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Abbreviations

ASMs	 Anti-seizure medications
CAN	 Central autonomic network
DEE	 Developmental and epileptic encephalopathies
EDA	 Electrodermal activity
EEG	 Electroencephalogram
EE-SWAS	 Epileptic encephalopathy with spike-and-wave activation in sleep
HRV	 Heart rate variability
IA	 Ictal apnoea
ILAE	 International League Against Epilepsy
PGES	 Postictal generalized EEG suppression
SeLEAS	 Self-limited epilepsy with autonomic seizures
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SeLECTS	 Self-limited epilepsy with centrotemporal spikes
SeLFE	 Self-limited focal epilepsies of childhood
SUDEP	 Sudden unexpected death in epilepsy
TCSs	 Tonic-clonic seizures
TLE	 Temporal lobe epilepsy
VNS	 Vagus nerve stimulation

11.1 � Introduction

Epileptic seizures are characterized by recurrent, paroxysmal, and unprovoked epi-
sodes of cerebral cortical dysfunction, due to abnormal excessive or synchronous 
neuronal activity in the brain [1]. During seizures involuntary movements, sensory 
phenomena, altered levels of consciousness, behavior abnormalities, impairments 
in cognitive function, and abnormal autonomic phenomena may occur. Many differ-
ent autonomic symptoms appear during epileptic seizures, some of which are rarely 
considered life-threatening. In 2007, an international working group of expert 
researchers defined autonomic seizure as “an epileptic seizure characterized by 
altered autonomic function of any type at seizure onset or in which manifestations 
consistent with altered autonomic function are prominent (qualitatively dominant or 
clinically important) even if not present at seizure onset”. The same researchers sug-
gested the following terminology to define autonomic status epilepticus: “an auto-
nomic seizure which lasts more than 30 min, or a series of such seizures over a 
30-min period without full recovery between seizures” [2]. The latter condition is 
typically observed in epilepsy previously named Panayiotopoulos syndrome (PS). 
Other focal seizures, especially in childhood, may manifest only as autonomic 
symptoms or signs [3]. The International League Against Epilepsy (ILAE) recently 
contributed to the classification of autonomic symptoms present in both focal and 
generalized seizures. The most recent edition of the ILAE’s classification (2017) 
presents a three-level model, beginning with seizure type and progressing to epi-
lepsy diagnosis (focal epilepsy, generalized epilepsy, combined generalized and 
focal epilepsy, and unknown epilepsy group). The last level is that of epileptic syn-
drome: a specific syndrome diagnosis can be made based on clinical seizure types, 
neurologic manifestations, and electroencephalographic (EEG) patterns, often sup-
ported by specific etiological findings (structural, genetic, metabolic, immunologi-
cal, and infectious) [4]. The syndromes often have age-dependent presentations and 
a range of specific comorbidities (Fig. 11.1). In clinical practice, epileptic syndrome 
identification is important for appropriate antiepileptic drug selection, prognosis, 
and parent counseling.

The expanded ILAE 2017 operational classification encourages the identifica-
tion of seizure type. Focal seizures with retained or impaired awareness may option-
ally be characterized by one of the motor-onset or non-motor-onset symptoms listed 
in Fig. 11.2. In this operational classification, non-motor focal seizures may mani-
fest as autonomic dysfunction, behavior arrest, cognitive, emotional, or sensory 
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Fig. 11.1  Framework for classification of the epilepsies according to the ILAE 2017. (From 
Scheffer et al. 2017 [5] with permission)

Focal Onset

Aware Impaired
Awareness

Motor Motor

Nonmotor

Unclassified 3Nonmotor (absence)

Motor Onset 

Nonmotor Onset

automatisms

tonic-clonic
clonic
tonic

tonic-clonic 

epileptic spasms

behavior arrest
myoclonic
myoclonic-tonic-clonic
myoclonic-atonic
atonic
epileptic spasms

typical
atypical
myoclonic
eyelid myoclonia

atonic 2

clonic
epileptic spasms 2 
hyperkinetic
myoclonic
tonic

autonomic
behavior arrest 
cognitive

emotional 
sensory

focal to bilateral tonic-clonic

Generalized Onset Unknown Onset

Fig. 11.2  Scheme of the new operational classification of seizure types promoted by ILAE 2017 
(from Fisher et al. 2017 [4] with permission).2 The degree of impaired awareness is often not speci-
fied.3 Unclassifiable due to lack of information or inability to classify the episode into a category
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dysfunction. According to this classification, “focal autonomic seizures can present 
with gastrointestinal sensations, a sense of heat or cold, flushing, piloerection 
(goosebumps), palpitations, sexual arousal, respiratory changes, or other autonomic 
effects” [5].

Based on the 2017 seizure classification, an ILAE Task Force composed of mem-
bers with pediatric expertise, recently published an update on the taxonomy of syn-
dromes. They suggested to use terms directly describing the seizure semiology and 
classified epileptic pediatric syndromes into three categories: (1) self-limited focal 
epilepsies; (2) generalized epilepsies; (3) developmental and/or epileptic encepha-
lopathies [6]. In the context of self-limited focal epilepsies of childhood (SeLFE), 
the authors described syndromes with specific clinical, seizure semiology, and elec-
troencephalographic (EEG) features. Based on their long-term prognosis two sub-
groups were identified. In the first subgroup, Panayiotopoulos syndrome, or 
early-onset benign occipital epilepsy now renamed self-limited epilepsy with auto-
nomic seizures (SeLEAS), was included in addition to benign epilepsy of childhood 
with centrotemporal spikes or benign Rolandic epilepsy, now renamed self-limited 
epilepsy with centrotemporal spikes. The second subgroup included two syndromes: 
idiopathic childhood occipital epilepsy—Gastaut type, now renamed childhood 
occipital visual epilepsy, and idiopathic photosensitive occipital lobe epilepsy, now 
renamed photosensitive occipital lobe epilepsy. Clinically significant autonomic 
symptoms and signs can also accompany seizures of focal, generalized, and/or 
unknown onset. SeLEAS, known as Panayiotopoulos syndrome, is a model of auto-
nomic epilepsy specific to childhood (see below). Furthermore, ictal autonomic 
manifestations are frequently underreported either because they are unrecognized, 
given their predominantly nocturnal onset, or forgiven. In a recent prospective sur-
vey, only 11% of documented autonomic features were recalled by the patient [7]. 
The clinical range and significance of autonomic dysfunction during seizures are 
not fully understood and, in many cases, seizures are classified by the earliest prom-
inent motor or nonmotor onset feature [8]. As reported elsewhere in this book, the 
central autonomic network (CAN) is often involved during the propagation of both 
focal and generalized seizures. A wide variety of clinical events are thought to be 
mediated by cortical discharges recruiting CAN pathways [9]. In addition, as 
already mentioned and reported in several studies, autonomic symptoms and signs 
are frequently childhood-related because of a susceptibility to autonomic seizures 
due to a lower seizure threshold of subcortical components, related to a supposed 
immaturity of CAN [2, 10]. Assessment of autonomic functions involved in seizures 
results in two outcomes: first, a better localization and management of epilepsies; 
second, the correct framing of some autonomic disorders co-occurring in sudden 
unexpected death in epilepsy (SUDEP) could facilitate the use of measures that 
would help to reduce mortality of people with epilepsy. This chapter will focus on 
autonomic signs and symptoms in epileptic seizures and the most common forms of 
epilepsy associated with autonomic phenomena will be considered (SeLEAS or 
Panayiotopoulos syndrome and Temporal lobe epilepsy). In addition, the clinical 
aspects underlying SUDEP will be described.
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11.2 � Autonomic Seizures: The Role of Central 
Autonomic Network

Clinical features of seizures in epilepsy result from the recruitment or dysfunction 
of specific areas of the brain. These areas may have a functional relationship to 
anatomically close areas, but seizures can also propagate to distant areas of the 
brain. In other words, a network dysfunction, due to poor integration of neurons, 
facilitates the aberrant generation and propagation of neuronal discharges. 
Autonomic changes are frequent manifestations of epileptic seizures [11, 12]. 
During seizures, autonomic symptoms may be the only ones or predominant clini-
cal features, as in simple autonomic seizures, or accompany both focal and general-
ized seizures. In all these cases, autonomic seizures are characterized by recurrent 
stereotypical symptoms affecting the cardiovascular, neuroendocrine, respiratory, 
genitourinary, sexual, gastrointestinal systems, and/or cutaneous and pupillary 
symptoms. Direct activation of the CAN by epileptic discharges, rather than the 
motor or behavioral effects of the seizures themselves may cause autonomic symp-
toms and signs [11]. The role of the CAN and possible dysfunction of this area is 
assessed by functional neuroimaging, particularly functional magnetic resonance 
imaging [13]. The CAN is an integral component of an internal regulation system 
that includes the insular cortex, orbitofrontal cortex, anterior cingulate cortex, 
amygdala, hypothalamus, periaqueductal grey matter, parabrachial complex 
nucleus, the nucleus of the solitary tract, ventrolateral reticular formation of the 
medulla, and medullary raphe. The CAN is characterized by reciprocal interconnec-
tions and receives converging visceral and somatosensory information, through 
which the brain controls visceromotor, neuroendocrine, pain, and behavioral 
responses essential for survival [14]. From a functional and methodological point of 
view, this network is a structure divided into three main components in relation to 
distinctive regions of the central nervous system:

	(a)	 The spinal cord contains neuronal bodies and Projections causing the elemen-
tary segmental reflex control of the autonomic nervous system functions 
(Fig. 11.3).

