
MOVING: A MOdular and Flexible
Platform for Embodied VIsual

NaviGation

Marco Rosano1(B), Francesco Ragusa1,2, Antonino Furnari1,2,
and Giovanni Maria Farinella1,2,3

1 FPV@IPLAB - Department of Mathematics and Computer Science, University of
Catania, Catania, Italy
marco.rosano@unict.it

2 Next Vision s.r.l., Catania, Italy
3 Cognitive Robotics and Social Sensing Laboratory, ICAR-CNR, Palermo, Italy

Abstract. We present MOVING, a flexible and modular hardware and
software platform for visual mapping and navigation in the real world.
The platform comprises a flexible sensor configuration consisting of an
RGB-D camera, a tracking camera for odometry, and a 2D Lidar, along
with a compact processing unit that is equipped with a GPU for run-
ning deep learning models. The software is based on ROS, utilizing the
RGB-D RTAB-Map SLAM system for mapping and localization and the
move base package for path planning and robot movement control. The
platform is easily detachable and can be installed on any robot with min-
imal adaptation required, enabling the reuse of the same robotic software
regardless of the robot employed. The effectiveness of the proposed plat-
form was verified through mapping sessions of a large indoor environ-
ment, leveraging a Loomo robot. The proposed platform can represent a
reasonable solution to speed up the design and testing of new software
for autonomous navigation systems, minimizing deployment time in the
real world.

Keywords: Robot visual navigation · Visual mapping and
navigation · ROS

1 Introduction

Recent years have seen a significant advancement in robotic technology. As a
result, increasingly robust and reliable robot platforms have been developed,
demonstrating their ability to carry out challenging tasks such as object grasp-
ing [11], visual localization [1] and navigation [18], which typically occur in indus-
trial, commercial and even domestic scenarios. Although many hardware com-
ponents for robotics have been developed for several years now, such as mobile
bases with wheels and mechanical arms with gripper, others have been improved
only recently. For example, sensors that enable robots to perceive their surround-
ings, such as cameras and Lidars, have been improved in their performance and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. L. Foresti et al. (Eds.): ICIAP 2023, LNCS 14234, pp. 75–86, 2023.
https://doi.org/10.1007/978-3-031-43153-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43153-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-43153-1_7


76 M. Rosano et al.

Fig. 1. The proposed MOVING platform, installed on a Loomo robot. The platform
consists of a perception module (on the left) formed by an RGB-D camera (bottom-
left), a tracking camera (center-left), a 2D Lidar (top-left), and a compact, low-power
computational unit (on the right), equipped with a 6-core CPU, a Graphical Processing
Unit (GPU) and WiFi connectivity. The sensors are supported by an ad hoc designed
3D printed mount and can be clamped to any robot. The computational unit runs
the mapping and navigation software and supports running Deep Learning models
on-device.

reliability, and their cost has also decreased. Similarly, the processing units have
been improved and compacted to ensure they can be simply installed on any
robot and process data directly on-board. On the software side, thanks to the
recent progress of Deep Learning algorithms it is now possible to extrapolate
richer information from the sensory data, allowing the robot to learn robust
control policies and behave more naturally when compared to classic control
systems [19]. In Previous works [15,17] several attempts have been made to

standardize the software intended for controlling robotic systems. For instance,
the ROS project [20] brings together a versatile software stack, developed over
the years with the aim of providing the essential tools for the development of
robotic control systems. Unfortunately, despite standardization attempts have
been made also for robot platforms [3,14], those commercially available do not
fully satisfy the different needs of research centers and companies which develop



The MOVING Platform 77

robotic solutions. Additionally, the design of the available robots often lacks
modularity and interchangeability of the individual platform components.

