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Abstract. Real-time detection and forecasting of disease dynamics is
critical for healthcare authorities during epidemics. In this paper, we
report a systematic investigation into the possibility of predicting three
epidemic variables, viz., peak day, peak infections, and span of the epi-
demic using the Regression Chain Model.

We construct a dataset, EpiNet, using 35K synthetic networks of var-
ied sizes and belonging to three network families. The dataset consists of
five network features and three target variables obtained by simulating
the SEIR epidemic model on the networks. We train Regression Chain
Model (RCM) using four popular machine learning algorithms to predict
the target variables. The model generally performs fairly well for peak
day and peak infections, but the performance degrades for the span vari-
able. Our preliminary investigation motivates further inquiry into the
use of RCMs to replace computationally expensive epidemic simulations
on larger networks.

Keywords: Contact network · Topological properties · Epidemic
variables · Machine learning · Regression chain model

1 Introduction

The COVID-19 pandemic provided an unprecedented boost to research in epi-
demic modeling. When an epidemic spreads to a large population, early and real-
time estimations of the disease infectivity are of critical importance for healthcare
policy planners and administrators for managing and controlling the spread of
disease. However, it is often impractical or impossible to continuously monitor
the entire population to estimate the size, span, and severity of the epidemic.

1.1 Background and Motivation

Compartmental mathematical models like susceptible-infected-susceptible (SIS),
susceptible-infected-recovered (SIR), susceptible-exposed-infected-recovered
(SEIR), etc., have served as indispensable tools for estimating the epidemic
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dynamics for almost a century [5]. The simplifying assumption of uniform inter-
actions within the population (homogeneous mixing) is a well-understood caveat
of these models [1]. This assumption not only affects the quality of estimates
but also overlooks the complexity of the dynamics being modeled. This lim-
itation has promoted research related to network-based simulations for under-
standing disease dynamics [5]. Network-based simulations of the epidemic models
deliver comparatively more realistic approximates of epidemic dynamics due to
the incorporation of connectivity patterns in the population. However, the cost
of network-based simulations escalates steeply with the network size. This is the
prime motivation to find alternatives to expensive simulations on large networks.

During network simulation of epidemics, the notable role played by the struc-
ture and the topological properties of contact networks in the spread of conta-
gion has been established in several studies [6,9,10,12,13]. It is reasonable to
infer that topological properties of networks carry the potential for predicting
the epidemic variables, viz., peak day , peak cases, and span. Peak cases are the
maximum number of infected cases on a given day. The day when the cases are
maximum is the peak day and the span denotes the time period between the
first and last infected cases.

Rodrigues et al. used machine learning models to identify and rank the topo-
logical properties of the network that are crucial to estimate the outbreak size
of the epidemic [11]. The major limitation of this work is the use of features
of a small subset of nodes, which can be misleading due to stochasticity and
non-linearity in the simulation of epidemic spread. Bucur et al. used central-
ity measures as features to predict outbreak sizes in networks limited to ten
nodes [3]. They empirically demonstrate that it is possible to accurately predict
the outbreak using network measures in isomorphic networks. However, the net-
work size used in this study is unrealistically small, and the method does not
scale-up for application in the real world. Pérez-Ortiz et al. employ thirty net-
work properties to predict the average percentage of infected individuals using
linear regression [10]. Since distance-based network properties are computation-
ally expensive, this limits the practical applicability of this approach to large
networks.

1.2 Research Contributions

A critical analysis of recent related works reveals the following research gaps: i)
use of computationally expensive topological properties to predict outbreak size,
ii) prediction of only one epidemic variable, iii) effectiveness reported on small
networks, iv) unavailability of data to reproduce results. Our empirical study
fills these gaps and contributes in the following manner. We

i. use five inexpensive topological features of the networks that distinctively
influence the pathogen spread (Sect. 2.1).

ii. address the prediction of three epidemic variables, viz., peak day, peak cases,
and span using the Regression Chain Model (Sect. 2.2–2.3). We empirically
validate our conjecture and demonstrate the possibility of accurately predict-
ing epidemic variables using Regression Chain Model in a restricted environ-
ment. Our results encourage further study in this direction (Sect. 3).
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iii. curate a dataset, EpiNet, with five topological features and three target
variables obtained by simulating the SEIR1 epidemic model on synthetic
networks belonging to three diverse families. The dataset will permit the
reproduction of results and promote further investigation in this direction
by the research community (Sect. 2.4).

Organization: Section 2 describes the methodology used in this study. Experi-
mental settings along with the results are presented in Sect. 3. Conclusion and
future work are given in Sect. 4.

2 Methodology

In this section, we describe the methodology for network construction, topolog-
ical features, the epidemic spread model, and the regression chain model, along
with the estimators and the metrics used to evaluate the performance. We also
give details of the construction of the dataset.

