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Abstract. Early detection of an infection prior to prosthesis removal
(e.g., hips, knees or other areas) would provide significant benefits to
patients. Currently, the detection task is carried out only retrospectively
with a limited number of methods relying on biometric or other med-
ical data. The automatic detection of a periprosthetic joint infection
from tomography imaging is a task never addressed before. This study
introduces a novel method for early detection of the hip prosthesis infec-
tions analyzing Computed Tomography images. The proposed solution
is based on a novel ResNeSt Convolutional Neural Network architecture
trained on samples from more than 100 patients. The solution showed
exceptional performance in detecting infections with an experimental
high level of accuracy and F-score.

Keywords: Periprosthetic Joint Infection detection · Hip
Arthoplasthy · Medical Imaging · Artificial Intelligence

1 Introduction

The surgical replacement of human joints has become increasingly common in
recent years as a treatment to pathologies like osteoarthritis or rheumatoid
arthritis. However, the Periprosthetic Joint Infection (PJI) that unfortunately
occurs around a joint implant, still represents a serious concern for patients
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and physicians [1]. A PJI can lead to pain, joint dysfunction, and the need for
revision surgery, which typically pose an increased potential for further compli-
cations for the patients, as well as additional costs [2]. To address this challenge,
medical imaging plays a critical role in the early and accurate detection of PJI.
Traditionally, PJI detection is carried out retrospectively by means of a combi-
nation of methods relying on biometric or other medical data [3] which could
be time-consuming and limited in term of detection accuracy. To counter this,
Machine Learning (ML) techniques could train on past data and be applied to
PJI detection, with the aim of improving the accuracy of diagnosis [4,5]. Cer-
tainly, the use of Computed Tomography (CT) images provided several advan-
tages in the diagnosis of infection [6], giving that the periosteal response should
be a strong prior when the infection is present [7]. With this hypothesis, the
information obtained from CT scans could be employed as input to supervised
ML approaches to develop models able to accurately predict PJIs, reducing the
risk of recurrent infections and improving patient outcomes. However, the PJI
is particularly challenging to be diagnosed, even for physicians, but recent evo-
lution in Convolutional Neural Network (CNN) architecture have proven great
results in medical imaging [9] giving inspiration to this work. In this paper, a
Convolutional Neural Network (CNN) solution for the classification of infected
and aseptic patients with hip replacements by analyzing CT scans is presented
[8].

The proposed solution exploits the attention mechanism of recent ResNeSt
[10] architecture to proper extract features from CT scans and build a predic-
tive model that can accurately differentiate between infected and non-infected
(aseptic) patients. A private dataset acquired at Rizzoli Orthopedic Institute
(IOR) was employed for training and final evaluation of the solution (approved
by ethical committee). The dataset was manually labeled by expert radiologists.
The obtained results showed the effectiveness of the proposed solution in the PJI
detection task, demonstrating its potential to improve overall medical outcomes.
This highlights the importance of medical imaging in the diagnosis of PJI and
underscores the potential of machine learning techniques in this area.

The remainder of this paper is organized as follows: Sect. 2 briefly presents
related works; Sect. 3 details the proposed solution and Sect. 4 shows the exper-
imental results with discussion. Conclusions are summarized in Sect. 5.

2 Related Works

The state of the art (SOTA) methods for the detection of PJIs employ mainly
statistical methods, such as regression and Fisher test. In [11] a risk prediction
model is proposed for PJI detection within 90 days after surgery using Least
Absolute Shrinkage and Selection Operator (LASSO) regression analysis [12].
Other approaches propose the use of the Fisher’s test, to detect the infection
from CT images at the site of hip prosthesis before surgery [13,14]. While these
methods demonstrated to be effective, they are limited in capturing complex
relationships between imaging features thus better understanding the PJI sta-
tus. For instance, many patients’ problems, such as mechanical loosening, can
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Fig. 1. Examples of acquisitions in CT.

