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Abstract. NeRF aims to learn a continuous neural scene representation
by using a finite set of input images taken from various viewpoints. A
well-known limitation of NeRF methods is their reliance on data: the
fewer the viewpoints, the higher the likelihood of overfitting. This paper
addresses this issue by introducing a novel method to generate geomet-
rically consistent image transitions between viewpoints using View Mor-
phing. Our VM-NeRF approach requires no prior knowledge about the
scene structure, as View Morphing is based on the fundamental princi-
ples of projective geometry. VM-NeRF tightly integrates this geometric
view generation process during the training procedure of standard NeRF
approaches. Notably, our method significantly improves novel view syn-
thesis, particularly when only a few views are available. Experimental
evaluation reveals consistent improvement over current methods that
handle sparse viewpoints in NeRF models. We report an increase in
PSNR of up to 1.8 dB and 1.0 dB when training uses eight and four
views, respectively. Source code: https://github.com/mbortolon97/VM-
NeRF.

1 Introduction

Novel View Synthesis (NVS) is the problem of synthesising unseen camera views
from a set of known views1 [8,29]. NVS is a key technology that can enable
compelling augmented or virtual reality experiences [10], new entertainment
technology [6], and robotics applications [11]. NVS has undergone a significant
improvement after the introduction of Neural Radiance Fields (NeRF) [2,17] – a
trainable implicit neural representation of a 3D scene that can photorealistically
render unseen (novel) views. NeRF is a data-driven model that can synthe-
sise high-quality novel views but in general requiring several multi-view images,
e.g. about hundreds of images taken from different and uniformly distributed
camera viewpoints around an object of interest [17]. If these viewpoints are few
and/or not uniformly distributed, the resulting NeRF model may fail to produce

1 Throughout the paper, we will use the term viewpoint to refer to the camera pose,
view to refer to the scene seen through a certain viewpoint and to image to refer to
the photometric content captured from a view.
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Fig. 1. Given a set of known views (ground truth), View Morphing-NeRF (VM-NeRF)
generates image transitions between views (morph) that can be effectively used to train
a NeRF model in the case of few-shot view synthesis. Results are of a higher quality
when VM-NeRF is used.

satisfactory novel views [12,16]. This detrimental effect is a known drawback of
NeRF-based approaches and it is due to the likelihood of overfitting on known
viewpoints while decreasing generalisation on novel views that are furthest from
the given viewpoints, namely the few-shot view synthesis problem [12].

In this paper, we propose to tackle the problem of training a NeRF model on
scenes captured with a sparse set of viewpoints by using a novel geometry-based
strategy based on View Morphing [24] (Fig. 1). This purely geometric method
can synthesise or morph a new viewpoint that lies in-between two given camera
views while ensuring realistic image transitions. Traditionally, view morphing
requires a set of accurate point matches between known image pairs in order to
successfully perform the morph. As this matching stage is hard to integrate into
a NeRF-based learning pipeline, our intuition is to leverage the per-image depth
information implicitly estimated by NeRF to obtain dense coordinate matches
among views after an image rectification stage (Fig. 2). To this end, we have
to relax and modify several steps of the view morphing strategy to be duly
integrated in the NeRF learning paradigm. This technique does not require any
prior knowledge about the captured 3D scene, and it can synthesise 3D projective
transformations (e.g. 3D rotations, translations, shears) of objects by operating
entirely on the input images. We evaluate our approach by using the dataset of
the original NeRF’s paper [17] and we show that PSNR improves up to 1.8dB
and 1.0dB when eight and four views are used for training, respectively. We
compare our approach with DietNeRF [12], AugNeRF [5] and RegNeRF [19],
and show that our approach can produce higher-quality renderings.
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To summarise, our contributions are:

– We present a novel and effective method for NeRF to address the problem of
few-shot view synthesis;

– We introduce a new view morphing technique based on the NeRF depth
output, named VM-NeRF;

– VM-NeRF can achieve higher-quality rendered images than alternative meth-
ods in the literature.

2 Related Work

NVS scene synthesis can be solved either by using traditional 3D reconstruction
techniques [23] or by adopting methods based on neural rendering [26]. Neural
Radiance Fields (NeRF) is a recent neural rendering method that can learn a
volumetric representation of an unknown 3D scene approximating its radiance
and density fields from a set of known (ground truth) views by using a multilayer
perceptron (MLP) [17]. NeRF optimises its parameters on one scene based on a
set of known views, thus overfitting can occur when these views are few.

