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Abstract. In this paper, we considered the problem of detecting object
take and release actions from untrimmed egocentric videos in an indus-
trial domain. Rather than requiring that actions are recognized as they
are observed, in an online fashion, we propose a quasi-online formulation
in which take and release actions can be recognized shortly after they are
observed, but keeping a low latency. We contribute a problem formula-
tion, an evaluation protocol, and a baseline approach that relies on state-
of-the-art components. Experiments on ENIGMA, a newly collected
dataset of egocentric untrimmed videos of human-object interactions in
an industrial scenario, and on THUMOS’14 show that the proposed app-
roach achieves promising performance on quasi-online take/release action
recognition and outperforms methods for online detection of action start
on THUMOS’14 by +8.64% when an average latency of 2.19s is allowed.
Code and supplementary material are available at https://github.com/
fpv-iplab/Quasi-Online-Detection-Take-Release.

Keywords: Quasi-Online Action Detection · Low Latency ·
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1 Introduction

Egocentric vision aims to analyze images and videos acquired from the user’s
point of view through a wearable device equipped with a camera (e.g., smart
glasses) to understand how the user interacts with the environment and pos-
sibly provide assistance. Understanding users’ activities and interactions with
objects from egocentric visual signals allows to provide services to support
humans in different domains such as homes, kitchens, museums, and industrial
workplaces [2,4,13]. Since humans interact with objects using their hands, rec-
ognizing actions such as “take an object” and “release an object” can offer
crucial insights into the user’s intentions, especially in industrial environments.
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Fig. 1. Two examples of take (top) and release (bottom) actions. For each action, we
define a key timestamp that corresponds to the first frame of contact (contact frame)
in the take examples and to the last frame of contact (end-of-contact frame) in the
release examples. These timestamps are distinct from classic action start and end time
which are often ambiguous to annotate [11].

For instance, predicting the user’s next action based on the tool they have taken,
allows to provide assistance offering feedback to correct erroneous actions (e.g.,
“Please complete step X before picking up the pliers”). Additionally, this knowl-
edge can be used to suggest ways to improve efficiency and reduce errors, such
as recommending the optimal use of the object that was just picked up (e.g.,
triggering AR contents). Understanding take/release interactions taking place
between humans and objects also allows to estimate the usage time of an object,
possibly enabling predictive maintenance applications. Critically, such actions
should be predicted in a timely fashion in order to provide useful assistance to
workers as soon as possible.

In this paper, we consider the problem of detecting two key actions from ego-
centric videos: “take” and “release”. These two actions occur respectively when
the user takes an object and when they put it down. We assume a low-latency,
quasi-online scenario in which take and release actions can be detected as soon
as possible (e.g., in a few seconds) after they are observed from an input stream-
ing video while aiming to keep a low latency to allow making decisions, such as
sending an alarm, or notifying that a wrong action occurred in a maintenance
procedure. We would like to note that the considered scenario is realistic and of
practical relevance in contexts where the system aims to support the user, such
as industrial environments. Indeed, in this context, an “after-the-fact” detec-
tion of actions with a low latency is useful for the verification of incomplete
procedural tasks performed by workers.

To study the considered problem in the industrial domain, we collected and
labeled ENIGMA, a dataset of egocentric videos in which several users per-
formed repair and maintenance procedures on electrical boards in an indus-
trial laboratory. Previous literature highlights how labeling start and end times,
even for simple take and release actions, can lead to inconsistencies due to
the limited agreement between different annotators [11]. In order to avoid bias
due to these inconsistencies, each take and release action has been labeled by
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Fig. 2. Given an action of class c executed at the ground truth timestamp tk, our
goal is to estimate its key timestamp t̂k and its class ĉ while keeping a low latency
δl = max(0, td − tk), where td is the timestamp in which the prediction is made. For
a prediction to be deemed valid, we also expect the distance δp = |t̂k − tk| between
the estimated key timestamp and the ground truth one to be under a given temporal
threshold φ.

marking a single timestamp indicating the first frame in which the hand touches
an object (contact frame) in the case of take actions, or the first frame in which
there is no more contact between the hand and the object (end-of-contact frame)
for the case of release actions. The timestamps related to these frames are also
referred to as “key timestamps” (see Fig. 1). We hence treat the problem of quasi-
online take/release action detection as the one of processing an untrimmed input
video and predicting a set of take/release action events with a low latency (see
Fig. 2). Based on this problem definition, we designed an evaluation protocol
aimed to assess the ability of the models to accurately detect the occurrence of
take and release actions, as well as their latency. Therefore, we propose an app-
roach to tackle this task based on a state-of-the-art transformer model for online
action detection [19] in conjunction with a post-processing technique that aims
to identify action occurrences from the analysis of time series of online prediction
scores. Experiments on the collected dataset of egocentric videos show the fea-
sibility of the proposed approach, which achieves promising results despite the
task being challenging. Moreover, experimental results on THUMOS’14 demon-
strate that our framework outperforms state-of-the-art online detection of action
start methods by +8.64% when a quasi-online formulation is considered and an
average latency of 2.19s is allowed, which shows the flexibility of the proposed
problem formulation and approach in realistic scenarios.

