/2 when 
we move from a dark ring to adjacent dark ring. Thus, thickness of 20-th dark 
ring is, 

d = 20 × 
λ 
2 

= 20 × 
6700 × 10−10 m 

2
= 6.7 × 10−6 m. 

(b) From Fig. 19.14 and the Pythagoras’ theorem, 

R2 = r2 + (R − d)2 = r2 + R2 − 2Rd + d2 , 
2Rd = r2 + d2 .
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Fig. 19.14 Newton’s rings 
experiment, Problem 19.12 

As r2 >> d2, we write 

2Rd = r2 , 

R = 
r2 

2d 
. 

The radius of curvature of the lens is, 

R = 
r2 

2d 
= 

(11 × 10−3 m)2 

2(6.7 × 10−6 m) 
= 9.0 m. 

• wxMaxima codes: 

(fpprintprec) 5 
(lambda) 6.7*10^-7 
(r) 0.011 
(%i4) d: 20*(lambda/2); 
(d) 6.7*10^-6 
(%i5) R: r^2/(2*d); 
(R) 9.0299 

(%i3) fpprintprec:5; lambda:6700e-10; r:11e-3; 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of λ and r. 

(%i4), (%i5) Calculate d and R.
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19.3 Summary 

• Interference effects show the wave nature of light. 
• Interference of light is an effect of superposition of light waves at a point. Persistent 

interference pattern exists if, 

(a) wave sources are coherence (that is, the phase difference of sources is 
constant), 

(b) the sources are monochromatic (that is, the same wavelength) and 
(c) linear superposition principle is obeyed. 

• Examples of interference effects of light are bright and dark rings in Newton’s 
ring experiment, bright and dark fringes of Young’ double-slit experiment, and 
bright and dark fringes in air wedge. 

19.4 Exercises 

Exercise 19.1 In Young’s double slit experiment, the separation between slits is 5.0 
× 10−5 m and the screen is 2.0 m away from the slits. The third-order bright fringe 
is 6.2 cm from the central bright fringe. Determine the wavelength of the light. 

(Answer: 5.2 × 10−7 m) 

Exercise 19.2 Light of wavelength 500 nm is incident on a layer of oil whose index 
of refraction is 1.46. What is the minimum thickness of the layer so that the reflected 
lights interfere constructively? 

(Answer: 8.56 × 10−8 m) 

Exercise 19.3 In Young’s double-slit experiment, light of wavelength 500 nm illu-
minates two slits that are separated by 1.0 mm. The screen is 5.0 m away. Calculate 
the separation between adjacent bright fringes on the screen. 

(Answer: 2.5 × 10−3 m) 

Exercise 19.4 Laser light of wavelength 630 nm in Young’s double-slit experiment 
produces an interference pattern in which the adjacent bright fringes are separated 
by 8.4 mm. A second light produces an interference pattern in which the adjacent 
bright fringes are separated by 7.5 mm. What is the wavelength of this second light? 

(Answer: 560 nm) 

Exercise 19.5 Calculate the thickness of magnesium fluoride to be coated on glass 
so that a light of wavelength 400 nm incident on them is least reflected. Index of 
refraction of magnesium fluoride is 1.38 and that of glass is 1.52. 

(Answer: 72.5 nm)



Chapter 20 
Diffraction of Light 

Abstract Problems on diffraction of light are solved in this last chapter. Diffraction 
is bending or spreading of light at aperture or obstacle. Problems on diffraction by a 
single slit and diffraction by a grating and its resolving power are discussed. Solutions 
obtained by analysis and computer calculation of wxMaxima are presented. 

20.1 Basic Concepts and Formulae 

(1) When light waves encounter an aperture or an obstacle, the waves spread out 
as they travel and undergo interference. This is called diffraction. Diffraction of 
light is due to interference of continuous distribution of coherence sources of 
light. 

(2) The Fraunhofer diffraction pattern of light by a single slit of width a on a screen 
consists of a bright central region and an alternating dark and bright regions is 
shown in Fig. 20.1. 

The angle, θ, of the dark fringe is given by, 

sin θ = m 
λ 
a 

, m = ±1, ±2, ... (20.1) 

where λ is the wavelength of light, a is width of the slit, and m is order number. 
(3) The intensity of light, I, on the screen, varies with angle, θ, according to, 

I = I0
[
sin(β/2) 

β/2

]2 

, where β = 
2π a sin θ 

λ 
, (20.2) 

and I0 is the intensity at θ = 0, as shown in Figure 20.2. 
(4) Rayleigh criterion states that two images formed by an aperture are just resolved 

if the central maximum diffraction pattern of one image falls on the first 
minimum of the other.
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Figure 20.3 shows intensity patterns of two slits that are just resolved 
according to the Rayleigh criterion. The intensity patterns are drawn separately 
in (a), while the intensity pattern of both is shown in (b). 

The limiting resolving angle for a diffraction by a slit of width, a, is,  

θmin = 
λ 
a 

. (20.3) 

The limiting resolving angle for a circular aperture of diameter, D, is,  

θmin = 1.22 
λ 
D 

. (20.4)

Fig. 20.1 Single slit diffraction. Light of wavelength λ is incident on a narrow slit of width a. 
Diffraction pattern is observed on a screen. The angle of the dark fringe is θ 

Fig. 20.2 Intensity of light I 
against β/2 of a single slit 
diffraction
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Fig. 20.3 Intensity patterns of two slits that are just resolved according to the Rayleigh criterion. 
The intensity patterns are shown separately in (a), while the intensity pattern as observed on the 
screen is shown in (b)

(5) A diffraction grating consists of packed identical slits. Condition for maximum 
intensity (bright fringe) is, 

d sin θ = mλ, m = 0, 1, 2, . . . (20.5) 

where d is the distance between slits, θ is diffraction angle, λ is wavelength of 
light, and m is order number of the diffraction pattern. Zeroth-order maximum 
is at angle, θ = 0; first-order maximum corresponding to m = 1, is at angle, θ, 
satisfying sin θ = λ/d; second-order maximum corresponding to m = 2, is at 
angle, θ, satisfying sin θ = 2λ/d; and so on. 

Figure 20.4 shows the diffraction of a monochrome light by a diffraction 
grating.

From Eq. (20.5) and Fig. 20.4, one writes, 

θm = sin−1

(
mλ 
d

)
, (20.6) 

ym ≈ 
mλD 

d 
. (20.7) 

Resolving power, R, of a diffraction grating at m-th order diffraction is, 

R = Nm  = 
λ

∆λ 
, (20.8) 

where N is the number of lines of the diffraction grating, ∆λ is wavelength 
separation of two monochromatic light waves that are barely distinguishable 
and λ is their mean wavelength.
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Fig. 20.4 Diffraction of a monochrome light by a diffraction grating. Light of wavelength λ is 
incident on a diffraction grating with slit separation d. Bright fringe is observed on a screen a 
distance D away, at angle θ or a distance y from the central maximum

20.2 Problems and Solutions 

Problem 20.1 A plane wave of monochromatic light (λ = 5900 Å) is incident on a 
slit of width, a = 0.04 mm. A converging lens ( f = +70 cm) is placed behind the 
slit to focus the light on a screen. What is the separation between the first and the 
second minima? 

Solution 

Figure 20.5 shows the slit, lens, screen, and geometry of the single slit diffraction. 
Also shown on the far right is the diffraction pattern. Here, a is the width of the slit 
and θ is the diffraction angle. 

Fig. 20.5 Single slit diffraction experiment, a is slit width and θ is angle of dark fringe, Problem 
20.1
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For this diffraction, the minimum (dark) is obtained if (Eq. 20.1), 

a sin θ = mλ, m = ±1, ±2, ... 

As θ is a small angle, sin θ ≈ θ, one writes, 

aθm = mλ, 

θm = m 
λ 
a 

, m = ±1, ±2, ... 