2.1 Network Models and Topological Properties

We use three network models belonging to diverse families, viz., Erdos-Renyi
model, Watts-Strogatz model, and Stochastic Block model to construct random,
small-world, and community-based networks, respectively. These networks are
extensively used for modeling social structure in epidemiology [1,8]. For each
constructed network, we select those features of contact networks that impact
disease dynamics most strongly. We compute the following topological properties
and use them as features to train the Regression Chain Model (RCM).

i. Average Degree: Average degree k̄ is the global property of the network
that determines the speed of transmission of disease in the network [12].
It is computed as k̄ = 1

N

∑N
i ki = 2M

N , where ki, M , and N denote the
degree of node i, total edges, and the number of nodes, respectively. It is
established that individuals with a higher average degree have more chances
of contracting/transmitting the disease [6,12,13].

ii. Normalized Network Density: Density d is defined as the ratio of the
number of edges M over the maximum possible number of edges in the net-
work of N nodes, and is computed as d = 2M

N(N−1) . Following [14], we compute

the normalized network density as d̄ = 1 + log d
log N/2 so that the density is com-

parable across networks of all sizes. It is established that networks with higher
density, favor rapid transmission of the pathogen, and lead to higher number
of infected individuals [6,12,13].

iii. Degree Variance: This metric characterizes degree heterogeneity within
a network [15]. For a graph of size N , degree variance v is computed as
v = 1

N

∑N
i (ki − k̄)2. Moreno et al. show that networks with higher hetero-

geneity in degree cause stronger outbreak incidence [7]. In such networks,
1 Note that the choice of epidemic model and parameters are disease-specific.
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the infection spreads more rapidly in comparison to networks with lower
variance in node degree.

iv. Average Clustering Coefficient: The clustering coefficient captures the
degree to which its neighbors are linked to each other. For a node i with
degree ki, its clustering coefficient is defined as ci = 2mi

ki(ki−1) , where mi

represents the number of links between the ki neighbors of node i. Note that
ci ∈ [0, 1] is a local property of the node. The average clustering coefficient
of a graph (c̄) is the global property and is computed as c̄ = 1

N

∑N
i=1 ci.

It is established that the clustering coefficient is an important topological
characteristic that prevails in human social networks and affects pathogen
transmission [6,12,13,16].

v. Average Shortest Path Length: It is defined as the shortest distance
averaged over all pairs of nodes in a network. Since the average shortest
path length of large networks is computationally expensive, we approximate
it as p̄ = exp

(
1

θ1d̄+θ0

)
using normalized density (d̄) as given by [14]. The

parameters θ1 and θ0 are derived from the regression of d̄ and inverse of
log p, where p is the shortest path length of the sampled small networks
from each network type. It is shown that networks with short average path
length exhibit fast disease spread [6,12,13].

2.2 Epidemic Spread on Networks

Different compartmental models in epidemiology have been successfully used
to model the spread of numerous contagious diseases, including COVID-19,
Ebola, Chikungunya, Measles, etc. [1]. We use the susceptible-exposed-infected-
recovered (SEIR) model that addresses the exposed period commonly found in
most transmissible diseases. The model assumes immunity to re-infection. The
population is divided into compartments, and at each time step of the dynamics,
an individual can be in one of four possible states: susceptible (S), exposed (E),
infected (I), or recovered (R). An infected person exposes susceptible neighbors
with probability β. The exposed individuals transit to the infected state with
probability α. Infected persons eventually recover with probability γ. We assume
a constant population with a uniform birth and death rate for simplicity.

Fig. 1. RCM with the order as peak day (PD), peak cases (PC), and span (Span).
Regressor 1 predicts PD, Regressor 2 predicts PC using predicted ˆPD and Regressor
3 predicts Span using predicted ˆPD and P̂C.
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2.3 Regression Chain Model

A Regression Chain Model (RCM) is an ensemble built over a chain of regres-
sors to capture dependencies between the output variables (interested reader
may refer to [2] for an extensive account on RCM). We set the order for the
regression chain as peak day (PD), peak cases (PC), and span (Span). The order
was empirically found to deliver the best quality predictions among all possi-
ble orders of the three target variables. Figure 1 shows the framework for the
Regression Chain Modeling. We use four representative base algorithms (esti-
mators), viz., Decision Tree, Random Forest, Kernel Ridge, and XG Boost. To
quantify the assessment of prediction quality, we use two performance metrics.
The first metric is the predicted coefficient of determination,

〈
R2

〉
, and the sec-

ond is the root mean squared error, 〈RMSE〉, both averaged over the three
target variables. The higher value of

〈
R2

〉
indicates a better fit of the model

with higher predictive performance, while the lower value of 〈RMSE〉 implies
higher predictive accuracy.

