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Abstract. This paper presents the SLAM algorithm, which use the semantic
information extracted from the urban environment to increase the accuracy of
ego-vehicle localization in ORB-SLAM2 system. For this purpose, a semantic
segmentation module is added to the standard algorithm to assign an object on
each frame to one of a given set of classes. The CARLA Simulator was used as a
simulation environment, which generates a photorealistic urban environment with
the ability to run an arbitrary number of active elements in it, which usually make
localization difficult, causing interference with the system. Based on the environ-
ment, a training dataset for semantic segmentation was collected. The training
dataset consists of 3,696 pairs of city images and corresponding segmentation
masks in which each pixel corresponds to one of 23 semantic labels. Using this
dataset, the DeepLabV3+ segmentation model was trained with mean per-class
IoU metric equals to 81.48%. By using semantic information to filter potentially
dynamic objects andmatching key points, wewere able to increase the localization
accuracy relative to the base algorithm by an average of 23% and build a semantic
map of the environment.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) is a technique used in mobile
autonomous vehicles to build a map of an unknown environment or to update a map
of a known environment while simultaneously keeping track of agent’s location and
the traveled path within it. In general terms, the control scheme of a modern mobile
robot moving in a known environment can be represented in the following chain of
actions: obtaining information about the world around; determining one’s own position
on a predetermined map; traffic planning with regard to the environment; control over
the implementation of planned actions and transmission of control signals to actuators
(motors, wheels and other manipulators). However, if the environment is not known in
advance, then first you need to build a map of the area. Traditional mapping algorithms
require an estimate of the robot’s position, while accurate localization requires a previ-
ously known map. That is why SLAMmethods can be called complex, because they are
aimed at solving two mutually dependent tasks: localization and map construction.
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This approach was first proposed at the IEEE Conference on Robotics and Automa-
tion in San Francisco in 1985 [1]. Then, and over the next few years, it was solved using
various active sensors, such as a laser range finder, lidar or sonar, to determine the posi-
tion of landmarks in space. SLAM is a cornerstone for autonomous navigation tasks in
unknown environment, its applications are found in unmanned vehicles [2, 3], aircraft
[4], underwater vehicles [5], virtual reality [6], in space exploration, for example, the
surface map of Mars was constructed using SLAM methods [7].

The relevanceof solving the problemof simultaneous localization andmapping is due
to the fact that maps commonly used for agent navigationmainly reflect the type of space
fixed at the time of their construction, and it is not at all necessary that the type of space
will be the same at the time the maps are used. At the same time, the complexity of the
technical process of determining the current location with the simultaneous construction
of an accurate map is due to the low accuracy of the instruments involved in the process
of calculating the current location.

Recently, visual SLAM methods, which are based on information from cameras,
have become very popular, since cameras are cheaper to purchase and operate, while
they can provide more information about the world around the robot. For instance, only
cameras can transmit color, therefore, in unmanned vehicles they are used. Although the
use of cameras increases the complexity and resource intensity of the algorithms, since
they do not allow you to directly calculate the distance to the object of interest.

Most visual SLAM methods rely solely on geometric information, building a map
of the unknown terrain in dense/semi-dense (DTAM [8], LSD-SLAM [9]) or keypoint-
based (PTAM [10], ORB-SLAM [11]) point clouds. Such maps are homogeneous: the
dots on them indicate only the presence or absence of an obstacle and do not carry any
additional information. At the same time, visual SLAM works with camera images –
a rich source of additional information. Often, when working with images, not the
points themselves are used, but the objects they form, for example, various algorithms
for analyzing biomedical images are based on this approach. Such enlarged objects
are usually obtained using object detection methods, and if more accurate prediction
of the boundaries of objects is necessary, using segmentation methods. Simultaneous
localization and mapping methods that use this approach to working with images from
cameras are grouped under the name Semantic SLAM.