be detected only retrospectively by studying the bone-prosthesis system and
its evolution [15]. Only a limited number of studies exploited machine learning
(ML) techniques. This is likely due to issue concerning datasets: availability of
reliable labeling, variability in image quality and in patients samples, etc. How-
ever, ML approaches have the potential to significantly enhance the accuracy of
PJI detection. Several studies have demonstrated the potential of deep learning
approaches for PJI prediction, with promising results in terms of accuracy, sen-
sitivity, and specificity. The authors of [16] proposed a ResNet architecture to
classify pathological sections of patients with PJI achieving high accuracy. In [5],
a ML approach was proposed to anticipate recurrent infections in patients who
have undergone revision total knee arthroplasty due to a PJI. In some cases, the
performance of these models has been shown to be superior to traditional diag-
nostic methods that rely solely on clinical inspection and laboratory tests. To
the best of the authors’ knowledge, as far as hip CT images are concerned, there
are no SOTA methods able to early detect PJIs. This specific medical imaging
problem is still in its early stages and there are several obstacles that need to be
overcome: the most important one is the scarcity of large datasets. Given this,
a specific dataset of hip CT scan images was collected and labeled by experts.
Thus, a novel CNN solution was introduced in order to advance the state of
the art in early PJI detection task, achieving the first automatic approach with
promising high level of accuracy.
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3 Methodology

The CT scans are a widely used medical imaging data providing detailed cross-
sectional images of internal structures of a human body. In the context of hip
replacements, they play an important role in detecting a PJI. The axial plane
imaging mode has the ability to highlight both bone and soft tissue (see Fig. 1),
thus facilitating the identification of a orthopedic joint and bone infections.

3.1 Hip CT Scans Image Dataset

At first, patients who underwent hip replacement surgery and subsequent CT
scans for various reasons, including postoperative follow-up, suspected PJI, or
routine monitoring were identified at Rizzoli Orthopedic Institute of Bologna. As
infection is not easily detectable, and there is no standard protocol for medical
experts to identify it. However, physicians are able to detect infection clues in
proximity to the bone borders, with particular attention to the acetabular and
femoral area. Finally, they are able to confirm the presence of infection by means
of cultures: this is a retrospective method. In order to have a first early detection
solution, a dataset consisting of 102 CT scans of patients with hip replacements
was collected (52 samples of an infected patient and 50 aseptic ones). Given
the before mentioned insight, only images regarding the axial bone tissue were
employed. The labeling of this dataset posed a further challenge: the labels had
to be assigned at patient level. In other words, each patient is labeled as either
being infected or aseptic, rather than each individual CT scan image. Thus, all
images from a specific patient will be labeled as infected or aseptic. Also each
CT scan contains a different number of images per patient. These are big issues
for ML solutions as it means that no explicit information is available about the
presence or absence of a PJI on each individual images. All collected images are
in Digital Imaging and Communication in Medicine (DICOM) format1.

3.2 Pre-processing Pipeline

In order to identify what images contain the prosthesis, every pixel of the images
have been converted through the Hounsfield scale, as follows:

hp = p ∗ s + i (1)

where p is a pixel value, s and i are the slope and the intercept respectively
contained in the DICOM metadata, and hp is the value of the pixel in the
Hounsfield scale. The Hounsfield scale is a quantitative measure for describing
radio-density which is the property of relative transparency of a material to
the passage of the X-ray portion of the electromagnetic spectrum. Images with
hp > 3000 were selected as being images presenting non-human material like a
metallic prosthesis [17]. This allowed the selection of images coming from the
upper part of the acetabulum to the lower part of the stem only.
1 https://www.dicomstandard.org/.

https://www.dicomstandard.org/
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Fig. 2. Pre-processing pipeline: Slice selection based on Hounsfield selection, contour-
based ROI detection and final histogram equalization.

A further preprocessing operation was carried out extracting the contours of
the bone relative to the prothesis [18] on images having hp > 1000. Once the con-
tours were extracted, the corresponding centroid was computed and a sub-image
of 188 × 188 pixels was extracted. Finally, histogram equalization was carried
out on these patches to adjust the contrast and to normalize different image
histograms. The overall pre-processing operations are graphically summarized
in Fig. 2.

