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Preface

Abiotic stressors, such as drought, extreme temperature, heavy metals, or high 
salinity, are causing huge crop losses worldwide. These abiotic stressors are 
expected to become more extreme, less predictable, and more widespread in the 
near future. With the rapidly growing human population and changing global cli-
mate conditions, it is critical to prevent global crop losses to meet the increasing 
demand for food and other crop products. The harm of abiotic stresses includes the 
disruption of cellular redox homeostasis, reactive oxygen species (ROS) overpro-
duction, and oxidative stress damages of cellular plant components. Plants have 
different mechanisms to fight stress, and these mechanisms are responsible for 
maintaining the required homeostasis in plants. Recently, the study of gasotransmit-
ters in higher plants has attracted much attention, especially for abiotic stress. 
Various signalling molecules have pivotal roles in the regulation of plant growth and 
development. Additionally, they emerged as cellular signaling molecules with key 
functions in the regulation of responses to various abiotic and biotic stressors. Their 
signaling pathways are interconnected in a complex network, which provides plants 
with an enormous regulatory potential to rapidly adapt to their environment and 
utilize their limited resources for growth and survival in a cost-efficient manner.

Gasotransmitters are gaseous molecules that are generated by organisms and 
transmit biological signals. Research on gasotransmitters is rapidly expanding and 
knowledge regarding the potential of gasotransmitters in biology and medicine is 
accumulating. Gasotransmitters, such as hydrogen gas (H2), hydrogen sulfide (H2S), 
nitric oxide (NO), carbon monoxide (CO), and methane (CH4), are unique and regu-
late specific biological functions. Over the past few decades, the roles of these sig-
naling molecules, especially NO and H2S, have been extensively studied for their 
application in plants. Recently, the emissions of endogenous gasotransmitters in 
plants have been widely studied and analysed, thereby providing information to 
facilitate our understanding of new gasotransmitters signaling pathways.

Given the multidimensional role of these signaling molecules, research over the 
past decades in mitigating abiotic stresses in plant biology and from an agriculture 
point of view, we bring forth a comprehensive volume Gasotransmitters Signaling 
in Plants Under Challenging Environment. The volume comprises chapters from 
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diverse areas dealing with biotechnology, molecular biology, postharvest technol-
ogy, and metabolomics among others.

Moreover, we are highly grateful to all our contributors for accepting our invita-
tion for not only sharing their knowledge and research but for venerably integrating 
their expertise in dispersed information from diverse fields in composing the chap-
ters and enduring editorial suggestions to finally produce this venture. We also 
thank the Springer-Nature team for their generous cooperation at every stage of the 
book production.

Lastly, thanks are also due to well-wishers, research students, and editors’ family 
members for their moral support, blessings, and inspiration in the compilation of 
this book.

Aligarh, India  Tariq Aftab
  
Granada, Spain  Francisco J. Corpas
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Chapter 1
Role of Gasotransmitters in Hormonal 
Responses of Plants to Abiotic Stress

Irina F. Golovatskaya and Nikolay I. Laptev

Abstract The hormonal regulation system refers to remote control systems of 
plant processes. It coordinates the functioning of various tissues and organs and 
maintains the relationships of the processes by internal rhythms, and also coordi-
nates all the processes with the changes in the environment. Gasotransmitters (nitric 
oxide, hydrogen sulfide, carbon monoxide) are involved as secondary messengers in 
the transmission of hormonal signals. These gaseous compounds are components of 
the net of signals that regulate plant functions, and the implementation of their 
effects depends on the concentration and direction of action. Under stress condi-
tions, the hormonal system through gasotransmitters triggers compensatory- 
adaptive mechanisms that prevent the disturbance of homeostasis of the plant 
organism. In this chapter, we have summarized information about the interaction 
between gasotransmitter molecules and their regulatory functions in phytohormone- 
controlled growth and stress-responses.

Keywords Gasotransmitters · Hormonal regulation · Adaptive mechanisms · 
Stress-responses

1.1  Initial Considerations

Due to their sessile mode of life, plants are exposed to impact of numerous stress-
ors. This leads to the development of different strategies by the plants for respond-
ing to various stressors (Aftab and Roychoudhury 2021). The stress signal of the 
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external environment is transmitted through the plant using the hormonal system, 
which is represented directly by phytohormones, as well as hormone-like substances 
(polyamines, neurotransmitters-like and gasotransmitters) and is involved in the 
formation of defense reactions. Each of the hormones triggers its own signaling 
chain that is consistent with the functioning of other signaling pathways in the plant. 
As a result, a whole signaling network is created focused on maintaining the vital 
activity or survival of the plant under stressful conditions. Thanks to the nodes of 
interaction of chains, in which gasotransmitters (GTs) can participate, changes 
occur at the genomic and postgenomic levels, leading to a change in the whole 
metabolism. The latter determines the redistribution of energy and metabolic 
resources available to the body, and the switching of the growth and development 
program to the protection program.

It has now been shown that GTs play the role of messengers in the transduction 
of phytohormone signals. It is believed that a molecule can become a signal mes-
senger if it meets several criteria. Messengers must be synthesized in a specific 
place and at a certain time, when there is a need for it. The molecule must be recog-
nized by other molecules to convey specific information and must be deleted when 
there is no need to translate (Hancock 2017). Modern research confirms compliance 
with the criteria for nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide 
(CO) molecules. In addition, these molecules are combined into the GTs group of 
plant cells, since they are characterized by similar properties: gaseous state; free 
migration across membranes; functioning at physiological concentrations; the exis-
tence of specific systems of enzymatic (NO, H2S and CO) and non-enzymatic (NO 
and CO) synthesis; lack of classic receptors; interaction with functional target 
groups of macromolecules; the temporary nature of the increase in the content of 
GTs under the influence of factors with their subsequent binding or transformation 
into other compounds (He and He 2014; Kolupaev et al. 2019). Since high concen-
trations of GTs have a negative effect on cell function, processes aimed at maintain-
ing the dynamic equilibrium of the levels of these molecules provide one of the 
mechanisms of plant survival.

1.2  General Characteristics of Gasotransmitters

1.2.1  General Characteristics of Nitric Oxide (NO)

NO, playing the role of GT, regulates various processes in organisms. In higher 
animals and many insects, NO formation is caused by oxidation reactions of 
L-arginine to L-citrulline under the NO synthase (NOS) action (Montfort et  al. 
2017). Several pathways for NO synthesis have been suggested in plants (Fig. 1.1a). 
The most studied mechanisms include nitrite reduction by NIA1 and NIA2 
(NITRATE REDUCTASE 1 and 2, NR1 and NR2, respectively). In contrast, the 
functioning of an arginine-dependent pathway involving NOS-like synthase in 

I. F. Golovatskaya and N. I. Laptev
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Fig. 1.1 Scheme of synthesis and utilization of gasotransmitter molecules in plants. (a) NO nitric 
oxide, (b) CO carbon monoxide, (c) H2S hydrogen sulfide (See description in text). AsA ascorbate, 
CO2 carbon dioxide, CYP55 cytochrome P450 NO-reductase, DES1 L/D-cysteine desulfhydrase, e 
electron, GSH glutathione, GSNO S-nitrosoglutathione, GSNOR S-nitrosoglutation reductase, 
GSSG glutathione disulfide, HO heme oxygenase-1, hv light, L-arg L-arginine, NADН nicotin-
amide adenine dinucleotide reduced form, N2O nitric oxide, NO2

− nitrite, NO3
− nitrate, NR nitrate 

reductase, О2 oxygen, ROS reactive oxygen species

plants remains controversial. However, NO formation in peroxisomes is carried out 
by a protein similar to animal NOS (Astier et  al. 2018; Corpas et  al. 2019a, b). 
Nonenzymatic NO formation during the conversion of nitric oxides (e.g., N2O) and 
reduction of NO2

− at pH < 7 in the presence of reducing agents such as ascorbate 
(AsA) has also been suggested.

NO homeostasis is maintained by coordinated processes of its synthesis and 
destruction. NO removal occurs in different ways. In particular, the green microalga 
Chlamydomonas reinhardtii performs light-dependent reduction of NO to N2O at 
the expense of electrons from the ETC of photosynthesis using the flavodiiron pro-
tein, while the dark reaction is mediated by the cytochrome P450 NO-reductase 
(CYP55) (Burlacot et al. 2019).

Directed transport of gaseous compounds is difficult; therefore, S-nitrosothiols 
(SNOs), which are formed by S-nitrosation reactions of thiols and proteins, act as 
spare and transport forms of NO.  S-nitrosation refers to one of the significant 
NO-mediated posttranslational modifications of proteins (Jahnová et al. 2019) that 
serve as components of NO signaling pathways. Significant SNOs include GSNO 
(S-nitrosoglutathione), which is formed in O2-dependent interactions between reac-
tive nitrogen species (RNS) and glutathione (GSH). The enzyme GSNOR 
(S-nitrosoglutatione reductase; EC 1.1.1.1) reduces GSNO to GSSG (glutathione 
disulfide) in the presence of NADH (Sakamoto et  al. 2002). Thus, the enzyme 
GSNOR, by removing GSNO, controls NO homeostasis and is involved in many 
plant development and defense programs (Barroso et  al. 2006; Lee et  al. 2008; 
Leterrier et al. 2011; Guerra et al. 2016). The latter include responses to injury and 
jasmonic acid (JA)-dependent responses (Díaz et al. 2003; Espunya et al. 2012).

The use of exogenous sources of NO shows that nitrates (NaNO3) cause a stron-
ger and more prolonged increase in NO than L-arginine in the roots of seedlings of 
Triticum aestivum L.  The accumulation of NO is inhibited by an NR inhibitor 
(sodium tungstate) or an animal NOS inhibitor (methyl ester of NG-nitro-L-arginine), 

1 Role of Gasotransmitters in Hormonal Responses of Plants to Abiotic Stress
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which allows us to discuss two pathways of NO biosynthesis (Karpets et al. 2018). 
These pathways are antagonistic to each other, since a combination of NO donors 
causes a weaker effect than individual donors.

In the lichen Ramalina farinacea, NO synthesis occurs during rehydration (lipid 
peroxidation) and reduction (NR functioning). In addition, NADPH-diaphorase 
activity was detected, indicating a manifestation of NOS-like activity (Expósito 
et al. 2019). However, it is assumed that each of the symbionts included in the lichen 
may have its own enzymes NR and NOS with specific characteristics that increase 
resistance to environmental stress factors.

Using mutant (nia1 nia2) and inhibitory (NG-monomethyl-L-arginine) methods 
on Arabidopsis thaliana leaves, NOS-like activity enhanced by mechanical stress 
has been shown (Garcês et al. 2001). NR has also been shown to be involved in NO 
synthesis in guard cells in response to abscisic acid (ABA) and Verticillium dahlia 
toxins in Arabidopsis leaves (Desikan et al. 2002; Shi and Li 2008). NO is involved 
in the regulation of various processes: stomatal movement, root growth, plant devel-
opment (seed germination, flowering, senescence) and stress resistance 
(Vidhyasekaran 2014).

The signaling function of NO is carried out through the cGMP-dependent path-
way or the cGMP-independent pathway based on S-nitrosylation of protein mole-
cules (Gupta et  al. 2020). The first pathway also involves calcium and reactive 
oxygen species (ROS) in NO signaling; the second pathway involves nitrosation 
reactions (modification of protein thiol groups) (Lindermayr et  al. 2005; 
Vidhyasekaran 2014). Nitric oxide can oxidize and interact with metals.

The use of NO donors (either nitrate or L-arginine) causes changes in plant 
metabolism. First of all, the content of phytochelatin, AsA, GSH and activity of the 
antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), ascorbate per-
oxidase (APX), guaiacol peroxidase (POD) and others increases (Karpets et  al. 
2018; Nahar et al. 2018). Nitric Oxide prevents the damaging effect of NaCl on the 
growth of Brassica juncea L. plants, activating the accumulation of proline and the 
intracellular supply of Na+, Cl−, and K+ (Kholodova et al. 2011).

1.2.2  General Characteristics of Carbon Monoxide (CO)

One of the ways of CO formation is the degradation of heme during its oxidation by 
the plastid enzyme heme oxygenase (HO) (Fig.  1.1b). At the same time, other 
sources of CO have been proposed for legumes (soybeans): lipid peroxidation and 
ureide metabolism (Wang and Liao 2016). Air can also be another CO source. The 
uptake of CO by plant leaves occurs in the light (Bidwell and Bebee 1974) and 
depends on the leaf age. The absorbed CO can be oxidized to CO2 (corn) or reduced 
by being incorporated into serine (beans). Brahm (1986) annotated the ability of C3 
and C4 herbaceous plants to absorb and release CO. It has been suggested that the 
CO uptake pathway is not related to photosynthesis because the magnitude of the 
process is similar in different plant species. However, the release of CO by plants 

I. F. Golovatskaya and N. I. Laptev
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depends on light and the CO2/O2 ratio in the environment. Since CO release is stim-
ulated with increasing O2 concentration, it has been suggested that CO in C3 plants 
is a byproduct of glycolate metabolism (Fischer and Lüttge 1978; Lüttge and 
Fischer 1980).

It was shown that the direction of CO action in the plant depends on its concen-
tration. At low concentrations, CO acts as an important signaling molecule that 
regulates the physiological activity of plants; at the same time, it also has a toxic 
effect at high concentrations. CO inhibits mitochondrial cytochrome c oxidase and 
chloroplastic monooxygenase P450 enzymes (Muneer et al. 2014). With an increase 
in CO concentration, its negative effect on photosynthesis increases. CO and nitro-
gen oxides (NOx) treatment increases the ROS level. Depending on the CO and 
NOx level, different effects were revealed: under the action of low oxides concen-
trations, detoxification of oxidative damage occurs by increasing the antioxidant 
enzymes activity, whereas under the action of high GTs concentrations, the enzyme 
activity is reduced and AsA-GSH pathways are disrupted.

1.2.3  General Characteristics of Hydrogen Sulfide (H2S)

Plants use a variety of reactions to maintain H2S homeostasis (Fig. 1.1c). H2S for-
mation occurs by catalytic decomposition of L/D-cysteine in the presence of the 
coenzyme-5′-pyridoxalphosphate by L/D-cysteine desulfhydrase (DES1; EC 
4.4.1.1 and EC 4.4.1.15), or in the presence of hydrogen cyanide by cyanoalanine 
synthase (EC 4.4.1.9). In addition, the sulfite reduction reaction with sulfite reduc-
tase (EC 1.8.7.1) in the presence of ferredoxin can be a source of H2S. Meanwhile, 
H2S binding is performed by cysteine synthase (EC 4.2.99.8) through its incorpora-
tion into cysteine (Li 2013; Liu et al. 2017; González-Gordo et al. 2020; Gautam 
et al. 2021).

The intensity of H2S release by plants and their organs depends on the intensity 
of metabolic activity and environmental factors (Wilson et al. 1978; Rennenberg 
1983; Muñoz-Vargas et al. 2022). This process enhances the activity of sulfite and 
sulfate metabolism. The functions of H2S in the plant are dose-dependent: at low 
concentrations, H2S is used as a sulfur source, whereas at high concentrations and 
prolonged exposure it impairs growth processes (Li 2013; Li et al. 2016; Hancock 
2017; Huo et al. 2018) and reduces plant productivity. H2S is an inhibitor of electron 
transfer in the mitochondrial chain and thus suppresses ATP production (Dorman 
et al. 2002).

However, at low concentrations, H2S is considered a signaling molecule involved 
in many plant development and stress tolerance processes caused by excess heavy 
metal salts, drought, high and low temperatures, and pathogens (Li et  al. 2016; 
Corpas 2019). For example, H2S treatment slows fruit ripening and aging (Hu et al. 
2014; Siddiqui et al. 2021; Molinett et al. 2021), prevents heavy metal accumulation 
(Corpas and Palma 2020; Arif et al. 2021; Raza et al. 2021), and suppresses oxida-
tive stress (Arif et  al. 2021). The latter function of H2S is not related to direct 

1 Role of Gasotransmitters in Hormonal Responses of Plants to Abiotic Stress
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oxidant uptake because low concentrations of H2S are usually noted (Li and 
Lancaster Jr 2013). The most likely molecular mechanism that uses H2S as a gaso-
transmitter is post-translational modification of cysteine residues of persulfide- 
forming proteins (RSSH) (Corpas et al. 2021).

The inhibitory effect of exogenous H2S on pericarp aging in harvested litchi has 
been shown (Siddiqui et al. 2021). H2S reduces the accumulation of quinone, ROS 
(O2

⋅- and H2O2) and electrolyte leakage through the membrane, and maintains high 
levels of anthocyanins, ascorbic acid, the sum of phenols and antioxidants. In addi-
tion, H2S increases the activity of phenylalanine ammonia lyase (PAL) and inhibits 
the activity of peroxidase and polyphenol oxidase, which may indicate the effective-
ness of H2S in slowing down metabolic activity.

Fu et al. (2013) found that H2S acts as a signaling molecule under cold stress in 
Vitis vinifera L. Cold stress increases H2S levels and L/DCD/DES1 gene activity and 
expression. At the same time, exogenous H2S (NaHS) increases SOD activity and 
expression of VvCBF3 and VvICE1 genes, but reduces the intensity of lipid peroxi-
dation (LPO) and cell membrane permeability.

1.3  Impacts of Cross-Talk Between Gasotransmitters 
and Phytohormones on Plant Development 
and Stress Resistance

Hormonal regulation system refers to remote control systems of plant processes. It 
coordinates the functioning of various tissues and organs and maintains the correla-
tive relationships of the processes occurring in them in accordance with internal 
rhythms, and also coordinates the processes with changes in the environment. 
Gasotransmitters (NO, H2S, and CO) are involved as secondary messengers in the 
transmission of hormonal signals. These gaseous compounds act as components of 
interference in many control systems of the plant organism under normal conditions 
and during the adaptation of plants to unfavorable environmental conditions. 
Changes in the level of GTs are accompanied by transformations in the hormonal 
status of plants (Banerjee et al. 2018). The integration of ecological and hormonal 
signaling pathways, including GTs, sheds light on unique adaptive strategies in 
plants and expands the ways of influencing plant life.

1.3.1  Nitric Oxide-Phytohormones Cross-Talk under 
Abiotic Stress

The ability of a plant to mobilize defense reactions depends on its physiological 
status and stage of its development. Metabolism and resistance to stress factors also 
change when the availability of nutrients to the plant is limited. NO along with 

I. F. Golovatskaya and N. I. Laptev
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phytohormones is involved in the regulation of plant activity when the nitrogen 
level in plants is reduced, because NO homeostasis is caused by nitrogen metabo-
lism. It was shown that during the formation of plant immunity Medicago truncat-
ula in relation to the oomycete Aphanomyces euteiches, there is a cross-interaction 
between nitrogen metabolism and NO-signaling (Thalineau et al. 2016), which is 
controlled by hormones. These interactions are involved in the redistribution of 
nutrients in favor of growth reactions rather than defense. In particular, nitrogen- 
deficiency causes the salicylic acid (SA) accumulation by the plant leaf. At the same 
time, JA and ethylene altered the expression of NO3

−-transporter genes (NRT1.8 and 
NRT1.55) by activating the former and inhibiting the latter (Acosta and Farmer 
2010). Such regulation of NO3

−-transporters function was responsible for redistri-
bution of NO3

− into the roots and activation of their growth (Fig. 1.2a).
In the case of P-starvation, numerous signaling compounds are involved in the 

signal transduction pathway: phosphorus, inositol polyphosphate, miRNAs, cytoki-
nins (Сk), photosynthetic products, and Ca2+ (Ruffel 2018). Under conditions of 
phosphorus deficiency, the H+-ATPase of the plasma membrane is activated, caus-
ing “acidic growth” of the cells. This process is associated with the interaction of 
NO with IAA (Fig. 1.2b). During plant root formation, auxins cause an increase in 
NO levels (Pagnussat et al. 2002) that increases membrane-bound enzyme activity 
and modifies the auxin receptor TIR1 through the S-nitrosation reaction (Terrile 
et  al. 2012; Berleth et  al. 2004). The reaction enhances the interaction between 

Fig. 1.2 Scheme of cross-interaction between phytohormones and gasotransmitters with a defi-
ciency of macronutrients (N, P, Mg) in the environment and plant (See description in text). ACO 
1-aminocyclopropane-1-carboxylate (ACC) oxidase, ACS ACC synthase, AUX1 auxin influx trans-
porter, DELLA gibberellin signaling negative regulators, ET ethylene, GA gibberellins, IAA 
indole- 3-acetic acid, JA jasmonic acid, NO nitric oxide, NOS-L NO synthase-like, NR nitrate 
reductase, NRT1.5 bidirectional nitrate-transporter, NRT1.8 nitrate-transporter, PIN1/2 peptidylp-
rolyl cis/trans isomerase 1/2, PT1 inorganic phosphate (Pi) transporter 1, SA salicylic acid, -SNO 
S-nitrosation, TIR1 protein transport inhibitor response 1
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SCFTIR1 and Aux/IAA, promoting degradation of the latter and activation of gene 
expression (Feng et al. 2013).

With P-deficiency in rice, there is an interaction between ET and NO. Following 
an increase in NO production is followed by a sharp jump in ET levels. It is expected 
that both molecules can be involved in optimizing the transport and efficiency of 
using the deficient Pi. During aging of the petunia flower, ET reactivates phospho-
rus turnover by regulating its transport due to the increased expression of the trans-
porter PhPT1 gene (Chapin and Jones 2009). During P-starvation, NO counteracts 
the stimulatory effect of GA in the regulation of the Arabidopsis primary root (PR). 
P-deficiency reduces GA biosynthesis and increases NO in the pericycle, endoderm 
cells and the buds of new plant roots, which promotes the formation of lateral roots 
(LK). Whereas upon inhibition of the growth of primary roots, NO turns on the 
pathway of degradation of the negative regulator of GA signaling DELLA (Wu 
et al. 2014; Jiang and Fu 2007). An interaction of NO with hormones, such as eth-
ylene, GA, and auxins during P deficiency have been proposed in some key accli-
mation responses (Galatro et al. 2020).

With Mg deficiency, ET and NO increase the auxin level in Arabidopsis roots 
(Liu et al. 2018), inducing the expression of the AUX1 (AUXIN-RESISTANT1), 
PIN1, and PIN2 transporters (Fig. 1.2c). In turn, auxin stimulates the production of 
ET and NO by activating the activity of ACO [ACC (1-aminocyclopropane-1- 
carboxylate) oxidase], ACS (ACC synthase), NR and NOS-L (NO synthase-like). 
These processes form a NO → ET-auxin feedback loop.

The participation of hormones and NO in the regulation of growth processes in a 
plant has been shown (Fig. 1.3a). In particular, IAA and NO modulate the structure 
of plant shoots and leaves (Sánchez-Vicente et al. 2021). In NO-deficient mutants, 
the IAA level increases, which determines the participation of NOS in new NO 
production. Polar auxin transport supported by the PIN1 transport protein is known 
to determine leaf shape. In turn, NO modulates the level of IAA-transporter during 
IAA-mediated leaf development. Joint participation of NO and auxin in the activa-
tion of cell division and embryogenesis in alfalfa leaf cell cultures was shown 
(Otvös et al. 2005). The NO activity is confirmed by the data on the stimulating 
effect of the NO-donor and the inhibitory effect of the NO-acceptor and NO synthe-
sis inhibitor on auxin-dependent cell division. NO is also considered to mediate the 
auxin action root hair growth, as NO-donor-treated lettuce plants increase their 
number and length (Lombardo et al. 2006). A cross-interaction between the root 
growth regulators auxins and NO was also established on cucumber explants. NO 
modulates the expression of genes that regulate the cell cycle and the formation of 
LR buds in the pericycle.

Under saline conditions, the levels of IAA and zeatin (Z) decrease and the level 
of ACC (an ethylene precursor) increases. The use of sodium nitroprusside (SNP) as 
a NO donor may attenuate the negative influence factor (Campos et al. 2019). A 
negative correlation was shown between IAA and Z levels and the Na+ content in 
L. sativa leaves, while a positive correlation was noted for ACC (Fig. 1.3b). Such a 
dynamics of hormones in the leaves makes possible to increase the plant sensitivity 
to stress and redistribute resources for plant protection. Following changes in 
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Fig. 1.3 Scheme of cross-interaction between phytohormones and gasotransmitters in the regula-
tion of root and shoot growth (a) and under the influence of salinization (b), heavy metals (c), and 
hyperthermia (d) (See description in text). ABA abscisic acid, ABP actin binding protein, AKT 
serine/threonine kinase, AR adventitious root, AsA-GSH ascorbate-glutathione, CAT catalase, 
CDKA1 cyclin-dependent kinase 1, cGMP cyclic guanosine monophosphate, Ck cytokinine, CO 
carbon monoxide, CYCA2;1 Cyclin a2;1, CYP707A1 Cytochrome P450 family 707, DES1 L/D- -
cysteine desulfhydrase, ET ethylene, HO heme oxygenase-1, H2S hydrogen sulfide, IAA indole- 3- 
acetic acid, JA jasmonic acid, KRP2 Kip-related protein2, LR lateral roots, MT melatonin, Na+/H+ 
Na+/H+-antiporter, NO nitric oxide, NR nitrate reductase, PAL phenylalanine ammonia-lyase, PIN, 
auxin transporter protein, POD peroxidase, Pro proline, ROS reactive oxygen species, SA salicylic 
acid, SL strigolactones, SOD superoxide dismutase, -SNO S-nitrosation, -SSH S-persulfidation

hormone levels in response to salinity, NO is produced, which, using feedback 
mechanisms, restores the hormone concentration. During salinity, NO provides sta-
bilization of ionic exchange: increases Ca2+ concentration, increases Na+ outflow by 
stimulating the expression of transporter genes (H+-ATPase, Na+/H+-antiporter) and 
inducing the expression of K+-channel gene (AKT1-type), which is the main way of 
K+ uptake by roots. NO increases proline (Pro) accumulation.

Under conditions of osmotic stress and Cd toxicity, the interaction of SA and NO 
has been shown (Fig. 1.3c). The addition of SA and/or NO (SNP) in the presence of 
Cd restores rice leaf growth. The action of these signaling molecules limits Cd 
uptake and accumulation, decreasing ROS-induced Cd accumulation and stabiliz-
ing redox status by maintaining AsA and GSH levels and antioxidant enzyme (SOD, 
CAT) activity. The restoration of growth was associated with the action of SA and 
NO on the protection of photosynthetic pigments and maintenance of the water 
level in the leaves. The combined use of SA and NO was more effective than the 
action of the factors separately, which indicates the intersection of SA and NO sig-
naling in defense reactions (Mostofa et al. 2019).

When plants are injured, the interaction of NO, ROS and auxin is noted (Piacentini 
et al. 2020). Among the early reactions, a short-term release of NO occurs, which is 
accompanied by an increase in ROS. Stress products modulate the redox status of 
the cell. At the same time, increased NO reduces the level of endogenous IAA. With 
a decrease in ROS and NO, homeostasis of auxin is gradually restored, which, 
together with NO, regulates the process of plant wound healing (Casalongué 
et al. 2012).

1 Role of Gasotransmitters in Hormonal Responses of Plants to Abiotic Stress
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1.3.2  Carbon Monoxide-Phytohormones Cross-Talk Under 
Abiotic Stress

It was found that CO is involved in the regulation of tomato root structure (Guo 
et al. 2008). The CO treatment promotes the formation of LR (Fig. 1.3a), which is 
also consistent with the activity of the CO biosynthesis enzyme heme oxygenase-1 
of tomato. Exposure to CO increases the intracellular generation of NO in the roots 
and increases the total levels of IAA in various tissues of tomato. In addition, the 
action of CO is blocked by N-1-naphthylphthalamic acid (an inhibitor of auxin 
transport) and cPTIO (a NO acceptor). In this regard, we can talk about the interac-
tion of IAA-, NO-, and CO-mediated pathways of formation of LR. In the regula-
tion of adventitious root (AR) development in plants, a relationship between the gas 
transporter and hormones has also been shown. Xuan et al. (2008) found that CO 
and the enzyme HO-1 are involved as components of the signaling system in the 
IAA-induced AR pathway of Cucumis sativus. At the same time, HO-1 regulates 
cucumber AR growth induced by H2S (Lin et al. 2012).

Salt stress causes water deficiency and decreased SOD and CAT activity in 
Arabidopsis and Solanum tuberosum plants (Fig.  1.3b) (Efimova et  al. 2018; 
Shkliarevskyi et al. 2021b). Treatment with a CO donor has a protective effect in 
wild-type Arabidopsis plants after stress induction, but it is absent in mutants coi1 
(coronatine insensitive 1) and jin1 (jasmonate insensitive 1). This indicates the par-
ticipation of the JA in the adaptive processes induced by exogenous CO 
(Shkliarevskyi et al. 2021b).

The ABA signaling chain that induces stomatal closure also involves CO and the 
downstream components NO and cGMP (Cao et al. 2007) (Fig. 1.4). CO may be 
involved in the H2S signaling system, which plays a cytoprotective role in suppress-
ing the reactions responsible for programmed cell death, usually induced by GA 
(Xie et al. 2014). It follows from this that CO can induce various IAA-, ABA-, JA- 
and GA-dependent growth and defense responses in plants.

1.3.3  Hydrogen Sulfide-Phytohormones Cross-Talk Under 
Abiotic Stress

H2S plays the role of a signaling mediator in the implementation of the protective 
effect of phytohormones during abiotic stress of plants. H2S is used as GT to sup-
press oxidative stress caused by pollution with heavy metal salts (Fig.  1.3c). In 
particular, under stress conditions caused by the action of Pb and Cd, SA promotes 
the accumulation of endogenous H2S in leaves (Zanganeh et al. 2018; Kaya 2020). 
In addition, the cross interaction between SA and H2S reduces the phytotoxicity of 
heavy metals by reducing their accumulation associated with increased signaling of 
glycine-betaine and NO, as well as with the activation of enzymes involved in the 
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Fig. 1.4 Scheme of cross-interaction between phytohormones and gasotransmitters in the regula-
tion of root and shoot growth (a) and under the influence of salinization (b), heavy metals (c), 
hyperthermia (d) (See description in text). ABA abscisic acid, ABI1 protein phosphatase, ABI4 
transcription factor ABA insensitive 4, ABA signaling pathway repressor, ACO 1- aminocycloprop
ane- 1-carboxylate (ACC) oxidase, AR adventitious root, BR brassinosteroid, BRI1 brassinosteroid 
insensitive 1, brassinosteroid receptor, leucine-rich receptor-like protein kinase, BZR1 protein 
brassinazole-resistant 1, brassinosteroid signaling positive regulator, CAT catalase, CCD7 carot-
enoid cleavage dioxygenases, CDPK1/6 calcium-dependent protein kinases 1/6, CDKA1 cyclin- 
dependent kinase 1, cGMP сyclic guanosine monophosphate, Ck cytokinine, CO carbon monoxide, 
CYCA2;1 Cyclin a2;1, DES1 L/D-cysteine desulfhydrase, DWARF14 ɑ/β-hydrolase, strigolactone 
receptor, ET ethylene, Gα heterotrimeric G-protein subunit, HO heme oxygenase-1, H2S hydrogen 
sulfide, IAA indole-3-acetic acid, JA jasmonic acid, KRP2 Kip-related protein2, LR lateral roots, 
MAPK-cascade mitogen-activated protein kinase-cascade, MAPKKK18 mitogen-activated protein 
kinase kinase kinase 18, ABA signaling pathway, MAX2 more axillary growth2, MPK9/12 
mitogen- activated protein kinases 9/12, MT melatonin, NO nitric oxide, NR/Nia1 nitrate reductase, 
OST1 open stomata protein kinase 1, PAL phenylalanine ammonia-lyase, POD guaiacol peroxi-
dase, RBOHD/F respiratory burst oxidase homologs D/F, ROS reactive oxygen species, SA sali-
cylic acid, SCF Skp1–Cullin–F-box, SHAM salicylhydroxamic acid, SL strigolactones, SLAC1 
slow anion channel-associated 1, SOD superoxide dismutase, -SNO S-nitrosylation, -SSH 
S-persulfidation

ascorbate-glutathione cycle. SA and H2S increase the water potential and proline 
(Pro) content in the leaves.

The treatment of Triticum aestivum L. seedlings with SA increases H2S levels 
and SOD, CAT, and POD activities in roots, favoring resistance to hyperthermia 
(Fig. 1.3d). Inhibitors of H2S synthesis (hydroxylamine, potassium pyruvate) in part 
eliminated the effects of SA, whereas application of NaHS (H2S donor) replicated 
the effect of SA, and combined application of the hormone and H2S donor further 
increased these parameters (Karpets et al. 2020).

The role of melatonin in reducing oxidative stress in T. aestivum L. during hyper-
thermia by reducing the intensity of lipid peroxidation (LPO) and H2O2 and increas-
ing the antioxidant enzyme activities was shown (Iqbal et  al. 2021) (Fig.  1.3d). 
Melatonin also increases photosynthesis in the plant to provide energy and 
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metabolites under stress. H2S is involved in melatonin signaling, since the adminis-
tration of the inhibitor of its synthesis hypotaurin reverses the positive effect of the 
hormone.

1.3.4  Cross-Talk Between Gasotransmitters 
in Hormone- Dependent Growth Responses 
and Responses to Abiotic Stress

Root formation is a convenient model for studying the interaction of GTs and hor-
mones (Fig. 1.3a). The H2S donor promotes the formation (number and length) of 
AR of Ipomoea batatas L., mediated by NO and IAA, because an increase in H2S is 
followed by an increase in NO and IAA (Zhang et al. 2009). H2S-mediated root 
formation is reduced by an inhibitor of IAA transport and an NO scavenger, sug-
gesting an action of H2S upstream of the IAA and NO signaling pathways. Similar 
phenomena in the H2S-dependent organogenesis of roots are observed in the shoots 
of Salix matsudana var. Toruosa Vilmak and in the seedlings of Glycine max L. Like 
auxin, H2S can induce LR formation in seedlings of S. lycopersicum L. (Fang et al. 
2014). It has been shown the NaHS- and NAA-induced modulation of regulatory 
genes of the cell cycle, in particular, upregulation of Cyclin-dependent kinase 1 
(SlCDKA 1) and SlCYCA2; 1 (Cyclin a2;1) and downregulation of Kip-related pro-
tein2 (SlKRP2). H2S may influence the capacity of a component of the auxin- 
signaling pathway, regulating formation of LR.  The relationship between the 
signaling pathways of auxin and H2S and actin-dependent development of the root 
system in Arabidopsis has been shown (Jia et al. 2015). High concentrations of H2S 
inhibit IAA transport through changes in the polar distribution of PIN transporters 
in cells via changes in the expression of actin binding proteins (ABP) and vesicle 
transport. ABP is considered as downstream effectors of the H2S signal, regulating 
the assembly and depolymerization of F-actin in root cells. GSNOR regulates 
growth through changes in the functioning of the hormonal auxin and abscisic acid 
signaling pathways. As an example, in the A. thaliana gsnor1–3 mutant, reduced 
GSNOR activity causes reduced basipetal IAA transport and its signal transduction, 
leading to impaired growth (Shi et al. 2015b).

Phytohormones are directly involved in plant adaptation to living conditions 
through coordination of endogenous processes according to environmental factors. 
In nature, very often several abiotic stress-factors act simultaneously. The phenom-
enon of cross-adaptation was discovered, which is a process of increasing the body’s 
resistance to this factor as a result of adaptation to an agent of a different nature (Li 
et al. 2016). The mechanism of adaptation to different factors, controlled by several 
hormones, involves many interconnected secondary messengers (Ca2+, cAMP, 
cGMP, MAPK-cascade, H2O2, H2S and NO and others) participating in a complex 
signaling network. Cross-adaptation manifests itself through increased activity of 
defense systems (enzymatic and non-enzymatic antioxidants, osmolytes, stress 
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proteins) and optimization of nutrient composition. Regulating the vital processes 
of plants, H2S, NO, and CO are involved in cross-adaptation of plants, often realiz-
ing the functions of a large number of phytohormones.

During the formation of plant resistance to hyperthermia, cross paths of CO and 
H2S, ABA and H2S, SA and H2S signals were established (Li et al. 2015; Li and Gu 
2016; Li and Jin 2016). Pretreatment with CO, ABA and SA increases the thermal 
stability of the cells of the Nicotiana tabaccum L. suspension in vitro and of maize 
seedlings. At the same time, H2S can play its signaling role downstream of CO-, 
ABA- and SA-induced thermal stability, since CO, ABA and SA increases the activ-
ity of the enzyme DES1 (Fig. 1.3d). In addition, as evidence for the involvement of 
H2S in the SA and ABA signaling pathways are experiments with the addition of its 
donor and an inhibitor of its biosynthesis. Hyperthermia resistance is enhanced in 
the first case and inhibited in the second case.

A study of the induction of heat tolerance in T. aestivum L. seedlings showed a 
cross-interaction between NO and CO (Fig. 1.3d). NO acts as a signaling molecule 
in the anti-stress CO mechanism at high positive temperature, regulating ROS for-
mation (Shkliarevskyi et al. 2021a).

The interaction of the SA and MeJA signaling pathways is known. MeJA stimu-
lates senescence of leaf, whereas SA acts as an antagonist in the regulation of this 
process by engaging the NO signal controlled by the NOS enzyme (Ji et al. 2016).

NO and H2S donors increase the salt tolerance of A. thaliana by reducing the 
intensity of LPO and permeability of membrane as well as by increasing the activity 
of SOD and CAT (Fig. 1.3b). JA and components of its signal transduction pathway 
(JIN1 transcription factor and COI1 protein that removes repressor proteins) have 
been implicated in the protective effect of GT in salinity (Yastreb et al. 2020).

SA protects wheat plants T. aestivum L. from stress caused by the action of heavy 
metals (in particular, Cd), activating PAL, which is involved in the synthesis of lig-
nin, that in turn reduces the uptake of Cd (Fig. 1.3c). On the other hand, SA reduces 
PAL and electrolyte leakage, stabilizes the level of IAA, Сk and ABA, which con-
tributes to an increase in the content of low molecular weight dehydrins, thus reduc-
ing Cd toxicity (Shakirova et al. 2016).

The interaction of signaling compounds NO, H2S and ROS with each other with 
the formation of signaling molecules of the next level is shown. In particular, O2

⋅- 
and NO react to form ONOO−(peroxynitrite), NO and H2S react to form nitrothiols 
(Klotz 2005; Whiteman et al. 2006), and ROS and H2S also form products that act 
downstream of the signaling pathway (Li and Lancaster Jr 2013). In addition, NO 
and H2S alter the levels of antioxidants in cells, decreasing the level of ROS. H2S 
treatment increases the glucose-6-phosphate dehydrogenase enzyme activity, caus-
ing the accumulation of ROS (Li et al. 2013). The convergence points of the ROS 
and NO, ROS and H2S signaling molecule pathways can be the activity of the glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) and MAP kinases (Hancock 
et al. 2005; Wang et al. 2010). Thus, NO and H2S can interfere with ROS signaling.

The stomata movement under drought conditions is a good model to illustrate the 
interaction of a large number of hormones through ROS and NO (Fig.  1.4). 
NR-mediated NO formation is involved in the regulation of stomatal closure in the 
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leaf of A. thaliana, controlled by ABA (Desikan et al. 2002; Kotchoni and Gachomo 
2006). Brassinosteroid (BR) negatively affects the production of ABA-induced 
H2O2 and NO (Ha et al. 2016). The regulation of the expression of genes encoding 
proteins required for the biosynthesis of H2O2 and NO in plants has been shown. BR 
and ABA induce the expression of AtrbohD and AtrbohF genes encoding catalytic 
subunits of NADPH oxidase producing ROS in guard cells. However, when ABA 
and BR are treated together, the levels of transcripts of these genes and ROS produc-
tion are lower than when treated with the phytohormone alone. NO production is 
also controlled by BR. Individual treatment with BR and ABA hormones increases 
the expression of the NIA1 and NIA2 nitrate reductase genes, but co-treatment with 
hormones decreases the expression of these genes (Desikan et  al. 2002). The 
observed effects of the hormones indicate an antagonism of BR and ABA in the 
regulation of genes involved in the production of H2O2 and NO. Consequently, co- 
treatment with these hormones can suppress stomatal closure.

There is much evidence to suggest that stomatal closure is controlled by abscisic 
acid (ABA). However, it has been shown that treatment with the JA precursor 
12-oxo-phytodienoic acid (OPDA) can have ABA-dependent and ABA-independent 
effects on the process. Drought tolerance in plants associated with ABA-dependent 
stomatal closure is also formed under the influence of SA. SA initiates SHAM (sali-
cylhydroxamic acid)-sensitive ROS signal transduction pathway that activates 
calcium- dependent protein kinases 1 and 6 (CDPK1/6), which activate SLAC1 
(SLOW ANION CHANNEL-ASSOCIATED 1) (Prodhan et al. 2018). MAP kinases 
(MPK9/12) are also involved in the SA signaling pathway, whereas OST1 (open 
stomata protein kinase 1) is involved for ABA and JA signaling.

The ET role in the stomata movement regulation depends on the strength of the 
acting stress factor. Severe water deficiency in plants increases the level of ABA, but 
decreasing ET biosynthesis. Normally, ET keeps the stomata semi-open, allowing 
CO2 to enter the leaf and photosynthesis to take place. To achieve this function, ET 
inhibits ABA and JA signaling pathways at the level of anion channels and ROS 
production. At the same time, BP triggers the mechanism of stomata closure through 
increase in ET and Gα protein levels, activation of NADPH-oxidase channels 
(RBOHD/F, respiratory burst oxidase homologs D/F) triggering ROS production 
and subsequent Nia1-dependent production of NO (Shi et al. 2015a).

Among the ABA-independent processes of stomatal closure regulation are 
strigolactones (SLs)-mediated mechanisms based on ROS and NO production and 
SLAC1 activation (Lv et al. 2018). Meanwhile, stomatal opening is supported by 
growth-stimulating hormones: auxins and Ck (Müller and Munné-Bosch 2021).

Under osmotic stress, ABA treatment significantly increases enzymatic antioxi-
dant activity and H2S content compared with osmotic stress alone. In turn, H2S 
increases the activity of ascorbate-glutathione (AsA-GSH) pathway (Shan et  al. 
2017) supported by ascorbate peroxidase, monodehydroascorbate reductase, dehy-
droascorbate reductase, and glutathione reductase enzymes, which plays an impor-
tant role in ROS detoxification in the cell (Hasanuzzaman et  al. 2019). The 
interaction of H2S and ET signaling pathways under osmotic stress in the guard cells 
of S. lycopersicum has been established (Jia et  al. 2018). H2S is involved in 
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ET-induced stomatal closure and feedback that controls ET biosynthesis (Chang 
2003). ET in turn induces the production of H2S.

Administration of H2S scavengers or inhibitors of H2S biosynthesis eliminates 
the influence of ET or osmotic stress on stomatal closure. These facts suggest H2S 
as a link in the signal transduction chain of ET and osmotic stress. However, H2S, 
while inhibiting ET synthesis in a dose-dependent manner, suppresses ACO gene 
expression and inhibits ACO1/2 (1-aminocyclopropane-1-carboxylic acid oxidase 
1/2) enzyme activity by persulfation. This indicates the possibility of a feedback 
loop between ET-induced H2S and ET through regulation of ET biosynthesis.

Scuffi et al. (2014) proposed a model of the intersection of ABA, H2S, and NO 
signal transduction pathways in the regulation of stomata movement. According to 
this model, ABA enters the cell via ATP-binding cassette transporters and interacts 
with the ABA-receptor (PYR/PYL/RCAR). The resulting complex, which binds to 
protein phosphatases (PP2Cs: ABI1 and ABI2), releases SnRK and lower-level sig-
naling elements. Specifically, Ca2+, K+, guanylate cyclase/cyclic ADP ribose, H2O2, 
and NO are framed among the secondary messengers of the ABA-dependent signal-
ing network. ABA causes an increase in intracellular Ca2+ concentration by inhibit-
ing K+ transport. This is followed by the outflow of negative ions. As a result, 
membrane depolarization occurs. Simultaneously, ABA or the hormone-receptor 
complex activates the DES1 enzyme, increasing the formation of H2S, which, 
through NR activation, promotes endogenous NO levels. NO controls the interac-
tion of ABI1 with the ABA-receptor, this suggesting to be a co-receptor (Rodriguez 
et al. 2019; Miyazono et al. 2009; Raghavendra et al. 2010).

An important component of ABA signaling in guard cells is SnRK2.6 (nonenzy-
matic sucrose 1-dependent protein kinase 2.6) (Wang et  al. 2015). At present, a 
large variety of SnRK forms has become known. For example, the barley HvSnRK 
gene family is represented by 3 subfamilies and 50 genes (Chen et  al. 2021). 
Regulatory elements (LRE, ABRE, and others) have been established as promoters 
of these genes, suggesting the existence of complex networks involving the interac-
tion of various signals, including light and hormone signals.

SLs play an important role in the induction of stomatal closure, which prevents 
water loss and determines plant resistance to stress caused by negative environmen-
tal factors (Lv et al. 2018). For the perception and transmission of SL signals, the 
SL receptor, represented by the hydrolase DWARF14 (D14), and MAX2 (MORE 
AXILLARY GROWTH2), which is a constituent member of the SCF E3 ligase 
complex, are required. During the interaction of the hormone with the receptor, SL 
hydrolyzes D14, causing its conformational changes that provide binding to 
SCFMAX2, subsequent labeling by ubiquitin, and destruction of the downstream sig-
naling chain.

A comparison of the ABA- and SL-mediated signal transduction pathways in the 
regulation of stomata movement shows common messengers, in particular H2O2, 
NO, and SLAC1. A feature of the ABA pathway was the connection of MRK 9/12 
and OST1 kinases (Lv et al. 2018). Other relationships between SL and ABA in the 
regulation of resistance have been observed. During drought, the SL level in S. lyco-
persicum decreases due to downregulation of SlCCD7 (Carotenoid Cleavage 
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Dioxygenases), the gene for SL biosynthesis, while SL GR24 treatment increases 
stress resistance. This is due to an increase in the chlorophylls content and photo-
synthesis intensity, and a decrease in the ROS content and PAL activity. SL induces 
stomatal closure by regulating ABA biosynthesis, which is linked through the D27 
gene encoding β-carotene isomerase, thus increasing plant resistance to drought 
(Bhoi et al. 2021).

1.4  Concluding Remarks

Currently, the participation of GTs in the signal transduction of hormones and abi-
otic stress-factors (mineral nutrition, temperature, drought, salinity, heavy metals) 
has been convincingly established. GTs play not only a signaling role (Ivanovic- 
Burmazovic and Filipovic 2019; Mishra et al. 2021), but also a regulatory one, since 
they change the cell redox homeostasis, the activity of enzymes and plant growth 
and development  (Gupta et  al. 2019; Huang et  al. 2021;  Mukherjee and Corpas 
2020; Xuan et al. 2020). GTs participate in a feedback loop with hormones through 
the regulation of their synthesis and transport. Numerous intersections of hormone 
signaling pathways have also been identified, the nodes of which can be GTs. At the 
same time, H2S and NO can carry out persulfidation and S-nitrosation reactions, 
respectively, acting on the same proteins (Corpas et al. 2022). In addition, NO and 
H2S have an effect on the intracellular content of each other. Depending on the 
nature of the stress factor and regulated processes, NO in signaling chains can be 
located both upstream and downstream H2S. Interaction occurs between GTs: they 
influence the generation of each other, absorb each other, reducing intracellular con-
centrations, and thus reducing or neutralizing their effects. Thus, GTs regulate 
growth processes and the formation of defense responses to many negative environ-
mental factors. The study of phytohormones signaling and their relationships with 
gasotransmitters make possible to find ways to influence the vital activity of plants, 
what is of no little importance for increasing plant resistance to the increasingly 
unpredictable dynamics of the environment associated with current climate change. 
This will ensure an increase in plant productivity, and, consequently, the mainte-
nance or a high level of food security for the population of our planet.
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Chapter 2
Understanding the Involvement 
of Gasotransmitters in the Regulation 
of Cellular Signalling and Adaptive 
Responses Against UV-B Mediated 
Oxidative Stress in Plants

Sayanti De, Mehali Mitra, and Sujit Roy

Abstract Due to their sessile and immobile nature, plants continuously encounter 
multifarious abiotic stress factors including solar UV-radiation, changing tempera-
ture conditions, desiccation, soil salinity, re-hydration, heavy metal toxicity, etc. All 
these abiotic stress factors severely affect plant growth and development at both 
vegetative and reproductive levels eventually leading to compromised crop yield. 
These stressors damage plants at the physiological, cellular, and molecular levels by 
inducing direct or indirect oxidative stress due to over-production of Reactive 
Oxygen Species (ROS) and disruption of the redox homeostasis within the cell. 
Plants counterbalance these adverse effects by activating stress-responsive mecha-
nisms via signal perception, transduction and ultimately activating complicated 
defense pathways. Concerning these stress factors especially in abiotic stress toler-
ance, the study of gasotransmitters in plants and animals has emerged in the past 
couple of years. Gasotransmitters (GTs) are endogenously generated small gaseous 
molecules that play a crucial role in transmitting biological signals and induce phys-
iological or biochemical changes in response to stress. Nitric oxide (NO), carbon 
monoxide (CO), hydrogen sulfide (H2S), methane (CH4) and hydrogen gas (H2) are 
considered to be the most important classes of gasotransmitters. Production of gaso-
transmitters is induced when exposed to abiotic stress factors. However, recent stud-
ies have demonstrated that these gasotransmitters play key role in the enhancement 
of the functional activity of several antioxidant enzymes which help plants to cope 
up with these abiotic stress factors by decreasing the effects of oxidative damages. 
Therefore, deciphering the mechanisms of action of these gasotransmitters and their 
interactions with each other may greatly contribute to the improvement of crop 
yield and increase their acceptance in agriculture in near future. In this chapter, we 
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have mainly highlighted the role of gasotransmitters in mediating cell signaling and 
their adaptive aspects in the context of UV-B mediated oxidative stress responses 
in plants.