The main contributions of this paper are as follows: 1) We investigate the
problem of detecting take and release actions in egocentric videos in a quasi-
online manner. 2) We designed an evaluation protocol to assess the accuracy
and low-latency performance of the proposed models in predicting take/release
actions. 3) We introduced a novel approach to address this task, utilizing cutting-
edge transformers and a time series post-processing technique to refine the detec-
tion scores. Our code is publicly available to the research community to facilitate
future research.
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2 Related Works

Our investigation is related to previous works on online action detection, online
detection of action starts, and human-object interaction detection.

Online Action Detection. Online action detection aims to detect an action
as it happens from video and, ideally, even before it is fully completed [3]. While
offline methods assume the entire video is available, online methods process the
data up to the current time, predicting the action observed in each frame without
looking at future frames. Different approaches over the years have been proposed
to solve the online action detection task. Recent works employ Transformer archi-
tectures [15], which provide a more effective way to represent and model long
data sequences than RNN architectures [10]. OadTR [17] is an encoder-decoder
framework based on Transformers that recognize current actions by encoding
historical information and predicting future context simultaneously. LSTR [18]
explicitly divides the entire history into long- and short-term memories. TeS-
Tra [19] is a state-of-the-art approach that uses the same strategy of LSTMs.
TeSTra improves the computational efficiency of video transformers by apply-
ing temporal smoothing kernels to the cross-attention, resulting in streaming
attention that only requires a constant time to update each frame.

The problem formulation proposed in this study is different from online action
detection. Indeed, rather than expecting predictions to be made in real-time,
we allow models to fully observe actions before determining whether an action
should be predicted. While this formulation simplifies the prediction problem,
we still assess that models have a low latency to ensure they are practically use-
ful. We build on previous literature on online action detection by incorporating
TeSTra into our framework to generate confidence scores for observed actions on
a frame-by-frame basis.

Online Detection of Action Start. Some works have explored the problem of
Online Detection of Action Start (ODAS) [14] from a third-person perspective.
These approaches differ from online action detection in that its primary goal is
to detect the start of an action as precisely as possible. Previous authors have
employed methodologies such as 3D convolutions [14], a combination of LSTM
and reinforcement learning [6], and weakly-supervised learning with video-level
labels [7].

The ODAS formulation shares some similarities with the formulation of our
problem but it is distinct. Indeed, while ODAS aims to detect the action start
by observing the video immediately preceding the action, we aim to detect the
key timestamp indicating the execution of a take or release action, after the
complete observation of the action, but with a low latency.

Human-Object Interaction Detection. Human-Object Interaction (HOI)
detection aims to identify and locate both the human and the object in an
image or video and to recognize their interactions. The main HOI detection
methods are based on the use of GCN after detecting humans and objects in the
scene [12], on human-centric approaches [8], on the detection of the interactions
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between human-object pairs [16], or on and grasp analysis [1]. In recent years,
HOIs have also been studied in Egocentric Vision (Egocentric Human-Object
Interaction - EHOI) [13]. However, only few works specifically considered indus-
trial scenarios [13]. Moreover, while the aforementioned works have focused on
understanding human-object interactions in still frames, we focus on detecting
when take/release actions occur in a streaming video. We expect that our app-
roach could be integrated with HOI analysis to provide a more accurate and
grounded output.

3 Problem Definition and Evaluation Protocol

Let (c, tk) represent a ground truth action, where c is the action class (take or
release) and tk is the related key timestamp (either contact or end-of-contact).
Each prediction is represented as a (ĉ, t̂k, td, s) tuple, where ĉ and t̂k are respec-
tively the predicted class and key timestamp, td is the timestamp in which the
prediction is actually made, and s is a confidence score. We define the temporal
distance between the correct key timestamp, tk, and the predicted one, t̂k, as
δp = |t̂k − tk|. We will consider a prediction as correct if δp is under a given
temporal threshold φ. Given a correct prediction, we define its latency as the
difference between the timestamp in which the prediction is made, td, and the
corresponding ground truth key timestamp, tk: δl = max(td − tk, 0). Note that
the td − tk difference is in general a positive number, but it may assume negative
values in rare cases in which the action is predicted a few moments before it
happens. In such cases, we will consider a latency equal to zero, hence the max
operator in our definition of latency. We do not define latency for incorrect pre-
dictions. It is worth noting that, while in an online prediction scenario we impose
td = t̂k, in the considered quasi-online scenario, we allow the two timestamps to
differ, but expect a low latency δl. Figure 2 illustrates the considered problem.

