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Abstract. Histopathology plays a crucial role in clinical diagnosis,
treatment planning, and research by enabling the examination of dis-
eases in tissues and organs. However, the manual analysis of histopatho-
logical images is time-consuming and labor-intensive, requiring expert
pathologists. To address this issue, this work proposes a novel archi-
tecture called Hierarchical Pretrained Backbone Vision Transformer for
automated histopathological image classification, a critical tool in clini-
cal diagnosis, treatment planning, and research. Current deep learning-
based methods for image classification require a large amount of labeled
data and significant computational resources to be trained effectively. By
leveraging pretrained Visual Transformer backbones, our approach can
classify histopathology images, achieve state-of-the-art performance, and
take advantage of the pretrained backbones’ weights. We evaluated it on
the Chaoyang histopathology dataset, comparing it with other state-of-
the-art Visual Transformers. The experimental results demonstrate that
the proposed architecture outperforms the others, indicating its potential
to be an effective tool for histopathology image classification.
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1 Introduction

Histopathology is a critical tool in clinical diagnosis, treatment planning, and
research, enabling the study of disease in tissues and organs. Histopathologi-
cal images provide a wealth of information about the morphology and cellular
structure of tissues and organs and can reveal important insights into the under-
lying pathophysiology of diseases. However, analyzing histopathological images
is time-consuming and labor-intensive, requiring expert pathologists to examine
and classify the images based on their visual features.

Image classification is a computer-aided technique that can automate the
analysis of histopathological images by automatically identifying regions of inter-
est and classifying them into different categories. It helps pathologists by reduc-
ing their workload, improving accuracy, and enabling large-scale disease studies.
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In this context, deep learning (DL)-based methods have achieved remarkable per-
formance also because they can automatically learn and extract features from
raw data, even identifying features that are not easily discernible to humans.
Although their advantages, the black-box nature of DL models causes patholo-
gists to hesitate when adopting them in high-stakes environments. In order to
comply with regulations and facilitate a feedback loop that integrates model
diagnosis and refinement in the development process, there is an increasing need
for explainable deep learning [18].

This work proposes a novel DL architecture called Hierarchical Pretrained
Backbone Vision Transformer (HPB-ViT) for image classification. The HPB-
ViT architecture is based on the Vision Transformer (ViT) model [3], which
has shown state-of-the-art performance in computer vision (CV) tasks [3,12].
Nevertheless, they require large amounts of labeled data to train effectively. This
aspect is even more pronounced in medical imaging because obtaining labeled
data can be challenging due to the need for expert annotation and the potential
for variability in annotations between different experts.

Pretraining has become a popular technique in DL to address this challenge.
Models are first trained on large-scale datasets, i.e., ImageNet [2] or COCO [7]
before being fine-tuned on the target dataset. Pretraining improves the perfor-
mance of DL models by enabling them to learn generalizable features that can
be then transferred to different tasks and datasets [6].

Although pretraining ViT on large-scale datasets is effective, it can be time-
consuming and computationally expensive, which hinders their practical use in
real-world applications. To tackle this challenge, the HPB-ViT architecture inte-
grates various pretrained off-the-shelf ViT backbones, resulting in faster training
with better performance. By leveraging the capability of pretrained ViT back-
bones, HPB-ViT can effectively learn to classify histopathology images with
smaller amounts of labeled data while still achieving state-of-the-art perfor-
mance.

We evaluated the performance of HPB-ViT on the Chaoyang histopathology
dataset [21] and compared it with other state-of-the-art models. The experimen-
tal results showed that HPB-ViT achieved superior performance, demonstrating
the effectiveness of our proposed architecture for the task at hand.

The rest of this work is organized as follows. Firstly, we review related works
in Sect. 2, specifically addressing histopathology and its current issues. Next,
we present our proposed approach in Sect. 3. We then report and discuss the
experimental results in Sect. 4. Finally, the conclusions are drawn in Sect. 5.