Keywords Abiotic stress · Oxidative stress · Reactive oxygen species (ROS) · 
Gasotransmitters · Nitric oxide (NO) · Hydrogen sulfide (H2S) · Carbon monoxide 
(CO) · Hydrogen gas (H2) · Methane (CH4) · Stress tolerance · UV-B radiation

2.1  Introduction

Urbanization and industrialization to cope up with the excessive population growth 
are contributing to drastic and lethal global climate change. As plants are sessile, 
they cannot migrate being exposed to diverse environmental stressors like high and 
low temperature, dehydration, rehydration, UV radiation, salinity, heavy metal tox-
icity, etc. These stressors hamper the normal growth and development of plants by 
affecting their size, changing leaf morphology, and stomatal aperture which ulti-
mately affects agricultural crop productivity and yield under these unfavourable 
conditions (Kul et  al. 2019). Yield potential of plants becomes strongly affected 
when these stress factors act in combination. Among these stress factors, UV-B is 
one of the major environmental stressors that can result in certain physiological 
changes in plants, like reduction in biomass and size, disruption of the photosyn-
thetic machinery, and also aiding in the accumulation of UV-absorbing compounds 
(Brosché and Strid 2003; Frohnmeyer and Staiger 2003). Likewise, exposure to 
high UV-B radiation also causes the overproduction of reactive oxygen species 
(ROS) and subsequently induce oxidative stress (Zhao et al. 2015). To ameliorate 
the adverse effects resulting from UV-B exposure, plants have developed diverse 
strategies to repair the damages. Plants respond through an interactive network of 
biochemical and molecular mechanisms including selective ion absorption, com-
partmentalization of ions into vacuoles, ion exclusion, organic solute accumulation, 
etc. (Miller et al. 2009; Zandalinas et al. 2019). ROS production is considered to be 
the most common response to abiotic stress. Several previous studies have shown 
that the redox environment in a cell is maintained by the balance between ROS 
production and its antioxidant capacity (Alleman et al. 2014). Plants have devel-
oped a well-organized antioxidant defense system to combat damages caused by 
environmental stresses (Hasanuzzaman et al. 2018a). To adapt to these stress condi-
tions plant also synthesizes some secondary metabolites, hormones, and signaling 
molecules that transmit biological signals. These small gaseous molecules are 
termed gasotransmitters.

Gasotransmitters (GTs), such as nitric oxide (NO), carbon monoxide (CO), 
hydrogen sulfide (H2S), methane (CH4) and hydrogen gas (H2) are widely involved 
in the regulation of specific biological functions (Peers and Lefer 2011). Other than 
these, ammonia (NH4

+) and ethylene (C2H4) also fulfil the criteria to be considered 
gasotransmitters. Several previous studies have reported that these gasotransmitters 
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are usually produced as a response to abiotic stress tolerance (Abdulmajeed et al. 
2017; Cui et al. 2017; Jia et al. 2018). Over the past few decades, the function of 
gasotransmitters has been characterized well in mammalians and more recently the 
involvement of gasotransmitters in mediating the abiotic stress responses in plants 
has also been taken into interest. Recent studies involving GTs have facilitated our 
understanding of GT-mediated signaling pathways and their role in enhancing plant 
tolerance (Yao et al. 2019). GTs play a pivotal role in the regulation of seed germi-
nation, growth, and development, cell cycle as well as senescence in plants (Vasil’eva 
2010; del Giudice et al. 2011). It has been reported that GTs are involved in most of 
the phytohormone signaling pathways and changes in their concentration can also 
affect hormonal activity (Jin et al. 2016; Banerjee et al. 2018). Moreover, GTs can 
also interact with different biologically active proteins and modulate their activities 
along with their interactions with phytohormones like auxin (AUX), gibberellins 
(GAs), cytokinin (CKs), abscisic acid (ABA), salicylic acid (SA), jasmonic acid 
(JA), and brassinosteroids (BRs). (Bhuyan et al. 2020). In this chapter we have sum-
marized the production of gasotransmitters in plants under adverse abiotic condi-
tions, their role in the amelioration of UV-B mediated oxidative stress, and cross-talk 
between several gasotransmitter-mediated signaling pathways.

2.2  Synthesis of Major Gasotransmitters in Plant Cells 
Under Adverse Conditions

In 2002, Rui Wang first reported the term ‘Gasotransmitter’ referring to a gaseous 
messenger molecule that is involved in signaling pathways. The signaling mole-
cules exhibit a very wide range starting from large proteins, lipids, and peptides to 
amines, amino acids, and gaseous molecules depending on their chemical natures 
(Mustafa et al. 2009). Gasotransmitters or neurotransmitters are basically those sig-
naling molecules whose property variation is based on their chemical nature. These 
gasotransmitters are considered to be a subfamily of endogenous gaseous signaling 
molecules (Li et al. 2011). As they are freely permeable to the cell membrane, they 
do not require any receptor for their activation and, in response to any stimulation, 
their synthesis is very rapid unlike other signaling molecules (Wang 2004; Allan 
and Allan and Morris 2014). NO exocytosis takes place upon release of any gaso-
transmitters or no endocytosis is required for them to enter the cell. The gasotrans-
mitters are endogenously produced and enzymatically regulated and they have their 
own significant biological roles at different concentration levels. At first nitric oxide 
(NO) was discovered as a gasotransmitter which triggered the discovery of other 
possible gasotransmitters like carbon monoxide (CO), hydrogen sulfide (H2S), 
hydrogen gas (H2), and methane (CH4) (Wang 2002). The discovery of these gaso-
transmitters has provided new insights into biological sciences and many other 
gases like acetaldehyde, ammonia, sulfur dioxide, and dinitrogen oxide are still 
under investigation to understand whether they too act as endogenous mediators. In 
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the past couple of years, gasotransmitters have been a rapidly expanding topic of 
research (Wang 2018). Previously, several studies have reported that these gaso-
transmitters are produced in plant cells due to the presence of abiotic stress factors 
and those studies have also shown that gasotransmitters play pivotal roles in plants 
in response to the stressors (Jin et al. 2017; Abdulmajeed et al. 2017, Jia et al. 2018; 
Maryan et al. 2019; Xu et al. 2017a, b).

2.2.1  Nitric Oxide (NO)

Nitric oxide (NO) is the first gasotransmitter that was discovered in 1987 in animal 
cells (Palmer et al. 1987) having major function as one of the signaling molecules 
(Sukmansky and Reutov 2016). The research regarding the presence of NO in plant 
cells started almost two decades later (Durner et al. 1998). The studies on the syn-
thesis of plant NO are considered to be the oldest but still popular topic of research 
among scientists (Astier et al. 2017). But the synthesis of NO is still largely unknown 
and assumed to be much more complicated in plants as it occurs in multiple ways. 
At first, Klepper (1979) observed the NO production in herbicide-treated soybean 
(Glycine max). The NO production was also found to be triggered under drought 
stress in marigold plants (Liao et  al. 2012). Other studies indicated that among 
heavy metals, cadmium and aluminium induce NO production in Arabidopsis, 
lichen, peanut and wheat (Han et al. 2014; Kováčik et al. 2019; Sun et al. 2018; 
Faria-Lopes et al. 2019; He et al. 2018).

In plants, NO is generated by reductive and oxidative pathways involving both 
enzymatic and non-enzymatic systems (Kolbert et  al. 2019). In animal cells, the 
biosynthesis of NO is catalyzed by NO synthase (NOS), a small family of multido-
main hemeproteins which is basically an enzyme that exists in multiple isoforms. 
NOS catalyzes the oxidation of L-arginine to NG hydroxy-L-arginine, then to 
L-citrulline plus NO.  This catalytic cycle of NOS occurs through two oxygen- 
dependent mono oxygenation reactions which include one stable intermediate NG- 
hydroxy- L-arginine (Santolini 2011). In this oxidation process of NO generation, a 
total of five electrons are required among which two are from O2 and three are 
contributed by nicotinamide adenine dinucleotide phosphate (NADPH). FAD (fla-
vin adenine dinucleotide), FMN (flavin mononucleotide), and tetrahydrobiopterin 
(BH4) are responsible for the regulation of NOS enzymes, and phosphorylation of 
the enzyme is dependent on several serine kinases.

On the other hand, the discussion and research are advancing regarding the syn-
thesis of NO from L-arginine in plants and as a result, it has been assumed that the 
L-arginine dependent NO synthesis in plants is quite similar to the process in animal 
cells. Also, the NOS homologs of animals have been found in green algae (Roszer 
2014). Although the homologs have not yet been detected in higher plants, it is 
assumed that particular proteins using L-arginine as a substrate can produce NO, 
and consequently, it has been designed as a NO-like synthase (Astier et al. 2017). 
Numerous data on the inhibition process of NO-synthesis or NO-dependent 
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pathways by NOS inhibitors supported the presence of L-arginine-dependent NO 
formation in plants (Crawford 2006). The activity of polyamine oxidase decreases 
in the presence of L-NAME, a NOS inhibitor, which might be associated with the 
enzyme catalysis of NO formation (Flores et  al. 2008). Previously, it has been 
shown that, in plant leaves, L-arginine is converted to polyamines which are consid-
ered as potential sources of NO (Rosales et al. 2011). Also, several studies have 
revealed that there is a clear increase in NO production with the application of 
exogenous L-arginine indicating clear evidence of NO generation by the oxidation 
of the amino acid (Table 2.1). Under drought conditions in wheat, the production 
rate of endogenous NO was increased by the exogenous NO and arginine applica-
tion (Hasanuzzaman et al. 2018b). Subsequently, NO formation was also triggered 
via exogenous CH4 and sodium nitroprusside under osmotic stress conditions 
(Zhang et al. 2018). In wheat seedlings, nitrate-reductase-dependent NO formation 
was observed after treatment with L-arginine (Astier et al. 2017). Likewise, NO has 
been shown to be produced under salinity stress conditions in Arabidopsis and 
tobacco and it was also found that under stress conditions the increase in NO forma-
tion in tobacco leaves occurs due to the induction of nitrate reductase which indi-
cated that the plant nitrate assimilation is closely associated with NO formation (Da 
Silva et al. 2017; Liu et al. 2015). The activity of nitrate reductase is stimulated by 
inhibitors of the L-arginine dependent NO formation pathway L-NAME and 
D-arginine, what shows the functional interaction of the nitric oxide synthesis path-
ways in plants (Rosales et al. 2011). NO formation was also found to be increased 
by phytohormones and signaling molecules like indole-3-butyric acid and 
1- methylcyclopropene (Liao et al. 2011, 2013).

Apart from the synthesis pathways of NO, the total content of NO also depends 
on the activity of utilization mechanisms in plants (Corpas et al. 2008). Nitric oxide 
reacts with glutathione (GSH) to form S-nitrosoglutathione (GSNO) which is con-
sidered the most important reservoir of NO as well as a NO donor in the plant cells. 
The enzyme S-nitrosoglutathione reductase regulates the GSNO content in plants as 
it can reduce GSNO to glutathione disulphide (GSSG) and NH3 (Gupta et al. 2011). 
The amount of NO which is not required for plant cells is converted to nitrite or 
peroxynitrite (ONOO−)by binding to its nonsymbiotic hemoglobin forms or with 
the superoxide anion radical (O2

·−) respectively (Corpas et al. 2008; Freschi 2013).

2.2.2  Carbon Monoxide (CO)

Back in the year 1959, scientists got an indication of plants’ ability to produce car-
bon monoxide (Wilks 1959). At first, Wilks (1959) discovered the formation of CO 
in plants. It was also noticed that abiotic stress factors trigger CO production in 
plants. Zilli et al. (2014) reported that the leaves and roots of soybean produce CO 
under NaCl stress. Subsequently, CO production was detected under heavy metal 
cadmium stress in the root tissue of Medicago sativa (Han et al. 2008). Also, it was 
found that sunlight-exposed lima beans directly emit CO (Tarr et al. 1995). It has 
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Table 2.1 Synthesis of major gasotransmitters under different abiotic stress conditions

Gasotransmitter Studied plant Type of stress Reference

Nitric Oxide 
(NO)

Soybean Herbicide treatment Klepper (1979)
Marigold, Wheat Drought stress Liao et al. (2012) and 

Hasanuzzaman et al. (2018b)
Arabidopsis, 
Lichen, Peanut, 
Wheat

Heavy metal stress: 
Cadmium and 
Aluminum

Han et al. (2014), Kováčik et al. 
(2019), Sun et al. (2018), 
Faria-Lopes et al. (2019), and 
He et al. (2018)

Arabidopsis, 
Tobacco

Salinity stress Da Silva et al. (2017)

Carbon 
Monoxide (CO)

Leaves and roots 
of Soybean

Salinity stress Zilli et al. (2014)

Roots of 
Medicgo sativa

Cadmium stress Han et al. (2008)

Lima beans Sunlight exposure Tarr et al. (1995)
Arabidopsis Light induced 

stimulation of plant 
pigment B

Wang and Liao (2016)

Hydrogen 
Sulfide (H2S)

Wheat Exogenous abscisic 
acid, Osmotic stress

Ma et al. (2016) and Corpas 
et al. (2019)

Arabidopsis 
thaliana

Drought stress Jin et al. (2011, 2016)

Bermuda grass Cadmium stress Shi et al. (2014)
Cauliflower Lead stress Chen et al. (2018)
Zucchini Nickel stress Valivand et al. (2019)
Grape, 
Cucumber, 
Poplars

High temperature stress Fu et al. (2013), Liu et al. 
(2019), and Cheng et al. (2018)

Hawthorn fruit Cold stress Aghdam et al. (2018)
Hydrogen gas 
(H2)

Lettuce seeds Bright light condition Renwick et al. 1964
Rice Salt stress, low 

temperature condition, 
drought stress, 
aluminum stress

Xu et al. (2013, 2017a, b)

Alfalfa Salt stress, exogenous 
application of methyl 
viologen

Xu et al. (2013) and Jin et al. 
(2013)

(continued)
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also been found that in Arabidopsis, light-induced stimulation of plant pigment B 
results in CO formation (Jia et al. 2018). Previously, many studies have shown that 
the production of CO occurs by the enhanced heme oxygenase (HO) activity in 
plants of different taxa. The release of CO along with iron occurs through the ste-
reospecific cleavage of heme to BV-IX2α, a process that is catalyzed by HO in the 
presence of reducing agents (Gisk et al. 2010). A small family of HOs has been 
detected so far in Arabidopsis which is represented by four members belonging to 
two HO subfamilies: HO-1 and HO-2. There are three members in the HO-1 sub-
family which are the HO-1 (HY1), the HO-3, and the HO-4, whereas there is only 
one member in the HO-2 subfamily which is the own HO-2, although this enzyme 
is not considered to be a true heme oxygenase (Emborg et al. 2006). HO-1 enzyme 
is induced by several factors like stress conditions, signal transduction, and phyto-
hormones’ regulation which can be noticed by the increased content of the protein 
(Jin et al. 2016). NADPH functions as an electron donor at the time of disintegration 
of heme by members of the HO-1 subfamily in plants (Jin et al. 2016). CO can also 
be produced through a non-enzymatic pathway during the destruction of heme- 
methylene bridges (Zilli et al. 2008). The excess CO produced in plants may get 
inactivated by binding with leghaemoglobin which is a similar characteristic of 
hemoglobin (Stetzkowski et al. 1985).

2.2.3  Hydrogen Sulfide (H2S)

Hydrogen sulfide as a gasotransmitter was discovered after NO and CO. Reportedly, 
H2S is produced by many abiotic stress factors like drought, heavy metal stress, and 
temperature (Hancock 2019). Many researchers are currently showing interest in 
the studies regarding H2S, as it is thought to be one of the signaling molecules in 
plants (Hancock and Whiteman 2014). In wheat seedlings under drought stress, 
exogenous abscisic acid application induces an increase in endogenous H2S 

Table 2.1 (continued)

Gasotransmitter Studied plant Type of stress Reference

Methane (CH4) Canola Blue light condition Martel and Qaderi (2019)
Rice Aerobic conditions Keppler et al. (2006)
Poplar Low light condition Brüggemann et al. (2009)
Pea leaves High temperature 

condition
Abdulmajeed et al. (2017)

Alfalfa Salt stress; heavy metal 
exposure: cadmium, 
copper or aluminum

Zhu et al. (2016), Gu et al. 
(2018), Samma et al. (2017), 
Cui et al. (2017)

Maize Polyethylene glycol 
(PEG)

Han et al. (2017)

Tobacco, Citrus 
fruits

UV-radiation McLeod et al. (2008)
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formation (Ma et al. 2016). Although wheat seedlings noticeably release H2S under 
osmotic stress (Zhang et al. 2010). In Arabidopsis thaliana, drought stress promotes 
H2S production (Jin et al. 2011, 2016). As well as some heavy metals like cadmium 
treatment in Bermuda grass (Cyanodon dactylon) have been shown to increase 
endogenous H2S production significantly (Shi et al. 2014). Lead and nickel increased 
H2S production in cauliflower and zucchini, respectively (Chen et al. 2018; Valivand 
et al. 2019). It has been shown that temperature variation in several plants plays a 
major role in H2S production in plants. Reportedly, high-temperature stress induces 
a rapid release of H2S in grapes, cucumbers, and poplars (Fu et al. 2013; Liu et al. 
2019; Cheng et al. 2018) (Table. 2.1). Interestingly, it has also been found that under 
cold stress, treatment with exogenous H2S promotes the release of endogenous H2S 
in hawthorn fruit (Aghdam et al. 2018). To date, six enzymatic pathways have been 
detected which are most capable of H2S biosynthesis (Li 2015; Rudenko et  al. 
2015). It has been suggested by Jost et  al. (2000) that L-cysteine produces H2S 
which is catalyzed by β-cyanoalanine synthase in the presence of hydrogen cyanide 
in plants. L-cysteine is converted to pyruvate which takes place by the activity of 
L-cysteine desulfhydrase and thus H2S and ammonia are released (Romero et al. 
2013; Li 2015). There is also a possibility of H2S formation from D-cysteine by the 
action of D-cysteine desulfhydrase (Li 2013). Apart from this, there are several 
other enzymatic sources in plants from which H2S can be produced like cysteine 
synthase or carboanhydrase. Cysteine synthase catalyzes the formation of O-acetyl- 
L-serine and H2S by the reversible reaction between L-cysteine and acetate, and the 
cysteine synthase enzyme is found in the cytosol, mitochondria as well as in chloro-
plast (Wirtz and Hell 2006; González-Gordo et al. 2020). β-cyanoalanine synthase 
is a mitochondrial enzyme that catalyzes the condensation of cyanide and L-cysteine 
with H2S release but mostly its activity increases to control the cyanide content in 
the cell as cyanide acts as a potent inhibitor of the mitochondrial respiratory chain 
(Li 2015; 2016) (Table. 2.1). Carboanhydrase catalyses the carbonyl sulfide decom-
position into CO2 and H2S (Yamasaki and Cohen 2016). There is another enzyme in 
plants namely O-acetyl-serine lyase which has been detected as promoting the deg-
radation of H2S (Lisjak et al. 2013). H2S mainly promotes antioxidant defence sys-
tems, and also plays a key role in the interaction network with other molecules like 
NO, reactive oxygen species (ROS), phytohormones etc. (Raza et  al. 2021). 
Although several enzymatic pathways for H2S synthesis in plants have been detected 
so far, the mechanism of H2S production under several abiotic stress factors is yet to 
be established.

2.2.4  Hydrogen Gas (H2)

At the beginning of the twentieth century, H2 gas was first detected in bacteria and 
subsequently in green algae and higher plants (Stephenson and Stickland 1931; 
Sanadze 1961). Scientists suggested that bacteria can produce H2 due to the pres-
ence of endogenous hydrogenase. In the past few years, studies have revealed that 
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abiotic factors like light, salt, temperature, and heavy metals can promote H2 pro-
duction in plant cells. Thus, in lettuce seeds H2 production has been shown during 
germination under bright light conditions (Renwick et  al. 1964). In rice, H2 was 
reportedly produced by salt stress, low-temperature condition, drought stress, or 
aluminium stress (Xu et  al. 2013, 2017a, b) (Table 2.1). H2 production was also 
induced by several phytohormones like ethylene, abscisic acid, and jasmonate acid 
(Zeng et al. 2013). In alfalfa, H2 production is promoted by salt stress as well as by 
the exogenous application of methyl viologen (paraquat) which increases endoge-
nous H2 production in plants (Xu et al. 2013; Jin et al. 2013). However, the investi-
gation to date has detected the production of H2 in plants due to several abiotic stress 
factors but any clear mechanism of the H2 production pathway is yet to be established.

2.2.5  Methane (CH4)

At first, the production of CH4 was detected in rice seedlings (Nouchi et al. 1990). 
Among abiotic stress factors, salt, drought, heavy metals, and UV radiation play a 
major role in producing CH4 in plants. Also, under blue light conditions CH4 is 
produced in canola (Martel and Qaderi 2019). Under aerobic conditions, rice 
(Keppler et al. 2006), low light, poplar (Brüggemann et al. 2009), high-temperature, 
pea leaves (Abdulmajeed et al. 2017), and salt stress, alfalfa produce methane (Zhu 
et al. 2016). Alfalfa also produces CH4 under heavy metal exposure such as cad-
mium, copper, or aluminium (Cui et al. 2017; Gu et al. 2018; Samma et al. 2017). 
Reportedly, polyethylene glycol (PEG) induces dehydration in plants and increases 
methane formation in maize plants (Han et al. 2017). In several plants including 
tobacco, methane is produced under UV radiation (McLeod et al. 2008) (Table 2.1). 
In citrus fruits, the mechanism of CH4 production upon UV irradiation has been 
somewhat established by Messenger et al. (2009). They reported that, under UV 
radiation, UV reacts with plant photosensitizer and produces hydroxyl radicals 
which eventually form CH4 from the pectin methyl group.

2.3  Role of Gasotransmitters in Alleviating UV-B Mediated 
Oxidative Stress

As plants are photoautotrophic organisms, they require sunlight to carry out their 
basic physiological processes like photosynthesis, respiration, growth, and develop-
ment. On the other hand, due to this obligatory dependence on sunlight, plant leaves 
also absorb damaging UV rays specifically UV-B (280–320 nm) rays which account 
to nearly about 0.5% of the total UV radiation. Though it represents a very marginal 
portion of the solar radiation it is enough capable of causing severe damage to living 
organisms. In recent years, due to the gradual depletion of the protective ozone layer 
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by anthropogenic activities like the production of chlorofluorocarbons (CFCs), the 
proportion of UV-B absorption is likely to increase in plants (Caldwell et al. 2003; 
McKenzie et al. 2011). Overexposure to UV-B radiation has been shown to have 
deleterious impacts on plant cells including disruption of the thylakoid membrane, 
knocking down of the chlorophyll and carotenoid pigments, reduced photosynthetic 
rate, and decreased protein synthesis due to indirect induction of oxidative stress via 
generation of ROS all of which eventually led to programmed cell death (Booij- 
James et al. 2000; Lytvyn et al. 2010; Krasylenko et al. 2012).

The main sources of ROS in such stressful conditions mainly include augmenta-
tion in photorespiration, NADPH oxidase (NOX) activity, and impairment of the 
electron transport chains of mitochondria and chloroplasts (Frohnmeyer and Staiger 
2003). To cope with this adverse situation plants have developed a well-organized 
and highly developed antioxidant defense system having both enzymatic [e.g., ROS 
detoxifying enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate 
peroxidase (APX) etc.] and non-enzymatic components such as ascorbic acid (ASC) 
and reduced glutathione (GSH) that are ubiquitously present in almost all of the 
subcellular compartments (Cassia et  al. 2019). As a general protective response 
under UV-B stress several UV-protective secondary metabolite production path-
ways are activated such as the phenylpropanoid pathway (Hollósy 2002; Kovács 
and Keresztes 2002). Gasotransmitters have been found to play major roles in UV 
protective mechanisms. It has previously been reported that NO, a well-known 
gasotransmitter, is involved in UV-protective responses in plants through abscisic 
acid-mediated steps (An et al. 2005; Qu et al. 2006; Tossi et al. 2009). NO orches-
trates a wide range of events for maintaining the redox equilibrium in a plant cell by 
regulating the ROS concentration. Whatever may the sources be, ROS concentra-
tion must be adequately regulated to avoid the cellular damages due to their over-
production. When ROS are produced in a considerable amount within the cell, NO 
induces the transcription of several genes regulating the production of enzymatic 
antioxidants like SOD, APX, and CAT (Cassia et al. 2019). It can also directly act 
as a ROS scavenger as it possesses unpaired electrons. Additionally, it can mitigate 
the formation of hydroxyl radicals (·OH) by scavenging Fe or O2

.− (Lamattina et al. 
2003). The reaction between NO and ROS produces reactive nitrogen species 
(RNS), and excess accumulation of RNS leads to nitrosative stress (Kohli et  al. 
2019). NO also regulates GSH concentration within the cell. It forms GSNO which 
serves as the cellular reservoir of NO and the main source for S-nitrosation (Corpas 
et  al. 2013). Several previous studies have reported the involvement of NO-like 
synthase and nitrate reductase activities under UV-B stress conditions. The interac-
tion between NO and ROS signaling pathways plays a key role in the protective 
mechanism against UV-B stress (Yemets et al. 2015). It has also been shown that 
there is an interaction between Gα protein, NO, and H2O2 at the time of UV-B 
induced stomatal closure in the leaves of Arabidopsis (He et al. 2013). Recent stud-
ies regarding its mechanism of action have suggested that under UV-B exposed 
conditions, NO induces the transcriptional activation of phenylpropanoid pathway 
genes chalcone synthase (CHS) and chalcone isomerase (CHI) which leads to an 
increase in secondary metabolite production (Tossi et al. 2011). Some authors have 
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indicated that UV-B mediated flavonoid production and nitrate reductase mediated 
NO generation may be interlinked (Zhang et al. 2011). It has also been considered 
that H2O2 and NO together can reduce UV-B mediated damages by regulating the 
stomatal closure under UV-B exposed conditions (Tossi et al. 2014). Previous stud-
ies have shown that NO synergistically interacts with ROS and play a role during 
the augmentation of hypersensitive cell death in soybean (Glycine max) cells 
(Durner et al.,1998). To confirm the involvement of endogenous NO in UV-B stress 
responses, the Arabidopsis NOD transgenic line expressing the inducible bacterial 
NO dioxygenase (NOD) has been studied and results have shown that UV-B- 
irradiated mutant plants exhibited more symptoms of UV-B mediated damage as 
compared to the wild type (Cassia et al. 2019).

Apart from NO, other gasotransmitters like CO and H2S are also thought to be 
involved in UV-B mediated stress responses. In plants, CO is mainly derived from 
the lipid peroxidation of biofilms, automatic oxidation of phenols and HO mediated 
enzymatic reactions. According to previous studies, in the process of ABA-mediated 
stomatal closure, ABA activates HO to increase the CO production and also involves 
NO/cGMP mediated signaling cascade to induce stomatal closure as reported in 
Vicia faba (Tossi et al. 2014). Another report on G. max has indicated that, in the 
case of UV-B irradiated plants, HO shows upregulated action that confers them 
protection against UV-B mediated oxidative damages (Yannarelli et  al. 2006; 
Noriega et al. 2007). Among other gasotransmitters, H2S is closely connected with 
NO and its signal transduction pathway does not always work independently. Under 
adverse conditions, NO reacts with CO to regulate the activity of the antioxidant 
enzyme system in the plant cell. Other than these gasotransmitters, another gaseous 
plant growth regulator, ethylene, also plays a pivotal role in abiotic stress responses. 
Ethylene also possesses several characteristics similar to that of GTs. Along with 
NO, ethylene production also significantly increases under UV-B radiation as 
reported in several plant species (Mackerness et  al. 2001; Wang et  al. 2006; 
Vanhaelewyn et al. 2016). Moreover, some reports also claimed that, under UV-B 
stress conditions, NO could promote the accumulation of ET in maize leaves (Wang 
et al. 2006). Taken together, available reports have suggested that gasotransmitters 
are released under different adverse conditions in plant cells to enhance plant toler-
ance to these environmental stimuli by lowering oxidative stress and lipid peroxida-
tion, and enhancing the activity of antioxidant enzymes with the maintenance of ion 
and GSH homeostasis.

2.4  Crosstalk Between Major Gasotransmitter-Mediated 
Signaling Pathways Under UV-B Stress

Several environmental stresses like drought, flood, salt, UV-radiation, heat, heavy 
metal toxicity, etc. interfere with the normal physiological processes of the plant. 
Previous studies have reported that plants usually produce GTs to enhance their 
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tolerance against these adverse abiotic stress conditions. These gaseous molecules 
transmit environmental stimuli and subsequently interact with several extra and 
intracellular pathways that regulate the biological processes in a synergistic or 
antagonistic way (Yao et al. 2019).

2.4.1  NO Mediated UV-B Stress Response and Crosstalk 
with H2S and CO Signaling

Previous studies regarding the involvement of NO in UV-B stress response have 
reported that exogenously added NO alleviates the ROS mediated damages caused 
by exposure to high UV-B irradiation (Shi et al. 2005; Zhang et al. 2007). It was also 
reported that under UV-B exposed conditions accumulation level of both NO and 
phenylpropanoid takes place. Different reports have also indicated endogenous 
accumulation of NO and H2S in plants under different adverse conditions which 
ultimately confer them better stress tolerance. Both NO and H2S enhance the anti-
oxidative defense system in plants by reducing excess production of ROS and also 
decreasing the lipid peroxidation (Hasanuzzaman et al. 2018a; Bhuyan et al. 2020). 
Several approaches have been made to determine the role of NO and H2S under 
adverse conditions and reports involving the exogenous application of a H2S donor 
have claimed that it influences the biosynthesis of NO as well as upregulates several 
enzymatic antioxidants like APX, SOD, CAT, etc. (Da Silva et al. 2017) (Fig. 2.1). 
It was also reported from previous studies that ABA plays a pivotal role in the 
NO-mediated signaling cascade under UV-B exposure as found in maize (Zhang 
et  al. 2007), Arabidopsis (Chen et  al. 2013), and Vitis (Berli and Bottini 2013). 
Under an oxidative stress environment, NO and H2S may lead to the formation of 
reactive nitrogen and sulfur species (RNS and RSS, respectively) which jointly 
regulate the vital physiological processes during abiotic stress tolerance (Yamasaki 
and Cohen 2016; Corpas et al. 2019). The interaction between NO and H2S pro-
duces an intermediate known as persulfide (Lisjak et al. 2013) which aids in the 
cellular regulation of ROS and RNS (Lisjak et al. 2013).

Other than NO and H2S, carbon monoxide (CO) has also been reported to be 
accumulated in a significant amount under UV-B stress by the increased expression 
of HO-1 as it has been found in soybean plants. This response was claimed to be 
associated with increased ROS accumulation within the cell and serves as a protec-
tive mechanism against oxidative damage due to high UV-B exposure (Yannarelli 
et al. 2006). CO and NO can co-modulate one to another (Dulak and Józkowicz 
2003). According to Song et  al. (2008) NO was reported to be involved in 
CO-induced stomatal closure mediated by the NO/NOS-like pathway (Fig.  2.1). 
NO is thought to act as a downstream signaling component of CO action (Santa- 
Cruz et al. 2010; Bai et al. 2012). Upon abiotic stress, HO-1/CO system has been 
reported to be induced by sodium nitroprusside (SNP), a NO-releasing compound, 
which is further modulated by ROS (Noriega et al. 2007). Evidence has shown that 
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Fig. 2.1 Interaction between gasotransmitter mediated signaling pathways under UV-B 
stress. UV-B upregulates the production of NO, H2S, and other gaseous signaling molecules like 
salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) which also induce H2O2. NO and H2O2 
moves to nucleus and in turn upregulate the HO-1 gene expression resulting in increased accumu-
lation of CO via HO enzymatic pathway in cytosol. H2S also acts in stomatal closure in association 
with ABA and NO, activation of the antioxidant defense system via upregulation of APX, POD, 
SOD, CAT, GR and MDHAR. It also aids in the upregulation of carotenoid biosynthesis taking 
place in the chloroplast. These complex interactions between gasotransmitters ultimately confer 
tolerance against UV-B mediated damages to plant cells. (Abbreviations: NO Nitric oxide, H2S 
Hydrogen Sulfide, SA Salicylic Acid, JA Jasmonic Acid, ET Ethylene, H2O2 Hydrogen Peroxide, 
CO Carbon monoxide, HO Heme Oxygenase, ABA Abscisic acid, APX Ascorbate peroxidase, SOD 
Superoxide dismutase, CAT Catalase, GR Glutathione reductase, MDHAR Mono-dehydroascorbate 
reductase, PSII Photosystem II, LCD L-cysteine desulfhydrase, DCD D-cysteine desulfhydrase, 
NOS Nitric-oxide synthase, L-NAME L-NG -Nitro arginine methyl ester, cPTIO 
2-4-carboxyphenyl- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, O2

.− Superoxide)

when HO-1 expression becomes upregulated, it eventually decreases H2O2 produc-
tion and programmed cell death (PCD) is delayed as found in wheat aleurone layers 
(Wu et al. 2011). Yannarelli et al. (2006) have shown that ROS plays a key role in 
the UV-B-induced upregulation of HO-1 mRNA.

It has also been reported that the crosstalk between H2O2 and NO could be 
involved in the response against UV-B stress (Fig. 2.1). He et al. (2013) have estab-
lished an interrelationship among Gα protein, H2O2, and NO during UV-B-induced 
stomatal closure in Arabidopsis leaves. Recently, Tossi et al. (2014) also showed 
that both H2O2 and NO generation play some important role in response to UV-B 
exposure via regulating the stomatal movement to reduce UV-B mediated damages.
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2.4.2  Interplay Between Gasotransmitters and Phytohormone 
Signaling under Adverse Conditions

In plants, abiotic stress responses are regulated by crosstalk between multiple sig-
naling molecules that mainly include the gasotransmitters like NO, H2S, and CO as 
well as the phytohormones like ethylene, auxin, ABA, etc. As we know, exposure to 
excessive light intensity and UV-B radiation affects the photosynthetic efficiency of 
plants which may be due to the generation of excessive ROS (Takahashi and Badger 
2011; Demarsy et al. 2018) and, as a response, it triggers the metabolism of NO, 
ethylene and other phytohormones as found in Arabidopsis (Magalhaes et al. 2000; 
Vanhaelewyn et al. 2016). Crosstalk between NO and ethylene was first evidenced 
by using chemical modulators like cPTIO which acts as NO scavenger and resulted 
in the repression of UV-B induced ethylene emission (Wang et al. 2006). (Fig. 2.1) 
Evidence has shown that in Vicia faba stomatal closure induced by UV-B radiation 
was promoted by NO accumulation in guard cells after the ethylene evolution was 
at its peak (He et al. 2011), and this event was inhibited by exogenous application 
of NO scavenger in guard cells. These observations have led to the conclusion that 
in the process of UV-B induced stomatal closure, ethylene acts as a signaling mol-
ecule upstream of NO.

2.5  Future Perspectives of Gasotransmitters in UV-B Stress

In recent years, considerable advances have been made in the research related to the 
biosynthesis of several gasotransmitters including NO, CO, H2S, H2, and CH4, and 
their involvement in abiotic stress tolerance. These studies suggest that gasotrans-
mitters play a key role as signaling molecules under adverse conditions by regulat-
ing the antioxidant defense system to maintain the redox homeostasis within the 
cell. Although these studies have reported the involvement of gasotransmitters in 
alleviating several abiotic stresses like salinity, drought, heat stress, heavy metal 
toxicity, etc., specific information regarding their role in adaption under UV-B stress 
is still lacking. Hence, the molecular aspect of the production pathways of these 
gasotransmitters and their association with abiotic stress responses, specifically 
under UV-B exposed conditions, remains of great interest to researchers. To achieve 
more in-depth mechanistic details on gasotransmitter action, some interesting area 
is claimed to be explored in near future like how these GTs modulate the stress 
responses, what are their targets in the cell under UV-B exposed conditions, how the 
metabolic pathways of these GTs interact with each other, etc. As we know UV-B is 
one of the major abiotic stresses in tropical countries from an agricultural perspec-
tive. A clear insight into the regulatory mechanism of GTs under UV-B mediated 
stress would facilitate safer breeding of tolerant crops to enhance yield and quality.
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Chapter 3
Signaling Pathways of Gasotransmitters 
in Heavy Metal Stress Mitigation

Arun Dev Singh, Kanika Khanna, Jaspreet Kour, Shalini Dhiman, 
Mohd. Ibrahim, Neerja Sharma, Indu Sharma, Priyanka Sharma, 
Bilal Ahmad Mir, and Renu Bhardwaj

Abstract Expanding population, industrialization and inadequate agricultural 
practices are complementing the ongoing environmental challenges and abiotic 
stressors. Heavy metals (HMs) are among the most common and hazardous pollut-
ants and are posing a consistent threat to a plethora of crop plants as well as to the 
human population. However, plants produce certain endogenous molecules that 
vary from reactive oxygen species (ROS), phosphorylation cascades, phytohor-
mones, and some of the gaseous signaling transmitters/gasotransmitters (GTs). GTs 
including methane (CH4), nitric oxide (NO), carbon monoxide (CO), and hydrogen 
sulfide (H2S) have witnessed among the most potential gaseous signaling molecules 
which are well known to participate in the plant development as well as in the heavy 
metal stress amelioration. This chapter reviews the potential roles of GTs, their 
signaling cascades, and cross-talks between different GTs under heavy metal stress 
conditions.
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3.1  Introduction

Heavy metals (HMs) are found to have hazardous impacts on the environment as 
well as on land plants, microbes, animals, and humans. Plants have the most prev-
alent encounters with these HMs i.e., copper (Cu), nickel (Ni), Cadmium (Cd), 
chromium (Cr), cobalt (Co), mercury (Hg), lead (Pb), etc. (Arao et  al. 2010). 
Inadequate agricultural practices, use of chemical fertilizers, mining industry, 
poor solid waste management programs, and solid waste disposal methods has led 
to HMs contamination in the agricultural lands (Tóth et  al. 2016). HMs stress 
leads to oxidative damage in the plant cells and further induces the functional 
disruption of multiple cellular enzymes, thus compromising growth and develop-
mental parameters and yields losses. An excessive number of HMs inside the 
plant system destabilizes the physiological and metabolic machinery of plants 
(Shahzad et al. 2018). Also, there is an enhancement in the reactive oxygen spe-
cies (ROS) generation, lipid peroxidation, and distorted cellular membranes. 
However, plants undergo a series of ameliorative networks to activate certain sig-
naling cascades to cope with these HM stresses. In general, they involve phos-
phorylation cascades, ROS generation, calcium –calmodulin system, 
phytohormones, and the production of special gaseous molecules known as gaso-
transmitters (GTs) (Lamattina and García-Mata 2016). GTs include compounds 
with the following characteristic features such as (1) small gaseous molecules, (2) 
able to cross biological membranes without the help of some cognate membrane 
receptors, (3) endogenously produced or synthesized by certain enzymes, (4) tar-
get specific entities (Wang 2002). Recent literature shows that HMs stress gener-
ally stimulates the activities of four GTs in general, namely methane (CH4), 
carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S).

H2S is among the gaseous signaling molecules after NO and CO with stinky egg 
odor and is found to be able to move freely across the membranes (Mathai et al. 
2009; Wang 2012). Plants have strict enzyme-controlled systems to maintain the 
activation levels of H2S. In plants, H2S is known to regulate different processes of 
plant growth and development seed germination, and stomatal movements (Chen 
et al. 2020). Also, H2S undergoes an interplay and coordinates with signaling mol-
ecules such as phytohormones and other stress-related molecules like CO, NO, and 
Ca2+, etc. (Lin et al. 2012; Peng et al. 2016; Li et al. 2012).

Micro RNAs or (mi-RNAs) are also known to have specific roles in maintaining 
plant growth and developmental activities under harsh environmental conditions, 
thus helping in maintaining the regulatory activities of multiple physiological path-
ways (Sunkar et al. 2012). Shen et al. (2013) found that H2S upregulates the tran-
scriptional levels of miR 393a, miR 396a, miR 167a, miR 167c, and miR 167d in 
Arabidopsis thaliana to counter drought stress. HMs are capable of inducing endog-
enous H2S levels in plants, e.g. under Cr stress in Setaria italica, Cd stress in 
Bermuda grass, Zn stress in Solanum nigrum, or Ni stress in rice (Fang et al. 2016; 
Shi et al. 2014; Liu et al. 2016; Rizwan et al. 2019).
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Methane (CH4) is another organic molecule that shows its functional activities as 
a gasotransmitter. Its biosynthesis inside the plants is enhanced under various abi-
otic stressors like high temperature, HMs, UV radiation, and salinity stress (Yao 
et al. 2019; Li et al. 2020). On the other hand, NO is also able to cross the membrane 
and interact with certain molecules inside the cells (Khan et al. 2021). Under abiotic 
stress conditions, NO is triggered and participates in different signaling cascades 
(Kolbert et al. 2019). NO initiates several physiological and biochemical activities 
in plants from root/shoot growth, photosynthesis, seed germination, floral regula-
tion, and nutrient hemostasis (Buet et al. 2019; Khan et al. 2020a, b; Siddiqui et al. 
2020). Also, NO shows its hormone-like and antioxidative properties in plants under 
stress. It helps the plants to encounter oxidative damage by neutralizing the ROS 
molecules by activating their antioxidant systems (Siddiqui et al. 2020; Singh et al. 
2020). Exogenous NO application to seeds under Cr (VI) stress is found to have an 
improved germination potential with respect the untreated seeds. It might be the 
consequence of the applied NO in breaking the seed dormancy either by up- 
regulating gibberellins (GA) biosynthesis or by abscisic acid (ABA) catabolism 
(Signorelli and Considine 2018). CO is another odorless and colorless gaseous mol-
ecule with ubiquitous nature. Heme oxygenase (HO) is the endogenous source for 
CO production in plants which is well known for catalytic degradation of heme to 
generate free iron, CO, and biliverdin IXα (Fang et al. 2021). However, a crosstalk 
mechanism between these GTs is also observed during HMs stress amelioration and 
other physiological as well as molecular modulations in plants under multiple stress 
factors.

3.2  Gasotransmitters

The endogenously synthesized plant gaseous signaling molecules which play criti-
cal roles in plants developmental processes and plant stress protection are referred 
as to gasotransmitters (Fang et al. 2021; Kumar et al. 2021; Shivaraj et al. 2020; Yao 
et al. 2019). Of late several gases viz., CO, ethylene (C2H4), H2S, NO, and CH4 have 
been documented as gasotransmitters. However, among those, C2H4, H2S and NO 
have been reported to be more responsive in affecting plant cellular processes 
(Shivaraj et al. 2020). The plant faces severe stresses and, to neutralize these factors, 
they have different strategies. Recently, GTs have been reported to ameliorate abi-
otic stresses and then, GTs stimulate the activities of antioxidant enzymes involved 
in the antioxidant defense system (Yao et  al. 2019). This GT-mediated induced 
response leads to the alleviation of ROS imbalance. Thus, GTs protect plants from 
stresses and induce plant stress tolerance thereby restoring normal plant growth and 
development under adverse conditions (Fig. 3.1).

Both H2S and NO have been reported to induce signaling response by stimulat-
ing protein post-translational modifications (PTMs), crosstalk with plant growth 
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Fig. 3.1 Role of gasotransmitters in plant growth and development. Figure depicts, besides the 
production of hydrogen peroxide (H2O2), that of certain gasotransmitters (GTs) inside the plant 
system like carbon monoxide (CO), nitric oxide (NO), hydrogen sulfide (H2S), methane (CH4), and 
the gaseous phytohormone ethylene (ET), which undergo certain crosstalk mechanisms with other 
phytohormones to instigate diverse cellular processes, stomata movement with the help of ABA 
(abscisic acid), and the activation of antioxidant defence system in plants for stress amelioration 
under unfavourable environment

regulators (PGRs), calcium, etc. (Mishra et  al. 2021). Although H2S is a crucial 
signaling molecule found in animal cells, recent studies emphasized its significance 
in plants (Zhang 2016). It interacts with other gas signaling molecules such as 
NO. Also, H2S plays a crucial role in normal plant growth and development pro-
cesses, and plant stress protection from various abiotic stress factors ranging from 
salinity, drought, heavy metals etc. The biosynthetic pathways of NO, H2S, and CO 
have been reported to interplay with calcium ions and some other important signal-
ing molecules such as ROS through direct chemical interactions, competitive inter-
actions for targets of bio-macromolecules, or via reciprocal influence on their 
synthesis (Kolupaev et al. 2019). These GTs have been further documented to affect 
the signaling through PTMs like GTs-mediated nitration, S-nitrosation, and persul-
fidation. Moreover, endogenous levels of GTs also affect the mechanisms of plant 
adaptations to various abiotic stresses viz., temperature (low and high), dehydration 
(water deficit conditions), and salinity (osmotic). In plants, NO, CO, H2S, and CH4 
are involved significantly in the uptake and accumulations of heavy metals and their 
detoxification through crosstalk with different GTs which are associated with heavy 
metals (Fang et al. 2021).
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Besides these GTs, ethylene is the only gaseous plant hormone that is referred to 
as a GT, because of its significance in plants developmental processes and plant 
stress protection (Karle et al. 2021). The expressions of genes involved in the ethyl-
ene signaling pathway are upregulated under salt stress. Various ethylene receptor 
genes (such as ETR1, ETR2, EIN4), ethylene signaling genes (namely ERF1, ERF2, 
CTR1, and EIN3), and MAPK cascade genes (such as MKK2, MEKK1, MPK4/6) 
have been reported to be upregulated in cotton plants under salinity stress (Peng 
et al. 2014). In cotton crops grown under salinity stress, when studied at proteomic 
and transcriptomic (mRNA sequencing analysis) levels, it has been found that a 
number of salt stress-responsive proteins can induce the alteration of miRNAs and 
further modulating the alternative splicing events. About 63 genes and their proteins 
products were identified after 4-hour exposure of cotton plants to salt stress, whereas 
85 genes and their respective proteins have been identified after 24 hours of salt 
application in upland cotton plants. Furthermore, 158 genes/proteins were identified 
to interact/interplay during salt stress tolerance through the network of two specific 
clusters comprising cytochrome oxidase and ATP synthase in mitochondria. 
Thereby, a gene network is stimulated to confer ethylene-mediated salt stress toler-
ance in plants with the mitochondrion as a key site involved in providing salt stress 
resistance in plants.

Burgeoning evidence emphasized that ethylene with another plant growth regu-
lators, i.e., polyamines, share a common precursor for its biosynthesis pathway 
(Kolbert et al. 2019). After the oxidation of polyamine, NO can be produced. Thus, 
there is an indirect metabolic connection established between the biosynthesis path-
ways of both ethylene and NO. Apart from ethylene, hydrogen gas (H2) is also a 
potential candidate for mediating numerous physiological and stress-protective 
responses in plants (Karle et al. 2021). The synthesis of H2 has been reported to be 
stimulated in response to various abiotic factors such as salt, heavy metals, UV 
radiation, drought, and temperature stress. Being a highly volatile gas, H2 has been 
employed as an alternate donor supplement in plant stress investigations (Xu et al. 
2013). However, the exact mechanism of action and mode of H2-mediated stress 
signaling is not yet elucidated (Karle et al. 2021). Various reports suggest that abi-
otic stresses generally stimulate the generation of GTs in plants. As a response, 
different GTs further stimulate various stress-protective responses such as the accu-
mulation of antioxidants, and the activation of antioxidant enzymes which further 
checks the levels of ROS in plants under abiotic stresses. This section highlights the 
significance of four major GTs namely, various NO, CO, H2S, and CH4 in plant 
developmental processes.

3.2.1  Nitric Oxide (NO)

Nitric oxide (NO) is among the oldest and most important gasotransmitters which is 
induced under herbicide, drought, and salinity stress in soybean, wheat, and tobacco, 
respectively (Yao et al. 2019). NO is also associated with the assimilation of nitrate 
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in plants. The plants interact with microorganisms through either mutualistic or 
cooperative symbioses (Hichri et al. 2016). During initial symbiotic interactions, 
NO has been observed to favour plant-microbe association by repressing plant 
defense reactions. However, at a later stage of symbiotic interactions, NO has been 
reported to inhibit the nitrogen fixation. Thereby, NO is actively involved in the 
metabolism of both carbon and nitrogen. Increasing number of studies have revealed 
that NO is involved in maintaining energy status during a hypoxic environment, 
interacting with other plant growth regulators, ensuring the balance of ROS, and 
regulating the senescence processes.

NO is endogenously synthesized by plants at various plant developmental stages 
such as seed and fruit development as well as at stress alleviating responses (Kolbert 
et al. 2019). During the NO signaling pathway, the NO signal is generally perceived 
without the involvement of any NO-specific receptor and it is primarily perceived 
through S-nitrosation. NO has an antagonistic relationship with ethylene during 
various physiological processes viz., fruit ripening, de-etiolation, stomatal opening 
stimulated by darkness, and cadmium-ion mediated cell death in plants. Besides 
this, NO and ethylene also have synergistic effects during several abiotic stress 
responses such as UV-B stress-mediated stomatal closure, and molecular expression 
of iron acquisition genes in iron deficit plants.

Although being a reactive nitrogen species (RNS), NO is also referred to as a 
non-classical gaseous plant hormone that is involved in plant stress protection medi-
ated through multiple enzymatic and non-enzymatic antioxidant defense pathways 
(Karle et al. 2021; Saddhe et al. 2019; Yao et al. 2019). During salinity stress, NO 
stimulates salt overly sensitive (SOS) and G-protein-linked signaling, Ca2+-
dependent pathways, the alternative oxidase (AOX) pathway, and mitogen-activated 
protein kinase (MAPK)-dependent pathways (Kaleem et al. 2018; Karle et al. 2021; 
Saddhe et  al. 2019). In laboratory investigations, sodium nitroprusside (SNP) is 
used as a donor of NO and SNP has been reported to ameliorate abiotic stresses in 
plants. Escalating studies have emphasized that NO is an essential gas signal mol-
ecule that is crucial for maintaining cellular homeostasis in both uni- and multi- 
cellular organisms (Del Castello et  al. 2019). Owing to its chemistry, NO is a 
versatile molecule. It is an unstable, redox, free radical, highly reactive, and short 
half-life gaseous molecule. Being lipophilic, NO easily crosses all the barriers 
imposed by the biological membranes. It is produced in living cells (both plants and 
animals) under normal and stressed conditions (Nabi et al. 2019). During stressed 
conditions, ROS concentrations increase and at the time NO may act as a stress/
ROS-detoxifier and scavenges ROS thereby minimizing the detrimental effect of 
stress. It affects respiratory pathways such as mitochondrial electron transport path-
ways to induce antioxidant defense mechanisms and ROS mitigation under abiotic 
stresses in plants.