Evaluation Protocol. Metrics generally used to evaluate action detection, such
as mAP are not suitable in our scenario, as they assume that both action start
and end are predicted, while in our case, an action is associated to a single times-
tamp. Instead, we adopt the point-level detection mAP (p-mAP) defined in [14].
Predicted actions are deemed to be correct only when 1) the predicted action
class is correct (c = ĉ), 2) the temporal offset δp is smaller than a given eval-
uation temporal threshold φ. Predictions are matched to ground truth actions
in a greedy fashion, prioritizing predicted actions with higher confidence scores,
checking whether δp ≤ φ, and imposing that ground truth actions and predic-
tions are matched at most once. Based on these matches, the point-level Average
Precision (AP) for each action class is evaluated and averaged over all action
classes to determine the point-level mAP. Consistently with prior works [6,7], we
evaluated the p-mAP at temporal offset thresholds φ ranging from 1 to 10 s in
one-second increments. We defined mp-mAP as the average of p-mAP values
calculated at different temporal offset thresholds φ.

Given our quasi-online problem definition, we complement point-level mAP
with an evaluation of the average latency of a given approach. Specifically, we
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Quasi-Online Action 
Detection Module

Fig. 3. Overview of the proposed method. Firstly, the input video is processed using a
feature extractor. The resulting features are then fed into an online action prediction
module, which outputs action confidence scores. Confidence scores are then passed to
the quasi-online action detection module which processes them with a sliding window
of size ωs. Confidence scores within the window are smoothed using a Gaussian filter,
and a peak detector is employed to temporally detect the action.

compute the average latency as follows: δl =
∑N

i=1 tp(i)·δl(i)∑N
i=1 tp(i)

, where i is the index
of the i-th prediction made by the model, N is the total number of predictions,
tp(i) = 1 if prediction i is a true positive and tp(i) = 0 otherwise, and δl(i)
denotes the latency of prediction i.

4 Proposed Approach

Our method comprises three main modules: 1) a feature extraction module that
processes the input video and outputs per-frame features, 2) a transformer-based
online action prediction module that takes the features as input and predicts
actions along with their confidence scores frame-by-frame, in an online fashion,
and 3) a quasi-online action detection module which takes as input a window of
frame-by-frame action confidence scores and predicts the occurrence of actions in
the considered window. Figure 3 shows the overall architecture of the proposed
method. The following sections detail each component.

Feature Extraction Module. The feature extraction module takes as input
the streaming video and produces per-frame high-level representations. This
module may analyze input video clips or single frames. In this work, follow-
ing [5], we extract per-frame features using a Two-Stream (TS) CNN model.
In particular, the TS-features comprise appearance features that focus on the
video’s visual appearance information and motion features that rely on the user’s
and objects’ movement during the actions. Features are then fused to obtain a
unique representation for each video chunk, which is passed to the transformer-
based online action prediction module.
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Transformer-Based Online Action Prediction Module. We base this mod-
ule on the state-of-the-art online action prediction approach TeSTra [19]. TeSTra
takes pre-extracted features as input and outputs per-frame probability distribu-
tions of action classes. In practice, this module allows to predict two confidence
scores at each frame: the probability of take actions, and the probability of
release actions.