Current approaches addressing few-shot novel view synthesis can be divided
into two groups. The first group uses the same trained network to generate novel
views of different scenes. This category of methods trains on datasets charac-
terised by similar scenes, such as DTU [1]. Multiple-scene training can intro-
duce datasets biases and may produce low-quality results in contexts outside
the training domain [18,27]. SparseNeuS [14] and ShaRF [22] train NVS on mul-
tiple scenes by conditioning the MLP with features that encode appearance and
geometry of the surface at a 3D location. This can be achieved by using an auxil-
iary deep network jointly trained with NeRF. The second group uses the original
per-scene optimisation procedure of NeRF, so a single network trains and tests
only on one scene leading to methods without dataset bias. These methods are
more likely to encounter overfit problems on the known views, however they
reduce this likelihood by adding either semantic or geometric constraints during
training. DietNeRF belongs to this category and exploits the feature representa-
tions of known images computed with a CLIP pre-trained image encoder, renders
random poses, and processes them by imposing semantic consistency through
CLIP features [12]. RegNeRF [19] renders random viewpoints around the known
ones, and introduces regularisation constraints between known viewpoints and
randomly sampled ones.

Single-scene methods working with few viewpoints may overfit on the known
images, producing artefacts when novel views are rendered. In general, we can
mitigate overfitting via data augmentation [25], and to the best of our knowl-
edge, the only methods that address data augmentation for NeRF are AugN-
eRF [5] and GeoAug [4]. AugNeRF aims to improve NeRF generalisation by
using adversarial data augmentation to enforce each ray and its augmented ver-
sion to produce the same result. GeoAug [4] perturbs translation and rotation of
the known viewpoints during training. Our proposed approach does not perturb
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the known input views and rays, instead we create new views (novel 3D pro-
jective transformations) using pairs of known views. This allows us to enforce
coherence of newly rendered viewpoints between distant viewpoint pairs. At the
moment of the acceptance of this paper, we could not replicate the results of
GeoAug because the authors have not released their source code.

3 Preliminaries

3.1 NeRF Overview

NeRF’s objective is to synthesise novel views of a scene by optimising a volu-
metric function given a finite set of input views [17]. Let fθ be the underlying
function we aim to optimise. The input to fθ is a 5D datum that encodes a point
on a camera ray, i.e. a 3D spatial location (x, y, z) and a 2D viewing direction
(θ, φ). Let c ∈ R

3 be the view-dependent emitted radiance (colour) and σ be the
volume density that fθ predicts at (x, y, z). Novel views are synthesised by query-
ing 5D data along the camera rays. Traditional volume rendering techniques can
be used to transform c and σ into an image [13,15]. Because volume rendering
is differentiable, fθ can be implemented as a fully-connected deep network and
learned.

Rendering a view from a novel viewpoint consists of estimating the integrals
of all 3D rays that originate from the camera optic centre and that pass through
each pixel of the camera image plane. Let r be a 3D ray. To make rendering
computationally tractable, each ray is represented as a finite set of 3D spatial
locations, indexed with i, which are defined between two clipping distances: a
near one (tn) and a far one (tf ). Let Γ be the number of 3D spatial locations
sampled between tn and tf . Rendering the colour of a pixel is given by

ĉ(r) =
Γ∑

i=1

s(i)
(
1 − e−σ̂(r)iδi

)
ĉ(r)i, (1)

where ĉ(r)i is the colour and σ̂(r)i is the density predicted by the network at
i. δi = ti+1 − ti is the distance between adjacent sampled 3D spatial locations,
and s(i) is the inverse of the volume density that is accumulated up to the ith

spatial location, which is in turn computed as

s(i) = e− ∑i−1
j=1 σ̂(r)jδj , (2)

where (1−e−σ̂(r)iδi) is a density-based weight component: the higher the density
value σ of a point, the larger the contribution on the final rendered colour.