	(b)	 At the brainstem level, the nucleus of the solitary tract, the ventrolateral 
medulla, and the parabrachial nucleus of the dorsolateral pons are involved in 
cardiovascular, respiratory, gastrointestinal, and genitourinary autonomic sys-
tems regulation. The periaqueductal grey in the midbrain region integrates auto-
nomic control with pain Modulation and behavioral responses to stress and 
sleep (Fig. 11.3).

	(c)	 Finally, at the forebrain level, the hypothalamus integrates autonomic, endo-
crine, and sleep functions, while the anterior limbic circuit (anterior cingulate 
cortex, amygdala, and insular cortices) integrates bodily sensation and pain 
with the emotional autonomic response [14] (Fig. 11.3).

These regions control the peripheral autonomic function through both direct and 
indirect connections with centers in the lower brainstem [13, 15].
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influence on the peripheral autonomic system is directly influenced by the limbic system and the 
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Structures responsible for the sympathetic response include the noradrenergic 
neurons of the locus coeruleus and the ventrolateral medulla oblongata. The para-
brachial region, nucleus ambiguous, the nucleus of the vagus nerve, corpus amyg-
daloideum, and periaqueductal grey matter influence parasympathetic mechanisms. 
Other areas play a role in both modalities [16].

The area postrema, also known as the chemoreceptor trigger zone, is one of the 
regions linked to vomiting. The motor elements of vomiting are controlled by the 
dorsal vagal nucleus, the nucleus of the solitary tract, the parvocellular reticular 
formation, and the ventral respiratory groups [14]. Extensive functional neuroimag-
ing studies show that the autonomic symptoms, especially in self-limiting forms of 
epilepsy are related to the lower seizure threshold caused by the hyperexcitability of 
specific autonomic circuits connected with motor or sensory responses. Otherwise, 
primary epileptogenic activity may spread to higher-order brain areas when reach-
ing the symptomatogenic threshold resulting in focal seizures that could evolve into 
generalized seizures [17]. In general, the autonomic disturbances present in differ-
ent epileptic seizures can be classified according to their presentation during a sei-
zure so that ictal and post-ictal forms can be distinguished. The autonomic signs 
have an early ictal onset when the cortex early involved in the central autonomic 
network. Conversely, the autonomic symptoms occur in the post-event or later in the 
ictal period [18].

11.3 � Autonomic Changes in the Ictal Phase

11.3.1 � Cardiovascular Symptoms

Since the first description of the relationship between the brain and heart in people 
with epilepsy more than a century ago, several studies have shown that seizures, 
both generalized and focal, induce autonomic dysfunction of the cardiovascular sys-
tem [19, 20]. Cardiovascular alterations, specifically seizure-related cardiac arrhyth-
mias, play an important role in determining the excess of mortality in patients with 
epilepsy and they have been implicated as potential pathomechanisms of 
SUDEP. Ictal sinus tachycardia can be observed in 82% of patients with epilepsy, as 
reported in a previous review. The authors reported that the average percentage of 
seizures associated with significant heart rate changes is similar for generalized 
(64%), including generalized tonic–clonic seizures, and focal onset seizures (71%) 
[21]. Focal seizures evolving to bilateral tonic–clonic seizures show a higher ictal 
heart rate as compared to focal seizures with impaired awareness [22]. Since the 
earliest observations in the rat, some authors demonstrated that cardiac regulation 
involved the right insula for sympathetic control and the left insula for parasympa-
thetic control [23, 24]. These findings are still debated [25]. In a study using intra-
cranial electrodes, the EEG signal precedes other seizure manifestations, but ictal 
tachycardia was reported to be an early sign, especially in right mesial temporal 
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onset seizures [26]. In childhood epilepsy, available studies on ictal tachycardia are 
limited but no significant differences seem to be in the frequencies of ictal tachycar-
dia in adults versus children [10]. Some authors reported ictal tachycardia in TLE 
seizures in 98% and confirmed right hemispheric lateralization of sympathetic car-
diac control [27]. A recent study suggested that epilepsy duration is an independent 
risk factor for ECG changes and that cardiac alterations may be a time-dependent 
phenomenon [28]. Ictal Bradycardia occurs less commonly during seizures than 
tachycardia and is observed in <5% of seizures [29]. In a cohort of 49 children, 
similar results were reported (3.7% of seizures had ictal bradycardia) [30]. 
Occasionally the bradycardia may be severe enough to cause sinus arrest and asys-
tole. Cardiac asystole is infrequent. In a previous study, in a large cohort, cardiac 
asystole occurred in 7 out of 2003 patients (0.34%), undergoing long-term video 
EEG/ECG monitoring [31]. This is in line with the reported 0.27–0.4% of patients 
suffering ictal asystole during prolonged video EEG telemetry [32]. In two different 
systematic reviews, it was reported that all patients examined, 103 cases in the first 
and 157 in the second, who presented with ictal asystole suffered from focal epi-
lepsy [33, 34]. Prolonged cerebral hypoperfusion induced by asystole may result in 
the onset of syncope. Ictal asystole with subsequent syncope predominantly hap-
pens in people with temporal lobe epilepsy [33, 35]. In a cortical stimulation study, 
Oppenheimer et al. confirmed that bradycardia appears during stimulation of the 
left insular cortex. This result suggested that seizures occurring in the left hemi-
sphere are more frequently associated with ictal bradycardia [23]. In the 20 s after 
the end of the electroencephalographic discharge, such as the postictal period, ictal 
asystole can occur. In the aforementioned review, 13 patients presented with postic-
tal asystole, among them 85% presented focal seizures evolving into bilateral tonic-
clonic seizures (TCSs) [33]. During the ictal and peri-ictal periods, other cardiac 
arrhythmias, including atrial flutter/atrial fibrillation and postictal ventricular fibril-
lation, were identified [2, 33, 36, 37]. Postictal ventricular fibrillation is preceded 
mainly by focal to bilateral seizures. In these conditions, increasing sympathetic 
activity, peri-ictal QTc prolongation and other predisposing cardiac conditions may 
be contributing factors anti-seizure medications (ASMs), such as sodium channel 
blockers, including carbamazepine, lacosamide, lamotrigine, and phenytoin, may 
play an important role in determining variation in heart rate frequency, firstly brady-
cardia, particularly at high dosages [22, 38]. However, Lamberts et al., suggested 
that concomitant heart disease more than epileptic features may lead to cardiovas-
cular symptoms [39].