For the first minimum (first dark fringe), the diffraction angle is, 

θ1 = 
λ 
a 

= 
5900 × 10−10 m 

0.04 × 10−3 m 
= 1.5 × 10−2 rad. 

For the second minimum, the diffraction angle is, 

θ2 = 2 × 
λ 
a 

= 2 × 
5900 × 10−10 m 

0.04 × 10−3 m 
= 2.9 × 10−2 rad. 

The angular difference of the two minima is,

∆θ = θ2 − θ1 = 1.5 × 10−2 rad. 

The separation of the two minima is

∆y = f · ∆θ = 0.70 m × 1.5 × 10−2 = 0.01 m. 

• wxMaxima codes: 

(%i4) fpprintprec:5; lambda:5900e-10; a:0.04e-3; f:70e-2; 
(fpprintprec) 5 
(lambda) 5.9*10^-7 
(a) 4.0*10^-5 
(f) 0.7 
(%i5) theta1: lambda/a; 
(theta1) 0.01475 
(%i6) theta2: 2*lambda/a; 
(theta2) 0.0295 
(%i7) delta_theta: theta2-theta1; 
(delta_theta) 0.01475 
(%i8) delta_y: f*delta_theta; 
(delta_y) 0.010325
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Fig. 20.6 Single slit diffraction experiment, a is slit width, θ is angle of dark fringe, y is on-screen 
distance of dark fringe, and D is slit-screen distance, Problem 20.2 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of λ, a, and f . 
(%i5), (%i6) Calculate θ 1 and θ 2. 
(%i7), (%i8) Calculate ∆θ and ∆y. 

Problem 20.2 A light of wavelength 580 nm is shined on a slit of width 0.30 mm. 
A screen is positioned 2.0 m away from the slit. Determine, 

(a) the location of the first dark fringe, 
(b) the width of the central bright fringe, 
(c) the width of the first bright fringe. 

Solution 

(a) Figure 20.6 shows the slit, lens, and geometry of the problem. Here, a is the 
width of the slit, θ is angle of diffraction, and D is distance between the slit and 
the screen. 

The first dark fringe satisfies a sin θ 1 = λ (Eq. 20.1). This means that, 

sin θ1 = ±  
λ 
a 

= ±  
y1 
D 

, 

y1 = ±  
Dλ 
a 

= ±  
(2.0 m)(580 × 10−9 m) 

0.30 × 10−3 m
= ±3.9 × 10−3 m. 

(b) The width of the central bright fringe is two times y1, 

2y1 = 7.7 × 10−3 m. 

(c) The first-order bright fringe is located between the first and second dark fringes, 
that is, between y1 and y2. Calculate y2,
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y2 = 
2Dλ 
a 

= 
2(2.0 m)(580 × 10−9 m) 

0.30 × 10−3 m
= 7.7 × 10−3 m. 

The width of the first-order bright fringe is, 

y2 − y1 = 7.7 × 10−3 m − 3.9 × 10−3 m = 3.9 × 10−3 m. 

• wxMaxima codes: 

(%i4) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2; 
(fpprintprec) 5 
(lambda) 5.8*10^-7 
(a) 3.0*10^-4 
(D) 2 
(%i5) y1: D*lambda/a; 
(y1) 0.0038667 
(%i6) width_of_central_bright_fringe: 2*y1; 
(width_of_central_bright_fringe) 0.0077333 
(%i7) y2: 2*D*lambda/a; 
(y2) 0.0077333 
(%i8) y2-y1; 
(%o8) 0.0038667 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of λ, a, and D. 
(%i5) Calculate y1. 
(%i6) Calculate the width of the central bright fringe. 
(%i7) Calculate y2. 
(%i8) Calculate the width of first-order bright fringe. 

Figure 20.7 shows the intensity of the diffraction pattern. Diffraction angle of the 
first dark fringe is θ 1 and the location of the fringe is y1. Diffraction angle of the 
second dark fringe is θ 2 and the location of the second dark fringe is y2. The width 
of central bright fringe is 2y1 and the width of the first bright fringe is y2 − y1.

Problem 20.3 Figure 20.8 shows a curve of intensity, I, against  β/2 of a single slit 
diffraction. The intensity is given by, 

I = I0
[
sin(β/2) 

β/2

]2 
, where β = 2π a sin θ 

λ ,

and I0 is the maximum intensity of the central bright fringe. Calculate the intensity 
ratio of first- and second-order maxima (I1 and I2) to that of central maximum, I0, 
that is, calculate I1/I0 and I2/I0. 

Solution 

The first-order intensity maximum, I1, is located approximately in the middle of β/ 
2 = π and β/2 = 2π, that is, at β/2 = 3π /2. The intensity ratio of the first maximum
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Fig. 20.7 Intensity of the diffraction pattern

Fig. 20.8 Intensity I against 
β/2 of a single slit diffraction

to that of the central maximum is, 

I1 
I0 

=
[
sin(3π/2) 
3π/2

]2 

= 0.045. 

The second-order intensity maximum, I2, is located approximately in the middle 
of β/2 = 2π and β/2 = 3π, that is, at β/2 = 5π /2. The intensity ratio of the second 
maximum to that of the central maximum is, 

I2 
I0 

=
[
sin(5π/2) 
5π/2

]2 

= 0.016. 

This means that, I1 and I2 are approximately 4.5% and 1.6% of I0, respectively.
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• wxMaxima codes: 

(%i1) fpprintprec: 5; 
(fpprintprec) 5 
(%i3) I1_over_I0: (sin(3*%pi/2)/(3*%pi/2))^2; float(%); 
(I1_over_I0) 4/(9*%pi^2) 
(%o3) 0.045032 
(%i5) I2_over_I0: (sin(5*%pi/2)/(5*%pi/2))^2; float(%); 
(I2_over_I0) 4/(25*%pi^2) 
(%o5) 0.016211 

Comments on the codes: 

(%i1) Set floating point print precision to 5. 
(%i3), (%i5) Calculate I1/I0 and I2/I0. 

Further question: Plot the intensity, I, against  β/2 of a single slit diffraction to check 
the results. 

• Plot of I against β/2 for − 4π ≤ β/2 ≤ 4π rad by wxMaxima: 

(%i2) I0:1; I:I0*(sin(betaovertwo)/betaovertwo)^2; 
(I0) 1 
(I) sin(betaovertwo)^2/betaovertwo^2 
(%i3) wxplot2d(I, [betaovertwo, -4*%pi, 4*%pi], [y,0, 0.1], grid2d, 
[xlabel,"{/Symbol-Italic b/2} (rad)"], [ylabel,"{/Helvetica-Italic 
I/I_0}"]);



534 20 Diffraction of Light

Comments on the codes: 

(%i2) Assign I0 = 1 and define I = I0
[
sin(β/2) 

β/2

]2 
. 

(%i3) Plot I against β/2 for − 4π rad ≤ β/2 ≤ 4π rad. 

Problem 20.4 In a single slit diffraction experiment, a light of wavelength 580 nm 
is incident on a slit of width 0.30 mm. A screen is located 2.0 m away from the slit. 
By setting the intensity of central maximum as I0 = 1.00, plot the curve of 

(a) intensity, I, versus angle of diffraction, θ, in radian, 
(b) intensity, I, versus angle of diffraction, θ, in degree, 
(c) intensity, I, versus distance on the screen, y. 

Solution 

(a) Intensity, I, at angle of diffraction, θ, is given by, 

I = I0
[
sin(β/2) 

β/2

]2 
, where β = 2πa sin θ 

λ . 
To plot the curve by wxMaxima, first, assign the values of wavelength, λ, 

slit width, a, slit-screen distance, D, and intensity of the central maximum, I0. 
Next, define β in terms of θ (radian) and I in terms of β. Lastly, plot I against 
θ (radian) using the wxplot2d function. 