Quasi-Online Action Detection Module. This module takes as input time
series of confidence scores produced by the online action prediction module and
analyzes them to predict the presence of take/release actions, along with the
estimated timestamps in which they take place and associated confidence scores.
Rather than requiring the system to predict whether an action is performed in
the current frame, we process the time series of predicted confidence scores with
a sliding window of size ωs up to the current timestamp t, and allow the predic-
tion of actions observed within the window. We expect the predicted confidence
score of an action to increase before the occurrence of the key timestamp and
to decrease after it, as shown in Fig. 4-left. Hence, we aim to predict actions
by detecting peaks in the confidence score time series. In practice, confidence
score time series tend to be noisy due to the uncertainty of the model and the
ambiguity of observations (Fig. 4-middle). To account for this, a Gaussian fil-
ter is applied within the current window with a fixed standard deviation σ in
order to provide a smooth time series of confidence scores. We hence use a peak
detector1 to find the occurrence of each take/release action. Each peak is consid-
ered as a prediction, and the peak height is the associated confidence score (see
Fig. 4-right). To avoid predictions due to incomplete observations, we ignore all
predictions made in the last γ seconds of the sliding window. We refer to γ as
“inhibition time”. Note that predictions suppressed at time t because they fall in
the inhibition time interval can be recovered later by the model when the sliding
window has moved forward and the same prediction does not fall within the
inhibition time segment anymore. By iterating over the video with the proposed
sliding window approach, the same action may be detected more than once in the
video, due to the natural overlap between the considered prediction windows. To
avoid multiple detections of the same action, we discard new detections whose
difference with previously made predictions is under a given threshold ξ.

5 Experimental Settings and Results

In this section, we report the settings and results of our experimental analysis
aimed at evaluating the proposed problem and approach. Please also see the
supplementary material for the implementation details and additional analysis
of the results.

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find peaks.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html


20 R. Scavo et al.

Fig. 4. Left: Ideally, predicted confidence scores of an action should increase before the
occurrence of the key timestamp and decreases after it. Middle: In practice, the confi-
dence scores tend to be noisy due to the uncertainty of the model and the ambiguity
of observations. Green vertical lines represent ground truth key timestamps. Right: To
mitigate the effect of noise, we apply Gaussian smoothing before performing peak detec-
tion. Green circles represent the detected peaks. As can be noted, Gaussian smoothing
greatly improves the ability to detect key timestamps. (Color figure online)

5.1 Datasets

We perform our experiments on two datasets: ENIGMA, a dataset of egocentric
videos collected and labeled for this study, and THUMOS’14 [9].

ENIGMA. In order to study the problem, we collected and labeled a set of
egocentric videos of subjects simulating testing and repairing procedures on elec-
trical boards using different laboratory tools. While performing the procedures,
the subjects naturally interacted with 13 different objects. We labeled each take
and release action with a single key timestamp, denoted with tk. In the case of
take actions, the key timestamp corresponds to the first frame in which the hand
touches an object (contact frame), whereas, in the case of release actions, it cor-
responds to the first frame in which there is no more contact between the hand
and the object (end-of-contact frame). See Fig. 1 for two examples. We acquired
and labeled a total of 53 videos, which account for 23 hours, 14 minutes, and 8
seconds of video at a resolution of 2272× 1278 pixels with a framerate of 30fps.
We randomly divided the videos into a train, validation, and test set, keeping
balanced numbers of take and release actions.2

THUMOS’14. We also report results on the THUMOS’14 [9] dataset to assess
the ability of the proposed approach to generalize to the problem of online detec-
tion of action start, which is closely related to ours. Following prior works [6,7],
we evaluated on a test set of 213 untrimmed videos.

5.2 Quasi-Online Detection of Take and Release Actions Results

As previously discussed, the proposed approach relies on a set of parameters,
and more precisely: ωs, the window size, γ the inhibition time, σ the standard
deviation of the Gaussian used to smooth the predicted confidence scores, and
ξ, the minimum distance at which predictions should be made to avoid multiple
2 For detailed statistics regarding the dataset, please refer to the supplementary mate-

rial.



Quasi-Online Detection of Take and Release Actions 21

Table 1. Evaluations of mp-mAP on ENIGMA for different choices of parameters.
Best results per column are reported in bold.

mp-mAP (%) δl (s) ws (s) γ (s) σ (s)

16.46 1.48 2 0.8 0.6

13.72 1.16 1 0 0.2

16.08 1.35 2 0 0.6

predictions of the same action. We performed 72 unique experiments considering
different combinations of the aforementioned parameters, for ωs varying in the
range of [1, 2, 3, 4, 5] seconds, γ varying in the range of [0, 0.2, 0.4, 0.6, 0.8,
1] seconds, and σ varying in the range of [0.2, 0.4, 0.6] seconds. We set ξ = 2s.
Figure 5-left report boxplots summarizing the distributions of mp-mAP% and
average latency δl values obtained in the different experiments. As can be noted,
while some parameter combinations allow to achieve better results than oth-
ers, detection performance and average latency values tend to be robust to the
choice of parameters. Table 1 reports the performance of the proposed approach
for some selected choices of the considered parameters. As can be noted, there is
a trade-off between optimizing mp-mAP and reducing latency, but we obtain bal-
anced results setting ωs = 2s, γ = 0s, and σ = 0.6s, with mp − mAP = 16.08%
and δl = 1.35s. As can be noted, the proposed approach achieves promising
results, but the problem is challenging and there is still room for improvement.
Based on these experiments, it is clear that extending the inhibition time leads
to better overall mp-mAP outcomes. However, this improvement results in phys-
iologically higher latency. On the other hand, choosing a shorter inhibition time
provides a better balance between mp-mAP and latency. This can be explained
by observing that the confidence score distribution is almost uniform when far
from the start of an action, and the peak detector does not detect a peak due
to the Gaussian smoothing.