In this work we propose a flexible and modular hardware and software platform
for SLAM and visual navigation. The platform includes several sensors: an RGB-D
camera, a tracking camera which provides odometry and a 2D Lidar. The compact
processing unit is equipped with wireless connectivity, including a GPU to run
Deep Learning models and can be powered by a simple power bank. The software
is based on ROS [20], it uses the RGB-D RTAB-Map SLAM system [12] to map
the environment and locate the robot inside it and the move base package [13] for
path planning and robot movement control. The platform, depicted in Fig. 1, can
be easily detached and installed on any robot with minimal adaptation required.
This allows the reuse of the same SLAM and navigation software regardless of the
robot employed, hence reducing deployment time. Moreover, its use encourages
to design and test navigation solutions based on the visual platform, rather than
on the full stack including sensors, processing units and the robot, which makes
the developed solutions more adaptable to different applications. In principle, the
same solution could work on a Pepper1 robot or on a robotic vacuum cleaner. The
configuration of the sensors is flexible. It is possible to remove the tracking cam-
era or the Lidar or both according to the precision, size and energy autonomy
needed. The sensors’ missing information is then estimated at the software level
based on the other sensors. The effectiveness of MOVING was verified through
several mapping sessions of a large indoor environment, carried out leveraging a
Segway Loomo robot2. We discuss the flexibility of the proposed platform, which
can represent a reasonable solution to speed up the design and test of new soft-
ware for autonomous navigation systems. Given the remarkable perceptive capac-
ity of the proposed platform and the availability of hardware acceleration (GPU)
of the embedded system, MOVING allows to minimize the deployment time of
Deep Learning models in the real world.

2 Related Work

Robot Platforms and Applications. Over the years, many robot platforms
have been designed with the goal to assist humans in their everyday activities,
while working [9], learning [2] or in need of special support [7]. Given the high
costs associated with the development of these platforms, the first prototypes
were developed by large private companies and large research centers for com-
mercial applications and technological advancement [21]. In the ‘90s, the work
of Hirai et al. [10] represented the first successful attempt to create a working
humanoid robot, equipped with a large suite of sensors and able to replicate
human activities (e.g. walking, grasping, etc.). The first studies on quadrupedal
robots date back to the same period [4]. Regarding wheeled robots, many plat-
forms were developed for research and educational purposes [3]. To foster the
development of robotic technologies, many other platforms have been released as
1 https://www.aldebaran.com/en/pepper.
2 https://www.segway.com/loomo.

https://www.aldebaran.com/en/pepper
https://www.segway.com/loomo


78 M. Rosano et al.

open-source [14]. Each of these robot platforms has a heterogeneous set of sensors
with different perceptive capabilities and specific software for robot mapping,
navigation and control, which support only a limited set of peripherals.

Our platform for SLAM and navigation contrasts with these approaches.
In fact, the entire hardware setup can be easily mounted on any robot and,
exploiting the ROS software framework [20], it can support a large variety of
sensors and leverage open-source software for SLAM and navigation. This gives
the flexibility to choose the most suitable set of sensors and to re-use the same
software while changing the robot.

Visual Mapping and Navigation. Most navigation systems requires a map
of the environment to carry out the operations of localization and path plan-
ning. The environment map can be built beforehand starting from a set of RGB
images using a Structure From Motion method [22] to return a 3D reconstruction
in the form of a point cloud, from which a navigable 2D grid map is extracted. In
contrast, Simultaneous Localization And Mapping (SLAM) systems [6] can be
used to reconstruct the environment in real time while exploring, starting from
RGB-D images [16], from Lidar signal [8], or both [12]. The resulting floor plan
is then exploited by the navigation stack to carry out path planning and pro-
vide the robot with the actions to execute towards the goal. As an alternative
to traditional methods, Deep Learning-based mapping and navigation models
have emerged, which are able to learn directly from the data provided, often col-
lected from simulated environments [18]. These methods can replicate the SLAM
algorithm pipeline and reduce the complexity of some of its components [5].

In this work we adopt a robust and reliable RGB-D SLAM system called
RTAB-Map [12] along with the navigation stack called move base [13], both
integrated in the ROS framework [20]. However, the proposed platform has been
designed to supports the use of Deep Learning models at both the software and
hardware levels.

3 The MOVING Platform

Figure 2 summarizes the architecture of the proposed platform, which consists of
hardware and software components and has been designed to ensure support for
a large number of input peripherals, robot platforms and mapping/navigation
software. MOVING embraces the concept of “Write once, deploy anywhere”,
which allows to develop a software application only once and deploying it on
as many platforms as desired. To achieve this, we designed a compact hardware
system (Fig. 1), easily installable on a large number of robots, with a high-
performance and power efficient processing unit to support the computation
load while ensuring adequate autonomy.

3.1 Hardware Architecture

The hardware architecture of MOVING consists of the following components:



The MOVING Platform 79

The MOVING platformSensor 1

Sensor 2

Sensor N

. . .

RGB-D camera
Tracking camera

2D lidar
Receives sensory

data from
Robot 1

Robot 2

Robot N

. . .