• Plot by wxMaxima: 

(%i5) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2; I0:1; 
(fpprintprec) 5 
(lambda) 5.8*10^-7 
(a) 3.0*10^-4 
(D) 2 
(I0) 1 
(%i6) beta: 2*%pi*a*sin(theta)/lambda; 
(beta) 1034.5*%pi*sin(theta) 
(%i7) I: I0*sin(beta/2)^2/(beta/2)^2; 
(I) (3.7378*10^-6*sin(517.24*%pi*sin(theta))^2)/(%pi^2*sin(theta)^2) 
(%i8) wxplot2d(I, [theta,-0.006,0.006], grid2d, [xlabel,"{/Symbol-Italic Q} 
(rad)"], [ylabel,"{/Helvetica-Italic I/I_0}"]);
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Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of λ, a, D, and I0. 
(%i6), (%i7) Define β and I. 
(%i8) Plot I against θ for − 0.006 ≤ θ ≤ 0.006 rad. 

(b) Assign the values of wavelength, λ, slit width, a, slit-screen distance, D, and 
intensity of the central maximum, I0. Define β in terms of θ (degree) and I in 
terms of β. Plot  I against θ (degree) using the wxplot2d function. 

• Plot by wxMaxima: 

(%i5) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2; I0:1; 
(fpprintprec) 5 
(lambda) 5.8*10^-7 
(a) 3.0*10^-4 
(D) 2 
(I0) 1 
(%i6) beta: 2*%pi*a*sin(degree*%pi/180)/lambda; 
(beta) 1034.5*%pi*sin((%pi*degree)/180) 
(%i7) I: I0*sin(beta/2)^2/(beta/2)^2; 
(I) (3.7378*10^-6*sin(517.24*%pi*sin((%pi*degree)/180))^2) 
/(%pi^2*sin((%pi*degree)/180)^2) 
(%i8) wxplot2d(I, [degree,-0.5,0.5], grid2d, [xlabel,"{/Symbol-Italic Q} 
(degree)"], [ylabel,"{/Helvetica-Italic I/I_0}"]);
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Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of λ, a, D, and I0. 
(%i6), (%i7) Define β and I. 
(%i8) Plot I against θ for −0.5° ≤ θ ≤ 0.5°. 

(c) The intensity, I, at position, y, is  

I = I0
[
sin(β/2) 

β/2

]2 
, where β = 2πa sin θ 

λ = 2π ay 
λD , 

because sin θ = y/D. To plot  I against y, assign the values of wavelength, λ, 
slit width, a, slit-screen distance, D, and intensity of the central maximum, I0. 
Next, define β in terms of y and I in terms of β. Lastly, plot I against y using 
the wxplot2d function. 

• Plot by wxMaxima: 

(%i5) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2; I0:1; 
(fpprintprec) 5 
(lambda) 5.8*10^-7 
(a) 3.0*10^-4 
(D) 2 
(I0) 1 
(%i6) beta: 2*%pi*a*y/lambda; 
(beta) 1034.5*%pi*y 
(%i7) I: I0*sin(beta/2)^2/(beta/2)^2; 
(I) (3.7378*10^-6*sin(517.24*%pi*y)^2)/(%pi^2*y^2) 
(%i8) wxplot2d(I, [y,-0.012,0.012], grid2d, [xlabel,"{/Helvetica-Italic y} 
(m)"], [ylabel,"{/Helvetica-Italic I/I_0}"]);
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Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of λ, a, D, and I0. 
(%i6), (%i7) Define β and I. 
(%i8) Plot I against y for −0.012 ≤ y ≤ 0.012 m. 

Problem 20.5 A light of wavelength, λ = 580 nm, is incident to a slit of width, a1 
= 29 μm = 50λ. The screen is located a distance, D = 0.8 m, away from the slit. 
A diffraction pattern is observed on the screen. The experiment is repeated using 
different slits of width, a2 = 58 μm = 100λ, and a3 = 87 μm = 150λ. How  do  the  
diffraction patterns change? 

Solution 

This problem is solved by plotting the intensities of the three diffraction patterns from 
slits of different widths. We plot these three curves of intensity I against diffraction 
angle θ (degree), 

I1 = I0
[
sin(β/2) 

β/2

]2 
, where β = 2πa1 sin θ 

λ , 

I2 = I0
[
sin(β/2) 

β/2

]2 
, where β = 2π a2 sin θ 

λ , 

I3 = I0
[
sin(β/2) 

β/2

]2 
, where β = 2πa3 sin θ 

λ . 
Assign the values of wavelength, λ, slit widths, a1, a2, and a3, slit-screen distance, 

D, and intensity of the central maximum, I0. Define β in terms of θ (degree) and I 
in terms of β. Plot  I against θ (degree) using the wxplot2d function.
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• Plot by wxMaxima: 

(%i7) fpprintprec:3; lambda:580e-9; a1:50*lambda; a2:100*lambda; 
a3:150*lambda; D:0.8; I0:1; 
(fpprintprec) 3 
(lambda) 5.8*10^-7 
(a1) 2.9*10^-5 
(a2) 5.8*10^-5 
(a3) 8.7*10^-5 
(D) 0.8 
(I0) 1 
(%i8) beta: float(2*%pi*a1*sin(degree*%pi/180)/lambda); 
(beta) 3.14*10^2*sin(0.0175*degree) 
(%i9) I1: I0*sin(beta/2)^2/(beta/2)^2; 
(I1) (4.05*10^-5*sin(1.57*10^2*sin(0.0175*degree))^2)/sin(0.0175*degree)^2 
(%i10) beta: float(2*%pi*a2*sin(degree*%pi/180)/lambda); 
(beta) 6.28*10^2*sin(0.0175*degree) 
(%i11) I2: I0*sin(beta/2)^2/(beta/2)^2; 
(I2) (1.01*10^-5*sin(3.14*10^2*sin(0.0175*degree))^2)/sin(0.0175*degree)^2 
(%i12) beta: float(2*%pi*a3*sin(degree*%pi/180)/lambda); 
(beta) 9.42*10^2*sin(0.0175*degree) 
(%i13) I3: I0*sin(beta/2)^2/(beta/2)^2; 
(I3) (4.5*10^-6*sin(4.71*10^2*sin(0.0175*degree))^2)/sin(0.0175*degree)^2 
(%i14) wxplot2d([I1, I2, I3], [degree,-3,3], [y,0,1.2], grid2d, 
[xlabel,"{/Symbol-Italic Q} (degree)"], [ylabel,"{/Helvetica-Italic 
I/I_0}"]);
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Comments on the codes: 

(%i7) Set floating point print precision to 5, assign values of λ, a1, a2, a3, 
D, and I0. 

(%i8), (%i9) Define β and I1. 
(%i10), (%i11) Define β and I2. 
(%i12), (%i13) Define β and I3. 
(%i14) Plot I1, I2, and I3 against θ for −3° ≤ θ ≤ 3°. 

The diffraction fringe widths decrease as the slit widths increase. This means that 
narrow slit gives wide diffraction. Table 20.1 gives the angular and linear widths 
of the central bright fringe (central maxima) of the three experiments. The angular 
and linear widths of the central maxima are calculated as 2λ/a × 180/π and 2λD/a, 
respectively. 

Problem 20.6 Calculate separation distance of two points on the moon that are just 
resolved by the Palomar Mountain telescope. Diameter of the telescope aperture is 
5.0 m, earth-moon distance is 3.86 × 105 km, and λ = 5500 Å. 

Solution 

For circular aperture of the telescope, the Rayleigh resolving criterion is (Eq. 20.4), 

θmin = 1.22 
λ 
D 

. 

The resolving angle is, 

θmin = 1.22 × 
5500 × 10−10 m 

5.0 m
= 1.3 × 10−7 rad. 

The separation distance so that two points on the moon can be resolved is,

∆x = d · θmin = 3.86 × 105 km × 1.3 × 10−7 rad = 0.052 km 

= 52 m.

