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Abstract. Designing optimal controllers still poses a challenge for mod-
ern Artificial Intelligence systems. Prior research has explored reinforce-
ment learning (RL) algorithms for benchmarking the cart-pole con-
trol problem. However, there is still a lack of investigation of cognitive
decision-making models and their ensemble with the RL techniques in
the context of such dynamical control tasks. The primary objective of
this paper is to implement a Deep Q-Network (DQN), Instance-based
Learning (IBL), and an ensemble model of DQN and IBL for the cart-
pole environment and compare these models’ ability to match human
choices. Forty-two human participants were recruited to play the cart-
pole game for ten training trials followed by a test trial, and the human
experience information containing the situations, decisions taken, and
the corresponding reward earned was recorded. The human experiences
collected from the game-play were used to initialize the memory (buffer)
for both the algorithms, DQN and IBL, rather than following the app-
roach of learning from scratch through environmental interaction. The
results indicated that the IBL algorithm initialized with human expe-
rience could be proposed as an alternative to the Q-learning initialized
with human experience. It was also observed that the ensemble model
could account for the human choices more accurately compared to the
Q-learning and IBL models.

Keywords: Instance-Based Learning · Cognitive Modeling ·
Reinforcement Learning · Q-Learning · DQN · cart-pole · Ensemble

1 Introduction

Reinforcement Learning (RL) is a paradigm of machine learning where the agent
learns by indirect supervision signal in the form of rewards [17]. Contrary to
supervised learning, RL is used when the target outputs are unknown, so the
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agent needs to interact with the environment to gather information [17]. The
agent heads towards optimal behavior by exploring the rewards associated with
various actions under various situations and exploiting the hence-gained knowl-
edge of the goodness of actions to maximize the cumulative reward for an entire
sequence of actions [17]. With the advent of Deep RL (DRL) [10], it has become
possible to apply RL to complex problems, earlier considered to be intractable [2].
The recent success of RL in tasks like playing Atari games at a superhuman
level [11] has demonstrated the capability and robustness of RL algorithms.

DRL suffers from certain shortcomings, such as reward shaping, sample ineffi-
ciency, and local optima [5]. Learning from human behavior offers an alternative
to achieving intelligent behavior. Imitation Learning (IL) [14] is a branch of AI
where the agent tries to mimic human behavior. Similarly, Cognitive Science
is another branch of Artificial Intelligence (AI) that uses human behavior and
aims at creating techniques as robust, insightful, and adaptive as human intelli-
gence [7]. Prior research has contributed to more than a hundred cognitive archi-
tectures, including production rule-based, psychology-based, and a combination
of neural networks with cognitive psychology, to mention a few [7]. Adaptive
Control of Thought-Rational (ACT-R) [1] is a psychologically motivated cog-
nitive model that combines AI, cognitive psychology, and some components of
neurobiology. Many researchers have extended upon the principles of ACT-R
yielding architectures avoiding the high complexity yet retaining the efficiency,
such as Instance-Based Learning (IBL) [6].

The cart-pole problem [3,9] provides a simple and cost-effective platform to
test AI algorithms for control. It consists of a pole attached to a cart like an
inverted pendulum, and the player needs to balance the pole by moving the
cart. Prior research has investigated a wide range of techniques for the cart-
pole problem [4,8,12,13,15,16,18,19], with a major focus on RL and DRL [10,
11]. However, little is known about the capability of RL techniques to account
for human choices in these games. The learning in RL techniques examined in
the literature so far, with regard to control problems like cart-pole, is purely
mathematical. It doesn’t incorporate human intuition. To address this literature
gap, we have made a two-fold attempt to give a human touch to RL: by building
it over human behavior data and by developing a cognitive model to work in an
ensemble with RL.

The upcoming sections include the background on the cart-pole problem, fol-
lowed by the detailed methodology of this study. Next, the results are presented,
followed by the conclusion of our findings with a brief analysis.

