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Abstract. EEG/MEG source imaging (ESI) aims to find the underlying
brain sources to explain the observed EEG or MEG measurement. Mul-
tiple classical approaches have been proposed to solve the ESI problem
based on different neurophysiological assumptions. To support the clini-
cal decision making, it is important to estimate not only the exact loca-
tion of source signal but also the boundary of extended source activation.
Traditional methods usually render over-diffuse or sparse solution, which
limits the source extent estimation accuracy. In this work, we exploit the
graph structure defined in the 3D mesh of the brain by decomposing the
spatial graph signal into low-, medium-, and high-frequency sub-spaces,
and leverage the low frequency components of graph Fourier basis to
approximate the extended region of source activation. We integrate the
classical source localization methods with the low frequency subspace
components derived from the spatial graph signal. The proposed method
can effectively reconstruct focal extent patterns and significantly improve
the performance compared to classical algorithms through both synthetic
data and real EEG data.

Keywords: EEG/MEG Source Imaging · Inverse Problem · Graph
Signal Processing · Spatial Graph Filter

1 Introduction

EEG/MEG is a non-invasive measurement with high temporal and low spatial
resolution, which collects signals on the scalp through electrodes for analysis of
brain neural activity. At the same time, EEG/MEG is also a direct and real-time
way to detect a spontaneous or induced activity of the brain [1]. EEG/MEG
devices have the advantages of cost-effectiveness, portability, and versatility.
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EEG, in particular, is widely recognized as a powerful tool for capturing real-time
brain function by measuring neuronal processes [2]. The problem of EEG/MEG
source localization can be further divided into two sub-problems, the forward
and the inverse problem. The forward problem of EEG/MEG is to determine
the surface potential or magnetic field strength of the scalp from a given config-
uration of neuronal current activity, whereas the inverse problem is defined as
the reconstruction of brain activity sources from external electromagnetic sig-
nals which is also known as the EEG/MEG source imaging (ESI) problem [3].
However, the number of EEG/MEG external detection channels is far less than
that of the brain sources, which makes the ESI an ill-posed problem.

In the past decades, numerous algorithms have been developed with different
assumptions on the configuration of the source signal. One seminal work is mini-
mum norm estimate (MNE) where �2 norm is used as a regularization [4], which
is to explain the observed signal using a potential solution with the minimum
energy. Different variants of the MNE algorithm include dynamic statistical para-
metric mapping (dSPM) [5] and standardized low-resolution brain electromag-
netic tomography (sLORETA) [6]. The �2-norm based methods tend to render
spatially diffuse source estimation. To promote a sparse solution, Uutela et al.
[7] introduced the �1-norm, known as minimum current estimate (MCE). Also,
Rao and Kreutz-Delgado proposed an affine scaling method [8] for a sparse ESI
solution. q111The focal underdetermined system solution (FOCUSS) proposed
by Gorodnitsky et al. encourages a sparse solution by introducing the �p-norm
regularization [9]. Besides, Bore et al. also proposed to use the �p-norm regular-
ization (p < 1) on the source signal and the �1 norm on the data fitting error
term [10]. Babadi et al. [11] demonstrated that sparsely distributed solutions to
event-related stimuli could be found using a greedy subspace-pursuit algorithm.
Wipf et al. proposed a unified Bayesian learning method [12] that can automati-
cally calculate the hyperparameters for the inverse problems under an empirical
Bayesian framework and the sparsity of the solution is also guaranteed. It is
worth noting that the sparse constraint can be applied to the original source
signal or the transformed spatial gradient domain [13–16]. As the brain sources
are not activated discretely due to the conductor property, an extended area of
source estimation is preferred [17], and it has been used for multiple applica-
tions, such as somatosensory cortical mapping [18], and epileptogenic zone in
focal epilepsy patients [19].