Both endogenous levels and exogenous applications of NO regulate abiotic stress 
tolerance in various plants subjected to abiotic stresses (Ahmad et al. 2018a, b; Nabi 
et al. 2019). In tomatoes, exogenously applied NO modulated the metabolism of 
osmolytes and antioxidants, stimulated the antioxidant enzymes of the ascorbate- 
glutathione pathway and promoted plant growth under cadmium metal stress 
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(Ahmad et al. 2018a). Recent studies revealed that NO interacts with other signaling 
molecules and, among them, NO works synergistically with H2S during stress man-
agement. The endogenous concentration of NO and H2S regulate specific defense- 
related entities and antioxidant defense mechanisms in plants (Bhuyan et al. 2020). 
Reports show that both H2S and NO have well-established crosstalk mechanisms 
and induce abiotic stress tolerance against stresses like heavy metals, temperature, 
water, osmotic, and salinity (Singh et  al. 2020). These GTs regulates the gene 
expression of certain genes to an extent to stimulate the levels of various antioxida-
tive enzymes, and osmolytes mediated through signal transductions and cross 
adaptations.

The mode of action of NO involves the modification of various molecules of 
biological importance such as proteins, cGMP, fatty acids, and nucleotides. 
NO-produced RNS interact with the bio-macro/micro-molecules to amend their 
structure thereby modifying their function (Sánchez-Vicente et al. 2019). NO causes 
conformational changes in the protein structure that leads to altered stability and 
altered gene expression through two PTMs i.e., S-nitrosation (of Cys residues and 
metals) and the nitration of (Tyr residues). Further understanding of the underlying 
mechanism of action of NO with other GTs and plant hormones may help in eluci-
dating the NO-mediated cell signaling under various environmental stresses. It 
would further help in developing specific biotechnological strategies to enhance 
crop productivity and ensure food security.

3.2.2  Carbon Monoxide (CO)

Carbon monoxide (CO) is another important player as gaseous signaling mole-
cule endogenously produced in various plants cell and a variety of plant species 
and organs in response to stress, adaptive processes, and under distinct develop-
mental plant stages (Fig. 3.2) (Jin et al. 2016). CO was just been recently identi-
fied as the second GT after NO in terms of discovery order (Sukmansky and 
Reutov 2016). Exogenously CO fumigations, its aqueous solution, and also arti-
ficial CO donors like hematin and hemin in combination with various genetic 
approaches like overexpressing heme oxygenase (HO) transgenic or knockdown 
mutants were till now used for illustrating the CO crucial role in regulating vari-
ous plant’s physiological functions (Lamattina and García-Mata 2016), such as 
plant growth and developmental processes, including germination, organ senes-
cence and during alleviation of various biotic and abiotic processes. In addition 
to this, CO cross-talk with other signaling pathways was also confirmed in a 
variety of plant species. CO role in plants is intimately tied to its major endog-
enous enzymatic source, the heme oxygenase (HO) (Xuan et al. 2008). In plant 
cells, HO is normally found in the subcellular organelles mitochondria and 
chloroplasts (Dixit et al. 2014).
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Fig. 3.2 Flow chart showing CO sources and its role in stress response in plants. The figure signi-
fies the production of CO under harsh environmental conditions (abiotic and biotic stress) as well 
as under normal growth and developmental conditions in plants which further trigger the endoge-
nous CO levels inside the cell organelles and activate the defense related signaling cascades. 
However, it also depicts the exogenous applications of CO to plants under stressful environmental 
conditions to achieve the normal functioning in plants

3.2.3  Hydrogen Sulfide (H2S)

H2S is a colorless, lipophilic and flammable molecule with a foul smell (rotten eggs) 
that impedes respiratory mechanisms in mitochondrial by damaging cytochrome c 
oxidase (Fotopoulos et al. 2015). At present, H2S is reported as an important gaso-
transmitter or a secondary messenger due to its endogenous role in plants. H2S plays 
its central roles in plants and further takes part in various physiological and meta-
bolic processes such as formation of adventitious roots, seed germination, stomatal 
movement and tissue senescence, and increasing tolerance to various environmental 
stresses (Jin et al. 2013; Xuan et al. 2020; Aroca et al. 2018; Corpas et al. 2019). H2S 
shows its signaling mechanism through gene expression modulation, interaction 
with the thiol (–SH) group of protein cysteine residues by persulfidation (PTM), and 
interconnection with other plant growth regulators (Freschi 2013; Asgher et  al. 
2017; Prakash et al. 2019). It has been extensively studied that plants which are 
grown under heavy metal (cadmium, nickel, chromium, copper, and lead) polluted 
soils can survive due to the positive effects of the H2S gaseous molecule (Kushwaha 
and Singh 2020; Rizwan et al. 2019).

Sulfur metabolism is critical to the plants developmental process, and its defi-
ciency leads to significant alterations in the normal growth and development in 
plants. Sulfur enters inside the plants system as sulfate (SO4

2−) through specific 
transporters like SULTR (González-Gordo et al. 2020). Sulfur metabolism-related 
enzymes metabolize it into H2S which is present in different subcellular 
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compartments (chloroplast, cytoplasm, and mitochondria) of a plant cell. A chloro-
plast enzyme, sulfite reductase (SiR), in addition to ferredoxin reduces sulfite to 
sulfide during the sulfate assimilation pathway. The main sources of H2S formation 
from cysteine through the action of two enzymes i.e., D-cysteine desulfhydrase 
(DCD) and L-cysteine desulfhydrase (LCD) in the cytosol. In mitochondria, H2S is 
produced from the catalytic conversion of cyanide to β-cyanoalanine by 
β-cyanoalanine synthase (CAS), protecting the plant cell from CN− toxicity that 
acts on the inner mitochondrial membrane (Gotor et al. 2019). In the persulfidation 
process thiol groups of cysteine is changed from –SH to –SSH and H2S have been 
proposed to send a signal in this form which influences the protein structure and its 
function (Aroca et al. 2018).

Hydrogen sulfide is also interlinked with other plant hormones and signaling 
molecules like Ca2+, ethylene, ABA, NO, and H2O2 (Shivaraj et al. 2020).

3.2.4  Methane (CH4)

Methane (CH4) is a volatile, odorless, gaseous molecule, slightly soluble in water 
with the potential to contribute to global warming and, accordingly, the planet’s 
climate change (Boros et al. 2015; Li et al. 2019). Its protective role in various dis-
eases has completely changed the conventional perspective of the biologically inac-
tive molecule concept. Some of the roles in plants are illustrated in Fig. 3.3. CH4 
readily passes through membranes and is synthesized endogenously, producing its 
biological effect through exogenous donors (Liu et  al. 2012; Boros et  al. 2015). 
Concomitantly, it has been found to possess the characteristics to be a potent gaso-
transmitter mentioned by Wang (2014).

CH4 is produced through both biotic and abiotic means. The abiotic pathways 
contribute a almost negligibly, while as a major proportion i.e., approximately 99% 
is through biotic ways. Furthermore, biotic microbial production accounts for 
almost 70%, while non-microbial such as animals, plants, soils, fungi, and oceans 
contribute to the rest (Fig. 3.3) (Wang et al. 2013; Fang et al. 2021). Until 2006, the 
plant has been considered a medium for the emission of soil CH4 into the atmo-
sphere (Keppler et al. 2006). Subsequently, studies and literature have shown the 
production, regulatory and protective role of CH4 in plants under various stress con-
ditions like UV, temperature, drought, salinity, injury, heavy metal/metalloid such 

Fig. 3.3 Different roles of 
CH4 in plants
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as Cd and Cu, ROS, and pathogens (Hu et  al. 2018; Mei et  al. 2019). Although 
enzymes involved in the endogenous production of CH4 are yet to be known (Fang 
et al. 2021: Li et al. 2019), reports have suggested that CH4 generation in plants 
occur both under normal and stressed condition (Abdulmajeed et al. 2017; Martel 
and Qaderi 2017).

3.3  Heavy Metals as Abiotic Stressors

Due to industrial activities and sewage sludge, the concentration of heavy metals is 
increasing in nature at a rapid pace. Fe, Mn, Co, Cd, Ni, Hb, Zn, and As are some of 
the heavy metals that act as important nutrients in the soil but due to their increasing 
concentration, they are responsible for generating oxidative stress in plants. Due to 
their excessive concentration in soil, these metals are responsible for detrimental 
effects on plants by affecting the growth and development of plants (Ghori et al. 
2019). Some heavy metals such as Zn, Mn, Cu, Ni, etc. are considered essential 
micronutrients in plants because of their role as co-factors for enzymes. Besides 
these metals, there are other heavy metals such as Cd and Pb, etc. which are not 
required in plants, and when their concentration increases to a certain limit, they 
become toxic (Burakova et al. 2018; Ali et al. 2017). Sources of these heavy metals 
are both natural and man-made. When plants encounter heavy metals, negative 
effects are clearly visible in the plants in the form of root browning, chlorosis, 
stunted growth, and plant death (Ozturk et al. 2015).

Heavy metals are responsible for causing the inactivation of various indispens-
able enzymes and proteins. These metals also interfere with the substitution reac-
tions important for the metal ions from the biomolecules. Due to this interference, 
respiration rate, photosynthetic system, and homeostasis in plants are disturbed 
(Hossain et al. 2012). Heavy metals instigate and stimulate the generation of reac-
tive oxygen species (ROS) as superoxide radical (O2

•−), hydroxyl radical (•OH) and 
hydrogen peroxide (H2O2). These ROS are responsible for oxidative stress which 
includes, among others, damage to the cellular membrane through lipid peroxida-
tion. They are also known to cause damage to biomolecules and DNA strands 
(Barconi et al. 2011; Ahmad et al. 2012).

3.3.1  Heavy Metals and Their Toxic Effects

Copper plays a very necessary role in plants as it is important for ATP synthesis and 
assimilation of carbon. It is also an important part of cytochrome c oxidase and 
plastocyanin that are required in the respiratory system and the photosynthesis, 
respectively (Yadav 2010). But when the concentration of Cu increases in plants, it 
causes damage to macromolecules, biochemical pathways, and also DNA (Yadav 
2010). It was reported by Bouazizi et al. 2010 that Cu stress causes inhibition in 
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growth, and chlorosis and also causes retardation in the plant growth. Studies con-
ducted by Neelima and Reddy (2002) in Solanum melongena showed that the 
growth parameters as root and shoot length of the plant were affected due to stress 
caused by Cu. Another heavy metal, Cr, causes contamination in the groundwater. 
Cr leads the retardation in growth, chlorosis, and damage to the roots (Shanker et al. 
2003; Ozturk et al. 2015). Studies conducted by Yadav 2010 on the toxicity of Cr 
have found that it affects the chloroplast, carbon fixation, produces ROS, and also 
inhibits the electron transport chain. Studies conducted on the effect of excess Ni in 
the plant system have found that due to this metal, there is an arrest in the growth, 
and is also responsible for oxidative stress (Vatansever et al. 2017). The concentra-
tion of Ni in soil has increased mainly due to smelting, sewage mining, and exces-
sive use of fertilizers (Aziz et al. 2015).

Among all heavy metals, lead (Pb) is considered one of the major contaminants 
that pollute the soil. Lead is mostly discharged from natural weathering processes 
and other anthropogenic activities like mining and smelting (Ashraf et al. 2015). In 
plants, Pb is known to cause chlorosis, stunted growth, and a decrease in the root 
length (Sharma and Dubey 2005). Studies conducted by Malar et al. 2014 on the Pb 
toxicity in water hyacinths indicated that at higher concentrations, Pb affects the 
plant growth. Due to the toxicity caused by Pb, antioxidative enzymes were also 
increased in plants to combat stress. Cd is toxic to plants and its toxic concentrations 
are a matter of concern. It has been observed that due to Cd, the photosynthetic 
system in plants is affected. Absorption and translocation of Ca, P, Mg K, and water 
are also reduced (Nagajyoti et al. 2010). Studies conducted on Alternanthera bet-
tzickiana found that, at lower concentrations, Cd positively impacts the plants 
development processes whereas, at higher concentrations, the developmental activi-
ties in plants were affected (Tauqeer et al. 2016). Another heavy metal, Zn is con-
sidered an essential element for the normal growth of plants. But for the normal 
growth, Zn is required in very trace amounts as the higher concentrations of Zn are 
observed to cause toxicity in plants. When its concentration increases, Zn causes 
senescence, retards growth, induces chlorosis, and further impacts the overall devel-
opmental mechanism of plants (Nagajyoti et al. 2010).

3.4  Gasotransmitters Signaling Under HMs 
Stress Conditions

Plants are facing constant heavy metal constraints on their growth, metabolic 
activities, and yield. Plants adapted themselves by boosting substantial defensive 
mechanisms under the threat of uplifted levels of essential and non-essential met-
als. They regulate various defense strategies like metal sequestration, ions- 
trafficking phytochelatins (PCs), reduced glutathione (GSH), metallothioneins 
(MTs), and activation of antioxidant enzymes to competently counteract the heavy 
metal stress on the generation of ROS (Emamverdian et al. 2015; Choudhury et al. 
2017). Nowadays, scientists are exploring a sustainable approach to attenuate 
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hazardous toxicants which are posing a consistent threat to plants. In addition to 
synchronization of the antioxidative defense system and plant growth regulators, 
other biochemical approaches like biomolecule cascades, signal transducers viz. 
gasotransmitters (GTs) gaseous signaling molecules viz. NO, CO, H2S and CH4 
also contribute to the alleviation of consequences of toxic metal stress (Gu et al. 
2018; Shivaraj et al. 2020; Alamri et al. 2020; Mukherjee and Corpas 2020). A GT 
type signal molecule endorses numerous physiological activities via enumerating 
biological processes such as activation of enzyme and metabolic activities, recep-
tors at the target site of membrane germination, organogenesis, growth, develop-
ment, etc. (Lamattina et al. 2013; Fang et al. 2021). In the following sections, we 
summarize the findings on regulatory functions and signaling response of GTs 
against toxic heavy metal stress.

3.4.1  NO Signaling Under Heavy Metal Stress

Heavy metals and metalloids induced phytotoxicity by hindering physiological, cel-
lular, and metabolic functions. The toxicity of metals elevates the level of reactive 
oxygen species that causes an imbalance between antioxidant homeostasis (Sharma 
and Dietz 2009). Extensive research reveals the function of NO molecules in allevi-
ating the toxic effect of heavy metals at both endogenous and exogenous capacity 
(Pető et al. 2013; Zheng et al. 2014). NO might act as a signaling molecule due to 
reductive/oxidative pathways like nitrite-NO-reductase (NiNOR) a membrane- 
bound enzyme, nitrate reductase (NR) in the cytosol, electron transport chain (ETC) 
cytochrome c oxidase in mitochondria, and a NO-like synthase in peroxisomes 
(Barroso et al. 1999; Rockel et al. 2002; Corpas et al. 2008; Neill et al. 2008; Farnese 
et al. 2016). These molecules act as stress markers to influence catalytic functions 
and improve the morphology of plants under various metal ions viz. lead, alumin-
ium, cadmium, etc. owing to the overproduction of endogenous NO (Tain et  al. 
2007; Corpas et al. 2022).

Contradictory to these, some findings show both enhanced and reduced NO lev-
els against different heavy metals in maize, rice, soybean, etc. Hence, these observa-
tions predict that the contradictory results might be a consequence of plant tissue, 
type, and duration of stress. Faria-Lopes et al. (2019) describe that NO in the form 
of S-nitrosoglutathione helped in boosting antioxidant enzyme activity by diminish-
ing ROS levels against Al stress in wheat seedlings. Similarly, it was confirmed by 
Kováčik et al. (2019) that in the lichen, NO modulated Cd tolerance via escalating 
nutrients, minerals, and metabolites. Thus NO, a gaseous molecule, might regulate 
tolerance to toxic metals through the expression of associated genes.

Experimental observations revealed that NO stimulates seed germination, 
growth of different plant parts, and photosynthetic and enzymatic activity under 
both control and stressed condition (Gong et al. 2017a; Per et al. 2017; Nabaei 
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and Amooaghaie 2019; Nagel et al. 2019). NO enhanced the rate of seed germi-
nation against Cu, As, Cd, and Cr metals in wheat, mung bean, tomato, 
Catharanthus roseus, and Lupinus luteus seed via initiation of α-amylase, 
β-amylase activity, and cGMP signaling pathway (Yang et al. 2010; Ismail 2012; 
Khan et al. 2020a, b). It was also found that NO exogenous treatment reduced 
the level of H2O2 and malondialdehyde (MDA) through the activity of protease 
and ATPase (Rather et al. 2020). Similarly, other reports show the involvement 
of NO in photosynthesis such as maintenance of light-harvesting complexes, 
chlorophyll molecules, and activity of enzyme ribulose-1,5-bisphosphate car-
boxylase/oxygenase (RuBisCO) when exposed to different metals like Al, Cd, 
As, Ni, Pb, etc. (Gong et al. 2017a, b; Ahmad et al. 2018a, b; Rizwan et al. 2018; 
Bai et al. 2015). The upsurge in NO-stimulated photosynthesis might be due to 
mineral nutrients and the antioxidant defense system (Chen et  al. 2018a). 
Several studies reveal the enhanced level of antioxidative enzymes in response 
to NO which significantly homeostasis the overproduction of ROS like H2O2, 
O2

•−, •OH and expression of ascorbic acid (AsA), peroxidases (PODs), CAT, 
glutathione-S-transferase (GST), SOD, APX, and PCs (Sun et al. 2014; Souri 
et al. 2020; Singh et al. 2017; Kováčik et al. 2019). NO donor S-nitrosoglutathione 
mitigates the toxicity of metal ions by sequestering in vacuoles (Mostofa et al. 
2015a; Tiwari et al. 2019).

Exogenous treatment of NO manifests a reduction in metalloid toxicity of As, 
Cd, and Pb in rice, wheat, mung bean, Typha angustifolia owing to the homeostasis 
of ROS, MDA, and augmentation in plant growth, biomass, and yield (Ismail 2012; 
Mostofa et al. 2015a; Zhao et al. 2016). The possible mechanism of NO for dimin-
ishing the toxicity of HMs comprises osmoregulation across the cell membrane and 
other related components (Ahmad et al. 2018a). The studies also indicate that NO 
ameliorates heavy metal stress via adaptive approaches like cell wall plasticity and 
expansion, signaling at phospholipid bilayer, and enhancing plant growth (Seabra 
and Oliveira 2016). Further, the recent reports reveal that NO alleviates heavy metal 
stress via induction of HM-associated metallo-chaperons (domain genes), specific 
proteins responsible for transporting the metal ions inside the cell under the cataly-
sis of metallo-cofactor. Currently, with the help of transcriptomic studies, scientists 
can identify differentially expressed heavy metal-associated domain genes in rela-
tion to NO. The research work showing the ameliorative contribution of NO mole-
cule against HMs toxicity in different plants is highlighted in Table 3.1. Nitric oxide 
attenuates varied activities in plants accounting for germination, photosynthetic 
molecules, stomatal and ion conductance, growth of different organs, and hormonal 
regulation (Munawar et al. 2019). From literature, it is concluded that NO regulates 
metal stress tolerance by strengthening the antioxidant defense system via equili-
brating cell redox reactions (Sharma et al. 2020). In addition, on metal stress, plants 
normalize their tolerance by triggering the endogenous NO synthesis mechanism 
(Kaya et al. 2019).
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3.4.2  H2S Signaling Under Heavy Metal Stress

Plant growth and development are retarded by inhibiting photosynthesis, disrupting 
enzymatic activity and ROS production in heavy metal contaminated soil. H2S 
reduces the uptake and translocation of these heavy metals through vacuolar com-
partmentalization, accumulation of osmoprotectants, antioxidant activities, etc. 
(Gong et al. 2020; Tian et al. 2016; Kushwaha and Singh 2020). Figure 3.4 shows 
the effect of H2S under heavy metal toxicity. Under those conditions, the biosyn-
thetic enzymes L-cysteine desulfhydrase (L-DES/LCD), D-cysteine desulfhydrase 
(D-DES/DCD), and CAS (cyanoalanine synthase) are activated and generate H2S 
by using cysteine and cyanide as substrates (Alvarez et al. 2010; Gotor et al. 2010). 
H2S production leads to the activation and maintenance of ROS detoxifying enzymes 
like SOD, POD, APX, CAT, etc. which then maintain the redox homeostasis. In rice 
plants, exogenous application of H2S donor NaSH activates the antioxidantive 
enzymes and also enhances the expression of non-enzymatic antioxidants i.e. AsA 

Fig. 3.4 H2S signalling under heavy metal stress. HM- heavy metal, LCD- L-cysteine desulfhy-
drase; DCD- D-cysteine desulfhydrase, CAS- β-cyanoalanine synthase, SAT1- serine acetyltrans-
ferase 1, OASA1- cysteine synthase 1, GSH1-glutamylcysteine synthetase 1, GR- glutathione 
reductase, GAPDH-glyceraldehyde-3-phosphate dehydrogenase, APX- ascorbate peroxidase, 
SOD- superoxide dismutase, CAT- catalase, PC- phytochelatins, MT- Metallothionein
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and GSH (Mostofa et al. 2015b). Serine acetyltransferase 1 (SAT1) and cysteine 
synthase 1 (OASA1) genes are upregulated by heavy metal triggered H2S production 
which ultimately increases the phytochelatin and metallothionein content in plant 
cells and also the osmolytes (proline, glycine, betaine) maintain the ROS homeosta-
sis by protecting protein molecules under osmotic stress (Fang et  al. 2021; Jia 
et al. 2016).

Additionally, H2S activates the tonoplast antiporters (Cd2+/H+) and therefore 
maintains the heavy metal homeostasis through vacuolar compartmentalization. In 
a protein, cysteine residues are targeted by persulfidation (-SH, S-S-, − S-OH to –
SSH) which then enhances the expression of APX and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) and subsequently help in metal tolerance (Aroca et al. 
2015). H2S elevates the level of GSH (reduced glutathione) by enhancing the expres-
sion of glutamylcysteine synthetase (GSH1) and glutathione reductase (GR) and 
also increasing the amount of reduced AsA, thereby neutralizing the HMs stress by 
the formation of these antioxidant molecules (Luo et al. 2020; Fang et al. 2014) 
(Fig. 3.4).

3.4.3  CO Signaling Under Heavy Metal Stress

Stressed plants can be protected from the harmful effects of HMs with the help 
application of CO (as shown in Table 3.2). Heavy metal-induced oxidative stress in 
plants can be relieved by CO (Zheng et al. 2011) or also by exogenous application 
of various substrates of CO fumes/its aqueous solution, hematin, hemin, and heme. 
CO treatments into Brassica juncea suppressed the production of ROS like O2

•− and 
H2O2 (Meng et al. 2011). Oxidative damage associated with Cd toxicity was mini-
mized by modulation of glutathione metabolism in Medicago sativa by CO applica-
tion (Han et al. 2008). Hematin and CO when applied exogenously to M. sativa 
(alfalfa) root seedlings affected with HgCl2 stress not only reduced lipid peroxida-
tion but also caused root elongation mainly through the activation of antioxidants 
like monodehydroascorbate reductase (MDAR), SOD, GR, and decreasing lipoxy-
genase (LOX) activity (Han et al. 2007). In algae, CO lowers the HMs accumulation 
mainly by restricting the HMs uptake (Wei et al. 2011). CO treatment also elimi-
nates oxidative stress in algae under Cu-toxicity through the activation of CAT 
enzymes (Zheng et al. 2011).

3.4.4  CH4 Signalling Under Heavy Metal Stress Conditions

Metal contamination has become a widespread problem with the development of 
the industrial sector. It causes a serious disease effect on the health of plants, ani-
mals, and humans as well. In plants, metal exposure has been linked with inhibition 
of germination and plant growth, in many cases causing plant death. Studies revealed 

3 Signaling Pathways of Gasotransmitters in Heavy Metal Stress Mitigation
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Table 3.2 CO treatments and its role in ameliorating heavy metal stress in plants

Plant species CO source CO effect on heavy metal stress References

Medicago sativa Hematin Ameliorates mercury stress Han et al. (2007)
M. sativa CO aqueous 

solution
Modulates glutathione metabolism in 
the roots to alleviate cadmium-induced 
oxidative damage

Han et al. (2008)

M. sativa Hemin and 
hemin

Heme oxygenase-1 (HO-1) induction 
triggered by β-cyclodextrin-hemin 
(β-CD hemin, CDH) reduced the 
Cd-induced toxicity in M. sativa

Fu et al. (2011)

Brassica juncea Aqueous 
solution of CO

Increases mercury tolerances Meng et al. (2011)

Brassica napus Hematin, hemin 
or HO

Enhances mercury tolerances Shen et al. (2011)

M. sativa Heme 
oxygenase-1 
(HO-1)

HO-1-mediated CO production causes 
the downregulation of SA (salicylic 
acid) to reduce Cd-induced oxidative 
damage in the roots of alfalfa 
seedlings

Cui et al. (2012)

M. sativa HO1 Ameliorates Al associated oxidative 
stress

Cui et al. (2013)

Chlamydomonas 
reinhardtii

HO1, CO Reduced heavy metal stress Wei et al. (2011)

C. reinhardtii CO Amliorates Cu induced oxidative 
stress

Zheng et al. (2011)

Oryza sativa Hemin Ameliorates zinc, Lead & chromium 
toxicity of rice seedling

Chen et al. (2017)

O. sativa HO1/ferrous 
iron

Alleviates Zn tolerances Chen et al. (2018a)

Chinese cabbage 
seedling

Heme hemin reduced cadmium toxicity in 
Chinese cabbage seedlings through 
decreasing the Cd uptake

Zhu et al. (2019)

that plants develop oxidative stress with exposure to metals which thereby led to an 
ROS burst (Cui et al. 2017; Samma et al. 2017; Gu et al. 2018). Reduction in metal 
accumulation by inhibiting uptake and regenerating redox homeostasis are the two 
possible mechanisms through which CH4 provides a shield against metal-related 
toxicity. For instance, a reduction in copper and Cu-induced proline content coupled 
with enhancement of total sugar content was detected in Medicago sativa seed 
which is thought to be inhibited from germination by copper accumulation (Samma 
et al. 2017). CH4 was found to be the key player to alleviate the excess Cu and was 
successful in re-establishing the redox homeostasis. Gu et al. (2018) revealed that 
CH4 induced alleviation of Cd and Al toxicity through regulation of their transporter 
and their associated genes. Samma et al. (2017) demonstrated the mitigative role of 
CH4 in Cd-induced inhibition of seed germination, and seedling growth and allevi-
ating oxidative stresses by applying exogenous CH4 in alfalfa. The mechanism 
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stated was through minimizing and controlling of lipid peroxidation and maintain-
ing membrane integrity and emission of CH4 has also been noticed in Cd stressed 
seedlings of alfalfa (Samma et al. 2017).

Inhibition of root elongation, nutrient disorder, and electrolyte leakage under Al 
stress has been found to mitigate through CH4 application in alfalfa root tissue (Cui 
et al. 2017). Similarly, emission of CH4 in root tissue of alfalfa plant under Cd stress 
and mitigation of Cd-induced inhibition of seedling growth with exogenous CH4 
application (Gu et al. 2018).

HM such as Cd, Al, and Cu cause oxidative stress and redox imbalance triggers 
the activity of antioxidative enzymes such SOD, CAT, POD, and APX activity. CH4 
pre-treatment further enhanced their activities via a cascade of signaling which tar-
gets the genes that synthesize those enzymes (Cui et al. 2017; Samma et al. 2017; 
Gu et al. 2018). ROS production under HM stress is considered to be the triggering 
signal for nonmicrobial CH4 generation inside the plants. The ROS overproduction 
triggers the CH4 generation which however leads in the upregulation in the activity 
of certain antioxidative enzymes. However after the ROS removal and their enhance-
ment in ROS removal enzymes the levels of CH4 gets reduced, thus gives enough 
evidence of CH4 involvement in mitigation of ROS production under HM stress 
(Samma et al. 2017). Also, CH4 maintains the GSH level under Cd stress by trigger-
ing the expression levels of specific genes such as γ-glutamylcysteinyl synthetase 
(ECS), glutathione reductase 1 and 2 (GR1/2), homoglutathione synthetase (hGS) 
and glutathione-S transferase which are involved in reduced glutathione (GSH) bio-
synthesis (Fig. 3.5) (Gu et al. 2018).

Fig. 3.5 Signaling mechanism of CH4 in ameliorating the heavy metal (HM) stresses in plants
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3.5  Crosstalk of Different Gasotransmitters Under Heavy 
Metal Stress

Gasotransmitters aid signaling processes in plants and are synthesized endoge-
nously as well as exogenously. They are crucial for mediating signaling responses 
and function actively in regulating different mechanisms of plants under stressed 
conditions like metalloid toxicity and improved plant growth and metabolism 
(Alamri et al. 2020; Mukherjee and Corpas 2020; Yao et al. 2019). NO is considered 
one of the substantial gasotransmitters that is synthesized endogenously and also 
taken up by exogenous sources that help the plants to sustain, survive and counter-
act heavy metal toxicity conditions (Terrón-Camero et al. 2019). Endogenous NO 
levels become escalated in plants subjected to metal toxicity that is primarily due to 
higher NO-mediated transcripts (Besson-Bard et al. 2009). The exogenous levels of 
sodium nitroprusside (SNP) declined the ROS levels along with enhancing stress 
resistance and chlorophyll levels with improved nutrient absorption in Lolium 
perenne subjected to Cd stress (Chen et  al. 2018a, b). The treatment of mustard 
plants with NO ameliorated Cu stress and associated adversities with higher germi-
nation index and antioxidant activities of APX, SOD, and GR respectively (Rather 
et al. 2020). They also reported reduced ROS and lipid peroxidation with enhanced 
photosynthetic rate and morphological attributes of the plants (Rather et al. 2020). 
Moreover, the treatment of SNP triggered the antioxidant levels and reduced super-
oxide and MDA contents in Arachis hypogea. Enhanced nutrient levels of Ca, Mg, 
Zn, and Fe have also been found (Dong et al. 2020). NO negatively affects the metal 
uptake except for Cd where positive regulation is observed (Terrón-Camero et al. 
2019). The NO-mediated Cd mitigation in Brassica sp. depicts that stress allevia-
tion is directly linked to S-assimilation and GSH synthesis (Per et  al. 2017). To 
elucidate when plants were given SNP treatment along with GSH, the Cd toxicity 
was more efficiently ameliorated along with lowered ROS accumulation and stimu-
lated antioxidant activities as well as photosynthetic and pigment levels (Per et al. 
2017). NO-mediated amelioration of Cr toxicity in tomato plants was also observed 
along with inducing seed vigor index and germination rate respectively (Khan et al. 
2020a, b). They also depicted the enhanced levels of proline, nitrogen, and metal 
ligands such as GSH and ascorbate with plummeting electron leakage as well as 
protein carbonylation (Khan et al. 2020a, b).

Another important gasotransmitter is H2S which has been a well-known second-
ary messenger in plants under stressful conditions and induces other signaling mes-
sengers during the defense signaling cascade in plants (Luo et  al. 2020). The 
exogenous application of H2S mitigated Cr toxicity by limiting the electrolyte leak-
age, ROS, and MDA accrual along with enhancing the activities of physiological as 
well biochemical attributes in terms of chlorophyll levels, plant biomass, enzymatic 
activities such as SOD, APX, POD, GPX (glutathione peroxidase), CAT, etc. in 
cauliflower (Ahmad et  al. 2020). Further, H2S application also upgraded the 
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photochemistry of photosystems through stimulating photochemical efficiencies, 
quenching as well as quantum efficiency. Consequently, an increase in the photo-
synthesis, antioxidants namely, SOD, POD, CAT, GPX, APX, GR, etc. was also 
reported that mitigated the Cu toxicity from wheat plants (Dai et al. 2016). Induced 
endogenous H2S in rice is also known to upregulate ROS neutralizing enzymes and 
further regulates the redox homeostasis of plants. Higher chlorophyll synthesis 
through enhancing mineral acquisition of Mg, Zn, Mn, and Fe was also reported 
that maintained Cd homeostasis and toxicity in rice plants (Mostofa et al. 2015b). 
Moreover, H2S synthesis is also stimulated during metal toxicity conditions in 
alfalfa plants grown under Cd toxicity through the biosynthesis of many enzymes 
such as LCD and DCD respectively that further regulated GSH metabolism as well 
as ROS homeostasis (Cui et al. 2014). Although, the exogenously applied H2S fur-
ther enhanced the endogenous levels to mitigate Cd-induced physiological damage 
to the plants by maintaining the levels of GSH pools and redox homeostasis (Cui 
et al. 2014). Moreover, the combinatorial treatment of H2S and NO both mitigated 
CO toxicity in wheat by modulating their water levels as well as osmotic potential, 
stomatal conductance, transpiration rate, RuBisCO activity, intracellular CO2 and 
rate of carbon assimilation (Ozfidan-Konakci et al. 2020).

CO is yet another molecule, kindred of NO and H2S that induces the activation 
of antioxidants, CAT, APX, and POD to limit the ROS accrual during metal toxicity 
conditions along with promoting plant growth and development (Meng et al. 2011). 
Although CO application mitigated Cd-induced oxidative damage by regulating 
GSH pools and restoring the structural integrity in alfalfa plants (Han et al. 2008). 
In addition, hemin, a water-soluble CO donor led to activation of transcriptional 
expression as well as plummeted the Zn accumulation. This is directly co-linked to 
the down-regulation of Zn uptake along with reduced expression levels of genes 
encoding Zn homeostasis, ZIP1, ZIP3, ZIP7, and ZIP7 respectively, and enhanced 
Zn resistance in rice plants (Chen et  al. 2018a, b). Additionally, another crucial 
player in maintaining redox homeostasis is CH4 which dwindled metal toxicity in 
plants by blocking metal accumulation and improving plant growth and metabolism 
(Cui et al. 2017). CH4 has been found to maintain nutrient balance and also regu-
lates Al toxicity through modulating the expression levels of metal transporter genes 
namely, ALMT1, MDH1/2, AACT, and genes encoding organic acid synthesis (Cui 
et al. 2017). Alongside, Cd toxicity has also been observed to be regulated through 
GSH pools as well as expression of miR159 and miR167 along with targeted ABC 
transporters NRAMP6 respectively (Gu et al. 2018).

It is noteworthy that the most significant crosstalk is observed among different 
gasotransmitters during heavy metal toxicity that not only mitigated the negative 
effects but also promoted plant growth and functions in different aspects (Shivaraj 
et al. 2020). NO and H2S in combination share their signaling mechanism where 
there are certain reports depicting H2S upstream or downstream NO-signaling cas-
cade (Corpas et al. 2019). Both NO and H2S show an impact on each other, and 
overall expression is documented in the form of antioxidant responses of the plants 
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(Rather et al. 2020). There is a certain set of studies that suggest NO-H2S crosstalk 
in plants under heavy metal toxicity. For instance, the exogenous H2S donor 
enhanced the NO levels in alfalfa plants under Cd toxicity, whilst NO scavenger 
reverted their action (Li et al. 2012). Similar to this, NO and H2S together mitigated 
Pb toxicity in Sesamum indicum by hindering their uptake and accrual along with 
improving antioxidant activities and nutrient uptake and assimilation of essential 
nutrients such as Mg, Zn, Mn, Fe, and P. All these processes regulated the mineral 
homeostasis as well as overall growth and metabolism of plants (Amooaghaie and 
Enteshari 2017). The interactive role of NO and H2S in Cd stress mitigation in 
Triticum sp. plants was positively co-related to exogenously apply NO and H2S 
donors. They reported stimulated plant dry matter, chlorophyll, antioxidant enzymes 
(CAT, POD, SOD, etc.), and mineral nutrients (Kaya et al. 2020). Moreover, NO 
and H2S together can ameliorated Cd stress through modulation of ROS and osmo-
protectants content in Cynodon dactylon respectively (Shi et al. 2014). Alongside, 
NO and H2S inhibitors are found to restrict NO signals, whereas H2S signals were 
mainly restricted by H2S inhibitors only during Cd stress, thus can depict the active 
role of NO-signaling that mediates H2S-induced Cd stress alleviation in C. dactylon 
(Shi et al. 2014). This is directly co-linked to the cryoprotective behavior of NO 
donors along with the combinatorial action of H2S donors that caused Cd stress 
attenuation in alfalfa plants and depicts a classic example of crosstalk among differ-
ent gasotransmitters during stressed conditions (Li et al. 2012).

Furthermore, NO also forms a signaling network along with phytohormones 
such as ethylene (ET), calcium, and Mitogen-activated protein kinases (MAPKs) 
and gives rise to a hormonal signaling cascade (Jalmi et al. 2018). NO-ET cross-
talk has been observed to impact many plant responses subjected to toxicity of 
hazardous metals such as As, Cd, Cu, Ni, Pb, and Zn respectively (Sahay and 
Gupta 2017). NO-ET crosstalk is effective during Cd stress in pea plants that 
showed modulatory effects on both ROS as well as NO metabolism along with 
changing patterns of hormonal levels namely, jasmonic acid, salicylic acid, and 
ET respectively (Rodríguez-Serrano et al. 2009). In forging arguments, all these 
phytohormones escalated along with higher ROS levels together with limited NO 
production that was co-linked to Cd-mediated senescence. Therefore, the authors 
reported that ET and NO show antagonistic effects in plants under Cd stress and 
Cd-boosted nutritional disturbances, and led to NO reduction and subsequent 
alteration in protein nitrosation which favors ET biosynthesis (Rodríguez-Serrano 
et al. 2009). Strikingly, many other treatments with Cd enhanced the expression 
levels of genes encoding for proteins involved in ET as well as NO biosynthesis 
in Glycine max (Chmielowska- Bąk et al. 2013). The biochemical and molecular 
interactions among NO-ET signaling pathway and their crosstalk during metal 
toxicity in plants still requires to be explored. Although a complex network among 
different gasotransmitters during metal toxicity conditions is still being explored 
in detail to accomplish the main motive for completing this circuit and enable 
researchers working on gasotransmitters to understand their crosstalk elaborately 
during heavy metal toxicity conditions.
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3.6  Conclusion

Studies on gasotransmitters regulation under the changing abiotic stress conditions 
is a topic of research hotspot for the scientific community. Among these abiotic 
stressors, HMs are evidenced to induce various GTs-related regulatory processes in 
the plant system. GTs are found to promote and up-regulate plant tolerance to 
diverse HMs constituents. These gaseous signaling molecules do not operate inde-
pendently but undergo a series of cross-talks with other GTs and also coordinate 
with other molecules such as phosphorylation cascades, ROS molecules, calcium –
calmodulin systems, phytohormones, etc. Thus, understanding and achieving more 
in-depth knowledge of these signaling cascades and the biological interplay between 
these GTs under HMs stress conditions requires more understanding and research 
applications.
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Chapter 4
Volatile Signaling Molecules in Plants 
and Their Interplay with the Redox 
Balance Under Challenging Environments: 
New Insights

Liliana Scelzo, Matías Alegre, Carlos Guillermo Bartoli, Andrea Galatro, 
Violeta Velikova, and Gustavo Esteban Gergoff Grozeff

Abstract Volatile molecules such as ethylene, nitric oxide (NO), and isoprene have 
important functions in plant growth and development. Under stress conditions, 
these compounds interact with each other and with the reactive oxygen species 
(ROS) processing systems, to undergo stressful situations. The coordination of sev-
eral processes such as leaf senescence, fruit ripening, or growth under challenging 
scenarios requires a multilevel study, coupled with the study of the antioxidant sys-
tems that are able to maintain the redox balance within the plant cell. In this chapter, 
the authors emphasize the complex network that integrates volatile signaling mole-
cules with ROS under hormonal control and the possible implications in the crop 
technology that will probably be an input in future genetic engineering programs.
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4.1  Introduction

Since the first appearance of cyanobacteria, the Earth’s atmosphere started to accu-
mulate oxygen, converting the ambient from reducing to oxidant. The harvest of 
light and the synthesis of oxygen, as a sub-product of the photosynthetic process, 
also carried the production of certain forms of oxygen called reactive oxygen spe-
cies (ROS) (Noctor et al. 2018). ROS can also act in two ways in the cellular metab-
olism: either producing harmful effects on molecules (e.g., proteins, DNA, lipids, 
etc.) or as signaling molecules (Mittler 2017).

Under stress conditions, plants have many systems to overcome these stressful 
situations and some volatile molecules contribute to coordinate the complex meta-
bolic orchestration, including some gasotransmitters like ethylene, isoprene, and 
nitric oxide (NO), among others. This chapter aims to build a bridge between the 
stress conditions, the gasotransmitters, and the redox balance. First, we will briefly 
discuss the production of the ROS, and the ROS processing systems as the counter-
part, and then we will introduce some volatile molecules that interact with the redox 
balance in plant metabolism.

4.2  Reactive Oxygen Species

ROS is a collective definition that includes oxygen radicals [e.g. superoxide radical 
(O2

•−), hydroxyl radical (•OH), peroxyl radical (RO2
•), hydroperoxyl radical (HO2

•)] 
and non-radical molecules, that are strong oxidizing agents [e.g. singlet oxygen 
(1O2), hydrogen peroxide H2O2, hypochlorous acid (HOCl), and ozone (O3)] (Dvořák 
et al. 2021). One of the most stable ROS is hydrogen peroxide, which can also be 
actively transported through the cellular membranes by aquaporins (Bienert and 
Chaumont 2014).

Even though ROS can be generated in the symplast and the apoplast of the plant 
cell, the principal organelles that produce ROS are chloroplasts, mitochondria and 
peroxisomes. In chloroplasts, the production of ROS is located in the thylakoid 
membranes, where O2

•− is produced at the level of Photosystem I, while 1O2 is pro-
duced in Photosystem II basically (Asada 1999; Corpas et al. 2015). The O2

.- anions 
can be dismutated spontaneously or generated by the action of the superoxide dis-
mutase (SOD) enzyme in both the stroma and the thylakoid membrane. In mito-
chondria, the main ROS produced is O2

•− and it is mainly associated with the activity 
of Complexes I and III in the inner mitochondrial membrane (Corpas et al. 2015; 
Gupta and Igamberdiev 2015). In peroxisomes, the O2

•− is produced in the matrix 
and in their membranes (Corpas 2015; Corpas et al. 2017) and the H2O2 is the result 
of the activity of certain specific enzymes associated with photorespiration and 
other organelle pathways (Corpas 2015; Foyer 2018). The apoplastic ROS are pro-
duced by the NADPH oxidases, oxalate oxidases and through the spermidine 
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degradation by the action of the polyamine oxidase (Wang et al. 2019), together 
with other isoforms of peroxidases (Dvořák et al. 2021).

4.3  ROS Processing Systems

4.3.1  Enzymatic ROS Processing Systems

Under physiological conditions, ROS are produced and then eliminated from the 
cells thanks to different ROS processing systems, which can be separated into enzy-
matic and non-enzymatic (Gupta et al. 2015, 2018). The enzymatic ROS processing 
system includes different enzymes like SOD, catalase (CAT), ascorbate peroxidase 
(APX), glutathione peroxidase (GPX), peroxiredoxins (Prx), and thioredoxins (Trx) 
(Table 4.1).

Besides their capacity to reduce O2
•− to H2O2, ameliorating the ROS stress, SODs 

have a central role in the synthesis of H2O2 as a signaling transduction molecule and 
in the fine-tune responses of growth and development (Dietz et al. 2016).

The reduction of H2O2 can be catalyzed by three main enzymatic antioxidant 
systems: CAT, APX, and GPX. CAT transforms H2O2 to H2O and O2 in peroxisomes 
(Table 4.1). CAT activity can be also up-regulated under unfavorable conditions for 
plant growth (Mhamdi et al. 2012) and can control the redox homeostasis by reduc-
ing the levels of H2O2 (Sandalio and Romero-Puertas 2015). In Arabidopsis thali-
ana, there are three genes encoding different CAT isoforms: CAT1 expression is 
related to the β-oxidation of fatty acids, CAT2 is linked to the photorespiration path-
way and CAT3 is expressed under senescence-associated processes (Del Río and 
López-Huertas 2016). Under abiotic stress, CAT is up-regulated to decrease the 
impact of oxidative stress over different growth processes (Gupta et al. 2018).

The detoxification of H2O2 can also be catalyzed by the action of the APX, which 
uses L-ascorbic acid (AsA) as an electron donor and generates H2O and monodehy-
droascorbate radical (MDHA) (Fig. 4.1). The different isoforms are located in the 
cytosol, chloroplasts (thylakoid and stroma), mitochondria, and peroxisomes, mod-
ulating the levels of H2O2 in these subcellular compartments (Pandey 2017; Pandey 
et al. 2017). In the chloroplasts, the APX is bounded to the thylakoid membrane and 
forms part of the water-water cycle (Asada 1999). The activity of these different 
isoforms enhances the role of AsA as an antioxidant and explains the abundance of 
this molecule in plant cells (Gest et al. 2013).

Another enzyme that catalyzes the same H2O2 scavenging reaction is glutathione 
peroxidase (GPX). It is part of the thiol peroxidases and uses glutathione (GSH) as 
an electron donor. Similar to APX, this ubiquitous enzyme is distributed in different 
subcellular compartments. In A. thaliana, there are eight isoforms that are induced 
by different signals (Bela et al. 2015). GPX and APX also regulate the ascorbate- 
glutathione cycle (Kumar et al. 2017) (Fig. 4.1).
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Table 4.1 ROS processing systems in plants

Subcellular compartments Substrate References

Enzymatic ROS processing systems
SOD Mitochondria, peroxisomes, 

nucleus, chloroplasts, cytosol, 
apoplast

O2
•− Wang et al. (2016)

CAT Peroxisomes H2O2 Mhamdi et al. (2012)
GPX Mitochondria, cytosol, endoplasmic 

reticulum, chloroplasts, plasma 
membrane, Golgi, endosome, 
nucleus.

H2O2 Bela et al. (2015)

APX Cytosol, chloroplasts, mitochondria 
and peroxisomes.

H2O2 Maruta et al. (2016)

PRX Cytosol, mitochondria, nucleus, 
chloroplasts, extracellular space and 
possibly in peroxisomes.

H2O2

ROOH 
ONOOH

Corpas et al. (2017) 
and Del Río (2020)

TRX Chloroplasts, mitochondria, 
peroxisomes, cytosol

Cys-proteins Sevilla et al. (2015)

Non-enzymatic ROS processing systems
CAROTENOIDS Plastids 1O2, triplet 

chlorophyll
Torres-Montilla and 
Rodríguez- 
Concepción (2021)

ASCORBIC 
ACID

Chloroplasts, mitochondria, 
peroxisomes, cytosol, apoplast

O2
•−, H2O2,

•OH
Hassan et al. (2021)

TOCOPHEROLS Membranes 1O2 Khalil et al. (2022) 
and Hameed et al. 
(2021)

GLUTATHIONE Chloroplasts, mitochondria, 
peroxisomes, cytosol, apoplast

H2O2 Hussain et al. (2019)

PROLINE Mitochondria •OH, H2O2, 1O2, 
O2

•− and RNS
Alvarez et al. (2021)

SOD Superoxide dismutase, CAT catalase, GPX glutathione peroxidase, APX ascorbate peroxi-
dase, TRX thioredoxins, PRX peroxiredoxins, 1O2 singlet oxygen, O2

•− superoxide, H2O2 hydrogen 
peroxide, •OH hydroxyl radical, ROOH Alkyl-hydroperoxides, ONOOH peroxynitrite, RNS reac-
tive nitrogen species

Apart from these enzymatic systems, other enzymes help to preserve the redox 
homeostasis, including dehydroascorbate reductase (DHAR), monodehydroascor-
bate reductase (MDHAR), glutathione reductase (GR), glutathione transferases, 
peroxidases (PODs) and alternative oxidases. The redox hub, constituted by AsA 
and glutathione (GSH), is closely regulated by the activity of APX, MDHAR, DAR, 
and GR in the Foyer-Halliwell-Asada cycle (Foyer and Noctor 2011), with the par-
ticipation of GPX and PRX (Fig. 4.1).
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Fig. 4.1 ROS processing systems in plants. SOD Superoxide dismutase, CAT catalase, GPX glu-
tathione peroxidase, APX ascorbate peroxidase, PRX peroxiredoxins, DHAR dehydroascorbate 
reductase, MDHAR monodehydroascorbate reductase, GR glutathione reductase, GSH glutathi-
one, GSSG glutathione disulfide, AsA ascorbic acid, MDHA monodehydroascorbate, DHA dehy-
droascorbate, O2

.− superoxide, H2O2 hydrogen peroxide, ROOH Alkyl-hydroperoxides, ONOOH 
peroxynitrite

4.3.2  Non-enzymatic ROS Processing Systems

Besides the enzymatic systems, there is a non-enzymatic redox system, constituted 
by different molecules that are capable (directly or via enzymatic reactions) of 
donating electrons to reduce ROS. The synthesis pathways of these molecules are 
very different, but they can roughly be classified into water-soluble antioxidants and 
liposoluble antioxidants. A brief description can be seen in Table 4.1.
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4.3.2.1  Hydrosoluble Non-enzymatic Antioxidants

Ascorbic Acid

This multifunctional molecule is the most abundant and efficient hydrosoluble anti-
oxidant that can neutralize the damage caused by ROS. It is found in the cytosol, 
mitochondria, peroxisomes, and apoplast at higher concentrations in meristems and 
photosynthetic tissues (Ishikawa et al. 2018). The concentrations range of AsA is 
wide and depends on the organs, the harvest, and postharvest time, but it can be 
between 0.45 μmol g−1 fresh weight (FW) in potatoes (Solanum tuberosum L.) to 
73  μmol  g−1 FW in “Acerola” (Malpighia emarginata D.C.) fruit (Davey et  al. 
2000); and even higher, rising to 128  μmol  g−1 FW in “Peruvian camu camu” 
[Myrciaria dubia (H.B.K.) McVaugh] fruit (Chirinos et al. 2010).

