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Abstract. The physical environment you navigate strongly determines
which communities and people matter most to individuals. These effects
drive both personal access to opportunities and the social capital of com-
munities, and can often be observed in the personal mobility traces of
individuals. Traditional social media feeds underutilize these mobility-
based features, or do so in a privacy exploitative manner. Here we pro-
pose a consent-first private information sharing paradigm for driving
social feeds from users’ personal private data, specifically using mobility
traces. This approach designs the feed to explicitly optimize for inte-
grating the user into the local community and for social capital building
through leveraging mobility trace overlaps as a proxy for existing or
potential real-world social connections, creating proportionality between
whom a user sees in their feed, and whom the user is likely to see in
person. These claims are validated against existing social-mobility data,
and a reference implementation of the proposed algorithm is built for
demonstration. In total, this work presents a novel technique for design-
ing feeds that represent real offline social connections through private set
intersections requiring no third party, or public data exposure.

Keywords: Social Media Feeds · Private Data Sharing · Personal
Data Stores · Mobility Data

1 Introduction

Modern social media platforms design feeds to explicitly optimize for user
attention, creating negative effects for both users and broader democratic dis-
course [10]. These feeds create a feedback loop of preferential attachment
to already popular content and users, leading to disproportionally dominant
agents [11]. To mitigate this rich-get-richer regime, feeds need to focus on pro-
moting low-popularity content as well, but this is not sufficient - you can’t just
show people low-quality content or users stop engaging. Rather than promoting
the content of the largest creators or random content pulled from across the
social internet, we want to optimize social capital [19].
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Ideally, we want platforms that achieve sustainability and longer-term value
by increasing real-world community connections, trust, capacity for collective
action (known as bonding social capital), as well the number of trusted links to
people in other communities (known as bridging capital). At its core, your feed
should be representative of people that matter to you.

The physical spaces we navigate are strong determinants of many aspects of
our lives and values, from our wellbeing [9] to our choice of collaborators [4] and
the opportunities for economic growth we’re exposed to [3]. Location history is a
better predictor of your interests than the demographics used by current match-
ing apps (e.g., dating app, content recommendation, etc.) [6], and is strongly
predictive of which friendships you already have [7]. Leveraging GPS location
data in social media has a long history demonstrating its value, but has been a
series of privacy nightmares that require the sharing of this location data to a
third party, often to be stored indefinitely and monetized without any visibility
or accountability to the user.

We propose a new approach to building social media feeds that are optimized
for social capital building via private matching over location histories, where
friends are shown in proportion to their potential to build new within-community
relationships and to reinforce community social capital, requiring no third-party
interactions or capture of data.

All data sharing is done securely such that no parties ever see anyone else’s
location data, and only each pair of users can see the size of the location data
overlap between them.

This approach is naturally extensible to a huge range of similar matching
approaches ranging from shared photo matching, or shared friendship matching
(including from existing social networks), to simple interest matching, all with-
out needing trusted third parties or the exposure of any personal information.
In doing so, this creates an in-built incentive for users to make personal data
accessible (in an encrypted and private manner) to ensure they appear on others’
feeds and can participate in the social ecosystem.

In summary, this paper:

– Presents a novel approach to building a social feed that represents real social
relationships via calculations of set intersections between pairs of individuals
without the need for a third party or transmission of any unencrypted data,
ensuring no escape of any private information to anyone.

– Validates the value of location trace based matching as a measure of friend-
ship on existing data using two different computational examinations, in turn
motivating its use in building a feed optimized for social capital building.

– Prototypes the approach with a reference implementation and demo app to
show that this can be done with extremely low computational cost.

– Proposes and discusses the extensibility of this private set intersection driven
feed paradigm to other personal datasets and explores how this creates new
social incentives around private data sharing for matching.

A longer, more verbose version of this publication with additional figures will
be made available online via pre-print servers due to page limits.
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2 A Social Recommendation Algorithm

For two friends Alice & Bob, the rate at which content is shown on a feed should
be proportional to the physical-world relevancy of their ties (here the likelihood
they’ll be at the same location).

