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Abstract. Diabetes is one of the most prevalent diseases of the 21st
century, with more than 500 million people affected. Having tools to
estimate blood glucose levels is critical for these patients in their man-
agement of the disease. In this work, we present a comparison of three
neural network architectures based on long short-term memory (LSTM).
Their predictive ability has been evaluated against a longitudinal dataset
with continuous glucose level measurements of patients with type 1 dia-
betes. All models, trained for different prediction horizons of 30, 60,
90 and 180 min, have generally yielded good prediction results. These
results are further validated using clinical standards resulting in more
than 95% of accurate blood glucose level predictions, mostly leading to
correct treatments.
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1 Introduction

Diabetes, a metabolic disorder that affects the way the body processes and uses
blood sugar, is one of the most common chronic diseases worldwide. In fact, 537
million adults are living with diabetes and according to predictions this number
will rise to 643 million by 2030 and 783 million by 2045. The economic impact
of diabetes in 2021 was at least $966 billion in health expenditures, which was a
316% increase over the last 15 years. In Europe, one in eleven adults has some
form of diabetes, accounting for 61 million in total, even if it is estimated that
one in three adults has undiagnosed diabetes. Furthermore, the number of adults
with diabetes in Europe is expected to grow up to 67 million by 2030 and 69
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million by 2045 [7]. This situation will place a large burden on healthcare systems
and have a significant economic and social impact.

Although there is no cure for diabetes, it can be controlled through medica-
tion, insulin and healthy lifestyles, such as having a healthy diet and exercising
regularly. In fact, it is important for patients with diabetes to maintain adequate
control of their disease, as this can help prevent long-term complications such
as heart disease, stroke, kidney damage and vision loss. The ability to predict
the evolution of blood glucose levels in the near future can also be useful for
patients with diabetes, as it allows them to anticipate how their blood glucose
level will evolve in the coming hours or days. This is specially important for
patients with type 1 diabetes mellitus, one of the main types of diabetes which
occurs when the body’s immune system destroys insulin-producing cells in the
pancreas, preventing the body from producing enough insulin to regulate blood
sugar levels [9]. Patients with type 1 diabetes mellitus are the ones who find
more difficult to maintain their glucose levels in range. Therefore, knowing the
future evolution of blood glucose levels will allow them to adapt their lifestyle
so that they can maintain these levels close to those of a healthy person and
prevent possible complications related to this chronic disease.

One of the applications of IoT is real-time continuous glucose monitoring
in diabetic patients. In the first systems marketed in 1999 the devices stored
glucose level information and afterwards transmitted and analyzed it. Today
systems measure not only glucose, but also blood pressure, temperature, physical
activity and dietary data via mobile apps that directly transmit the data to a
server [5]. Continuous blood glucose level monitoring has been a major advance
in the management of diabetes, as it provides an accurate record of the evolution
over time of blood glucose levels in patients with diabetes. This has allowed the
development of models that try to predict how blood glucose levels will vary
over a short period of time from previous blood glucose level measurements,
insulin administered and other collected data. These predictive models can be
very useful for patients with diabetes, as they allow them to anticipate how their
blood glucose level may be affected by each decision they make in their daily
lives, such as the amount of carbohydrates they consume, the amount of exercise
they do, or the dose of insulin they take.

This work compares several neural networks used in blood glucose level pre-
diction for patients with type 1 diabetes mellitus. The neural networks are
trained with data obtained from continuous glucose monitoring systems. These
algorithms use deep learning techniques to process large amounts of data and
try to predict how blood glucose levels will vary in the near future. The results
of this work may help to improve the accuracy of the proposed neural networks
and thus improving the effectiveness of short-term blood glucose level prediction
for patients with type 1 diabetes mellitus.

2 State of the Art

Maybe the first approach to glucose prediction in patients with type 1 dia-
betes using deep learning is presented in 1999 by Tresp, Briegel and Moody [19]
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Several Recurrent Neural Network (RNN) models are evaluated and compared
with other linear and nonlinear models. Insulin levels, meals, exercise level, and
current and previous estimates of blood glucose are used to train the models. An
RNN is also trained in [2], but in this case signals from a continuous monitoring
devices are used as input. Prediction horizons of 15, 30, 45 and 60 min are com-
pared with the results of a standard feed-forward network and it is found that
long-term estimates are more accurate than ones obtained with the RNN.