11.3.2 � Respiratory Manifestations

Automatic mechanisms of respiration are controlled by the central respiratory oscil-
lators located in the lower brain stem, under the control of forebrain cortical areas 
(hippocampal formation; anterior cingulate gyrus; insula; basal forebrain; and the 
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motor area). Focal seizures localized in these cortical areas could affect respira-
tion and early experimental stimulation studies, show that the activation of these 
areas results in irregular breathing patterns, end-expiratory apnoea, and hyper-
pnoea [40]. Due to anatomical location, temporal lobe epilepsy is commonly 
associated with apnoea and oxygen desaturations [41, 42]. Hyperventilation is a 
common underdiagnosed sign of seizures because monitoring of respiratory activ-
ity is not always performed during electroencephalographic recording. In a poly-
graphic video-EEG recordings study, on 57 pre-surgery patients, authors reported 
that central apnoea with oxygen desaturation and increased CO2 levels occur in 
around one-third of seizures [43]. The authors also observed that ictal oxygen 
desaturations of <90%, <80%, and <70% were shown in 33.2%, 10.2%, and 3.6% 
of all seizures. In this study, the degree of desaturation was significantly corre-
lated with temporal lobe seizure onset, right hemispheric seizure lateralization, 
duration, and contralateral spread [43]. In a study based on cardiorespiratory 
monitoring and video EEG monitoring, ictal central apnoea preceded EEG seizure 
onset in 54.3% of cases and it was the only clinical manifestation in 16.5% of 
seizures [41]. The onset of central ictal apnoea (IA) depends on the quickness of 
the seizure spreading from one temporal lobe to the contralateral. Patients with 
TLE with contralateral diffusion are at the highest risk of seizure-related respira-
tory dysfunctions [44]. Other respiratory-related autonomic phenomena during 
seizures include stridor, postictal nose wiping, peri-ictal coughing, and other 
respiratory manifestations (i.e., laryngospasm, nocturnal choking, and laryngeal 
constriction) [3]. Unilateral postictal nose-wiping was reported as a symptom of 
localizing and lateralizing in focal epilepsy. Indeed, it occurs in 40–50% of 
patients with temporal lobe epilepsy and it is highly predictive (92%) of seizure 
onset ipsilateral to the used hand [45, 46]. Nose wiping happens during seizures 
originating in the non-dominant temporal lobe and can be interpreted as a pur-
poseful reaction to rhinorrhoea. The use of the hand ipsilateral to the hemisphere 
of seizure onset is due to a contralateral postictal weakness or neglect [45]. 
Furthermore, a depth electrode study has demonstrated that the involvement of the 
amygdala is crucial for the induction of postictal nose wiping [47]. Ictal coughing 
is a rare autonomic symptom, reported only in 0.16% of a large cohort of patients, 
without clear localization or lateralization [48]; conversely, post ictal coughing 
has been reported in 25% of patients [49]. The simultaneous presence of hyper-
salivation and retching could be a response to excessive autonomic stimulation 
and subsequent increased respiratory secretions and, in the absence of additional 
autonomic symptoms, suggest direct activation of CAN.  Usually, the origin of 
these phenomena is in the mesial portion of the temporal lobe, unclear is the lat-
eralization [47, 50]. Most anecdotal observations deal with symptoms such as 
laryngospasm, referred to seizures originating from the frontal operculum [51] 
and choking sensation due to frontal lobe seizures, which are often misdiagnosed 
with OSAS [52].
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11.3.3 � Gastrointestinal Symptoms

In adulthood, gastrointestinal auras are the most common symptoms of focal epi-
lepsy [11, 53]. In the most recent systematic review, the authors suggest that, in 83% 
of cases, the gastrointestinal aura originates from the temporal lobe, specifically the 
mesial temporal lobe. In previous studies, authors reported that abdominal feelings 
are associated with focal seizures originating from the non-dominant temporal lobe, 
but this data has not been confirmed [54, 55].

11.3.3.1 � Ictal Vomiting in Adults

Ictal vomiting and ictal retching are rarely reported during focal seizures in adult-
hood (approximately 2% in temporal lobe epilepsies) [56]. While many studies sug-
gest that ictal nausea, and vomiting, are linked to seizure onset in the non-dominant 
hemisphere, indicating a functional hemispheric asymmetry for gastrointestinal 
motility control [57, 58], this assumption is still debated and several authors 
described an involvement of left (dominant) temporal lobe [59–61]. According to 
the study by Tarnutzer [62], the evaluation of ictal video EEG, shows no significant 
differences between left and right temporal lobe localization and suggests that ictal 
vomiting has no lateralization value. In conclusion, ictal vomiting has been obtained 
by stimulating the left temporal mesial structures (amygdala, hippocampus, and 
insula cortex), particularly the insular cortex. However, studies conducted with 
intracranial electrical stimulation of the insular cortex have not been able to elicit 
vomiting [63, 64].

11.3.3.2 � Ictal Vomiting in Childhood

Autonomic symptoms, mostly vomiting, are the hallmark of SeLEAS.  Unlike 
adults, in whom ictal vomiting is rare and appears later, in childhood, it occurs as 
the only symptom mimicking other clinical disorders, such as sleep disorders, epi-
sodic syndromes that may be associated with migraine, gastroesophageal reflux dis-
ease, encephalitis, syncope, or metabolic disease. In these clinical disorders emesis 
is the predominant clinical feature at the onset of the seizure [65].

11.3.4 � Cutaneous Manifestations

During focal seizures, flushing, pallor, sweating, and pilomotor erection, often asso-
ciated with sensations of warmth and cold may arise. Among them, although skin 
flushing is part of the symptoms of seizures in Panayiotopoulos Syndrome, it is less 
frequently reported than pallor. In a retrospective review of medical charts seizures 
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and videotaping, authors detected skin flushing in 19 children out of 100 who under-
went surgical treatment and showed it has no lateralizing or localized value [66]. In 
the same study by Fogarasi et al., ictal pallor was reported in about 10% of children 
with focal seizures both temporal and extratemporal epilepsy mainly in TLE. Ictal 
pallor has a high predictive value in localizing seizure onset from the left temporal 
lobe, especially in younger patients [66]. It is due to vasoconstriction in the skin 
circulation and usually, it is underdiagnosed because of the difficulty in recognizing 
this symptom in video monitoring. Ictal piloerection is a rare manifestation that 
occurs in 0.4–1.2% of patients, mainly in people with temporal lobe epilepsy. Ictal 
piloerection may be distributed unilaterally or bilaterally. Unilateral piloerection is 
most frequently associated with the ipsilateral seizure onset zone, while bilateral 
ictal piloerection has no hemispheric predominance [67]. The location of the symp-
tomatogenic zone remains unclear, but probably the insula and amygdala play an 
important role. The etiology of ictal piloerection includes malignant brain tumors, 
autoimmune encephalitis, especially limbic encephalitis, and hippocampal sclerosis 
[68, 69]. Finally, another cutaneous manifestation described is sweating. In a young 
man, ipsilateral facial sweating secondary to anti-Ma2 autoimmune encephalitis is 
associated with testicular neoplasia [70].

11.3.5 � Sexual and Genital Manifestations

Sexual and genital manifestations can occur mainly during or after focal seizures. 
According to Leutmezer [71] can be subdivided into (a) sexual auras, (b) sexual 
automatisms, (c) genital auras, and (d) genital automatisms. The authors use the 
term “sexual” to refer to symptoms/signs with erotic content, while “genital” refers 
to symptoms/signs interesting the genitals without erotic components.

According to the last seizure classification, sexual auras can be classified: focal 
emotional seizures and sexual automatisms as focal emotional or focal hyperkinetic 
seizures; genital auras as focal sensory seizures; and genital automatisms as focal 
seizures with automatisms [4]. Sexual auras consist of erotic and pleasurable 
thoughts, orgasms, and penile erection that may occur before a seizure with tempo-
ral onset (more frequently non-dominant lobe temporal) without absolute lateraliz-
ing location. Sexual auras happen especially in female subjects. The area involved 
is the right amygdala which confirms its key role in human sexuality [72]. Genital 
auras are reported in a few cases in the literature and consist of disagreeable feelings 
or genital pain, sometimes associated with ictal orgasm. The cortical areas involved 
are the postcentral gyrus, interhemispheric fissure, and perisylvian region [73]. 
Sexual automatisms consist of hypermotor movements of the pelvis and truncal, 
combined with masturbatory activity. These manifestations typically occur in fron-
tal lobe seizures [74]. Genital automatisms, such as repetitive manipulation of the 
genitals, occur most frequently in temporal lobe epilepsy, usually ipsilateral to the 
side of the hand used in manipulation [75, 76]. Unlike sexual auras, prevalent in 
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women, genital automatisms usually occur in males [77]. This finding confirms the 
different organization of sexual functions between the two sexes within the limbic 
network [78].

The ictal urinary urge is a rare symptom, and his pathophysiological mechanism 
is not entirely clear. In previous studies, evaluating scalp video-EEG monitoring or 
functional imaging, demonstrated a localization in the non-dominant hemisphere, 
specifically, the temporal lobe [11, 79, 80]. It is not clear why ictal urinary urgency 
is commoner in right hemisphere epilepsy, but it confirms the presumed asymmetry 
of central autonomic influences on the bladder.