Glutathione

Defined as a metabolic key, glutathione (GSH) is another important ubiquitous 
hydrosoluble antioxidant associated with the protection of the photosynthetic appa-
ratus against ROS. GSH has other functions such as sulfur storage, signaling, and 
phytochelatins, apart from the neutralization of ROS. It acts in almost all the cellular 
compartments, including the endoplasmic reticulum, apoplast, peroxisomes, mito-
chondria, vacuole, chloroplasts, and cytosol (Gong et al. 2018).

4.3.2.2  Liposoluble Non-enzymatic Antioxidants

Within the group of liposoluble non-enzymatic antioxidants, the tocopherols repre-
sent the most important group protecting bio-membranes against ROS. There are 
four different isomers in plants, but α-tocopherol is the most abundant. They are 
synthesized in all the photosynthetic organisms, including higher plants, algae, and 
cyanobacteria. The α-tocopherol is more abundant in green tissues, while 
γ-tocopherol is abundant in seeds. They have an important role in stabilizing bio- 
membranes and removing ROS like 1O2 (Muñoz and Munné-Bosch 2019) and they 
can be reduced again by the action of AsA (Munné-Bosch and Alegre 2002).

Carotenoids represent a group of liposoluble pigments and in photosynthetic 
organisms play several roles such as accessory light-harvesting pigments in the 
chloroplast, quenchers and scavengers of triplet state chlorophylls, 1O2 and other 
ROS, dissipator of excess light energy as heat, and structural integrant of the thyla-
koid membrane, and precursor of hormones such as strigolactones and abscisic acid 
(Uarrota et al. 2018).

Summarizing, ROS processing systems in plant tissues have different regulating 
roles acting at different levels, protecting a diverse range of targets against oxidative 
stress conditions, and are strongly regulated by: plant hormones, such as ethylene; 
radicals, such as nitric oxide (NO) or other biogenic molecules like isoprene, all 
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under challenging stress scenarios. The complex net of oxidants and antioxidants 
has important consequences in the growth and development of plants under optimal 
or stressful conditions. In the following sections, we will discuss some of the newest 
advances in the interaction of some gasotransmitters with the most important com-
ponents of the redox balance.

4.4  Ethylene: The Gaseous Phytohormone

Ethylene is the smallest plant hormone that can be synthesized in plant tissues, and 
it is a gas, a hydrocarbon, and it is the simplest alkene that can trespass the lipid 
bilayer cell membranes. Its production is closely related to physiological stresses, 
such as wounding, chilling injury, flooding, high temperature, drought, and even 
nodulation and biotic infections, along with other physiological processes, such as 
growth, flower, and leaf senescence or fruit ripening (Khan et al. 2017).

The precursor of this hormone is an amino acid, methionine, which can be recy-
cled in the Yang cycle to ensure great amounts of ethylene with low content of 
methionine (Adams and Yang 1979). In plants there are two synthesis systems: an 
autoinhibitory system, called System I, and an autocatalytic system, called System 
II. This distinction is very important to classify different fruit ripening physiologies: 
the fruit that raises the respiration rate together with the synthesis of ethylene when 
it ripens, has an autocatalytic system (System II), and they are called climacteric 
fruits; meanwhile, the fruit that lacks this increase in respiration rate and the ethyl-
ene rise, due to an autoinhibitory system of ethylene synthesis (System I), is nega-
tively named non-climacteric fruits (Pattyn et al. 2020).

Similarly, to other senescence processes, fruit ripening is also characterized by 
changes in the metabolism, and increased ROS production (v.g. localized mainly in 
the chloroplast of tomatoes), by the end of this process (Steelheart et al. 2020). The 
deficiency of AsA synthesis can affect the fruit yield and the signaling of ethylene 
response, increasing the synthesis of H2O2 and the time for fruit ripening in toma-
toes (Steelheart et al. 2020; Alegre et al. 2020).

4.4.1  Ethylene Role in Leaf Senescence

Senescence is considered the last stage of leaf growth and development that is asso-
ciated with a specific gene expression (known as Senescence-associated genes or 
SAGs) (Buchanan-Wollaston et al. 2005). It is characterized by a drop in the photo-
synthesis, degradation of chlorophyll and pigments, protein, lipid, and nucleic acid, 
membrane disruption, and transport of different nutrients to different sinks, both in 
annual plants to the growing seeds, and in perennial plants to the branches, trunk 
and roots (Ferrante and Francini 2006). During the last stage of leaf development, 
the synthesis of ethylene triggers the senescence process, concluding with the leaf 
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abscission, through the interaction with other hormones in different ways: strigolac-
tones (Ueda and Kusaba 2015), cytokinins, auxin, and gibberellins delay leaf senes-
cence (Zhang et al. 2017a, b); meanwhile, jasmonic acid (Hu et al. 2017), salicylic 
acid, brassinosteroids, abscisic acid, and polyamines accelerate this process (Saini 
et al. 2015; Pandey 2017).

In this case, the redox metabolism has a strong influence on the leaf senescence, 
since the increased ROS production causes damage in many organelles and finally 
triggers cell death (Mhamdi and Van Breusegem 2018). One of the final steps of this 
process was recently discovered, where WRKY42 could be the key transcription 
factor that stimulates the H2O2 production and other SAGs and salicylic acid regu-
lated genes (Niu et al. 2020). The harmful effects of this ROS production can be 
controlled by different antioxidant systems. When leaves age, there is a strong 
decrease in the content of AsA (Hodges and Forney 2003), and this decrease can 
even be accelerated by the addition of exogenous ethylene (Gergoff Grozeff et al. 
2010a). Furthermore, mature leaves of ethylene signaling A. thaliana mutants 
showed higher or lower content of AsA in insensitive or constitutive triple response 
plants, respectively (Gergoff Grozeff et al. 2010a). Similar effects were also demon-
strated with the chemical inhibition of the signal receptor of ethylene, delaying the 
senescence process and maintaining higher contents of AsA (Gergoff Grozeff et al. 
2010b). Years later, Zheng et al. (2020) found that in an AsA over-accumulating 
mutant ethylene-induced senescence can be also delayed. In the same way, reduced 
ascorbic acid also affects ethylene synthesis and signaling since AsA mutants are 
smaller and produce a higher amount of ethylene, and its inhibition increase photo-
synthesis and biomass (Caviglia et al. 2018).

Similarly, to AsA, GSH and GR are necessary to maintain the redox balance of 
the cell and contribute to maintaining the efficiency of the photosynthetic apparatus 
(Müller-Schüssele et al. 2020). Recent work also demonstrated that different leaves 
in the same plant have several mechanisms to control the synthesis of ethylene 
under drought stress, up-regulating the enzymes related to the synthesis pathway of 
GSH (Luo et al. 2021). These authors also found that the redox state of this antioxi-
dant can affect the release of ethylene in drought-sensitive leaves.

At this point, ethylene has been the center of the research in leaf senescence. 
However, many other hormones accelerate or delay this process. Multiple and com-
bined effects of different hormones, including pharmacological synthesis inhibitors 
or genetically engineered plants (knockdown or knock out), should be discussed in 
experimental layouts, to demonstrate the impact of each of them, including other 
hormones such as salicylic or jasmonic acids (Miao and Zentgraf 2007; Ji et  al. 
2016). It is fear to say that the technological effects of this combination have been 
recently discovered in a non-climacteric fruit (Serna-Escolano et al. 2021), but the 
role in this hormone-regulated process coupled with an exhaustive study of the 
enzymatic and non-enzymatic antioxidants systems in leaves remains uncompleted.
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4.5  Nitric Oxide (NO): A Ubiquitous Signal in Plants

NO is another small gaseous free radical molecule, considered as a gasotransmitter 
in plants. NO involves a redox set of species with characteristic properties and reac-
tivity such as nitrosonium (NO+) and nitroxyl (NO−) ions besides NO radical. Thus, 
reactions of NO in biological systems depend on the redox state of the cell and the 
interplay with other reactive molecules (Stamler et al. 1992; Lancaster 2015).

NO can react with molecular oxygen, O2
•−, and transition metals (Me+/2+), to 

produce NOx, peroxynitrite (ONOO−), and metal-NO adducts, respectively. These 
molecules have different biological implications in the regulation of the activity of 
enzymes and transition factors, peroxidation reactions, and changes in the tertiary 
structure and function of proteins (Lamattina et al. 2003).

NO has two phases in the redox metabolism of the cell: it can be either a pro- 
oxidant or an antioxidant. NO acts as a chain-breaking antioxidant, that can arrest 
lipid peroxidation reactions and photo-oxidative stress and it can also protect other 
macromolecules, such as proteins, DNA, and RNA (Beligni and Lamattina 2002, 
1999a, b). NO can also interact with hormones like gibberellins, ethylene, auxin and 
abscisic acid (Simontacchi et  al. 2013), or enhance the activity of antioxidant 
enzyme system, and alleviate metal-induced oxidative in plants (Sharma et  al. 
2019), among others.

When NO reacts with the O2
•−, it produces a strong oxidant, peroxynitrite 

(ONOO−), which can nitrate tyrosine from peptides or proteins. NO can induce 
thiol-based modifications as well, leading to functional consequences in phosphory-
lating and non-phosphorylating proteins. Apart from these consequences, peroxyni-
trite can also modify lipids, inducing peroxidation or nitration in these molecules 
(Vandelle and Delledonne 2011).

During the last forty years, important advances have been made regarding NO 
synthesis and roles during the plant life involving several forms of NO donors and 
treatments, and an array of plant species (Kolbert et al. 2019).

Thus, NO has a broad range of functions in plants, including several growth and 
developmental processes like germination, flowering, and leaf senescence. It also 
participates in response to environmental stresses (Simontacchi et  al. 2015; Mur 
et al. 2013) such as nutrient deficiency (Ramos-Artuso et al. 2018; Buet et al. 2019), 
or (coupled to ROS and hormone regulation) in fruit ripening (reviewed by Steelheart 
et al. 2019a), and in mechanisms involving herbicide toxicity (Chen et al. 2021).

4.5.1  Crosstalk Between Ethylene and NO in Fruit Ripening

Ethylene and NO display opposite effects in fruit ripening. As mentioned above, 
ethylene is a hormone mostly related to oxidative damage and senescence, while 
NO is present in growing organs and delays the senescence syndrome in plants 
(Simontacchi et al. 2013). Ripening can be assimilated as a senescence process in a 
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terminal organ, the fruit that will irreversibly abscise from the mother plant. As in 
other senescing organs, in the early stages of fruit growth, higher levels of NO, 
together with other hormones, like cytokinins, auxins, and gibberellins can be 
found; but when fruit growth and ripening progress are in the later stages, the abun-
dance of NO is lower and there is a rise in the ROS concentration (reviewed by 
Steelheart et al. 2019a), coupled to the rise in abscisic acid (non-climacteric fruit) 
and/or ethylene (climacteric fruit), depending on the fruit physiology (McAtee et al. 
2013). Also, the difference between climacteric and non-climacteric fruit implies 
different modes of action of NO over the ethylene synthesis: in non-climacteric 
fruit, NO inhibits the 1-aminocyclopropane-1-carboxylate (ACC) synthase (Zhu 
and Zhou 2007); while in climacteric fruit, ethylene synthesis is inhibited at the 
level of the ACC oxidase (Zhu et al. 2006).

In climacteric fruit, NO and an ethylene signal inhibitor (1-methyl cyclopropane) 
have a strong effect on the maintenance of hydrosoluble antioxidants during post-
harvest. It was reported in tomatoes (Steelheart et  al. 2019b) and in blueberries 
(Gergoff Grozeff et al. 2017) that the combination of 1-methylcyclopropene and a 
NO donor (S-nitrosoglutathione) maintained higher levels of AsA and GSH during 
postharvest. NO also inhibited the accumulation of lycopene (Eum et al. 2009), but 
increase the levels of AsA and flavonoids in tomatoes (Zuccarelli et al. 2021).

Other reports recently showed that NO stimulates the accumulation of AsA in 
fruits, such as sweet pepper (Rodríguez-Ruiz et al. 2017) or Citrus species (Zhou 
et al. 2016) and phenolics can also be accumulated in NO treated peach (Li et al. 
2017) and Citrus (Zhou et al. 2016).

Nowadays, NO is a promising tool in fruit postharvest: it can act at the level of 
ethylene signaling and also maintaining the levels of certain antioxidants that are 
important for the human diet. The NO effects on ethylene receptors and downstream 
signaling events need more research. In addition, different NO sources with their 
advantages/disadvantages in postharvest technology use have been recently ana-
lyzed (Buet et al. 2021). Thus, NO donors may be incorporated into the packaging 
during postharvest treatments to delay the ethylene burst in climacteric fruit. 
However further research should be encouraged to gain future regulatory approval 
for postharvest employment (Buet et al. 2021).

4.6  Biogenic Isoprene: A Trait That Contribute to Plant 
Functioning in the Challenging Environments

Biogenic isoprene (C5H8, 2-methyl-1,3-butadiene) is the simplest isoprenoid emit-
ted by a different kind of plant species. Plants do not possess structures where to 
store isoprene and, after its formation, it is released into the atmosphere. Isoprene is 
an extremely volatile and reactive molecule and, in the presence of sunlight and 
nitrogen oxides, hydroxyl radicals initiate reactions leading to the conversion of 
isoprene to toxic photochemical products (formaldehyde, methyl vinyl ketone, and 
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methacrolein) (Apel et  al. 2002; Seinfeld and Pandis 2006). Isoprene oxidation 
products are important components of secondary organic aerosol (SOA) particles 
(Matsunaga et al. 2005; Shallcross and Monks 2000) and they may have serious 
consequences on the radiation balance of Earth by scattering and absorbing light 
and participating in cloud formation. Thus, isoprene emissions have a high impact 
on air quality, in the global tropospheric chemistry, that can cause climate change. 
It is necessary to make more research plans that deals with the impacts of isoprene 
emissions over environmental factors, thus predicting global climate change and 
underline new policies of environmental management for future generations (Xie 
et al. 2013).

4.6.1  Biogenic Isoprene Is Involved in Complex Networks That 
Regulate Plant Response to Stress

The interest in the study of biogenic isoprene is associated not only because of its 
importance for atmospheric chemistry but also because of the suggested protective 
role in plants experiencing various stress stimuli. Under normal conditions, 0.5–2% 
of the assimilated carbon from photosynthesis is re-emitted as isoprene to the atmo-
sphere (Guenther et al. 1995). Under dramatically stress conditions, this percentage 
even increases. Since isoprene biosynthesis requires a substantial amount of energy 
and carbon fixed through photosynthesis (Sharkey and Yeh 2001), it is assumed that 
it provides benefits to the emitting organisms (Sharkey and Yeh 2001; Velikova 
2008; Vickers et al. 2009a; Loreto and Schnitzler 2010).

For nearly three decades of research, a substantial amount of evidence has been 
accumulated proving that isoprene can protect chloroplasts from different kind of 
abiotic stress. Isoprene was able to reduce the negative changes in photosynthesis 
(Sharkey and Singsaas 1995; Loreto and Velikova 2001), to reduce ROS, to limit 
lipid oxidation (Loreto et al. 2001; Loreto and Velikova 2001; Affek and Yakir 2002; 
Velikova et al. 2004, 2005; Vickers et al. 2009b; Behnke et al. 2010a) and induce 
cell death (Velikova et al. 2005, 2012).

4.6.2  Stress Responses of Plants with Chemically Manipulated 
Isoprene Emission

After discovering that isoprene is made from the products of the plastidic 
Methylerythritol Phosphate Pathway (MEP) pathway (Zeidler et al. 1997), experi-
ments have relied on specific chemical inhibitors. The herbicide fosmidomycin, 
which inhibits 1-deoxy-D-xylulose-5-phosphate synthase of the MEP pathway 
(Zeidler et  al. 1998), was used to study the physiological function of isoprene. 
Fosmidomycin feeding rapidly inhibit isoprene emission almost without altering 
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photosynthesis (Sharkey et al. 2001; Loreto and Velikova 2001), making the use of 
fosmidomycin for helping to understand the role of isoprene emission in plant 
defense. A significant reduction of plant thermotolerance after fosmidomycin appli-
cation was documented in several studies. The negative changes in photosynthesis 
were stronger in isoprene-inhibited leaves (Velikova et al. 2006, 2011) after expo-
sure to heat. Ozone fumigation resulted in a higher accumulation of H2O2 and lipid 
peroxidation in isoprene-inhibited leaves (Loreto and Velikova 2001; Velikova et al. 
2005), accumulating higher amounts of NO (Velikova et al. 2005). Higher NO emis-
sion, H2O2 production, and lipid peroxidation level were also detected in 
fosmidomycin- fed black poplar leaves exposed to singlet oxygen compared to 
isoprene- emitting leaves (Velikova et al. 2008). These results suggest that isoprene 
might be an effective mechanism to control ROS and RNS formed under abiotic 
stress conditions.

The development of transgenic plants has opened new perspectives in studying 
the role of biogenic isoprene in plant protection against stress. Both approaches 
were used, either by the insertion of the isoprene synthase (ISPS) gene in A. thali-
ana (Sharkey et al. 2005; Sasaki et al. 2007; Loivamäki et al. 2007) and in tobacco 
plants (Vickers et al. 2009b), or by knocking-down the natural isoprene emission in 
poplar plants (Behnke et al. 2007).

Since biogenic isoprene is a component of different biosynthetic pathways, it 
could be expected that genetically manipulated plants may have altered phenotypes 
and regulation of pathways competing with isoprene biosynthesis. A. thaliana 
plants overexpressing poplar ISPS gene were characterized by enhanced growth of 
the rosettes, higher dimethylallyl diphosphate level, and ISPS activity compared to 
wild type (Loivamäki et al. 2007). However, isoprene production did not have any 
gross effects on plant morphology in isoprene-emitting transgenic tobacco grown 
under control conditions (Vickers et al. 2009b). Moreover, no effect of isoprene was 
observed on physiological and biochemical traits in tobacco when plants were well- 
watered (Tattini et al. 2014). There were no significant differences in photosynthetic 
parameters, chlorophyll fluorescence, the concentration of chlorophylls, and total 
violaxanthin cycle pigments (Vickers et al. 2009b; Tattini et al. 2014), as well as in 
the level of ABA, starch or phenylpropanoids (Tattini et al. 2014). Genetically mod-
ified poplar trees that did not emit a significant amount of isoprene had similar 
biomass production and photosynthesis compared to the emitting trees when grown 
in plantations under field conditions (Monson et  al. 2020). However, a dramatic 
reduction of carbon fluxes throughout the MEP has been demonstrated in isoprene 
suppressed poplar (Ghirardo et al. 2014). Under these conditions, a reallocation of 
carbon to another pathway, which induces profound metabolic changes was 
observed (Way et  al. 2013; Kaling et  al. 2015). Poplar lines with substantially 
reduced isoprene emission rates showed decreases in flavonol pigments but increases 
in the gene expression of carotenoids and terpenoids synthesis (Monson et al. 2020). 
The absence of isoprene emission in transgenic poplar trees generated a new tran-
sient chemo(pheno)type with suppressed production of phenolic compounds 
(Behnke et al. 2010b). Detailed analysis of transgenic poplar revealed wide metabo-
lome and proteome rearrangements when comparing isoprene-emitting and 
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isoprene-suppressed plants. Under optimal conditions, non-isoprene emitting pop-
lars showed higher content of AsA (Behnke et al. 2009, 2010a), α-tocopherol, and 
de-epoxidation ratio of xanthophylls was enhanced (Behnke et al. 2009). Systemic 
changes in flavonoids, sterols, and metabolites of the carbon fixation were also rec-
ognized in those plants (Behnke et  al. 2013). The absence of isoprene in poplar 
leaves triggers the rearrangement of the chloroplastic proteins (Velikova et al. 2014). 
The authors reported increased levels of histones and ribosomal proteins, and down- 
regulation of photosynthesis light reactions proteins, redox regulation, and defense 
against oxidative stress. Moreover, analysis of the whole proteome highlights some 
rearrangement of proteins and enzymes involved in photosynthesis, glycolysis, and 
the tricarboxylic acid cycle, as well as redox regulation, and protein translation 
(Vanzo et al. 2016). Analysis of lipid composition revealed differences in the double 
bound index between the isoprene-emitting and non-emitting poplar suggesting 
more pronounced changes in membrane structures when no isoprene was present 
(Behnke et al. 2013). Moreover, a lower level of unsaturated fatty acids, especially 
linolenic acids, in non-isoprene-emitting chloroplasts, was associated with fluidity 
reduction in thylakoid membranes, which negatively affects the photosystem II pho-
tochemistry efficiency (Velikova et  al. 2015). Several modifications in the ultra-
structure of chloroplasts were also related to the isoprene depletion (Velikova et al. 
2015). The dissipation of energy excess is necessary. To evaluate this feature, non 
photochemical quenching (NPQ) was monitored in poplar leaves with genetically 
altered isoprene biosynthesis (Behnke et al. 2007; Velikova et al. 2015).

Important evidence for a wide cellular role of isoprene was obtained from the 
studies on transcriptional control of gene expression, using poplar, tobacco, and 
Arabidopsis plants with altered isoprene phenotypes. RNAi silencing of ISPS 
(Behnke et al. 2007) reduced the expression of different genes related to the shiki-
mate and phenylpropanoid pathways, implying an important role for isoprene bio-
synthesis (Behnke et al. 2010a). Moreover, transgenic suppression of ISPS produced 
a reduction in several proteins that are associated with these two pathways (Monson 
et al. 2020). Transcriptomic analysis in A. thaliana and tobacco plants were also 
applied to explore the isoprene role as a standing component of the plant genotype 
and to understand how isoprene interacts with “naïve” metabolism, and what are the 
downstream changes in the higher terpenoids synthesis (carotenoids, monoterpenes, 
sesquiterpenes, tocopherols, cytokinins, gibberellic acid). Several genes that are 
crucial for photosynthesis, phenylpropanoid biosynthesis, and plant growth were 
up-regulated by isoprene in both A. thaliana and tobacco plants manipulated to emit 
isoprene as a natural metabolite (Zuo et al. 2019). Contrary to the observation for 
the shikimate and phenylpropanoid pathways, isoprene presence in poplar and 
transgenic tobacco reduced the expression of terpene biosynthesis-related genes and 
proteins (Zuo et al. 2019; Monson et al. 2020), indicating interspecific differences. 
Several proteins involved in carotenoid and ABA biosynthesis were at lower abun-
dance in isoprene-emitting poplar lines, compared to non-emitting lines (Monson 
et al. 2020), and a similar pattern was observed in the tobacco system (Zuo et al. 
2019). Reduced level of zeaxanthin, but a higher de-epoxidation ratio and lower 
AsA content in isoprene-emitting poplar lines compared to non-emitting ones were 
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reported (Behnke et al. 2009). Potential interaction between isoprene and oxylipin 
pathway, a pathway which is initiated in the chloroplasts and produces C-6 alde-
hydes, alcohols, and esters that belong to wide group called green leaf volatiles 
(Hatanaka et al. 1987), has been also suggested. Indeed, the isoprene presence in 
poplar and tobacco plant systems increases the expression in several LOX (lipoxy-
genase) genes, increasing the production of green leaf volatiles (Behnke et  al. 
2010a; Zuo et al. 2019; Monson et al. 2020). It was also shown that isoprene affects 
the expression of genes that improve plant tolerance to a variety of environmental 
stress factors (Zuo et al. 2019). A strong relationship between gibberellic and jas-
monic acid signaling pathways and isoprene presence has been revealed by gene 
expression analysis (Lanz et al. 2019).

Signaling advantages of the isoprene molecule might be conferred by its hydro-
phobic nature. Based on its solubility in lipids, it is assumed that isoprene can cross 
different cellular membranes and may influence different pathways in different cell 
organelles, and may interact with signaling components in the hydrophobic domain 
of the lipid bilayer membrane (Monson et al. 2021). Several studies suggested that 
isoprene can modulate ROS and RNS production through an unknown mechanism 
(Velikova and Loreto 2005; Velikova et al. 2008, 2012; Behnke et al. 2010a; Vanzo 
et al. 2016), and thus may affect cellular redox signaling. Recent multi-omic analy-
ses indicated that isoprene exerts a broader role in initiating changes in gene expres-
sion, protein abundance, and plant defense compounds’ production involved in 
stress tolerance. Genetic transformation to introduce or silence ISPS causes cellular 
modifications that affect several transcription factors that are important in signaling 
processes of the shikimate, phenylpropanoid, terpenoid, and oxylipin biosynthetic 
pathways (Monson et al. 2021).

4.6.3  Consequences of Genetically Engineered Isoprene 
Production for Plant Stress Responses

The general positive effect of isoprene in various stressful conditions was docu-
mented (Loreto and Schnitzler 2010). Heat tolerance of transgenic Arabidopsis 
overexpressing ISPS was enhanced (Sasaki et al. 2007) due to the thermostability of 
the light-harvesting complex of PSII in the stacked regions of grana thylakoids, and 
was able to increase the primary photochemistry efficiency of PSII at higher tem-
peratures, suggesting some changes in the lipid bilayer membrane of the thylakoid 
(Velikova et al. 2011). On the other side, engineered poplar with negligible isoprene 
emission was also more sensitive to high temperature and light (Behnke et al. 2007, 
2013; Way et al. 2011). Isoprene-emitting transgenic A. thaliana exposed to heat 
stress produced a lower pool of ROS and RNS, which was correlated with a reduc-
tion of H2O2 in isoprene-emitting plants (Velikova et al. 2012). Droughted trans-
genic tobacco genotypes with a constitutive promoter attached to the ISPS from 
Populus alba, showed no increase in lipid peroxidation and ROS content and were 
able to maintain a higher photosynthesis rate under mild to moderate drought better 
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than the control non-emitting plants (Ryan et  al. 2014). A comprehensive study 
clearly demonstrated that de-epoxidated xanthophylls, abscisic acid, soluble sugars, 
and phenylpropanoids were significantly higher in isoprene-emitting tobacco sub-
jected to severe drought, and after re-watering, these plants maintained higher levels 
of metabolites than non-emitting genotypes (Tattini et al. 2014). These authors have 
suggested that isoprene-emitting plants can up-regulate the production of phenyl-
propanoids and non-volatile isoprenoids, which may protect leaves against different 
stress conditions. Isoprene-emitting tobacco plants were highly resistant to ozone 
oxidative damages compared to non-emitting controls (Vickers et al. 2009b). These 
plants accumulated less toxic ROS, their antioxidant level was higher, and showed 
a decrease in foliar damage and an increase in the photosynthesis rate. Isoprene 
presence in poplar leaves affected ozone-induced changes in NO emission (Vanzo 
et al. 2016). It was demonstrated that isoprene-emitting poplar ozone fumigation 
slightly stimulated NO production, while non-emitting poplar leaves released a sig-
nificant amount of NO, thus triggering important changes in the pattern of the 
S-nitroso-proteome (Vanzo et al. 2016). Some proteins that are related to light and 
dark photosynthesis reactions, the Krebs cycle, protein metabolism, and redox regu-
lation were the main targets of NO action in non-isoprene-emitting poplar plants. 
Moreover, some proteins involved in the detoxification of ROS showed increased 
S-nitrosation in non-emitting leaves. These results suggest that isoprene plays an 
indirect role in regulating the formation of ROS via the control of the S-nitrosation 
levels of the enzymatic ROS processing systems. Exposure to high doses of UV-B 
caused a similar decline in photosynthesis and PSII performance in both transgenic 
isoprene-emitting and non-emitting tobacco (Centritto et al. 2014). However, these 
authors reported that after the stress conditions, photosynthesis and PSII was recov-
ered only in isoprene-emitting tobacco and this was associated with an increase of 
the antioxidant contents, suggesting that isoprene together with the antioxidants 
contributed to restore the photosynthetic apparatus upon exposure to UV-B radia-
tion (Centritto et al. 2014). Remarkably, UV-induced metabolome adjustments were 
detected in transgenic poplar trees (Kaling et al. 2015). The development of pheno-
typic differences between isoprene-emitting and non-emitting poplar upon exposure 
to UV-B radiation was explained by the anthocyanin and proanthocyanidin path-
ways activation. Reduced accumulation in non-isoprene-emitting plants showed a 
decrease in phenolic compounds content, suggesting metabolic- or signaling-based 
interactions between isoprenoid and phenolic pathways (Kaling et al. 2015).

4.6.4  Contribution of Biogenic Isoprene to Plant Adaptation 
and Resilience in Current and Future Climate

Unambiguous experimental evidence has been provided that isoprene emission is a 
trait with a positive value, especially concerning protecting photosynthesis under 
stressful conditions. A logical question arises: Is there a broader adaptive scope of 
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this trait? Many plants, approximately 20% of the perennial vegetation of tropical 
and temperate regions, constitutively emit isoprene (Loreto and Fineschi 2015). The 
capacity of plants to synthesize isoprene has been gained and lost many times dur-
ing the course of evolution. Monson et al. (2013) believe that this trait has been 
conserved only in environmental conditions where isoprene benefits plant fitness. 
However, Dani et al. (2014) suggest that isoprene emission capacity arises under 
extensive speciation of genera. Sharkey et  al. (2013) discuss ecological and bio-
chemical reasons for the occurrence of isoprene emission. According to the “oppor-
tunistic hypothesis” (Owen and Peñuelas 2005) isoprene emission capacity is 
reduced when carbon shunted in the MEP pathway is needed for the production of 
more effective antioxidants and pigments, especially under severe stress conditions. 
Indeed, Beckett et al. (2012) demonstrated that isoprene protection occurs at the 
early stages of drought when the electron transport rate still drives the photosyn-
thetic process and carbon fixation into volatile isoprenoids. Under severe drought, 
these authors demonstrated that when photosynthesis was ceased and isoprene 
emission was undetectable, zeaxanthin and lutein increased, suggesting a well- 
coordinated defense mechanism against drought, driven by volatile and non-volatile 
isoprenoids (Beckett et al. 2012).

4.7  Conclusions

A common “pathway” of three different gasotransmitters (ethylene, NO and iso-
prene) can be established. Isoprene is the most abundant biogenic volatile hydrocar-
bon compound that is naturally emitted by many plant species and it plays an 
important role in the chemistry of the atmosphere and, therefore, in air quality. NO 
is considered another air pollutant, but the most important source is diesel combus-
tion (Hiroyasu and Kadota 1976).

The interplay between biogenic isoprene and NO with other molecules in plant 
metabolism is mainly related to stress conditions. Their interaction with enzymatic 
and non-enzymatic systems helps to alleviate ROS effects, improving physiological 
processes such as photosynthesis in plants suffering from stress conditions. The 
combination with other gasotransmitters that have hormonal action, such as ethyl-
ene, can even potentiate the beneficial effects on the plant metabolism. A new 
scheme for plant physiology research is needed to undergo the effects of the interac-
tions of different molecules in a complex network, as can be seen in the metabolic 
pathways, including redundant or alternative routes under oxidative stress condi-
tions (Fig. 4.2).

Although considerable advances in research on isoprene functioning in plants 
have been obtained, as far as the investigations regarding NO and ethylene effects, 
there is still a clear requirement for knowledge about precise signaling mechanisms 
to provide new insights into stress mitigation under scenarios of future challenging 
environments. This could be the base for future genetic engineering development.
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Fig. 4.2 Cellular Homeostasis in plants. The balance between ROS and RNS and the antioxidant 
systems as a counterpart. Stress conditions also can produce RNS and ROS, unbalancing the redox 
cellular equilibrium. Enzymatic and non-enzymatic antioxidants act together in the redox balance. 
RNS and ROS also act as signal molecules in many physiological processes
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Chapter 5
Alleviation of Plant Stress by Molecular 
Hydrogen

John T. Hancock, Tyler W. LeBaron, Jennifer May, Adam Thomas, 
and Grace Russell

Abstract Gasotransmitters and gaseous-signaling molecules are hugely important 
for controlling cell function and especially so during stress challenges. Past research 
has concentrated on molecules such as nitric oxide (NO) and hydrogen sulfide 
(H2S), although others such as ethylene and carbon monoxide (CO) are also impor-
tant. Here, molecular hydrogen (H2) is added to the mix. H2 has been shown to 
ameliorate responses to a range of stressors in plants, including exposure to heavy 
metals, salinity, extreme temperatures, and UV radiation. Clearly, H2 is an important 
gas, which may be useful for enhancing plant growth and food security in the future. 
Exogenous treatments with H2 are easy in the form of hydrogen-rich water (HRW), 
but there are still issues with its wide-spread use. Furthermore, the molecular basis 
of the action of H2 in cells is still not clear. Here, aspects of the use and the action 
of H2 in plants are discussed, along with what might be learnt from other species.
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5.1  Introduction

In 1987, work in animals showed that endothelial-derived relaxing factor (EDRF) 
was in fact the gas nitric oxide (NO) (Palmer et al. 1987). This opened the door to 
studies not only on reactive nitrogen species (RNS) in biological systems, but also 
observations on other physiological gasotransmitters. Such analyses also sparked 
work on other small reactive compounds which could be involved in cell signaling, 
including nongaseous reactive oxygen species (ROS) such as hydrogen peroxide 
(H2O2) (Veal et al. 2007), and reactive sulfur compounds such as hydrogen sulfide 
(H2S) (Aroca et al. 2018). The year 2019 marked the fortieth anniversary of NO 
studies in plants (Klepper 1979; Kolbert et al. 2019), but more recently a new player 
has been added to the list, molecular hydrogen (H2) (Wilson et al. 2017), which can 
alter plant cell activity (for example, Chen et al. 2017a), and may play a role in 
stress responses. As plants are sessile, they require convoluted strategies to over-
come a range of stress challenges, which include exposure to UV light (Hideg et al. 
2013), heavy metals (Morkunas et al. 2018), extreme temperature, both high (Niu 
and Xiang 2018) and low (Lyons 2012), drought (Farooq et  al. 2009), flooding 
(Loreti et al. 2016), and salinity (Fahad et al. 2015).

The strategy for plants when under stress is to induce signal transduction path-
ways, which often lead to altered gene expression, and hence the complement of 
cellular proteins, enabling enhanced or new activities. Such actions are allowing the 
cells to manage the current stress, or even future stress challenges. The signaling 
invoked in plants involves a range of phytohormones (Khan et al. 2012), but it also 
involves numerous gasotransmitters, which are important mediators in other organ-
isms as well. These include NO (Nabi et al. 2019), H2S (Pandey and Gautam 2020), 
carbon monoxide (CO; Cui et al. 2012) and ethylene (Debbarma et al. 2019). Plant 
stress has a major impact on plant growth and productivity, and gasotransmitters are 
instrumental in the responses mounted by plants. Often there is an interaction and/
or co-ordination of the signaling mediated by such molecules (Hancock and 
Whiteman 2016; Singh et al. 2020; Bhuyan et al. 2020). Here, the interactions of H2 
with other gaseous signaling molecules are discussed, with the focus on how H2 
alleviates plant stress.

5.2  H2 Treatment of Plants

Hydrogen gas is hard to administer to plants. In mammals, hydrogen gas mixtures 
can be inhaled, and there are many examples of its use (Ge et al. 2017; Wu et al. 
2019a, b), including in the treatment for COVID-19 (Chen et  al. 2021a; Russell 
et  al. 2021). However, the gas is highly flammable, raising safety issues, and is 
lighter than air, so H2 will rapidly disperse into the upper atmosphere, making treat-
ment of ground-level plants unpragmatic. Therefore, treatment of plants often 
involves the creation and diluting of a saturated solution of hydrogen in what is 

J. T. Hancock et al.



103

referred to as hydrogen-rich water (HRW). However, H2 is not very soluble 
(Molecular Hydrogen Institute n.d.; Wilhelm et al. 1977) and will rapidly revert to 
the gaseous phase and be lost. This then may necessitate a frequent re-application of 
HRW to the plant tissues, either directly onto the leaves, or into the root feed water, 
to illicit an effect. However, as can be seen in Table 5.1, there are many examples of 

Table 5.1 Examples of the use of hydrogen-rich water (HRW) in alleviating plant stress

Stress agent/
Conditions Species used Effects seen/comment Reference

Aluminum Maize seedlings Alleviation of stress Zhao et al. 
(2017)

Alfalfa Alleviated effects on root growth Chen et al. 
(2014)

Cadmium Medicago sativa Alleviation of toxicity Cui et al. 
(2013)

Brassica chinensis L. Reduced cadmium uptake Wu et al. 
(2019b)

Chinese cabbage Reduced cadmium uptake Wu et al. 
(2015)

Brassica campestris 
ssp. chinensis

Reduced cadmium uptake Wu et al. 
(2020a)

Brassica chinensis 
and Arabidopsis 
thaliana

Mediated by iron-regulated transporter 
1 (IRT1) and zinc-regulated transporter 
protein 2 (ZIP2)

Wu et al. 
(2021)

Mercury Alfalfa Tolerance to toxicity Cui et al. 
(2014)

Salinity Barley Alleviation of stress Wu et al. 
(2020b)

Rice Alleviates stress during germination Xu et al. 
(2013)

UV-B Medicago sativa Alleviated stress Xie et al. 
(2015)

UV-A Radish sprouts Anthocyanin biosynthesis Zhang et al. 
(2018)

Radish sprouts Anthocyanin biosynthesis and ROS 
metabolism

Su et al. 
(2014)

Heat Cucumber Several parameters altered, including 
gas exchange, chlorophyll fluorescence, 
and antioxidant activities

Chen et al. 
(2017a)

Paraquat induced 
oxidative stress

Medicago sativa Mediated by heme oxygenase (HO-1) Jin et al. 
(2013)

Post-harvest Lilly and rose Increased vase life Ren et al. 
(2017b)

Kiwifruit Delayed ripening Hu et al. 
(2014)

Mushroom 
Hypsizygus 
marmoreus

Enhanced antioxidant capacity and 
reduced postharvest senescence

Chen et al. 
(2017b)
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the use of HRW in plants. With such a range of responses, including to heavy met-
als, temperature stress and light stress it is clear that plants can perceive and react to 
the presence of H2 or HRW. Interestingly, one of the potentially significant uses of 
H2 application is in post-harvest, where it may be useful to prolong storage of crops, 
particularly fruits (Hu et al. 2014) and flowers (Ren et al. 2017b). A new twist on the 
use of HRW is the formation of hydrogen nanobubble water (HNW) (Li et  al. 
2021b). This is suggested to increase the solubility of H2 and prolong H2 delivery.

For H2 usage to be useful in practice, new and easier-to-use applications for the 
delivery of H2 may need to be developed. These may come from disparate industries 
(Mayorga et  al. 2020), for example, one potential donor is magnesium hydride 
(MgH2) (Li et al. 2020b), a compound proposed for use in the solar-energy sector 
(Mathew et al. 2021). The kinetics of release of H2 are slower and more sustained 
than just using HRW, but it was found to be more efficient when used in a citrate 
buffer. Another recently used compound for releasing H2 in plants is AB@hMSN, 
an ammonia borane-loaded hollow mesoporous silica nanoparticle (Wang et  al. 
2021). However, there is a caveat here. If donor molecules are used, they are likely 
to leave behind by-products, and this could severely compromise the biologically 
safe use of H2.

5.3  Molecular Targets of H2

The hydrogen molecule is extremely small (relative to other signaling molecules) 
and relatively inert. Therefore, it is difficult to envisage how it is perceived by cells 
and acted on. Classical hormone-type signaling, for example with chemokines 
(D’Ambrosio et al. 2003), would use a protein receptor, but this is unlikely with a 
molecule such as H2. Some signaling molecules, such as NO, will react with pro-
teins, either through the prosthetic groups or via reacting with thiol groups (Feng 
et al. 2019). However, again, it is hard to see how this type of reaction would apply 
to H2 because unlike NO, which is polar and a reactive free radical, H2 is non-polar 
and not reactive. Therefore, other mechanisms must exist to account for the biologi-
cal effects seen with H2 administration.

One of the main thrusts of the argument regarding H2 action is that it affects the 
antioxidant levels in cells. Many of these effects are indirect, with expression or 
accumulation of enzymes involved in the antioxidant capacity of the cell being 
altered (for example Zhao et al. 2017; Chen et al. 2017b). However, this can only 
happen if there is a direct perception of the H2 molecule, and usually that is the 
aspect that is skirted in the literature.

It was reported that H2 does have direct effects as an antioxidant by reacting with 
hydroxyl radicals (⋅OH) but not with other ROS, such as the superoxide anion (O2⋅−) 
or H2O2 (Ohsawa et al. 2007). ⋅OH are known to be involved in plant stress responses, 
such as during heavy metal challenge (Cuypers et  al. 2016), paraquat treatment 
(Babbs et al. 1989), and chilling and drought stresses (Shen et al. 1997). Therefore, 
the removal of ⋅OH by a radical scavenger, suggested here to be H2, could account 
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for some of the effects seen. This being said, a later paper has suggested that a close 
investigation of the kinetics of this reaction does not support this notion (Penders 
et al. 2014), and in fact, it was suggested that the ⋅OH would react with other bio-
molecules before H2, so that the effects of ⋅OH would not be mitigated against by H2 
addition. In a similar way, a second direct target was suggested to be the peroxyni-
trite molecule (ONOO−). This would be produced by the reaction of superoxide 
(O2⋅−) with NO, and as both are temporally and spatially produced together during 
stress responses, the presence of ONOO− is very likely. If H2 removes ONOO−, this 
could account for the effects seen. However, a close examination of the kinetics 
again, seems to rule out ONOO− as a direct H2 target (Penders et al. 2014; LeBaron 
et al. 2019a).

With both ⋅OH and ONOO− being ruled out, it was suggested that a possible 
target could be the ferric (Fe3+) ion (Penders et al. 2014). This would not be out of 
kilter with what has been reported for other gasotransmitters. One of the main 
actions of NO is the activation of soluble guanylyl cyclase (sGC) by a direct interac-
tion of the NO with the heme prosthetic group of the enzyme (Xiao et al. 2019). 
With a foray into this area (Penders et al. 2014), the reduction of the iron by H2 in 
myoglobin, cytochrome P450 and putidaredoxin was investigated, but it was con-
cluded that there was no reduction of heme or iron-sulfur (Fe/S) clusters in these 
proteins. However, with a redox midpoint potential of −414 mV [relative to the 
Standard Hydrogen Electrode (SHE)], H2 could thermodynamically reduce a range 
of heme groups in a variety of enzymes, and this is suggested as a focus of future 
investigation (Hancock et al. 2021). As discussed, enzymes such as the NAPDH 
oxidase homologues would be particularly interesting as they are known to be 
involved in a range of stress responses (for example, He et al. 2017). It is not incon-
ceivable that sGC may be an H2 target too. Clearly much more work is needed here, 
using a wide range of plant proteins which contain heme or Fe/S prosthetic groups, 
before such a mechanism can be ruled out. Nevertheless, there may need to be some 
caution here, as it cannot always be assumed that signaling pathways determined in 
animal systems are the same in plants. For example, the action of NO on a sCG has 
been thrown into doubt in plants (Astier et al. 2019). Therefore, the action of H2 
may be different too, although the use of other biological systems to advance plant 
science is a powerful tool, as discussed below.

Several effects of H2 have been reported to be mediated by the enzyme heme- 
oxygenase (HO-1) (Jin et  al. 2013; Lin et  al. 2014). This enzyme catalyzes the 
breakdown of heme in a reaction which (1) involves oxygen, (2) uses NADPH as a 
cofactor and (3) produces biliverdin, CO and iron ions (Wilks 2002). However, the 
exact reaction with H2 has yet to be reported, so it may be a consequence of down-
stream signaling which is yet to be determined. Another enzyme thought to mediate 
H2 effects is glutathione peroxidase, an enzyme instrumental in the maintenance of 
intracellular redox. By the use of genetically deficient strains and inhibitors, it was 
shown that glutathione peroxidase was needed to mediate H2 action in the 
Ganoderma lucidum fungus (Ren et al. 2017a). The enzyme is a selenium contain-
ing protein, making this an interesting potential H2 target, unless the direct action of 
H2 is upstream of the enzyme itself.
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Table 5.2 Possible molecular targets and action of H2

Molecular target 
proposed Comment(s) Reference(s)

Hydroxyl radical 
(⋅OH)

Kinetics do not support this mechanism Ohsawa et al. (2007) and 
Penders et al. (2014)

Peroxynitrite 
(ONOO−)

Kinetics do not support this mechanism Ohsawa et al. (2007) and 
Penders et al. (2014)

Fe3+ ion A range of heme groups could 
potentially be targets

Penders et al. (2014) and 
Hancock et al. (2021)

Heme oxygenase 
(HO-1)

No direct interaction reported Jin et al. (2013) and Lin et al. 
(2014)

Glutathione 
peroxidase

Mediated effects in fungus Ren et al. (2017a)

Spin states Possible direct interaction, but not 
experimentally substantiated

Hancock and Hancock (2018)

Lastly, it has been suggested that because H2 has two spin states that this could 
be a way for H2 to influence other biomolecules (Hancock and Hancock 2018). 
However, to date, there is no experimental evidence of this.

As yet, no definitive mechanism of how H2 interacts directly with biological 
systems has been identified, although several mechanisms have been suggested 
(Table 5.2). Therefore, much more work needs to be undertaken in this area. Despite 
this there clearly are effects in plants (Table  5.1), and this phenomenon can be 
exploited in the absence of a molecular mechanism, particularly as there appear to 
be no reports that H2 application is harmful to neither plants nor animals. No H2 
mechanisms seem to leave by-products and so there seems to be no ramifications for 
food safety.

5.4  Signaling and Effects of H2

Cell signaling events in plants, as with all species, is crucial for the organism to 
thrive and to survive stress challenges. The perception of an external signal, perhaps 
a biotic or abiotic stress, and the signal transduction pathway, leading to a response, 
involves a range of proteins and small molecules, and instrumental in many of these 
pathways are the small relatively reactive gasotransmitters, such as NO (Nabi et al. 
2019) and H2S (Pandey and Gautam 2020). Although, as discussed, it is hard to 
envisage how H2 may have a direct interaction and effect on polypeptides, there is a 
body of evidence that shows that H2 interacts, or has effects on, signaling events that 
involve other gasotransmitters and small redox compounds. Some of the evidence is 
discussed below.
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5.4.1  Nitric Oxide, Stress and Hydrogen Gas Treatment

It has been known for several decades that NO is produced by plants and has a pro-
found effect on controlling plant function (Kolbert et al. 2019). There is no doubt 
that NO has a central role in controlling cell function (Kumar and Pathak 2018), 
whilst more recently, it has been found that H2 interacts in the NO pathways.

Decreased NO generation was reported when HRW was used to alleviate alumi-
num stress in alfafa (Chen et al. 2014). Fifty percent saturated HRW reduced the 
effects of a NO donor, suggesting that NO may mediate H2 effects. In contrast, H2 
increased the NO production in tomato seedlings when root growth was being 
investigated. This was reduced by the NO scavenger 2-4-carboxyphenyl-4,4,5,5- 
tetramethylimidazoline- 1-oxyl-3-oxide (cPTIO), which suggests that H2 was not 
directly scavenging NO. The conclusion was that auxin-induced H2 generation was 
then mediated by NO production from the enzyme nitrate reductase (NR) (Cao et al. 
2017). Similar results were reported with cucumber, where HRW increased root 
growth and NO accumulated. Both HRW and NO increased the expression of cell 
cycle genes: CycA (A-type cyclin); CycB (B-type cyclin); CDKA (cyclin-dependent 
kinase A); and CDKB (cyclin-dependent kinase B). The effects were reduced by 
inhibitors of NR and nitric oxide synthase (NOS)-like enzymes, and NO scavengers 
(Zhu et al. 2016). NO also mediated root growth induced by H2 in cucumber, where 
downstream proteins were identified as a plasma membrane H+-ATPase and 14-3-3 
proteins (Fu et al. 2000; Mhawech 2005; Li et al. 2020a, b). The latter being key 
regulatory proteins of such intracellular signaling cascades as mitogen activated 
protein kinase (MAPK) and p53. The enzyme NR was also found to be involved in 
NO generation when root formation was induced by a H2 releasing donor AB@
hMSN (Wang et al. 2021).

H2 has the potential to be useful for postharvest storage of plant materials. One 
percent HRW [2.2 μM H2] (calculated from the authors’ information) and sodium 
nitroprusside (SNP: 150 μM) improved vase-life of cut lilies and these effects were 
reduced when NO was removed. It was also found, in a study of the genes expressed, 
that the chloroplast ATP synthase CF1 alpha subunit (AtpA) may be important in 
mediating these effects (Huo et al. 2018). Furthermore, nitrate accumulation was 
reduced in tomatoes by H2, and this may have implications for the way fruits are 
stored (Zhang et al. 2019).

It is clear therefore, that H2 has effects on, and is mediated, by NO metabolism, 
and it appears that this is not due to a direct scavenging of NO by H2, which would 
be in line with what was previously reported (Ohsawa et al. 2007). However, H2 
may have effects through ROS too, which may also impinge on NO metabolism. To 
exemplify, abscisic acid (ABA) induced the accumulation of H2 in Arabidopsis 
thaliana, which led to better drought tolerance. However, the effects also involved 
ROS and NO accumulation, with the enzymes NR and NADPH oxidase being used. 
In fact, it was found that the promotion of NO accumulation by H2 was dependent 
on ROS production, showing what a complex and interdependent system H2 is 
involved in (Xie et al. 2014).
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5.4.2  Reactive Oxygen Species, Antioxidants 
and Hydrogen Gas

It is clear that ROS metabolism needs to be considered when the effects of H2 are in 
question, especially as H2 may have antioxidant and pro-oxidant effects (LeBaron 
et al. 2019b).

Even though the direct scavenging of O2⋅− and H2O2 were ruled out (Ohsawa 
et  al. 2007), and the scavenging of ⋅OH was also cast into doubt (Penders et  al. 
2014), many reports suggest that H2 has affects in plants through the modulation of 
the antioxidant capacity of cells. The postharvest treatment of Chinese chive with 
H2 reduced oxidative damage and increased the activity of several antioxidant 
enzymes, including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxi-
dase (POD) and ascorbate peroxidase (APX) (Jiang et  al. 2021), resulting in an 
increased shelf life of the chives. Oxidative stress in Medicago sativa was also alle-
viated by HRW following UV-B exposure, and this too was mediated by changes in 
antioxidants, particularly flavonoids (Xie et  al. 2015). HRW also allowed better 
tolerance to light stress in Zea mays, again mediated by antioxidant enzymes (Zhang 
et al. 2015). These included SOD, CAT and APX, which reduced the accumulation 
of O2⋅− and H2O2.