Following the early work of applying GSP to the ESI problem [20,21], in
this work, we proposed to use GSP and incorporate the low frequency spatial
representation for the source space and rejuvenate the classical ESI methods
for the estimation of an extended area of source activation, and illustrate the
importance of using GSP for an extended area of source activation.
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2 Method

In this section, we start by introducing the ESI inverse problem, followed by the
presentation of the graph Fourier transform (GFT). Then, we propose a improve
the classical source localization methods using the low-pass spatial graph filters.

2.1 EEG/MEG Source Imaging Problem

The source imaging forward problem can be described as the format Y = KS+E,
where Y ∈ R

C×T is the EEG/MEG measurements from the scalp, C is the
number of EEG/MEG channels, T is the time sequence length, K ∈ R

C×N is
the leadfield matrix which performs a linear mapping from the brain sources to
the EEG/MEG electrodes on the scalp, N is the number of source locations, S ∈
R

N×T represents the active source amplitudes in N source locations for all the
T time points, and E is the noise which can be assumed to follow the Gaussian
distribution with zero mean and identity covariance. The inverse problem is to
estimate S given Y and K. Since the source number N is much larger than the
electrode number C, which makes the inverse problem ill-posed, it is challenging
to obtain a unique and stable solution. Thus, in order to constrain the solution
space, various regularization terms were designed based on the prior assumption
of the source structure. In this case, the inverse problem can be formulated as
below:

S = argmin
S

1
2

‖Y − KS‖2F + λR(S), (1)

where ‖ · ‖F is the Frobenius norm, and S can be obtained by solving the min-
imizing problem. The first term in Eq. (1) is datafitting trying to explain the
recorded EEG measurements. The second term is called the regularization term,
which is imposed to find a unique solution by using sparsity or other neurophys-
iology inspired regularization. For example, if R(S) equals �2 norm, the problem
is called minimum norm estimate (MNE).

2.2 Graph Fourier Transform (GFT)

Consider an undirected graph G = {V, A} generated from the 3D mesh of cortex,
where V = {v1, v2, . . . , vN} is the set of N nodes, A is the weighted adjacent
matrix with entries given by the edge weights aij that represents the connection
strength between node i and node j. The graph Laplacian matrix is defined
as L = D − A, where D is the in-degree matrix with Dii =

∑
j �=i Aij . Since

L is a positive semi-definite matrix, its eigenvalues are all greater or equal to 0
which are usually taken as the frequency of GFT, and the associated eigenvectors
U = [u1, u2, . . . , uN ], U ∈ R

N×N can be regarded as the basis signals of GFT
where any signal in the graph can be approximated as the linear combinations
of basis. Thus, the graph Fourier transform for a signal S can be defined as
S̃ = UTS, whereas the inverse graph Fourier transform is given as S = US̃.
Then we define normalized graph frequency (NGF) as
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Fig. 1. Graph frequency of the eigenvectors.

fG(ui) =
fs(ui)
Tr(L)

, (2)

where Tr(L)is the trace of L, and fs(ui) is defined as

fs(ui) =
N∑

m=1

∑

n∈N (m)

I(ui(m)ui(n) < 0)/2, (3)

where N (m) represents all neighbors of node m, and I(·) is the indicator function
which equals 1 if the values of ui on node m and n have different sign and 0
otherwise. The number of sign flip at time t indicate how many zero crossing of
a basis signal within a bounded region at t.

We calculated the NGF in the whole time series within first-order neigh-
bors, second-order neighbors, and third-order neighbors respectively. The spec-
trogram, which is illustrated in Fig. 1, reveals that the NGF is positively corre-
lated with the size of the eigenvalue of L. Thus we can further separate U into
low, medium, and high-frequency components according to NGF values, and
reformat it as U = [UL, UM , UH ].