2 Background

The cart-pole problem seems to be introduced in [9] and popularized by [3]. Since
then, literature has witnessed a plethora of experimentation on this problem,
mostly focused on the RL techniques [4,8,12,13,15,16,18,19]. The algorithms
of Q-Learning [20] and deep Q-learning [10] have been thoroughly investigated,
along with a few others. [12] examined Q-Learning and SARSA for playing cart-
pole and found that both performed quite well. [13] examined a variety of algo-
rithms, including Policy Gradient (PG), Temporal difference (TD), and DQN,
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and found TD to perform the best while PG displayed better stabilization and
faster convergence than Q-Learning. While [18] examined Deep Q-Learning over
cart-pole, [16] examined the Baseline PG and the Reinforce PG and found Rein-
force PG to outperform in cumulative reward while Baseline PG outperformed
in episode speed. [19] proposed novel variants of DQN and other advanced algo-
rithms and found the rewards to increase with a reduced need for training. [4,8]
examined various advanced algorithms, including DQN, and found PER with
DQN to perform remarkably well. [15] investigated the difference in the perfor-
mance of Q-learning and DQN over cart-pole but didn’t observe any significant
difference. However, the Q-learning algorithm was found to train the agent signif-
icantly faster than DQN. However, the aforementioned techniques investigated
on cart-pole don’t take into consideration the human aspect of decision making.
Moreover, prior research has also lacked an investigation of ensemble techniques
that combine the RL and cognitive paradigms.

In this study, we began by developing a virtual cart-pole game, followed by
the implementation of a DRL and a cognitive algorithm for the agent to balance
the pole. Among the DRL techniques, we developed a deep Q-learning network
(DQN), and the cognitive model was based on IBL. The goal of the agent trained
on DQN, IBL, and the ensemble of these two algorithms was to keep balancing
the pole by moving the cart left or right. The study began with collecting the
game-play data of human participants, with multiple trials in the training phase
and a single trial in the testing phase. Next, the DQN and IBL were applied
to the agent to play the cart-pole game in the same way human players did.
Furthermore, an ensemble model was developed to combine the IBL cognitive
architecture and DQN. Finally, the results for IBL, DQN, and their ensemble
were observed and compared.

3 Methodology

3.1 Game Design

A cart-pole game was developed. The task was to balance the pole on the cart for
as long as possible. The cart-pole system dynamics were completely governed by
pre-defined equations [3,9] for the horizontal motion of the cart and the angular
displacement of the pole. The cart and the pole were assigned a virtual weight
of 1 kg each, and a left or right action exerted a force of 10N on the cart. Hence
a keypress in either direction caused the cart to accelerate, either increasing the
speed in that direction or reducing the speed if the cart was moving in the reverse
direction. On initialization of the game, the cart appeared vertically above the
horizontal center of the platform. The initial angle of the pole with the vertical
was obtained randomly between 0.05 rad (approximately 2.86◦) to the left and
0.05 rad to the right side of the vertical. There were two terminating conditions
for the game: the angle of the pole with the vertical axis exceeding a threshold
of 30◦ and the cart falling off the platform. A reward of 0.1 and -5 was given
for non-terminating and terminating actions, respectively. The game-play was
divided into two phases: the training phase, with ten trials per player, and the
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testing phase, with a single trial per player. The situation of the cart-pole was
defined by four values: cart position, cart velocity, pole angle to the vertical axis,
and pole angular velocity. There were two possible actions for a participant to
be taken in the game: move left, and move right.

3.2 Participants

42 participants were enlisted from the Indian Institute of Technology, Mandi, to
collect human data after approval from the ethics committee. There were 76.18%
males and 23.82% females(mean = 25, sd = 3). 93% of the participants belonged
to STEM, and the rest belonged to the humanities.

3.3 Procedure

The experiment began with instructing the participants on the game’s rules,
along with a collection of the demographic details. No time limitation was set for
either of the phases. The actions taken and the corresponding situation vector
were recorded. The recorded data was fed into the DQN, IBL, and ensemble
model of DQN and IBL (more details ahead), which were then made to act in
the environment, and the observations were collected.

IBL Model

Conceptual Details. IBL [9] works similarly to how humans make judgments
by gathering and refining memory experiences. The past experiences are stored
as situation-decision-utility(SDU) tuples called instances. Given a situation, the
most similar situations are retrieved and are used to compute the goodness
score for each decision, called blended value (BV). The decision with maximum
BV is executed. IBL uses the formulations of the Activation, Probability of
retrieval(PR), and BV, given as:

Ai,t = σ ln(
γi,t

1 − γi,t
) + ln(

t−1∑

tp=1

(t − tp)−d) + μ(S) (1)

where d, σ and γ represent the parameter for memory decay, cognitive noise,
and a random draw from a uniform probability distribution, respectively. tp and
S for instance i, represent the timestamp and the similarity measure with the
current test situation, respectively, while μ is the scaling factor.