The tolerance bestowed on plants by H2 administration to other stress challenges 
is also mediated by antioxidants. This includes aluminum tolerance in maize, where 
HRW altered the cellular levels of CAT, APX, SOD, and POD (Zhao et al. 2017). In 
rice seedlings exposed to cold stress, the SOD levels were altered, which appeared 
to be mediated by changes in the miRNA levels, in particular miR-398 transcripts. 
The authors suggested that this was imperative to maintaining the redox homeosta-
sis of the cells (Xu et al. 2017b).

The changes in antioxidant activity observed in cells will not only relieve the 
tangible aspects of oxidative stress, as seen with less lipid peroxidation and protein 
oxidation, but it will also be part of the system which maintains the redox poise of 
the cell, which will be part of the complex interplay used in signaling (Shao et al. 
2008). Lowering ROS will mean that reactions with NO will potentially be reduced, 
and so reducing the production of ONOO−, which acts as a downstream signaling 
molecule of NO (Speckmann et al. 2016). It is known that ROS will also act on 
glutathione, a molecule instrumental in maintaining the cellular redox balance. It 
has been suggested that the redox of a cell is carefully kept in a “Goldilocks zone” 
(Alleman et al. 2014), and therefore any changes in intracellular redox molecules 
will feed into this. A good example of how such redox active molecules interact to 
give the effects in plants is seen with the legume–Rhizobium symbiosis system 
(Pauly et al. 2006), where GSH, NO and ROS were studied.
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5.4.3  Hydrogen Gas and Ethylene Signaling

One of the most well-known gasotransmittters is ethylene (C2H4; H2C=CH2). It is 
involved in a range of physiological systems in plants, such as plant growth (Dubois 
et  al. 2018), but is probably best known for its role in fruit ripening (Barry and 
Giovannoni 2007).

The interaction of ethylene with other gasotransmitters is not novel. For exam-
ple, NO and ethylene has been reported to work together in the root development of 
cucumber (Xu et al. 2017a). Therefore, an interaction of H2 and ethylene is no sur-
prise. Postharvest senescence of rose flowers was reduced by H2 application and this 
was mediated by changes in ethylene signaling. There was a reduction of substrates 
and biosynthetic enzymes: 1-aminocyclopropene-1-carboxylate (ACC); ACC syn-
thase (ACS); and ACC oxidase (ACO). Gene expression of Rh-ACS3 and Rh-ACO1 
transcripts, encoding biosynthesis enzymes, was also reduced. Interestingly, expres-
sion of the ethylene receptor, Rh-ETR1, was increased (Wang et al. 2020). These 
data clearly show that there is an influence of H2 on ethylene metabolism and con-
comitant signaling.

A proteomic study also showed that H2 and ethylene cooperated in signaling 
(Huang et al. 2020). Using cucumber roots as the model system, it was shown that 
inhibitors of ethylene signaling, AgNO3 and aminoethoxyvinylglycine (AVG), 
reduced the adventitious root development induced by H2 treatment. The pro-
teomic analysis, using 2D-gel electrophoresis coupled with mass spectroscopic 
analysis, showed that HRW induced the up-regulation of nine proteins and the 
down- regulation of fifteen. The authors concluded that ethylene was downstream 
of H2 and that six proteins were worthy of note and were probably mediating H2 
effects. These were RuBisCO, oxygen-evolving enhancer protein (OEE1), 
sedoheptulose- 1,7- bisphosphatase (SBPase), threonine dehydratase (TDH), cyto-
solic ascorbate peroxidase (cAPX), and protein disulfide-isomerase (PDI).

5.4.4  Hydrogen Gas and Hydrogen Sulfide Signaling

H2S is recognized as being toxic (Truong et al. 2006), but it is also now accepted as 
being a therapeutic gasotransmitter controlling key events in physiology and cell 
function (Wang 2003; Gadalla and Snyder 2010). However, as with the other small 
reactive compounds, H2S does not act alone but is part of the complex interaction in 
which these molecules partake. It has been suggested that H2S may act as a brake on 
some of the other signaling pathways (Hancock and Whiteman 2014). Alongside 
this, H2S has also reported to be part of the H2 signaling taking place in cells.

With the expression in Arabidopsis of a hydrogenase gene from Chlamydomonas 
reinhardtii (CrHYD1), which leads to H2 biosynthesis, it was shown that endoge-
nous H2 was needed for osmotic stress tolerance in plants. Exposure to H2 stimu-
lated the production of H2S and it was suggested that, to cause the modulation of the 
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stomatal apertures, leading to the tolerance observed, H2S was downstream of H2 
(Zhang et al. 2020a). A similar result was found with cut flowers. In a study of cut 
carnations, it was shown that a MgH2 and citrate solution increased H2S generation. 
The redox homeostasis was maintained whilst the expression of senescence genes 
was repressed (Li et al. 2020b). Hypotaurine, a H2S scavenger, reversed the effects 
and it was suggested that the downstream effects of H2 were mediated by H2S, 
which is in line with the study on stomata (Zhang et al. 2020a).

It can be seen therefore, that H2 is involved in the signaling pathways of a range 
of gasotransmitters, including NO, ethylene and H2S.

5.5  What Might Be Learnt from Other Species

Working across the kingdoms of organisms can be rewarding, but it does come with 
some caveats. To exemplify, the characterization of the NAPDH oxidases from 
humans (Schröder 2020) has greatly helped advance the research on homologues of 
these enzymes in plants (Qu et al. 2017). Indeed, oxidase proteins from plants and 
animals could be combined to reconstitute activity in vitro (Desikan et al. 1996). On 
the other hand, the discovery of a NOS in animals (Bredt and Snyder 1990) has only 
led to controversy in plant science (Astier et al. 2018). Furthermore, the lack of a 
sGC signaling pathway in plants, so well characterized in animals, further empha-
sizes the caution that may need to be used (Astier et al. 2019). Having said that, 
deliberated below is how much can be learnt about the role of H2 in biological sys-
tems by taking a broad approach.

If H2 is able to enhance stress responses in plants, there needs to be an increase 
in the H2 concentration in the relevant cells. This can be achieved via two mecha-
nisms: either the endogenous production of H2 can be increased, or the H2 can be 
supplied exogenously.

Probably one of the most well-known endogenous biological systems for the 
production of H2 is in the algae Chlamydomonas (Vargas et al. 2018). This organism 
is so good at generating H2 that it has been suggested to be used as a biofuel 
(Scranton et al. 2015). Generation of H2 is via a hydrogenase enzyme, and such 
mechanisms have been recently reviewed (Russell et al. 2020). If enzyme-based H2 
production can be increased in plants, either by the manipulation of the control of 
such enzymes, or by increasing the expression and relevant polypeptide accumula-
tion, then targeted H2 signaling can be used to enhance plant growth and survival. 
Model organisms such as Chlamydomonas, and then higher plant models such as 
Arabidopsis, will be instrumental in such work.

Alternatively, H2 can be supplied exogenously. As discussed above, this might be 
from anthropogenic activity such as the application of HRW. However, plants, like 
many organisms, are likely to be in synergy or symbiotically with prokaryotes and 
fungi, which themselves can produce H2. In humans, it has been suggested that 
increased H2 production by gut microflora may enhance health (Ostojic 2020). 
Therefore, an increase in the prokaryotic production of H2 around the root system of 
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plants may have beneficial effects. On the other hand, H2 oxidizing soil bacteria 
have also been shown to be beneficial (Zhang et al. 2020b). Manipulation of the soil 
bacterial flora therefore may be complicated but changing the H2 metabolisms in the 
vicinity of the root system might have future benefits.

A study of bacteria may also help unravel how H2 works. As the H2 couple has a 
very reducing mid-point potential (−414 mV relative to SHE), then reduction of 
many protein prosthetic groups may be thermodynamically possible. This principle 
is exemplified by the reports on the reduction of cytochrome c3 in Desulfovibrio 
desulfuricans (Peck 1959). Interestingly, following the redox reactions which may 
proceed downstream of this reduction, it was suggested that H2S could be produced, 
which is known to be an important gasotransmitter in plants (Aroca et al. 2018), 
including under stress conditions (Singh et al. 2020), relevant to the discussion here. 
The study by Peck (1959) shows two important things. Firstly, the reduction of a 
heme group by H2 is possible in biological systems. Secondly, once the heme is 
reduced there are possible downstream reactions which could potentially yield sig-
naling molecules. As already mooted (Hancock et  al. 2021), this needs to be 
explored further in plants and animals, not just in prokaryotes.

One of the biggest areas where other species can be useful to study is in the bio-
medical arena. Here, H2 has been shown to have a benefit in a variety of diseases, 
including those listed in Table  5.3. H2 has been found to relieve symptoms of 
COVID-19 and has been used for clinical trials (Guan et al. 2020). It has also been 
found to be of benefit in neurodegenerative disease (Chen et al. 2021b), rheumatoid 
arthritis (Yang et al. 2020) and diabetes (Yang et al. 2020). Therefore, it is clear that 
H2 has a range of benefits for human health and for alleviating disease symptoms. 
Moreover, if mechanisms are known for H2 action in the biomedical arena, can this 
be translated across and used in plant science?

It is not only the support that data such as that in Table 5.3 gives to the argument 
that H2 has profound effects in biological systems, but it is the manner in which H2 
has its effects that is relevant here. Clearly, some of the effects and proposed mecha-
nisms in animals are not directly relevant to plants. For example, a reduction in IL-6 
levels or a dampening of a cytokine storm is not a mechanism which would be seen 
in plants. However, H2 may have effects on analogous intercellular signaling mole-
cules in plants, such as ethylene (Wang et al. 2020). Other effects may be much 
more relevant. As previously mentioned, H2 may work through the action it has on 
antioxidants, an effect which has already been seen in plants. Accordingly, changes 
in antioxidants and a dampening of oxidative stress are a common feature in neuro-
generative disease alleviation, the reductive effects on diabetes, cancer therapies, in 
mood alterations and in Hepatitis B (Ichihara et al. 2015). This is also a common 
feature of how H2 alleviates plant stress (e.g., Zhang et al. 2015; Jiang et al. 2021). 
The biochemistry of animal and plant cells differs in detail but remains the same in 
principle. Therefore, a close study of the research on H2 from the animal kingdom 
may be very beneficial to plant science in the future and vice versa. With the list of 
conditions for which H2 may benefit human health, it is no surprise that H2 has been 
mooted as a future therapy for humans (Ge et al. 2017; Wu et al. 2019a). With a 
focus on respiratory diseases at the present time because of the COVID-19 
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Table 5.3 Human diseases for which symptoms are alleviated by H2 treatment

Disease/condition Effect of H2

Proposed molecular 
mechanism (if known) Reference(s)

COVID-19 Severe symptoms 
alleviated

Dampens cytokine storm. Russell et al. 
(2021), Hirano 
et al. (2021), Chen 
et al. (2021a), and 
Guan et al. (2020)

Neurodegenerative 
(e.g., Parkinson’s 
disease, Alzheimer’s 
disease)

Significantly 
improved scores 
assessed by the 
Unified Parkinson’s 
Disease Rating Scale 
(UPDRS), or 
Alzheimer’s Disease 
Assessment 
Scale-cognition 
cub-scale 
(ADAS-cog)

Reduces the loss of 
dopaminergic neurons and 
inhibits oxidative stress.

Chen et al. 
(2021b), Yang 
et al. (2020), 
Nishimaki et al. 
(2018), Ge et al. 
(2017), and 
Yoritaka et al. 
(2013)

Rheumatoid Arthritis Reduced symptom 
severity

Relieves inflammation, 
possibly through reduction 
of IL-6-mediated responses.

Yang et al. (2020) 
and Ishibashi et al. 
(2014)

Ischaemia/reperfusion 
injury (e.g., stroke, 
brain trauma, cerebral 
infarction, cardiac 
arrest)

Significant increase 
in neurological 
improvement

Antioxidant, anti- 
inflammatory and anti- 
apoptotic effects. Inhibition 
of endoplasmic reticulum 
stress. Preservation of the 
blood-brain barrier and 
mitochondrial function.

Chen et al. (2021b) 
and Ono et al. 
(2017)

Metabolic syndrome 
and Type 2 Diabetes 
Melllitus

Improvement in 
urinary oxidative 
stress markers and 
cholesterol profile. 
Normalised oral 
glucose tolerance 
test

Decreases glucose and 
insulin levels. Stimulates 
energy metabolism. 
Increased urinary 
antioxidant superoxide 
dismutase enzyme. Reduced 
low-density-lipoprotein- 
mediated inflammation. 
Suppression of chemical 
modifications of serum 
lipoproteins in the plasma 
membrane

Yang et al. (2020), 
Ge et al. (2017), 
Song et al. (2013), 
Nakao et al. 
(2010), Suzuki 
et al. (2009), 
Kajiyama et al. 
(2008), and 
LeBaron et al. 
(2020)

Aiding anti-cancer 
therapy

Improving Quality- 
of- Life scores for 
radiotherapy patients

Radioprotection via 
antioxidant increase.

Ge et al. (2017) 
and Kang et al. 
(2011)

Mood disorders Improved mood, 
anxiety and 
autonomic nerve 
function

Reduced accumulation of 
oxidative stress.

Chen et al. (2021b) 
and Mizuno et al. 
(2017)

Hepatitis B May have potential 
to improve liver 
function and reduce 
viral DNA level

Reduction of oxidative 
stress.

Xia et al. (2013)
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pandemic, the research and application of H2 is likely to be of continued interest in 
the biomedical field (Russell et  al. 2021). On the other hand, H2 application has 
already been suggested to be hugely beneficial to agriculture (Zeng et  al. 2014; 
Li et al. 2021a). The responses to H2 are likely to be supported by common molecu-
lar mechanisms in plants and animals, be that through antioxidants or Fe3+ reduc-
tion, or other means. Plant science might have a lot to learn from the work being 
carried out on prokaryotes and higher animals, and vice versa.

5.6  Conclusions and Future Perspectives

It seems clear now that H2 is a useful treatment for plants, alleviating a range of 
stress challenges (Table 5.1), as well as a potential regimen for the post-harvest stor-
age of fruits and flowers, where it evidently delays senescence (Hu et al. 2014; Ren 
et al. 2017b). However, there are many aspects of the biochemistry of H2 which are 
simply not clear. Firstly, it is not known what the direct targets of H2 are in cells, 
even though several mechanisms have been suggested (Table 5.2), including scav-
enging radicals and other reactive signals, or acting through HO-1. Secondly, the 
full range of effects are not known, even though there are numerous reports of H2 
application being beneficial (Table 5.1).

The redox mid-point potential of H2 is relatively low when compared to other 
biomolecules. Thermodynamically, it would be possible for H2 to reduce Fe3+ to 
Fe2+ and this would have ramifications for many enzymes, suggesting the reduction 
of prosthetic groups, particularly many heme groups, is theoretically possible, 
although not widely reported. Additionally, selenium-containing enzymes may be 
targets. However, such reactions are likely not to be kinetically feasible without the 
certain environments that could lower the activation energy for such a reduction to 
take place. However, clearly, a comprehensive study of the proteins controlled by H2 
is required, even if it is simply to rule them out as being involved. Unlike the work 
with NO and H2S (Baty et  al. 2005; Hawkins and Davies 2019), a proteomic 
approach would seem to not be feasible with H2 as no direct covalent post- 
translational modification of proteins have yet been reported for this molecule. On 
the other hand, downstream post-translational protein modification will occur, and 
a full compendium of such effects would be useful to know.

Although endogenous generation of H2 in some plants is possible and may be 
able to be manipulated, manipulation of exogenous sources of H2 would be a better 
approach as it would be easier. The presence of H2 may be dictated by the surround-
ing microflora, but H2 may be applied to plants as a treatment. Using H2 as a gas is 
unlikely to be of use, but the generation of HRW or HNW may allow application to 
either foliage or roots, or both. Clearly, there are safety aspects from a physical 
point-of-view, as H2 is extremely flammable, but from a biological viewpoint H2 
appears to be safe to use, both for plants and animals. As with other similar mole-
cules, for example H2S (Song et al. 2014), donor molecules may open up the better 
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use of H2 in the future, and the use of some are already being reported, such as 
MgH2 (Li et al. 2020b) and AB@hMSN (Wang et al. 2021).

H2 use in agriculture and horticulture has yet to be widely adopted, but there is a 
growing interest in this biologically safe treatment. As more is known about how it 
works, and the significance of any effects are more widely reported, H2 may become 
an accepted way to enhance plant growth and crop storage in the future.
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Chapter 6
Understanding the Role of Nitric Oxide 
and Its Interactive Effects 
with Phytohormones in Mitigation 
of Salinity Stress

Mahima Misti Sarkar, Rewaj Subba , Swarnendu Roy,  
and Piyush Mathur 

Abstract Nitric oxide (NO) is a highly reactive form of nitrogen species well dis-
cussed in varied literature and its significant role during physio-biochemical 
responses in plants has been well documented. Meanwhile, salinity is an important 
abiotic factor that limits the growth and production of almost all economically 
important plants worldwide. Due to salinity stress, there is substantial cellular dam-
age, imbalance in ionic content, and osmotic strain in plants. Exogenous application 
of NO has shown positive results in alleviation of salinity stress by increasing pho-
tosynthetic activities, osmolytes content, stomatal conductance, etc. Exogenous 
application of NO in plant systems alleviates salt induced stress through maintain-
ing ionic homeostasis by lowering the levels of cellular reactive oxygen species 
(ROS) content. However, the effect of NO is concentration dependent, as low con-
centrations initiate cell signaling while high concentrations induce nitrosative 
effects. Recent studies also revealed that NO is associated with numerous plant- 
signaling networks during salinity stress and interacts with the other plant growth 
regulators such as auxins, cytokinins, gibberellins, abscisic acid, ethylene, etc. 
Interactive roles of NO with phytohormones are known to cumulatively regulate 
responses even at molecular levels in plants during abiotic stressed condition such 
as salinity. With this background, the present chapter attempts to provide a holistic 
idea with special reference to mitigatory roles played by NO in plants under salinity 
stress including NO biosynthesis, NO-mediated physio-biochemical changes, and 
regulation at various molecular levels like transcriptome and proteome, along with 
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post-transcriptional and post-translational modifications. Furthermore, the chapter 
also deals with the interactive roles of NO with different phytohormones in plants 
under salinity stress.

Keywords Abiotic stress · Gasotransmitter · Jasmonic acid · Melatonin · 
Salicylic acid

6.1  Introduction

Nitric oxide (NO) is considered as an extremely reactive form of nitrogen which is 
formed inside the living cells causing oxidative damage in cells at high concentra-
tions. However, at low concentrations, NO acts as an important gaseous signaling 
molecule that partakes in several plants physiological processes (Rather et al. 2020). 
NO can escape into the cellular compartments through the lipid bilayer of biological 
membranes (Del Castello et al. 2019). Talking about plant system, the idea about 
NO production is a topic of debate since several pathways has been reported to exist 
in plants that lead to NO production (Gupta et al. 2011). Several studies indicate the 
involvement of nitrate reductase (NR) pathway as the major contributing factor in 
NO generation in plants (Besson-Bard et al. 2008; Kolbert et al. 2019a). Involvement 
of NO in diverse plant responses towards important abiotic stresses such as drought 
(Gan et al. 2015; Jangid and Dwivedi 2017), salinity (Kaya et al. 2015; Klein et al. 
2018) as well as heavy metals (Khairy et al. 2016; Terrón-Camero et al. 2019) has 
fuelled its research. NO assists plants to alleviate major abiotic stress like salinity 
by regulating stomatal movements, programmed cell death (PCD), modulation of 
proteins via post-transcriptional modifications (PTMs), including expression of 
stress responsive genes (Nabi et al. 2019).

Salinity in the soil can arise from either human interference such as frequent use 
of fertilizers, irrigation with salt-containing waters, or improper drainage system, or 
can occur by natural weathering and deposition (Hasanuzzaman et al. 2013). About 
932.2 million ha are either saline or sodic areas and Asia alone comprises about 
33.9% of the total land (Shahid et al. 2018). Higher accumulation of salt in the soils 
lowers seed germination, reduces plant growth and yield (Zhang and Dai 2019) 
which in turn highly impacts the economy (Srivastava et al. 2019).

In response to abiotic stress like salinity, plants undergo changes in terms of 
physiology, metabolism as well as regulation of genes (Arif et al. 2020). Lowering 
chlorophyll and carotenoid contents in plants under salinity stress greatly affects 
transpiration, gas exchange, and photosynthetic machinery (Pan et  al. 2021). 
Increasing salinity levels causes hyperosmotic stress that results in membrane dam-
age, nutrient imbalance, hampered photosynthesis, etc.

Reactive oxygen species (ROS) are normally produced during metabolism and 
play a vital role in the form of signalling molecules as to maintain cellular 
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homeostasis (Hasanuzzaman et  al. 2020). The involvement of ROS in growth, 
development, defense response, acclimation, and programmed cell death is well 
documented (Apel and Hirt 2004). However, different abiotic stresses like salinity 
triggers increased accumulation of ROS molecules leading to oxidative stress in 
plants that result in lipid peroxidation of plasmalemma, deteriorating membrane 
integrity, and damage towards proteins as well as DNA (EL Ghazali 2020). 
Furthermore, the higher levels of salinity have also seemed to affect the microtubule 
organization in the cortical cells of Arabidopsis and thus, interfere with the normal 
cell cycle (Shoji et al. 2006).

The concentration of cellular NO is very important for the manifestation of its 
effects. For example, at normal levels, NO produces beneficial effects through coun-
tering oxidative and nitrosative stresses, while on the other hand, at higher levels it 
generates oxidative as well as nitrosative effects that may even lead to cell death 
(Valderrama et al. 2007). Previous research has shown the positive effects of NO on 
alleviation of the salinity-induced toxic effects in plants (Shi et al. 2007; Fatma and 
Khan 2014). In this connection, the exogenous NO treatments in plants have shown 
beneficial effects in seed germination through improved activities of antioxidants 
during salinity stress (Fan et al. 2013). Reports for an increase in growth, relative 
water content (RWC), and photosynthetic pigments of plants have been obtained in 
salt-stressed plants subjected to NO application (Alnusairi et al. 2021; Sundararajan 
et al. 2022). Involvement of NO in maintaining photosynthesis, ROS through stimu-
lation of various antioxidative enzymes (peroxidases, catalase, ascorbate peroxi-
dase, etc) and production of osmolytes have been well documented by Sharma et al. 
(2020). H+-ATPase in plasma membrane creates electrochemical gradients that 
direct the transport of Na+ ions across the membrane (Serrano 1989). According to 
Zhao et al. (2004), NO plays an important role in regulating the H+-ATPase activity 
thereby maintaining the K to Na ratio inside the cell. Additionally, interaction 
between NO and other phytohormones have been reported to mutually regulate 
plant responses during salinity stress (Grün et al. 2006; Campos et al. 2019)

Investigations have also revealed the existence of NO-mediated gene regulation 
and post-transcriptional modifications (PTMs) in plants exposed to salinity stress 
(Hasanuzzaman et al. 2018; Bhardwaj et al. 2021). NO in the modulation of gene 
expression in several plants like Glycine max (glutathione-s-transferases; GST1 and 
GST4) (Dinler et al. 2014), Triticum aestivum (salt overly sensitive 1; SOS1, Na+/H+ 
exchanger; NHX1, aquaporin; AQP and osmotin; OSM-34) (Alnusairi et al. 2021), 
Jatropha curcas (JcCAT1, JcCAT2, JcGR1 and JcGR2) (Gadelha et al. 2017), etc. 
has been previously reported. In addition, S-nitrosation (PTM promoted by NO) of 
transcription factors by NO is thought to play certain roles in transcriptional regula-
tion (Mengel et al. 2013). PTMs of proteins are an important step for the proper 
functioning of proteins. Investigations show that NO aids in PTMs of proteins 
through metal nitrosylation, tyrosine nitration, and S-nitrosation (Astier and 
Lindermayr 2012) which can lead to protein methylation in plants as a response to 
stress conditions (Hu et al. 2017).
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Fig. 6.1 Overview of pathways for NO synthesis in plants. (a, b, d, and f): Reductive pathways 
for NO synthesis in cytosol, plasma membrane, chloroplast, and mitochondria, respectively 
through the action of nitrate reductase (NR), nitrite-nitrate reductase (NiNOR), and complex III 
(C-III) and IV (C-IV) of electron transport chain. (c): Oxidative pathways for NO synthesis 
through nitric oxide-like synthase (NOS), polyamines (PA), and hydroxylamines (HA). (e): Non- 
enzymatic route for NO synthesis in chloroplast by carotenoids (CAR) in the presence of sunlight. 
(NOS/OtNOS indicate that in some plants enzyme NOS is similar to human NOS while in some 
enzyme NOS is similar to plant Ostreococcus tauri)

6.2  Biosynthesis of NO

In a plant system, NO can originate from different substrates following different 
routes including both enzymatic and non-enzymatic sources. These different enzy-
matic routes leading to the production of NO can be generally classified into reduc-
tive and oxidative pathways (Fig. 6.1) (Gupta et al. 2011; Corpas et al. 2022).

6.2.1  Reductive Pathways

Although the sources for the synthesis of NO have been a subject of much debate, 
the major contributor in the process of NO synthesis is thought to be the enzymatic 
reduction of nitrites by nitrate reductase (NR). NR is a principal enzyme (~200 kDa) 
that is involved in the assimilation of nitrogen through catalysing reduction reaction 
for the conversion of nitrate to nitrite in plants (Tejada-Jimenez et al. 2019). NR 
comprises two subunits with FAD, heme b557 and molybdenum as prosthetic groups 
and, during the reduction process, NR utilizes NAD(P)H as their electron source 
(Hoff et al. 1992). In plants, nitrate transporters like NRT1 and NRT2 family trans-
porters are involved in nitrate uptake from the soil (Crawford and Glass 1998). In 
the cytosol, nitrite is either generated by the action of NR on nitrate or through 
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absorption from the soil. Nitrite is generally involved in the release of NO in plants 
upon the action of NR. However, nitrate (Ki = 50 μM) competitively binds with NR 
and acts as a competitive inhibitor of nitrite (Rockel et al. 2002). NR liberates NO 
when the concentration of nitrite levels is high in the plants, which is generally seen 
in the case of an anaerobic system (Yamasaki and Sakihama 2000). On the other 
hand, in an aerobic system, formation of nitrate is high which drives the reaction in 
plant tissues rather than the nitrite that results in the inhibition of NO production. 
Among the NR encoding genes of Arabidopsis, comparative analysis between NIA2 
deleted plants and nia1 and nia2 double mutants, it was seen that majority of func-
tional NR protein is encoded by NIA1 gene (Wilkinson and Crawford 1993).

Other than cytosol, studies have shown the presence of NO producing apparatus 
in plasma membrane and chloroplast. In the plasma membrane, nitrite NO-reductase 
enzyme (NiNOR), a membrane bound enzyme, regulates the nitrite:NO reductase 
(Chamizo-Ampudia et al. 2017). NiNOR in plasma membrane has been shown to 
generate NO parallelly with nitrate supply in mycorrhizal roots of Nicotiana taba-
cum cv. Samsun, but decreased under excess nitrate supply (Moche et al. 2010). For 
chloroplast-associated NR, NO production is well described in Chlamydomonas, 
where the cytosolic nitrite is transported to chloroplast via the nitrite transporter 
NAR1. However, higher plants lack NAR1, therefore, higher plants utilize ChLoride 
Channel (CLC) family transporters as an alternative for NAR1 to transport nitrite to 
the chloroplast (Monachello et al. 2009). Apart from these two cell organelles, pro-
duction of NO is also seen in the inner mitochondrial membrane during the hypoxic 
condition where required electrons are assimilated from NADH through ubiquinone 
and electron transport chain during nitrite reduction (Gupta et al. 2018).

6.2.2  Oxidative Pathways

Apart from the reductive pathway which utilizes nitrite as substrates, there is evi-
dence showing the presence of oxidative pathways for the generation of NO (Foresi 
et al. 2010; Gupta et al. 2011). In case of an animal cell, the enzyme nitric oxide 
synthase (NOS) majorly contributes during the synthesis of NO using L-arginine as 
substrate (Gupta et al. 2020a). Attempts have been made to identify the involvement 
of NOS in plants which remains elusive. The presence of plant NOS (OtNOS) has 
been reported in Ostreococcus tauri, where the enzyme resembled 45% human 
NOS and also utilized L-arginine as the substrate for NO biosynthesis (Foresi et al. 
2010). Analysis of transcriptomes and genomes from several land and algal species 
was done by Jeandroz et al. (2016) using OtNOS and human NOS1 sequence as 
templates. The search resulted in the majority of NOS-like sequences from algal 
species where binding sites for NOS cofactors were conserved. However, some 
studies also demonstrate the absence of NOS in some plants. For example, NO pro-
duction in plants like Helianthus annuus, Spinacia oleracea and Zea mays does not 
occur through NOS activities as the NO liberation was found to be unaffected with 
the application of NOS inhibitors in these plants (Rockel et al. 2002). In addition to 
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NOS-like enzymes dependent pathways for NO biosynthesis, arginine-dependent 
polyamine (PA)-mediated NO production in plants has also been reported (Gupta 
et al. 2011). PAs are ubiquitous aliphatic amines that are present in all the cells of 
the plant system. According to Tun et al. (2006), PAs basically the spermidine and 
spermine were able to increase the production of NO in Arabidopsis. Another oxi-
dative pathway for NO production is the hydroxylamine-mediated pathway that is 
generally seen in animals. However, this pathway was also reported in tobacco 
plants under anaerobic conditions (Rümer et al. 2009).

Apart from reductive and oxidative enzymatic pathways for NO production, 
there are reports of the presence of non-enzymatic production of NO in plants. For 
example, carotenoids exposed to nitrogen dioxide (NO2) and light simultaneously 
generate NO in a non-enzymatic process (Cooney et al. 1994).

6.3  NO-Mediated Physiological and Biochemical Changes 
in Plants Exposed to Salinity

Primarily land degradation and environmental deterioration are brought about by 
excess salinization of soil which ultimately affects the total yield of agriculture 
(Farouk and Arafa 2018; Helaly et al. 2018). Plant growth and development become 
affected by the adverse effect of salinity through reduced physiological water status, 
and increasing ion and ROS accumulation. These negative impacts finally give rise 
to membrane damage, protein denaturation, DNA damage, and enzyme inhibition 
(Moradi and Ismail 2007; Sharma et al. 2012; Castillo et al. 2015). NO is a chief 
signaling biomolecule that is involved in various metabolic processes and plays a 
key role in the stress management strategies of plants (Xu et al. 2021). In this rela-
tion, NO was previously observed to palliate the negative impact of salinity in rape-
seed (Zhao et al. 2018), wheat (Sun et al. 2019), and maize (Oliveira et al. 2016). 
Salinity imparts negative impacts on plants mainly by increasing ion toxicity and 
disrupting nutrient homeostasis through an increased Na+ and decreased K+ concen-
tration, along with a reduction in the content of various micro- and macro-nutrients. 
NO was observed to help the plants by reducing the Na+ accumulation and increas-
ing the K+ and nutrient content thus maintaining ion homeostasis and osmotic bal-
ance (Jamali et  al. 2015; Hasanuzzaman et  al. 2021). NO was also reported to 
accelerate some important seed germination parameters like germination potential, 
germination index, vigour index, germination velocity, vitality index, and embry-
onic growth under salinity stress (Zhang 2015; Ren et al. 2020). NO application can 
improve the tolerance of plants against salinity by growth promotion, maintaining 
ion homeostasis, and reversing oxidative damage (Sharma et  al. 2020). Besides, 
increasing the biomass of plants under a saline environment, NO plays a vital role 
in the mitigation of salt-induced early senescence and leaf chlorosis (Adamu et al. 
2018). This reduction in leaf senescence occurs due to the reduced ABA biosynthe-
sis, Na+ accumulation, and parallelly increased cytokinin biosynthesis, chlorophyll 
content, and photosynthetic rate (Kong et al. 2016). NO application also ameliorates 
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the salinity stress of plants by improving the growth, photosynthesis, and osmolyte 
accumulation along with accelerated antioxidant enzyme activity and reduced elec-
trolyte leakage, H2O2, and malondialdehyde (MDA) accumulation (Ahmad et  al. 
2016; Roychoudhury et al. 2021). Growth parameters like shoot and root length, 
shoot and root biomass, along with various beneficial physiological and biochemi-
cal attributes, were observed to be improved in plants exposed to salinity stress due 
to the application of NO. The exogenous application of NO was also observed to 
scavenge the oxidative molecules like superoxide anion, and H2O2 and thus reduced 
the electrolyte leakage and MDA accumulation simultaneously up regulating vari-
ous enzymatic antioxidants viz. catalase, peroxidase, superoxide dismutase, ascor-
bate peroxidase, guaiacol peroxidase, and polyphenol oxidase (Fan et  al. 2013; 
Chen et al. 2014; Egbichi et al. 2014; Kaya et al. 2015; Klein et al. 2018; Khator and 
Shekhawat 2020; Ren et al. 2020; Sundararajan et al. 2022).

Non-enzymatic antioxidants also have great involvement in scavenging the ROS 
generated by stress. NO application was observed to increase the biosynthesis of 
non-enzymatic antioxidants (ascorbic acid, lycopene, β-carotene, total phenolics, 
flavonoids, and anthocyanin) in salt-stressed tomato plants, thereby, improving 
growth parameters and reducing Na+ ion accumulation (Ali and Ismail 2014). NO 
was also observed to improve the tolerance against combined stress of salinity- 
alkalinity on muskmelon plants by acting in downstream of GABA (γ-aminobutyric 
acid) signaling, stimulating the antioxidant defense system which ultimately regu-
lates ion homeostasis and membrane lipid peroxidation. In this connection, the 
GABA pretreatment increased the endogenous NO level but the external application 
of NO did not affect the endogenous levels of GABA (Xu et al. 2021). NO also 
showed its function in downstream signaling pathways of melatonin to increase the 
salinity tolerance of plants. For instance, in Brassica napus, the cordial action of 
melatonin and NO improved growth of the plant as well as reestablished redox and 
ion homeostasis by reducing the overproduction of ROS, thiobarbituric acid (a reac-
tive substance), and Na+/K+ ratio with modulation in the transcripts of antioxidant 
defense-related genes (sodium hydrogen exchanger 1, and salt overly sensitive 2) 
(Zhao et al. 2018). External application of melatonin increased the NO synthase 
activity, polyamine content, and arginine utilization in plants. Moreover, NO helped 
to increase ATP content which ultimately was used to maintain K+/Na+ homeostasis 
by improving Na+ efflux and K+ influx (Yan et  al. 2020). Increased (spermine + 
spermidine)/putrescine ratio indicated the benefit against salinity stress and NO was 
observed to reduce the negative impacts of salinity in cucumber seedlings by adjust-
ing the proportions of these polyamines (Fan et al. 2013). In this connection, the 
external application of NO and spermidine on salt-stressed Bakraii seedlings (Citrus 
reticulata × Citrus limetta) resulted in an improved growth due to increasing leaf 
Ca2+, Mg2+, and K+ concentrations, relative water content (RWC), photosynthetic 
rate, antioxidant enzyme activities, stomatal conductance, intercellular CO2 concen-
tration, and transpiration rate; and decreasing hydrogen peroxide, electrolyte leak-
age, MDA content, and leaf Na+ and Cl− concentration (Khoshbakht et al. 2018). 
NO was also observed to reduce glucose and ethylene sensitivity under salinity and 
thus improved salt tolerance by upregulating the antioxidant system, nitrogen 
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assimilation, and proline accumulation (Sehar et al. 2019). Besides this, NO proved 
its capability towards mitigation of negative impacts of salinity stress by preserving 
photosynthesis, osmotic potential, and minimizing sodium ion toxicity and thus 
reducing the need of activating the ionic homeostasis (SOS1/NHX1) and osmotic 
(AQP/OSM-34)-related gene expression but enhanced D2-protein (photosystem II) 
activity (Alnusairi et al. 2021). Some of the recent studies that have role of nitric 
oxide in modulation of plant physiological and biochemical responses under salin-
ity stress have been summarized in Table 6.1.

Table 6.1 Recent studies depicting the application of nitric oxide on plant physiological and 
biochemical responses subjected to salinity stress

Nitric oxide donor/
Stimulation of 
endogenous NO Plant species Alleviating effects in plants Reference

S-nitrosoglutathione 
(GSNO)

Pisum sativum L. 
cv. Lincoln

Increased APX activity and 
S-nitrosated APX; increase in 
H2O2, NO and S-nitrosothiol 
(SNO) content

Begara- 
Morales et al. 
(2014)

Sodium nitroprusside 
(SNP)

Hyoscyamus niger 
L.

Stimulated germination; 
increased ROS-scavenging 
enzymes, DPPH activity, 
hydroxyl radical scavenging 
activity, ferrous ions chelation; 
reduced lipid peroxidation; 
increased callus fresh weight

Samsampour 
et al. (2018)

Sodium nitroprusside 
(SNP), 6-benzyl 
adenine, γ-aminobutyric 
acid

Lolium perenne 
(Bright Star SLT, 
Catalina, inspire, 
and SR4660ST 
cultivers)

Increased leaf fresh weight, dry 
weight, photochemical efficiency; 
reduced Na+ accumulation, leaf 
chlorosis, necrosis

Ji et al. 
(2019)

Sodium nitroprusside 
(SNP)

Capsicum annum 
L.

Increased photosynthetic rate, 
Stomatal conductance, 
intercellular CO2 concentration, 
transpiration rate, mineral uptake, 
plant growth, leaf RWC; 
decreased hydrogen peroxide 
(H2O2) and malondialdehyde 
(MDA) accumulation

Shams et al. 
(2019)

Sodium nitroprusside 
(SNP)

Brassica oleracea 
L.

Increased chlorophyll a, total 
phenolics, glycine betaine 
contents, SOD, CAT, and POD 
enzymes activities; decreased 
H2O2 and MDA accumulation

Akram et al. 
(2020)

Sodium nitroprusside 
(SNP), Potassium 
chloride (KCl)

Triticum aestivum 
L. cv. Jimai 4

Increased root functionality, 
soluble protein content, SOD 
activity; maintained K+/Na+ 
homeostasis; decreased free 
proline content, superoxide anion 
radical generation rate, lipid 
peroxidation

Dong et al. 
(2020)

(continued)
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Table 6.1 (continued)

Nitric oxide donor/
Stimulation of 
endogenous NO Plant species Alleviating effects in plants Reference

Sodium nitroprusside 
(SNP), CaCl2, H2O2

Chenopodium 
quinoa Willd.

Increased germination rate, 
relative germination rate, 
germination index; increased 
α-amylase and β-amylase activity 
and thus increased water-soluble 
sugars content; increased protein 
and amino acid contents

Hajihashemi 
et al. (2020)

Sodium nitroprusside 
(SNP)

Oryza sativa L. 
(Jinyuan85 and 
Liaojing763 
varieties)

Increased the activities of 
glutamate dehydrogenase, sucrose 
synthase, sucrose phosphate 
synthase; increased plant height, 
biomass, nitrogen assimilation, 
proline, and sucrose content, 
antioxidant enzyme activities

Huang et al. 
(2020)

Sodium nitroprusside 
(SNP), Salicylic acid 
(SA)

Crocus sativus L. Increased growth, compatible 
solutes accumulation, secondary 
metabolites biosynthesis; induced 
antioxidative enzyme activities

Babaei et al. 
(2021)

Sodium nitroprusside 
(SNP)

Pisum sativum L. 
cv. Jof and cv. 
Utrillo

Improved fresh-dry weight, 
RWC, chlorophyll a and b 
content; reduced tissue electrical 
conductance, H2O2, MDA 
content; increased antioxidant 
defense significantly; increased 
the ratio of K+/Na+ and Ca2+/Na+

Dadasoglu 
et al. (2021)

Sodium nitroprusside 
(SNP)

Raphanus sativus 
L.

Improved photosynthetic 
apparatus, sugar accumulation; 
enhanced FRAP; reduced H2O2 
and lipid peroxidation; restored 
protein abundance; increased 
diameter of the central cylinder, 
the thickness of the casparian 
strip of hypocotyl

Hajihashemi 
et al. (2021)

Sodium nitroprusside 
(SNP)

Glycine max (L.) 
Merr.

Improved root and shoot length, 
fresh and dry weight, 
photosynthesis, chlorophyll 
contents, various antioxidant
Enzyme activities (CAT, SOD, 
POD, APX); induced cell wall 
repair, sequestration of Na+

In the vacuole, no swelling of 
thylakoids

Jabeen et al. 
(2021)

Sodium nitroprusside 
(SNP)

Hordeum vulgare 
L.

Enhanced phenolics 
accumulation, antioxidation 
enzymes activity, antioxidant 
capacity. Accelerated 
carbohydrate metabolism, amino 
acids biosynthesis

Ma et al. 
(2021)

(continued)
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Table 6.1 (continued)

Nitric oxide donor/
Stimulation of 
endogenous NO Plant species Alleviating effects in plants Reference

Hydrogen sulfide (H2S), 
and melatonin (MT) 
induced endogenous 
NO

Cucumis sativus 
L.

H2S acted downstream of MT, 
interacted with NO and MAPK 
cascades, and overall participated 
in the process of salt stress 
mitigation by regulating 
photosynthetic efficiency, 
antioxidant enzyme gene 
expression and activity

Sun et al. 
(2021)

Sodium nitroprusside 
(SNP)

Lens culinaris 
Medik.

Improved roots and shoots length, 
RWC, chlorophyll content, 
branch number, pods, seeds, seed 
yield, biomass per plant, enzyme 
activities (CAT, SOD, POD); 
reduced MDA, H2O2 content

Yasir et al. 
(2021)

Sodium nitroprusside 
(SNP)

Nitraria 
tangutorum Bobr.

Increased fresh weight, shoot and 
root elongation; increased 
ascorbate-glutathione cycle, 
antioxidant enzymes activities; 
decreased electrolyte leakage, 
malondialdehyde content, leaf 
senescence, root damage, Na+/K+ 
ratio

Gao et al. 
(2022)

Nitrosoglutathione 
(GSNO)

Lycopersicum 
esculentum L. 
‘Micro-Tom’

Increased plant height, root 
length, leaf area, soluble sugar, 
glycine betaine, proline, and 
chlorophyll contents, antioxidant 
enzyme activity; decreased 
O2

·− production and H2O2 content

Wang et al. 
(2022)

APX ascorbate peroxidase, CaCl2 calcium chloride, CAT catalase, FRAP fluorescence recovery 
after photobleaching, GSNO nitrosoglutathione, H2O2 hydrogen peroxide, MDA malondialdehyde, 
MAPK mitogen activated protein kinase, MT melatonin, NO nitric oxide, O2

·−superoxide anion, 
POD peroxidase, SOD superoxide dismutase, SNP sodium nitroprusside, SNO S-nitrosothiol content

6.4  Crosstalk Between NO and Phytohormones of Plants 
Exposed to Salinity

Phytohormones have their key regulatory role in plants to acclimatize under an abi-
otic stressed environment. Exogenous application of phytohormones or the use of 
any biotechnological tools to manipulate the endogenous phytohormones level can 
lead to balanced metabolism and healthier plants grown under different abiotic 
stress conditions (Wani et  al. 2016). Auxin (AUX), gibberellin (GA), cytokinin 
(CK), ethylene (ET), brassinosteroid (BR), salicylic acid (SA), jasmonic acid (JA), 
and strigolactone are the well-known hormones of plants. Among all these phyto-
hormones, ABA is known to have a key regulatory role in many abiotic 

M. M. Sarkar et al.



131

stress- induced responses (Zhang et al. 2006). Under stressed conditions, ABA can 
interact with some other stress-responsive (ET, JA, SA) and growth-promoting 
(AUX, CK, GA, BR) hormones to combat the negative impacts of stresses (Verma 
et al. 2016).

NO is a free radical gasotransmitter signaling biomolecule that has a great role in 
various spectrums of signal transduction pathways and can lead to inducing cross 
adaptation against environmental stresses (Singhal et al. 2021). Recent studies have 
revealed the fact that NO is associated with numerous plant-signaling networks 
which can interplay with the other plant growth regulators (AUX, GA, ABA, ET, 
JA, BR, SA, H2O2, H2S, melatonin) to combat various salinity stress and improve 
their growth and development (Singhal et  al. 2021). For example, an integrated 
signaling network of NO, ABA, and AUX was observed to control the root morpho-
genesis of tomato plants under salinity stress. Their cordial signaling can improve 
the lateral root growth and root numbers of saline-stressed plants (Santos et  al. 
2020). The lateral root of sunflower seedlings was also observed to increase under 
salinity stress as a positive impact of the crosstalk between NO and the enzyme 
involved in ET biosynthesis 1-aminocyclopropane 1-carboxylic acid (ACC) oxi-
dase. Here, the external application of NO reduced the biosynthesis of ET which 
facilitated the enhancement of lateral root formation (Singh and Bhatla 2018). 
Generally, the salinity stress reduced the AUX and cytokinin/ ethylene content but 
the externally applied NO has been observed to elevate their content in Lactuca 
sativa plant. On the other hand, ET content was decreased with the application of 
NO in comparison to the salinity-stressed plants. These results also support the 
interaction between NO and phytohormone signaling (Campos et  al. 2019). In 
cucumber, NO was also found to have essential downstream signaling for AUX- 
induced tolerance against the alkaline-sodic stress that was evident from the abol-
ishment of AUX function by NO scavenging (Gong et al. 2014). A previous study 
revealed that endogenous NO production is dependent upon the nitrate reductase 
enzyme activity, and externally applied 24-epibrassinolide (BR) in association with 
endogenous NO increased the antioxidant defense and decreased ABA content to 
counter salinity stress (Gupta and Seth 2020). Combinedly applied BR and NO was 
found to decrease the negative impacts of salinity by modulating the nitrogen, pro-
line, and ABA metabolism (Gupta et al. 2017). These modifications in ABA content 
influenced by NO were a result of NO-associated post-translational modifications 
like tyrosine nitration and S-nitrosation of proteins. These modifications have their 
influence on the regulation of ABA signaling pathways (Prakash et al. 2018). NO 
and ET interplay also displayed their contribution towards the increase in total yield 
and stress tolerance level of crops under changing environments (Kolbert et  al. 
2019b). Similarly, crosstalk between NO and hydrogen sulfide (H2S) has a potent 
role in abiotic stress alleviation and fruit ripening (da Silva and Modolo 2018; 
Mukherjee 2019). In this context, NO was reported to increase H2S accumulation in 
salt-stressed barley plants in a dose-dependent manner and acts upstream of H2S in 
order to mitigate the negative impacts of salinity (Chen et  al. 2015; Singh et  al. 
2019). NO was also observed to interact with SA and H2O2 positively to initiate the 
amelioration of oxidative damage by inducing the methylglyoxal detoxification and 
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antioxidant enzyme-mediated defense (Mostofa et al. 2015). Similarly, NO can con-
tribute to SA-induced salinity tolerance in plants, SA increased the production of 
NO and that helped the Capsicum annuum plants combat salinity stress mainly by 
improving the ascorbate-glutathione cycle and antioxidant defense (Kaya et  al. 
2020). SA and NO together was also observed to improve plant health under salinity 
stress condition by increasing biomass, photosynthesis, osmolyte content, nutrient 
uptake, and antioxidant defense than untreated and saline stressed plants (Yadu 
et al. 2017; Ahanger et al. 2020). Combined application of NO and SA alleviated the 
negative effect of salinity stress by improving the morphological attributes, transpi-
ration rate, photosynthesis, and PSII activity; and decreasing the H2O2 and ROS 
levels. Besides, the combined application also stabilized the cell membrane by low-
ering the electrolyte leakage and also induced the better activity of cell wall H+-
ATPase in Gossypium hirsutum (Liu et al. 2014). The combined application of JA 
and NO can also help the plants to reduce the detrimental impacts of salinity stress 
by antioxidant activity up regulations, metabolite, and osmolyte accumulation 
(Ahmad et al. 2018). Strigolactone is a phytohormone that acts as an essential sig-
naling molecule in plants under salinity stress (Sarwar and Shahbaz 2019). External 
NO application also up regulated the strigolactone biosynthesis genes (SlCCD7, 
SlCCD8, SlD2, and SlMAX1) and its signal transduction genes (SlD14 and SlMAX2) 
in salt-stressed tomato seedlings. These results indicated that NO is capable to com-
bat salinity stress by improving endogenous strigolactone along with improvement 
in photosynthesis, and antioxidant activity (Liu et al. 2022). Exogenous NO sub-
stantiates plant growth and development under salinity stress by regulating levels of 
different phytohormones and their crosstalk that further modulates different physi-
ological and biochemical (Fig. 6.2).