When Bob friends Alice, Bob can make a request to Alice to begin a multistep
private set intersection on the mobility traces (location history) of both Bob and
Alice. To make matching on this information easier, Alice can provide each point
in her GPS trace, T r

A, as a geohash [16] at an arbitrary resolution, r.
Geohash converts GPS coordinates to strings at a varying length of string

to provide an arbitration resolution. For example, one can know that a GPS
coordinate is inside the MIT Media Lab building using the string ‘drt2yr7x’.
If Alice desires, she can allow others to match on extremely detailed location
traces by using a high-resolution geohash in the form of a long string (r = 8
characters). Or, if Alice decides her mobility trace should not inform her friend’s
feeds, she can share the geohash at a low resolution, r = 5, roughly city level. At
the extreme, Alice can choose to deny sharing any data at all. However, sharing
more information to match with Bob will allow Alice to be seen more often
in Bob’s feed, creating an incentive to share data at the level of detail one is
comfortable with.

Bob can now perform a private set intersection using his original data, choos-
ing the resolution of his mobility data as well. If Alice and Bob plan to share the
exact same resolution of location, the task is simple to perform a private set inter-
section cardinality where Alice acts as a server and Bob acts as a client [17]. Alice
encrypts each element of her mobility trace T r

A using a commutative encryption
scheme, H(·)k, where k is a users secret key, producing a sequence of encrypted
geohash strings denoted {H(T (i)rA)

k=A}∀i. These elements are then inserted into
a Bloom filter with a chosen false positive rate e and sent to Bob. Similarly, Bob
encrypts each element of his sequence with his key to produce {H(T (i)rB)

k=B}∀i.
Bob sends his encrypted sequence back to Alice who can then encrypt it again
using her secret key, {H(H(T (i)rB)

k=B)k=A}∀i, to send back to Bob. In order
to stop Bob from knowing what locations they match on, Alice can shuffle the
mobility sequence to ensure that Bob can only see the size of the set intersection,
rather than the actual matches. Once returned, Bob uses the commutative prop-
erties of the encryption, {H(H(T (i)rB)

k=B)k=A}∀i = {H(H(T (i)rB)
k=A)k=B}∀i,

to decrypt the returned sequence using his secret key. This now allows Bob to
see the size of the overlap between the elements of his sequence, {H(T (i)rB)

k=A},
and Alice’s sequence, {H(T (i)rA)

k=A}∀i, both encrypted using Alice’s secret.
This works simply when Alice & Bob operate at the same resolution r. How-

ever, there may be instances where either Alice or Bob want to share information
at a lower resolution than the other. This adds difficulty, as the encrypted geo-
hashes will not be able to match if rA �= rB . To address this, Alice can share her
mobility trace at their chosen resolution and below simultaneously. Bob should
have a choice in how his algorithm matches on different resolutions. If Bob wants
to match on only the best possible resolution, then he can perform the cardinal
private set intersection repeatedly, starting from his highest resolution down to
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r = 1 or until he finds a non-zero overlap. Alternatively, Bob can just perform a
set intersection using all his available resolutions in one go, rewarding Alice for
sharing more detailed data. To make this feasible, one should limit the resolu-
tion to below r = 9, since GPS’s accuracy becomes untenable below the roughly
one-meter size of a resolution 9 geohash.

Adding to this, we can incorporate time into the match. So far we’ve taken
the locations to be a bag-of-words style collection, however matching on time of
day is a simple extension by sharing tuples of location-time pairs, where time is
binned into hourly segments.

Computing these private set intersection cardinalities is fast, requiring only
three transmissions as serialized protocol buffers, and can be done with existing
open source software [17]. Once these mobility overlaps are calculated, we can
turn to how they can be used to populate a feed.