2.3 Inverse Problem with Spatial Graph Filters

The existing source localization methods can be distracted by the high-frequency
components and result in a spread-out solution while reconstructing the focal
extend area, even the �1-norm and �2,1-norm based method that is designed to
promote the sparsity can hardly give a satisfying reconstruction result. Moreover,
they do not take source spatial frequency correlation into consideration. The
proposed method is trying to rejuvenate classical source localization methods
using spatial graph filters by keeping the spatially low- and the top part of
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medium-frequency components [UL, ŨM ] ∈ R
N×P as a spatial graph filter to

reconstruct the focally extended sources, where P is the number of frequency
components preserved for reconstruction. Here we replace the S in Eq. (1) with
Ũ S̃∗ for dimensionality reduction in S and K, where Ũ = [UL, ŨM ], and S̃∗ ∈
R

P×T is the estimated source signal with dimensionality reduction that contains
smooth part of the original signal, in other words, the part of source extents.
Then we can transform Eq. (1) to the problem of estimating S̃∗ by introducing
the spatial graph filter with the form as below

S̃∗ = argmin
S̃∗

1
2
‖Y − KŨS̃∗‖2F + λR(S̃∗), (4)

Finally, S can be simply obtained from Ũ S̃∗. The intuition is that the main
energy of the source signal usually lies in the low-frequency components which
are associated with the regions on the cortex with relatively large source extend
area in a time series. Keeping the low graph frequency could promote a source
extend area reconstruction and decrease the impact of the noise. Moreover, the
reduced dimensional estimation in the inverse problem could further constrain
the solution space and make the solution more easily solved and robust.

3 Numerical Experiments

In this section, we conducted numerical experiments to validate the effectiveness
of the proposed method on synthetic EEG data under different levels of neighbors
(LNs), Signal Noise Ratio (SNR) settings and further validate it on real MEG
recordings from a visual-auditory test.

3.1 Simulation Experiments

We first conducted experiments on synthetic data with known activation pat-
terns.

Forward Model: To generate synthetic EEG data, we used a real head model to
compute the leadfield matrix. The T1-MRI images were scanned from a 26-year-
old male subject. The brain tissue segmentation and source surface reconstruc-
tion were conducted using FreeSurfer [22]. Then a three-layer boundary element
method (BEM) head was built based on these surfaces. A 128-channel BioSemi
EEG cap layout was used and the EEG channels were co-registered with the
head model using Brainstorm and then further validated on the MNE-Python
toolbox [23]. The source space contains 1026 sources in each hemisphere, with
2052 sources combined, resulting in a leadfield matrix L with a dimension of 128
by 2052 (Fig. 2).

Synthetic Data Generation: To make the synthetic data more realistic, 200
out of 2052 locations in the source space were activated. Furthermore, as illus-
trated in Fig. 3, we used 3 different neighborhood levels (1-, 2-, and 3-level of the
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Fig. 2. Source distributions corresponding to eigenvectors with different NGFs.

Fig. 3. Brain source distributions with different levels of neighbors (LNs).

neighborhood) to represent different sizes of source extents, then we activated
the whole “patch” with different neighborhood levels at the same time. The acti-
vation strength of the 1-, 2-, and 3-level adjacent regions was successively set to
be 80%, 60%, and 40% of the central region. The strength of the source signal
was set to be constant, then the scalp EEG data was calculated based on the
forward model under different SNR settings (SNR = 40 dB, 30 dB, 20 dB, and
10 db). SNR is defined as the ratio of the signal power Psignal to the noise power
Pnoise: SNR = 10 log(Psignal/Pnoise).

In total, there were 12: 3 (source extents) × 4 (SNRs) data sets (Y and S
pairs).

Experimental Settings: We adopted MNE [4], MCE [7], �2,1(MxNE) [24],
dSPM [5], and sLORETA [6], as benchmark algorithms for comparison. We sep-
arately performed EEG source localization based on benchmark algorithms with
and without the proposed GFT-based dimensionality reduction method. Next,
we performed brain source reconstruction on the results from all algorithms.
All the experiments were conducted on Linux environment with CPU Intel(R)
Xeon(R) Gold 6130 CPU @2.10 GHz and 128 GB memory. The performance of
each algorithm was quantitatively evaluated based on the following metrics:

(1) Localization error (LE): it measures the Euclidean distance between centers
of two source locations on the cortex meshes.