Average latency gives an indication of the ability of the model to make pre-
dictions on time. We further explore how detection performance changes when a
given latency threshold is considered. Specifically, given a latency threshold ε, we
deem as incorrect all predictions with a latency δl > ε and re-compute mp-mAP.
Figure 5-right reports mp-mAP% values for different latency thresholds. As can
be noted, imposing a practical threshold of about 1s reduces mp-mAP% only by
about 5% points, leading to a value of about 11%.

5.3 Generalization of the Proposed Approach to the Online
Detection of Action Start Problem

The considered problem is closely related to previous investigations on the Online
Detection of Action Start problem [6,7,14]. We hence assess how our approach
generalizes to such a problem on the THUMOS’14 dataset. Figure 6-left reports
the boxplots of the distributions of mp-mAP% and average latency for differ-
ent parameter choices on THUMOS’14. Also in this case, results are stable for
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Fig. 5. Left: Boxplots showing the distributions of mp-mAP and average latency. Right:
plots showing how mp-mAP% varies using different latency thresholds. Both plots are
obtained on ENIGMA.

Table 2. Comparisons of p-mAP under different temporal offset thresholds on THU-
MOS’14 for online detection of action start. Best and second-best per column are
highlighted.

p-mAP temporal offset threshold φ (s) mp-mAP (%)

1 2 3 4 5 6 7 8 9 10

StartNet [6] 21.9 33.5 39.6 42.5 46.2 46.6 47.7 48.3 48.6 49 42.39

WOAD [7] 28.0 40.6 45.7 48.0 50.1 51.0 51.9 52.4 53.0 53.1 47.38

Ours 17.15 37.82 48.62 55.70 60.75 64.37 67.17 68.33 69.69 70.63 56.02

different parameter choices. We set ωs = 4s, γ = 0s and σ = 0.25s for these
experiments.3 Table 2 compares the proposed approach to StartNet [6] and the
state-of-the-art WOAD [7], both in terms of p-mAP at different temporal offset
thresholds φ and mp-mAP. It is worth noting that both competitors aim to per-
form online detection of action start, while our method focuses on quasi-online
detection. As can be noted, the quasi-online relaxation allows our approach to
obtain improved performance (+8.64%). The average latency of our approach is
2.19s. Figure 6-right finally compares mp-mAP performance for different latency
thresholds. It is worth noting that, when low thresholds are considered, forcing
the model to make online predictions, the mp-mAP performance of the model is
strongly reduced to about 9%. However, a threshold of 1.5s still allows to achieve
an mp-mAP performance of about 23% despite the model not explicitly being
designed to tackle this task.

3 See the supplementary material for a study on the influence of the different param-
eters on THUMOS.
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Fig. 6. Left: Boxplots showing the distributions of mp-mAP and average latency. Right:
plots showing how mp-mAP% varies using different latency thresholds. Both plots are
obtained on THUMOS’14.

6 Conclusion

We study the detection of take and release actions from egocentric videos in
a quasi-online fashion. We propose a problem formulation and an initial app-
roach to tackle the task. Experiments show promising results, but the problem
is challenging and there is still space for improvement.
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ner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv,
Israel, 23–27 October 2022, Proceedings, Part XXXIV, vol. 13694, pp. 485–502.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19830-4 28

http://arxiv.org/abs/1707.04818
https://doi.org/10.1007/978-3-030-01240-3_25
http://arxiv.org/abs/2209.08691
https://doi.org/10.1007/978-3-030-01219-9_33
https://doi.org/10.1007/978-3-030-01219-9_33
https://doi.org/10.1007/978-3-031-19830-4_28

	Quasi-Online Detection of Take and Release Actions from Egocentric Videos*-1pc
	1 Introduction
	2 Related Works
	3 Problem Definition and Evaluation Protocol
	4 Proposed Approach
	5 Experimental Settings and Results
	5.1 Datasets
	5.2 Quasi-Online Detection of Take and Release Actions Results
	5.3 Generalization of the Proposed Approach to the Online Detection of Action Start Problem

	6 Conclusion
	References