To echo the physical-world social capital we’re hoping to reinforce, we want
the time we see someone’s content in the feed to be proportional to the time
they’re likely to see each other in person. At a first pass, it would seem ideal for
the probability of Alice being shown in Bob’s feed, P (A), to be proportional to
the simple overlap of their locations, P (A) ∝ |TA ∩TB |. However, to avoid Alice
gaming the system by sharing all, or a large number of possible geohashes, we
need to normalize by the size of Alice’s location set. Taking a simple proportion,
|TA∩TB |

|TA| , would mean that Alice is incentivized to share few locations that are
highly likely to match, and penalizes sharing high-quality data. As such, we
normalize by

√|TA| to balance these tradeoffs. This gives the simple formula of
P (A) ∝ |TA∩TB |√

|TA| .

In general, one benefit of this content ranking paradigm is its ability to
incentivize people to share data in an attempt to appear on their friend’s feeds,
helping address the cold-start problem. However, to facilitate seeing friends who
post little or no content, Laplace smoothing could be applied to the ranking
weighting.

2.1 An Extendable Paradigm

This method, although grounded in mobility traces and its value for building
social capital, is extremely extensible to other private data. Any common set
of interests or activities could be used to build a recommendation system. In
particular, where individuals may want to privately hold data and not share it
with a wider community is ideal for this paradigm. Examples include: existing
friendship ties (which many on social media choose to keep private), which could
be used to over-emphasize showing the content of friends who have many mutual
friends; a set of private interests (for example, the collection of movies on Netflix
one has watched); or a stated set of shared goals (are you looking to find people
on this service that are here to make jokes, discuss politics, or look for new
friends outside your current circle), without having to publicly declare such a
desire. Beyond simple set matching, intersection on more complex data (akin to
the problem with GPS locations) can also be addressed.



58 T. South et al.

As an example, take the case of wanting to see posts from friends who have the
same (or very similar) photos from parties (often transmitted between friends via
AirDrop, messaging platforms, or photo sharing platforms rather than posting
publicly) or, in technically identical but somewhat different framing, those with
similar memes stored as you. While transmitting these photos to perform set
intersection is feasible, minor differences in photos (e.g., cropping, editing, etc.)
and transmission costs from photo sizes make this suboptimal. Instead, we can
use perceptual hashing [20] as a stand-in for the geohashing technique. This is
an almost exactly analogous approach as the algorithm above, this time just
optimizing for shared experiences and memories or shared cultural taste.

This in turn goes a long way to address a fundamental question: do users
actually want this feature? In a bottom-up social media ecosystem, users have
the choice to use, or not use, any given set of features so long as there is a
plurality of interoperable interface providers. In general, users may desire not
to optimize for social capital, preferring plain entertainment, or purely shared
taste as in the above example. While no solution will be possible without any
user demand, this approach works to incentivise user uptake of data availability
for matching through the desire to appear on friends’ feeds, in turn requiring
you to share data.

2.2 A View Towards Web3

While altering the feeds of traditional social media platforms is challenging by
design, the emergence of Web3 social protocols makes building this into a ser-
vice significantly more feasible. Public social graphs such as the Lens proto-
col or the AT Protocol by Bluesky Labs allow for direct querying of friends’
addresses/handles which could be used to request a private set intersection on
mobility data. Tying into this, Web3 has presented new paradigms for storing
private data [18] that can be requested on-chain through toolkits such as Verida
Vault or Disco Data Backpacks, multi-chain protocols for interoperable database
storage. In general, any system acting as a personal data store (such as open-
PDS [12,13]) will enable this approach.

The composable nature of technology in Web3 is oriented towards allowing
systems like feeds, content networks, and social graphs to be interoperable and
interchangeable. While this is one possible tool in the plural toolkit of social
feeds, as we will see in the validation section below, the tool developed here
is surprisingly strong for enabling real-world connections and community social
capital.

3 Validation and Demonstration

While, the relationship between mobility traces and friendships are well estab-
lished [5,7], it is important to validate that even after geohashing the locations
they remain a predictor of friendship. We draw on three datasets of real human
behaviors to demonstrate the performance.
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Fig. 1. Diverse measures of friendship correlate with set intersections of geohashed loca-
tion histories between individuals. With sufficient resolution (r), the geohash intersec-
tion (GI) between members of a local community [1] is more predictive of self-reported
strength of friendship for existing friends and almost as predictive of baseline friendship
as bluetooth proximity (top left). More generally, in the bottom row, averages across
zip code pairs of all pairwise GI are strongly correlated with Facebook’s social con-
nectedness index (SCI) [2] across multiple resolutions, outperforming a zip-zip gravity
model.