11.3.6 � Miscellaneous

Other vegetative symptoms reported in temporal lobe epilepsies include spitting, 
ictal hypersalivation, and peri-ictal water drinking. Spitting is a rare symptom 
(appearing in up to 2%) present both in seizures arising in the nondominant tempo-
ral lobe and the dominant one [53, 81–83]. The symptomatogenic zone was recog-
nized in areas controlling emotional behavior but this area could not be considered 
a lateralizing sign of a nondominant temporal lobe [83]. Ictal hypersalivation is a 
common feature in self-limited focal epilepsies of childhood particularly in self-
limited epilepsy with centrotemporal spikes and in early-onset benign occipital epi-
lepsy [84, 85]. As demonstrated in a previous study, increased salivation is a rare 
manifestation in patients with intractable epilepsy. In a small series of 10 adults, the 
authors show that this uncommon sign is a localizing feature for mesial temporal 
seizures, mainly those that originate in the non-dominant hemisphere [86]. Peri-
ictal water drinking is a rare and under-recognized sign because it is a usual habitual 
action. In patients with temporal lobe epilepsy, it seems to be due to the involvement 
of the non-dominant hemisphere. This data reflects the asymmetrical control of neu-
ral networks concerned with fluid balance, thirst, and water-seeking. The peri-ictal 
water drinking could be due to the propagation of epileptiform discharges from 
mesial temporal structures to the hypothalamus that cause thirst and consequently 
water-seeking [87, 88].

11.4 � Lobe Temporal Epilepsy

Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy 
in adolescence and adulthood [89], representing about 40% of all epilepsies in adult 
people (usually with a positive family history) [90] and the 60–75% of all patients 
with drug-resistant epilepsy [91] among which approximately two-thirds require 
surgical management [92]. TLE includes a heterogeneous group of disorders that 
share the localization of the epileptogenic zone in the temporal lobe, either in the 
lateral or in the mesial portion. Mesial TLE is probably the best-known 
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electro-clinical pattern of all epilepsies [93] since TLE commonly arises from the 
mesial temporal lobe (hippocampus, amygdala, and parahippocampal gyrus) and is 
observed in about 80% of people with TLE [93, 94]. A wide variety of clinical 
events is associated with the involvement of medial temporal lobe networks. Focal 
seizure symptomatology is usually preceded by an epileptic aura that appears before 
the loss of awareness and may also represent the only clinical feature. Aura is usu-
ally composed of subjective symptoms without objective signs, which reflects the 
initial seizure discharge in the brain. Often it is misunderstood so that the diagnosis 
of epilepsy is made long after the onset of these symptoms.

Several old stimulation and observational studies demonstrated the correlation 
between specific cortical areas and autonomic function [95, 96] even if there is no 
clear topographic pattern of the autonomic effects. It is well known that the insular 
cortex, anterior cingulum, supplementary sensorimotor area, posterior orbitofrontal 
cortex, or amygdala are involved in alterations in heart and respiratory rate, mydria-
sis, piloerection, genitourinary symptoms [97, 98]. In addition, in drug-resistant 
TLE, the occurrence of recurrent and uncontrolled seizures that repeatedly activate 
CAN structures can result in epilepsy-related autonomic dysfunction. So that the 
autonomic dysfunction observed in TLE becomes more prominent with the progres-
sion of the disease as well as the increased seizure frequency [99]. In the focal aware 
seizures may be recognized alterations in heart and respiratory rate, abdominal dis-
comfort, and/or rising epigastric sensation and ictus emeticus. The latter identifies 
the triad symptomatology consisting of nausea, retching, and vomiting, which, 
rather rare in temporal epilepsy, is instead typical of Panayiotopoulos syndrome. 
Other autonomic symptoms such as pallor, flushing, mydriasis, piloerection, sweat-
ing, and genitourinary symptoms may be present but they are ignored because less 
frequently reported by patients or by witnesses.

The symptomatogenic zone involved in the abdominal aura (the most reported 
type of autonomic aura) is the anterior insular cortex, frontal operculum, mesial 
temporal structures, and supplementary motor area [100]. Regarding focal aware 
seizures, in addition to the autonomic symptoms described, cognitive (e.g., deja vu, 
jamais vu), emotional state (e.g., fear) or sensory (e.g., olfactory, gustatory, visual, 
auditory) symptoms may also be present. Sensory auras, primarily olfactory, 
referred to as “uncinate fits” are typically described as unpleasant odors often asso-
ciated with gustatory phenomena [101]. Although olfactory aura is historically 
reported as a typical TLE aura, it is a rare phenomenon occurring in only 5% of 
patients [102] and it is related to involvement in cortical areas such as the amygdala, 
olfactory bulb, insular cortex, and orbitofrontal cortex [98, 100]. The visual auras 
are usually caused by a dysregulation affecting the posterior regions of the temporal 
lobe. Visual auras include both simple and complex manifestations: the first one is 
due to the activation of the contralateral primary visual cortex and contiguous visual 
association areas; the second one involves the temporo-occipital junction or the 
basal temporal cortex [103]. Another feature of temporal lobe epilepsy is the pres-
ence of auditory phenomena. These auditory hallucinations, described as sounds or 
in the complex forms of hearing voices or songs, in the former case, can be attrib-
uted to activation of Heschel’s gyrus, while in the latter, they are attributed to 
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activation of the temporal associative cortex. In mesial temporal lobe epilepsy, fear 
is one of the most common affective symptoms. Several pieces of evidence suggest 
the amygdala is the symptomaticogenic area of fear, but some studies reported other 
regions (mesial frontal regions, occipital, and parietal lobes) as the origin of this 
affective symptom [104–107]. Although autonomic symptoms are typical features 
in temporal lobe seizures, some of them may be also reported in frontal lobe epi-
lepsy. Epigastric sensations are one of the reported symptoms of basal frontal epi-
lepsy as gustatory, cardiac, and respiratory manifestations that are described in 
patients with frontal, insular, and opercular lobe epilepsy. Cold shivering and pilo-
erection, infrequent symptoms of focal seizures, although most often associated 
with a left temporal lobe focus can also occur with a right temporal, as well as a 
frontal or parietal lobe focus [9]. Frontal lobe localization may also be suggested by 
urinary incontinence during focal epilepsy with secondary generalization [108]. 
Differential diagnosis between frontal or temporal lobe epilepsy could be challeng-
ing when ictal tachycardia is present. A recent study investigated the differences 
between TLE and FLE patients with ultra-short-term heart rate variability (HRV) 
analysis and found different HRV profiles in the pre-ictal, ictal, and postictal inter-
vals in the two groups: the temporal lobe epilepsy patients exhibited elevated sym-
pathetic or vagal activity during the pre-ictal and postictal condition, while the FLE 
patients showed a marked increment and decrement in sympathetic tone during the 
ictal period [109].

11.5 � Autonomic Seizures and Autonomic Status Epilepticus 
in Self-Limited Epilepsy with Autonomic Seizure