Pi,t =
eAi,t/τ

∑
j eAj,t/τ

) (2)

where τ represents the random noise and Ai,t represents the activation of the
instance i.
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Vj =
n∑

i=1

pixi (3)

where j is the concerned action, while xi and pi are the utility and PR of the
instance i.

Implementation. The IBL agent’s memory was initialized with the SDU
instances of a human participant’s ten training trials of game-play. All the
instances were timestamped with 0; hence, base activation was not used. The
IBL agent was evaluated on situations from the participant’s test session data.
The memory instances with cosine similarity greater than 0.85 for the current
situation were shortlisted and used to compute the activation and PR, and BV.
The model’s performance was measured by comparing predicted decisions with
the human participants. Considering the class imbalance, the F1 score was opted
to evaluate the model’s ability to mimic human decision making. Each of the
42 participant’s data was used to initialize an IBL model. Hence there were 42
distinct instances of the IBL model. The F1 score over all the model instances
was averaged to give a generalized metric for IBL’s human behavior-mimicking
ability.

Hyper-parameters. In the IBL model, the hyper-parameters used were the cogni-
tive noise and the similarity threshold, as mentioned in Table 1a. Cognitive noise
(CN) is added to capture the variability in decisions from one agent to another,
while the similarity threshold controls the memory instances that are allowed to
contribute to the decision-making.

DQN Model

Conceptual Details. Q-learning is a model-free RL algorithm [20] that uses a
trial-and-error approach to learn via environmental interaction [20]. The algo-
rithm aims to determine the State-Action values (Q-Value) and store it in a table
called the Q-table [20]. The Q-values are updated using the Bellman equation,
given as:

Q(st, at) = (1 − α)Q(st, at) + α(rt + γ max
a

[Q(st+1, a)]) (4)

where Q(st, at) represents the Q-Value for state st and action at. st and st+1

stand for the current and the next state, respectively, and rt represents the
reward on the transition from the state st to the state st+1 on taking action
at, α represents the learning rate that controls the amount of updation in the
Q-values and γ represents the discounting factor.

Implementation. The experience replay buffer [20] of DQN was initialized with
the quadruplets of ‘State, Decision, Feedback, and Next state’ to enable it to
learn from human behavior rather than environmental interactions. The model
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was trained for a maximum of 10 epochs with early stopping. The model pre-
dicted Q values corresponding to the actions left and right. The cosine distance
between the predicted Q-values and the target Q-values, along with the vali-
dation loss, was computed. A distinct model instance was trained on each par-
ticipant’s data. The overall performance of the DQN model was computed by
averaging the F1 score between predicted and actual human decisions for all the
model instances.

Network Architecture. The neural network architecture (16-32-2) comprised two
fully connected hidden layers with 16 and 32 units and the output layer with
two units corresponding to the two actions. Rectified linear activation followed
by Dropout with a rate of 0.1 was used for both hidden layers.

Hyper-parameters. Hyper-parameters can play a significant role in the learning
of a neural network. The hyper-parameters used for DQN in this study are
presented in Table 1b.

Ensemble Model

Conceptual Details. The Ensemble model was obtained by performing weighted
addition of the cognitive model’s BVs and the DQN model’s State-Actions Values
(SAV) for the corresponding decisions. The BV of the IBL model represents the
experienced utility (experienced reward) for the current action, and the State-
Action value predicted by the DQN approximates the cumulative future rewards.
With the aim of attaining more informed decision making, these two values were
brought together. The values were normalized to bring the BV and the SAV to
the same scale. A weight variable was used to determine the contribution of each
approach in the ensemble value corresponding to each decision alternative. The
decision against the higher ensemble value was chosen. For the weight value, ‘x’
multiplied by the IBL BV Vj , a weight of ‘1-x’ was multiplied with the DQN
SAV Q(st, j), before adding, given as:

EnsembleV alue = x ∗ Vj + (1 − x) ∗ Q(st, j) (5)

Hyper-parameter. The weight combinations for IBL and DQN varied from 0.1 to
0.9 in steps of 0.1. In this case, as well, a distinct ensemble model was created,
corresponding to each participant, with the IBL and DQN model initialized with
that participant’s data. For each weight combination in the ensemble model, the
generalized performance was computed by averaging over the F1 score for the
ensemble model for each participant’s data.

4 Results

Figure 1 shows the total number of human choices for the left and the right
action in the cart-pole game for the ten training trials and the single test trial
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for the 42 human participants. Figure 2a and b shows the confusion matrix for
the IBL and the DQN model, respectively, taking into consideration the actions
predicted by all the model instances (each uniquely trained on the data of one
participant, where the number of model instances equaled the number of human
participants).