Long short-term memory (LSTM) networks have been widely used to pre-
dict blood glucose levels in patients with type 1 diabetes mellitus. For example,
[17] describes a sequential model in which an LSTM and a bidirectional LSTM
(BILSTM) of four units each are combined with three fully-connected layers. 26
datasets from 20 different patients, real and in silico, are used in the evaluation,
which shows that the LSTM model improves the predictions of the classical mod-
els. [6] presents an LSTM network to characterize the temporal dimensions of
the data and two dense layers to extract features. This work tests different com-
binations of hyperparameters for 10-patient data, obtaining the best results with
50 units in the LSTM and 30 for each dense layer. [12] proposes an LSTM archi-
tecture based on a physiological model from which the dependencies between the
parameters are extracted. The three-layer architecture, with an LSTM layer and
a dense layer for the results, is trained using glucose, insulin, sleep and exercise
levels data from real patients in a total of 1600 days. [13], a posterior version of
the previous work, proposes an LSTM coupled with a neural attention model.
[1] proposes two LSTM networks working in parallel and then connected in a
fully connected layer. The first network works with observed data and the sec-
ond one with estimated data. To improve the model, the weights of the LSTM
are adjusted for each patient, obtaining good results both in real patients and
in silico at different prediction horizons. [14] proposes four models consisting on
an LSTM layer followed by a dense layer, one for each of the inputs: glucose,
carbohydrates and fast and slow insulin units. Once the inputs are processed
separately, the networks for insulin and carbohydrate concatenate, returning a
prediction and then, the glucose information is concatenated to evaluate the
final glucose values. [11] also presents an architecture with one LSTM layer that
alternates with two fully connected layers, but treats glucose predictions as a
classification problem, rather than a classical time series problem. Hypo- and
hyperglycemia ranges are normalized and divided into 100 bins, which will be
the different classes returned by the model.

LSTM networks are also predominant in the models presented to the second
Blood Glucose Level Prediction (BGLP) Challenge, which took place in 2020.
In this challange, the OhioT1DM dataset [10] was used by several researchers
to train their own models and to compare the efficacy of their different predic-
tion approaches. The results of BGLP are presented in [3], where eight systems
that conformed to the challenge rules are ranked based on their errors for 30
and 60 min prediction horizons. The best prediction model is [16], a neural net-
work architecture based on Neural Basis Expansion for Interpretable Time-Series
Forecasting (N-BEATS) but replacing the fully connected block structure of
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N-BEATS with LSTMs. This winning work presents an architecture which learns
to forecast gradually in stages or blocks. Each residual block contains a BiILSTM
with a single output layer that produces the forecast and back projection, and
additional variables are added as input channels to each block. In fact, this and
other ensemble models have been recently used to estimate blood glucose lev-
els in patients with type 1 diabetes mellitus. These approaches train multiple
models and combine their independent outcomes into a unified prediction. For
example, [8] proposes a system that combines six models called base-learners:
two LSTM networks, two Multilayer perceptrons (MLP) and two Partial Least
Square Regression (PLSR) models. These base-learners converge into a PLSR
layer, the meta-learner, which provides the output prediction of the blood glucose
level. Two ensembles based on Bayesian voting to predict the blood glucose level
are presented in [18]. These ensembles use three and four LSTM models, respec-
tively, which are selected as the best from a set of ten different neural network
architectures. The two proposed ensembles are compared with many of the pre-
viously described models. The OhioT1DM dataset is also used to evaluate them
under the same conditions at prediction horizons of 30, 60 and 120 min and using
the variables glucose levels, basal insulin, insulin dose and carbohydrate intake.
The work concludes that there is little difference in predictive capacity since the
values of the performance metrics are very close, and the confidence intervals
overlap. In fact, although differences have been found statistically between the
worst and the best models, from a medical perspective they are irrelevant.

3 Methodology

The objective of this work is to evaluate the performance of three popular recur-
rent neural network architectures in the field of glucose prediction: long short-
term memory (LSTM), bidirectional LSTM (BiLSTM) and convolutional LSTM
(ConvLSTM). The evaluation will be performed for different prediction horizons
when training the models with a longitudinal dataset of continuous glucose mea-
surements from patients with type 1 diabetes mellitus.