(2) Area under curve (AUC): it is particularly useful to characterize the overlap
of an extended source activation pattern.

Better performance for localization is expected if LE is close to 0 and AUC
is close to 1. The performance comparison between the proposed method and
benchmark algorithms on LE and AUC is summarized in Table 1, and the boxplot
figures for SNR = 40 dB, and 20 dB are given in Fig. 4. The comparison between
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Table 1. Performance Evaluation

SNR Method Source with LNs = 1 Source with LNs = 2 Source with LNs = 3

LE (std) AUC (std) LE (std) AUC (std) LE (std) AUC (std)

40 dB MCE 15.028 ± 11.465 0.595 ± 0.064 15.286 ± 10.474 0.568 ± 0.031 18.656 ± 12.154 0.548 ± 0.017

L21 16.114 ± 10.433 0.631 ± 0.096 14.993 ± 9.121 0.627 ± 0.054 15.237 ± 8.400 0.625 ± 0.052

MNE 9.828 ± 6.455 0.992 ± 0.014 10.294 ± 6.750 0.977 ± 0.019 11.216 ± 7.452 0.961 ± 0.018

sLORETA 7.349 ± 6.530 0.988 ± 0.018 11.504 ± 9.868 0.963 ± 0.026 15.567 ± 11.607 0.935 ± 0.025

dSPM 33.666 ± 22.034 0.970 ± 0.027 39.868 ± 22.844 0.927 ± 0.039 47.382 ± 23.449 0.883 ± 0.043

GFT-MCE 25.969 ± 22.269 0.975 ± 0.046 16.411 ± 14.091 0.988 ± 0.017 13.547 ± 9.922 0.983 ± 0.026

GFT-L21 9.814 ± 7.416 0.996 ± 0.018 5.144 ± 6.607 0.999 ± 0.004 4.054 ± 6.130 0.998 ± 0.010

GFT-MNE 3.812 ± 5.028 0.999 ± 0.001 6.526 ± 6.059 0.983 ± 0.020 7.689 ± 5.879 0.958 ± 0.023

GFT-sLORETA 4.992 ± 6.440 0.996 ± 0.016 7.424 ± 6.144 0.971 ± 0.026 8.803 ± 6.553 0.947 ± 0.028

GFT-dSPM 3.625 ± 5.346 0.999 ± 0.006 5.898 ± 5.374 0.992 ± 0.013 7.654 ± 6.093 0.968 ± 0.027

30 dB MCE 14.917 ± 11.426 0.595 ± 0.065 14.779 ± 9.607 0.568 ± 0.030 18.324 ± 11.870 0.548 ± 0.017

L21 16.460 ± 12.235 0.630 ± 0.096 14.690 ± 9.188 0.625 ± 0.053 15.330 ± 8.825 0.620 ± 0.051

MNE 9.340 ± 6.446 0.983 ± 0.027 9.806 ± 6.493 0.958 ± 0.026 9.878 ± 6.676 0.926 ± 0.025

sLORETA 6.358 ± 5.896 0.980 ± 0.035 8.670 ± 7.365 0.944 ± 0.036 12.347 ± 9.650 0.899 ± 0.033

dSPM 31.885 ± 21.226 0.961 ± 0.044 36.423 ± 21.313 0.904 ± 0.053 42.922 ± 22.799 0.841 ± 0.055