As shown in Table 2, the average F1 score for the DQN model and the IBL
model was observed to be 0.829 and 0.809, respectively. Table 3 shows the F1
score of the Ensemble model for each weight combination of the IBL and DQN
model. The highest F1 score was achieved for the weight of 0.2 and 0.8 for IBL
and DQN, respectively. Notably, the F1 scores of all the weights combinations
for the Ensemble exceeded the F1 scores of the individual DQN and IBL models.
However, as shown in Table 3, the F1 score is found to decline with the increase
in weight of IBL beyond the value of 0.2, indicating the inclination of optimal
decision-making toward the long-sighted RL approach.

graph total actions 42 all train session test session nowhere avg.png

Fig. 1. The total number of human choices for the left and the right action by the
42 players in the cart-pole game, corresponding to all 10 training trials and the single
testing trial.

Fig. 2. The confusion matrix for the total actions taken by all the 42 model instances
(each uniquely trained on the data of one participant) for a) the IBL model and, b)
the DQN model.
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Table 1. Hyper-parameters used for the IBL and DQN model.

Name Value

Cognitive Noise 0.25

Similarity Threshold 0.85

(a) IBL

Name Value

Weight initialization Xavier Uniform

Batch size 32

Optimizer Adam

Learning rate 0.001

Discounting factor 0.95

Dropout rate 0.1

(b) DQN

Table 2. Average F1 score of the DQN and IBL model.

Model Average F1 score

DQN 0.8228

IBL 0.8091

Table 3. F1 score of the Ensemble model, averaged over the model instances corre-
sponding to all human participants, for each weighted combination of the IBL and
DQN

Weight IBL (w) Weight DQN (w) Mean F1 score

0.1 0.9 0.859

0.2 0.8 0.860

0.3 0.7 0.859

0.4 0.6 0.858

0.5 0.5 0.859

0.6 0.4 0.858

0.7 0.3 0.855

0.8 0.2 0.848

0.9 0.1 0.836

5 Discussion and Conclusion

In this study, we modeled human behavior in the cart-pole game via an IBL
cognitive model, a DQN model, and their ensemble. The IBL and DQN mod-
els were initialized with human behavior data via memory pre-population and
experience replay initialization, respectively. The IBL model performed mod-
erately well in matching human choices with an F1 score of 80%. A possible
explanation of why the model fell short of a 100% F1 score might be that the
model could recognize the frequent states but not the rarely occurring states.
The DQN model outperformed the IBL model in matching human choices, the
likely reason being that the DQN approach of maximizing the cumulative reward
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fits human decision-making better than the IBL approach of maximizing the cur-
rent reward. However, the F1 scores of both the models lay in the interval of
80-82%, indicating their inability to model a significant portion of the human
decisions.

The ensemble of the IBL and the DQN models was developed to bring the
principles of the cognitive and RL approaches under one roof. Results revealed
that the ensemble models could predict human choices with greater accuracy
than the standalone cognitive and RL models. The likely reason could be that
the human decision-making process is based on a trade-off between immediate
short-term and long-term goals, more accurately modeled by the ensemble. The
optimal weights of IBL and DQN were found to be 0.2 and 0.8, respectively.
This points to the trade-off being inclined towards the far-sighted approach.

The limitation of this research is that in the process of data extraction from
the recorded human game-play, only two actions, left and right, were considered,
but for a human, another outcome of ‘no action’ occurred for some situations
while switching between the left and right action key. Dropping the ‘no action’
action might prevent capturing actual human behavior. Additionally, a very
simple architecture was used for DQN, and there may be a possibility to push
the DQN results a little further through more complex networks.

There is a broad scope of future work based on this study. Various modi-
fications could be done to the IBL models by importing concepts from other
cognitive mechanisms [7], which could increase the match with human behavior.
More complex network architectures could be examined for improving DQN per-
formance. It would be interesting to observe the models’ performance if different
rewards are associated with a win or loss in the episode, and each action’s reward
is obtained via discounting, unlike predefined rewards for each step, as in this
study. Apart from DQN, other more advanced state-of-the-art algorithms could
also be investigated. Moreover, the approaches possible to achieve an ensem-
ble of these two techniques from such different paradigms are limited only by
one’s imagination. Instead of addition, multiplication of the corresponding action
scores to give a final measure of an action’s goodness, weighted multiplication,
and a hybrid mechanism to merge the working principle of the two algorithms,
to mention a few.
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