Table 20.1 Angular and linear widths of the central maxima of a single slit diffraction 

Slit width a (μm) Angular width (degree) Linear width (mm) 

29 2.3 32 

58 1.1 16 

87 0.76 11 
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• wxMaxima codes: 

(d) 3.86*10^8 
(%i5) theta_min: 1.22*lambda/D; 
(theta_min) 1.342*10^-7 
(%i6) delta_x: d*theta_min; 
(delta_x) 51.801 

(%i4) fpprintprec:5; lambda:5500e-10; D:5; d:3.86e8; 
(fpprintprec) 5 
(lambda) 5.5*10^-7 
(D) 5 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of λ, D, and d. 
(%i5), (%i6) Calculate θ min and ∆x. 

Problem 20.7 

(a) Estimate the limiting resolving angle of human eyes. The diameter of the pupil 
is 2.0 mm, index of refraction of the eye is 1.33, and the wavelength of light in 
air is 550 nm. 

(b) What is the spatial resolution of the eye at 25 cm away? 

Solution 

(a) The wavelength of light in human eye is (Eq. 4.3), 

λ = 
λ0 

n 
= 

550 nm 

1.33
= 414 nm. 

The limiting resolving angle of the eye is (Eq. 20.4), 

θmin = 1.22 
λ 
D 

= 1.22 × 
414 × 10−9 m 

2.0 × 10−3 m 
= 2.5 × 10−4 rad. 

(b) At a distance of 25 cm from the eye, spatial resolution of the eye is,

∆x = d · θmin = (25 × 10−2 m)(2.5 × 10−4 rad) = 6.3 × 10−5 m. 

This means that, at 25 cm away, two points that are less than 6.3 × 10−5 m  
apart cannot be resolved by the eye.
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• wxMaxima codes: 

(%i5) fpprintprec:5; lambda0:550e-9; n:1.33; D:2e-3; d:25e-2; 
(fpprintprec) 5 
(lambda0) 5.5*10^-7 
(n) 1.33 
(D) 0.002 
(d) 0.25 
(%i6) lambda: lambda0/n; 
(lambda) 4.1353*10^-7 
(%i7) theta_min: 1.22*lambda/D; 
(theta_min) 2.5226*10^-4 
(%i8) delta_x: d*theta_min; 
(delta_x) 6.3064*10^-5 

Comments on the codes: 

(%i5) Set floating point print precision to 5, assign values of λ0, n, D, and d. 
(%i6), (%i7) Calculate λ and θ min, part (a). 
(%i8) Calculate ∆x, part (b). 

Problem 20.8 A microscope uses light of sodium lamp of wavelength 589 nm to 
probe subjects. The aperture of the objective is 1.0 cm in diameter. Calculate the 
limiting resolving angle. 

Solution 

The limiting resolving angle of the microscope is (Eq. 20.4), 

θmin = 1.22 
λ 
D 

= 1.22 × 
589 × 10−9 m 

1.0 × 10−2 m 
= 7.2 × 10−5 rad. 

This means that two points subtending less than 7.2 × 10−5 rad at the objective 
of the microscope cannot be resolved. 

• wxMaxima codes: 

(%i3) fpprintprec:5; lambda:589e-9; D:1e-2; 
(fpprintprec) 5 
(lambda) 5.89*10^-7 
(D) 0.01 
(%i4) theta_min: 1.22*lambda/D; 
(theta_min) 7.1858*10^-5 
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Comments on the codes: 

(%i3) Set floating point print precision to 5 and assign value of λ. 
(%i4) Calculate θ min. 

Problem 20.9 A helium neon laser light of wavelength 632.8 nm is incident to a 
diffraction grating that has 7000 lines per cm. At what angles do maximum intensities 
be observed? 

Solution 

There are 7000 lines or slits in one cm, so the width of a slit is, 

d = 
1.0 

7000 
cm = 

1.0 × 10−2 

7000 
m = 1.429 × 10−6 m. 

For a diffraction grating, to get maximum intensities (bright fringes) (Eq. 20.5), 
d sin θ = mλ, m  = 0, 1, 2, … 
The first-order maximum, m = 1, 

sin θ1 = 
λ 
d 

= 
632.8 × 10−9 m 

1.429 × 10−6 m 
= 0.316, 

θ1 = 0.321 rad = 18.4◦. 

The second-order maximum, m = 2, 

sin θ2 = 
2λ 
d 

= 
2 × 632.8 × 10−9 m 

1.429 × 10−6 m 
= 0.633, 

θ2 = 0.685 rad = 39.3◦. 

The third-order maximum, m = 3, 

sin θ3 = 
3λ 
d 

= 
3 × 632.8 × 10−9 m 

1.429 × 10−6 m 
= 0.949, 

θ3 = 1.25 rad = 71.7◦. 

For m = 4, calculation gives 

sin θ4 = 
4λ 
d 

= 
4 × 632.8 × 10−9 m 

1.429 × 10−6 m 
= 1.27.



20.2 Problems and Solutions 543

This cannot be because it is greater than 1. This means that the diffraction patterns 
that can be observed by this laser light are first- , second- , and third-order maxima. 

• wxMaxima codes: 

(%i3) fpprintprec:5; lambda:632.8e-9; d:1/5000*1e-2; 
(fpprintprec) 5 
(lambda) 6.328*10^-7 
(d) 2.0*10^-6 
(%i6) sintheta1:lambda/d; theta1:asin(sintheta1);  
theta1_deg:float(theta1*180/%pi); 
(sintheta1) 0.3164 
(theta1) 0.32193 
(theta1_deg) 18.445 
(%i9) sintheta2:2*lambda/d; theta2:asin(sintheta2);  
theta2_deg:float(theta2*180/%pi); 
(sintheta2) 0.6328 
(theta2) 0.68516 
(theta2_deg) 39.257 
(%i12) sintheta3:3*lambda/d; theta3:asin(sintheta3);  
theta3_deg:float(theta3*180/%pi); 
(sintheta3) 0.9492 
(theta3) 1.2507 
(theta3_deg) 71.659 
(%i13) sintheta4: 4*lambda/d; 
(sintheta4) 1.2656 

Comments on the codes: 

(%i3) Set floating point print precision to 5, assign values of λ and d. 
(%i6) Calculate θ 1 and convert the angle to degree. 
(%i9) Calculate θ 2 and convert the angle to degree. 
(%i12) Calculate θ 3 and convert the angle to degree. 

Problem 20.10 The first-order spectrum lines are obtained at 30° when a light is 
incident to a diffraction grating with 6000 lines per cm. What is the wavelength of 
the light? 

Solution 

For a diffraction grating, a condition to get maximum intensity (bright bands) is 
(Eq. 20.5), 

d sin θ = mλ, m = 0, 1, 2, … 
For this problem, 

d sin θ = mλ,(
1.0 × 10−2 m 

6000

)
sin

(
30 × 

π 
180

)
= (1)λ, 

λ = 8.3 × 10−7 m.
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The wavelength of the light is 8.3 × 10−7 m. 

• wxMaxima codes: 

(%i4) fpprintprec:5; d:1/6000*1e-2; theta:float(30/180*%pi); m:1; 
(fpprintprec) 5 
(d) 1.6667*10^-6 
(theta) 0.5236 
(m) 1 
(%i5) lambda: d*sin(theta); 
(lambda) 8.3333*10^-7 

Comments on the codes: 

(%i4) Set floating point print precision to 5, assign values of d, θ, and m. 
(%i5) Calculate λ. 

20.3 Summary 

• In a single slit diffraction, the condition for destructive interference is 

a sin θ = mλ, m = ±1, ±2, ±3, ... 

where a is the width of the slit and θ is diffraction angle. The intensity at a point 
on the screen is given by Iθ = I0

[
sin(β/2) 

β/2

]2 
, where β = 2πa sin θ 

λ . 
• The condition for intensity maxima for a diffraction grating whose slits are 

separated by a distance d is 

d sin θ = mλ, m = 0, ±1, ±2, ±3, ... 

where θ is the diffraction angle and m is order number. 