Similarly to Eq. 1, we can render the pixel depth as

d(r) =
Γ∑

i=1

s(i)
(
1 − e−σ̂(r)iδi

)
zi, (3)

where zi is the distance of the ith spatial location with respect to the camera
optic centre.
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The input required to learn the NeRF parameters is a set of N images and
their corresponding camera information. Let I = {Ik}N

k=1 be the training images,
and P = {Pk}N

k=1 and K = {Kk}N
k=1 be their corresponding camera poses and

intrinsic parameters, respectively. A pose P = [R, t] is composed of rotation R
and translation t. We can estimate the depth map of a given view k by rendering
the depth of all its pixels, therefore we can define the estimated depth maps as
D = {Dk}N

k=1.
Learning fθ is achieved by comparing each ground-truth pixel c(r) with

its predicted counterpart ĉ(r). The goal is to minimise the following L2-norm
objective function

L =
1

|R|
∑

r∈R

(‖c(r) − ĉc(r)‖22 + ‖c(r) − ĉf (r)‖22
)
, (4)

where ĉc(r) and ĉf (r) are the coarse and fine predicted volume colours for ray
r, respectively. Please refer to [17] for more details.

3.2 View Morphing Overview

View morphing objective is to synthesise natural 2D transitions between an
image pair {Ik, Ik′} and the approach can be summarised in three steps: i)
the two images are prewarped through rectification, i.e. their image planes are
aligned without changing their cameras’ optic centres; ii) the morph is computed
between these prewarped images to generate a morphed image whose viewpoint
lies on the line connecting the optic centres; iii) the image plane of the morphed
image is transformed to a desired viewpoint through postwarping.

In practice, assuming the two views are prewarped, the morph uses the knowl-
edge of their camera poses Pk,Pk′ , and the pixel correspondences between the
images, i.e. qk : Ik ⇒ Ik′ , qk′ : Ik′ ⇒ Ik where qk is a function that maps a
pixel of Ik to the corresponding pixel in Ik′ [24]. Sparse pixel correspondences
can be defined by a user or determined by a keypoint detector, they can then be
densified via interpolation to create a dense correspondence map. This procedure
is not viable as is in a learning-based pipeline, hence we have to define a novel
view morphing strategy for a NeRF-based network architecture. A warp function
for each image can be computed from the correspondence map through linear
interpolation

Îk,α = (1 − α)Îk + αqk(Îk)

Îk′,α = (1 − α)qk′(Îk′) + αÎk′

Pα = (1 − α)P0 + αP1, (5)

where Îk are the coordinates of the image of camera k, Îk,α are pixel coordinates
of the morphed image, and α ∈ [0, 1] regulates the position of the morphed
view along the line connecting the two views. The morphed image can then
be computed by averaging the pixel colours of the warped images. Please refer
to [24] for more details.
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Fig. 2. Block diagram of NeRF-based View Morphing (VM-NeRF). From the left, we
(1) predict the depth with NeRF, (2) rectify the input images and predicted depths, and
(3) compute the image morphing of a view randomly positioned between the view pair.
α determines the new view position and it is sampled from a Gaussian distribution.

4 NeRF-Based View Morphing

The goal of NeRF-based View Morphing (VM-NeRF) is to use the geometrical
constraints of the morphing technique to synthesise a set of additional training
input views M = {M(k,k′),α}, where M(k,k′),α is a morphed view generated from
the view pair k and k′ with a given value of α. Adapting view morphing in a
learning-based pipeline is challenging as we need reliable pixel correspondences
(qk and qk′) to synthesise morphed views. Our intuition is that it is possible to
compute one-to-one correspondences from the disparity information, a function
of the depth as in Eq. 3, which we can render with the very same NeRF model.
We can then linearly interpolate the photometric content of the view pair to
produce the morphed view.

Based on the description in Sect. 3.2, we integrate in NeRF only the steps of
prewarping and morphing. We experimentally found that postwarping does not
lead to better results. Sect. 4.1 describes how we perform the initial rectification
of the two cameras. Section 4.2 describes how the images morphing is computed.
Section 4.3 provides detailed information on our practical approach to training
NeRF with View Morphing. Figure 2 shows the block diagram of our approach.

4.1 Rectification

Our first step is rectification, which leads to rotating the known camera poses Pk

and Pk′ around their optic centres until their image planes become coplanar. We
can then compute the common image plane by using a selection of algorithms
such as [7,9]. We represent this plane as the rotation matrix

R̃ = [ax,ay,az], (6)

where ax,ay,az are the axis components of the coplanar plane resulting from
the rectification. Stereo rectification is applied to the original images {Ik, Ik′}
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and depth maps {Dk,Dk′} predicted in Eq. 3. The new camera pose of view k
is equal to P̃k = [R̃, tk], where tk is the translation of the original camera pose
Pk (same applies to view k′).