2 Background Concepts and Related Work

When analyzing whole-slide digital pathology images, several challenges need to
be addressed. These images are extremely large and are measured in terms of
gigapixels, which makes it necessary to break them down into smaller tiles to be
processed effectively. Additionally, different magnifications are required for spe-
cific tasks and to combine information from multiple scales. Predicting survival
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can be challenging since there may only be weak slide-level labels available, and
the most crucial areas of the image may not always be obvious. Annotations can
also be complex due to the variability in disease subtypes, which requires the
expertise of highly trained pathologists. Cell-based methods involve detecting
and characterizing thousands of objects, which can pose a challenge. DL archi-
tectures have become increasingly adapted to this task to tackle these issues,
and new approaches specifically designed for digital pathology are emerging [11].
These approaches have replaced traditional handcrafted methods [10].

Deep Learning in Histopathology. CNNs have been the reference approach
since the release of AlexNet. However, several promising architectures, such as
T2T-ViT [17], Swin [8,9], DeepViT [19], CvT [15] have emerged after the intro-
duction of Transformer architecture [14] and the advent of ViT [3].

One of the earliest studies that employed ViT for histopathology was con-
ducted by Zhou et al. [20]. They proposed a hybrid model that combined convo-
lutional residual networks [5] and ViT mechanisms to create a network with
inductive solid bias capabilities and scale and rotation invariance, obtaining
state-of-the-art performance in a brain biopsies dataset.

Building upon this, Chen et al. [1] also proposed a hybrid convolutional and
vision transformer network similar to inception networks [13]. They achieved
state-of-the-art results on the HE-GHI-DS dataset, further highlighting the effec-
tiveness of the hybrid approach in histopathology classification.

Issues in Deep Learning for Histopathology. Although the promising
results indicate that ViTs have the potential to revolutionize the field of
histopathology, some limitations and challenges must be considered. First, the
typical extensive size of these images can lead to high computational require-
ments. Some studies addressed this problem by dividing the original high-
resolution images into smaller patches [11]. However, selecting the appropriate
magnification level requires a profound understanding of the analyzed task [4].

Also, there is a shortage of adequately labeled images for training. To tackle
this problem, Xu et al. [16] developed a generative approach that employs ViTs
to generate synthetic data for training. The results were promising, particularly
for the underrepresented minority classes, with ≈5% performance gain.

3 The Proposed Architecture

In this section, we present the proposed HPB-ViT architecture and its modules.
Section 3.1 describes the concept of attention in Transformers [14]. In Sect. 3.2,
we describe the approach to standardize the backbone’s output. Section 3.3 dis-
cusses the module which learns patch pooling. Finally, in Sect. 3.4, we provide a
detailed description of the overall architecture.

3.1 Attention Mechanism

Attention mechanisms have become increasingly popular due to the advance-
ments in transformer architecture and multi-head self-attention (MHSA) [14].
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Fig. 1. From left to right: example feature map derived from the backbone pretrained
Architecture, Liner transformation, second linear transformation after feature trans-
pose.

The main goal of attention mechanisms is to allow models to focus on important
parts of the input while disregarding irrelevant information.

In the MHSA formulation, the attention mechanism is defined as:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (1)

where Q, K, and V represent the query, key, and value matrices. The WQ
i , WK

i ,
and WV

i matrices represent the learned projection matrices for the ith head, and
WO represents the learned output projection matrix. h is the number of heads,
and dk is the dimensionality of the key vectors.

The attention mechanism calculates a weighted sum of their values to pri-
oritize important input elements and ignore irrelevant ones. The weights are
determined by comparing the queries and keys, which creates a soft alignment
between the query and key vectors. This then allows the corresponding value vec-
tors to be weighted accordingly. Our proposed architecture employs the attention
mechanism in the Transformer layer shown in Fig. 3.

3.2 Backbone Encapsulator

The Backbone Encapsulator (BE) module receives an input batch of images of
size [B, 3,H,W ], where B is the batch size, 3 is the number of channels that
forms the images, while H and W are height and width, respectively. Then, BE
passes the images through a selected pre-trained backbone, obtaining features
of size [B, I, J ], where I is the number of channels of the output feature map
provided by the backbone, and J is the backbone’s feature map size. Then, BE
applies two different linear transformations to the backbone output features.
The first linear transformation expands the last dimension of the features to
the predefined size. Then, the features are transposed and passed through a
second linear layer to expand the number of patches to the predefined size. This
transformation serves the purpose of reorganizing the backbone output to match
the expected input size of the HPB model, i.e., [B,C, P ], where C is the final
number of channels and P is the final feature map size.