20.4 Exercises 

Exercise 20.1 In a single slit diffraction experiment, a light of wavelength 600 nm 
is incident on a slit of width 1.90 μm. What are the diffraction angles of the first and 
second dark fringes? 

(Answer: θ 1 = 18.4°, θ 2 = 39.2°) 

Exercise 20.2 In a single slit diffraction experiment, a light of wavelength 610 nm is 
incident on a slit of width 3.1 × 10−5 m, and diffraction pattern is formed on a screen
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located 2.5 m away from the slit. Calculate the distance from the central maximum 
to the first and second minima on the screen. 

(Answer: y1 = 0.049 m, y2 = 0.098 m) 

Exercise 20.3 An astronomical telescope has a diameter of 5.60 m. Calculate the 
maximum angle of resolution for this telescope at a wavelength of 600 nm. 

(Answer: 1.31 × 10−7 rad) 

Exercise 20.4 A beam of light of wavelength 540 nm is incident normally on a 
diffraction grating with a slit spacing of 1.70 × 10−6 m. What are the angles for the 
first- and second-order maxima? 

(Answer: θ 1 = 18.5°, θ 2 = 39.4°) 

Exercise 20.5 A diffraction grating just resolves the wavelengths 610.0 and 610.2 nm 
in the first order. What is the number of slits in the grating? 

(Answer: 3050)



Appendix A 
Introduction to wxMaxima 

wxMaxima is an open computer algebra system software that can be installed on 
Microsoft Windows operating system, as well as on Linux and OS X operating 
systems. On mobiles, an apps Maxima On Android is available and can easily be 
installed. Other popular computer algebra systems are Maple and Mathematica. 
wxMaxima is a document based interface for the computer algebra system called 
Maxima.Maxima was developed from theMacsyma project since 1982 by the Depart-
ment of Energy of the USA. This means wxMaxima gives menu and dialogue for 
various commands, plots, and animations of Maxima. 

wxMaxima is distributed under GNU General Public License. 
wxMaxima can be downloaded and installed on your pc from: 
https://sourceforge.net/projects/maxima/files/Maxima-Windows/. 
A manual of wxMaxima can be read from: 
http://maxima.sourceforge.net/docs/manual/en/maxima.html. 
A short and useful tutorial to start using wxMaxima can be obtained from: 
http://Math-blog.com/2007/06/04/A-10-min-tutorial-for-solving-math-pro 

blems-with-maxima/. 
In this book wxMaxima version 5.43.0 on Microsoft Windows was used. The 

installer file was maxima-clisp-sbcl-5.43.0-win64.exe. Older or newer versions 
wxMaxima would give minor changes in output display, but the calculation output 
should be almost the same. 

Using wxMaxima 

Figure A.1 shows wxMaxima window when it is started. On top of the window are 
File, Edit, View, Cell, Maxima, Equations, Algebra, Calculus, Simplify, List, Plot, 
Numeric, and Help menus. Under these menus, are other menus in icons. Discussion 
on using these menus is not done in this appendix

To give a command, type the command, type; to end it, and simultaneously press 
<shift> and <enter> keys to execute it. wxMaxima will display its response or output.
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Fig. A.1 WxMaxima window

To exit wxMaxima, press <ctrl-Q> , click File menu and choose Exit, or click the 
cross icon on the top right of the wxMaxima window. 

For example, you are to calculate (3 – 0.5) × 6.543 and plot the line y = 2x 
+ 3 for  − 5 ≤ x ≤ 5. Type (3–0.5)*6.54^3; and simultaneously press <shift> and 
<enter> . wxMaxima will display its result of calculation. Next, type y: 2*x + 3; 
and simultaneously press <shift> and <enter> keys to define the line. Lastly, type 
wxplot2d (y, [x, − 5,5]); and simultaneously press <shift> and <enter> again to 
instruct wxMaxima plot the line. Figure A.2 shows the wxMaxima window after 
three commands were executed.

This appendix briefly discusses how to do the calculations as in this book. These 
are small set of calculations that wxMaxima can perform. Readers must study various 
sources about wxMaxima or Maxima from the internet for further applications. 

Simple Calculations 

To calculate 2 × 5, type 2*5; and simultaneously press <shift> and <enter> keys. 
For division, addition, and subtraction, use /, + , − . The result of calculating 2 × 5, 
2 ÷ 5, 2 + 5, and 2 − 5 is as follows,
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Fig. A.2 wxMaxima input and output in the window

wxMaxima tags the input typed by user as (%i—) and the output as (%o—). These 
tags could be used for further calculation. The last output is tagged as %. Typing %; 
will give −3, typing %o1; will give 10, and typing %o3; will give 7. 

To hide the output type $ instead of ; at the end of a command, followed by simul-
taneously pressing <shift> and <enter> keys. wxMaxima executes the command and 
will not display the output. Other command to hide the output is ratprint:false;. This  
command will suppress display of output related to internal rational number calcu-
lation of wxMaxima. Command to limit number of digits of numerical value that is 
displayed is fpprintprec, floating point print precision. For example, the command 
fpprintprec:5; will display only 5 significant digits.
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To calculate
√
3, type sqrt(3); and simultaneously press <shift> and <enter> keys. 

To get its decimal value type float(%); and simultaneously press <shift> and <enter> 
keys again, the result is, 

To input 210, type 2^10; to input 3 × 108, type 3e8; and to input 1.6 × 10−19, type 
1.6e-19. To calculate 210 

3×108 × 1.6 × 10−19 for example, we only have to type 2^10/ 
3e8*1.6e-19; and the result is, 

Let us say you want to change 210 to 29 in the calculation. Use the computer mouse 
to go to 2^10, and do the editing to replace 10 with 9 using <del> or <backspace> 
and 9, followed by simultaneous press of <shift> and <enter> keys. The results is, 

This way of editing and recalculation is very useful to correct typos and to recal-
culate. We do not have to retype the whole input, just correct the typos and simulta-
neously press <shift> and <enter> keys. This is an advantage of using a software or 
an apps as opposed to using a calculator to do calculations. 

Restart 

To start a new calculation, click Maxima menu at top of the window, and choose 
Restart Maxima. This will clear the wxMaxima memory and we can start a new 
session of the calculation. We will always Restart Maxima for a new calculation. 

Assignment 

To assign a value of 3 to m, i.e. m = 3, type m: 3;. To assign a = 11, type a: 11;. Do not 
forget to simultaneously press <shift> and <enter> for each command. Thereafter 
m and a are always in the memory of the computer and can be used for further 
calculation. To calculate F = ma for example, type F: m*a; simultaneously press 
<shift> and <enter> .
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We frequently use this method in solving, calculating, and checking physics 
problems in this book. 

Substitution 

The values of m and a in the previous example, can also be substituted into the 
formula F = ma by function subst as follows: 

or more simply, 

Function Definition 

To define a function use :=. For example, define g(x) = 2x2 + x − 3 and calculate 
g(4). This is performed by wxMaxima as follows, 

Define 

Another way to define a function is by predefined function define. Arguments of 
define are the function and its definition. The previous example can be realized as 
follows:
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Solving an Equation 

To solve an equation, use wxMaxima built-in function called solve. For example, 
solve 12x + 3 = 5, i.e. find x that satisfies the equation. Type solve(12*x + 3 = 
5,x);, simultaneously press <shift> and <enter> keys, and wxMaxima gives x = 1/6 
as a solution, 

To use solve two arguments are needed, the first is the equation “12*x + 3 = 5” 
and the second is the unknown variable to be found “x”. The solve built-in function 
is frequently used in this book. 