6.5  NO-Mediated Changes at the Molecular Level 
Influencing Plant Tolerance to Salinity

6.5.1  Transcriptomic Level

NO is responsible for the regulation of various stress-responsive transcription fac-
tors, phytohormones, and antioxidant defense-related genes in order to combat the 
negative impacts of environmental stresses (Huang et  al. 2018). The antioxidant 
enzymes play a critical role in plants to elevate tolerance against abiotic stresses. In 
this connection, NO has been found to positively influence the over-activation of 
catalase (CAT1, CAT2) and glutathione reductase (GR1, GR2) genes in seedlings of 
Jatropha curcas grown under NaCl to check the negative effects of ROS (Gadelha 
et al. 2017). Biosynthesis genes of salt-induced enzyme glutathione-s-transferases 
or GST were observed to be significantly upregulated (GST1 and GST4) under both 
salt stressed and NO pre-treated salt stressed Glycine max plants. These findings 
suggest that NO and salinity both have a regulatory role on GST gene and enzyme 
expression (Dinler et al. 2014). Root pre-treatment with combined application of 
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Fig. 6.2 Schematic representation describing the role of exogenously applied nitric oxide and its 
crosstalk with several endogenous phytohormones in order to alleviate the negative effects of salin-
ity stress. NO application increased the endogenous NO through increased nitrate reductase activ-
ity due to which modulation in different phytohormone levels takes place. Further, the modulated 
phytohormone levels contribute to improving growth and development through different strategies

H2O2 and NO increased the transcript levels of some enzymatic antioxidants (gluta-
thione reductase, cytosolic ascorbate peroxidase, catalase, manganese superoxide 
dismutase, dehydroascorbate reductase, and monodehydroascorbate reductase) and 
those involved in the biosynthesis of some non-enzymatic antioxidants like ascor-
bate (D- galacturonate reductase, L-galactose dehydrogenase, L-galactono-1,4-
lactone dehydrogenase, myo-inositol oxygenase) and glutathione 
(gamma-glutamylcysteine synthase, glutathione synthetase) in leaves (Christou 
et al. 2014). Exogenous NO application in salinity stressed Hylotelephium erythrost-
ictum plants significantly increased the Na+ efflux, K+ influx, and Ca2+ influx by 
modulating the genes associated with Na+ and K+ transport and Ca2+ channel respec-
tively. This result identified the role of NO in the maintenance of K+/Na+ balance in 
plants through the Ca2+ signaling pathway (Chen et al. 2019). NO was also observed 
to have an inter-relation with Aux/IAA17 (AUXIN/INDOLE-3-ACETIC ACID 17) 
and RGL3 (RGA-LIKE3) genes which were overexpressed under NO influence to 
acquired resistance against salinity stress (Shi et  al. 2017). A new compound 
Natolen128 was observed to modulate the NO accumulation level of Arabidopsis 
thaliana to improve the salinity stress by upregulating the expression of hypoxia- 
responsive genes including PHYTOGLOBIN and ethylene biosynthetic enzymes 
(Sako et al. 2021). Similarly, ABA was observed to increase H2O2 accumulation in 
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plant cells, which can boost NO biosynthesis. The increased NO level resulted in 
MAPK activation and upregulation of the antioxidant enzyme biosynthesis-related 
genes to combat the negative impact of salt stress (Nawaz et al. 2017).

6.5.2  Proteome Level

Nitric oxide has its regulatory function on proteomic profiling of a plant that reflects 
the defensive responses of plants under salinity stress. NO is interactive with the 
metal centres of proteins like heme-iron, iron-sulfur clusters, zinc-sulfur clusters, 
and copper. These interactions ultimately form a stable metal-nitrosyl complex or 
produces various biochemical signals, which leads to structural or functional modi-
fications of protein (Arora et al. 2016). In this relation, NO was observed to main-
tain iron homeostasis of sunflower seedlings under salinity stress by positively 
regulating the heme oxygenase (catalyst of ROS) activity, a catabolic enzyme of 
heme (a toxic iron sensor). NO binds/ interacts with the heme group of the heme 
oxygenase thereby reducing the rate of ROS production (Singh and Bhatla 2016). 
On the other hand, salinity has been studied to reduce the photosynthesis-related 
protein (Ribulose-phosphate 3-epimerase, large subunit of Rubisco, Rubisco acti-
vase A, and Quinine oxidoreductase-like protein isoform 1) abundance in Avicennia 
marina, a mangrove plant. Exogenous application of NO not only increased the 
abundance of those proteins but also the proteins related to primary metabolism, 
energy metabolism, RNA transcription, and stress response, and thus increased the 
plant salinity tolerance (Shen et al. 2018). Salinity also has a drastic impact on NO 
and redox homeostasis in the plant because salinity was observed to reduce the 
concentration of redox molecules (like nicotinamide adenine dinucleotide phos-
phate and reduced glutathione) and activities of some enzymes (like 
S-nitrosoglutathione reductase and catalase, and NADPH-generating dehydroge-
nases); and simultaneously increased the NO content along with glutathione reduc-
tase and glutathione peroxidase activity (Manai et  al. 2014). Increased NO 
accumulation was observed to be positively correlated with increased G-protein- 
associated protein accumulation and antioxidative activities in salt-treated maize 
seedlings along with the activation of defense proteins, energy metabolism, and cell 
structure/division. G-protein signaling occurs upstream the NO biogenesis to 
increase the antioxidant defense of plants against salinity-induced H2O2 levels (Bai 
et al. 2011). Antioxidant defense through NO has a dual-action while involved in 
crosstalk with copper/zinc superoxide dismutase (Cu/ZnSOD) and FeSOD iso-
forms. Cu/ZnSOD activity in the roots of salinity stressed sunflower seedlings and 
FeSOD activity in the cotyledons increased with the increasing availability of NO, 
indicating its signaling role in separate intracellular pathways (Arora and Bhatla 
2015). 5-aminolevulinic acid (ALA) is an important component that participates in 
induced plant tolerance against stress. NO has also been reported to be associated 
with the downstream signaling of ALA through the activation of nitric oxide syn-
thase and thus completed the ALA-induced salt tolerance of maize plants (Kaya and 
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Ashraf 2021). Increased NO accumulation in seedlings under salinity stress also can 
enhance the tyrosine nitration of cytosolic proteins and proteins present in oil bodies 
to increase their longevity for better survival under salinity (David et  al. 2015). 
Further, the external application of NO has been known to maintain polyamine 
homeostasis in salinity-stressed sunflower seedlings by upregulating the enzymes 
involved in PA biosynthesis (arginine decarboxylase and S-adenosylmethionine 
decarboxylase) and downregulating the polyamine oxidase activity that involves in 
PA catabolism (Tailor et al. 2019).

6.5.3  Post-transcriptional and Post-translational Modifications

Various biological functions are orchestrated by NO-mediated modulations through 
post-translational modifications (PTMs) like S-nitrosation of metals and cysteine 
residues and nitration of tyrosine residues. In plants, these NO-PTMs target hundreds 
of proteins under different environmental conditions stating the importance of NO in 
plant-signaling processes (Begara-Morales et al. 2016; Sánchez-Vicente et al. 2019). 
For example, the external application of H2O2 and NO and their interplay resulted in 
the improved survival rate of citrus plants under high saline stressed conditions. 
NO-mediated PTMs (carbonylation, nitration, and S-nitrosation) appear to be the 
key molecular strategy to conduct the signaling, transduction and stress mitigation 
under salt stressed conditions. Malate dehydrogenase and glutathione S-transferases 
were the most common proteins to undergo PTMs (Tanou et al. 2012). Salinity stress 
was observed to increase NO levels in plants depending upon the increased nitrated 
protein content but not S-nitrosated protein content. The absence or negligible 
amount of post-translational modification of proteins may help the respiratory and 
photorespiratory enzyme activities of plants to adapt in a better way against salinity 
stress (Camejo et al. 2012). S-nitrosation and denitrosation of proteins in NO signal-
ing pathways also regulate the function of various enzymes (glyceraldehyde-3-phos-
phate dehydrogenase and monodehydroascorbate reductase) to increase the salinity 
tolerance of sunflower seedlings. In this connection, the proteins of the cotyledons 
were S-nitrosated whereas denitrosation occurred in the case of root proteins (Jain 
et al. 2017). Moreover, the carbohydrate metabolism- related proteins were the major 
proteins to undergo PTMs along with some newly reported proteins like pectinester-
ase, phospholipase D alpha, and calmodulin (Jain et al. 2017). NO signaling with 
S-nitrosoglutathione reductase activity together was involved in mitigating 
Chlamydomonas reinhardtii response to salinity (Chen et al. 2016).

NO bioactivity also showed its either direct or indirect involvement in a various 
number of PTMs like SUMOylation, phosphorylation, persulfidation, and acetyla-
tion (Gupta et  al. 2020b). In higher plants, PRMT5 catalyzes Arg symmetric 
demethylation which is a key component of spliceosome. NO was observed to regu-
late the PRMT5 activity positively via S-nitrosation (Cys-125) during salt stress 
responses. These observations made evident a mechanism by which plants produce 
stress-induced NO signal to protein methylation mechanism via S-nitrosation of 
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PRMT5 as a response against salinity stress (Hu et al. 2017). Exogenously applied 
NO reduced the salinity-induced oxidative stress through upregulation of some 
SOD isoforms expressions (MnSOD1, Cu/ZnSOD1, and Cu/ZnSOD3). But some 
SOD isoforms get downregulated and some remain constant. This differential 
expression of the same enzyme isoforms that took place may be due to the 
NO-mediated post-transcriptional modification (e.g. S-nitrosation) (Klein 
et al. 2018).

6.6  Conclusion and Future Research

Salinity, being one of the adverse abiotic stress compromises both the health and 
yield of plants. It has negative effects on almost all the physiological and biochemi-
cal processes that occur in the plant. Thus, it becomes crucial to find out strategies 
to tackle such negative effects of salinity. In this background, studies have shown 
the importance of NO as an alleviating agent in plants during salinity stress. NO 
being a signaling molecule has a crucial involvement in the regulation of metabolic 
and physio-biochemical activities. NO assists plants to overcome salinity through 
the regulation of Na and K ions, photosynthesis, senescence, RWC, and antioxidant 
levels. Several investigations have shown the ability of NO in regulating defense- 
related genes in plants. Coordination of NO with other signaling pathways is another 
important factor for gene regulation during salt-stressed conditions. In addition, NO 
facilitates post-transcriptional and post-translational modification which aids in 
inducing salt tolerance in plants. However, several gaps persist in NO-mediated salt 
stress alleviation in plants. A deeper investigation is required to understand the 
NO-mediated mechanism for salinity tolerance. Furthermore, molecular studies for 
the involvement of gene(s) during NO biosynthesis and NO-mediated signaling 
pathways in plants can help in better understanding NO-mediated responses during 
salinity stress in a near future.
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Chapter 7
Nitric Oxide – A Small Molecule with Big 
Impacts on Plants Under Heavy Metal 
Stress

Kuntal Bera, Kakan Ball, Puspendu Dutta, and Sanjoy Sadhukhan

Abstract Plants produce signalling molecules as a stress-response mechanism, 
triggering a cascade of stress-adaptation reactions that result in either programmed 
cell death or plant acclimation. Nitric oxide (NO) is a small gaseous molecule 
which, with its bioactive nature, it is capable of regulating redox signalling in living 
cells. The importance of NO in abiotic stress response, particularly in heavy metal 
stress tolerance, is widely acknowledged by experts in the area. It is also worth not-
ing that NO is involved in a variety of physiological processes, including seed ger-
mination, growth and development, flowering behaviour, senescence, and others. 
Because of its crucial role in regulating gene expression, post-translational modifi-
cations, and synergistic or antagonistic effects as a signalling molecule, several 
authors refer to NO as a gasotransmitter molecule. A relationship between NO accu-
mulation and plant stress has been discovered in various studies. Exogenous NO 
enhances antioxidant activity in nearly all plant species and lessens the effects of 
stress in plants. However, the primary function of NO in the response to metal toxic-
ity is to lessen oxidative stress by initiating antioxidant defence mechanisms. 
Although the pathways are largely species-specific, in this chapter we have 
attempted to provide an update on NO production, interactions, possible cross-talk 
with other chemicals and/or hormones, and several pathways involved in heavy 
metal stress.
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7.1  Introduction

Nitric oxide (NO) is a diatomic, small, and impermanent molecule that plays a cru-
cial role as a significant redox signalling agent in plants. It is considered one of the 
smallest, simple, and highly poisonous gas with complex chemistry including sev-
eral interconnected redox forms with varying chemical reactivities. It plays impor-
tant role in different physiological processes starting from the germination of the 
seed to flowering, and/or senescence (Sun et al. 2021). Plants respond to a lack of or 
excess supply of heavy metals and metalloids through complicated signalling path-
ways in many cases controlled by nitric oxide (NO) (Nabi et al. 2019). NO plays an 
important role as a primary messenger in various plant signalling (Domingos et al. 
2015; Moreau et al. 2010). Exogenous application of sodium nitroprusside (SNP – a 
NO donor) is the most common source of NO and can activate a plant’s biological 
signalling in a variety of plant processes and in different stages of plant growth 
(Buet et al. 2019; Zhao et al. 2007).

It was discovered that animals’ endothelial cells produced nitric oxide as a signal 
in response to vasodilators like acetylcholine or bradykinin, and the concept of free 
radicals has undergone a paradigm shift. Free radicals and reactive oxygen species 
(ROS) were once thought to be harmful metabolic by-products that were reliant on 
oxygen for respiration (Crawford 2006). Whenever plants are frequently exposed to 
various stressful conditions in their very natural ecosystems that might interfere 
with proper growth, development, and production, hence jeopardising global food 
security. Soil contamination as induced through anthropological activities has 
become a major environmental issue in recent decades (Wuana and Okieimen 
2011). Annually, the rising quantity of heavy metals in agricultural soils poses a 
serious health risk to people. In China, it is reported that approximately 19.4% of 
farmland and 10% of forestland are contaminated with heavy metals. The two most 
common hazardous heavy metals in the region are cadmium and lead. It is also 
reported that among different types of heavy metals, cadmium (Cd) is the most 
dangerous heavy metal to organisms and the environment, accounting for 7 percent 
of heavy metal toxicity in agricultural soil and urban areas in China (Qin et  al. 
2013). Excess accumulation of Cd in agricultural soils has several negative impacts 
on the environment and plant organs, including disturbing soil micronutrient and 
macronutrient balances, and negatively contributing to root elongation. Cd also 
induces oxidative stress by increasing H2O2, which results in a decrease in plant 
growth and photosynthetic pigments (Hawrylak-Nowak et al. 2015). Lead (Pb), on 
the other hand, causes a plethora of issues in plants, including affecting seed germi-
nation and cell division via altering important enzymes and lowering photosynthetic 
activities, as well as slowing plant growth during the divisional stage in seed germi-
nation (Malar et al. 2014). In general, plants experience several changes in their 
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normal physiology, cellular metabolism, and regulation of their genetic expression 
under heavy metal stress. NO modulators, such as the application of various 
L-arginine analogues, including L-Nω-nitroarginine methyl ester [L-NAME  - a 
nitric oxide synthase (NOS) inhibitor] and bovine haemoglobin (as a NO scavenger) 
(Souri et al. 2020; Tamás et al. 2018), change the activity of NO-like synthase, dem-
onstrating the involvement of NO in the increase of plant tolerance to abiotic stress, 
specifically in plants that have been exposed to heavy metals (Ahmad et al. 2021; 
Bhat et al. 2021; Rezayian et al. 2020; Souri et al. 2020). NO reduces metalloid 
accumulation and can activate ROS-scavenging antioxidants in plants under metal 
stress, in addition to its signalling role in the reduction of heavy metal toxicity (Bhat 
et al. 2021). Plant cells are protected from oxidative stress by NO, which can stimu-
late H2O2-suppressing enzymes (Zheng et al. 2009). However, the knowledge of the 
molecular and physiological processes of NO in reducing the effects of heavy metal 
toxicity is extremely limited when compared to the recent understanding of the 
interactions of NO with other abiotic stressors (Corpas et al. 2006). Further, some 
studies on the relation between heavy metal toxicity and NO levels are ambiguous. 
As a result, it is worthy to examine and discuss recent achievements in this interest-
ing field to better reach the roles of NO in heavy metal stress tolerance.

7.2  Synthesis of NO and Its Source in Plants

NO is produced endogenously in stressed organs or cells, specifically in cellular 
organelles such as mitochondria, chloroplasts and peroxisomes, and also in cytosol 
using nitrate reductase (NR) as a regulative enzyme (Planchet and Kaiser 2006a). 
This molecule diffuses both at intra- and intercellular ways (Fröhlich and Durner 
2011). The discovery of NO in plants was first reported in legumes i.e., Glycine max 
while experimenting with synthetic inhibitor herbicides and under controlled dark 
anaerobic conditions and was first reported by (Klepper 1979, 1990; Nishimura 
et al. 1986). For the first time, (Ninnemann and Maier 1996) validated a NOS-like 
activity in plants. However, it has yet to be determined which specific enzymes are 
responsible for NO production. Only there have been regular inputs in plant sci-
ences about NOS-like enzymes and their homologs have been suggested to contrib-
ute to NO production in various plant groups, such as in algae like Ostreococcus 
lucimarinus and Ostreococcus tauri (Shivaraj et al. 2020). Peroxisomal NO produc-
tion appears to be mediated by L-arginine dependent NOS-like activity where 
NADPH acts as an active electron donor (Corpas and Barroso 2014; Corpas et al. 
2004). The production of peroxynitrite (ONOO-) in peroxisomes, a NO derivative 
generated by a very quick chemical reaction between NO and O2

•-, serves as evi-
dence that NO is present in peroxisomes (Corpas and Barroso 2014). Piacentini 
et al. (2020) elucidated the distribution of peroxisomes in the root meristem of pri-
mary and lateral roots, suggesting NO production and thus keeping a homeostatic 
control of NO in roots. A protein named AtNOA1 (Nitric Oxide Associated 1) found 
in Arabidopsis thaliana was reported to have possible involvement in NO synthesis 
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by encoding a GTPase; however, later it was shown that this protein did not produce 
nitric oxide although it could be indirectly involved in its production (Fancy et al. 
2017; Moreau et  al. 2008). In the absence of expounded evidence on the direct 
source of NO and the undeviating role of NOS-like enzymes, the scientific and 
researching community worldwide accepted and validated the theory of oxidative 
and reductive pathways of NO production in plants (Nabi et al. 2019; Shivaraj et al. 
2020). The oxidative pathway in plants includes (i) L-arginine dependent and (ii) 
polyamines mediated nitric oxide production, (iii) although the synthesis of nitric 
oxide via the hydroxylamine-mediated pathway is still undistinguishable in plants, 
it is considerably more widespread in bacteria and animals. Nonetheless, in tobacco 
cell culture under aerobic conditions, relatively little amount of NO was produced 
by this pathway compared to other pathways (Nabi et al. 2019; Shivaraj et al. 2020). 
The reductive pathway for NO production depends on the availability of nitrite as 
the primary source for NO production (Yamasaki and Cohen 2016), and it includes 
(i) nitrate reductase (NR), (ii) plasma membrane-bound nitrite: NO reductase 
(NiNOR), (iii) cytochrome-c oxidase and/or reductase, and (iv) non-enzymatically 
nitrite reduction in an acidic conditions (Nabi et al. 2019). It has been difficult to 
pinpoint the source of nitric oxide in plants, and so its synthesis in plant cells is still 
up for discussion (Hancock 2012; Salgado et al. 2013).

7.2.1  Oxidative Pathway

The oxidative pathways of NO production are still not well deciphered. However, 
some mechanisms have been validated by scientists. According to Tun et al. (2006), 
using arginine as a substrate, plants produce polyamines such as spermidine and 
spermine, these polyamines in turn oxidized to nitric oxide (NO). This report was 
validated by Arasimowicz-Jelonek et al. (2009) in Cucumis sativus during drought 
stress and by Groppa et  al. (2008) in Triticum aestivum under cadmium stress. 
Under high salinity, L-arginine hydrolyzed to urea and L-ornithine by high arginase 
activity which also catalyses the metabolism of polyamine formation and can also 
be oxidised by homologous nitric oxide synthase (NOS) which leads to NO produc-
tion in plants (da-Silva et al. 2018). An increase or decrease in NO production can 
be modulated by regulating the expression of AtARGAH1 or AtARGAH2 genes 
which encode arginine amidohydrolases. Flores et al. (2008) reported that there is a 
vice-versa relation between arginine amidohydrolase and NO production. The 
hydroxylamine-mediated pathway is mainly found in animals and bacteria, where 
NO production depends on the direct reaction of hydroxylamine with ROS (Shivaraj 
et al. 2020). For example, in Nitrosomonas sp., hydroxylamine is produced from 
ammonium oxidation and it, in turn, catalyzes the reaction for NO production 
(Martens-Habbena et al. 2015).
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7.2.2  Reductive Pathways

Plants also produce NO using reductive processes, which are widely accepted. The 
well-studied nitrate reductase (NR) pathway for NO production is one of the several 
reductive processes. NR was found in the cytosol and the plasma membrane 
(Planchet and Kaiser 2006b). In general, NR converts nitrate to nitrite at the cost of 
NAD(P)H, and during this reaction, NR catalyzes the transfer of a single electron 
from NAD(P)H to nitrite, leading to the formation of NO (Planchet and Kaiser 
2006b). In a low-oxygen environment, NR is more pronounced, and nitrite levels 
must be higher than the natural substrate level of nitrate (Prochazkova et al. 2014). 
In plants, nitrite: NO reductase (NiNOR) is another pathway for NO production. 
This pathway uses NO2

− as substrate, which is produced in a coupled reaction with 
NR bound to the plasma membrane. Prochazkova et  al. (2014) have shown that 
NiNOR has a maximum capacity when the apoplastic pH is 6.1 for converting 
nitrite into NO.

NO production in mitochondria is regulated by nitrate reductase (NiR). 
Mitochondrial NiR uses the enzyme complexes III-V to catalyze nitrite reduction in 
plants. In anoxia, NiR-dependent ATP generation can be reduced by respiratory 
inhibitors like potassium cyanide, which inhibits cytochrome c oxidase (Complex 
IV), and myxothiazol, which then hinders the functionality of complex III, by 
blocking electron transfer from ubiquinol to the central moiety of cytochrome c 
reductase that is a heme group protein. Myxothiazol inhibits all complex III- 
mediated redox reactions. Under anoxic conditions, the ubiquinone cycle is 
bypassed by a step in complex III that reduces nitrates. During respiration, mito-
chondrial NiR-mediated NO production inhibits oxygen consumption, preventing 
or delaying complete anoxia (Aguirre et al. 2010).

Non-enzymatic nitrite reduction under acidic conditions can be explained by a 
chain reaction carried out by two molecules of HNO2 interacting with one another 
and producing NO and NO2

−, which can then be converted to NO and oxygen as 
follows (Moreau et al. 2010; Stöhr and Stremlau 2006):

 2 2 2 22 2 2 2 2 2NO H HNO NO NO H O NO O H O− + −+ ↔ ↔ + + ↔ + +½  

However, NO production appears to be a more complicated process in plants, and 
no plant-specific enzyme with a similar activity has been discovered thus far. Thus, 
it requires more intensive and illustrative research (Corpas et al. 2022).
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7.3  Role and Production of Nitric Oxide in Response 
to Heavy Metal (HM) Stress

Root tissues are the first tissues to be exposed and impacted by HM and metalloids 
since plants use their roots to absorb minerals and nutrients from the soil. Oxidative 
stress damage due to heavy metals causes anomalous metabolic changes even in 
small quantities. In Arabidopsis, there is a notable alteration in the development and 
length of roots when exposed to heavy metals. Oxidative stress and glutathione deple-
tion have been reported in alfalfa roots under high cadmium (Cd) and mercury (Hg) 
accumulation (Ortega-Villasante et al. 2005). Heavy metal toxicity in plants results in 
morphological, physiological, and biochemical alterations in plant organs, eventually 
plant growth, reproduction, photosynthesis, antioxidant content and activity, cell 
division, and cell differentiation get negatively affected (Sharma and Dietz 2009; 
Kolbert 2016) (Table 7.1). Being an interesting topic, numerous studies have been 
conducted to shed light on how heavy metal stress affects plants and the role of NO 
in the recovery mechanism (He and Chen 2014; Kolbert et al. 2017; Pető et al. 2013).

Exogenous administration of NO, as well as endogenous NO, have been shown 
to reduce HM toxicity. Exogenous NO, for example, lowers ROS and arsenic- 
induced malondialdehyde (MDA) levels in rice and mung beans to reduce arsenic 
(As3+) toxicity (Ismail 2012; Singh et al. 2016; Singh et al. 2009). The application 
of NO to wheat and rice has been shown to alleviate HM stress (Mostofa et  al. 
2014). In Typha angustifolia, the role of NO in reducing the effects of cadmium 
stress and with improved growth and higher biomass yield has been documented 
(Zhao et  al. 2016). Although the accumulation of NO in response to HM varies 
depending on the metal, condition and specificity are also regarded as important 
factors. Excess accumulation of NO in peroxisomes affects the catalytic reactions as 
a result enhancement of primary lateral roots which takes place in Arabidopsis 

Table 7.1 Different observations based on the responses of NO metabolism to heavy metal stress

Heavy 
metal

Plant species and 
tissue exposed Responses observed References

Al Citrus grandis 
(seedlings)

Reduced harmful effects on growth and 
changed root metabolism to protect against 
oxidative damage.

Yang et al. (2012)

Al Triticum 
aestivum 
(seedling)

An increase in antioxidant enzyme activity. Sun et al. (2014)

As Oryza sativa 
(root or 
coleoptile)

Raised antioxidant enzyme level and 
modified the root and coleoptile architecture.

Singh et al. (2009); 
Singh et al. (2017b)

As Pistia stratiotes 
(plants)

Elevated antioxidant enzyme levels and 
decreased negative impact on photosynthesis.

Farnese et al. 
(2013)

As Vigna radiate 
(germinating 
seeds)

Decreased the amount of As that inhibits seed 
growth and boosted antioxidant and certain 
hydrolytic enzyme activity levels.

Ismail (2012)

(continued)
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Heavy 
metal

Plant species and 
tissue exposed Responses observed References

As Phaseolus 
vulgaris L 
(plants)

Increased cellular activity of antioxidant 
enzymes and decreased membrane damage.

Talukdar (2013)

As Triticum 
aestivum L. 
(seedlings)

A rise in the contents of RWC, Chl, Pro, AsA, 
and GSH as well as the levels of antioxidant 
enzymes.

Hasanuzzaman and 
Fujita (2013)

As Vicia faba L. 
(plants)

Boosting the amount of metabolites, 
photosynthetic pigments, phytohormones, 
and seed yield.

Mohamed et al. 
(2016)

As Oryza sativa 
(seedlings)

Reduced the detrimental effects on growth 
and chlorophyll content; changed silicon 
transporter gene expression levels.

Singh et al. (2016)

Cd Brassica juncea 
(plants)

Altered the root architecture, boosted the 
amount of photosynthetic pigments and water 
in the leaves, and raised the concentrations of 
antioxidant enzymes.

Verma et al. (2013)

Table 7.1 (continued)

(Kolbert et al. 2017). Elevated NO accumulation with high heavy metal toxicity is 
not noticeable in all plants. Endogenous NO, for example, dramatically increases in 
soybean after 72 hours of heavy metal exposure (Kopyra et  al. 2006). Similarly, 
after 48  hours, the endogenous NO level was significantly lower in the root of 
Cd-treated Medicago truncatula (Xu et al. 2010). The conflicting results could be 
attributable to discrepancies in the type of HMs studied, plant tissues investigated, 
stress duration, and NO quantification method (Planchet and Kaiser 2006a, b).

To resist HM stress, NO is involved in numerous adaptation mechanisms includ-
ing relaxation and expansion of the cell wall, providing safeguard to the integrity of 
the phospholipid bilayer, and enhancing overall plant growth (Seabra and Oliveira 
2016). Other mechanisms regulated by NO are the preservation of osmotic pressure, 
which protects the membrane of chloroplasts, chlorophyll pigments, and other asso-
ciated components from the harmful effects of HM by maintaining the viscosity of 
the cytoplasm (Ahmad et al. 2018). Another way of HM alleviation by NO could be 
the induction of heavy metal association domains containing certain genes that 
function as metallochaperons.

Metallochaperons are proteins that function as the safe and site-specific trans-
porter of metallic ions within a cell (Robinson and Winge 2010). They may eventu-
ally become metallo-cofactors in certain enzymes that took part in cellular 
metabolism. In a recent RNA-seq-based transcriptomic analysis, 14 HM-related 
domain-containing genes were shown to have diversity in their expression in 
response to NO donor S-nitroso-cysteine (CySNO). Although nitric oxide-mediated 
HM-stress tolerance depends on various aspects such as concentration of NO 
applied, exposure time, plant species, type of tissue or organ exposed to stress, and 
NO donor (Chen et al. 2010; He and Chen 2014; Kováčik et al. 2014). The genera-
tion of ROS is another notable event under heavy metal stress that led to several 

7 Nitric Oxide – A Small Molecule with Big Impacts on Plants Under Heavy Metal…



154

Fig. 7.1 Responses exhibited by plants in the presence and absence of NO under heavy metal 
stress. ROS production and oxidative stress are the most common responses exhibited by plants 
under different heavy metal-mediated stress environments, thus leading to various negative effects 
on plants. These are the degradation of various primary metabolites, reduction in nutrient uptake, 
photosynthetic imbalance, chlorosis and necrosis of various plant tissues that affect the normal 
growth and development of plants. Meanwhile, NO, especially under various heavy metal stress, 
play a crucial role in reducing ROS-mediated oxidative stress and associated negative effects of 
ROS by various means i.e., lipid peroxidation, enhancing photosynthetic system, inducing and 
participating in the expression of various antioxidant enzymes

negative effects in plants but the presence of NO plays a vital role in lowering the 
risks of ROS and also comes up with some beneficial responses by the plants 
(Fig. 7.1).

7.3.1  Cadmium

Cadmium (Cd), at very low concentrations, shows high toxicity and affects physi-
ological activities in plants. Cd is easily absorbed by plant roots and stored in the 
top parts of plants, reducing agricultural productivity and posing a worldwide threat 
to food security. Cd can cause oxidative damage to various fundamental cellular 
components such as carbohydrates, proteins, DNA, and membrane lipids by increas-
ing ROS generation via NADPH oxidase (Cuypers et al. 2010). In plants, Cd toxic-
ity disrupts plant-water content (Perfus-Barbeoch et  al. 2002), depletes nutritive 
components (Sandalio et al. 2001), and negatively influences photosynthetic path-
ways and components (Hsu and Kao 2004). Once plants are exposed to Cd, it has 
negative impacts on their roots and metabolites, resulting in yield loss.

The role of NO in reducing cadmium toxicity in a variety of plant species has 
also been well documented, with various findings indicating that NO is a vital 
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compound in Cd detoxification for its anti-oxidative properties which lowers the 
Cd-mediated stress effects. For example, SNP lowers the Cd stress effects in rice 
leaves (Hsu and Kao 2004). Under Cd stress, a strong correlation has been found 
between NO and physiological responses by rice plants (Yang et  al. 2022). The 
influx of Cd in the plant is initially repulsed by the root cell wall as it acts as a sub-
cellular reservoir for cadmium and encumbers Cd diffusion to the cytoplasm 
(Richter et al. 2017). Cell wall-forming polysaccharides, mainly hemicellulose and 
pectin with many carboxylates (–COOH) and carboxyl (–OH) like functional groups 
attached in their branches, are involved in binding metal ions to the root cell wall 
(Wang et al. 2020). According to (Yang et al. 2022) endogenous and/or exogenous 
NO could improve the biosynthesis of hemicellulose and pectin, although the func-
tional architecture of pectin is more complex than that of hemicellulose. Expression 
of pectin methylesterase genes OsPME11 and OsPME12 is upregulated by NO and 
results in higher PME activity which promotes pectin demethylesterification. This 
leads to the generation of a large quantity of low methyl-esterified pectins with 
numerous free carboxyl groups on pectin chains which enhance binding ability to 
metal ions in the root cell wall (Lionetti et al. 2017; Peng et al. 2017). According to 
(Corpas and Barroso 2014), peroxisomes are involved in the endogenous produc-
tion of peroxynitrite (ONOO−) leading to overproduction during cadmium stress in 
Arabidopsis which, in turn, could be involved in the Cd stress alleviating mecha-
nisms. Application of SNP on the leaves and calluses of Helianthus under Cd stress 
was reduced (Gallego et al. 2005; Laspina et al. 2005). Hydroponically wheat culti-
vation with SNP supplementation demonstrated lower Cd toxicity as well as lower 
lipid peroxidation, H2O2 concentration, and less electrolyte leakage (Singh et  al. 
2008). NO has been shown to cause programmed cell death in response to Cd by 
activating MAPK and stress-activated protein kinase (Kulik et al. 2012; Ye et al. 
2013). The reduction of Cd-induced oxidative damage and lipid peroxidation by 
foliar application of SNP was found to be beneficial, and it was hypothesised that 
this was due to either direct scavenging of ROS or induction of anti-oxidative 
enzyme activity (Wang et al. 2013).

7.3.2  Aluminium

Aluminium is ranked the third among the most prevalent metals in soil. However, it 
is absorbed by plants only if the soil pH falls below 5. Al is phytotoxic even when 
absorbed in a small amount. By enhancing free radical imbalance and antioxidant 
level, Al promotes oxidative damage in the cell (Yamamoto et al. 2002; Zhang et al. 
2012), and also increase ROS production. Cellular redox equilibrium can be dis-
turbed by this increased oxidative stress. Being a non-redox element, Al can induce 
oxidative stress by electrostatically interacting with the oxygen donor ligands (such 
as carboxylate or phosphate groups) that cause cytotoxicity (Jones and Kochian 
1997). Cellular inflexibility caused by aluminium toxicity destroys cellular 
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constituents like lipids, proteins, and nucleic acids, which results in cell death. The 
role of NO during Al stress has been studied, and found that NO reduced the Al3+ 
toxicity in rose mallow roots (Tain et al. 2007). In sour pummelo seedlings, it has 
been found that Al hinders development and slows down photosynthesis, but these 
effects are reversed by supplementing with SNP, which reduces Al accumulation in 
the shoots as well (Yang et al. 2012). NO protects plants from Al mediated oxidative 
damage through the scavenging of ROS and the production of antioxidant enzymes 
(Delledonne 2005; Laspina et al. 2005). Previous research has revealed that Al may 
disrupt NO homeostasis by decreasing the activity of NOS-like enzymes, resulting 
in root development suppression (He et  al. 2012). Plants can avoid Al stress by 
maintaining hormonal balance and inducing anti-oxidative enzymes in various sec-
tions of the plant.

7.3.3  Arsenic

Arsenic (As) is harmful to a wide range of organisms, including plants. As has 
recently been shown to influence the natural level of NO in plants, allowing them to 
respond to As mediated toxicity. It is now accepted that under As stress, the synthe-
sis of NO is increased in comparison to its natural endogenous level. As (over 
500 μM) can cause oxidative damage (Leterrier et al. 2012). To confirm that NO 
production was generated as a response to As, seedlings exposed to As were pre- 
incubated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- -
oxide potassium salt (cPTIO, a NO scavenger), and NO was completely eradicated. 
This indicates an increase in NO levels caused by As which promotes nitrosative 
stress following As exposure. This could be because excess As accumulation pro-
vokes NO to react with superoxide radicals (O2

•-) and, as a result, strong oxidant 
peroxynitrite (ONOO−) has formed which can facilitate protein tyrosine nitration 
and thus cause nitrosative stress in plants. Exogenous application of NO might stim-
ulate metal transporters and lowers the As uptake by roots Singh et  al. (2017b), 
enhance the development of more adventitious roots Kushwaha et al. (2019), boost 
the antioxidant defences system Souri et al. (2020), and showing other favourable 
functions in As detoxification and responsive mechanisms. Further, it is obvious 
that endogenous and exogenous NO, through functioning as an antioxidant mole-
cule, plays significant roles in reducing As-induced stress in Spirodela intermedia 
(da-Silva et al. 2018). According to Singh et al. (2016), in rice plants, the applica-
tion of NO significantly lowered the accumulation of As in the root and shoot region. 
Singh et al. (2017a) found the involvement of NO and biosynthesis of jasmonic acid 
in the regulatory network of As detoxification in rice. It was also found that in 
reducing oxidative stress caused by As toxicity, exogenous application of SNP to 
the growth medium could be beneficial as SNP promotes various enzymatic and 
non-enzymatic antioxidants reactions to withstand As-mediated stress conditions 
(Bhat et  al. 2021). However, until now, the distinction between the functioning 
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architecture of NO and its incitation mechanisms by As has remained a mystery. 
Surprisingly, several additional investigations have found that too much As inhibits 
endogenous NO synthesis, impairing plant development and growth. Furthermore, 
seedlings growing with As reduced NO accumulation, photosynthetic activity, and 
nitrogen content in Pisum sativum, but the As toxicity could be reduced through the 
application of sodium hydrosulphide (NaHS) (Singh et al. 2015). The drop in NO 
content caused by As could be due to As indirectly inhibiting the NO productive 
pathways. In Pisum sativum, endogenous NO metabolism was found to be con-
trolled by As stress, with a contrasting observation in root (1.9 fold decrease) and 
leaves (3.3 fold increase) growth (Rodríguez-Ruiz et  al. 2019). In summary, the 
findings suggest that As mediated stress may regulate the level of endogenous NO 
in plants, reducing or exacerbating As-induced damage.

7.3.4  Copper

Like Cd, Al, and As, copper (Cu) may cause plants to produce endogenous 
NO. Cu-induced endogenous NO levels have been shown to alleviate Cu toxicity in 
various plants. Meanwhile, when plants are under Cu stress, NO treatments have 
been demonstrated to promote the growth and development of plants (Shams et al. 
2018). Excess Cu has been reported to increase the accumulation of NO in the 
adventitious roots of Panax ginseng, while SNP supplementation decreases 
Cu-induced toxicity via increasing antioxidant enzyme activity. cPTIO, on the other 
hand, negates SNP’s protective effect, implying that SNP’s protective effects were 
related to NO release (Tewari et  al. 2008). Cu also promoted NO production in 
Chlamydomonas reinhardtii, which was positively related to proline synthesis, 
reducing oxidative damage by high Cu content. Furthermore, it has been reported 
that pre-treatment with SNP promotes proline synthesis and increases antioxidant 
activity in Cu-treated cells, whereas such an effect is reversed by providing cPTIO 
(Zhang et al. 2008). Furthermore, NR-mediated NO generation in H. vulgare shoots 
relieves Cu toxicity, as validated by SNP and cPTIO analysis (Hu et al. 2015b). As 
a result, the earlier findings suggest that Cu stress causes plants to produce endog-
enous NO, which is important in reducing Cu toxicity. Nonetheless, additional 
research is needed to determine the potential processes through which Cu stress 
influences plant endogenous NO levels.

7.3.5  Lead and Zinc

According to several recent studies, lead (Pb) and zinc (Zn) have been found to 
modify the synthesis of NO in plants. Pb exposure was observed with a surge of NO 
accumulation in Pogonatherum crinitum root cells by increasing NR activity. 
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Importantly, the external application of NO enhances Pb uptake in a dose-dependent 
manner. Further, it implies that NO plays a significant role in Pb uptake manage-
ment since Pb uptake can be inhibited by employing cPTIO (Yu et al. 2012). In 
Arabidopsis, the involvement of NO in peroxisomal metabolism has been observed 
and the NO generation was stimulated by Pb supplementation (Corpas and Barroso 
2017). Pb toxicity is also significantly reduced by exogenous NO (Sadeghipour 
2017). It has also been reported that Pb toxicity raises endogenous NO concentra-
tion in Zea mays, which enhances melatonin-induced stress tolerance. According to 
a recent study, the enhanced tolerance to Pb toxicity can be completely removed by 
cPTIO (Okant and Kaya 2019). This demonstrates a factual affirmative relationship 
between NO and phytohormones in response to Pb stress. NO generation is induced 
by Zn as observed in T. aestivum seedlings where NO suppresses Zn-mediated root 
development (Duan et al. 2015). Furthermore, Ni promotes NO generation and SNP 
significantly improves Ni tolerance by regulating Ni absorption and ROS detoxifi-
cation (Rizwan et al. 2018).

7.4  Regulation of Metal-Induced Oxidative Stress by NO

The common effect of heavy metals and/or metalloids can be represented by the 
induction of oxidative stress in plants (Kohli et al. 2019; Soares et al. 2019). Under 
such stressful conditions various highly reactive derivatives of O2 i.e., ROS such as 
O2

•-, H2O2, •OH and 1O2 are being produced and accumulated in large quantities 
(Soares et al. 2019; Sytar et al. 2013) and interrupt the usual equilibrium of the cells. 
There are several negative impacts of oxidative stress in plants including lipid per-
oxidation, leakage of ions, oxidation of proteins, disintegration and dysfunction of 
various organelles due to membrane damage, alteration in DNA and all those effects 
lead to plants death by PCD (Demidchik 2015; Handa et al. 2018; Kohli et al. 2018; 
Shahzad et al. 2018).

Plants usually develop various approaches to withstand the oxidative stress situ-
ation. Plant growth hormones play a crucial role in regulating oxidative stress 
induced by abiotic stresses (Sharma et al. 2018; Tanveer et al. 2019). NO plays a 
multifunctional role under oxidative stress conditions. According to Sami et  al. 
(2018), NO regulates phytohormones and controls downstream signalling path-
ways. Under specific conditions and depending upon plant species, NO excites the 
activation of various enzymatic and non-enzymatic antioxidants such as catalase 
(CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), superoxide dis-
mutase (SOD), ascorbic acid (AsA), proline and glutathione, thus helping the plant 
to tolerate or escape oxidative stress (Nabi et  al. 2019). Moreover, NO is also 
involved in scavenging ROS and free radicals (Table 7.2).
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Table 7.2 The impact of exogenous NO on the content of heavy metals in different plants

Plant species

Organ/
tissue/
cells 
exposed

Types 
of 
heavy 
metals

Exogenous 
NO (SNP/
GSH)

Heavy 
metal 
content

Observed effect 
on plant References

Solanum 
lycopersicum

Leaf, 
stem, and 
root

Cd SNP (100 μM) Decreased Ahmad 
et al. 
(2018)

Trifolium 
repens

Roots and 
shoots

Cd SNP (50 μM) Decreased Antioxidant 
enzyme activity 
has increased.

Liu et al. 
(2015)

Typha 
angustifolia

Roots Cd SNP (100 μM) Increased Minimized the 
toxicity and 
increase the 
antioxidant 
activity

Zhao et al. 
(2016)

Vigna radiata Roots and 
shoots

Cd SNP (1 mM) Decreased Nahar et al. 
(2016)

Triticum 
aestivum

Leaves Cd NO (0.5 mM) Decreased Basalah 
et al. 
(2013)

Oryza sativa Root/
coleoptile

As 50 μM Modified the root 
and coleoptile 
architecture and 
increased 
antioxidant 
enzyme levels

Singh et al. 
(2009); 
Singh et al. 
(2017b)

Vicia faba Shoots As SNP (100 μM) Not 
affected

Increase growth, 
seed yield, 
photosynthetic 
pigments, 
phytohormones, 
and metabolite

Mohamed 
et al. 
(2016)

Pistia 
stratiotes

Leaves As SNP 
(0.1 mg L − 1)

Not 
affected

Increased 
antioxidant 
enzyme levels 
and reduced the 
negative effect on 
photosynthesis

Farnese 
et al. 
(2013); 
Farnese 
et al. 
(2017)

Spirodela 
intermedia

Roots and 
shoots

As SNP (50 μM) Decreased da-Silva 
et al. 
(2018)

Triticum 
aestivum

Roots As SNP (100 μM) Not 
detected

Increased 
antioxidant 
enzyme activity

Kaur et al. 
(2015)

Lolium 
perenne

Roots As SNP (100 μM) Increased Raised 
photosynthetic 
and antioxidant 
activity

Bai et al. 
(2015)

(continued)
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Table 7.2 (continued)

Plant species

Organ/
tissue/
cells 
exposed

Types 
of 
heavy 
metals

Exogenous 
NO (SNP/
GSH)

Heavy 
metal 
content

Observed effect 
on plant References

Oryza sativa Roots and 
shoots

Cu SNP (200 μM) Decreased Increased 
antioxidant 
enzyme activity

Mostofa 
et al. 
(2014)

Lycopersicon 
esculentum

Roots and 
shoots

Cu SNP (200 μM) Decreased Wang et al. 
(2016)

L. esculentum Leaves 
and roots

Cu SNP (100 μM) Not 
affected

Cui et al. 
(2009)

L. sativa Seeds Cu SNP (200 μM) Not 
detected

Shams 
et al. 
(2018)

Oryza. sativa Roots and 
shoot

Ni SNP 
(100/200 μM)

Decreased Rizwan 
et al. 
(2018)

Brassica 
napus

Roots Ni SNP (0.2 mM) Increased Kazemi 
et al. 
(2010)

Citrus 
grandis

Seedlings Al 10 μM Minimized the 
negative effect on 
growth and 
altered root 
metabolism to 
protect from

Yang et al. 
(2012)

Triticum 
aestivum

Seedlings Al 250 μM Increased the 
level of 
antioxidant 
enzyme activity

Sun et al. 
(2014); Sun 
et al. 
(2015b)

Triticum 
aestivum and 
Phaseolus 
vulgaris

Seedlings Zn 100 μM Toxicity was 
reduced, and 
antioxidant 
activity was 
increased.

Abdel- 
Kader 
(2007)

7.5  NO-Mediated Regulation of the Photosynthetic 
Mechanisms Under Metalloid Stress

Metal toxicity induces ROS generation in plants which affects the overall photosyn-
thetic performance. According to various studies, NO appears to be able to counter-
act the damaging effects of ROS in plants. In tall fescue, under Cr stress, exogenous 
application of NO has been reported to improve photosynthetic attributes (Huang 
et al. 2018). Under Cd stress, the exogenous application of NO has been recorded to 
enhance PSII efficiency as NO can scavenge ROS and ameliorates oxidative stress 
(Per et al. 2017). Arsenic induced photosynthetic damage also becomes reduced on 
exogenous application of NO either by modulating non-photochemical quenching, 
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respiration rate and/ or reducing chloroplast damage (Farnese et al. 2017). Under 
strong heavy metal stress, the reduction of RuBisCO and activity of RuBisCO acti-
vase has been frequent, but this reduction can be overcome by the application of 
SNP (Khairy et al. 2016; Per et al. 2017). Under Cd stress, structural proteins LHCII 
and LHCI of peripheral antennas of PSII and PSI are damaged and reduced. This 
finally results in low chlorophyll fluorescence and reduced quantum yield. Further 
other important PSII proteins such as PSBP, PSBR, PSB27, and PSB28 are also 
severely affected by Cd-induced metal toxicity (Gong et al. 2017). NO proved to be 
efficient in successfully reversing the changes in these photosynthetic proteins 
together with stable activity of the electron transport chain and reduced ROS gen-
eration (Gong et al. 2017). Moreover, NO plays important role in the quick recovery 
of damaged PSII by metal toxicity since it promotes the transcription of PSII- asso-
ciated genes like psbA, psbB and psbC (Wodala et al. 2008).

7.6  Plant Stress Response and NO-Mediated 
Posttranslational Modifications

Plants are sophisticated creatures with broad genomic architecture that express a 
significant number of genes for essential functions in everyday life. To perform vari-
ous activities and functions plants have evolved systems to change the existing 
structure of the protein in various forms. This phenomenon is known as post- 
translational modifications (PTMs) of protein. PTMs of many types have been dis-
covered in living organisms and investigated. Both plants and animals exhibit the 
PTMs i.e., tyrosine nitration and S-nitrosation, which are both mediated by NO 
(Corpas et al. 2009a, b; Wiseman and Thurmond 2012). S-nitrosothiols (SNOs) are 
formed in proteins through S-nitrostion when NO is covalently linked to a particular 
cysteine thiol residue, and are regarded as responsible for reversible post- 
translational modification. In living organisms, the process is almost ubiquitous 
(Anand and Stamler 2012). S-nitrosation is now been recognized to modify a large 
number of proteins. Both plants and animals have been reported with tyrosine nitra-
tion Corpas et al. (2009a, b), which is the attachment of the nitro (NO2-) group to a 
tyrosine residue (Greenacre and Ischiropoulos 2001). After production, NO must be 
transformed into a nontoxic, easily accessible, and transportable form. This is 
accomplished by covalently attaching NO to the highly abundant redox-sensitive 
tripeptide molecule glutathione to produce S-nitrosoglutathione (GSNO), which is 
one of the very important SNOs since it is a key NO reservoir and long-distance 
signalling molecule. Since GSNO can regulate protein activity and gene expression, 
it plays an important role in plant development and responds to a variety of abiotic 
stresses (Begara-Morales et al. 2018). By lowering the accessible SNOs in the cell, 
S-nitrosoglutathione reductase (GSNOR) regulates the levels of S-nitrosothiols, in 
addition to disturbing the normal development and growth pattern of the plants 
(Kwon et al. 2012). The absence of GSNOR in plants causes an uprising in the level 
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of SNO and impairs various plant immunity mechanisms (Feechan et al. 2005). It 
has been reported after a detailed analysis of Arabidopsis atgsnor1–3 knockout 
mutants that the loss of GSNOR activity results in a general increase in SNO levels, 
including the S-nitrosation of AtSABP3 at cysteine residue 280 that antagonises 
plant immunity, (Wang et al. 2009). S-nitrosation of the protein kinase OST1 (an 
important component of the ABA signalling network) and the major ROS scaveng-
ing enzyme APX1 has been found to affect plant responses to abiotic stress in sev-
eral studies, underscoring the critical regulatory functions of NO-mediated 
S-nitrosation (Wang et al. 2015; Yang et al. 2015). Other proteins have also been 
demonstrated to be regulated by S-nitrosation. Arginine symmetric demethylation is 
catalysed by the enzyme protein-arginine-methyltransferase-5 (PRMT5) in eukary-
otes. However, new research suggests that NO can initiate S-nitrosation of PRMT5 
at cysteine 125, favourably controling PRMT5 function under stress (Hu et  al. 
2017). Other PTMs documented such as phosphorylation, ubiquitination, acetyla-
tion, palmitoylation, and sumoylation are regulated by the process of S-nitrosation, 
exhibiting the impact of S-nitrosation on other essential PTMs. It has been identi-
fied in atgsnor1–3 knockout mutant plants, that 1195 endogenously S-nitrosated 
peptides from 926 proteins are involved in numerous essential physiological func-
tions such as chlorophyll metabolism, carbohydrate metabolism, photosynthesis, 
and various stress responses with significantly higher level of total SNOs accumula-
tion, implying an wide regulatory control by nitric oxide at cellular level (Hu et al. 
2015a). All these findings emphasize the significance of NO as a critical signalling 
molecule, both at baseline and stimulated levels. Tyrosine nitration, like S-nitrosation, 
is a “nitrosative stress signal” (Mata-Pérez et al. 2016; Sehrawat and Deswal 2012). 
In plants, there are hundreds of tyrosine nitrated proteins. Other PTMs facilitated by 
NO include nitration, metal nitrosation, and glutathionylation, in addition to 
S-nitrosation and tyrosine nitration. It’s worth mentioning that NO-mediated PTMs 
can have either positive or negative effects on target proteins.