All semantic SLAM methods can be divided into 2 broad categories according to
the type of problem being solved: improving map representation [12–17] and improving
localization [18–24]. The purpose of using methods that improve the presentation of a
map is to add an additional “semantic” layer to it, so that points on it are distinguishable
from each other and belong to a certain class. Such map representations can be useful
in navigation, often in articles the following example is given: semantic information
provides an ideal level of abstraction for a robot to understand and execute human
commands (e.g., “bring me a cup of coffee”, “leave the house through the red door”)
and provide people with models of the environment that are easy to understand. In turn,
methods aimed at improving localization consider segmentation not as a goal, but as a tool
that helps to take into account additional non-geometric information during localization.
Suchmethods, for instance, include filteringmoving objects and localization or mapping
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solely on the basis of those objects that a priori cannot change their location in the world,
thus helping the robot to localize in the so-called “dynamic” environments.

This paper presents a new method of semantic SLAM, which uses one of the most
stable and accurate algorithms ORB-SLAM2 [25] as a basic algorithm for localization
and map building. But it also considers semantic information using the DeepLabV3+
[26]model for semantic segmentation in order to: (a) buildmeaningful maps, where each
point is associated with the class of the object to which it belongs, and (b) use semantic
information to increase localization accuracy (by excluding potentially dynamic scene
objects and building associations between points from different frames).

2 Description of the Training Data Collection Methodology
for Semantic Segmentation

To collect a dataset for training the segmentation network, a high-quality map
“Town10HD” from the CARLA Simulator [15] was used, which is an urban area with
various infrastructure facilities. On this map, software developers pre-set a list of loca-
tions in which it is recommended to spawn cars in order for them to appear on the road
directed towards traffic (Fig. 1).

Fig. 1. Schematic image of the Town10HD city map from the CARLA Simulator. The points
where the training images from the camera were collected are marked in orange (Color figure
online).

The recommended points for car spawn were used to collect a dataset of camera
images and corresponding ground-truth segmentation masks according to the following
algorithm:

1. The car was spawned at a given point (Xi, Y i, Zi), parallel to the ground surface with
a rotation angle relative to the perpendicular to the surface equal to 0.
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2. On the hood of the car, 2 pseudo-cameras were spawned: standard RGB and
segmentation, both with a resolution of 800 × 600 pixels.

3. The car (with the cameras) turned through an angle of 15°.
4. The images received from the cameras were recorded and saved to disk.
5. Steps 3–4 were repeated until the car made a complete turn.
6. The car and both cameras were destroyed.
7. The transition to the next spawn point and, respectively, to point 1 was performed.

Thus, 3,696 pairs of images with segmentation masks were collected from the 154
recommended vehicle spawn points. Figure 2 shows an example of an image obtained
with an RGB camera mounted on a car hood (left) and its corresponding ground-truth
segmentation mask (right), in which each pixel belongs to one of the given classes. In
total, CARLA provides a segmentation map for 23 classes, which are listed in Table 1.

A random subset of images of 80% of the original data set was used for training,
with the remaining 20% exclusively for validating the results.

Fig. 2. An example of an RGB camera image (left) and a ground-truth semantic segmentation
mask (left) from the training dataset.

3 Segmentation Model

DeepLabV3+ was used as the segmentation model, with the resnext50_32x4d encoder
[27] pre-trained on the ImageNet dataset [28]. A small number of augmentations were
used: random cropping the image to a size of 512× 512 pixels, horizontal flipping (with
probability 0.5), adding normally distributed noise (with probability 0.2), and performing
a random four-point perspective (with probability 0.5). The loss function chosen was
FocalLoss [29] since the class distribution in the dataset is highly irregular. Optimization
was performed using AdamW optimizer [30]. The training batch size was set to 6 and
the learning rate was set to 1e-4.