Loomo robot

Can be 
mounted on

Sends movement
commands to

Interfaces with

ROS framework

Mapping/navigation software

Robot management software

Deep Learning systems 
(detection, segmentation, …)

Analytics software

Fig. 2. Architecture of the MOVING platform. In blue we reported the configuration
discussed in this paper, whereas in yellow we highlighted the possibility to personalize
the platform. With the adoption of the ROS framework [20], MOVING can support
a wide range of sensors and can work with classic reliable robotic software as well as
custom applications. The platform can be easily installed on a large number of robots,
which can be controlled by setting up a simple platform-robot communication interface.

– RGB-D camera: the camera acquires RGB images coupled with depth
images and sends them to the visual SLAM software to create the environ-
ment map. During the navigation, the images can be used to localize the
robotic agent within the already acquired map. In the setup discussed in this
paper we use a Realsense D455 depth camera3, which relies on a stereoscopic
3D vision technology to capture a sufficiently accurate depth;

– Tracking camera: the tracking camera enabels the robot to use the odom-
etry to track itself in space over time. To avoid pose estimation drift, the
system should run at a high frame rate and can integrate visual and inertial
information to improve its accuracy. When the device is not available, the
odometry can be estimated from RGB or RGB-D images at the expense of
less reliability and precision, or from wheel encoders installed on the robot,
which however would force to bind the platform to the specific robot. In
our setup, we adopt a Realsense T265 tracking camera4 which combines VO
from two fisheye sensors with inertial sensors to compute an highly accurate
odometry directly on device;

– 2D Lidar: the 2D Lidar emits a beam of light (laser) while spinning to
measure the distance of obstacles that intersect the scanned virtual horizontal
plane. Depending on the model, the 2D Lidar can perceive only the front
facing obstacles (180◦ perception) or all the obstacles around the sensor (360◦

perception). The perceived range can easily go beyond 10 m even in the case of
affordable devices, providing an accurate measurement of the geometry of the
environment. In the proposed platform, we adopt the RPLIDAR-A2M12 2D

3 https://www.intelrealsense.com/depth-camera-d455/.
4 https://www.intelrealsense.com/tracking-camera-t265/.

https://www.intelrealsense.com/depth-camera-d455/
https://www.intelrealsense.com/tracking-camera-t265/


80 M. Rosano et al.

Lidar5, which is capable of a 360◦ scan, has an angular resolution of 0.225◦,
a max range of 12 m and a frequency of 10 Hz;

– Sensors mount: the considered sensors are installed on a mount, specifically
designed and 3D printed. The mount allows to position the tracking camera
above the RGB-D camera and is extended by an additional support for the
Lidar, which is positioned above the cameras and allows for tilt adjustment.
The setup can be then hooked to the robot via a joint equipped at one end
with a camera screw and at the other end with a clamp for immediate instal-
lation on any robot;

– Processing unit: the processing unit processes the incoming stream of data
from the sensors, runs the mapping and navigation software and manages the
communication between the robot and the external services. We have chosen
to adopt a ZED Box6 given its compact form factor and hardware character-
istics. It is equipped with a 6-core processor and a Graphics Processing Unit
(GPU) to run Deep Learning-based models and comes with Ubuntu OS for
software compatibility. The ZED Box has been equipped with WiFi connec-
tivity, a USB hub, and can be powered by a classic power bank equipped with
a Power Delivery (PD) output, given its maximum consumption of 20 Wh.

The platform setup, complete with all hardware components, is shown in Fig. 1.

3.2 Software Architecture

The software system is based on the ROS framework [20]. ROS is an open-source
project which consists of a set of software libraries and tools for building robotic
applications. ROS offers the advantage of: 1) abstracting the robot platform
in order to reuse the code; 2) using highly standardized and stable software
libraries; 3) integrating custom software easily into the ecosystem; 4) choosing
from numerous supported sensors which are easily to integrated in ROS; 5) move
the computational load to a third party machine transparently, if the computa-
tional power of the embedded system is limited. The software components used
are the following:

– SLAM software: RTAB-Map [12] is a robust RGB-D, stereo e Lidar graph-
based SLAM approach, integrated in the ROS framework as a ROS package.
Thanks to a memory management approach, the system supports the scan
of large-scale environments while keeping its ability to work in real time.
The clear advantage of using visual SLAM over Lidar-based SLAM is the
availability of an image-based loop closure detector, which is able to correct
the pose estimation drifts during mapping and navigation and provide a first
guess on the initial robot’s location. RTAB-Map also offers the possibility
to estimate the odometry signal from the RGB-D or the Lidar data stream,
when an odometry source is not available.