In summary, the Backbone Encapsulator module is used to make the output
of the pre-trained backbone consistent with the HPB model. This condition is
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Fig. 2. Representation of the PPHR module. From left to right: example feature map
derived from the image, patch representation of the image (MLP block), linear trans-
formation (MLP block), patch representation of the image after linear transformation
(Reshaping layer), patch reorganization (Embedding layer).

achieved by modifying the backbone output to match the expected input size of
the HPB model. A schematic illustration is shown in Fig. 1.

3.3 Patch Pooling and Hierarchical Reconstruction Module

The Swin Transformer [9] is a state-of-the-art transformer-based architecture for
image classification. It features a hierarchical structure that efficiently handles
large images by gradually reducing the feature map’s resolution while increasing
the transformer layers’ receptive field.

The Patch Pooling and Hierarchical Reconstruction (PPHR) module works
by merging nearby patches into larger ones, reducing the number of patches, and
increasing the receptive field of the following transformer layers.

Some distinctions exist between the Swin Transformer’s patch merging layer
and our PPHR module. The PPHR module comprises three primary compo-
nents: a multi-layer perceptron (MLP), a reshaping layer, and an embedding
layer. A schematic illustration is shown in Fig. 2.

The MLP takes a series of patches as input, with a [B,C, P ] size. Here, B
represents the batch size, C is the number of patches, and P denotes the size
of each patch squared. These patches are then projected into a space of size
[B,C,E], where E represents the expansion embedding dimension. Finally, the
patches are further projected into a lower-dimensional space of size [B,C, P/4].
These patches are normalized using a Layer Normalization layer before passing
through the linear layer.

The output of the MLP is then passed through the Reshaping layer, which
reshapes it into a 2D grid of patches employing the rearrange function. Finally,
the grid is rearranged into shape [B,C/4, P ].
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Fig. 3. The architecture of the proposed Hierarchical Pretrained Backbone Vision
Transformer over different stages.

After the reshaping layer, the embedding layer applies a linear and another
Layer Normalization layer. The final result is an output tensor of size [B,C/4,K],
where K is the same as P in our approach.

3.4 Overall Architecture

Our proposal’s overall architecture involves several stages that lead to a single
vector of image features. It is illustrated in Fig. 3.

Each stage is composed of a PPHR module (see Sect. 3.3) and a set of Trans-
former Layers [14], which are repeated Kn times. The value of Kn is chosen, and
n is the current stage’s index.

Our approach involves using learnable class tokens, similar to traditional
ViTs. However, we use them separately for each stage instead of simultaneously
like conventional ViTs.

At the beginning of each stage, a learnable positional encoding is added, and
class tokens with size [B, 1, P ] are concatenated. After the final stage, the class
tokens from each stage are concatenated and used as input to an MLP head,
which produces the scores for each possible class. The concatenation of the class
tokens for each stage produces a hierarchical dense representation of the image,
resulting in higher accuracy for the current task.

Ultimately, the proposed architecture combines the strengths of the PPHR
module and Transformer Layers to learn a hierarchical representation of the
input image, resulting in improved performance on image classification tasks.

4 Experiments

The goal of the experiments is to determine if the proposed method can enhance
the accuracy of histopathological image classification concerning off-the-shelf
Transformer-based architectures. We will begin by introducing the dataset
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Fig. 4. Visual representation of the four classes included in the Chaoyang dataset.

(Sect. 4.1), outlining the experimental setup (Sect. 4.2), and then analyzing the
results in Sect. 4.3.

4.1 Chaoyang Dataset

The Chaoyang dataset is a histopathology image collection containing 512×512
sample patches of four different types of colon-rectum tissue conditions: nor-
mal, serrated, adenocarcinoma, and adenoma (see Fig. 4). The dataset was con-
structed in a realistic and practical context, meaning that it may contain noise
and other imperfections that can make the classification task more challenging.
The authors provide the dataset in two sets: a training set with 4,022 samples
and a test set with 2,039 samples.

