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Abstract. A safe robot navigation in a dynamic environment is an essential part
of an autonomous exploration path planning. A path planning part of a navigation
involves global and local planners. While a global planner finds an optimal path
with a prior knowledge of an environment and static obstacles, a local planner
recalculates the path to avoid dynamic obstacles. The main goal of a local plan-
ning is adjusting an initial plan produced by a global planner in an online fashion.
It is a crucial step to ensure a robot operation in dynamic environments because in
real world scenarios an environment usually contains people and thus, a dynamic
obstacles avoidance must respond quickly and recalculate an actual route. Holo-
nomic robotic platforms are robotic vehicles that use omni-wheels to move in any
direction, at any angle, without an additional rotation. These robotic platforms are
ideal for working zones with a limited space access. This paper provides a com-
parison of ROS local planners that support omni-wheel mobile robots: Trajectory
Rollout, DWA, EBand, and TEB. The algorithms were compared using a path
length, a travelling time and a number of obstacle collisions. Gazebo simulator
was used for modeling virtual scenes with dynamic obstacles.
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1 Introduction

Nowadays, mobile robotics provides new opportunities for developing novel robotic sys-
tems. A wide range of wheels of various sizes, different design types and materials used
allow to integrate mobile robotic platforms into many areas of a human life. Common
mobile robot applications include industrial automation [1], transportation [2], medical
care [3], emergency rescue operations [4], and other areas. Mobile robots are featured
by different motion systems.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ronzhin et al. (Eds.): ICR 2023, LNAI 14214, pp. 116–126, 2023.
https://doi.org/10.1007/978-3-031-43111-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43111-1_11&domain=pdf
http://orcid.org/0000-0001-8362-6276
http://orcid.org/0000-0001-5887-2731
http://orcid.org/0000-0001-9163-8285
http://orcid.org/0000-0001-7316-5664
https://doi.org/10.1007/978-3-031-43111-1_11


Comparison of ROS Local Planners 117

There are two different types of mobile robots drive systems: a holonomic and a non-
holonomic. For a wheeled robot, a non-holonomic drive system is a robot configuration
limited by a number of wheels or their orientation. Holonomic drive systems have more
than two degrees of freedom, which provide more freedom and flexibility of motion. The
main benefit of a holonomic drive system is an ability to travel in any desired direction
at any specified orientation without additional rotations with regard to Z-axis (yaw)
of a series of intermediate motions (e.g., a typical car parking procedure). To perform
such locomotion a robotic platform uses a special design of wheels called mecanum or
omnidirectional [5]. Omnidirectional wheels increase a robot mobility and are used in
tasks where a high maneuverability is required. Omnidirectional robotic platforms are
ideal for working zones with a limited space access and cluttered environments, e.g., for
scheduling pick-up and delivery tasks in hospitals [6].

Performing safe robot navigation is a general issue faced by a robot operating in a real
environment [7]. Real world environments usually contain people and other dynamic
obstacles. A real-time path planning is an essential part of an autonomous exploration.
An obstacle avoidance capability used by a path planning approachmust detect obstacles
quickly and replan an actual route [8]. A path planning part of a robot navigation involves
global and local planners [9]. While a global planner finds an optimal path with a prior
knowledge of an environment and static obstacles, a local planner recalculates the path
to avoid dynamic obstacles. The main goal of a local planning approach is adjusting a
plan produced by a global planner in an online fashion.

This paper presents a comparison of ROS local planners supporting a holonomic
drive system: Trajectory Rollout [10], DWA [11], EBand [12] and TEB [13]. These local
planner algorithms were selected because they are most popular for ROS environment,
easily pluggable and support a holonomic motion. The main contribution of the paper
is a benchmark to discover the most suitable ROS local planner for a holonomic system
used within a dynamic environment. Virtual experiments were conducted in Gazebo
simulator [14] using static and dynamic obstacles.

2 System Setup

2.1 Mecanum Wheel Robot

A virtual model of a modular multifunctional robotic omni-wheeled mobile platform
ArtBul [15] was used for experiments. Mecanum wheel models were created in Blender
software [16]. To reduce complex collision calculations and increase a real time factor
(RTF), low-polymodelswere used for a roller collision part. A 3Dmodel of themecanum
wheel is shown in Fig. 1. Each roller has its own joint and can be freely rotated along
the Z-axis of its frame.

A ROS plugin was developed to control the robot in Gazebo simulation [17] by
publishingmessageswith linear velocities along theXandYaxes and an angular velocity
along the Z-axis to a robot command topic. To detect collisions gazebo_ros_bumper
plugin [18] was used. The mobile platform with a laser range finder (LRF) and an
enabled bumper plugin is depicted in Fig. 2.
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Fig. 1. 3D model of a mecanum wheel in Gazebo: a red, green and blue arrows’ set denotes a
coordinate frame of each roller.

Fig. 2. ArtBul mobile robot in Gazebo: blue rays visualize LRF beams.