The primary cause of autonomic seizures and autonomic status epilepticus in chil-
dren is SeLEAS, formerly known as Panayiotopoulos syndrome or early onset 
benign occipital epilepsy [6, 110, 111]. SeLEAS is characterized by the onset in 
early childhood of focal autonomic seizures followed by a stereotypical onset and 
progression that are often prolonged. The epilepsy is self-limited, with remission 
typically within a few years from onset [2]. The mean duration of the disease is 
approximately 3 years [112]. The usual age at onset is between 3 and 6 years (70% 
of cases), and ranges from 1 to 14 years [113], with a peak at 5 years [113, 114]. The 
likelihood of having seizures after the age of 12  years is exceptional [114]. 
Antecedent and birth history are normal. Neurological examination, development, 
and cognition are normal [115, 116]. Both sexes are affected equally. SeLEAS 
accounts for 5% of childhood epilepsies between 1 and 14 years and 13% of child-
hood epilepsies between 3 and 6 years [117]. A history of febrile seizures is seen in 
5–17% of patients. Seizure frequency is typically low, with approximately 25% of 
children having a single seizure only [118], the median total number of fits is two to 
three, and the prognosis is invariably excellent, with remission usually occurring 
within 1  year from onset [114, 118]. Focal autonomic seizures, with or without 
impaired awareness, are mandatory for diagnosis. Awareness is usually preserved at 
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seizure onset and may fluctuate in degree of impairment as the seizure progresses. 
In a typical presentation, the child, able to speak and understand, complains “I feel 
sick,” looks pale, and shows autonomic symptoms and signs [110]. Autonomic fea-
tures at onset may vary, but most frequently include retching, pallor, flushing, nau-
sea, malaise, or abdominal pain. Vomiting, the most common autonomic 
manifestation, occurs in approximately 75% of children [6]. In others, only nausea 
or retching occurs, and in a few, emesis may not be apparent. Other autonomic 
manifestations may occur concurrently or appear later during the seizure such as 
pupillary (mydriasis, and, less often, miosis), temperature, and cardiorespiratory 
(breathing, pallor, cyanosis, and heart rate) changes. Incontinence of urine and/or 
feces, hypersalivation, and modifications of intestinal motility were also reported. 
Syncope may rarely occur. Seizures frequently evolve with eye and/or head devia-
tion, generalized hypotonia, and focal clonic (hemiclonic) or focal to bilateral 
tonic–clonic seizure activity. More than 70% of seizures occur from sleep; the child 
may wake up with similar complaints while still aware or else may be found vomit-
ing, conscious, confused, or unresponsive [110]. Seizures are often prolonged and 
can last longer than 30 min [113, 119, 120]. Electroencephalography is the most 
useful test in autonomic seizures. Multifocal spikes with high amplitude sharp-slow 
wave complexes (>200 μV) at various locations and predominant in the occipital 
regions can be present at disease onset [121] (Fig. 11.4). In some cases, the back-
ground activity could be normal [6]. During follow-up, abnormalities might move 
to either centrotemporal or frontopolar regions. Generalized abnormalities may also 
be seen [110, 122]. If persistent focal slowing is present, a structural brain abnor-
mality should be sought as an alternative etiology. Diffuse slowing is not seen 
except in the postictal period [113, 120, 123, 124]. EEG abnormalities are activated 
both by sleep deprivation and by sleep when abnormalities often have a wider field 
and may be bilaterally synchronous. If seizures are recorded, ictal onset varies, but 
most have posterior onset [121]. The ictal pattern shows rhythmic slow activity 
intermixed with small spikes and/or fast activity [125]. Neuroimaging, if performed, 
shows no causal lesion. Brain MRI should be considered in cases with recurrent 
seizures or atypical presentations. Symptomatic autonomic epilepsy caused by het-
erogeneous brain lesions has been observed [113, 117, 126]. Nonspecific MRI find-
ings should not exclude a diagnosis of SeLEAS [6]. Approximately 20% of patients 
may evolve to other self-limited focal epilepsies (SeLFEs), most commonly self-
limited epilepsy with centrotemporal spikes (SeLECTS) [118]. Rarely, SeLEAS 
may evolve into epileptic encephalopathy with spike-and-wave activation in sleep 
(EE-SWAS). SeLEAS is probably genetically determined; however, no causative 
gene variants have been detected so far. There is a higher prevalence of febrile sei-
zures in first-degree relatives and case reports of siblings with other SeLFEs [127]. 
SeLEAS does not usually require treatment, as the course of the disease is, in most 
cases, mild, and the prognosis is good [16]. It is crucial to differentiate the disease 
from other forms of epilepsy, especially occipital and structural epilepsy, and non-
epileptic disorders [121]. Autonomic seizures and autonomic status epilepticus are 
easy to diagnose because of the characteristic clustering of clinical seizure semiol-
ogy, which is often supported by interictal EEG findings. The main problem is to 
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Fig. 11.4  Ictal registration of a child with self-limited epilepsy with autonomic seizures (SeLEAS) 
(from Parisi P, et al. 2007 [121]): polygraphic recording included scalp EEG (8 channels), electro-
oculogram (LOC and ROC), chin electromyogram, ECG, nasal and oral airflow, thorax and 
abdominal movements. During sleep stage two, the seizure started (see arrow) with a run of fast 
spikes at 7 Hz involving principally the right occipital region (a), associated with tachycardia as 
the sole manifestation (minimal clinical manifestation: movement of the left arm). (b) Soon after 
the start and for approximately 10 min, with no clinical manifestations associated, the EEG showed 
the persistence of spike-and-wave at 3–4 Hz localized almost exclusively over the right occipital 
region, with rare spreading (see arrow) to the other EEG derivations. (c) A tonic conjugate devia-
tion of the eyes to the left accompanied at the EEG by a rich content in high-amplitude slow waves 
in the theta and delta ranges predominate in the right hemisphere. (d) Ictal vomiting occurs 11 min 
after the onset of the seizure. (e) As repetitive vomiting stopped, the low-amplitude high frequency 
suddenly disappeared (see arrow) with the presence of post-ictal low-frequency components. 
(From Parisi P et al. Neurol Sci 2007; 28 [2]:72–9 with permission)

P. Parisi et al.



231

recognize emetic symptoms, ictal syncope, and other autonomic manifestations as 
seizure events and not to dismiss them or erroneously consider them as unrelated to 
the seizure and a feature of encephalitis, migraine, syncope, or gastroenteritis [128]. 
Autonomic seizures and autonomic status epilepticus are important to differentiate 
between SeLEAS and symptomatic causes. In SeLEAS, neurological state and 
mental state are normal and brain imaging is unremarkable. Conversely, in symp-
tomatic cases, there are often abnormal neurological or mental symptomatology, 
abnormal brain imaging, and EEG background abnormalities [113].

11.6 � Autonomic Dysfunctions in Developmental 
and Epileptic Encephalopathies

Autonomic symptoms could be encountered in several developmental and epileptic 
encephalopathies (DEE) and may represent either an epileptic manifestation or, 
more frequently, may develop apart from the epileptic disorder strongly correlated 
with the burden of functional impairments [129]. Rett syndrome is a neurodevelop-
mental disorder that primarily affects females, characterized by consistently 
reported seizures and paroxysmal autonomic symptoms mostly in patients carrying 
the methyl-CpG-binding-protein 2 (MeCP2) or CDKL5 mutation [130, 131]. 
Autonomic features encompass peripheral vasomotor disturbances, breathing dys-
function during wakefulness, apnoea, and cardiac dysautonomia with susceptibility 
to arrhythmias [132]. Epilepsy is a core symptom of Rett syndrome, with preva-
lence as high as 60–90% [133]; however, the analysis of video-EEG demonstrated 
that the majority of clinically reported seizures did not have an autonomic correlate 
[134]. Dravet syndrome is an epileptic encephalopathy that develops in the first year 
of life presenting multiple seizure types [135]. The diagnosis is clinical, but most 
cases carry a mutation in the SCN1A gene encoding for neuronal sodium channels 
[10]. Half of the patients had temperature regulation problems; other features of 
autonomic dysfunction such as sweating, pupillary dilation, flushing, gastroparesis, 
and heart rate changes are also more commonly described in children with Dravet 
syndrome than controls [135, 136]. As compared to age- and sex-matched control 
groups of other epileptic syndromes and healthy controls, patients with Dravet syn-
drome displayed a relative predominance of sympathetic over parasympathetic 
activity when investigating the electrical characteristics of cardiac function [137]. 
Autonomic signs are also reported in most patients with the SCN8A mutation, 
mainly as the first manifestation of focal or focal to bilateral tonic/tonic-clonic sei-
zure [138]. A stereotyped sequence of appearance has been frequently described 
with some signs occurring within the first seconds (flushing of the face, sometimes 
associated with sialorrhea, bradycardia, and hypopnea) and others such as tachycar-
dia, polypnea, perioral cyanosis, and pallor that followed later during the seizure 
[138]. Tonic seizures with long-lasting apnea requiring ventilation are believed to 
be one of the characteristic features of patients with this mutation [139]. Likewise, 
a case of SCN8A-related encephalopathy with ictal asystole requiring cardiac pace-
maker implantation has been described [140]. Manifestations such as breathing 
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dysfunction, apnoea, and cardiac dysautonomia with susceptibility to arrhythmias 
may underlie a brainstem dysfunction and/or a channelopathy linking neural and 
cardiac dysfunction and may account for the higher risk of SUDEP described in 
patients with some DEE as compared to the general population [141]. Aspects of 
dysautonomic function may provide biomarkers of DEE disease severity [129] or 
may predict the onset of a DEE. A recent study characterizes the temporal changes 
in heart rate variability, a surrogate of a marker of autonomic functional state, in 
infants at risk of Infantile epileptic spasm syndrome (an age-dependent epileptic 
syndrome characterized by clusters of clinical spasms and typical electroencephalo-
gram features) finding that certain early HRV metrics may be predictive of the clini-
cal onset of the disease [142].