3.1 Ti1DiabetesGranada Dataset

T1DiabetesGranada: a longitudinal multi-modal dataset of type 1 diabetes mel-
litus [15] is a public dataset which comprises continuous blood glucose levels,
demographic and clinical information of 736 patients with type 1 diabetes mel-
litus. The dataset contains over four years of data collected from patients at the
Clinical Unit of Endocrinology and Nutrition of the San Cecilio University Hos-
pital of Granada, Spain. Blood glucose levels are measured every 15 min using
FreeStyle Libre 2, a flash glucose meter manufactured by Abbott Diabetes Care,
Inc. The dataset provides more than 22.6 million records that constitute the time
series of continuous blood glucose level measurements of the patients during the
duration of the study.
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3.2 Data Analysis and Preparation

An exploratory analysis of the T1DiabetesGranada dataset has been performed
and it has been decided to only use the continuous blood glucose level mea-
surements of the patients to train the prediction models. This data has been
processed by eliminating possible outliers. The blood glucose level measure-
ments outside the range from 40 to 400mg/dl have been removed as done in
previous works like [18]. Due to the functioning of the flash glucose meter and
the interaction of the patient, the time series of blood glucose levels can con-
tain measurements in intervals of less than 15 min. This happens because each
time a patient scans the device, the current blood glucose level is measured and
it is added as an extra measurement point to the time series. Therefore, the
data is processed by eliminating the smaller of the two intervals in the time
series, thus obtaining an interval that is closer to 15 min. Furthermore, the time
series might also contain data gaps without blood glucose level measurements.
This situation occurs in two situations. First, if the patient does not scan the
device in less than 8h, which is the maximum storage time, and the flash glu-
cose meter overwrites the previous measurements. Second, if the patient, does
not activate the replacement device early enough after its 14-days life span. To
solve this problem, the data is interpolated using the cubic spline method which
provides smooth and continuous data, characteristics of blood glucose levels, and
generates values adjusted to different data forms. For each patient, the longest
sequence of continuous blood glucose level measurements is selected. In order
to do so, a tolerance window of 90 min is defined, which is the maximum time
allowed in the sequence without data and represents a gap of up to six missing
measurements. Cubic spline interpolation is used to obtain the complete time
series over the window. The five patients with the longest data sequences are
used in this work and the information about their data is presented in Table 1.

3.3 Training, Validation and Test

After the exploratory analysis and data preparation, the data has been separated
into the training, validation and test sets, with a split of 70%, 20% and 10%. It is
not possible to perform random distributions of the time series, since their tem-
poral correlation must be maintained. Therefore, data windows are implemented
to provide the neural network with a set of historical data that can be used to
predict future blood glucose levels. The prediction horizon is the time frame
within the model is expected to make accurate predictions when trained on a
data history of a given size. Since blood glucose levels can vary significantly in a
short time due to diet, physical activity and other factors, state-of-the-art predic-
tion horizons of 30 and 60 min are commonly used when the models are trained
on a history of 120 min. Considering that the T1DiabetesGranada dataset used
in this work provides blood glucose level measurements every 15 min, whereas
the OhioT1DM dataset provides them every 5min, it might be necessary to
increase the prediction horizon to obtain more accurate predictions. Therefore,
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Table 1. Information about the blood glucose level measurements of the patients used
to train the prediction models.

LIB193385 | LIB193327 | LIB193367 | LIB193313 | LIB193316
Start date 22/08/2021 | 13/01/2021 | 05/04/2021 | 27/06/2021 | 27/01/2022
23:41:00 2:28:00 22:49:00 22:02:00 9:47:00
End date 08/11/2021 | 27/03/2021 | 17/05/2021 | 08/08/2021 | 10/03/2022
22:22:00 1:52:00 22:31:00 2:39:00 9:47:00
Records 746 6989 4025 4008 5059
Interpolated records 34 45 16 18 514
Interpolation percentage | 0.46% 0.64% 0.40% 0.45% 10.16%
Mean 128.81 179.35 148.67 132.27 104.58
Deviation 29.90 60.35 46.31 44.91 36.00
Min 52 53 53 52 51
25% 108 135 113 101 76
50% 126 174 141 124 99
75% 146 217 180 156 124
Max 259 400 314 337 268