To show that friendship can be predicted at the individual pair level, we used
the Friends and Family experiment where data was collected on 130 residents
of a young-family residential living community adjacent to a major research
university in North America [1]. This data included GPS coordinates of individ-
uals collected through their mobile phones in addition to Bluetooth proximity
between participants’ phones in the dataset, call and SMS records between par-
ticipants, and surveys completed at regular intervals where participants were
asked about their perceived strength of friendship with one another (on a scale
of zero to seven, where zero is no friendship and 7 is the closest possible friend
or partner).

As shown in the top left of Fig. 1, we can geohash these GPS locations at
varying levels of resolution to compare how this geohash precision r maps onto
reported friendships. To examine this relationship, we apply the same proce-
dure as above, finding set intersection cardinalities between geohashes of indi-
vidual mobility traces. As a baseline, we compare the relationship between Blue-
tooth proximity, a measure of who you’re physically nearby at all times, and the
reported friendship. At high resolution, the private set intersection cardinality
of your geohashed mobility data is as powerful a predictor of your self-reported
friendships as the baseline from Bluetooth proximity; and moreover, if we only
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examine pairs of individuals who are already friends (reporting any friendship
greater than zero), we find that the strength of this friendship can be explained
better by your location trace than by your Bluetooth proximity.

To help explain this, we can examine the relationship between your loca-
tion intersection with friends and your Bluetooth proximity with them. Even at
high resolutions, these are only 35% correlated. This is largely explained by the
time window nature of the algorithm presented in Sect. 2. The mobility trace is
picking up not just seeing one another in person, but sharing a common set of
interests as measured by location. We can also see this effect in the relationship
between location and communication (measured as the sum of total calls and
SMS messages between each pair of individuals) where again, communication
does not fully explain friendship.

To ensure this generalizes beyond this small community, we combined two
large-scale recent datasets. First, a collection of privacy-preserving mobility
traces of over 200K anonymized and opted-in individuals’ mobile phones from
five major US metropolitan areas over 2016 and 2017, provided by Cuebiq1.
For each pair of zip codes within each metropolitan area, the location geohash
intersection is calculated between every combination of individuals who sleep
overnight in the zip codes. The average zip-to-zip location intersection is then
compared to Meta’s publicly available social connectedness index (SCI), a mea-
sure of how many Facebook friendships exist between two zip codes [2].

The results are broadly consistent across the metropolitan areas, with the
bottom of Fig. 1 showing the relationship between SCI and the geohash inter-
section (GI) for Boston. The left subfigure shows the correlation of these zip-zip
measures across geohash resolutions, with higher resolutions well outperforming
a gravity model (both inverse of distance and inverse of distance squared). The
rightmost subfigure shows this relationship for a high-resolution geohash with
added 2D kernel density mapping.

3.1 Reference Architecture

To help demonstrate how this algorithm could be deployed we have implemented
a reference architecture built on these principles and created a small demo app to
accompany it2. At a basic level, this app allows a user to enter simple records on
the client end and have them matched via a secure private set intersection cardi-
nality with an existing prefilled server. This is done entirely through Javascript,
and is an extremely low computational cost operation that can be done quickly
on both the client and server side. This demo allows for users to match with not
only mobility data, but other list-style data as well.