GFT-MCE 25.787 ± 22.258 0.975 ± 0.046 15.633 ± 12.640 0.989 ± 0.017 13.507 ± 9.875 0.983 ± 0.027

GFT-L21 9.603 ± 7.393 0.996 ± 0.017 5.084 ± 6.564 0.999 ± 0.004 3.963 ± 5.874 0.998 ± 0.010

GFT-MNE 3.236 ± 4.663 0.999 ± 0.003 5.357 ± 5.308 0.970 ± 0.030 6.921 ± 6.426 0.920 ± 0.034

GFT-sLORETA 4.515 ± 5.990 0.994 ± 0.018 6.752 ± 6.264 0.949 ± 0.034 7.522 ± 6.589 0.902 ± 0.034

GFT-dSPM 2.888 ± 4.292 0.999 ± 0.002 4.900 ± 5.316 0.985 ± 0.021 6.362 ± 5.907 0.946 ± 0.034

20 dB MCE 14.655 ± 10.959 0.595 ± 0.064 14.353 ± 9.431 0.567 ± 0.031 18.302 ± 12.155 0.548 ± 0.017

L21 16.309 ± 12.373 0.626 ± 0.099 14.087 ± 8.921 0.623 ± 0.052 16.213 ± 9.371 0.616 ± 0.044

MNE 11.894 ± 14.620 0.951 ± 0.036 17.515 ± 23.602 0.897 ± 0.038 33.240 ± 37.552 0.846 ± 0.033

sLORETA 7.237 ± 6.801 0.952 ± 0.051 10.639 ± 10.168 0.879 ± 0.056 19.948 ± 22.829 0.815 ± 0.043

dSPM 27.257 ± 17.682 0.923 ± 0.070 34.975 ± 20.713 0.824 ± 0.082 41.651 ± 24.331 0.745 ± 0.074

GFT-MCE 26.018 ± 22.997 0.976 ± 0.045 15.502 ± 12.445 0.989 ± 0.016 13.952 ± 13.063 0.983 ± 0.028

GFT-L21 9.333 ± 7.512 0.996 ± 0.017 5.156 ± 6.540 0.999 ± 0.003 4.514 ± 6.281 0.998 ± 0.007

GFT-MNE 3.840 ± 5.439 0.992 ± 0.019 5.630 ± 7.294 0.905 ± 0.049 10.217 ± 9.890 0.829 ± 0.042

GFT-sLORETA 4.509 ± 6.420 0.979 ± 0.040 7.514 ± 9.787 0.873 ± 0.051 12.362 ± 12.321 0.803 ± 0.042

GFT-dSPM 3.608 ± 4.907 0.996 ± 0.015 5.605 ± 7.311 0.941 ± 0.043 9.370 ± 8.110 0.864 ± 0.054

10 dB MCE 15.526 ± 12.210 0.595 ± 0.061 14.247 ± 8.628 0.565 ± 0.029 17.944 ± 11.812 0.547 ± 0.017

L21 16.434 ± 12.503 0.613 ± 0.090 15.248 ± 9.681 0.589 ± 0.051 16.307 ± 10.712 0.577 ± 0.038

MNE 50.433 ± 47.357 0.871 ± 0.064 59.498 ± 48.871 0.804 ± 0.059 58.400 ± 46.174 0.766 ± 0.060

sLORETA 47.815 ± 49.262 0.856 ± 0.087 59.048 ± 49.597 0.760 ± 0.082 57.989 ± 43.289 0.715 ± 0.079

dSPM 31.356 ± 27.881 0.807 ± 0.112 37.304 ± 26.798 0.688 ± 0.101 41.865 ± 25.344 0.640 ± 0.089