the prediction models have been trained in four different scenarios: (1) predic-
tion horizon of 30 min with a history of 120 min; (2) prediction horizon of 60 min
with a history of 120min; (3) prediction horizon of 90 min with a history of
360 min; and (4) prediction horizon of 180 min with a history of 360 min. For
each scenario, the Mean Absolute Error (MAE) of the trained models has been
calculated. In the prediction of blood glucose levels, the MAE is preferred to the
Mean Square Error (MSE) and the Root Mean Squared Error (RMSE) because
it is considered more robust as it gives less weight to outliers. Although the
MAE measures the error between the predictions and the actual values, it does
not take into account the clinical context in which the model is used. Therefore,
the Clarke Error Grid analysis [4] has been used to represent the expected and
estimated values of blood glucose levels and quantify their clinical accuracy. The
grid is divided into five zones: zone A represents values clinically accurate thus
leading to correct treatments, zone B those leading to a benign or no treatment,
zone C to unnecessary treatment, zone D to a failure to detect and treat, and
zone E to an erroneous treatment.

3.4 Neural Network Architectures

Three recurrent network architectures based on models presented in the liter-
ature have been implemented using Tensorflow. The first model is a 128-unit
LSTM recurrent neural network (see Fig.1a). After the LSTM layer, there are
four dense layers with 150, 100, 50 and 20 units and connected to the previous
and next layers. Before the second and fourth dense layers, there is a dropout
layer with a rate of 0.20 and 0.15, respectively, used to reduce overfitting. ReLu
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activation function is used in all the layers and the output layer has a single
neuron, which returns the predicted value of the blood glucose level. The second
model, the BiLSTM network (see Fig.1b) is a variant of the LSTM network,
replacing the recurrent network layer with a 128-unit BiILSTM but leaving the
rest of the network unchanged. The third model, the ConvLSTM network (see
Fig. 1¢) consists of a convolutional layer with 32 filters of kernel size 1. The result
of this layer is connected to the original 128-unit LSTM network architecture,
with a slight variation in the last dense layer, which has only 16 neurons instead
of 20. All three models have been implemented using the same settings. Adam
has been used as optimizer and the loss function has been calculated in MSE.
The models have been trained for 100 epochs with a batch size of 32, and early
stopping is included in some runs to avoid overtraining the model.

input 32
Conv1D
output 128
input 128 . input 128 input 128
LSTM BILSTM BiLSTM
output | 150 output | 150 output | 150
input 150 input 150 input 150
Dense Dense Dense
output 100 output 100 output 100
input 100 input 100 input 100
Dense Dense Dense
output 50 output 50 output 50
input 50 input 50 input 50
Dense Dense Dense
output 20 output 20 output 16
input 20 input 20 input 16
Dense Dense Dense
output 1 output 1 output 1
(a) (b) (c)

Fig. 1. Neural network architectures: (a) LSTM. (b) BiLSTM. (c) ConvLSTM.

4 Results and Discussion

The three neural network models trained for each patient under the prediction
horizons of 30, 60, 90 and 180 min, with and without early stopping, have been
evaluated. The MAE of the prediction models are shown in Table 2. The models
yielding best results for each scenario have been highlighted. The performance of
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the models deteriorates as the prediction horizon increases. This is expected since
the further out the predicted value is in time, the more complicated is to predict
it and the less accurate the prediction will be. The prediction performance of
the models varies depending on whether or not early stopping is used during the
training phase. With early stopping, the training has been completed in a few
epochs, in most cases after six complete training cycles, and in the case of BiL-
STM in as few as three training cycles. Without early stopping, the models are
trained up to 100 epochs, which can lead to overfitting. For prediction horizons
of 30 and 60 min, the ConvLSTM model provides the best results when using
early stopping. Without early stopping, the LSTM obtains the best results for
three of the patients. For the other two patients, the ConvLSTM performs best
for the prediction horizon of 30 min and the BiLSTM for the prediction horizon
of 60 min. In view of the results, the performance of the models may vary from
one patient to another, and therefore each patient could have a different optimal
model.

Table 2. MAE (mg/dl) of the prediction models trained for each patient under different
prediction horizons with and without early stopping.