2.4 Dataset Construction

In the absence of any real dataset for predicting epidemic variables, we curate
a rich dataset called EpiNet, consisting of five network properties (features) and
three epidemic variables (targets to be predicted) for networks with varying sizes
(N) and average degrees (k̄). We generate 15K small networks (N ∈ [20K–60K]),
10K medium networks (N ∈ [60K–150K]), and 10K large networks (N ∈ [150K–
300K]), with equal number of instances belonging to three network families2 -
Random, Small-world, and Community-based networks. We set average degrees
for all generated networks in the range [6, 40], as observed in real-life social
networks from the SNAP3 library.

We compute five topological properties mentioned in Sect. 2.1 for each con-
structed network. Subsequently, we simulate epidemic spread using the SEIR
model for specific parameters and note three dependent epidemic variables, viz.,
peak day (in year), the fraction of infections on the peak day, and the span of the
epidemic (in year). To mitigate the effect of stochasticity, we average epidemic
variables over ten simulation runs of the SEIR spreading process on each net-
work. Hence, we get a feature vector of five network properties and three target
variables for each network. Based on the network sizes, we split EpiNet into three
partitions, corresponding to small networks (D-SN), medium networks (D-MN),
and large networks (D-LN). The dataset can be used for further investigation
by the research community and is available on GitHub4.

3 Experiments and Results

This section presents the details of the experiments carried out to examine the
feasibility of using RCM as a substitute for expensive simulation of epidemic
2 We omit scale-free networks as they are inappropriate to study epidemic spread [4].
3 https://snap.stanford.edu/data/#socnets.
4 https://github.com/kirtiJain25/EpiNet.

https://snap.stanford.edu/data/#socnets
https://github.com/kirtiJain25/EpiNet
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spread on networks for a given set of epidemic parameters. Following Pérez-
Ortiz et al., we use β = 0.155, α = 1/5.2 and γ = 1/12.39, for SEIR epidemic
simulation and obtain the target variables in the training set. In line with our
objective, we formulate the following research questions.

i. How do the network properties influence epidemic variables for the specific
epidemic model and epidemic parameters? (Sect. 3.1)

ii. Is it possible to predict three epidemic variables with reasonable accuracy using
Regression Chain Model? (Sect. 3.2)

iii. How sensitive is the performance of RCM to network size? (Sect. 3.3)

We create the networks using the Igraph library and simulate the SEIR
epidemic model in Python (64bits, v3.7.2) on an Intel(R) Core(TM) i7 CPU
@1.80 GHz with 16 GB RAM. We train RCM using the Scikit-learn library.

3.1 Influence of Network Properties on Epidemic Variables

We study the relationship between three selected network topological character-
istics, viz., average degree, average clustering coefficient, and average shortest
path length with three epidemic variables through scatter plots (Fig. 2).

Fig. 2. Effect of three selected network properties, viz., average degree (k̄), average
clustering coefficient (c̄), and average shortest path length (p̄) on three epidemic vari-
ables, viz., peak day, peak cases, and epidemic span in Figs (a)–(c) respectively.

It is clear from figures (a)–(c) that topological properties have a profound
impact on the three epidemic variables. Networks with low average degrees,
high average path lengths, and small clustering coefficients have delayed peak
days with reduced peak infections and larger spans. In addition, low path length
and high average degree fuel the epidemic spread leading to early peak day and
higher peak infections. We also observe that peak day has a negative relationship
with peak cases. Early peak day results in a higher number of cases, and vice
versa. On the other hand peak day and span are positively correlated. The earlier
the peak day, the shorter the epidemic duration.

Thus, it is sufficient to conclude that network properties influence epidemic
dynamics and are potent to be used as features to predict three epidemic variables.
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3.2 Model Validation

We use ten-fold cross-validation method to assess the competence of regression
chain models for all three training sets, followed by testing the model on unseen
data. Figure 3 shows the heatmap of

〈
R2

〉
scores and 〈RMSE〉 values of the

RCM using four base algorithms, (a) Decision Tree, (b) Random Forest, (c)
Kernel Ridge, and (d) XG Boost. The lower and upper triangles of each cell
show

〈
R2

〉
scores and 〈RMSE〉 values respectively.

Fig. 3. Predictive performance of the RCMs trained and tested on topological prop-
erties of small (D-SN), medium (D-MN), and large (D-LN) networks. The lower and
upper triangles in each cell denote

〈
R2

〉
scores and 〈RMSE〉 values, respectively.