7.7  Cross-Talk Between NO and Hydrogen Sulphide (H2S) 
in Heavy Metal Stress

The possible relation between NO and H2S under various abiotic stresses has been 
established by several studies. According to Wang et  al. (2012), a nearly 30% 
increase in NO level has been noticed in alfalfa when the seed is treated with 
100 mM NaCl and 100 μM NaHS. According to this finding, NaHS acts as an H2S 
donor, increasing endogenous NO synthesis. High levels of NO in the cell then 
activate NO scavengers, helping to counteract NaHS’s effects. The promoted activ-
ity of plasma membrane H+-ATPase is amplified by NO, H2S, and H2O2 in cucumber 
roots (Jiang et al. 2019; Zhou et al. 2018). With other abiotic stress, this type of 
signalling interplays has also been frequent in plants exposed to heavy metal stress. 
SNP, a well-known NO donor, enhances antioxidant capacity when pre-treated with 
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NaHS (H2S donor), thus successfully ameliorating aluminium-induced stress in 
T. aestivum, barley, and oilseed rape (Dawood et al. 2012). PCD is an important 
physiological process in the plant system encountered by the involvement of various 
endogenous molecules such as ROS, different elicitors, NO, H2S, and salicylic acid 
in the signalling cascade which takes place (Kroemer et al. 2005). The action of NO 
as a promoter or suppressor of PCD depends on various aspects such as type of cell, 
cellular redox status, and availability of NO in the cell. It has also been well docu-
mented that interactions between NO and H2O2 metabolism regarding the promo-
tion of PCD in various plant species occur. In Chlamydomonas reinhardtii, 
combining the exogenous application of NO and H2O2 induces PCD higher than that 
of NO alone. As an application of NO scavenger diminishes the NO-H2O2 interac-
tion and reduces the PCD level, thus NO exhibits dual nature concerning upregulat-
ing or downregulating the process of PCD, while H2S is only involved in the 
mitigation of delaying of PCD via ROS inhibiting pathways (Luo et al. 2020; Zhang 
et al. 2015). Under heavy metal stress, the synergistic role of NO and H2S have been 
documented in PCD mitigation (Li et al. 2016; Shivaraj et al. 2020). For example, 
this synergic role-play is involved in the reduction of Al3+-induced PCD (He et al. 
2019), and the repair of photosynthetic apparatus in Vigna radiata under cadmium 
stress (Khan et al. 2020). In wheat, c-PTIO (NO-scavenger) masks the activity of 
pectin methyl esterase (PME) which checks the affinity between Al and pectin by 
pectin methylation in the cell wall of root cells and thereby prevents Al accumula-
tion in roots (Sun et al. 2015a). H2S plays quite a similar function in rice, where H2S 
decreases the PME activity and therefore, reduces the negative charges in root cell 
walls. Thus pectin and hemicellulose content decrease significantly. Further low NO 
content has been reported to enhance the H2S-mediated Al toxicity alleviation in 
rice (Zhu et al. 2018). In some cases of Cd-induced stress, a synergistic relationship 
has been found between NO and H2S. The endogenous level of NO and H2S and/or 
exogenous application of SNP and NaHS performs significant alleviation of Cd 
stress in Bermuda grass (Shi et al. 2014). NO and H2S inhibitors have also been 
discovered to interfere with NO signals. Blocking of polar transport of auxin in 
Arabidopsis roots by activation of MAPK6 cascade as a result of ROS metabolism 
is an example of NO-H2S crosstalk (Banerjee et al. 2018). NO regulates the expres-
sion of genes involved in the production, removal, and inhibition of H2S. Since H2S 
causes the development of lateral roots in tomato plants, masking the genes that 
express H2S production by exogenous injection of NO prevents the development of 
lateral roots in tomatoes (Li et al. 2014). Accumulation of Ca2+ and expression of 
calmodulin 1 (CAM 1) has stimulatory support from NO and induce the inhibition 
of H2S synthesis, whereas Ca2+ chelators and other channel blockers reduce the H2S- 
induced formation of lateral roots. It is also found that in root development, NO 
activity is regulated by several post-translational modifications some of which also 
include the involvement of auxin and H2S. Transcriptional study of miRNA genes 
established link between H2S and auxin pathway, which is supported by cyclin- 
dependent kinase A (CDKA)/cyclin D (CYCD) and the auxin response transcription 
factors (ARF) and also evidenced by NO and H2S interactions during development 
of roots (Mishra et al. 2021). In pea seedlings, NO and H2S level has been increased 
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significantly by exogenous application of NaHS, helps in restoration of redox status 
between ascorbate and glutathione, and also reduces ROS induced oxidative dam-
age under arsenic (AsV) stress (Singh et al. 2015). These are some of the possible 
crosstalk between two important signalling molecules under heavy metal stress.

Exogenous administration of NO or NO donor (SNP) has been reported to be 
efficient in lowering different heavy metal-induced damage in plants, similar to 
endogenous NO. According to Kolbert and Ördög (2021), exogenous NO prevents 
boron (B) uptake in plants and reduces B-induced ROS generation, thus improving 
plant growth and yield. Exogenous NO as a signalling molecule increases the activ-
ity of antioxidant enzymes, scavenges ROS, prevents cellular oxidation, reduces 
electrolyte leakage, and the amount of soluble proteins in bamboo plants in Pb and 
Cd stress (Hill et al. 2010). Application of SNP under As stress successfully recov-
ers the number of adventitious roots, reduces ROS generation, and improves activi-
ties of the ascorbate-glutathione (AsA-GSH) cycle enzymes (Kushwaha et  al. 
2019). Application of 20 μM SNP in sunflower plants exposed under Zn stress has 
been reported to exhibit a high level of tolerance with the promoted activity of SOD, 
APX and GR, also enhancement in AsA and GSH metabolism (Akladious and 
Mohamed 2017). Similar results were found by Namdjoyan et  al. (2017), where 
100 μM SNP was applied to Carthamus tinctorius exposed under Zn stress. (Liu 
et al. 2020) have also recorded the combined stress-mitigating effect of exogenous 
SNP and silica (Si) in maize exposed to Cd stress. They have found that the com-
bined application of Si and SNP improves several important aspects of plant growth 
such as photosynthesis rate, pigment concentration, biomass, and yield.

7.8  Conclusion

NO is a very important messenger in plants’ tolerance to various abiotic stresses, 
especially in heavy metal-induced stress. Through antioxidative defence, modula-
tion of numerous cellular pathways, cellular signalling, and cross-talking with other 
signalling molecules, it helps the plant to recover from multiple phytotoxicity- 
mediated damages. Although the knowledge behind the molecular and physiologi-
cal mechanisms, crosstalk with other phytohormones, and their signalling network 
at the molecular level under heavy metal stress is still quite limited and needs explo-
ration and extensive research. However, by various research on this particular sub-
ject, it is well established that NO plays an immersive role in recovering from heavy 
metal stress. Since heavy metal stress is a burning problem in various agroecologi-
cal systems, the above-mentioned information may prove valuable for further 
research and establishing metal toxicity-tolerant crop traits in the future.
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Chapter 8
Nitric Oxide: A Key Modulator 
of Postharvest Fruit and Vegetable 
Physiology

V. S. Karthik Nayaka, A. J. Sachin, Anusree Anand, S. Vijay Rakesh Reddy, 
Aaisha Nasim, D. C. Shrivastava, and Mohammed Wasim Siddiqui

Abstract Nitric oxide (NO) is a gasotransmitter molecule involved in a variety of 
physiological functions related to acclimation responses in plants for biotic and 
abiotic stresses. Thus, NO holds great promise in extending the shelf life of freshly 
harvested fruits and vegetables. Various investigations have identified the signalling 
function of NO in respiration, ripening, senescence, chilling injury alleviation and 
membrane damage to biological tissues by maintaining a greater antioxidant sys-
tem. This chapter describes the relevance and role of nitric oxide to improve post-
harvest storage life and the quality of freshly harvested fruits and vegetables.
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8.1  Introduction

Fruits and vegetables are an important part of a balanced diet and are essential for 
food as well as nutritional security. Vitamins, vital fatty acids, dietary fibre, miner-
als, pigments, and a variety of important bioactive substances are found abundantly 
in them. They are classified as “protective foods” because they contain high quanti-
ties of secondary metabolites, made up of a variety of phenolic and antioxidant 
chemicals (Jacob et al. 2012; Natesh et al. 2017). Hence, World Health Organization 
recommends the inclusion of at least 400 g of fruit and non-starchy vegetables in the 
regular diet. The fruits and vegetables are highly susceptible to microbial attack and 
self-decay due to high moisture content and pre-programmed senescence induced 
by various active physiological processes (respiration, ripening and ethylene pro-
duction) and biochemical changes. Therefore, the time interval between harvest and 
consumption is of major concern. In addition, lack of infrastructure during the sup-
ply chain shortens our handling, storage and transport potential (Hu et al. 2017). 
Ultimately, such produce seeks less demand and acceptance by the consumers and 
ends up in huge post-harvest and economic losses (Zhang et al. 2019; Aghdam et al. 
2020). Currently, the post-harvest losses range from 6.7% to 15% and 4.6% to 
12.4% in fruits and vegetables, respectively (Rao 2022).

Both controlled and modified atmosphere storage, low-pressure storage, ozona-
tion treatments and edible film coatings are some of the preservation and storage 
techniques often employed to reduce post-harvest losses (Bose et al. 2021; Reddy 
et al. 2021). Furthermore, the employment of ultraviolet, low temperature and air 
storage techniques necessitates a large amount of equipment and is cost-intensive 
(Pang 2012; Bose et al. 2021). Finally, preserving the quality of the product with 
extended shelf life while complying with food safety regulations has always been a 
huge concern. As a result, naturally occurring chemicals such as salicylic acid, 
methyl jasmonate, hydrogen sulphide, and nitric oxide have sparked researchers’ 
interest in postharvest management of fresh fruits and vegetables.

Respiration, ethylene generation, and senescence are the key elements affecting 
the quality and shelf life of fruits and vegetables during storage. These are some of 
the vital processes that are impacted by intrinsic and extrinsic circumstances, 
through various signalling and response metabolisms. Nitric oxide (NO) is one of 
the biological signalling compounds that has acquired a lot of interest in the field of 
post-harvest physiology. It was well known for elicitation of resistance mechanism 
against some post-harvest fungal diseases, in addition to different functions such as 
delayed ripening and senescence in fresh fruits and vegetables (Gong et al. 2018; 
Aghdam et al. 2020, 2021).

Nitric oxide, a gaseous molecule with redox activity, coordinates a variety of 
physiological and biochemical functions in biological systems (Yu et al. 2014). NO 
is thought to be a prospective target for promoting germination, root architecture, 
nutrient acquisition, floral transition, delaying ripening and postharvest senescence, 
and enhancing tolerance to biotic and abiotic stresses, among other biochemically 
mediated functions (Sun et al. 2021). A good number of studies have demonstrated 
the role of NO in maintaining the sensory and nutritional attributes of horticultural 
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commodities, by extending their shelf-life viz. sweet cherry (Zhao et al. 2019); per-
simmon (Shahkoomahally et al. 2015); peach (Gao et al. 2016); strawberry (Aghdam 
and Fard 2017); peach (Wu et al. 2018); grape (Ghorbani et al. 2017); and banana 
(Wu et al. 2014). This chapter elaborates on the potential use of NO in the modula-
tion of post-harvest physiology and extending the shelf life of various fruits and 
vegetables in detail.

8.2  Biosynthesis and Signalling

The earliest appearances of NO in biological systems were seen in plants (Klepper 
1979), and endogenous NO in plants is thought to be produced through enzymatic 
and non-enzymatic processes in the oxidation and reduction pathways. The major 
enzymatic mechanism in the reduction pathway is the formation of NO from nitrite 
under the action of nitrate reductase (NR) (Tejada-Jimenez et al. 2019; Chamizo- 
Ampudia et al. 2017; Kaiser et al. 2018). Non-enzymatic nitric oxide generation, on 
the other hand, involves mitochondrial electron transport chains in low-oxygen con-
ditions and deoxygenated heme-proteins in acidic environments (Sami et al. 2018), 
nitrous oxide breakdown, and chemical reactivity between NOs and plant metabo-
lites. The most important sources of NO synthesis in plants are the NR and L-arginine 
dependent pathways through nitric oxide synthase (NOS)-like activity (Kolbert 
et al. 2019).

For the first time, the biological involvement of NO in potato immunological 
responses has been revealed. NO helps in the metabolic switch from growth and 
development to a stress reaction (Ageeva-Kieferle et  al. 2021). In horticultural 
crops, NO has an important role in plant development (germination, seedling 
growth, biomass accumulation, and yield), defence, and post-harvest management 
(respiration, ethylene production, and senescence) (Sun et al. 2021).

NO interacts with other gaseous molecules and phytohormones in plants to serve 
as a signalling molecule (Buet et al. 2021). They are involved in immunity signal-
ling pathways and disease resistance (Prakash et al. 2021), chilling injury (Ziogas 
et al. 2013; Sehrawat and Deswal 2014; Jiao 2021), postharvest disease alleviation 
(Yang and Liu 2019; Khaliq et  al. 2021), ripening and senescence (Khaliq et  al. 
2021; Mansouri et al. 2021).

8.3  Role of NO in Postharvest Management of Fruits 
and Vegetables

The perishable nature of fruits and vegetables favours a large amount of postharvest 
losses for a variety of causes and is a major problem across the world. Numerous 
approaches and strategies have been implemented to decrease postharvest losses. 
NO, as an eco-friendly compound with low food safety concerns, can play an 
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important role in regulating and signalling various biochemical pathways such as 
colour (Gheysarbigi et  al. 2020), respiration rate (Steffens et  al. 2021), ethylene 
production (Liu et al. 2019), ripening (Zuccarelli et al. 2021), senescence, allevia-
tion of chilling injury, biotic and abiotic stresses (Siddiqui et al. 2021).

8.3.1  Effect on Nutritional Quality and Shelf-Life

In addition to the supply of major nutrients like carbohydrates, lipids, proteins, vita-
mins, and minerals, fruits and vegetables also provide a diverse spectrum of bioac-
tive chemicals including phenolic compounds and carotenoids, which have a 
functional role in human health (Jideani et  al. 2021; Arumugam et  al. 2021). 
Physiological weight loss, which steadily increases during storage with respiration 
and transpiration, is the primary cause of quality deterioration in harvested horticul-
tural commodities (Zhang et  al. 2019). Organoleptic properties of horticultural 
crops, particularly fruits, are influenced by organic acids and sugars present in them 
(Baccichet et al. 2021). Sugars are an important source of energy for a variety of 
metabolic processes (Duran-Soria et al. 2020). NO treatment increased the expres-
sion level of PpaSPS1/2 in peach, which increased the activity of sucrose phosphate 
synthase (SPS) (cv. Xiahui 6). The expression of PpaAI1 gene encoding the sucrose- 
cleaving enzyme fell significantly, resulting in poorer sucrose-cleaving enzyme 
activity and high sugar levels (Han et al. 2018). By maintaining a greater sucrose 
content and retaining more metabolites, freshness and shelf life were preserved 
(Aghdam et al. 2018). For all sorts of fleshy fruits, firmness is a key quality indica-
tor. The hydrolase enzymes polygalacturonase (PG) and pectin methylesterase 
(PME) is responsible for the loss of firmness (Zhang et al. 2019). The NO treatment 
reduced the activities of PG, PME and endo-1,4-glucanase while maintaining larger 
levels of acid-soluble pectin and starch, which could explain the delay in fruit soft-
ening (Cheng et al. 2009). Sugar metabolism involves sucrose phosphate synthase, 
and sucrose-cleaving enzymes (PpaAI1 and PpaNI1/2 genes) and their lower encod-
ing levels resulted in decreased sucrose-cleaving enzyme activity and maintained 
increased firmness in peach fruit (Han et al. 2018). The expression of calcium ion 
(Ca2+) signal-related genes (CNGC1, CPK1, CIPK2, CML31, CML48, ZIFL1) in 
kiwi fruit differed substantially, and they were implicated in the control of the NO 
softening response (Yang et al. 2021). Colour is one of the most visible indicators 
of ripeness and quality (Alos et al. 2019). The pigments (carotenoids: carotenes plus 
xanthophylls) in the plastids are responsible for the orange and red colour in the 
fruit, and the breakdown of chlorophyll operates while the pigments increase in the 
plastids during ripening. The activity of the enzymes chlorophyllase and 
Mg-dechelatase was regulated by NO treatment thus delaying the breakdown of 
chlorophyll (Wang et al. 2015). Nitric oxide slowed the enzymatic browning pro-
moted by phenylalanine ammonia-lyase (PAL), peroxidase (POD), and polyphenol 
oxidase (PPO) (Gheysarbigi et  al. 2020; Zhao et  al. 2020). Because of the vast 
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spectrum of health-promoting qualities of phytochemicals, their retention at greater 
levels in fruits and vegetables is of major interest (Thakur and Sharma 2018). NO 
reduced reactive oxygen species (ROS) damage to cells and extended the shelf life 
of fruits and vegetables by maintaining larger levels of phenols, anthocyanins, 
carotenoids, ascorbic acid, and flavonoids (Zhang et al. 2020; Huang et al. 2021). 
The role of NO in phytochemical retention in various crops has been summarized 
(Table 8.1).

8.3.2  Effect on Postharvest Ripening and Senescence

In fruit and vegetables, respiration is a fundamental and inevitable physiological 
activity (Irtiza et  al. 2019). There is a surge in ethylene synthesis in climacteric 
fruits parallel to the respiration process during climacteric peak, and they are marked 
by quick senescence, loss of sensory qualities, and poor nutritional quality. This 
marks the beginning of ripening and the first stage of senescence. Several biochemi-
cal, physiological, and structural changes occur throughout the ripening process. 
The rate of senescence is largely determined by respiration rate and ethylene bio-
synthesis. Ethylene biosynthesis is a major contributor to accelerated senescence 
because it generates a large number of ROS, which obstruct normal cellular metabo-
lism, resulting in a shorter shelf-life of fruits and vegetables (Liu et al. 2019).

Nitric oxide works antagonistic to ethylene, inhibiting its production and gene 
expression (Mukherjee 2019; Zhang et al. 2020; Palma et al. 2019; Qian et al. 2021). 
NO was shown to repress the expression of genes involved in ethylene biosynthesis 
enzymes, as well as post-translationally modifing methionine adenosyl transferase 
(MAT) activity through S-nitrosylation, reducing the availability of methyl groups 
required to produce ethylene (Manjunatha et  al. 2012). NO suppresses ethylene- 
induced fruit ripening through interacting with other phytohormones such as ABA, 
auxin, jasmonic acid, salicylic acid, gibberellic acid, cytokinin, brassinosteroids, 
and polyamines, as well as reducing ethylene production (Palma et  al. 2019; 
Steelheart et al. 2019). Climacteric fruits ripen faster and are characterized by rapid 
senescence, loss of sensory qualities, and reduction of nutritional quality. NO gas 
fumigation greatly slowed the ripening and softening of kiwifruit with a significant 
change in the expression of genes involved in ethylene production and signal trans-
duction. 1-Aminocyclopropane carboxylic acid oxidase (ACO), the ethylene recep-
tors (ERS1, ETR2), and the ethylene-responsive transcription factors (ERF016, 
ERF7, ERF010, ERF062, ERF110, ERF037, ERF008, ERF113, ERF12, ERF95) 
were lower in the NO-treated kiwifruit (Yang et al. 2021). Tomato fruits treated with 
NO delayed the expression of LeACO1, LeACOH2, and LeACO4 genes related to 
1-aminocyclopropane-1-carboxylic acid oxidase (ACO) activity (Eum et al. 2009). 
NO significantly delayed ripening and senescence in various crops (Table 8.2).

8 Nitric Oxide: A Key Modulator of Postharvest Fruit and Vegetable Physiology



180

Table 8.1 Effect of Nitric Oxide on nutritional quality and shelf-life extension

Crop
Source and 
Conditions Effects Reference

Banana SNP 5 mM at 
RT

Suppression of ACO activity and 
transcription of gene MA-ACO1 which 
resulted in lower ethylene production, 
suppressed the activity of PG, PME, and 
endo-β-1,4-glucanases and delayed ripening 
and increased shelf-life up to 8 days.

Cheng et al. 
(2009)

Pistachio 
hull

SNP 15 μM at 
2 ± 1 °C with 
93 ± 2% RH

Inhibited the activity of PPO, PAL, and 
POD, increased activity of SOD, preserved 
total phenolics, flavonoids, and antioxidant 
activity, higher lightness values (L*) and 
lower browning index and colour changes.

Gheysarbigi et al. 
(2020)

Guava SNP 1 mM at 
RT 
(20 ± 3 °C)

Prevented weight loss and breakdown of 
chlorophyll, ascorbic acid, phenols, and 
flavonoids, higher antioxidant activity.

Sahu et al. (2020)

Winter 
jujube

NO 20 μL/L at 
0 ± 1 °C and 
90–95% RH

Maintained total soluble solids, titratable 
acidity and reduced browning of the flesh.

Zhao et al. (2020)

Persimmon SNP 1.5 mM 
at 1 °C and 
90% RH

Delayed weight loss and ripening, retained 
greater total antioxidant activity, total 
phenolic compounds and firmness.

Shahkoomahally 
et al. (2015)

Tainong 
mango fruit

SNP 0.25 mM 
at RT (23 °C)

Repressed respiration rate, reduced 
softening, rot index, peel colour changes, 
and weight loss, maintained higher TSS, 
titratable acidity, ascorbic acid, and phenolic 
compounds.

Ren et al. (2017)

Mango (cv. 
Kensington 
pride)

NO 20 μL/L−1 
at RT (21 °C)

Higher pulp firmness, lower ethylene 
production by inhibiting ACC synthase and 
ACC oxidase activities, maintained better 
pulp firmness by reducing endo-1,4-d- 
glucanase, exo-polygalacturonase, and 
endo-polygalacturonase activities.

Zaharah and 
Singh (2011)

Litchi SNP 2.0 mM 
at RT

Reduced PAL activity, degradation of 
anthocyanin and other bioactive compounds 
(phenolics, ascorbic acid), minimal pericarp 
browning, weight loss, loss of TSS, titratable 
acidity, and antioxidant capacity and 
extended the shelf life up to 8 days.

Barman et al. 
(2014)

Pointed 
gourd

NO 1 and 
2 mM at RT

Maintained higher chlorophyll, phenolics, 
antioxidant activity and membrane integrity, 
while reducing the weight loss, yellowness, 
lignification, and electrolytic leakage and 
extending the shelf life by extra 3 days at 
RT.

Siddiqui et al. 
(2021)

Kiwifrut NO 1.5% 
(v/v???) at 
1 °C and RH 
95%.

Delayed the increase in soluble solids and 
weight loss, maintained a higher vitamin C, 
total phenol content, antioxidant capacity 
and TA during 70 days of storage.

Saadatian et al. 
(2012)

(continued)
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Table 8.1 (continued)

Crop
Source and 
Conditions Effects Reference

Red 
raspberry

NO 15 μM at 
RT

Prevented oxidative damage, preserved 
higher flavonoids and anthocyanin, and 
maintained the quality by affecting the 
activities of sucrose phosphate synthase, 
neutral invertase, glucose-6-phosphate 
isomerase, and sucrose synthase in the 
soluble sugar metabolism.

Shi et al. (2019)

Chinese 
bayberry

NO 20 μL/L−1 
stored at 
0.5 °C and 
90% RH

Slowed down the loss of firmness, total 
phenolic content, and DPPH radical- 
scavenging action, decreased membrane 
permeability and lipid peroxidation delayed 
O2

·- and H2O2 content generation and boosted 
SOD, CAT, and APX activities.

Wu et al. (2012)

SNP sodium nitroprusside, RT room temperature, ACO ACC oxidase, PG polygalacturonase, 
PME pectin methyl esterase, PPO polyphenol oxidase, PAL phenyl alanine, POD peroxidase, 
SOD superoxide dismutase, TSS total soluble solids, DPPH 2,4-diphenyl picryl hydrazide, CAT 
catalase, APX ascorbate peroxidase

Table 8.2 Role of Nitric Oxide in postharvest senescence

Crop Source Effect Reference

Peach (cv. 
Xiahui 6) and cv. 
‘Xiahui (NO.5)

NO 10 μL 
L−1 stored at 
4 °C.

Delayed ripening, increased the expression of 
PpaSPS1/2 and activity of sucrose phosphate 
synthase, reduced gene expression encoding 
sucrose cleaving enzyme PpaAI1 which 
resulted in delayed senescence.

Kang et al. 
(2016) and 
Han et al. 
(2018)

Sweet pepper NO 5 ppm at 
RT

Delayed fruit ripening, lipid peroxidation and 
accumulation of reactive oxygen/nitrogen 
species, altered the activity of ascorbate 
peroxidase and lipoxygenase.

Gonzalez- 
Gordo et al. 
(2019)

Papaya (Sui you 
2)

NO 60 μL/L, 
at 20 °C and 
75% RH

Suppressed ethylene production, respiration 
rate, reduced softening and ripening related 
changes in peel colour, delayed ripening and 
senescence.

Li et al. (2014)

Lettuce shreds NO 100 ppm 
at 4 °C and 
12 °C

Delayed senescence by reducing the H2O2 
accumulation and extending the shelf life up 
to 21–22 days in mature butter head shreds 
and 25–26 days in young shreds.

Iakimova and 
Woltering 
(2015)

Nectarine (var. 
nucipersica)

SNP 0.5 mM Reduced lipid peroxidation by slowing down 
the activity of lipoxygenase and PME activity 
which delayed the senescence and improved 
the quality.

Jayarajan and 
Sharma (2018)

SNP sodium nitroprusside, RT room temperature, RH relative humidity
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8.3.3  Effect on Antioxidant Systems

The formation of a variety of ROS as a result of oxygen-mediated metabolism or 
environmental challenges experienced by the organism is well-known and acknowl-
edged (Zhang et al. 2019). Singlet oxygen, superoxide radicals, hydrogen peroxide, 
and hydroxyl radicals are examples of these ROS (Meitha et al. 2020). Increased 
ROS generation in fruits and vegetables during postharvest storage should be coun-
tered by antioxidant systems to prevent their cells from ageing, allowing them to 
have a longer shelf-life. Both lipid-soluble antioxidants (α-tocopherol and carot-
enoids) and water-soluble reductants (glutathione and ascorbate), as well as enzymes 
such catalase glutathione reductase, ascorbate peroxidase, superoxide dismutase, 
and peroxidases, are involved (Ghorbani et al. 2017). Ascorbic acid, reduced gluta-
thione, vitamin E (α-tocopherol), polyphenols, and carotenoids are examples of 
non-enzymatic antioxidants (Zhang et al. 2019). Through the ascorbate-glutathione 
cycle, NO may usually postpone senescence and sustain the antioxidant system (Ma 
et al. 2019). By reducing ROS generation and membrane lipid peroxidation in the 
peel and pulp, NO treatment boosted the activities of superoxide dismutase, peroxi-
dase, ascorbic acid peroxidase, glutathione reductase, and catalase, which improved 
the quality of table grape during storage. NO treatment, the expression of genes 
VvSOD and VvCAT were down regulated in the peel and pulp of grapes (Zhang 
et al. 2019). NO gas fumigation of peach fruits reduced ROS levels while increased 
ascorbate (AsA) and reduced glutathione (GSH) levels. Through the ascorbate- 
glutathione cycle, NO may be able to postpone fruit senescence. The activities of 
dehydroascorbate reductase (DHAR), ascorbate peroxidase (APX), glutathione-S- 
transferase (GT), and glutathione reductase (GR) were all boosted by nitric oxide. 
NO treatment raised the ratios of reduced/oxidized glutathione (GSH:GSSG) and 
ascorbate/dehydroascorbate (AsA:DHA) while retaining greater 2,2-diphenyl- 1-
picrylhydrazyl free radical (DPPH) scavenging capacity. The findings showed that 
exogenous NO might boost the AsA-GSH cycle’s lowering ability and keep peaches’ 
antioxidant capacity high during storage (Ma et al. 2019). Roles of NO in maintain-
ing antioxidant system are described in Table 8.3.

8.3.4  Effect of on Chilling Injury

When sub-tropical and tropical fruits are stored under a temperature below 10–15 °C 
for a certain period, chilling injury happens. Some of the consequences of chilling 
injury are surface pitting, discolouration, uneven ripening, reduced flavour and texture, 
internal breakdown and decay. Chilling injury can be alleviated using methods like 
temperature preconditioning, intermittent warming, controlled or modified storage, 
chemical treatments, hormonal regulations and genetic manipulations (Wang 1989).

Chilling damage in tissues is associated with the development of oxidative stress 
from excess ROS (Hodges et al. 2004). To protect these tissues from ROS damage, 
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Table 8.3 Effect of Nitric Oxide on antioxidant system

Crop
Source of Nitric 
Oxide Effect of Nitric Oxide on antioxidant system Reference

Banana NO 60 μL L−1 at 
22 °C

Boosted the enzyme activity of SOD, POD, APX, 
and CAT, increased MaSOD, MaCAT, MaPOD, and 
MaAPX gene expression, and reduced electrolyte 
leakage, and levels of MDA, O2

·-, and hydrogen 
peroxide (H2O2).

Wu et al. 
(2014)

Grapes 
cv. Rish 
Baba

NO 0.5 mM at 
−0.5 °C and 
95% RH

Reduced ion leakage, lipid peroxidation, MDA and 
(H2O2) content, enhanced POD, APX, SOD, and CAT 
activity, and maintained a healthy endogenous 
antioxidant defence system.

Ghorbani 
et al. 
(2017)

Winter 
jujube

NO 20 μL/L at 
0 ± 1 °C and 
90–95% RH

Higher SOD, CAT, APX, and GR activities, increased 
ROS scavenging ability resulting in the reduction of 
oxidative damage and the preservation of cell 
membrane integrity.

Zhao et al. 
(2020)

Tainong 
mango

SNP 
0.25 mmol/L at 
RT

Increased the activities of SOD, CAT, and POD while 
decreasing the activities of LOX and PPO which was 
linked to lower levels of malondialdehyde, 
superoxide anion radical (O2•−), and H2O2, protected 
from oxidative damages caused by ROS.

Ren et al. 
(2017)

Peach SNP 
15 μmol L−1

Reduced H2O2 content and O2
·- generation rates, 

increased the expression of PpG-6-PDH, Pp6PGDH, 
and PpAOX while down-regulated the expression of 
PpGPI and PpHK, signifying that the pentose 
phosphate and cyanide-resistant respiration pathways 
were stimulated which improved antioxidant ability.

Song et al. 
(2021)

Sweet 
cherry

SNP 60 mmol/L 
at 0 °C

Reduced accumulation of ROS, higher levels of 
antioxidant enzyme activity.

Ma et al. 
(2019)

SNP sodium nitroprusside, RT room temperature, ACO ACC oxidase, PG polygalacturonase, PME 
pectin methyl esterase, PPO polyphenol oxidase, PAL phenyl alanine, POD peroxidase, SOD 
superoxide dismutase, CAT catalase, APX ascorbate peroxidase, GR glutathione reductase, MDA 
malondialdehyde, LOX lipoxygenase, ROS reactive oxygen species

plants have evolved a complex antioxidant system, which also balances the produc-
tion and removal of ROS.  Studies suggested that there is a positive relationship 
between antioxidant enzyme activity and tolerance to chilling injury in fruits 
after harvest

The development of chilling injury symptoms might be because of the oxidative 
stress from excess ROS which eventually induces peroxidation and breakdown of 
unsaturated fatty acids in membrane lipids (Lyons 1973). Nitric oxide is one of the 
significant signalling molecules that is involved in many plant physiological pro-
cesses. It is also known to protect plant cells against oxidative stress by reducing 
ROS accumulation (Xu et al. 2017; Zhang et al. 2019). NO possibly acts as an anti-
oxidant, which can scavenge the ROS, and hence protect the plant cells from oxida-
tive damage. Many studies have revealed that, NO, when applied exogenously, has 
improved chilling injury tolerance as well as reduced chilling injury damage in 
more than a few fruits (Zhu et  al. 2006; Singh et  al. 2016; Rehman et al. 2019) 
(Table 8.4).
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Table 8.4 Effect of nitric oxide on alleviation of chilling injury and fruit quality

Crop

Source of 
Nitric 
Oxide Effect of nitric oxide on alleviation of chilling injury Reference

Washington 
Navel Orange

SNP 
0.5 mM

Reduced the incidence of chilling injury, lipid 
peroxidation and hydrogen peroxide content in peel 
and pulp during storage and also induced the activity 
of antioxidant enzymes and DPPH radical scavenging 
activity

Ghorbani 
et al. (2018)

Sweet Orange NO gas 
10 muL/L

Reduced chilling injury and improved antioxidant 
concentration in sweet oranges at low temperatures 
and also maintained the quality.

Rehman 
et al. (2019)

Mango 
(Kensington 
Pride)

NO gas Alleviated the chilling injury index and increased the 
tartaric and shikimic acid content in fruits in cold 
storage during ripening

Zaharah and 
Singh 
(2011)

Mango 
(Chausa)

SNP Reduced the chilling injury incidence and electrolyte 
leakage irrespective of concentration

Barman 
et al. (2014)

Peach SNP Alleviated chilling injury, reduced internal browning 
index, malondialdehyde content, electrolyte leakage 
and lipoxygenase activity while maintaining firmness

Zhao et al. 
(2021)

Japanese 
Plum

NO gas Chilling injury symptoms like flesh browning and 
translucency were significantly lower in NO 
fumigated fruits than that non-fumigated ones

Singh et al. 
(2009)

Cucumber NO gas Enhanced chilling tolerance in cucumber by 
improving antioxidant defence system

Yang et al. 
(2011)

Hami melon NO gas Decreased the chilling injury index and incidence, 
reduced membrane permeability and malondialdehyde 
content, inhibited superoxide production rates and 
also sustained higher antioxidant enzyme activity of 
Hami melon fruit during storage at 1 ± 0.5 °C

Zhang et al. 
(2017)

8.3.5  Effect on Postharvest Diseases and Pest

Several studies in the past have demonstrated the role of NO as a potential fumigant 
in controlling the postharvest diseases of fruits and vegetables. Exogenous applica-
tion of NO could reduce fruit ripening and consequently increases the quality of 
fruits and vegetables such as strawberry, apple, cucumber and lettuce. Increasing 
evidence as a fumigant against a wide range of diseases and pests in fruits and veg-
etables enables NO in controlling post-harvest diseases (Table 8.5).

8.4  Cross-Talk Among NO with Ethylene, H2S 
and Melatonin During Ripening

The interaction between NO and ethylene during fruit ripening is antagonistic. 
Various studies have confirmed the role of NO against ethylene-mediated responses 
during fruit ripening (Guo et al. 2014; Palma et al. 2019; Corpas et al. 2020). In this 
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Table 8.5 Effect of NO in controlling various pests and diseases

Fruits or 
vegetables NO concentration and outcomes

Disease or pest 
controlled Reference

Strawberry and 
Sweet cherry

8 h fumigation with 3.0% (v/v) 
NO

Winged 
Drosophila

Yang and Liu (2018) 
and Walse et al. 
(2016)

Lettuce 16 h fumigation with 0.5% (v/v) 
NO at 2 °C

Thrips and Aphids Liu (2016) and Yang 
and Liu (2019)

Apple 24 h fumigation with 3% NO (v/v) 
at 2 °C

Codling moth Liu (2016)

Apple Exogenous applications of NO 
reduce the Penicillium rot

Penicillium rot Lai et al. (2014)

Papaya 0.1 mM sodium nitroprusside (a 
NO donor) for 8 min reduces the 
lesion expansion

Colletotrichum 
rot

Hu (2019)

Tomato Arginine percussor of NO induces 
resistance in tomato

Botrytis rot Zheng et al. (2011)

context, NO forms a ternary complex (ACC-ACC oxidase-NO) with ACC oxidase 
enzyme and reduced the gene expression (MA-ACO1) involved in ethylene biosyn-
thesis in fruits (Rudell and Mattheis 2006; Zhu et al. 2006; Cheng et al. 2009). It 
also reduced the concentration of ACC by inhibiting the activity of ACC synthase 
which results in lower ethylene production.

NO and H2S show both complementary and inhibitory interactions which depend 
on the doses (Li et al. 2012; Lisjak et al. 2013). The interaction of NO and H2S 
exhibits a synergistic effect on delaying the ethylene-induced ripening of fruits. 
Postharvest application of H2S and NO enhanced the anti-ripening effects and 
reduced respiratory burst in harvested fruits (Chang et  al. 2014). The molecular 
mechanism might be due to the down-regulation of the expression of the ethylene 
biosynthesis gene and also chlorophyll degrading genes (Mukherjee 2019). Both 
signalling molecules showed a synergistic effect on delaying the ripening and senes-
cence of fruit. Therefore, the role of NO and H2S is found crucial in regulating the 
ethylene-mediated changes during fruit ripening.

Recently, phytomelatonin is recognized as a powerful signalling molecule which 
affects several physiological processes, especially antioxidant systems as free radi-
cal scavengers. Melatonin enhances antioxidant capacity during the ripening of 
fruits. It also promotes the biosynthesis of pigments and flavonoids and triggers 
transcriptomic changes in grapes (Xu et al. 2017). Postharvest application of mela-
tonin triggers an antioxidant defence mechanism during ripening and increases the 
shelf life of fruits and vegetables. The exogenous application of melatonin alters the 
polyphenol and carbohydrates and partially regulates the ethylene biosynthesis. 
However, melatonin is not an inhibitor or inducer of fruit ripening unlike NO or 
H2S, but it acts as a regulator in the ripening process and regulates redox homeosta-
sis. The application of melatonin delayed senescence by activating the NO synthesis 
during storage, which antagonizes the effect of ethylene (Liu et al. 2019). Melatonin 
regulates redox homeostasis and metabolic processes during ripening by increasing 
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the concentration of NO which produces reactive nitrogen species (RNS), and mela-
tonin maintains this RNS homeostasis (Singh et al. 2016).

8.5  Conclusion and Future Aspects

In the postharvest management of horticultural crops, nitric oxide (NO) has a vari-
ety of physiological and biological effects. NO, as a signalling molecule, makes a 
significant contribution to maintaining the quality and shelf life of fruits and vege-
tables by delaying critical processes such as ethylene biosynthesis, ripening, and 
senescence. The focus of future research would be on overcoming obstacles utilis-
ing existing and innovative procedures and treatments to improve NO efficiency. 
The application of NO donors in postharvest is mostly limited to an experimental 
level. Thus, the potential of NO to elicit endogenous levels of NO by regulating the 
sources, mechanisms behind its synthesis and interaction with other phytohormones 
and signalling molecules can be a great area of research.
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Chapter 9
Interaction of Hydrogen Sulfide 
with Phytohormones During Plant 
Physiological and Stress Conditions

Nandni Sharma, Deepak Kumar, Kanika Khanna, Ripu Daman Parihar, 
Sandeep Kour, Renu Bhardwaj, and Puja Ohri

Abstract Hydrogen sulfide (H2S) has been identified as the third endogenous gas 
transmitter after CO (carbon monoxide) and NO (nitric oxide). It is a small, reactive 
signaling component that is synthesized in chloroplasts with the assistance of the 
enzyme sulfite reductase, a major enzyme of the assimilatory sulfate reduction path-
way. Additionally, the synthesis of H2S is carried out with the help of L-cysteine 
desulfhydrase and β-cyano-alanine synthase C1(CAS-C1). These enzymes are 
involved in the desulfhydration of L-cysteine and β-cyano-alanine in cytosol and 
mitochondrion, respectively. Initially, H2S was considered to be a toxic molecule, 
but now recent literature has illustrated that plants utilize H2S in a variety of pro-
cesses, including organogenesis, growth, photosynthesis, and stomatal conductance. 
Furthermore, the exogenous application of H2S has an influence on the versatile 
physiological and antioxidant system of plants under both favorable and unfavor-
able circumstances. Under stressful conditions, H2S interacts with other plant  
hormones and gasotransmitters, thus modulating the plant response against different 
types of abiotic stresses like thermal stress, salinity, heavy metal toxicity, drought, 
etc. So, keeping into consideration all these potencies of H2S, the current book 
chapter focuses on the interaction of H2S with different phytohormones toward the 
regulation of abiotic stress response in plants.
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9.1  Introduction

Sulfur is among the key elements that is crucial for the metabolism of a number of 
components like Met (Methionine), Cys (Cysteine), thiamine, biotin, nitrogenase, 
Fe-S cluster and Coenzyme A. Inorganic sulfur that is naturally present in soil can 
be utilized only by plants, fungi, algae and few prokaryotes. They convert inorganic 
form to organic form (Takahashi et  al. 2011). Specifically, in case of plants, the 
inorganic form (SO4

2−), absorbed by roots first undergoes reduction to form H2S, 
which is then used for the synthesis of various amino acids, thus becoming the 
major component in the thio-metabolism cascade (Xuan et al. 2020).

H2S, a toxic gaseous component that exerts serious effects on both animals and 
plants (Hancock 2017), has been documented to have potential to act as gasotrans-
mitter in plants and perform essential functions during different developmental 
stages ranging from germination, root development, stomatal movement to abscis-
sion (Banerjee et al. 2018; Corpas and Palma 2020). As per previous literature, H2S 
performs its function in dose dependent manner, i.e., acts as a cytotoxin at high 
concentration and a signalling entity at relatively low concentrations (Li et al. 2016; 
Jin and Pei 2015). So, the rate of homeostasis of H2S must be maintained in the cell 
by the regulation of H2S biosynthesis and degradation (Corpas and Palma 2020; 
Xuan et al. 2020). The role and functioning of H2S in animal cells have been exten-
sively studied, but there are only few reports on its role in plant cells. Research is 
being carried out in plants and many botanists have reported that, like other gaso-
transmitters, i.e., CO and NO, H2S also functions as a signalling entity that modu-
lates normal physiological and stress responses in plants (Khanna et  al. 2021; 
Ahmed et al. 2021). The most important endowments of H2S to plant physiology 
encompasses seed germination, root organogenesis, development of lateral roots 
and regulation of photosynthesis (Zhang et al. 2009a, 2010a, b; Fang et al. 2014; 
Chen et al. 2011). Moreover, H2S has also demonstrated to possess protective roles 
against various biotic (Shi et  al. 2015) and abiotic stresses that include osmotic, 
chilling, salt, heat and drought (Wang et al. 2010; Zhang et al. 2010b; Jin et al. 2011, 
2013; Shen et al. 2012, 2013; Xie et al. 2014).

However, the exact signalling cascade regulated by H2S remains unknown, so 
now the main focus of researchers is to understand the mechanism adapted by H2S 
under both favourable and unfavourable circumstances. Moreover, it has been well 
documented that H2S is involved in the per-sulfidation of various secondary metabo-
lites and proteins. Additionally, H2S has the potential to interact with ionic signals, 
other gasotransmitters and different stimulatory as well as inhibitory plant hor-
mones (Li et al. 2016). As the name depicts, inhibitory hormones suppress the plant 
growth during stressful conditions whereas, stimulatory hormones stimulate the 
growth and development processes in plants. Thus, suggesting that all the physio-
logical processes including cell division, germination, senescence and response to 
stress or adverse conditions are under the influence of both inhibitory and stimula-
tory plant hormones (He et al. 2019). Also, these phytohormones regulate the sig-
nalling transduction pathways by interacting with one another and also with other 
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gasotransmitters including H2S (Jin and Pei 2015; Xuan et al. 2020). Keeping into 
consideration all these points, the current chapter summarizes the biosynthesis and 
biological role of H2S and also its interaction with phytohormones for the modula-
tion of numerous growth and developmental processes under favourable and unfa-
vourable circumstances.

9.2  Biosynthesis of Hydrogen Sulfide in Plants

Biosynthesis of H2S in plants is mainly under the influence of various enzymatic 
pathways that usually occur in three main compartments of plant cells viz., cytosol, 
chloroplast, and mitochondrion (Aroca et al. 2018). The major enzymes involved in 
the process of biosynthesis include cysteine synthase (CAS, EC4.4.1.9), assimila-
tory sulfite reductase (ferredoxin) (SiR, EC 1.8.7.1), L-3-cyanoalanine synthase 
(CS, EC 4.4.1.1), D-cysteine desulfhydrase (D-DES, EC 4.4.1.15), L-cysteine 
desulfhydrase (cystathionine gamma-lyase, L-DES, EC 4.4.1.1) (Yamasaki and 
Cohen 2016). H2S is known to be synthesized endogenously in plant cells either by 
reduction of sulfite (SO3

2−) or by the breakdown of cysteine. In chloroplast, ferre-
doxin and SiR are necessary for the reduction of SO3

2−. The process of H2S biosyn-
thesis starts with the absorption of atmospheric sulfur, i.e., SO2 or sulfate (SO4

2−) by 
the plant through root tissue. Sulfate is further transferred to upper plant parts with 
the help of sulfate transporters (Sultrs). After entry into the plant cell, sulfate pref-
erentially enters into chloroplast with the assistance of Sultr3s, where it undergoes 
transformed into adenosine-5′-phosphosulfate (APS), which is then converted into 
SO3

2− with the help of a catalyst, ATP sulfurylase (EC 2.7.7.4) and APS reductase 
(EC 1.8.99.2) respectively (Li 2015). Sulfite thus formed, is reduced to sulphide 
(H2S) in the presence of SiR. Further, H2S undergoes a reaction with O-acetyl serine 
to generate cysteine, a basic amino acid involved in the formation of polypeptides. 
Another mechanism of biosynthesis of H2S from cysteine occurs in cytosol. 
Basically, H2S is generated as a by-product in biosynthesis of cysteine that is carried 
out in presence of OASTL (O-acetyl serine thiol lyase, EC 4.2.99.8) enzymes. 
Firstly, acetyl-CoA and serine undergo catalysis in presence of SAT (serine- 
acetyltransferase, EC 2.3.1.30), resulting in the formation of an intermediary prod-
uct, OAS (O-acetyl-Ser), which is then converted into cysteine by the incorporation 
of sulfide. This step is followed by L-DES based catalysis of cysteine into H2S, 
NH4

+ and pyruvate in presence of a cofactor, pyridoxal phosphate that helps in 
accelerating the rate of reaction. In a similar manner, D-DES catalyses the conver-
sion of D-cysteine into H2S, NH4

+ and pyruvate (Li 2015). Moreover, CAS (in mito-
chondrion) is also involved in cyanide detoxification and promotes the transformation 
of cyanide at the expense of cysteine to β-cyanoalanine, which is further involved in 
initiation of H2S biosynthesis. Sulfide thus synthesised is utilized for the synthesis 
of cysteine in presence of OASTL, which is further used by CAS for cyanide detoxi-
fication, thus resulting in the generation of cyclic pathway in mitochondria (Fig. 9.1).
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Fig. 9.1 Biosynthesis of hydrogen sulfide in plants. Hydrogen sulfide (H2S) biosynthesis occurs 
in three subcellular compartments within plant cells, including the cytosol, chloroplasts and mito-
chondria. In the cytosol, the acetyl-CoA and serine undergoes a catalytic reaction facilitated by 
SAT (serine-acetyltransferase), resulting in the formation of OAS (O-acetyl-serine). Subsequently 
OASTL (O-acetyl serine thiol lyase) enzyme catalyzes the addition of sulfide to OAS (O-acetyl- 
ser) to form L/D cysteine. H2S is then generated from L/D cysteine through a reaction catalyzed by 
L/D-CDES (L/D cysteine desulfhydrases), resulting in the release of ammonia and pyruvate. 
Chloroplasts generate H2S during photosynthetic sulfate reduction. In mitochondria, H2S is pro-
duced from cysteine via the release of cyanide and β-cyanoalanine, which is facilitated by the CAS 
(β-cyanoalanine synthase) enzyme

9.3  H2S Mediated Post-translational Changes During 
Oxidative Stress in Plants

Since last one decade the knowledge of oxiPTMs (thiol-based oxidative post- 
translational modifications) has increased (Corpas et al. 2022). H2S molecule acts 
as a signaling molecule in the process known as persulfidation. In this post- 
translational modification, H2S mediates the conversion of the thiol present on 
cysteine residues (-SH group) into persulfide (-SSH) group of proteins. Post-
translational modifications required for the function of many proteins are based 
on redox modifications which are cysteine-based (Buchanan and Balmer 2005; 
Chung et al. 2013). In protein, the thiol group reacts with hydrogen peroxide to 
form sulfenic acid (R-SOH) which thereafter undergoes reaction with H2S to pro-
duce R-SSH which is a persulfide product. The product generated after reaction 
further reacts with ROS (reactive oxygen species) and generates R-SSOH (per-
thiosulfenic acid) which is a less stable product. In presence of higher concentra-
tion of oxidants, R-SSOH gets oxidized to form perthiosulfonic acid (R-SSO3H) 
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Fig. 9.2 Post-translational changes mediated by H2S

and perthiosulfinic (R-SSO2H) (Filipovic 2015). It has also been reported that 
thioredoxin regulates the persulfidation within the cell (Fig. 9.2) (Ren et al. 2017; 
Wedmann et al. 2016). NO (Nitric oxide), another signaling molecule also manip-
ulates proteins through a process known as S-nitrosation (R-SNO). In this pro-
cess, the thiol group of cysteine moiety of proteins gets attached to NO (Feng 
et al. 2019) and forms a product called S-nitrosothiols (Stamler et al. 1992; Hess 
et al. 2005). This product further reacts with H2S and results in protein persulfida-
tion (R-SSG). These persulfidated or modified proteins are more reactive due to 
the increased nucleophilicity of the -SSH group (Zhao et al. 2020). Studies have 
also reported that NO plays an important role in plant immunity and environmen-
tal interactions (Gupta et al. 2020).

9.4  Physiological Role of H2S in Plants

H2S has emerged as the major regulator of various physiological processes occur-
ring in plants (Garcia-Mata and Lamattina 2010; Ali et al. 2014). These physiologi-
cal processes include seed germination, root organogenesis, stomatal movement 
and photosynthesis (Dooley et al. 2013; Zhang et al. 2009b; Chen et al. 2011).
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9.4.1  Effect of H2S on Seed Germination

Seed germination is a stage through which the life cycle of plant begins. This is the 
phase when the plant is most susceptible to various unfavourable environmental 
conditions (Yuan and Wen 2018), so they must be protected during germination. As 
per reports, H2S, when applied in proper concentrations, acts as main regulator of 
germination process under favourable and unfavourable conditions. For instance, as 
per the reports of Dooley and his co-workers (2013), the treatment of H2S solution 
to seeds of corn, pea, wheat, and bean plants resulted in an enhancement in both 
germination rate as well as the seedlings size. Moreover, the germination time was 
also reported to be shortened (Dooley et  al. 2013). Different stresses like heat, 
metal, and osmotic stress also induce oxidative damage in plants, especially during 
the germination phase. It has been reported that even under these stressful condi-
tions, H2S has the potential of promoting germination rate. For instance, wheat 
plants growing under aluminium, copper, or osmotic stress, increased H2S content 
as well as seed germination rate after the application of the H2S donor, NaHS 
(sodium hydrosulfide). In addition to this, uptake of copper by the plant was also 
restricted, thus ultimately lowering the contents of hydrogen peroxide and malondi-
aldehyde in plants (Zhang et al. 2008, 2010a, b).