Rectification algorithms are typically based on the assumptions that view-
points are aligned horizontally and that the reference viewpoint is the left-hand
side of the camera (from an observer positioned behind the cameras) [7,9]. This
is atypical in NeRF, as viewpoints may have arbitrary camera configurations,
leading to errors that should be corrected. We mitigate this problem by compar-
ing az with the z component of the original view pose. If this angle is greater
than 45◦ with respect to both Pk and Pk′ , we rotate the warping matrices and
poses by 90◦ or 180◦. The application of this modification to conventional recti-
fication algorithm allows us to correctly generate the following rectified images
{Ĩk, Ĩk′} and rectified depth maps {D̃k, D̃k′}.

4.2 Image Morphing

The second step is image morphing, i.e. fusing the rectified images to obtain
the new morphed image. This procedure is divided in three steps: i) finding the
pixel correspondences; ii) computing the position of each pixel on the morphed
camera; iii) fusing pixels that fall in the same position. To determine the image
correspondences, we initially compute the disparity maps as functions of the
rectified estimated depths

Ek =
fk

D̃k

‖ok − ok′‖2 , Ek′ =
fk′

D̃k′
‖ok − ok′‖2 , (7)

where {ok,ok′} are the principal points and {fk, fk′} are the focal lengths of
cameras k and k′.

Then, we determine the correspondences of the pixel positions between
images defined in Eq. 5 as

qk(Îk) = Îk +
b̃k

‖b̃k‖2
1� � Ek, (8)

where 1 is a vector of ones, � indicates the Hadamard product and Îk is the
baseline direction with respect to the common plane defined in Eq. 6 that is
computed as

b̃k = az × ((ok − ok′) × az). (9)

The same operation is computed for k′. Then, we apply the warp functions of
Eq. 5 to compute the position of each pixel on the morphed view, thus obtaining
Îk,α and Îk′,α.

Lastly, a coalescence operation [3] fuses the pixels of the two views k and k′.
The coalescence operation concatenates two sets of coordinates and fuse pixels
with the same position, preserving only the pixel values of the points that are
nearest to the camera. We use {D̃k, D̃k′} to determine the distance of the points.
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Table 1. Results on the NeRF
realistic synthetic 360◦ dataset.

Table 2. Ablation study results. Keys: #
views: represent the number of views and
the relative subset. avg. dist.: average dis-
tance between view pairs.

4.3 Training with VM-NeRF

VM-NeRF is subject to the same geometric constraints as the original view
morphing technique [24]. These constraints impose that singular camera con-
figurations should not exist. These configurations happen whenever the optic
centre of a camera is within the field of view of another one [24]. We also dis-
card cameras that are distant from each other more than a threshold γ, as the
morphed cameras may be on a transition path that crosses regions where the
object of interest is not actually visible (so being rather useless for training a
NeRF based model).

Because view morphing allows the synthesis of a new view at any point on the
line that connects the known camera pair, we randomly sample new views using
a Gaussian distribution centred halfway through the camera pair. Specifically,
let us consider a normalised distance between the two cameras. The Gaussian
distribution is centred at 0.5 and the standard deviation σ is chosen such that
3σ → ε at the optic centre positions. Therefore, we sample α ∼ N (0.5, σ) with
0 ≤ α ≤ 1. The depth NeRF can render at the first few iterations is noisy,
therefore, we let NeRF warm up on the known views for λ iterations before
synthesising and injecting VM-NeRF views in the next training iterations. After
the warm-up, for each valid camera pair, we regenerate M new views every η
training iterations as the predicted depth improves over time during training.

5 Experiments

5.1 Experimental Setup

We evaluate our method on three training setups using the NeRF realistic syn-
thetic 360◦ dataset [17], which is composed of eight scenes, i.e. Chair, Drums,
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Ficus, Lego, Materials, Ship, Mic, Hot Dog. First setup: We select N = 8 views
out of 100 available for each scene using the Farthest Point Sampling (FPS) [20]
(the first view is used for FPS initialisation in each scene). Second setup: we
use the same N = 8 views used in DietNeRF [12]. Third setup: we select
N = 4 views using the previous FPS approach. We test each trained model on
all the test views of NeRF realistic synthetic 360◦. We quantify the rendering
results using the peak signal-to-noise ratio (PSNR) score, the structured similar-
ity index measure (SSIM) [28] and the learned perceptual image patch similarity
(LPIPS) [30]. We quantitatively compare our approach against DietNeRF [12]
and RegNeRF [19] as the most recent methods for few-shot view synthesis. We
also compare against AugNeRF [5] because it is the only data augmentation for
NeRF, and data augmentation can be a useful strategy to promote generalisa-
tion. We choose to use the Chair scene for our ablation study, which consists
of testing VM-NeRF on four different, randomly-chosen, configurations of eight
views and on the DietNeRF configuration.