GFT-MCE 23.504 ± 16.491 0.975 ± 0.043 17.195 ± 13.654 0.988 ± 0.019 14.482 ± 11.684 0.982 ± 0.027

GFT-L21 9.406 ± 8.054 0.996 ± 0.017 5.334 ± 5.735 0.998 ± 0.003 7.586 ± 6.490 0.948 ± 0.038

GFT-MNE 21.581 ± 29.679 0.919 ± 0.077 28.806 ± 30.421 0.801 ± 0.067 39.258 ± 32.820 0.744 ± 0.066

GFT-sLORETA 24.439 ± 30.874 0.891 ± 0.087 32.387 ± 31.514 0.771 ± 0.078 41.389 ± 36.626 0.729 ± 0.071

GFT-dSPM 18.462 ± 25.356 0.937 ± 0.069 27.152 ± 30.759 0.818 ± 0.070 35.293 ± 30.785 0.750 ± 0.065

the reconstructed source distributions with a 3-level of the neighborhood and 40
dB SNR is shown in Fig. 5.

From Table 1 and Fig. 4 and 5, we can find that:

(1) MNE, MCE, �2,1, sLORETA, and dSPM can only reconstruct the brain
sources when the activated area is small and the SNR level is high, and even
the evaluation metrics are good in this case, the reconstruction for source
extend area is poor as shown in Fig. 5. As the source range expands and
the SNR decreases, a significant increase in LE and an obvious reduction in
AUC can be observed. The reconstructed source distributions are no longer
concentrated.

(2) By contrast, the results of the rejuvenated methods outperform benchmark
methods in most cases after applying the spatial graph filters. They both
show good stability for varied neighborhood levels and SNR settings. Partic-
ularly, the performance of rejuvenated �1 regularization family (i.e., �1-norm
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Fig. 4. Performance comparison of different algorithms on AUC and LE with 3-level
of the neighborhood for SNR = 40 dB (subplot A and C), and SNR = 20 dB (subplot
B and D).

Fig. 5. Brain sources reconstruction by different ESI algorithms with the single acti-
vated area and 3-level of the neighborhood for SNR = 40 dB.
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and �2,1-norm) exhibits better performance on reconstructing source extents
without losing its advantage in sparse focal source reconstruction and out-
performs other methods in most instances.

3.2 Real Data Experiments

We further validated the proposed methodology on a real dataset that is publicly
accessible through the MNE-Python package [23]. In this dataset acquirement,
checkerboard patterns were presented into the left and right visual field, inter-
spersed by tones to the left or right ear with stimuli interval 750 ms. The subject
was asked to press a key with the right index finger as soon as possible after
the appearance of a smiley face was presented at the center of the visual field
[25]. Interictal spikes were extracted from the MEG measurements, and then we
averaged these spikes for source reconstruction under MNE, MCE, �2,1, dSPM,
sLORETA with and without the proposed GFT-based dimensionality reduction
method. The averaged spikes are shown in Fig. 6, and the reconstructed source
distributions are shown in Fig. 7.

From Fig. 7, we can see that the source area estimated by MNE, MCE, �2,1,
sLORETA, and dSPM is highly broad. By contrast, and the rejuvenated methods
provide more sparse focal source reconstructions. Moreover, the reconstructed
focal for the rejuvenated methods falls primarily on areas with the strongest
source signal, while others would spread to several regions. Obviously, the spatial
graph filter in the rejuvenated methods promotes a concentrated and accurate
estimation of the visual zone.

Fig. 6. Averaged MEG time series plot and topographies.
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Fig. 7. Reconstructed source activation patterns from MEG data.

4 Conclusion

In this study, we rejuvenated classical source localization methods using spatial
graph filters to solve the inverse problem of ESI. The proposed methodology
enjoys the advantage of reconstructing focal source extents with sparsity and
minimizing the impact from the noise by transforming the estimation of the
source signal into an estimation of a lower dimensional latent variable in the sub-
space spanned by spatial frequency graph filters. Numerical experiments demon-
strated that the proposed method performs particularly well on source extents,
yields excellent robustness when the SNR level is low, and greatly improves
the performance of the �1 family regularization. In the experiment on real data
we performed, the proposed methodology provides a satisfactory reconstruction
with more concentrated source distribution and more stability to noise than
benchmark algorithms.
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