11.7 � Involvement of the Autonomic Nervous System 
in SUDEP

People with epilepsy have a 24-fold increased risk of dying suddenly compared 
with the general population [143] and among the causes of premature deaths in 
patients with epilepsy, SUDEP represents a major cause [143, 144]. SUDEP is 
defined as the “sudden, unexpected, witnessed or unwitnessed, nontraumatic and 
non-drowning death, occurring in benign circumstances, in an individual with epi-
lepsy, with or without evidence for a seizure and excluding documented status epi-
lepticus, in which postmortem examination does not reveal a cause of death” [145]. 
SUDEP is an important risk in patients with intractable epilepsy, with a variable 
reported incidence across the studies [146, 147]. The reported incidence does not 
vary between the pediatric (1.11–1.45 per 1000 person-years in children and adoles-
cents with epilepsy) [148, 149] and adult (1.20 per 1000 person-years with epi-
lepsy) [146] populations. However, the studies that have identified the incidence of 
SUDEP have not considered the different and multiple causes and types of epilepsy. 
The pathophysiology of SUDEP remains unknown, most cases of sudden death are 
unwitnessed and post-mortem examinations are often lacking [39, 150]. The poten-
tial mechanisms proposed involve prominent primary or secondary involvement of 
the autonomic nervous system in the form of central or obstructive apnea or both, 
cardiac arrhythmia, autonomic dysregulation, and hypoxia. Available data from wit-
nessed and monitored SUDEP cases suggest that, in most cases, a convulsive sei-
zure triggers catastrophic cardio-respiratory dysfunction that results in death [151, 
152]. The autonomic system collapse, beginning with a respiratory dysfunction fol-
lowed by heart failure, supports the notion that the brainstem structures that control 
autonomic function are involved in the mechanism of SUDEP [153]. The 
MORTEMUS study, which is the largest study to date describing cardiorespiratory 
function at the time of death in epilepsy, reported all SUDEP deaths occurring after 
a convulsive seizure [151]. In those cases, a seizure appeared to trigger progressive 
bradycardia and apnea beginning during the immediate postictal period; terminal 
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apnea occurred before terminal asystole in all cases. It is arguable that more severe 
and drug-resistant disease has a greater risk of SUDEP [154, 155]. Nevertheless, 
SUDEP can occur early in the disease course or in individuals with a condition that 
is usually considered benign [156, 157] and, there are cases of non-seizure–related 
SUDEP, which reveal that a seizure is not necessary to trigger severe terminal car-
diorespiratory dysfunction resulting in death [158]. In a cohort of three patients with 
refractory epilepsy, all patients died in the epilepsy monitoring unit during continu-
ous video-EEG monitoring [158] and there was no clinical seizure and no ictal 
change on EEG preceding death. In all cases, there was progressive cardiorespira-
tory dysfunction associated with suppression of the EEG. In two cases there was 
tachycardia and tachypnea preceding bradypnea and bradycardia followed by termi-
nal apnea, which was then followed by terminal asystole, a pattern that is similar to 
the progression of cardiorespiratory dysfunction noted in the MORTEMUS study 
[151]. These data suggest that catastrophic autonomic network dysfunction may 
occur due to initial severe brainstem dysfunction, which may be responsible for the 
highly abnormal cardiorespiratory patterns [159]. Interestingly, in focal and gener-
alized epilepsies, autonomic functional changes were observed not only during the 
ictal period, but also during interictal and postictal periods where all aspects of the 
autonomic function, including parasympathetic, sympathetic, and adrenal medul-
lary systems may be affected [9]. The magnitude of the sympathetic activation and 
parasympathetic suppression in each type of seizure or epilepsies may also be an 
important factor to be considered, as they may influence the probability risk of 
SUDEP [160]. HRV, which reflects the balance between sympathetic and parasym-
pathetic activity in the autonomic nervous system, provides a physiological per-
spective for the examination of cardiac pathologies [161]. Patients with epilepsy 
often have interictal autonomic dysfunction, as is observable from the HRV abnor-
malities reported in both focal (particularly in temporal lobe epilepsy) and general-
ized epilepsy [162–165]. Children with drug-resistant epilepsy showed lower HRV 
values compared to children with controlled epilepsy or healthy children [166]. 
However, the chronically reduced parasympathetic effect may predispose drug-
resistant epileptic children to a more severe stress response during seizures [166]. 
Patients with Dravet syndrome, which is highly associated with drug-resistant epi-
lepsy and SUDEP, also have reduced HRV [137, 167]. In support, concurrent sei-
zure activity in the temporal lobes significantly increased the heart rate and decreased 
the HRV in patients with refractory epilepsy, suggesting that there was an auto-
nomic imbalance that tended to sympathetic dominance due to seizures [168]. There 
is also one case report of a man with refractory epilepsy and SUDEP in whom serial 
studies showed a sudden increase in parasympathetic activity, as measured by high-
frequency power and the ratio between cardiac vagal index and cardiac sympathetic 
index during the 1 day to 30 min preceding death [169]. However, thus far, there are 
no clear specific HRV biomarkers for SUDEP. Surges et al. (2009) compared HRV 
in seven patients with SUDEP with HRV in seven control patients and found no 
significant differences in interictal HRV measures between the groups [170]. 
Although the MORTEMUS and other available SUDEP data suggest that primary 
cardiogenic causes of SUDEP are rare, it is still possible that abnormal HRV might 
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contribute to SUDEP in a minority of cases. Each autonomic sign should be evalu-
ated in the context of preceding autonomic manifestations. For example, asystole 
could be the first ictal expression, but could also follow IA or ictal hypotension. IA 
was thought to be a possible mechanism of SUDEP [171, 172]. However, several 
observations indicate that IA is not invariably linked to SUDEP [31, 173, 174]. 
Another important aspect to consider is the seizure type and the timing of the event. 
For instance, ictal asystole is predominantly seen in focal seizures of temporal lobe 
onset, whereas postictal asystole is strongly associated with TCSs, including both 
primary generalized TCSs and focal-to-bilateral TCSs [33]. The same holds for 
apnoea: ictal central apnoea is strongly linked to focal temporal lobe seizures, 
whereas postictal central apnoea is seen only in the context of TCSs (41 42). 
Eyewitness reports suggest that around 10% of witnessed SUDEP events occur in 
the absence of apparent seizure activity [39, 152, 175, 176], indicating that seizures 
are not required as proximate triggers for SUDEP. It is reasonable to assume that in 
some or even most of these cases, sudden death was caused by cardiac arrhythmias. 
Retrospective analysis of multi-day ECG data obtained during video-EEG monitor-
ing from patients who subsequently died due to SUDEP found that SUDEP patients 
had greater increases in heart rate during seizures than in other refractory control 
epilepsy patients [177]. Heart rate alterations are the most studied and probably the 
most frequent ictal autonomic signs, with a prevalence of 38–100% [21]. The degree 
of autonomic change varies according to the seizure type. Ictal tachycardia seems to 
be more prominent in seizures originating from the temporal and orbitofrontal cor-
tex and in TCSs [22, 168, 178–183]. Depth EEG recordings in people with temporal 
lobe epilepsy (TLE) indicate that ictal tachycardia coincides with seizure activity in 
the anterior hippocampus and amygdala [181]. The spread of seizure activity to 
subregions of the ipsilateral and contralateral hemispheres correlates with heart rate 
increase [168, 182, 184]. Heart rate alterations could be the earliest clinical sign of 
seizure onset and it might be a significant tool for seizure detection [183]. In multi-
day recordings in patients admitted to epilepsy monitoring units, almost 40% of 
patients had ictal cardiac arrhythmias or repolarization abnormalities, including 
bundle branch block, atrial fibrillation, supraventricular tachycardia, asystole, and 
other abnormalities [36, 185]. In a prospective cohort study, patients with chronic 
epilepsy showed significantly higher T-wave alternation and lower HRV values 
compared to patients with newly diagnosed epilepsy [186]. Furthermore, cardiac 
repolarization abnormalities are found in epilepsy patients also in association with 
seizures [38, 187, 188]. Convulsive and longer seizures may increase the risk for 
ictal Electrocardiogram abnormalities [36]. Ventricular tachyarrhythmias may occur 
more frequently in patients with epilepsy (possibly related to increased risk of car-
diovascular disease in this population) and could be an underestimated cause of 
SUDEP [39, 189, 190]. In a monitored patient without cardiac pathologies, who 
experienced sudden onset of ventricular tachycardia (VT) and ventricular fibrilla-
tion (VF) following a focal-to-bilateral TCS [38] a SUPED was documented. 
However, most of the VT/VF events occurred in patients with pre-existing or acute 
heart conditions [39]. However, most forms of cardiac arrhythmias can be observed 
in people with epilepsy, particularly in association with seizures [191]. Ictal 
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bradycardia has been reported to occur in up to 6.4% of focal seizures and up to 
13.6% of people with epilepsy undergoing video-EEG monitoring [191]. Long-
term EKG recording (between 4 and 22 months) via implantable loop recorders in 