The output of solve is a list as indicated by the square bracket […]. In this example, 
x is not yet assigned the value of 1/6. To pick the value 1/6 from a list, the right-hand 
side rhs(…) built-in function is useful. Thus, to solve the equation and assign the 
solution as x, the codes are, 

To solve a quadratic equation 5y2 + y – 6  = 0, type solve(5*y^2 + y–6 = 0,y); 
and simultaneously press <shift> and <enter> keys. The result is, 

Therefore, the solutions of the quadratic equation are y = −6/5 and y = 1. 
To solve the quadratic equation and assign the solutions as y1 and y2, the codes 

are,
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Solving Simultaneous Equations 

To solve simultaneous equations, 

2x + 5y = 11, 
x − 4y = 7, 

type solve([2*x + 5*y = 11, x-4*y = 7], [x,y]); and simultaneously press <shift> 
and <enter> keys. The result is, 

Here, the first argument of solve is a list of two equations [2*x+5*y = 11, x-4*y 
= 7], and the second argument is a list of two variables [x,y] that are to be calculated. 
The solutions of the system of equations are x = 6.07… and y = −  0.230… 

To assign x and y the values of the solutions, the codes can be as follows, 

As another example, solve the following system of equations, 
3x + y − z = 0, 
2x – 3y + z = 1, 
2x + y + 2z = 7. 
Type solve([3*x + y–z = 0, 2*x-3*y + z = 1, 2*x + y + 2*z = 7],[x,y,z]); and 

simultaneously press <shift> and <enter> keys. The result is, 

Solutions of the system of equations are x = 0.54…, y = 0.87…, and z = 2.51…. 
To assign x, y, and z the values of the solutions, the codes can be as follows,



554 Appendix A: Introduction to wxMaxima

Angle 

Angles are in radian. This means that cos(60) is cosine of 60 rad, and is not cosine 
of 60°. If cosine of 60° is needed, we type cos(60/180*%pi). We convert angle in 
degree to angle in rad in the argument of the built in function cos. In wxMaxima π 
is typed as %pi. 

The inverse cosine, inverse sine, and inverse tangent functions, i.e. cos–1, sin–1, 
and tan–1 called acos, asin, and atan in wxMaxima will give angles in radians. If 
angles in degrees are needed, conversion must be made by multiplying the angle in 
radian by 180 and division by %pi. 

The codes show that cos−1(1/2) = 1.047 rad ≡ 60°. 

Logarithm 

The built in function log(…) is the natural logarithm (logarithm of base e). Thus, 

log e = ln e = 1, 
log(e × e) = ln e2 = 2, 
log 10 = ln 10 = 2.3026,
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as in the following codes, 

Here, the Euler’s number e = 2.718… is typed as %e in wxMaxima. 
To get logarithm of base 10, you divide log(x) by log(10), because, 

log10 x = 
loge x 

loge 10 
= 

ln x 

ln 10 
. 

The codes below show that log10(0.2) =−0.69…, log10(1)= 0, log10(2)= 0.30…, 
log10(4) = 0.60…, log10(10) = 1, and log10(151) = 2.1…. 

If one defines log10(x) as log(x)/log(10) at the beginning, then the defined function 
can be used repeatedly. The above codes become,
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Differentiation 

To differentiate a mathematical expression, use wxMaxima built-in function diff . For  
example given y = 2 sin(5x + π /4), differentiate y with respect to x, i.e. find dy/dx. 
We type diff(2*sin(5*x + %pi/4), x); and simultaneously press <shift> and <enter> 
keys. Alternatively, we can first define y followed by the differentiation with respect 
to x, that is, we input y:2*sin(5*x + %pi/4); followed by diff(y,x);. The result is, 

%pi is a predefined constant π. Other predefined constants are Euler’s number 
%e, Euler–Mascheroni constant %gamma, and golden ratio %phi. Their values can 
be checked as follows, 

Integration 

To integrate, use built-in function integrate. For example, calculate 
4∫

1 
5x2dx . Key  

in integrate(5*x^2, x, 1, 4); and simultaneously press <shift> and <enter> keys. The 
result is,
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This means integrate needs four arguments: function, variable, lower limit, and 
upper limit. 

Another built-in function to do definite integration is romberg. This is a numer-
ical integration built-in function. To calculate the same problem above, key in 
romberg(5*x^2, x, 1, 4); and simultaneously press <shift> and <enter> keys. The 
result is, 

Two-Dimensional Plot 

To plot in 2D, use the built in function wxplot2d. For example, plot the curve y = x2 
for −4 ≤ x ≤ 4. Key in wxplot2d(x^2, [x,-4,4]); and simultaneously press <shift> 
and <enter> keys. The result is, 

The command wxplot2d needs two arguments. First, the expression of the curve. 
Second, a list consisting of the variable, the lower, and upper limits in square brackets. 

Another example, plot two curves y = 0.01x2 and z = sin(x)/x, for  −10 ≤ x ≤ 
10. We define the two functions and use the definitions in the wxplot2d command. 
The result is,



558 Appendix A: Introduction to wxMaxima

Vector 

For vector calculation, vect package or module has to be loaded by the command 
load(“vect”);. A vector is defined as a list in square bracket […]. The operator for 
dot (scalar) product is the dot · and for vector (cross) product is ~ followed by 
express(%). For example, given vectors, A = 4i + 3j + 2k and B = 5i + 6j + 
7k, calculate A·B, magnitude of A and B, the angle between A and B, A × B, and 
magnitude of A × B. The wxMaxima calculation is as follows,
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The calculation gives, A·B = 52, A = 5.385, B = 10.49, angle between A and B 
is 23°, A × B = 9i – 18j + 9k, |  A × B | = 22.05, angle between A and B is 23°. 

Statistics 

For statistics, the variable values are entered as a list. The built-in functions mean, 
var, and std can be called to calculate mean, variance, and standard deviation of the 
variable. For example, calculate the mean, variance, and standard deviation of 20.4, 
62.5, 61.3, 44.2, 11.1, and 23.7. The result is, 

The wxMaxima calculation says that the mean of x is 37.2, the variance of x is 
402.6, and the standard deviation of x is 20.06.
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Table. A.1 List of (x, y) 
values x y 

0 –0.8 

2 –0.7 

4 –0.2 

6 0.2 

8 0.1 

10 0.6 

12 0.7 

Linear Least Square Fitting 

Determine the best line y = mx + c by the linear least square method of (x, y) data 
in Table A.1. 

To do least square line fit by wxMaxima, the (x, y) data are entered as matrix, 
then load the lsquares routine by load(“lsquares”); command, lastly the predefined 
command lsquares_estimates is called. 

wxMaxima codes:
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Comments on the codes: 

(%i1) Set floating point print precision to 5. 
(%i2) Assign "data" as matrix of (x, y) values. 
(%i3) Load "lssquares" routine. 
(%i5) Calculate m and c by the least square fit. 
(%o4), (%o5) The results. 
(%i7) Assign values of m and c. 
(%i8), (%i9) Assign xy as data points and plot the points. 
(%i10), (%i11) Assign line y and plot the line. 
(%i12) Plot the data point and the line. 

The calculation by wxMaxima says that the line fit has the slope m = 0.13 and the 
y axis intercept c = −0.81. The line fit is y = 0.13x – 0.81. We plot the data points, 
the fitted line, and the data points with the fitted line in three separate plots. 

Simplify 

To simplify an expression use ratsimp(expression); or radcan(expression);. For 
example, the following codes show that, 

bx + b
(a 

b 
− x

)
+ a = 2a.
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Example 1, calculate 
L∫

0 

dx 
(L+a−x)2 

. 

This means that, 

L∫

0 

dx 

(L + a − x)2 
= 

1 

a 
− 

1 

a + L 
= L 

a2 + aL 
. 

Example 2, calculate 
L∫

0 

dx 
(L+a−x)3/2 

. 