The table shows that for large objects the segmentation accuracy is quite high, while
for objects with a small area (such as traffic lights, road signs and poles) it is less.
However, the obtained distribution of accuracy for different classes is consistent with the
distribution of accuracyof the best segmentationmodels of theCityScapes benchmark, so
this distribution can be associated with the limitations of modern semantic segmentation
architectures.
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Table 1. Metrics reflecting the quality of segmentation on the validation dataset. The MISSING
label marks classes that do not exist in the Town10HD map.

ID Class label Per-class
IoU

Per-class
Accuracy

ID Class label Per-class
IoU

Per-class
Accuracy

0 Unlabeled SKIP SKIP 12 TrafficSign 69.65% 76.47%

1 Building 95.05% 97.66% 13 Sky 93.70% 96.20%

2 Fence 32.83% 42.83% 14 Ground 94.17% 97.62%

3 Other 84.67% 89.02% 15 Bridge MISSING MISSING

4 Pedestrian MISSING MISSING 16 RailTrack 98.10% 98.97%

5 Pole 58.49% 66.19% 17 GuardRail MISSING MISSING

6 RoadLine 84.98% 89.98% 18 TrafficLight 78.44% 87.59%

7 Road 98.65% 99.47% 19 Static 81.89% 90.01%

8 SideWalk 97.01% 98.43% 20 Dynamic 79.31% 89.68%

9 Vegetation 84.76% 93.74% 21 Water 63.54% 74.03%

10 Vehicles 90.62% 95.70% 22 Terrain 79.56% 85.09%

11 Wall 82.62% 87.96%

4 The Algorithm Developed

As previously mentioned, the ORB-SLAM2 algorithmwas chosen as the base algorithm
for simultaneous localization and mapping. Interaction with the CARLA simulation
environment was performed using the ros_bridge packagewhich allows to receive sensor
and odometry information from the simulator and publish them to ROS topics.

Figure 3 shows a generalized architecture of the proposed algorithm. The architecture
is almost the same as that of ORB-SLAM2, except for the new block responsible for
semantic segmentation included in the Tracking thread. The rest of the changes are
internal and adjust some functions, which will be described below.

Semantic Segmentation Block. In order to integrate the image segmentation model
into the system, it was converted from the PyTorch format to TorchScript, after which
it became possible to use it in scripts written in C++. The resulting model is initialized
by the GPU in the Tracking module and applied after each new frame is received, thus,
at the start of the algorithm, there is not only the image itself, but also a segmentation
mask that matches each pixel of the image with a semantic class.

Extract ORB Block. Since storing a full segmentation mask for each frame requires a
significant amount of RAM, the corresponding semantic information is stored only for
selected key points. For this purpose, at the moment of extracting key points and ORB
descriptors, semantic information is added to these key points, indicating that the point
belongs to one of the 23 classes, after which the rest of the mask is removed.

New Points Creation Block. When a map point is created, semantic information is
also added to it, with each point storing a list of all predicted semantic classes, when it is
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seen from different angles, at the current moment its class is the class it takes most often.
This approach reduces the segmentation error and eliminates outliers. Also, a map point
is considered inactive and does not participate in further calculations if it belongs to one
of the potentially dynamic (or low-informative) classes (Unlabeled, Other, Pedestrians,
Vehicles, Sky, Dynamic).

Fig. 3. Generalized architecture of ORB-SLAM2, to which a semantic segmentation block has
been added, which is triggered on receipt of each new frame.

Key Point Association. The keypoint (or map points and keypoints) association algo-
rithm is one of the central algorithms of ORB-SLAM2, since it is used in almost all
submodules. In the original algorithm, the association is performed solely based on the
calculation of the distance between the two ORB descriptors. To account for semantic
information, a penalty factor equal to 0.5 * current distance is added to this distance.
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5 Results Analysis