The class distribution in the dataset is shown in Fig. 5. As can be observed,
the dataset is imbalanced, with a more significant number of adenocarcinoma
samples compared to the other classes. Overall, the Chaoyang dataset provides
a challenging and realistic benchmark for evaluating the performance of image
classification models on histopathology images of the colon rectum. The dataset’s
imbalance and potential imperfections make it a more realistic representation of
real-world applications.

4.2 Experimental Setting

We validated our approach using the Chaoyang dataset [21]. To provide a fair
comparison between our proposed architecture and several off-the-shelf Vision
Transformers, i.e., ViT [3] and SwinV2 [8], we reported accuracy, F1-score, pre-
cision, and recall as performance metrics, calculated using the macro average.
Additionally, we provided information on the backbone used and the number of
parameters for each employed configuration.

Training Details. To help avoid overfitting, we reserved 10% of the training
set with the actual class distribution to build a validation set.

Then, we implemented an oversampling strategy on the training set, compris-
ing two steps to address the class imbalance. Firstly, we repeated the underrepre-
sented samples until we had equal samples for each class. Secondly, we augmented



230 L. Zedda et al.

Fig. 5. Class distribution in the Chaoyang dataset. It is imbalanced, with a meager
presence of serrated and adenoma classes.

Table 1. Image augmentation parameters adopted for models training.

Augmentation Parameters Probability

HorizontalFlip – 0.5

VerticalFlip – 0.5

RandomRotate90 [90, 180, 270] degrees 0.5

RandomResizedCrop [0.5, 1.0] of original size 0.5

the repeated samples online to enhance the diversity of the images’ representa-
tions with various geometric transformations while preserving important visual
features. The augmentations are indicated in Table 1. No color augmentations
were considered to preserve the staining procedure and obtain a first baseline.

Our augmentation pipeline effectively increased the diversity of our training
set and improved our model’s ability to handle variations in input data.

Implementation Details. The experiments were conducted on a workstation
with an Intel(R) Core(TM) i5-9400 @ 4.10 GHz CPU, 32 GB RAM, and an
NVIDIA RTX 3060 GPU with 12 GB memory. Every method was trained with
the following hyperparameters: AdamW was set as the optimizer with a weight
decay of 1 × 10−2 and momentum of 0.9. The initial learning rate was 1 × 10−4

across a total of 100 epochs. Dropout was set to 0.2.

HPB Configuration. As for HPB, SwinV2 Tiny [8] and ViT base [3] was
chosen as the backbones to experiment with the architecture with two different
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kinds of image representations: hierarchical provided by SwinV2 and standard
by ViT base. Each stage had a different number of repeats, with 2, 2, 4, and
2, respectively. We incorporated 8 attention heads with a size of 64 for each
transformer layer. For the embedding dimension, we opted for a small value of
384. Lastly, we set the expansion factor for the feed-forward layer inner dimension
to 3.

4.3 Experimental Results

Table 2 presents the results obtained by our proposed methods in its two versions:
HPB-ViT using ViT Base [3] as the backbone, from now on referred to as HPB-
Base, and HPB-Tiny, HPB-ViT with the SwinV2 Tiny [8] backbone, and some
state-of-the-art methods on the Chaoyang dataset. For fairness, the table is
divided into three sections: the first is, to the best of our knowledge, the current
baseline on this dataset [21]; the second represents ViT-based architectures, and
the last includes SwinV2-based architectures. We point out that we applied the
same oversampling and augmentation strategy for every experimented approach,
except for the baseline, which was reported from the work of Zhu et al. [21].

In particular, the method of Zhu et al. [21], referred to in our table as
NSHE+CNN, uses ResNet-34 CNN [5] as the classification model. In addition,
the authors proposed the noise suppressing and hard enhancing (NSHE) tech-
nique to make the classification model resistant to possible noise interference in
the images, as the Chaoyang dataset was collected from real-world settings and
the main goal was to create a method robust to noise. According to the authors,
their approach achieved an accuracy of 0.83 and an F1-score of 0.77. In addition,
we also used ViT [3] and SwinV2 [8] for comparison purposes. ViT comes in two
versions: Base and Large, while SwinV2 has Tiny and Small versions.