5 https://www.slamtec.ai/home/rplidar a2/.
6 https://www.stereolabs.com/zed-box/.

https://www.slamtec.ai/home/rplidar_a2/
https://www.stereolabs.com/zed-box/


The MOVING Platform 81

– Navigation software: the ROS Navigation Stack offers a collection of soft-
ware packages that can be used to implement a navigation system. Specif-
ically, the move base node [13] links together a global planner and a local
planner which leverage the environment map to generate an optimal naviga-
ble path to the destination. The move base node receives as input the sensors’
observations, the map of the environment, the robot’s position and the odom-
etry source to output the actions to be performed in the form of linear and
angular velocities;

– Sensors ROS interfaces: thanks to the broad adoption of the ROS frame-
work in the robotic field, most sensor manufacturers provide the required ROS
software packages to interface with the framework. The realsense cameras
are supported by the realsense2 camera ROS package7, while the RPLIDAR
device is supported by the rplidar ROS package8;

– ROS-robot communication system: to forward the actions provided by
the move base package, we implemented a socket-based communication sys-
tem where a sender, integrated in the ROS framework, reads the action com-
mands and sends them to the receiver via network connection.

– Robot management software: we developed a web-based, cross-platform
robot management software, which allows the user to monitor the robot while
it operates in the designated environment, track its movements, and specify
new destinations to reach and receive updates on the status of the task.
Moreover, given the environment map, an annotation tool can be used to store
strategic points of interest inside it and associate them with labels for future
use. The backend of the web-based software was developed in Python using
the Flask library to build the webserver and the rospy library to interface
with ROS, while the frontend was developed in HTML and Javascript.

4 Experimental Settings and Results

We validated the proposed platform while performing the mapping and navi-
gation tasks in an environment, by assessing the quality of the resulting floor
plans given the full sensor configuration. To show the contribution of each of the
sensors used in our setup, we also performed an ablation study by employing a
subset of the sensors (i.e. excluding the 2D lidar, the tracking camera or both of
them).

4.1 Mapping of the Environment

To carry out the mapping, the proposed platform was mounted on a Segway
Loomo robot9, which received the action commands through the socket-based
communication interface discussed in the Sect. 3.2. Given that Loomo comes
equipped with the Android OS, the receiver program was developed in Java and
7 http://wiki.ros.org/realsense2 camera.
8 http://wiki.ros.org/rplidar.
9 https://www.segway.com/loomo.

http://wiki.ros.org/realsense2_camera
http://wiki.ros.org/rplidar
https://www.segway.com/loomo


82 M. Rosano et al.

Table 1. List of the performed mapping sessions, considering different sensor config-
urations. We report if the task has been successfully completed, together with a short
comment on the experiment.

Odometry source Lidar Sucess Notes

Tracking camera 2D Lidar � -

Tracking camera - � Artifacts in the map

Tracking camera From depth image � Continuous stop and in-place rotations

Lidar - ICP 2D Lidar � -

Lidar - ICP From depth image �
Camera FOV too narrow, unstable

lidar signal

RGB-D - �*
*Loss of tracking. Incomplete

mapping

used the Loomo SDK to forward the linear and angular velocities to the robot
base controller.

To perform experiments in a real scenario, we chose an area of our university
department floor10 that measures approximately 295 square meters. To scan the
environment covering the whole area, a path formed by 16 key points has been
provided. Points along the track were then sub-sampled at 1.5 m intervals and
provided as goals to the autonomous navigation system.

The list of the performed mapping experiments is summarized in Table 1,
which reports the sensor configurations used as well as if the mapping was suc-
cessful or not. Using the complete settings, with both tracking camera and 2D
Lidar (first row), the mapping procedure has been complete successfully. When
the tracking camera has not been used, the odometry was estimated from the
Lidar signal using the Iterative Closest Point (ICP) algorithm (4th and 5th rows)
or from visual features extracted from the RGB-D images (last row). In two of
the four configurations that do not include the 2D Lidar sensor (3rd and 5th
rows), we extracted a Lidar-like signal from the camera’s depth images using
the depthimage to laserscan ROS package, which perceives a narrow portion of
space and has a shorter perception range (capped to 5 m to avoid noisy measure-
ments), but did not prove to be a useful input signal for the mapping system.