To evaluate the quality of localization, 3 experiments were conducted in a simulation
environment, lasting from 1 to 3 min, sensor information and ground-truth odometry
were stored at a frequency of 20 frames per second. Simulations were run from various
recommended vehicle spawn points, in addition, except ego-vehicle, 20 cars with a
built-in autopilot and 10 pedestrians were also generated in the environment. After that,
ORB-SLAM2 model and the developed modification were launched separately. Having
ground-truth and predicted odometry, it is impossible to compare them directly, because
when using a monocular camera, it is possible to restore the world coordinates of a map
point with an accuracy to scale constant. The Horn algorithm [31] was used to estimate
the scale constant and alignment of coordinate systems. For each simulation, it shows the
ground-truth trajectory of the car (blue), the trajectory obtained using the ORB-SLAM2
algorithm (orange) and the trajectory obtained using the developed algorithm (green).
From the motion trajectories it is difficult to draw conclusions about the increase in
localization accuracy, therefore, plots of localization errors are also attached (Fig. 4).
The reconstructed trajectories for all simulations are shown in Fig. 5. The horizontal axis
denotes the frame number, the vertical axis denotes the distance between the ground-
truth position of the vehicle at a given time and the predicted position. Comparison of
localization accuracy over the entire route was performed using the metric of the mean
percentage absolute error in the Cartesian coordinate system, calculated by the formula:

MAPE([x, y], [x̂ + ŷ]) = MEAN

(
100%

nsamples

∑ [∣∣xi − x̂i
∣∣, [yi − ŷi]

]
[|xi|, |xi|]

)
. (1)

The results of comparing the quality of localization are in Table 2. It can be seen that
the proposed algorithm performs slightly better than the basic algorithm in determining
the location of the vehicle, while from the reconstructed trajectories (Fig. 5) it can be
concluded that the predictions change slightly, mainly due to reducing the probability of
wrong key points matching. At the same time, if it is strictly forbidden to assign points
corresponding to different semantic classes, it fails to initialize the map (due to the fact
that the number of matches falls below the threshold value), therefore, to further improve
the approach, it is necessary to improve the quality of semantic segmentation.

A side effect of our work is the construction of a semantic map of the environment;
after a complete route around of the city, the map of the area looks like Fig. 6. It can be
concluded that the algorithm for determining key points basically extracts points from
buildings (white color on the map), road markings (purple) and trees (green).
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Fig. 4. Plots for estimating position errors for each frame (in meters). Green colors indicate the
errors of the implemented algorithm, orange is ORB-SLAM2 (Color figure online).

Table 2. Localization accuracy in different simulations. The table shows the duration of the route,
it’s length (in simulator units) and themean absolute percentage error of estimating the ego vehicle
location by the base and developed implementation. The last column displays the % change in the
localization error of the developed algorithm relative to the base one.

No. Duration (s) Length (m) ORB-SLAM2 Developed Algorithm Relative change in
localization error

1 172.8 610 25.85% 21.7% –16.05%

2 83.2 241.7 1.10% 1.02% –7.27%

3 105.6 456.36 7.83% 4.22% –46.1%
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Fig. 5. The trajectory of the car. The ground-truth trajectory is shown in blue, the trajectory
predicted by the ORB-SLAM2 algorithm in orange, and the trajectory predicted by developed
algorithm in green. The order of the images corresponds to the sequence numbers of the simulations
in Table 2.

Fig. 6. Semanticmap of the city Town10HD in the form of a point cloud, obtained after simulating
the movement of a car throughout the city. Different colors indicate urban infrastructure objects
belonging to different classes (Color figure online).

6 Conclusion

In this paper, we proposed an algorithm for simultaneous localization and mapping,
taking into account semantic information about the objects of the urban environment.
The proposed approach excludes potentially dynamic objects from the consideration of
the algorithm and improves the matching of key points. The developed algorithm has
demonstrated a 23% increase in localization accuracy onmean absolute percentage error
relative to the basic algorithm, at the same time, it requires more computing resources
to apply the segmentation model. The quality of the current segmentation model does
not allow to completely eliminate the comparison of key points assigned to different
semantic classes, so further development of the algorithm should be aimed at increas-
ing the segmentation accuracy and increasing the number of semantic classes under
consideration.
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