2.2 Virtual Environments

Simulation provides a significant support in early stage testing. A 3D modeling can be
used to produce a necessary 3D digital representation of real objects with a varying
difficulty. Modern modeling tools are often used for designing virtual environments
[19]. Testing local planners requires a special navigation map called an occupancy grid
map (OGM). The OGM is a 2D binary map that consists of cells. The OGM encodes
occupancy data where white pixels represent free cells, black pixels are occupied cells
and gray pixels are not yet explored. In our test cases, OGMs should not contain any
information about obstacles because a goal of a local planner is a real-time path planning
processing.
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Two different virtual worlds inGazebowere created to benchmarkROS local planner
algorithms. The first world had 20× 6× 3 m dimensions and contained static obstacles
(Fig. 3, top). An OGM of the first virtual environment is shown in Fig. 3, bottom. The
second world of 10 × 10 × 3 m dimensions contained a single dynamic obstacle – a
cube with a 1 m length side (Fig. 4). We created two motion patterns that the cube uses
while moving: along X-axis (Fig. 4, left top) and Y-axis (Fig. 4, left bottom). An OGM
of the second virtual world is shown in Fig. 4, right.

Fig. 3. A 3D virtual environment filled with static obstacles: cubes of varying sizes, cuboids and
cylinders (top). The corresponding 2D OGM with static obstacles excluded (bottom).

3 ROS Local Planners

A motion control plays an important role in an autonomous navigation. ROS local
planners use sensory information to perceive a current robot state and generates feasible
trajectories that the robot is allowed to follow. Avoiding any dynamic or static obstacles
that may (or may not) be included in a given global map is a responsibility of a ROS
local planner. ROS local planners use sensory data from various sensors such as LRF
sensors or ultrasound sensors, and various devices to plan an optimal trajectory [20].

All local planners use the same values for coinciding parameters and the same global
and local costmap configurations. For all local planners limitations were set as follows: a
linear acceleration was limited to 2.5 m/s2, an angular acceleration to 3.2 rad/s2, a linear
speed to 0.5 m/s, and an angular speed to 1 rad/s. A controller tolerance in yaw/rotation
(yaw_goal_tolerance) was set as 0.05 rad, a controller tolerance in the X and Y distance
(xy_goal_tolerance) as 0.1 m.
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Fig. 4. (Left) 3D virtual environment with a dynamic obstacle: a cube moves along X-axis (top)
and Y-axis (bottom). (Right) The corresponding 2D OGM with static obstacles excluded.

Trajectory Rollout. ROS package base_local_planner provides implementations
of the Dynamic Window and Trajectory Rollout approaches to a local control.
Base_local_planner is a basic ROS local planner that provides an application program-
ming interface for other local planners. In order to use Algorithm Trajectory Rollout,
the parameter dwa should be set to false. For mecanum wheel robots holonomic_robot
parameter should be set to true.

DWA. ROS package dwa_local_planner is a modular DWA implementation with more
flexible y-axis variables for holonomic robots than base_local_planner’s DWA. DWA
discretely samples a robot’s control space, performs a forward simulation for each
sample, evaluates and filters each trajectory in the local costmap and finally selects
a highest-scoring trajectory.

Eband. ROS package eband_local_planner implements the Elastic Band (EBand)
method. An elastic band is a deformable collision free path generated by a global
path incorporating information about obstacles proximity. A main drawback of
eband_local_planner is that the ROS-based method implementation does not support
an obstacle avoidance for moving obstacles.

TEB. ROS package teb_local_planner implements the Timed-Elastic-Band (TEB)
method for an online trajectory optimization. A difference between TEB and EBand
is that a local trajectory is optimized not by external forces, but by applying a cost
function. For a holonomic robot min_turning_radius parameter should be set to 0 and
weight_kinematics_nh parameter to 1.
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4 Performance Comparison

Three experiments with different scenarios were conducted to identify a most suitable
local planner for a mecanum wheeled robot. In the first experiment, a starting position
of the robot was set to (0; −8) and a goal was set to (0; 8). A 2D occupancy grid
map did not contain static obstacles. Next, several static obstacles were added to the
world after a global map had been built. In the second experiment, the robot started at
(−3.5; 0) and targeted to (3.5; 0). A cube with sides of 1 m moved linearly without an
acceleration along a trajectory from point (2; 0) to point (−2; 0) and backwards, with
0.4 m/s linear velocity. In the third experiment, the cube moved from (0; 2) to (0; −2)
and backwards. A reference trajectory depicted in Fig. 5 represents a suggested optimal
path. Distance-optimal robot trajectories in the world with static objects are shown in
Fig. 6.

Fig. 5. Distance optimal robot trajectory.

Experiments showed that the Trajectory local planner never generated linear veloc-
ities along the Y-axis, and the omnidirectional robot moved as a differential wheeled
robot with any planner settings. The Eband local planner trajectory was the smoothest,
but this planner cannot handle dynamic obstacles and does not perform an online tra-
jectory replanning. The drawbacks of the Eband are that the algorithm uses a global
costmap updated dynamically, does not publish a response after reaching a target point
and a task execution time is unmeasurable.