In general, it is possible to observe how four of the six configurations success-
fully accomplished the mapping task, whereas two experiments, which employed
the lidar-like signal, were unsuccessful (3rd and 5th rows). In the first case (3rd

10 Additional details omitted due to the anonymous submission.



The MOVING Platform 83

Fig. 3. Floor plans resulting from the mapping sessions performed using different sen-
sor configurations. a) represents the environment acquired with a Matterport 3D scan-
ner, which has been modified (b) in order to be immediately comparable with the
maps scanned with the SLAM approach. c) has been acquired using the RGB-D cam-
era+tracking camera+2D Lidar; d) using the RGB-D+ICP odometry+2D Lidar; e)
represents the floor plan acquired using the RGB-D+tracking camera; f) represents
the floor plan acquired using the RGB-D+RGB-D odometry.

row) the Lidar-like signal was used as a direct replacement of the Lidar for the
map construction. In this configuration, the robot was not able to move smoothly,
and the navigation was characterized by continuous stops and in-place rotations,
probably caused by incorrect measurements. In the second case (5th row) the
Lidar-like signal was used only for odometry estimation using the ICP algorithm.
Unfortunately, in this configuration, the tracking was immediately lost with con-
tinuous odometry resets. In both configurations, it emerged that the Field Of
View (FOV) and the perceptive range of the Lidar sensor are essential to bene-
fit from this signal. Concerning the experiment carried out using the odometry
estimated from RGB-D images (last row), the system lost tracking of the robot
several times after observing textureless walls, resulting in an incomplete map.
In fact, it is well known how visual systems based on feature tracking fail in the
presence of featureless surfaces.

Figure 3 compares the maps of the environment resulting from the scan
sessions performed with the different sensor configurations. For reference, we
reported the floor plan of the same environment scanned using a Matterport
3D scanner (Fig. 3a), together with a simplified version (Fig. 3b) which repre-
sents a curated optimal mapping. The maps acquired using the RGB-D cam-
era+tracking camera+2D lidar (Fig. 3c) and the RGB-D camera+ICP odome-
try+2D lidar (Fig. 3d) configurations are both accurate and detailed, presenting
a slight distortion in the area of the top corridor. The odometry estimated from



84 M. Rosano et al.

Fig. 4. Influence of the quality of the odometry on the robot tracking system. On
the left, we tracked the robot’s coordinates when placed in a static environment, for
different odometry sources. On the right, the same measurements but in a dynamic
environment with people moving around. Since the robot is stationary, the estimated
coordinates should be both equal to zero. The chart shows the advantage of using a
dedicated odometry device for a reliable localization in challenging scenarios.

the Lidar signal has proven to be reliable in a static scenario as the considered
one, but it may exhibit its limitation in a dynamic environment, given the Lidar’s
perception of motion.

On the contrary, although the maps acquired without Lidar using the RGB-
D camera+tracking camera (Fig. 3e) and the RGB-D camera+RGB-D odome-
try (Fig. 3f) configurations match the geometry of the environment, they have
numerous artifacts (irregular and spectral walls), areas incorrectly mapped as
obstacles, and unscanned areas. The tracking camera helped limit excessive dis-
tortions and misalignments (Fig. 3e), which can instead be observed from the
highlighted portion of the map acquired using the odometry estimated from the
RGB-D signal (Fig. 3f).



The MOVING Platform 85

4.2 Odometry and Tracking

To better measure the accuracy and reliability of the odometry signals consid-
ered in our experiments, we conducted a further experiment in which the robot
was placed in a fixed location of the environment and its position was recorded
while observing a static scene (similar to that experienced during mapping) and
a dynamic scene (with the presence of people in motion, to replicate a real
dynamic environment). As can be observed in Fig. 4, the odometry provided by
the tracking camera (first row) is significantly more reliable than the odometry
estimated from Lidar (second row) or RGB-D (third row), allowing for a more
stable and precise robot tracking even in dynamic environments. While the oscil-
lations of the robot’s position derived from the estimated odometry may seem
small, it should be noted that, in a scenario where the robot moves around,
these inaccuracies can accumulate quickly, resulting in incorrect tracking and
localization.

Overall, the results showed how the adoption of different sensor configura-
tions can lead to significantly different results and highlighted the benefits offered
by a full sensor configuration.