3.3 The Proposed Approach for PJI Detection

In this section the proposed CNN-based solution for the early detection of hip
PJI detection is described. A ResNeSt architecture [10] was employed to clas-
sify each data sample (CT scan images from a patient with hip replacements)
between infected or aseptic classes. The ResNeSt architecture is an evolution of
the ResNet neural network [19], incorporating split-attention blocks instead of
residual blocks, thus emphasizing the correlation of informative feature maps.
ResNeSt was selected for being the best on the specific task, after testing other
similar architectures. More specifically, performances obtained by the ResNet
and the ResNeXt architectures [20] were compared, However, the ResNeSt
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network architecture, incorporating split-attention mechanisms, demonstrated
superior results in both the validation set and the test set. The other evalu-
ated architectures, although achieving similar levels of accuracy, demonstrated
poor generalization performances, as indicated by their “randomic behaviour” on
heatmap analysis. The proposed approach takes input images of size 188 × 188
that have undergone pre-processing, as described in Sect. 3.2. The images are
then processed within the architecture and the loss function is computed based
on the comparison between the output predictive values and truth labels of
the data. The loss function employed was the cross entropy and moreover, in
order to improve the stability of the model, the Jacobian regularization was
applied [21]. Jacobian regularization permitted to reduce the impact of input
perturbations caused by metallic artifacts in the prostheses. The use of ResNeSt
with the addition of regularization techniques allowed to exploit the strengths
of this state-of-the-art network architecture to extract features from CT scans
and accurately classify infected and aseptic patients with hip replacements (with
explainable non-randomic heatmaps).

4 Experiments and Results

As outlined in Sect. 3.1, the dataset collected and employed for experiments is
composed of 50 aseptic and 52 infected patients. To evaluate the generalizing
properties of the proposed solution, a balanced test set (Dx) of 12 patients
(6 aseptic and 6 infected) was extracted from the full dataset. Additionally,
to effectively control overfitting during the training process, we employed four
distinct balanced validation sets (Dv1, Dv2, Dv3, and Dv4), each consisting of
12 different patients. The remaining 42 patients were considered as Dt. The
following configurations were considered for the training phase:

– C1: train {Dt ∪ Dv2 ∪ Dv3 ∪ Dv4} and valid Dv1;
– C2: train {Dt ∪ Dv1 ∪ Dv3 ∪ Dv4} and valid Dv2;
– C3: train {Dt ∪ Dv1 ∪ Dv2 ∪ Dv4} and valid Dv3;
– C4: train {Dt ∪ Dv1 ∪ Dv2 ∪ Dv3} and valid Dv4.

Training was performed for 100 epochs, employing ADAM as optimizer with a
starting learning rate of 1e−4, a weight decay equal to 1e−4 and a batch size fixed
at 4. The proposed approach was implemented in Python language (version 3.9.7)
using the Pytorch package. All experiments were done on a NVIDIA Quadro
RTX 6000 GPU. The overall training procedure took 50 h.

Tables 1 and 2 shows the results obtained applying the best model obtained
for each configuration and tested on Dx. As explained in Sect. 3.3 the proposed
technique makes a classification (positive or infected vs. negative or aseptic) for
each image of a patient; this implies that the model is independent to the number
of images per patient, as each patient has a different number of images based
on their length of the prosthesis (third column of Tables 1) and 2. It has to be
noted that, in order to accurately classify a patient as infected or aseptic through
the images predicted by the model, a threshold strategy must be employed. The
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Table 1. Accuracy and F-score obtained on C1,C2 configurations employing the same
test set Dx.