We implement NeRF and our approach in PyTorch Lightning, and run exper-
iments on a single Nvidia A40 with a batch size of 1024 rays. A single scene can
be trained in about two days. We use the original implementations of DietNeRF,
AugNeRF and RegNeRF to evaluate the different setups. We set the same train-
ing parameters as in [17], and set γ = 6, σ = 0.2, M = 1, η = 5, λ = 500.

5.2 Analysis of the Results

Quantitative. Table 1 shows the results averaged over the eight scenes. Our
NeRF implementation can achieve nearly the same results reported in [17] on
the 100-view setup, i.e. PSNR equal to 31.21 (ours) compared to 31.01 [17].

VM-NeRF can outperform all the other methods in the eight-view setting.
Interestingly, the original version of NeRF is the one that performs as second
best, followed by DietNeRF and RegNeRF. AugNeRF fails to produce satisfacto-
rily results. We can also observe that VM-NeRF achieves slightly better quality
than its version with oracle depth maps, i.e. 24.39 vs. 24.22 PSNR. In fact,
we observed that VM-NeRF can effectively leverage the depth information that
is estimated during training, although it is noisy. We also evaluate VM-NeRF
on the same eight views originally tested by DietNeRF [12]. Also here we can
achieve higher quality results on average, i.e. 24.14 vs. 23.59. We also improve in
the four-view setup where we obtain an improvement of +1.02 PSNR on average.
The results also show that the perturbation of the known input views, done by
AugNeRF, has adverse effects in all the tested setups.

Qualitative. Figure 3 shows some qualitative results on Chair, Hot Dog and
Lego where we can observe that VM-NeRF produce results with better details
than DietNeRF. We speculate that this difference with DietNeRF may be due to
its CLIP-based approach that is introduced to leverage a semantic consistency
loss for regularisation [21]. The CLIP output is a low-dimensional (global) repre-
sentation vector of the image, which may hinder the learning of high-definition
details. Differently, our approach interpolates the original photometric infor-
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Fig. 3. Comparisons on test-set views of scenes of NeRF realistic synthetic 360◦. Unlike
AugNeRF [5], VM-NeRF is an effective method that can be used for few-shot view syn-
thesis problems. Unlike DietNeRF [12], VM-NeRF enables NeRF to learn scenes with
a higher definition. VM-NeRF produce less artefacts than RegNeRF during render-
ing [19]. We report the PSNR that we measured for each method and for each rendered
image. AugNeRF unsuccessfully learns Chair and Lego (white and black outputs).

mation from two views to produce a new input view, without losing informa-
tion through the encoding of the low-dimensional representation vector. Figure 3
shows that our approach compared to RegNeRF produces fewer artefacts by cor-
relating the nearby views.

Ablation Study. We assess the stability of VM-NeRF by evaluating the render-
ing quality when different combinations of views are used to train NeRF. Table 2
shows that the performance is fairly stable throughout different view configura-
tions. We also observed that the algorithm is robust to variations in the distance
between view pairs. As long as a view pair is not singular and the distance
between cameras is adequate to create acceptable 3D projective transformations
of the object, we can successfully synthesise new views with VM-NeRF.
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6 Conclusions

We presented a novel method for few-shot view synthesis that blends NeRF and
the View Morphing technique [24]. View morphing requires no prior knowledge
of the 3D shape and it is based on general principles of projective geometry. We
evaluated our approach using the conventional dataset employed by NeRF-based
methods, demonstrating that VM-NeRF more effectively learns 3D scenes across
various few-shot view synthesis setups. VM-NeRF can interpolate only along the
line that connects the optical centres of each camera pair. Therefore, it cannot
reconstruct the whole object if only a part of it is viewed during training. Lastly,
we designed our approach to be fully differentiable, so an attractive research
direction is to integrate our approach into an end-to-end training pipeline.
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