5 Conclusion

We presented MOVING, a flexible and modular hardware and software plat-
form for SLAM and visual navigation that can be easily installed on any robot
requiring a minimal adaptation. The platform allows the reuse of robotic soft-
ware by encouraging the design and test of navigation solutions based on the
visual platform, hence reducing deployment time. The effectiveness of MOVING
was verified in a real environment by performing different mapping sessions with
several sensor configurations and investigating the reliability of the odometry to
track the robot in static and dynamic environments.

Aknowledgment. This research is supported by Next Vision s.r.l. (Next Vision:
https://www.nextvisionlab.it/) and by the project Future Artificial Intelligence
Research (FAIR) - PNRR MUR Cod. PE0000013 - CUP: E63C22001940006.

References

1. Alkendi, Y., Seneviratne, L., Zweiri, Y.: State of the art in vision-based localization
techniques for autonomous navigation systems. IEEE Access 9, 76847–76874 (2021)

2. Anwar, S., Bascou, N.A., Menekse, M., Kardgar, A.: A systematic review of studies
on educational robotics. J. Pre-Coll. Eng. Educ. Res. (J-PEER) 9(2), 2 (2019)

3. Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an
affordable open-source mobile robot for education and research. J. Intell. Robot.
Syst. 94, 761–775 (2019)

4. Biswal, P., Mohanty, P.K.: Development of quadruped walking robots: a review.
Ain Shams Eng. J. 12(2), 2017–2031 (2021)

https://www.nextvisionlab.it/


86 M. Rosano et al.

5. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to
explore using active neural slam. In: International Conference on Learning Repre-
sentations (ICLR) (2020)

6. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I.
IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

7. Feil-Seifer, D., Matarić, M.J.: Socially assistive robotics. IEEE Robot. Autom.
Mag. 18(1), 24–31 (2011)

8. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping
with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

9. Hägele, M., Nilsson, K., Pires, J.N., Bischoff, R.: Industrial robotics. In: Siciliano,
B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 963–986. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-540-30301-5 43

10. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda
humanoid robot. In: Proceedings of 1998 IEEE International Conference on
Robotics and Automation (Cat. No. 98CH36146). IEEE (1998)

11. Kleeberger, K., Bormann, R., Kraus, W., Huber, M.F.: A survey on learning-based
robotic grasping. Curr. Robot. Rep. 1, 239–249 (2020)

12. Labbé, M., Michaud, F.: RTAB-map as an open-source lidar and visual simultane-
ous localization and mapping library for large-scale and long-term online operation.
J. Field Robot. 36(2), 416–446 (2019)

13. Marder-Eppstein, E.: move base - ros wiki (2016). http://wiki.ros.org/move base
14. Mondada, F., et al.: Bringing robotics to formal education: the thymio open-source

hardware robot. IEEE Robot. Autom. Mag. 24(1), 77–85 (2017)
15. Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile

robot programming: the Carnegie Mellon navigation (carmen) toolkit. In: Proceed-
ings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003) (Cat. No. 03CH37453). IEEE (2003)

16. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam system for monoc-
ular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

17. Muratore, L., Laurenzi, A., Hoffman, E.M., Rocchi, A., Caldwell, D.G., Tsagarakis,
N.G.: Xbotcore: a real-time cross-robot software platform. In: 2017 First IEEE
International Conference on Robotic Computing (IRC). IEEE (2017)

18. Möller, R., Furnari, A., Battiato, S., Härmä, A., Farinella, G.M.: A survey on
human-aware robot navigation. Robot. Auton. Syst. (RAS) 145, 103837 (2021)

19. Pérez-D’Arpino, C., Liu, C., Goebel, P., Mart́ın-Mart́ın, R., Savarese, S.: Robot
navigation in constrained pedestrian environments using reinforcement learning
(2020)

20. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, Kobe, Japan (2009)

21. Saeedvand, S., Jafari, M., Aghdasi, H.S., Baltes, J.: A comprehensive survey on
humanoid robot development. Knowl. Eng. Rev. 34, e20 (2019)

22. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

https://doi.org/10.1007/978-3-540-30301-5_43
http://wiki.ros.org/move_base

	MOVING: A MOdular and Flexible Platform for Embodied VIsual NaviGation
	1 Introduction
	2 Related Work
	3 The MOVING Platform
	3.1 Hardware Architecture
	3.2 Software Architecture

	4 Experimental Settings and Results
	4.1 Mapping of the Environment
	4.2 Odometry and Tracking

	5 Conclusion
	References