Much future work exists to build out this algorithm and toolkit into a broader
product. In order to effectively interface this algorithm with its use case, you need
a feed of content to leverage off of. This could be done by attempting to alter one’s
existing social feeds (e.g. Twitter) using their APIs or through manipulation of
their webpages, but cleaner solutions exist using new Web3 social protocols.
1 https://www.cuebiq.com/.
2 https://github.com/tobinsouth/PSI-Social-Feed.

https://www.cuebiq.com/
https://github.com/tobinsouth/PSI-Social-Feed
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4 Discussion

4.1 Social Rankings Gamability

Many existing social and information feeds have resulted in content creators
working to ‘game’ the feed through optimizing their content to match the algo-
rithm. In contrast, the ranking proposed here deliberately makes it hard to
promote oneself more widely than deserved.

If individuals try to game the system by sharing many location points, they’re
penalized. Popular influencers can’t be everywhere at once to be seen on every-
one’s feed, and even if a user fabricates a large amount of location data, that
would be penalized during normalization. Showing few high-resolution places is
the best way to appear in the feeds of those you’re most likely to bond with.
As a result, the ‘fitness’ of any given person in the algorithm is fundamentally
limited, stopping the possibility of dominant agents emerging [11].

4.2 Sharing Incentives

This protocol only works as users make their data available for private set match-
ing, creating a cold start problem. Fortunately, as a protocol like this proliferates,
users have an incentive to begin sharing their data as soon as their friends do to
optimize for exposure on their friends’ feeds.

This cold start problem is not insurmountable. Recent years have seen the rise
in alternative social media platforms which have captured mass adoption through
creating features that meaningfully consider the negative effects of previously
dominant social media offerings (such as BeReal).

4.3 Echo-Chambers

By design, this approach to building a social feed reinforces and strengthens
existing ties between people and communities. However, this same principle is
inherently a driver of echo-chamber formation [15]. In a context where peo-
ple have shared experiences, context, or location data with people of the same
opinions, this algorithm would reinforce ideological segregation and contribute
to political polarization. At a fundamental level, this is already at play in the
ways we interact with our share physical spaces [14]; this algorithm may act to
reinforce this tendency.

Ensuring broad exposure to ideas to mitigate political and social fracture
is ideal. In general, this is far from a solved problem in any social media [8]
but is an important consideration in the design and ultimate rollout of any feed
approach.

The proposed Laplace smoothing goes some way to address the echo chamber
problem, but we could also draw from existing literature and experience on
avoiding polarization and echo-chamber formation. One such approach could
be to periodically show content from non-similar users. This could be achieved
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by effectively adding noise to the recommendation feed; which, while potentially
making a less desirable feed for the user, would ensure more diversity of exposure.

Finally, it is worth noting that the type of homophily being reinforced by this
approach is different in character from echo-chamber formation in traditional
social media. Traditional social media explicitly ideologically narrows your con-
tent based on engagement patterns, allowing some preferences and interests to
be exemplified and radicalized as you are presented more concentrated agree-
ing opinions. In contrast, this approach does not immediately send individuals
down specific content ‘rabbit holes,’ potentially leading toward radicalization
based only on casual initial interest. In this case, any polarization that occurs
happens in step with one’s expressed real-world interests and beliefs, and is
complementary to physical-world interactions and conversations.

5 Conclusion

This work presents a novel approach to constructing a social feed that represents
relationships with friends in terms of real-world quantities beyond social media
activity. This is achieved without exposing one’s data publicly or relying upon
third-party data brokers via private set intersection cardinalities applied to per-
sonal datastores. The system supports a variety of data for intersection, focusing
firstly on the value of private location traces as tools to measure the likelihood
of real-world interaction. Geohashing is used to map real-valued GPS points to
strings of arbitrary resolution for matching. The value of location hashes for
social capital is validated using existing data on friendships and location, and a
demonstration app is built. This work presents an altogether different strategy
for populating social feeds by focusing on private data sharing, user consent, and
building social capital.

Acknowledgements. We thank Dinh Tuan Lu for his contributions to the code-base
for the demonstration of this idea.