Table 1 demonstrates experimental results of local planners evaluated in the first
world. Max T, Min T and Avg T stand for a maximum, minimum and average task
execution time, respectively. Max D, Min D and Avg D denote a maximum, minimum
and average path length, respectively. Success (Suc) column depicts howmany times the
robot reached the goal without obstacle collisions. Success with collision (SwC) column
depicts how many times the robot reached the goal with at least one obstacle collision.
Failed (F) column depicts how many times the robot failed to reach the goal. The TEB
local planner showed the lowest minimum time and the lowest average time to complete
the task. In one case, the robot with the TEB collided with an obstacle because the TEB
heavily loaded the PC system and a frequency of publishing velocities to a command
topic decreased. The DWA achieved the lowest minimum and the lowest average path
length.
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Fig. 6. Robot trajectories built by the local planners (in the world with static obstacles).

Table 1. ROS local planners’ evaluation results (in the world with static obstacles).

Planner Max T Min T Avg T Max D Min D Avg D Suc SwC F

Trajectory 188.6 64.8 100.9 23.2 17.9 19.6 50 0 0

DWA 67.1 39.6 43 18.9 17.2 17.7 50 0 0

EBand - - - 19.2 18.1 18.9 50 0 0

TEB 91.6 32.4 38.3 43.4 17.9 19 49 1 0

In the experiment with the moving along the X-axis cube, all planners generated
approximately the same trajectory (Fig. 7). Table 2 demonstrates experiments results of
the local planners evaluated in the second world with the dynamic obstacle (a pattern
of motion along X-axis). In this case, the TEB also showed the lowest minimum and
the lowest average time required for a successful task completion. The Trajectory local
planner showed the worst result within 50 experiments with only 7 successful and 15
(completely) failed. The EBand was successful in all 50 cases.
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Table 2. ROS local planners evaluation results (the pattern of motion along X-axis).

Planner Max T Min T Avg T Max D Min D Avg D Suc SwC F

Trajectory 222.5 23.4 40.8 15.4 2.7 8.6 7 28 15

DWA 41.2 18.6 22.1 13.3 1.7 8 24 23 3

EBand - - - 9 8.3 8.6 50 0 0

TEB 31.41 16.2 20.8 16.9 8.5 11 47 2 1

Fig. 7. Robot trajectories built by the local planners (the pattern of motion along X-axis).

In the case of the moving along the Y-axis cube, the DWA and the Trajectory Rollout
showed a similar behavior (Fig. 8). When the cube appeared in the local costmap, the
robot stopped and attempted to select an optimal movement trajectory. When the cube
left the local costmap, the robot moved forward. The Eband and the TEB rebuilt the
trajectory and continued the motion.

Table 3 demonstrates experimental results of the local planners evaluated in the
second world with a dynamic obstacle (a pattern of motion along Y-axis). The TEB
generated a maximum robot velocity. This method demonstrated the minimum task



124 A. Apurin et al.

execution time and the least number of collisions with the obstacle. The worst result was
shown by the DWA, which completely failed the task in 32 cases out of 50.

Table 3. ROS local planners evaluation results (the pattern of motion along Y-axis).

Planner Max T Min T Avg T Max D Min D Avg D Suc SwC F

Trajectory 75 15.6 30.1 8.9 4.1 6.7 21 9 20

DWA 78 17.2 32.4 14.4 3.4 6.3 7 11 32

EBand - - - 60 19.6 56.5 22 1 27

TEB 21.4 15 17.3 11 5.8 9 30 19 1

Fig. 8. Robot trajectories built by the local planners (the pattern of motion along Y-axis).

5 Conclusion

This paper presented a comparison of ROS local planners for mecanum wheeled robots
(Trajectory Rollout, DWA, EBand, and TEB) and provided a benchmark that allowed to
experimentally determine a recommended ROS local planner for a wheeled holonomic
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system. Virtual experiments were conducted in Gazebo simulator, which was used for
modeling virtual environments with static and dynamic obstacles. Three types of virtual
environments were employed with 50 virtual experiments within each environment. The
algorithmswere compared using a path length, a travelling time and a number of obstacle
collisions.

The virtual experiments showed that the Trajectory Rollout local planner did not
generate linear velocities along the Y-axis in all configurations; this planner demon-
strated the worst task execution time and the longest trajectory path lengths. The DWA
local planner handled static obstacles effectively, but performed poorly with dynamic
obstacles. The EBand local planner did not rebuild a local motion trajectory when it
worked on a non-renewable costmap of an explored environment; therefore, the use of
this planner is possible only when a global costmap is dynamically updated, in which
case the robot’s trajectory will be rebuilt by a global planner. The TEB local planner
achieved a significantly better performance in terms of a task execution time and showed
the least number of obstacle collisions. Therefore, the TEB local planner could be rec-
ommended for dynamic scenes since it demonstrated the best results within a dynamic
environment.
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