This means that, 

L∫

0 

dx 

(L + a − x)3/2 
= 

2 √
a 

− 2 √
a + L 

= 
2 
√

a + L − 2 
√

a √
a 
√

a + L 
. 

Animation 

A simple animation of a harmonic wave y(x, t) = 2 sin(x − 10t) travelling to the 
right is as follows:
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To run the animation, right click the graphic and choose Start Animation. 

Solving Second-Order Ordinary Differential Equation 

To solve a second-order ordinary differential equation (ODE), use predefined func-
tions ode2 and ic2. Function ode2 solves the ODE and gives a general solution of the 
ODE. Its format is ode2(ODE, dependent variable, independent variable). Function 
ic2 sets the initial conditions and gives a particular solution of the ODE. Its format 
is ic2(output of ode2, independent variable value, dependent variable value, first 
derivative of dependent variable value). 

As an example, solve 

d2x 

dt2 
+ ω2 x = 0, 

where ω = 4π rad/s, x is displacement (dependent variable) in cm, and t is time 
(independent variable) in second. The initial conditions at t = 0 s, is  x = 2 cm, and 
dx/dt = −  24 cm/s. 

The codes are:
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Comments on the codes: 

(%i2) Set floating point print precision to 5 and assign value of ω. 
(%i3) Get a general solution of d2x/dt2 + ω2x = 0. 
(soln) A general solution of the ODE is x = constant 1 × sin(4π t) + 

constant 2 × cos(4π t). 
(%i5) Set the initial conditions and get a particular solution. 
(%o4), (%o5) The particular solution. 
(%i6) Assign x. 
(%i7) Plot x against t for 0 ≤ t ≤ 1 s.  

The codes say that the solution of the ODE is, (%o4) or (%o5), 

x = 2 cos(4π t) − 
6 

π 
sin 4π t) 

= 2 cos(12.566t) − 1.9099 sin(12.566t). 

Another way to solve the second-order ordinary differential equation by 
wxMaxima is to use predefined functions atvalue and desolve. The arguments of 
desolve are the ODE and the function we want a solution. The arguments of atvalue 
are the initial conditions: the dependent variable, the independent variable value, and 
the dependent variable value. We solve again the above problem using predefined 
functions atvalue and desolve.
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♦ wsMaxima codes: 

Comments on the codes: 

(%i2) Set floating point print precision to 5 and assign value of ω. 
(%i3) Define the differential equation. 
(%i5) Set the initial conditions. 
(%i7) Solve the differential equation and get a particular solution. 
(%o6), (%o7) The solution. 
(%i8) Define x(t); 
(%i9) Plot x(t) for 0  ≤ t ≤ 1 s.  

Solving First-Order Ordinary Differential Equation 

To solve a first-order ordinary differential equation (ODE), use predefined functions 
ode2 and ic1. Function ode2 solves the ODE and gives a general solution of the
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ODE. Its format is ode2(ODE, dependent variable, independent variable). Function 
ic1 sets the initial condition and gives a particular solution of the ODE. Its format is 
ic1(output of ode2, independent variable value, dependent variable value). 

As an example, solve a direct current RC circuit equation, 

R 
dq 

dt 
+ 

q 

C 
= E, 

where resistance R = 2000 Ω, capacitance C = 1 × 10−6 F, emf ε = 10 V, charge 
q (dependent variable) is in coulomb and time t (independent variable) is in second. 
The initial condition is, at t = 0 s,  q = 0 C.  

The codes are:
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Comments on the codes: 

(%i2) Set floating point print precision to 5 and internal rational number print to 
false. 

(%i3) Solve ODE R dq 
dt + q 

C = ε and get a general solution. 
(soln) A general solution is q = e−t/(RC)

(
Cεet/(RC) + constant

)

(%i4) Set the initial condition and get a particular solution. 
(%o4) The particular solution. 
(%i5) Assign the solution to q. 
(%i8) Assign values of R, C, and ε. 
(%i9) Plot q against t for 0 ≤ t ≤ 12 × 10−3 s. 

The codes say that the solution of the ODE is, (%o4), 

q = e−t/(RC) (Cε et/(RC) − Cε) 
= Cε (1 − e−t/(RC) ). 

Another way to solve first-order ordinary differential equation by wxMaxima is 
to use predefined functions atvalue and desolve. The arguments of desolve are the 
ODE and the function we want a solution. The arguments of atvalue are the initial 
conditions: the dependent variable, the independent variable value, and the dependent 
variable value. We solve again the above problem using predefined functions atvalue 
and desolve. 

♦ wsMaxima codes:
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Comments on the codes: 

(%i1) Set floating point print precision to 5. 
(%i2) Define the differential equation. 
(%i3) Set the initial condition. 
(%i5) Solve the differential equation and get a particular solution. 
(%o4), (%o5) The solution. 
(%i6) Assign values of R, C, and ε. 
(%i9) Define q(t). 
(%i10) Plot q(t) for  0  ≤ t ≤ 12 × 10−3 s. 

We end this Introduction to wxMaxima here. For further use and application of 
wxMaxima the readers are required to look for internet sources and the Help menu 
at the top right of the wxMaxima window.
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Physical Constants 

Symbol Value Physical quantity 

c 3.0 × 108 m s−1 Speed of light 

μ0 4π × 10−7 H m−1 Permeability of free space, Permeability constant 

ε0 8.85 × 10−12 F m−1 Permittivity of free space, Permittivity constant 

e − 1.6022 × 10−19 C Electron charge 

h 6.63 × 10−34 J s Planck constant 

me 9.11 × 10−31 kg 
5.48 × 10−4 u 

Mass of electron 

mp 1.673 × 10−27 kg 
1.007825 u 

Mass of proton 

md 3.34 × 10−27 kg 
2.014102 u 

Mass of deuteron 

R 8.31 J K−1 mol−1 Molar gas constant, Universal gas constant 

RH 1.097 × 107 m−1 Rydberg constant 

NA 6.02 × 1023 mol−1 Avogadro number 

kB = R 
NA 

1.38 × 10−23 J K−1 Boltzmann constant 

G 6.67 × 10−11 N m2 kg−2 Universal gravitational constant 

g 9.8 m s−2 Acceleration of gravity, Gravitational acceleration 

k = 1 
4πε0 

9 × 109 N m2 C−2 Electrostatic constant 

km = μ0 
4π 10−7 Wb A−1 m−1 Magnetic constant
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Conversion Factors 

Quantity Conversion 

Length 1 m  = 39.37 inch = 3.28 feet = 100 cm 

1 feet = 30.48 cm 

1 inch  = 2.54 cm 

1 mile  = 5280 feet = 1.609 km 

1 Å  = 10−8 cm = 10−10 m 

1 μm = 10−4 cm = 10−6 m 
1 nm  = 10−7 cm = 10−9 m 

Mass 1 slug  = 14.59 kg = 32.2 lb 
1 g  = 10−3 kg = 6.85 × 10−5 slug 

1 u  = 1.66 × 10−27 kg = 931.5 meV/c2 

Time 1 year = 365 day = 3.16 × 107 s 
1 day  = 24 h = 1.44 × 103 min = 8.64 × 104 s 
1 h  = 60 min = 3600 s 

Area 1 cm2 = 0.155 inch2 

1 inch2 = 6.452 cm2 

1 m2 = 10.76 feet2 

1 feet2 = 144 inch2 = 0.0929 m2 

1 hectare = 104 m2 = 2.471 acre 
1 acre = 4047 m2 = 0.4047 hectare = 4840 yard2 = 43,560 feet2 

Volume 1 m3 = 106 cm3 = 103 dm3 = 103 L 
1 dm3 = 1 L  
1 cm3 = 1 mL  

1 m3 = 35.3 feet3 = 6.1 × 104 inch3 

1 feet3 = 2.83 × 10−2 m3 = 28.32 L
(continued)
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(continued)