patients with refractory epilepsy suggest that ictal and interictal bradycardia may 
occur relatively commonly in this population, with 8/39 patients in both studies 
combined having bradycardia or asystole [155, 192]. Other ictal cardiovascular 
manifestations, such as blood pressure, lack precise prevalence because they are not 
routinely assessed during EEG recordings. The resting awake interictal heart rate 
(HR) and blood pressure (BP) in SUDEP cases and control epilepsy groups (refrac-
tory and controlled) are similar but there is a trend toward a higher diastolic BP and 
more stable (less variable) HR over time in individuals who subsequently died due 
to SUDEP [193]. However, increases in blood pressure can be seen across all focal 
seizure types and in focal-to-bilateral TCSs [194]. While these findings need to be 
confirmed in larger populations, they again support the possibility that patients at 
risk for SUDEP may have underlying autonomic dysfunction, which may increase 
their risk for death in the setting of a seizure. Blood pressure is regulated by the 
baroreflex, whereby significant deterioration in its sensitivity has been observed in 
the early postictal period following bilateral/generalized convulsive seizures [195]. 
This may be due to increased muscle contractions, a large amount of catecholamine 
released, and impaired brainstem function [195]. While most cases of SUDEP were 
probably caused by a cardiorespiratory failure during the early postictal period fol-
lowing generalized convulsive seizures, recent studies have reported that impaired 
baroreflex sensitivity may also cause life-threatening systemic blood pressure to 
decrease after generalized convulsive seizures [196]. In addition to the cardiological 
autonomic involvement, the respiratory one has also been underlined by scientific 
evidence. The MORTEMUS study provides clear evidence of respiratory dysfunc-
tion in SUDEP.  In patients with SUDEP in the MORTEMUS series, convulsive 
seizures were followed by terminal apnea and then asystole [151]. In total, 75% of 
people who succumb to SUDEP are found in the prone position, (which is likely to 
further aggravate postictal breathing disturbances) [151, 197] and are unwitnessed, 
though there is often evidence of a recent seizure (e.g., tongue bite, urinary inconti-
nence, or body positioning to suggest a recent seizure) at the time of death [197–
199]. Ictal central apnea strongly correlates with focal epilepsy, particularly 
temporal lobe epilepsy. In 56 patients with focal epilepsy, approximately one-third 
of focal seizures with or without generalization were accompanied by desaturations 
below 90% [43]. In another cohort, ictal central apnea occurred in 47% of 109 
patients (36.5% of 312 seizures), most notably in temporal lobe epilepsy [41]. 
Dlouhy et al. (2015) found that electrical stimulation of the amygdala in patients 
undergoing intracranial EEG monitoring resulted in central apnea [200]. It has also 
been observed that seizures spreading to the amygdala may cause central apnea and 
oxygen desaturation in patients with persistent epilepsy [200]. In pediatric patients 
with refractory epilepsy who underwent intracranial electroencephalography, apnea 
formation was found to occur simultaneously with the spread of the seizure to the 
amygdala area responsible for respiratory suppression [201]. This suggests that 
there may be a functional link between the amygdala and respiration in the 
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brainstem which may cause respiratory loss as a result of epileptiform activity. In a 
study by Park et al., focal to the bilateral tonic–clonic seizures or generalized tonic–
clonic seizures which caused ictal/postictal hypoxemia more than 125 s had a statis-
tically significant association with high-risk cardiac arrhythmias (nonsustained 
ventricular tachycardia, bradyarrhythmia, and sinus pauses). The odds ratio for the 
occurrence of arrhythmia was 7.86 for desaturation durations ≥125 s versus desatu-
rations <125 s (p = 0.005). The odds ratio increased to 13.09 for desaturation dura-
tions ≥150 s (p < 0.001) [202]. These studies show that the peri-ictal respiratory 
decline may be the critical initial node in the series of terminal events resulting in 
sudden death. Animal models have been studied to identify the basic neurobiologi-
cal mechanisms of respiratory arrest with seizures. It has been well-studied that 
5-hydroxytryptamine (5-HT) neurons play a critical role in maintaining respiratory 
drive. Provoked audiogenic seizures in DBA/2 mice which lack several 5 HT recep-
tor proteins in the brainstem lead to death due to respiratory arrest, which can be 
prevented with oxygenation [203]. Notably, seizure-related death is reduced using 
selective serotonin reuptake inhibitors (SSRI) [204, 205]. Additionally, adenosine 
antagonists may also significantly reduce ictal apnea [206]. Reduced 5-HT levels 
and immature 5-HT neurons in the medulla have also been noted in infants who died 
of sudden infant death syndrome (SIDS), which suggests a possible role of 5-HT 
axis dysfunction as a cause of sudden unexplained death [207]. Further investiga-
tion is needed to evaluate whether SSRIs and adenosine antagonists might have a 
role in reducing ictal apnea in humans. Another characteristic feature of the early 
postictal phase was the generalized flattening of the EEG trace (postictal general-
ized EEG suppression, PGES). The origin and clinical importance of PGES are not 
yet fully understood [208], but it might be a condition for the neurovegetative break-
down in TCS-related SUDEP. Clinical and electrophysiological data obtained from 
children with epilepsy revealed that PGES was associated with peri-ictal tachycar-
dia and hypoxemia [209]. However, in a clinical study examining generalized con-
vulsive seizures retrospectively, the percentage of postictal unresponsiveness, 
including oropharyngeal immobility, was found to be higher in patients with PGES 
after seizures [210]. This suggests that postictal immobility and PGES are associ-
ated with peri-ictal respiratory disorders [211]. Electrodermal activity (EDA) mea-
sures changes in the electrical conductance of the skin due to sympathetic neuronal 
activity [212]. One study evaluating primarily children found that there is a surge of 
EDA (correlating with increased sympathetic activation) and suppression of high-
frequency power of HRV (correlating with parasympathetic suppression) after 
tonic–clonic seizures [160]. This post-ictal autonomic dysregulation correlated to 
increased duration of PGES in this study. These data suggest that PGES, which may 
be a biomarker for SUDEP, could be associated with significant autonomic dysfunc-
tion during the critical post-ictal period when SUDEP most often occurs. Additional 
investigation showed that age may affect the degree of sympathetic and parasympa-
thetic activity following seizures [213]. Adults tend to have longer durations of 
PGES Sarkis et al. also found that adults had longer durations of PGES and that the 
duration of PGES correlated with the degree of sympathetic activation as measured 
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by EDA [213]. However, after controlling for PGES duration, pediatric patients 
were found to have stronger sympathetic activation as well as greater parasympa-
thetic suppression than adults. These age-dependent findings may correlate with the 
variable incidence of SUDEP seen in different age groups. From the brain structural 
view, a volume loss of brainstem regions, a structure with a crucial role in auto-
nomic control, has been also observed in SUDEP cases compared to controls [214] 
suggesting a possible link between structural and functional autonomic pathology. 
SUDEP victims show significant tissue loss in areas essential for cardiorespiratory 
recovery and enhanced volumes in areas that trigger hypotension or impede respira-
tory patterning [215]. In detail, substantial bilateral gray matter loss appeared in 
SUDEP cases in the medial and lateral cerebellum. The periaqueductal gray, left 
posterior and medial thalamus, left hippocampus, and bilateral posterior cingulate 
also showed volume loss in SUDEP [215]. In a retrospective study, posterior tha-
lamic grey matter volume, an area mediating oxygen regulation, was reduced in 
cases of SUDEP and subjects at high risk, when compared to controls [216]. The T1 
images of individuals with temporal lobe epilepsy (TLE) revealed a volume loss in 
the dorsal mesencephalon region, which plays a role in autonomic control [214]. 
While the 3T magnetic resonance imaging (MRI) findings of patients with focal 
epilepsy showed large atrophy in the autonomic nuclei of the medulla oblongata’s 
periaqueductal gray area instead [153]. Also, some neurotransmitters may play a 
role in the etiopathogenesis of SUDEP. Acetylcholine (ACh), the main stimulant of 
the autonomic nervous system, mediates signal transmission through cholinergic 
and nicotinic receptors. Accumulating evidence indicates that dysfunction of nico-
tinic ACh receptors, which are widely expressed in hippocampal and cortical neu-
rons, may be significantly implicated in the pathogenesis of epilepsy [217]. It has 
also been reported that M1 muscarinic receptors in the medial septum region of the 
hippocampus integrate the inputs of vagal afferents from the brainstem into the hip-
pocampus [218]. In this context, it is important to investigate the possible effects of 
M1 receptors on epilepsy and SUDEP [219]. On the other hand, deficits in seroto-
nergic signaling might also be involved in seizure-related breathing disturbances. 
Animal data suggest that postictal deficits in serotonergic neurotransmission can 
impair the arousal reaction to postictally elevated CO2 levels and cause hypoventi-
lation or respiratory arrest [207], which can be prevented by the administration of 
serotonin reuptake inhibitors [220]. Moreover, in a post-mortem study, the depletion 
of brainstem neurons involved in serotonin and galanin signaling was greater in 
SUDEP cases than in controls [221].