Prediction horizon ‘ Model ‘ LIB193385 | LIB193327 | LIB193367 | LIB193313 | LIB193316
With early stopping
30 min LSTM 20.67 26.22 25.27 26.74 19.80
BiLSTM 18.08 27.43 30.44 18.48 15.60
ConvLSTM | 14.83 22.10 24.69 14.04 11.24
60 min LSTM 27.31 31.21 35.22 30.01 25.29
BiLSTM 21.04 30.64 35.74 22.61 19.43
ConvLSTM | 20.67 26.36 32.58 20.72 17.11
90 min LSTM 28.31 38.30 44.11 35.66 24.88
BiLSTM 22.98 33.30 45.39 26.66 22.86
ConvLSTM | 23.04 31.98 41.34 24.67 19.81
180 min LSTM 31.89 43.62 49.47 40.07 30.84
BiLSTM 25.58 39.41 50.79 30.78 31.57
ConvLSTM | 26.01 40.17 49.30 31.32 29.25
Without early stopping
30 min LSTM 16.46 21.23 20.33 20.09 16.80
BiLSTM 25.14 30.25 26.47 16.94 12.41
ConvLSTM | 22.32 30.40 21.35 13.79 11.40
60 min LSTM 15.62 26.06 27.64 24.61 23.45
BiLSTM 24.48 34.33 28.50 22.41 17.01
ConvLSTM | 22.56 32.64 29.10 22.65 17.44
90 min LSTM 17.92 31.09 31.58 33.25 26.50
BiLSTM 19.50 37.79 35.62 27.90 20.70
ConvLSTM | 18.29 39.78 33.61 31.62 23.52
180 min LSTM 21.24 41.71 40.73 41.43 31.95
BiLSTM 20.26 43.61 37.51 34.83 27.59
ConvLSTM | 20.85 48.13 38.17 38.94 29.56
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To evaluate the performance of the prediction models from a clinical perspec-
tive a Clarke Error Grid analysis is performed. Table 3 reports on the percentage
of predictions falling in the zones A and B, which lead to clinically correct treat-
ments and those leading to a benign treatment respectively. All percentages
are above 94% irrespective of the model, prediction horizon and patient. The
best result (99.99%) is obtained for the patient LIB193327 when training the
LSTM network under a prediction horizon of 60 min. The worst result (94.02%)
is achieved for the patient LIB193313 when training the BiLSTM under a pre-
diction horizon of 180 min. The Clarke Error Grid analysis for these two cases
are shown in Fig. 2. Clearly, most of the predictions fall in zones A and B, thus
confirming the clinical validity of the developed models even for the worst ones.

Table 3. Percentage of predictions falling in Clarke Error Grid zones A and B.

Prediction horizon | Model LIB193385 | LIB193327 | LIB193367 | LIB193313 | LIB193316

30 min LSTM 99,95% 99,89% 99,78% 98,96% 95,35%
BiLSTM 99,89% 99,98% 99,89% 98,01% 97,70%
ConvLSTM | 99,90% 99,95% 99,90% 98,80% 97,79%

60 min LSTM 99,48% 99,99% 99,48% 97,96% 95,36%
BiLSTM 99,95% 99,90% 99,95% 94,36% 96,65%
ConvLSTM | 99,90% 99,96% 99,90% 96,50% 94,65%

90 min LSTM 99,95% 99,93% 97,95% 96,35% 94,36%
BiLSTM 99,95% 99,95% 98,01% 94,65% 95,58%
ConvLSTM | 99,93% 99,89% 98,50% 96,50% 96,66%

180 min LSTM 99,93% 99,60% 96,54% 95,65% 95,65%
BiLSTM 99,95% 99,71% 98,88% 94,02% 94,36%
ConvLSTM | 99,98% 99,68% 97,01% 96,58% 95,02%
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Fig. 2. Clarke Error Grid analysis for the best and worst prediction models: (a)
LIB193327 - LSTM - 60’ (99.99%). (b) LIB193313 - BiLSTM - 180’ (94.02%).
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5 Conclusions

This work has compared the ability of three neural network models (LSTM,
BiLSTM, and ConvLSTM) for predicting blood glucose level measurements in
type 1 diabetes patients. The models have been evaluated on four different sce-
narios with varying prediction horizons (30, 60, 90, and 180 min) and history
(120 and 360 min). Few differences are found with respect to the performance
of the models, yielding similar prediction errors. Regarding the neural network
training strategy, the ConvLLSTM stands out as the best model when using early
stopping while the LSTM network is found to prevail without early stopping
for a majority of patients. According to the experiments, there is no one-fits-all
model but rather some models work best for some patients. From a medical
point of view, practically all the predictions made by the learned models are in
zone A and zone B of Clarke error grid. These results are considered clinically
accurate and therefore demonstrate that these models could be used in practice.
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