Quantity Conversion

Speed 1 mile hour−1 = 1.47 feet s−1 = 0.447 m s−1 = 1.609 km hour−1 

1 m s−1 = 100 cm s−1 = 3.281 feet s−1 = 3.6 km hour−1 = 2.237 mile 
hour−1 

1 km hour−1 = 0.278 m s−1 = 0.621 mile hour−1 = 0.911 feet s−1 

1 mile minute−1 = 60 mile hour−1 = 88 feet s−1 

Acceleration 1 m s−2 = 3.28 feet s−2 = 100 cm s−2 

1 feet s−2 = 0.3048 m s−2 = 30.48 cm s−2 

Force 1 N  = 105 dyne = 0.2247 lb 
Pressure 1 N m−2 = 1 Pa  = 10 dyne cm−2 = 1.45 × 10−4 lb inch−2 

1 atm  = 1.013 × 105 Pa 
Energy and power 1 J  = 107 erg = 0.239 cal = 0.738 feet lb 

1 eV  = 1.6 × 10−19 J = 1.6 × 10−12 erg 

1 cal = 4.18 J 
1 horse power = 745 W = 550 feet lb s−1 

Magnetic field 1 T  = 104 gauss 
1 T  = 1 Wb m−2



Appendix D 
Mathematical Formulae 

Roots of a quadratic equation 

ax2 + bx + c = 0 ⇒ x = −b± 
√

b2−4ac 
2a = −b 

2a ±
/( b 

2a

)2 − c 
a 

Trigonometric identity 

sin θ = y 
r csc θ = 1 

sin θ = r 
y 

cos θ = x 
r sec θ = 1 

cos θ = r 
x 

tan θ = y 
x cot θ = 1 

tan θ = x 
y 

sin2 θ + cos2 θ = 1 x2 + y2 = r2 1 + tan2 θ = sec2 θ 
sin 2θ = 2 sin  θ cos θ sin(−θ)  = − sin θ sin2 θ = 1−cos 2θ 

2 

cos 2θ = cos2 θ − sin2 θ = 
1 − 2 sin2 θ 

cos(−θ)  = cos θ cos2 θ = 1+cos 2θ 
2 

sin(θ ± φ) = 
sin θ cos φ ± cos θ sin φ 

tan(−θ)  = −  tan θ tan2 θ = 1−cos 2θ 
1+cos 2θ 

cos(θ ± φ) = 
cos θ cos φ ∓ sin θ sin φ 

sin θ + sin φ = 2 sin
(

θ +φ 
2

)
cos

(
θ −φ 
2

)

sin θ sin φ =
1 
2 [cos(θ − φ) − cos(θ + φ)] 

sin θ − sin φ = 2 cos
(

θ +φ 
2

)
sin

(
θ −φ 
2

)

cos θ cos φ =
1 
2 [cos(θ − φ) + cos(θ + φ)] 

cos θ + cos φ = 2 cos
(

θ+φ 
2

)
cos

(
θ−φ 
2

)

sin θ cos φ =
1 
2 [sin(θ + φ) + sin(θ − φ)] 

cos θ − cos φ = −2 sin
(

θ +φ 
2

)
sin

(
θ −φ 
2

)

(continued)

© The Editor(s) (if applicable) and The Author(s), under exclusive license 
to Springer Nature Switzerland AG 2023 
W.  M.  S.  Wan Hassan et al.,  Physics—Problems, Solutions, and Computer Calculations, 
https://doi.org/10.1007/978-3-031-43165-4 

575

https://doi.org/10.1007/978-3-031-43165-4


576 Appendix D: Mathematical Formulae

(continued)

Roots of a quadratic equation

cos θ sin φ =
1 
2 [sin(θ + φ) − sin(θ − φ)] 

tan 2θ = 2 tan  θ 
1−tan2 θ 

Cosine rule 
c2 = a2 + b2 − 2ab cos γ 
Sine rule 
sin α 

a = sin β 
b = sin γ 

c 

Series expansion 

ex = 1 + x + x2 
2! + x3 

3! + ... (1 + x)n = 1 + nx + n(n−1)x2 

2! + n(n−1)(n−2)x3 

3! + ... 

sin x = x − x3 
3! + x5 

5! − x7 
7! + ... (1 − x)n = 1 − nx + n(n−1)x2 

2! − n(n−1)(n−2)x3 

3! + ... 

cos x = 1 − x2 
2! + x4 

4! − x6 
6! + ... 1 

1+x = 1 − x + x2 − x3 + ... 

tan x = x + x3 
3 + 2x5 

15 + 17x7 
315 + ... 1 

1−x = 1 + x + x2 + x3 + ... 

ln(1 + x) = x − x2 
2 + x3 

3 − x4 
4 + ...

√
1 + x = 1 + x 

2 − x2 
8 + x3 

16 + ... 
1 √
1+x 

= 1 − x 
2 + 3x2 

8 − 5x3 
16 + ...

√
1 − x = 1 − x 

2 − x2 
8 − x3 

16 + ... 

Differentiation Integration 
d 

dx sin x = cos x
∫
sin x dx  = − cos x 

d 
dx cos x = − sin x

∫
cos x dx = sin x 

d 
dx e

x = ex
∫

ex dx  = ex 

d 
dx  x

n = nxn−1
∫

xn dx  = xn+1 

n+1 

d 
dx ln(x + 

√
x2 + a2) = 1 √

x2+a2

∫ dx √
x2+a2 

= ln(x + 
√

x2 + a2) 
d 

dx ln(x + 
√

x2 − a2) = 1 √
x2−a2

∫ dx √
x2−a2 

= ln(x + 
√

x2 − a2) 
d 

dx 
1 

(x2+a2)1/2 
= − x 

(x2+a2)3/2
∫ x dx  

(x2+a2)3/2 
= − 1 

(x2+a2)1/2 

d 
dx 

x 
a2(x2+a2)1/2 

= 1 
(x2+a2)3/2

∫ dx 
(x2+a2)3/2 

= x 
a2(x2+a2)1/2 

d 
dx (a

2 − x2)3/2 = −3x(a2 − x2)1/2
∫

x(a2 − x2)1/2dx = − 1 
3 (a

2 − x2)3/2
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Dot (scalar) product of two vectors 

Given two vectors, 
A = Ax i + Ayj + Azk, 
B = Bx i + Byj + Bz k, 
then, 
A · B = Ax Bx + Ay By + Az Bz, 
also the magnitudes of A and B are, 

A = 
/

A2 
x + A2 

y + A2 
z , 

B = 
/

B2 
x + B2 

y + B2 
z . 

Also, 
A·B = AB cos θ, 
where θ is the small angle between A and B. 

Cross (vector) product of two vectors 

Given two vectors, 
A = Ax i + Ayj + Azk, 
B = Bx i + Byj + Bz k, 
then, 

A × B =

I
I
I
I
I
I
I
I

i j k  

Ax Ay Az 

Bx By Bz

I
I
I
I
I
I
I
I

= ( Ay Bz − Az By )i − ( Ax Bz − Az Bx )j + (Ax By − Ay Bx )k. 

Also, 
|A × B| = AB sin θ,  
where θ is the angle between A and B, and, 

A = 
/

A2 
x + A2 

y + A2 
z , 

B = 
/

B2 
x + B2 

y + B2 
z . 

The right hand rule
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Cramer’s rule 

The solutions for 

a1x + b1y = c1, 
a2x + b2y = c2, 
are 

x = 
c1b2 − c2b1 
a1b2 − a2b1 

, 

y = 
a1c2 − a2c1 
a1b2 − a2b1 

. 

Logarithm 

logb x = log10 x 
log10 b = loge x 

loge b
x = ba ⇒ logb x = a 

logx x = log10 10 = loge e = log2 2 = 1 1000 = 103 ⇒ log10 1000 = 3 
2 = e0.693 ⇒ loge 2 = 0.693 512 = 28 ⇒ log2 512 = 8
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