11.7.1 � Genetic Epilepsy and SUDEP

A growing body of evidence points to a genetic susceptibility to cardiorespiratory 
and autonomic dysfunction in epilepsy. Animal data suggest that an ion channelopa-
thy may cause both epilepsy and alter the autonomic control of the heart [222]. 
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Epilepsy-related alterations in the cardiac expression of sodium (Nav1.1/1.5), 
potassium (Kv4.2/4.3), calcium (NCX1), and cationic (HCN2/4) channels have thus 
been reported in animal models [223]. It remains to be determined whether or not 
this mechanism is associated with impaired vegetative regulation in patients with 
epilepsy and especially, with the risk of SUDEP. In an analysis of the entire exome 
sequencing of 61 SUDEP cases, mutations known to cause long QT syndrome were 
found in 7% of cases and an additional 15% had candidate variants in potentially 
predisposing genes to malignant cardiac arrhythmias [224]. Similarly, the effect of 
the SCN1A mutation on heart function may partly explain the increased risk of 
mortality in Dravet syndrome [225–227]. Other genetic defects might contribute to 
both epilepsy and cardiac arrhythmias in some individuals, for example, SCN5A, 
KCNQ1, and KCNH2 [172, 228, 229]. For individuals with pathogenic variants in 
genes including SCN1A, SCN1B, SCN8A, SCN2A, GNB5, KCNA1, and DEPDC5, 
there are varying degrees of evidence to suggest an increased risk for sudden death. 
Why the risk for sudden death is higher is not completely clear; however, in many 
cases, pathogenic variants in these genes are also associated with autonomic dys-
function, which is hypothesized as a contributing factor to SUDEP [230]. Several 
ion channel genes whose mutations are involved in cardiac arrhythmias are also 
expressed in the brain (Fig.  11.5) [231]. For example, the SCN5A gene, whose 
mutation is associated with long QT syndrome, is also expressed in the brain and is 
associated with epilepsy [232].
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Fig. 11.5  Main channelopathies associated with epilepsy and arrhythmias. AV atrioventricular, 
CPVT catecholaminergic polymorphic ventricular tachycardia, VF ventricular fibrillation. (From 
Costagliola G, et al. 2021 [231] with permission)
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11.7.2 � Detection and Prevention of SUDEP

Seizure control is the most important potentially modifiable risk factor of SUDEP. To 
best participate in their care, patients should be knowledgeable about the potential 
risks of seizures, including SUDEP.  The American Academy of Neurology and 
American Epilepsy Society recommend that clinicians counsel epilepsy patients 
regarding SUDEP.  Survey studies of epilepsy patients and family members of 
SUDEP patients have shown that they prefer to know about the risk factors of 
SUDEP during the early phase of management [233, 234]. Unfortunately, some data 
suggest that only a small minority of neurologists counsel all of their patients about 
SUDEP [235]. Ictal autonomic changes and interictal autonomic dysfunction might 
serve as diagnostic clues, providing targets for seizure detection. Retrospective 
studies suggest that heart rate alterations can be prevented by improving seizure 
control using ASMs [236–238]. ASMs often serve as a double-edged sword for 
epileptic patients. Although ASMs are mainly designed to help epileptic patients 
control their seizures, some might worsen their condition leading to other health 
complications [239], including cardiorespiratory dysfunctions such as myocardial 
infarction [20, 240], arrhythmias [20], respiratory depression [239], and even car-
diovascular death or SUDEP [240]. This has been particularly reported with sodium 
channel blockers [20], including the risk of an atrioventricular block with carbam-
azepine [241], sinus pause and hypotension with rapid administration of phenytoin 
[20, 242] or atrioventricular block or atrial fibrillation with lacosamide [243–245]. 
However, no formal relationship has been established between these drug-related 
adverse events and ictal arrhythmias [20]. A meta-analysis by Ryvlin reported that 
adjunctive ASMs might reduce the SUDEP risk by seven times when given to 
patients with intractable epilepsy [246]. The impact of epilepsy surgery on the risk 
of SUDEP is more controversial [146], however, lower mortality rates were observed 
in successful versus failed TLE surgery [155, 247–249]. In patient with drug-
resistant epilepsy, pacemaker implantation is advisable to reduce the risk of falls 
and life-treating injuries, although some individuals might not benefit from these 
devices’ injuries [188, 236, 250–252]. Of course, ASM adherence and surgical 
interventions, when appropriate, may improve seizure control and reduce the risk of 
SUDEP.  The effect of vagus nerve stimulation (VNS) on autonomic function 
remains uncertain. Heart changes associated with VNS are rare. Few cases of VNS-
induced bradycardia have been reported. In addition, data on the alterations in the 
parasympathetic tone of the cardiovascular system induced by VNS are contradic-
tory [253]. VNS was associated with a reduced SUDEP risk [254, 255]. VNS seems 
to reduce abnormally elevated levels of T-wave alternans, thereby stabilizing the 
electrical properties of the heart [256]. However, whether this intervention could 
help to reduce the risk of sudden cardiac death due to ventricular tachycardia and 
ventricular fibrillation (VT/VF) is currently unknown. Prone position and post-ictal 
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immobility are often cited in SUDEP cases, and some data suggest that nocturnal 
supervision might reduce the risk of SUDEP [257]. A Cochrane Review and the 
American Academy of Neurology–American Epilepsy Society SUDEP guidelines 
concluded that only very-low-certainty (Grading of Recommendations Assessment, 
Development, and Evaluation) and level C (modified Grading Recommendations 
Assessment) evidence was available to support the preventive impact of nocturnal 
supervision on SUDEP risk [146, 258]. This evidence was derived from retrospec-
tive case–control studies [254, 257, 259] and is supported by the observation that 
the majority of SUDEP events occur at night, during sleep in non-supervised indi-
viduals [151, 175, 199]. Epilepsy monitoring unit data from the MORTEMUS study 
also suggests that an immediate nonspecific postictal intervention from a caregiver 
is likely to prevent SUDEP [151]. Nursing interventions such as stimulating and 
turning the patient to the lateral position and suction with or without supplemental 
oxygenation have been reported to shorten the duration of peri-ictal hypoxemia and 
seizure duration [260, 261]. However, currently, no guidelines exist on the use of 
supplemental oxygen with seizures, and the potential benefits must be weighed 
against the significant cost and risks of home oxygen. Currently, there have been 
efforts to utilize the autonomic response to treat/reduce seizures and eventually 
SUDEP risk, in drug-resistant epilepsy patients. For example, autonomic biofeed-
back therapy has shown some promising results in reducing seizure frequency in 
drug-resistant temporal lobe epileptic patients by using their galvanic skin response 
(a measure of sympathetic activation) [262]. This suggests that changes in auto-
nomic network control such as blood pressure and heart rate may be monitored to 
not only predict and measure seizures but also be harnessed for treatment strategies 
against epilepsy. These autonomic responses may also be used to record and moni-
tor nocturnal seizures which may help to deter SUDEP [263]. Over the past 10 years, 
there has been a growing interest in the potential applications of mobile health tech-
nologies for seizure detection, with the objective of faster caregivers’ intervention 
and decreased risk of seizure-related injuries [161, 179, 264]. While detection of 
generalized TCSs has shown promising results with utilization either alone or in 
combination with accelerometers, automatic video detection, surface EMG, and bed 
alarms [265, 266], these approaches are much less sensitive for focal seizures. 
While it is clear that pacemaker implantation can be very helpful in preventing ictal 
syncope (i.e., syncope due to ictal asystole with subsequent hypotension and cere-
bral hypoperfusion) and falls, it is not clear that pacemaker implantation can prevent 
SUDEP. Schuele et al. found that when pacemakers were implanted in patients with 
ictal asystole and followed for 5 years, the risk of recurrent asystole appears to be 
low and that asystole may be a benign event [267, 268]. In this panorama, an inter-
esting perspective remains the development of technologies capable of early detec-
tion of autonomic alterations and providing warnings of different types of seizures, 
thus reducing the risk of SUDEP.
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