Patient Patient Number Accuracy / F-score Accuracy / F-score

number type images configuration C1 configuration C2

1 aseptic 67 0.88/0.94 0.88/0.93

2 aseptic 39 0.66/0.8 0.41/0.58

3 aseptic 69 0.85/0.85 0.76/0.87

4 aseptic 68 0.52/0.69 0.85/0.92

5 aseptic 77 0.79/0.88 0.79/0.88

6 aseptic 53 0.96/0.98 1/1

7 infected 80 0.46/0.63 0.51/0.68

8 infected 115 1/1 1/1

9 infected 191 0.98/0.99 0.91/0.96

10 infected 71 0.18/0.31 0.13/0.20

11 infected 77 0.57/0.72 0.89/0.94

12 infected 117 0.95/0.98 0.96/0.98

Table 2. Accuracy and F-score obtained on C3,C4 configurations employing the same
test set Dx.

Patient Patient Number Accuracy / F-score Accuracy / F-score

number type images configuration C3 configuration C4

1 aseptic 67 0.91/0.95 0.89/0.94

2 aseptic 39 0.92/0.96 0.56/0.72

3 aseptic 69 0.76/0.87 0.67/0.8

4 aseptic 68 0.70/0.83 0.57/0.73

5 aseptic 77 0.96/0.98 0.82/0.9

6 aseptic 53 1/1 0.92/0.96

7 infected 80 0.39/0.55 0.65/0.79

8 infected 115 0.98/0.99 1/1

9 infected 191 0.82/0.90 0.92/0.96

10 infected 71 0.03/0.05 0.13/0.22

11 infected 77 0.52/0.68 0.91/0.95

12 infected 117 0.99/0.99 0.91/0.95

choice of the threshold could be done considering the right trade-off between
false positive and false negative.

Accuracy (Eq. 2) and F-score (Eq. 3) were employed as performance metrics
as shown in Tables 1 and 2.
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Fig. 3. Input images and corresponding heatmaps of trained model attention produced
by means of GradCam and GradCam++ libraries. Green border indicates a correct
prediction while the red border shows a wrong one. (Color figure online)

Accuracy is defined as follows:

ACCy = Yrp/PNI (2)

where y is the class, Yrp represents the right prediction for that class and PNI
is the number of images per patient.

F-score is defined as follows:

F = 2 ∗ (P ∗ R)/(P + R) (3)

where P and R are precision and recall respectively. Results shown in Tables 1
and 2 show how the model generalizes with respect to the training set: accuracy
and F-score are similar for each one of the cross-validation configurations.

In the task of PJI detection, experts in the field emphasize the significance
of focusing on regions in images adjacent to the bones, as these areas often hold
discriminatory information. Building upon this expert knowledge, a Gradient-
weighted Class Activation Mapping (Grad-Cam) analysis [22] was conducted on
each test image using the trained model, aiming to enhance the interpretability
of the model’s decisions. Through this analysis, deeper insights into the inter-
pretability and clinical relevance of the heatmaps generated were gained. The
examination of Grad-Cam heatmaps enabled to identify discriminative features
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near the bones, which exhibited a strong correlation with accurate predictions.
This correlation is exemplified by the green-bordered example shown in Fig. 3.
Conversely, when the model placed emphasis on multiple features dispersed
throughout the image, the prediction was incorrect.

5 Conclusion and Future Works

In this paper an early detection technique for hip periprosthetic joint infections
on computed tomography images was presented. This was a first in the state of
the art to the best of author’s knowledge. To this aim, hip CT images were col-
lected and labeled by experts. A dedicated pre-processing pipeline was developed
and a ResNeSt CNN solution was trained. The proposed pipeline demonstrated
to achieve strong performances (in terms of accuracy and F-score) in detecting
infected and aseptic images of a specific patient.

In order to strengthen the robustness and generalizability of our proposed
model, future research will focus on expanding the dataset through collabora-
tion with other institutions to obtain a more diverse and representative dataset,
enabling our model to perform effectively across various clinical settings.

Furthermore, our research will explore alternative forms of input, such as
compressed images, and the implementation of additional automated techniques
to further enhance the prediction of prosthesis-related joint infections. Addition-
ally, we will investigate the outliers in the collected dataset to better understand
their impact on the overall results.
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