It is clear that the cross-validated performance for all regressors (diagonal
cells in the heatmap) is high. The non-diagonal cells in the heatmap correspond
to the performance of the model on unseen data. We observe that performance
degrades marginally, i.e. low

〈
R2

〉
scores and high 〈RMSE〉, for the model

trained on D-SN and tested on D-LN, and vice versa. The overall high
〈
R2

〉

scores and low 〈RMSE〉, in all cases and for all base algorithms demonstrate
the competence of the RCMs for predicting epidemic variables in networks.

Figure 4 shows the R2 and RMSE scores of the model trained on D-SN and
tested on D-MN and D-LN. Each metric is computed for three epidemic vari-
ables individually. We show the cross-validated performance on D-SN (dark blue
colored bars in Fig. 4). We observe high R2 and low RMSE scores for peak day
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Fig. 4. Predictive performance of three epidemic variables by RCMs trained on D-SN
and tested on D-SN, D-MN, and D-LN.

and peak cases, while the predicted R2 score for span variable is comparatively
low with high RMSE value for medium (D-MN) and large (D-LN) networks
(Figs. 4(a) and (b)). This pulls down the overall

〈
R2

〉
score and raises the

〈RMSE〉 value when the model trained on small networks is used to predict
epidemic variables for larger networks.

We conjecture that the prediction error for the span of the epidemic arises due
to non-linearity in topological features with increasing network size. Our results
motivate further study in this direction to improve predictive models so that
all three epidemic variables are predicted accurately without performing costly
epidemic simulations on the contact networks. Nevertheless, it is reasonable to
conclude from this experiment that RCMs are capable of predicting epidemic
variables with high accuracy on similar-sized networks and may deliver slightly
degraded performance on different-sized networks.

3.3 Sensitivity Analysis

Having observed that the model performance degrades for networks of dis-similar
sizes, we examine the sensitivity of the predicted variable to the size of the
network. We train the model using D-SN, pool D-MN, and D-LN data sets,
and test the model on the pooled test set. We group instances into eight batches
(Fig. 5) with approximately equal numbers of records per batch and report batch-
wise R2 scores and RMSE values for Random Forest-based RCM.

We observe a marginal decrease in R2 scores and a marginal increase in
RMSE values for peak days and peak cases with increasing network size. How-
ever, the R2 score degrades notably for the span variable for larger networks
(N > 120K). This observation ratifies our earlier observation that the regres-
sion chain model trained using topological properties of small networks (D-SN) is
capable of reliably predicting peak day and peak cases for medium and large net-
works, thereby saving computational expense incurred by epidemic simulations.
However, the prediction of the span variable is not accurate. This is because the
model is unable to capture the relationship between the network features and
the duration of the epidemic spread.
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Fig. 5. Predictive accuracy for three epidemic variables for Random Forest-based
regressor trained on small networks (D-SN) and tested on larger networks (D-MN
and D-LN) grouped by network size.

We conclude that basic network characteristics are insufficient for accurately
predicting the span variable, and further study is required to understand the role
of other topological properties on the span of the epidemic.

3.4 Discussion

Our empirical study shows promising results and indicates that inexpensive mod-
els trained on small networks can predict two epidemic variables with reasonably
high accuracy. Prediction of the third variable (epidemic span) is challenging.
However, certain important issues must be noted before using this approach.

i. Sensitivity of the method to population size necessitates curating training
data sets for different network sizes for accurate predictions. Models trained
on networks of vastly dissimilar sizes may deliver inaccurate predictions.

ii. Since the constructed data set is disease-specific, the training set needs to be
curated using the appropriate epidemic spread model and its parameters.

iii. Several observable and unobserved variables influence the epidemic spread in
the complex landscape of social, political, and economic realities in the real
world. To account for these factors, the simulation of the epidemic spread
needs to be tweaked accordingly. Our simulations in this study do not account
for any external factor and hence offer the best-case results.

We believe that this work will help advance the study of recognizing machine
learning models that proxy for expensive network-based simulation.

4 Conclusion

In this research, we examine the possibility of predicting three epidemic vari-
ables using the regression chain model (RCM). We curate a rich data set called
EpiNet, consisting of five network properties (features) and three epidemic vari-
ables (targets captured using SEIR epidemic model) for 35K networks of varying
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types and sizes. The dataset is split into three partitions (small - D-SN, medium
- D-MN, large - D-LN), and we train RCM using four popular regressors.

Our results establish the possibility of predicting three epidemic variables,
viz. peak day, peak cases, and span, using a Regression Chain Model trained on
the topological properties of the underlying contact networks as a substitute for
costly epidemic simulations on large networks. Detailed analysis of the predicted
variables reveals that prediction accuracy for the span variable is lower compared
to that of peak days and peak cases. Further study is warranted to understand
the additional topological characteristics required for its accurate prediction.
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