Both proposed versions result in significant performance improvements across
all reported metrics, with some differences. The HPB-Base version outperforms
the baseline work and ViT architectures in every metric. Despite having slightly
more parameters than ViT Base, HPB-Base is a suitable compromise between
ViT Base and ViT Large in terms of performance gains.

On the other hand, HPB-Tiny performs better than both SwinV2 models
and is the top performer among all the tested models. It is based on the SwinV2
Tiny backbone and has fewer parameters than HPB-Base but slightly more than
SwinV2 Small. However, it still has double the parameters of SwinV2 Tiny.
Overall, HPB-Tiny strikes a good balance between performance and complexity.

Overall, the results demonstrate that the proposed HPB models outper-
formed the baseline on the Chaoyang dataset [21], highlighting the effectiveness
of the proposed approach, even compared to off-the-shelf Transformers archi-
tectures. Additionally, we observed that our proposed HPB architecture outper-
formed the work of Zhu et al. [21], specifically designed to take into account the
noise interference commonly found in real-world acquired images. This aspect
highlights the robustness and effectiveness of our approach and underscores its
potential for handling noise interference images with improved accuracy and
reliability.
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Table 2. Experimental results obtained on the Chaoyang dataset [21]. The reported
performance metrics, calculated using the macro average, include accuracy, F1-score,
precision, and recall. Additionally, we provided information on the backbone used and
the number of parameters for each model tested. The best results are highlighted in
bold, while the second best are underlined.

Model Backbone Image size Acc↑ F1↑ Pre↑ Rec↑ Params↓
NSHE+CNN [21] ResNet-34 224 0.83 0.77 0.78 0.75 –

ViT Base [3] – 224 0.84 0.79 0.78 0.79 85.8M

ViT Large [3] – 224 0.84 0.79 0.79 0.78 303.3M

HPB-Base (Our) ViT Base [3] 224 0.85 0.80 0.81 0.80 112.3M

SwinV2 Tiny [8] – 256 0.84 0.79 0.80 0.79 27.6M

SwinV2 Small [8] – 256 0.84 0.79 0.80 0.78 51.3M

HPB-Tiny (Our) SwinV2 Tiny [8] 256 0.86 0.81 0.82 0.80 54M

Fig. 6. Confusion matrix obtained with HBP-Tiny. It shows the misclassification issues
between normal and serrated classes.

Limitations. Despite its positive outcomes, the proposed HPB architecture has
some limitations. One is the accurate differentiation between normal and serrated
classes. Even seasoned pathologists struggle with this classification, which could
result in incorrect labeling. Therefore, this issue must be addressed appropriately
to ensure the architecture’s practical application in certain circumstances.

We use the confusion matrix in Fig. 6 to illustrate this aspect. It shows mis-
classifications for the serrated and normal classes in the best-proposed architec-
ture (HPB-Tiny). Further refinements are necessary to accurately classify these
classes.



HPB-ViT for Histopathological Image Classification in Histopathology 233

5 Conclusions

The HPB-ViT architecture has shown great potential in automating the clas-
sification of histopathological images. This result is achieved by utilizing the
pretrained SwinV2 Tiny backbone, which allows the HPB architecture to learn
how to classify these images with less labeled data, yet still perform at a state-
of-the-art level. The effectiveness of this proposed architecture is demonstrated
through its evaluation of the Chaoyang histopathology dataset for image classi-
fication.

There are several ways to improve the performance, practicality, and clas-
sification accuracy of the proposed HPB-ViT architecture. One possible direc-
tion is to include new pretrained ViT backbones like T2T-ViT, DeepViT, and
CvT. Additionally, further integrating CNNs as backbones in the HPB architec-
ture could improve its performance. Testing the approach on different datasets
may help generalize the proposed architecture’s effectiveness in various fields
and show its potential against noise interference. Finally, incorporating multiple
backbones into the HPB architecture could improve classification accuracy.
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