References

1. Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fMRI: investigating
and shaping social mechanisms in the real world. Pervasive Mob. Comput. 7(6),
643–659 (2011)

2. Bailey, M., Cao, R., Kuchler, T., Stroebel, J., Wong, A.: Social connectedness:
measurement, determinants, and effects. J. Econ. Perspect. 32(3), 259–80 (2018)

3. Chetty, R., Hendren, N., et al.: The impacts of neighborhoods on intergenerational
mobility: childhood exposure effects and county-level estimates. Harvard Univ.
NBER 133(3), 1–145 (2015)

4. Claudel, M., Massaro, E., Santi, P., Murray, F., Ratti, C.: An exploration of collab-
orative scientific production at MIT through spatial organization and institutional
affiliation. PLoS ONE 12(6), e0179334 (2017)

5. Dong, W., Lepri, B., Pentland, A.: Modeling the co-evolution of behaviors and
social relationships using mobile phone data. In: Proceedings of the 10th Interna-
tional Conference on Mobile and Ubiquitous Multimedia, pp. 134–143 (2011)



Building a Healthier Feed 63

6. Dong, X., Suhara, Y., Bozkaya, B., Singh, V.K., Lepri, B., Pentland, A.S.: Social
bridges in urban purchase behavior. ACM Trans. Intell. Syst. Technol. 9(3), 1–29
(2017)

7. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by
using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)

8. Fernandez, M., Bellogin, A.: Recommender systems and misinformation: the prob-
lem or the solution? In: OHARS Workshop. In: 14th ACM Conference on Rec-
ommender Systems. OHARS Workshop. 14th ACM Conference on Recommender
Systems (2020)

9. Jaques, N., Taylor, S., Azaria, A., Ghandeharioun, A., Sano, A., Picard, R.W.:
Predicting students’ happiness from physiology, phone, mobility, and behavioral
data. In: 2015 International Conference on Affective Computing and Intelligent
Interaction (ACII), pp. 222–228 (2015)

10. Kubin, E., von Sikorski, C.: The role of (social) media in political polarization: a
systematic review. Ann. Int. Commun. Assoc. 45, 188–206 (2021)

11. Lera, S.C., Pentland, A.S., Sornette, D.: Prediction and prevention of dispropor-
tionally dominant agents in complex networks. Proc. Natl. Acad. Sci. U.S.A. 117,
27090–27095 (2020)

12. de Montjoye, Y.A., Shmueli, E., Wang, S.S., Pentland, A.S.: openPDS: protecting
the privacy of metadata through SafeAnswers. PLoS ONE 9(7), e98790 (2014)

13. de Montjoye, Y.A., Wang, S.S., Pentland, A., Anh, D.T.T., Datta, A., et al.: On the
trusted use of large-scale personal data. IEEE Data Eng. Bull. 35(4), 5–8 (2012)

14. Moro, E., Calacci, D., Dong, X., Pentland, A.: Mobility patterns are associated
with experienced income segregation in large us cities. Nat. Commun. 12(1), 1–10
(2021)

15. Nasim, M., et al.: Are we always in strife? a longitudinal study of the echo chamber
effect in the Australian Twittersphere. arXiv preprint arXiv:2201.09161 (2022)

16. Niemeyer, G.: Geohash (2008). Accessed 6 Jun 2018
17. OpenMined: Private set intersection cardinality protocol based on ECDH and

bloom filters. OpenMined (2022)
18. Pentland, A., Lipton, A., Hardjono, T.: Building the New Economy: Data as Cap-

ital. MIT Press (2021)
19. Putnam, R.D., et al.: Bowling Alone: The Collapse and Revival of American Com-

munity. Simon and Schuster, New York (2000)
20. Zauner, C.: Implementation and benchmarking of perceptual image hash functions.

Ph.D. thesis, University of Applied Sciences Hagenberg (2010)

http://arxiv.org/abs/2201.09161

	Building a Healthier Feed: Private Location Trace Intersection Driven Feed Recommendations
	1 Introduction
	2 A Social Recommendation Algorithm
	2.1 An Extendable Paradigm
	2.2 A View Towards Web3

	3 Validation and Demonstration
	3.1 Reference Architecture

	4 Discussion
	4.1 Social Rankings Gamability
	4.2 Sharing Incentives
	4.3 Echo-Chambers

	5 Conclusion
	References