9.4.2  Role of H2S in Lateral Root Formation

H2S perform a remarkable role in developing lateral roots in plants by undergoing 
interactions with NO, H2O2, and indole acetic acid. Application of H2S to Ipomoea 
batatas (sweet potato) seedlings resulted in enhanced number and size of adventi-
tious roots (Zhang et al. 2009a; Mishra et al. 2021). Similarly, Brassica napus plants 
growing under selenium stress have been found to suffer from root growth inhibi-
tion, but the supplementation of NaHS has been documented to restore the normal 
root growth by modulating the antioxidative defense system of plants (Chen 
et al. 2014).

9.4.3  Role of H2S in Photosynthesis

Stomata act as the apertures involved in the maintenance of gaseous exchange 
between the environment and plants. The stomatal movement influence various bio-
chemical processes like transpiration and photosynthesis, thus, having a remarkable 
role in the normal growth and developmental processes in plants (Nunes et al. 2020). 
The stomatal movement has been reported to be regulated by various environmental 
factors and phytohormones. However, recent literature has reported H2S as a poten-
tial agent that is involved in regulating stomatal movement (Jin and Pei 2016; 
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Garcia-Mata and Lamattina 2010). Even a minute dose (0.01 mM) of exogenously 
applied H2S has enhanced the photosynthetic rate by increasing stomatal aperture 
and density in the case of Oryza sativa plants growing under normal conditions 
(Duan et al. 2015). Similarly, in Arabidopsis and fava bean, exogenous supplemen-
tation of AOA (H2S synthesis suppressor), Na2WO4 (NO synthesis suppressor) or 
cPTIO (NO chelator) showed that H2S acted as a downstream signalling molecule 
in NO-mediated signalling pathway that is involved in ethylene-induced stomatal 
closure (Hou et al. 2013; Liu et al. 2011). Certain reports also propose that under the 
elicitation of abscisic acid, H2S becomes accumulated intracellularly in a short 
period of time and further results in persulfidation of Cys825 and Cys890 residues 
of NADPH oxidase RBOHD, thus resulting in the ROS overproduction. This 
induces closing of stomata and also have negative control on persulfidation of 
RBOHD thus ultimately inhibiting ABA signalling (Shen et al. 2020). Moreover, 
H2S accumulated under the influence of ABA also regulates the persulfidation of 
SNRK2.6 (SNF1-RELATED PROTEIN KINASE 2.6), which is involved in regu-
lating ABA signalling to promote stomatal closure (Chen et al. 2020a). Therefore, 
based on all these data, it can be deduced that H2S, on one side acts as an activator 
of ABA signaling via persulfidation of SNRK2.6, but on other side acts as feedback 
regulator via persulfidation of RBOHD, thus having a control on stomatal movement.

9.4.4  Role of H2S in Delaying Senescence

Senescence is a process that involves programmed cell death in plants during ripen-
ing of fruits, leaves fall, and also under challenging conditions (Gregersen et  al. 
2013; Aroca et  al. 2021). This process is under the control of various phytohor-
mones and signalling molecules (Woo et al. 2018). H2S also regulates the process of 
senescence. For instance, senescent leaves of Spinacia oleracea were reported to 
contain a higher content of H2S when compared to young leaves, thus depicting the 
role of H2S in the senescence process (Chen et al. 2011). Furthermore, exogenous 
application of H2S (0.5 mM) suppressed the destruction of photosynthetic pigments 
by regulating dark-dependent reactions in Arabidopsis leaves. Additionally, it was 
also involved in the regulation of SAG1 and SAG2 under prolonged dark periods 
(Wei et al. 2017). However, in case of DES1 mutant Arabidopsis, SAG1, SAG2, and 
other transcription factors were reported to be expressed, thus resulting in prema-
ture leaf senescence. According to another report, deficiency of DES1 induced the 
lipidation and accretion of ATG8 (autophagy-related protein 8) (Alvarez et  al. 
2012). But the application of donor has been found to have a negative impact on 
autophagy in Arabidopsis (Gotor et al. 2013; Laureano-Marin et al. 2016). Thus, it 
can be summarized from the reports available that H2S is involved in modulating 
senescence by decreasing photosynthetic pigment degradation and ROS accumula-
tion, negatively modulating autophagy, and positively inducing the expression of 
SAG genes.
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9.4.5  H2S-Mediated Suppression of Organ Abscission

Abscission involves the withering of mature plant organs naturally from the plant 
itself. This natural phenomenon is related to maturation and senescence (Gulfishan 
et al. 2019). But under unfavorable conditions, premature or abnormal abscission 
also occurs in plants (Yasong et al. 2018). And it has been well documented that the 
process of abscission is regulated by various phytohormones like ethylene, auxin, 
and salicylic acid (Taylor and Whitelaw 2001). Out of all, ethylene acts as an essen-
tial inducer of abscission (Botton and Ruperti 2019; Meir et al. 2019). It also causes 
IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-induced abscission by 
impairing the expression of ADPG2 (ARABIDOPSIS DEHISCENCE ZONE 
POLYGALACTURONASE 2), an abscission related gene in Arabidopsis (Wang 
et  al. 2016). Various recent reports have revealed the participation of H2S in  
delaying the ethylene-induced abscission in tomato plants (Liu et  al. 2020a). 
Furthermore, H2S has been reported to play a vital role in the regulation of indole-
acetic acid- related genes thus, leading to enhanced aggregation of auxin in the 
abscission zone, which further results in delaying the abscission of the petiole  
(Liu et al. 2020a).

9.5  Role of Hydrogen Sulfide in Ameliorating Abiotic Stress 
in Plants

Since, the activity of various phytohormones and other signalling transmitters is 
induced in plants growing under stressed conditions. In such plants, H2S become 
also triggered and forms a signalling cascade. The stress alleviating potential of H2S 
in plants growing under adverse stress conditions is described in the following  
sections and in Table 9.1.

9.5.1  Salinity Stress

Salt stress causes a disastrous impact on growth and productivity of various crops. 
H2S has been reported to play an essential role in modulating the cellular processes 
in plants growing under salinity stress. As per the study, melatonin helps in inducing 
salinity resistance in pepper plants by triggering the levels of various antioxidants 
and H2S (Kaya et al. 2020a). In cucumber plants, supplementation of H2S provided 
salinity resistance in the plants growing under salt stress by modulating antioxidant 
activities and also by regulating Na+/K+ homeostasis (Jiang et al. 2019). Another 
study reported by Christou et  al. (2013), depicted that supplementation of H2S  
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alleviated salinity stress by modulating antioxidant and ascorbate/glutathione  
redox states in strawberries. Furthermore, H2S also participates in modulation of 
antioxidative species along with certain transcription factors like dehydration 
responsive element binding factor, salty overly sensitive gene, and glutathione/
ascorbate biosynthesis (Christou et al. 2013). Additionally, H2S has also been impli-
cated in the NO-induced signalling pathway that has a direct role in salt mitigation 
in plants (Wang et al. 2012).

9.5.2  Heavy Metal Stress

Various industrial and anthropogenic activities are responsible for the soil pollution. 
An excessive amount of heavy metal exposure of plants delays of seed germination 
and seedlings growth, modulation of the antioxidant system, induction of chromo-
somal aberrations, and in some cases plant death. Heavy metal toxicity also imposes 
secondary stress in plants like oxidative stress and nutrient imbalance. However, 
H2S treatment plays an essential role in the amelioration of heavy metal toxicity in 
plants. For instance, H2S alleviated aluminium stress in Brassica napus plants by 
enhancing biomass and levels of various nutrients (Ali et al. 2015). It has also been 
reported to safeguard B. rapa L. pekinensis plants growing under cadmium toxicity 
from oxidative stress and growth inhibition (Zhang et  al. 2015). The toxicity of 
mercury is controlled in rice plants by H2S which positively regulates the levels of 
heavy metal chelators like non-protein thiols and metallothioneins, thus, ultimately 
suppressing its transit to shoots and its accumulation in roots (He et  al. 2018). 
Additionally, H2S communicates with several other signalling molecules, to protect 
plants from heavy metal toxicity, e.g., H2S interacts with NO and helps Sesanum 
indicum plants to overcome lead stress by restricting absorption and transportation 
of lead throughout the plant (Amooaghaie and Enteshari 2017). In addition to this, 
H2S is also reported to inhibit zinc uptake by Solanum nigrum (Liu et al. 2016). 
Furthermore, the exogenous amendment of NaHS (H2S donor) also enhanced the 
germination rate in cadmium stressed wheat plants by modulating the activity of the 
antioxidative defense system of the plant. NaHS was also reported to mitigate 
copper- induced oxidative damage in Coriandrum sativum seedlings by promoting 
ascorbate, reduced glutathione, and dehydroascorbate contents in seedlings grown 
under copper stress (Karam and Keramat 2017). As per the reports of Kaya and 
Aslam (2020), integrated treatment of thiamine and NaHS mitigated cadmium tox-
icity in strawberry (Fragaria ananassa) plants. Rizwan et  al. (2019), found that 
NaHS treatment enabled rice plants to resist nickel toxicity by enhancing the rate of 
photosynthesis and also by regulating the metabolism of nitrogen, eventually 
enhancing the growth of rice plants.
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9.5.3  Drought Stress

Drought conditions affect plant growth and development because plant roots cannot 
absorb enough water from the soil to meet their needs for transpiration. Turgor pres-
sure in leaves lowers due to shortage of water, which limits cell expansion, increases 
leaf area and photosynthesis, and therefore, restricts biomass formation (Chaves 
et al. 2002). Under water shortage and other osmotic stresses, the accumulation of 
relevant osmoprotectants including sugar alcohols, soluble sugars, glycine-betaine, 
certain amino acids and proline may provide resistance to plants (Rivero et  al. 
2014). H2S also help plants to withstand drought conditions. In S. oleracea seed-
lings, treatment with NaHS enhanced stomatal conductance, and transpiration rate, 
and also increased RWC (relative water content) in leaves (Chen et  al. 2011). 
According to the reports of Jin et al. (2013), H2S plays an essential role in control-
ling the closure of the stomatal aperture in Arabidopsis growing under water-scarce 
conditions. Under such conditions, H2S modulates ion channel flow, which in turn 
impacts stomatal closure and turgor pressure. The K1 channel has been identified as 
the primary osmolyte implicated in the H2S-induced modulation of stomatal move-
ment in Arabidopsis (Jin et al. 2017). Additionally, it has been documented that H2S 
regulates the energy-producing ability of mitochondria and safe-guard A. thaliana 
plants against cellular aging by delaying the process of leaf senescence under water 
scarcity (Jin et  al. 2018). It has also been observed that H2S supplementation 
increased the enzymatic activity of catalase (CAT), superoxide dismutase (SOD), 
and peroxidases (PODs), thus suggesting the role of H2S in modulating antioxida-
tive defense system in plants to reduce the level of oxidative stress markers induced 
by water deficiency. A similar increase in glutathione reductase (GR), ascorbate 
peroxidase (APX), dehydroascorbate reductase (DHAR), and gamma-glutamyl cys-
teine synthase was reported in H2S treated wheat seedlings growing under the influ-
ence of water starving conditions (Shan et al. 2011). By modifying the expression 
of numerous drought-associated miRNA genes as miR398, miR396, miR393, and 
miR167, H2S increased Arabidopsis ability to withstand drought (Shen et al. 2013). 
In Citrus aurantium plants, exogenously applied NaHS increased the content of 
PTMs (post-translational modifications) and lowered leaf protein carbonylation, 
indicating the significance of NaHS in lowering protein oxidation under water 
scarce conditions (Ziogas et al. 2015).

9.5.4  Heat Stress

Temperature extremes are one of the main variables that restrict the growth and 
productivity of plants. High temperature increases the fluidity of lipids present  
in membranes and causes denaturation and aggregation of proteins that ultimately 
lead to deactivation of catalysts present in mitochondria and chloroplasts, thus 
resulting in disruption of protein synthesis, cellular damage, and perhaps cell death. 
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Heat tolerance metrics in plants include regrowth capacity, cell vitality, survival 
percentage, electrolyte leakage, and malondialdehyde concentration (Li et al. 2012). 
H2S is known to have a role in ameliorating heat stress in plants. For instance, H2S 
increased the activity of various enzymatic antioxidants like CAT, cytosolic ascor-
bate peroxidase (cAPX), and manganese superoxide dismutase (MnSOD), aquapo-
rins, and heat shock proteins gene expression in F. ananassa plants growing under 
high- temperature conditions (Christou et al. 2014). In response to heat stress, plants 
promote the accumulation of betaine, which is generated with the help of BADH 
(betaine dehydrogenase) enzyme. According to Li et al. (2015a, b), the exogenous 
treatment of NaHS greatly increased the BADH activity, thus resulting in the accu-
mulation of betaine, which further improved the survival rate of maize plants grown 
under high temperature. Furthermore, in Populus trichocarpa, the application of 
H2S donors reduced hydrogen peroxide and superoxide anion content produced due 
to heat stress, by modulating various enzymatic antioxidants, such as DHAR, mono-
dehydroascorbate reductase, GR, and APX (Cheng et al. 2018).

One of the most significant factors affecting agricultural output in cold climates 
is low temperature. Low-temperature signals are detected and transmitted by signal 
molecules, which are subsequently employed to mediate responses to cold stress by 
several physiological processes and transcription factors. In a study, it was discov-
ered that H2S increased the expression of mitogen-activated protein kinase, which in 
turn controlled the expression of genes that reduce cold stress in A. thaliana, includ-
ing inducer of C-repeat binding factor (ICE1), C repeat-binding factors (CBF3), 
cold-responsive 15A (COR15A), and cold-responsive 15B (COR15B) (Du et  al. 
2017). It is also reported to have a role in the cold stress response in V. vinifera, in 
which it lowered superoxide anion radical concentration, malondialdehyde content, 
and cell membrane relative permeability. H2S enhanced the expression of the gene 
that encodes cucurbitacin C (CuC) synthetase, thus raising the concentration of 
CuC (triterpenoid secondary metabolite) in C. sativus, which in turn aided in pro-
viding tolerance to plants against low-temperature circumstances (Liu et al. 2019a). 
Recently, it was seen that exogenously applied NaHS increased blueberry plant 
resistance to chilling stress by increasing chlorophyll and carotenoids synthesis, 
PSII and PSI activity, and improving various photosynthetic attributes including 
stomatal opening and photosynthetic carbon absorption capacity (Tang et al. 2020).

9.6  Interaction of H2S with Other Plant Hormones 
for Ameliorating the Effects Caused by Abiotic Stress 
in Plants

Involvement of H2S and plant hormones in plant growth and development as well as 
in the amelioration of various abiotic stresses has been widely studied (Corpas and 
Palma 2020; Khanna et al. 2021; Rhaman et al. 2021). Also, it is well known that 
H2S substantially interacts with phytohormones to ameliorate the effects of abiotic 
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stresses (Huang et al. 2021). This interaction of H2S leads to a complex signaling 
network in plant biology. However, the mechanism of interaction of H2S and plant 
hormones along with the detailed roles of H2S in signal transduction is not well 
understood. Under normal and stress conditions, the interaction entails two aspects 
of H2S-mediated plant hormone signaling, one in which H2S locates downstream  
in plant hormone signaling and the second is the plant hormones-mediated H2S 
signaling where hormones endeavor signalling role in the downstream of H2S  
(Li et al. 2021b) (Figs. 9.3 and 9.4).

9.6.1  Interaction of Hydrogen Sulfide 
with Stimulatory Phytohormones

In different plant species, the interplay of H2S with stimulatory phytohormones  
like gibberellic acid (GA) (Xie et al. 2013, 2014; Zhu et al. 2021), auxin (AUX) 
(Zhang et al. 2019; Xuan et al. 2020) and melatonin (MEL) (Gu et al. 2021; Rehaman 
et al. 2021; Sun et al. 2021) is involved in various physiological processes, such as 
germination, root growth, fruit ripening, and also abiotic stress resistance.

Fig. 9.3 H2S (hydrogen sulfide)-conciliated phytohormone signaling. GA gibberellic acid, AUX 
auxin, MEL melatonin, ABA abscisic acid, SA salicylic acid, ETH ethylene, JA jasmonic acid, LCD 
L-cysteine desufhydrase, DCD D-cysteine desulfhydrase, H2O2 Hydrogen peroxide, MDA malo-
ndialdehyde, Cd Cadmium, HT H2S scavenger hypotaurine, PAG DL-propargylglycine
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Fig. 9.4 Phytohormone-mediated H2S signaling. GA gibberellic acid, Cd Cadmium, HT H2S scav-
enger hypotaurine, PAG DL-propargylglycine, PCD Programmed cell death

9.6.1.1  Interaction of Hydrogen Sulfide with Gibberellic Acid

Gibberellic acid (GA) biosynthesized in the seeds, buds and roots play a major role 
in germination and cell elongation in plants. Interaction of H2S with GA has been 
extensively studied in inducing seed germination (Zhang et al. 2008, 2010b) and in 
ameliorating abiotic stress. NaHS and GA, either alone or, in combination increased 
wheat seed germination by modulating the activity of enzyme β-amylase in wheat 
plants (Zhang et al. 2010b). The activity of antioxidants and amylase was stimulated 
by NaHS in hypocotyls and radicles also in Cucumis sativus under cadmium stress 
(Yu et al. 2011). NaHS is also known to alleviate GA-triggered programmed cell 
death (PCD) by increasing the accumulation of endogenous H2S and reducing the 
functioning of L-cysteine desulfhydrase (LCD) in the wheat aleurone layer. In 
Solanum lycopersicum plants, boron toxicity leads to an increase in malondialde-
hyde, hydrogen peroxide, and endogenous H2S and a decrease in chlorophyll a, 
chlorophyll b, dry weight, water content, water potential, and photosynthetic quan-
tum yield. But the application of GA ameliorated these negative impacts of boron 
by reducing the content of malondialdehyde, hydrogen peroxide and increasing lev-
els of endogenous H2S. Surprisingly, NaHS further enhanced the GA-induced boron 
tolerance, but H2S scavenger blocked boron tolerance (Kaya et al. 2020b). These 
findings suggest that H2S regulates plant growth and development by interacting 
with GA under normal as well as under stress conditions.
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9.6.1.2  Interaction of Hydrogen Sulfide with Auxin

Auxins, mainly indole-3-acetic acid (IAA), are the most prominent plant hormones 
that significantly regulate plant growth and developmental processes like root 
growth, apical dominance, and vascular dominance (Wang et  al. 2001; 
Lymperopoulos et  al. 2018). Apart from growth promotion under normal condi-
tions, auxins are also known to modulate plant growth under different stress condi-
tions (Kazan 2013). In-plant cells, IAA homeostasis is maintained by the biosynthesis 
key enzymes LCD and D-cysteine desulfhydrase (DCD), compartmentalization, 
degradation, and conjugation of free IAA with soluble sugar, amino acids, etc. (Xu 
et al. 2010). The biosynthesis of IAA required for rhizogenesis and organogenesis 
is improved by H2S. H2S induces root development by influencing upstream auxin 
transduction signalling pathways (Zhang et al. 2009b). The interaction between H2S 
and IAA is associated with the sustenance of physiochemical processes and stress 
amelioration in plants (Jia et  al. 2015). In C. sativus explants, depletion of IAA 
resulted in the inhibition of adventitious root formation, while treatment with NaHS 
retrieved the inhibition (Lin et al. 2012). Similarly, in Ipomoea batatas, H2S stimu-
lated the development of adventitious roots, but IAA transport inhibitor enervated 
H2S-induced adventitious root formation. These studies indicate that H2S and IAA 
in auxin signalling assist in plant growth and development.

Interaction of IAA with H2S also ameliorates abiotic stress in plants. A study 
reported that H2S enhanced IAA content in seedlings of B. rapa seeded in normative 
and cadmium-toxic soil resulting in increased shoot and root fresh weight by 
12.98% and 23.65% respectively (Li et  al. 2021a). In C. sativus auxin acts as a 
downstream signalling molecule during H2S-induced chilling tolerance. Relative 
expression of YUCCA2 (flavin monooxygenase (FMO)-like protein) and the activ-
ity of FMO was significantly increased on the application of NaHS which in turn 
improved cold tolerance by increasing the level of endogenous IAA. Removal of 
H2S and application of IAA had hardly any effect on the signalling of other mole-
cules, but defence gene expression and H2S-induced cold tolerance were inhibited 
by the IAA polar transport inhibitor NPA (Zhang et al. 2020). Thus, IAA works as 
a downstream signalling molecule involved in H2S-mediated stress resistance in 
plants, while H2S assists auxin signal transduction through regulation of synthesis 
of auxin and expression of auxin-related genes thus intensifying the plant resistance 
to abiotic stresses.

9.6.1.3  Interaction of Hydrogen Sulfide with Melatonin

Melatonin (MEL) is an animal hormone regulating learning, memory, circadian 
rhythms, mood, retinal physiology, sleep, sexual behaviour, reproductive seasonal-
ity, etc. (Reiter 1998). In many plant species endogenous MEL was reported to play 
a critical role in growth and development of plants, and physiological processes 
such as seed germination, seedling formation and fruit ripening along with response 
and resistance to various environmental stresses (Nawaz et al. 2021; Zhang et al. 
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2021; Zhao et al. 2021). In cucumber (C. sativus) and tomato (S. lycopersicum), salt 
stress increased ROS burst and reduced photosynthetic parameters and chlorophyll 
fluorescence parameters (Fv/Fm), while a foliar spray of MEL in cucumber stimu-
lated the activity of different enzymatic antioxidants like CAT, SOD, APX, and 
POD which in turn ameliorated negative impacts of salt stress. In addition, exoge-
nous MEL in cucumber and tomato also increased the endogenous H2S content by 
significantly enhancing the activity of LCD/DCD but this increase was impaired by 
hypotaurine (HT; H2S scavenger) (Mukherjee and Bhatla 2021; Sun et al. 2021). 
Similarly, in pepper (Capsicum annuum), salt stress and iron deficiency reduced 
plant dry weight, chlorophyll contents, Fv/Fm, and fruit yield and increased oxida-
tive burst, while exogenous application of MEL alleviated this reduction by increas-
ing endogenous H2S level and stimulating the antioxidants like CAT, SOD, and 
POD, however, these positive effects of exogenous MEL were depleted by HT 
(Kaya et al. 2020a). Further, MEL confers Cd tolerance to plants by enhancing H2S 
production (Gu et  al. 2021). These reports indicate that MEL could ameliorate 
abiotic stress in plants by interacting with H2S, where H2S work as a downstream 
signaling molecule.

Further, H2S may also function as an upstream signaling molecule to MEL in 
ameliorating abiotic stress in plants. In osmotically stressed A. thaliana exogenous 
application of H2S significantly increased the level of endogenous MEL, thereby 
increasing relative water content, soluble sugar and proline content, stomatal closure, 
and reducing MDA content (Wang et al. 2021).

9.6.2  Interaction of H2S with Inhibitory Phytohormones

In addition to interaction with stimulatory phytohormones, H2S also interplay with 
inhibitory phytohormones like abscisic acid (ABA) (Li and Jin 2016; Zhang et al. 
2019), ethylene (ET) (Liu et al. 2020a), jasmonic acid (JA) (Deng et al. 2020; Yu 
et  al. 2021) and salicylic acid (SA) (Zanganeh et  al. 2019; Pan et  al. 2020) and 
affects the plant growth and development under normal and stressful conditions.

9.6.2.1  Interaction with Abscisic Acid

Abscisic acid (ABA) functions crucially in plant growth, development, and physi-
ological processes such as seed dormancy and plant senescence and also mitigates 
the negative impacts of different environmental stresses alone or/and by interacting 
with H2S (Xuan et al. 2020). Recently, participation of H2S in ABA-dependent sto-
matal closure was observed during studies on Impatiens walleriana, V. faba, and 
A. thaliana, where the exogenous supply of H2S enhanced the ABA-induced closing 
of stomata (Garcia-Mata and Lamattina 2010; Liu et al. 2011). Conversely, ABA 
was found to activate the expression and activity of LCD required for the generation 
of H2S (Jin and Pei 2016). In addition, exogenous treatment of ABA in heat-stressed 
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Nicotiana tabacum increased the activity of LCD leading to an increase in accumu-
lation of endogenous H2S, while HT and DL-propargylglycine (PAG; H2S-synthesis 
inhibitor) partially blocked this increase (Li and Jin 2016). Li et al. (2016) observed 
that priming NaHS and ABA reduced the ROS burst by activating the antioxidant 
defence system in cucumbers under chilling stress. Furthermore, in wheat (Triticum 
aestivum), NaHS treatment modulated biosynthesis and catabolism of ABA leading 
to an increase in accumulation of endogenous ABA, which sequentially triggered 
ABA-responsive gene expression, chased by a decrease in hydrogen peroxide con-
tent by stimulating antioxidative defense machinery (Ma et al. 2016). Additionally, 
in A. thaliana, exogenous administration of NaHS not just induced the gene expres-
sion of ABA receptors but also prompted persulfidation of ABA receptors under 
drought stress, while in Arabidopsis mutants lacking LCD, this induction was 
reduced (Aroca et al. 2018). Similarly, H2S deficiency in drought-stressed A. thali-
ana weakened the ABA-induced stomata closing by affecting expression levels of 
ABA receptors (Jin et  al. 2013). Similar findings were reported by Chen et  al. 
(2020a) who also observed that H2S triggers ABA-induced stomatal closure. These 
studies indicate that H2S interacts with ABA and employs its signaling role by locat-
ing upstream or/and downstream of ABA in ameliorating abiotic stress in plants.

9.6.2.2  Interaction with Ethylene

Ethylene (ET), is a gaseous plant hormone known to play a pivotal role in seed 
germination, stomatal movement, flowering, fruit ripening, organ maturation, 
senescence, and resistance to environmental stress in plants (Iqbal et al. 2017). H2S, 
which is also a gaseous signaling molecule, also plays vital role in various physio-
logical activities (Li et al. 2016; Banerjee et al. 2018). The interaction of these two 
molecules synergizes to benefit growth and development of plants during usual and 
stressful state. The production rate of ET is determined by 1-aminocyclopropane- 1-
carboxylic acid (ACC), ACC oxidase, and ACC synthase activities (Barry et  al. 
2000). In V. faba exogenous application of ET donor (ethephon) induced the activity 
of LCD/DCD leading to an increase in H2S accumulation in guard cells leading to 
stomatal closure, while PAG blocked the ET-induced stomata closure (Liu et  al. 
2012). Similarly, treating A. thaliana with ACC leads to accumulation of endoge-
nous H2S and induced closing of stomata (Hou et  al. 2013). In addition, under 
osmotic stress, ET-induced stomatal closure was mediated by the generation of H2S 
inside guard cells of S. lycopersicum, while HT and PAG eliminated the positive 
effects of ET. Similarly, endogenous H2S was found to play an important role in 
ET-induced amelioration of chromium stress in Vigna radiata and V. mungo, while 
the application of PAG increases Cr toxicity (Husain et al. 2021).

Also, ET fumigation leads to an increase in ROS and malondialdehyde in fruits 
and results in fruit ripening, while fumigation with H2S can mitigate ET-persuaded 
fruit softening. For example, in kiwifruit, fumigation of H2S and ET effectively 
controlled the fruit softening by increasing the content of starch, soluble protein, 
titratable acid, ascorbic acid and reducing sugar. Additionally, H2S and ET 
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application stimulates the defence system in form of antioxidant enzymes (CAT and 
APX) and reduces the osmotic stress in plants. Further, it is found that the expres-
sion of ET-synthesis genes is inhibited by H2S (Li et al. 2017). Similarly, exogenous 
application of H2S can reverse the ET-induced abscission of the rose (Rosa rugosa) 
floral organ and tomato (S. lycopersicum L.) petiole, as well as lily (Lilium brownii) 
anther dehiscence. These results indicate that H2S interacts with ET and strives its 
signalling part downstream and/or upstream to ET under various conditions 
in plants.

9.6.2.3  Interaction with Salicylic Acid

Salicylic acid (SA) plays an important role in various metabolic processes in plants 
such as photosynthesis (Tang et al. 2017), AsA-GSH cycle regulation (Yan et al. 
2018), and ROS detoxification (Li et al. 2019). H2S is also found to play an impor-
tant role in ROS detoxification and AsA-GSH cycle regulation (Liu et al. 2019b; 
Chen et al. 2020b; Li 2020). This overlap of functions between SA and H2S indi-
cates an interaction between them in some metabolic pathways. Although the pic-
ture is not clear, various studies have been done to evaluate the response of plant 
against SA under various conditions like in maize under water stress (Loutfy et al. 
2020), in sunflower under salinity stress (Noreen et al. 2017) and under Pb stress in 
basil (Padash et al. 2019), B. juncea (Kohli et al. 2019) and N. tabacum (Halim and 
Phang 2017). Similarly, studies have been done to evaluate the response of A. thali-
ana and cucumber plants growing under drought and salinity stress, respectively 
against H2S treatment (Du et al. 2019; Jiang et al. 2019). H2S and SA play a key role 
in mitigating abiotic stresses, especially heavy metal toxicity (Khan et  al. 2014; 
Chen et al. 2017). At the same time, few reports claim that in pepper plants, H2S and 
SA work together to mitigate oxidative stress by regulating the AsA-GSH cycle 
(Kaya 2021). Researchers have also found that the endogenous level of SA remains 
unaffected upon removal of endogenous H2S with DL-propargylglycine and hypo-
taurine but SA induced level of H2S activated the level of L-/D-cysteine desulfhy-
drase (L-/D-CD) mRNA; which indicates a role of H2S in SA signalling. Studies 
also report that both H2S and SA enhance the level of mRNA in the case of POD, 
SOD, CAT, GR, and APX. H2S modulates chilling-response genes and antioxidant 
system and acts as a downstream signalling molecule in chilling tolerance induced 
by SA in cucumber plants (Pan et al., 2020).

9.6.2.4  Interaction with Jasmonic Acid

Jasmonic acid (JA) regulates various processes in plants like growth, germination, 
development, stimulates senescence, and provides immunity to plants against biotic 
stress. The downstream activity of JASMONATE ZIM-domain (JAZ) activates tran-
scription factors which lead to JA response (Ruan et al. 2019). Studies have shown 
that JA induces the activity of DCD or LCD which further promote H2S content. 
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Moreover, H2S also participates in stomatal closure triggered by JA (Hou et  al. 
2011). The stomatal activity involves five transcription factors namely SPEECHLESS 
(SPCH) (MacAlister et al. 2007), MUTE (Pillitteri et al. 2007), FAMA (bHLH097), 
(Ohashi-Ito and Bergmann 2006), SCRM2 and ICE1/SCREAM (SCRM) (Kanaoka 
et al. 2008). Studies have reported that JA mediates the positive regulation of endog-
enous H2S content, LCD expression, and L-cysteine desulfhydrases (LCDs) activity. 
H2S functions upstream of the SPEECHLESS and downstream of TMM (TOO 
MANY MOUTHS) and SDD1 (STOMATAL DENSITY AND DISTRIBUTION1) 
which are important components of signalling pathways related to stomata. This 
suppression of genes related to stomata by H2S shows that both JA and H2S coordi-
nate to regulate stomatal activity (Deng et al. 2020). Studies on leaves of A. thali-
ana, have also shown that regulation of glutathione and ascorbate metabolism by JA 
is mediated by H2S (Shan et al. 2018).

9.7  Conclusion

H2S, a lipophilic gas transmitter plays a pivotal role in various cellular processes of 
plants. The role of H2S in germination, root elongation, opening and closing of sto-
mata, growth, and senescence has been well documented. In addition to this, H2S 
also ameliorates plant responses against different types of stresses like chilling, high 
temperature, drought, flooding, heavy metal, and salinity stress. Moreover, H2S also 
crosstalks with inhibitory as well as stimulatory phytohormones that helps in regu-
lating different stresses, reduce oxidative damage, and modulates the activity of the 
antioxidant defense system, thereby helping in the sustainable production of crops 
even under unfavourable conditions. However, various transcriptomics, proteomics, 
and metabolomics studies should be performed in the near future to understand the 
detailed potential of H2S in modulating plant defense systems against different 
stressors.
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Chapter 10
Gasotransmitter Hydrogen Sulfide (H2S) 
and Its Role in Plant Development 
and Defense Responses Against Abiotic 
Stress

Aditi Sahariya, Chellapilla Bharadwaj, and Afroz Alam

Abstract Abiotic stresses are among the potent threats to plant production and 
growth. The abiotic stresses are accountable for the obstruction of biological redox 
homeostasis, oxidative stress, and formation of reactive oxygen species (ROS) in 
the plants. From sprouting and growth to the reproductive stage, plants are routinely 
opened to several abiotic challenges, including temperature, heavy metal, salt, and 
drought pressures. Certain defense mechanisms exist in plants that provide definite 
and precise signaling in the metabolic pathways to combat and survive. Among 
these signaling molecules, hydrogen sulfide (H2S) is recognized as a useful ‘gaso-
transmitter’ which has been emerged as a vital gaseous signal in regulating gene 
expression under various abiotic stresses. Though, the defensive role of this gaso-
transmitter is almost established, yet its precise role in plants remains a point to 
discuss more and more considering recent advancements related to plant and envi-
ronment interactions. Hence, this chapter attempts to provide an insight into the 
various roles of H2S as a gasotransmitter to assist plant adaptations under challeng-
ing abiotic conditions.
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10.1  Introduction

Salt, heavy metals, high or low temperature, UV irradiation, osmotic or drought are 
some of the abiotic stresses that plants face in nature. Abiotic stress causes changes 
in plant height, leaf shape, and stomata openness, according to several studies (Shen 
et al. 2011; Ali et al. 2017; Jin et al. 2017). Abiotic stresses also disrupt plant physi-
ological metabolism, causing changes in the levels of electrolyte leakage, proline, 
hydrogen peroxide, and malondialdehyde (Chen et  al. 2017; Sun et  al. 2018). 
Simultaneously, reactive oxygen species (ROS) production is a common element in 
plants; reactions to abiotic stresses as the pursuit of some antioxidant enzymes 
change (Fatma et al. 2016; Wu et al. 2015). Salt, droughts, heavy metal toxicity, and 
high- and low-temperature stressors are the key environmental conditions that nega-
tively affect plant physiology and output (Paul and Roychoudhury 2019). Drought 
stress and salt both cause oxidative destruction, also salinity causes significant Na+ 
ion toxicity as well as osmotic and nitrosative stresses generated by reactive nitro-
gen species (Valderrama et al. 2007). Membrane breakdown, electrolyte discharge, 
and changes in photosynthetic latent cause cellular function to be interrupted. Plant 
defense processes rely on a vast family of genes that express themselves in response 
to a variety of stressors (Serra et al. 2015; Yang et al. 2018). H2S protects plants 
from salt stress by reducing hydrogen peroxide (H2O2) accumulation, regulating 
membrane stability and antioxidant systems in mitochondria. These reports show 
that H2S has a positive effect on plant physiology.

On the other hand, H2S is involved in the defense mechanisms of plants against 
various abiotic stresses, including osmotic stress, drought stress, salt stress, 
extremely high- or low-temperature stress, and metalloids stress, by reducing reac-
tive oxygen species (ROS) accumulation and actively mobilizing bioactive proteins, 
such as post-translational modification (PTM), as represented by S-sulfhydration 
(Table 10.1).

Small gas molecules produced by organisms and used to transmit biological sig-
nals are known as gasotransmitters. Gasotransmitter research is advancing at a rapid 
pace, and knowledge about their potential in biology and medicine is growing. 
Gasotransmitters have long been a source of fascination in a variety of professions. 
The role of gasotransmitters in modulating stomatal closure as part of the plant’s 
innate immune response to protect against biotic/abiotic stress conditions has 
attracted a consideration in the past two decades (García-Mata and Lamattina 2013). 
Endogenous gasotransmitter emissions in plants have recently been extensively 
examined and evaluated, yielding knowledge that will aid our comprehension of 
new gasotransmitter signaling pathways. Plants typically generate these gasotrans-
mitters in response to abiotic stresses, conforming to earlier research (Abdulmajeed 
et al. 2017; Cui et al. 2017; Xu et al. 2017). Carbon monoxide (CO), hydrogen sul-
fide (H2S), and nitric oxide (NO) are the three gasotransmitters that have received 
the most attention so far in plants (García-Mata and Lamattina 2013). However, 
unlike NO and H2S, the ecology of CO in this biological activity is as much well 
understood. As a result, the focus of this chapter will be on the activity and interac-
tion of H2S.
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Table 10.1 Effects of various stresses on different plant species and its relationship with H2S

Plant species H2S donors Stresses
Effects on 
plants

Stress and H2S 
relation References

Alfalfa 
(Medicago 
sativum L.)

Sodium 
hydrosulfide 
(NaSH)

Heavy 
metals

Produces toxins 
in plants, which 
prevents them 
from growing 
and developing

Production of 
cellular enzymatic 
and non- 
enzymatic 
antioxidants

Cui et al. 
(2013, 2017) 
and Arif 
et al. (2021)

Cucumber 
(Cucumis 
sativus L.)

Sodium 
hydrosulfide 
(NaSH)

Salinity Causes growth 
retardation 
resulting into 
poor 
development of 
plants

Reduces 
salt-stressed 
plants’ oxidative 
stress

da-Silva and 
Modolo 
(2017)

Coriander 
(Coriandrum 
sativum L.)

Sodium 
hydrosulfide 
(NaSH)

Drought Disrupts cell 
integrity, causes 
osmotic and 
oxidative stress, 
destroys PS II, 
and has a 
undesirable 
influence on 
overall progress 
of the plant

Osmoprotectant 
accumulation

Thakur and 
Anand 
(2021)

Glutathione 
production

Calderwood 
and Kopriva 
(2014)

Pea (Pisum 
sativum L.)

Sodium 
hydrosulfide 
(NaSH)

Radiation Negatively 
impacts the 
general 
development 
and growth of 
plants

Production of 
UV-absorbing 
substances, 
specific ROS 
scavengers, and 
other antioxidant 
enzymes

Jasrotia 
(2021)

Blueberry 
(Vaccinium 
sect. 
Cyanococcus)

Sodium 
hydrosulfide 
(NaSH)

Low or high 
temperature 
stress

Affects gaseous 
exchange

Helpful in leaf 
exchange gas, 
lowering 
photo-inhibition 
of PSII and PSI, 
and boosts proline 
concentration

Zulfiqar and 
Hancock 
(2020)

Recently, H2S got the recognition as a novel gasotransmitter with many functions 
that are comparable to those of NO. Depending on their relative concentrations, any 
of these compounds acts as a signal or as a promoter of damage in plants (Corpas 
et al. 2019a). Sulfur-containing substance hydrogen sulfide (H2S) is recognized to 
partake in plants’ responses to a variety of stresses, viz., drought, osmotic, heavy 
metal, salt, and temperature. Hydrogen sulfide can efficiently mediate numerous 
pathways of plant response to diverse abiotic stressors and can regulate the antioxi-
dant defence system. H2S has the ability to move to various portions of the plant 
cells and balance the antioxidant pools by delivering sulfur to cells because of its 
gaseous nature and it has also exhibited resistance against plenty of detrimental 
environmental conditions like drought, salt, high temperature, chilling, heavy 
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metals, and flood through a change in the levels of osmolytes, malondialdehyde 
(MDA), sodium/potassium ions uptake, the mechanism of H2S biosynthesis, and the 
activities of antioxidative enzymes (Pandey and Gautam 2020).

10.2  Hydrogen Sulfide (H2S)

H2S as a signalling molecule controls the essential functions and enables plants to 
withstand harsh environmental situations. This action is caused by its chemical 
reactivity, and the best-studied mode is persulfidation, which encompasses change 
in protein thiol groups to produce persulfide groups (Aroca et al. 2021). Continuously, 
H2S was thought to be a poisonous gas. It has been noticed that doses as low as 
50 ppm are capable to produce tunica conjunctival, and greater quantities can be 
fatal in human (Reiffenstein et al. 1992). The basic procedure of H2S lethality is the 
blockade of cytochrome c oxidase activity, which inhibits mitochondrial respiration 
(Dorman et al. 2002; Mancardi et al. 2009). H2S has also been identified as a harm-
ful chemical in plants. Several crop plants that were constantly fumigated with high 
amounts of H2S (3000 ppb) displayed leaf damage, death of delicate species, and 
lessened growth, proving that H2S is harmful. Nonetheless, fumigation with lower 
quantities of H2S, such as 30–100 ppb, stimulated the development of several plant 
species significantly (Thompson and Kats 1978).

H2S is regarded to be a critical signaling molecule, and research into its functions 
in plants is gaining traction (Hancock and Whiteman 2014). Heavy metal stresses, 
temperature, and drought are only a few of the abiotic factors that cause H2S pro-
duction (Hancock 2019). Drought stress causes H2S generation in Arabidopsis 
thaliana, according to several studies (Jin et al. 2011). Meanwhile, in wheat under 
drought stress, abscisic acid (ABA) treatment refines endogenous H2S concentra-
tion (Ma et al. 2016). Furthermore, there is rising evidences that temperature stresses 
cause the delivery of H2S in grapes (Fu et al. 2013) and cucumbers (Liu et al. 2019). 
High temperatures quickly induce H2S production in poplars (Cheng et al. 2018). 
Shi et al. (2014) observed that the cadmium (Cd) treatment causes H2S to be pro-
duced in Bermuda grass. H2S generation was similarly stimulated by lead exposure 
in cauliflower (Chen et al. 2018; Cheng et al. 2018). Nickel (Ni) stress enhanced 
H2S levels in zucchini. Under osmotic stress, wheat seedlings emitted H2S (Khan 
et al. 2017). H2S is produced by glyphosate in Arabidopsis (Corpas et al. 2019b). 
Surprisingly, Aghdam et al. (2018) reported that treating fruits of hawthorn with 
exogenous H2S when they are under cold stress can cause H2S to be released. 
Therefore, it was postulated that L-cysteine is the source of H2S in the presence of 
hydrogen cyanide, in a reaction catalyzed by ß-cyanoalanine synthase in plants. 
However, its generation under abiotic stress requires further research (Jost 
et al. 2000).
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10.2.1  Chemistry of H2S

It is crucial to understand the chemistry of H2S in order to comprehend its various 
impacts and ways of action. H2S is in equipoise with its anions, 2 H+ and S2−, in 
liquid solution and at physiological pH, however the potency of S is low (Li and 
Lancaster 2013). Because the active form has yet to be determined, H2S is used to 
represent all three species. H2S is an interesting biological compound because it has 
two key biochemical features that provide its physiological role: it is both a nucleo-
phile and a reductant (Li and Lancaster 2013). H2S does not require a receptor to 
conduct its biological activity because its solvability in lipophilic solvents is five 
times larger than in water, allowing it to readily permeate lipid membranes (Wang 
2002). Almost all physiological processes, such as guard cell movements, seed ger-
mination, root growth, fruit ripening, senescence, and methods of response to abi-
otic and biotic stimuli, are now recognized to involve H2S (Corpas et al. 2021).

10.2.2  Sources of H2S

Plants have also been found to produce H2S from L-cysteine. A cysotolic L-cysteine 
desulfhydrase 1 enzyme (DES1) has been identified in A. thaliana (González-Gordo 
et al. 2020). It catalyzes the conversion of L- cysteine to pyruvate, ammonia and 
H2S (Alvarez et al. 2010). Plants may have additional sources of H2S since DES1 
null mutants produce about 30% less endogenous sulfide. However, even though the 
existence of D-cysteine inside the cell is still disputed, two D-cysteine desulfhy-
drases have been recognized (Papenbrock et al. 2007).

10.2.3  Hydrogen Sulfide Homeostasis in Plants

In addition to carbon monoxide and nitric oxide, hydrogen sulphide is acknowl-
edged as the third endogenous gasotransmitter in plants. A colorless gas with a 
potent stench, known as H2S, may be easily detected in the environment. Originally 
thought to be a phytotoxic gas, its function as a signalling molecule within plant 
cells has recently gained widespread recognition. H2S can also be added externally 
to plants using a contributor such sodium hydrosulfide (NaHS), in addition to its 
endogenous availability. By maintaining physiological homeostasis through con-
trolled stomatal conductance, photosynthesis, relative water content, respiration, 
and mineral nutrition, H2S positively influences plant progress and development 
(Filipovic and Jovanović 2017).

Low quantities of H2S can effectively manage the physiological homeostasis. 
Antioxidant levels frequently change within plant cells in reponse to abiotic and 
biotic stressors. Under adverse circumstances, external H2S supply in the form of 
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NaHS upholds the antioxidants and antioxidative enzyme reservoir. The H2S 
homeostasis is influencing the responses of genes and proteins at the cellular level 
as well as the gene products involved in cell defence, transcription factors, and sig-
nal transduction. During post-translational modifications, H2S also plays a crucial 
role in the induction of cysteine persulfidation (Filipovic et al. 2018).

L-cysteine desulfhydrase catalyzes the conversion of L-cysteine to pyruvate and 
ammonia, which results in the formation of H2S (Alvarez et al. 2010), as indicated 
above. In Arabidopsis, this mechanism is mediated by the DES1 gene (Alvarez et al. 
2010; Scuffi et al. 2014), the AtLCDES gene (Jin et al. 2011), and the L-C Des gene 
(Hou et al. 2013). Recent research has shown that the presence of these genes is 
increased in response to the stomatal motility regulators ABA, ethylene, jasmonic 
acid, and salicylic acid (Hou et al. 2013). Nevertheless, analysis of the sequence 
showed that the DES1 gene promoter contains ABA-responsive regions (Scuffi 
et  al. 2014), To clearly understand how these hormones induce gene expression, 
more investigation is necessary. It has been confirmed that H2S balances the move-
ment of K+ in channels in a way that it is independent of ABA and Ca2+ when DES1 
has been shown to facilitate ABA-dependent closure of stomata (Scuffi et al. 2014), 
signifying the presence of an ABA-regulated signalling pathway that can be trig-
gered in reply to other impetuses (Papanatsiou et  al. 2015). The amount of H2S 
needed for spore germination under challenging conditions was quantified, and it 
was observed that when seeds and ensuing roots of bean, pea, wheat, and maize 
were exposed to 10–100 mM H2S solutions, the germination rates increased with 
shorter germination times and larger seedlings were developed compared to con-
trols. All H2S -pretreated plants had larger overall mass, roots, and fruits (Xuan 
et al. 2020).

10.2.4  H2S Physiology in Guard Cells

H2S role in guard cell signalling was first reported in 2010, and further research has 
shown that it increases guard cells closure in a few plant species (García-Mata and 
Lamattina 2013; Su et al. 2014; Papanatsiou et al. 2015). DES1 in Arabidopsis pro-
duces H2S in response to ABA. H2S then promotes the synthesis of endogenous 
nitric oxide (NO) (Scuffi et al. 2014). The process of stomatal closure is defective in 
the nia1/nia2 double mutant. Additionally, it was discovered that both genes expres-
sion was elevated by H2S donors, proving that nitrate reductase (NR) is important in 
NO production which is dependent on H2S (Scuffi et al. 2014).

H2S is required for the ABA-induced NO production, and acts as upstream of NO 
in ABA-dependent stomatal closure. H2S is required for the ABA-induced NO pro-
duction, and acts as upstream of NO in ABA-dependent stomatal closure (Lisjak 
et al. 2010, 2011). Unusually, H2S has been found to affect stomatal closure, but NO 
has been proven to work before H2S (Hou et al. 2013; Liu et al. 2019). Along with 
NR, a few substances have been discovered to be H2S targets during the induction 
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of stomatal closure. One of these substances is: (i) AtMRP5, an extreme of the mul-
tidrug resistance protein family that has been proposed as a regulator of Ca2+ and 
anion passage (Suh et al. 2007; García-Mata and Lamattina 2010); (ii) K+ in chan-
nels, which are stalled by H2S in an ABA-independent manner (Papanatsiou et al. 
2015); and (iii) 8-nitro cGMP, which interacts with H2S to produce 8-mercapto 
CGMP, which is employed to modulate cytosolic [Ca2+] (Honda et al. 2015).

ROS function as second messengers in guard cell reactions to most stimuli that 
elicit stomatal closure. NADPH oxidase (RBOH) is a key enzyme in the production 
of ROS from the outer side of the plasma membrane and is a homolog of the mam-
malian 91-kD glycoprotein subunit of phagocyte oxidase (gp91phox) (Shen et al. 
2020). H2S have signaling properties through protein post-translational modifica-
tions (PTMs) and by their crosstalk with other cellular compounds, including phy-
tohormones, hydrogen peroxide, or calcium, among others (Mishra et al. 2021).

10.2.5  H2S-Based Reactions

There is an inadequate comprehension of H2S physiological effects, particularly in 
plants and the proposed mechanism currently relies primarily on its chemical fea-
tures. Because of its nucleophilic nature, it can react with O2, H2O2 and peroxyni-
trite indicating a function in lowering cellular oxidative stress (Kabil and Banerjee 
2010; Fukuto et al. 2012; Aroca et al. 2015). Persulfidation is a type of PTM that 
involves cysteine residue and results in the formation of persulfide (Paul and Snyder 
2012; Aroca et al. 2015). It can be triggered by a variety of natural actions. The 
emergence of the SH thiols and SSH persulfide groups is aided by the dissociation 
constant pKa, which is determined by the ambient environment of the cysteine resi-
due. The latter has an indestructible nucleophilic capacity for considerable chemical 
tendency. Because of its lower pKa, SSH becomes more active hydrogen donors 
under physiological pH circumstances than SH (Paul and Snyder 2012; Zhang 
et al. 2017).

H2S does not directly interact with the -SH protein; instead, it reacts with sulfenic 
acids to create RSSH groups, which are identified by protein Tyr phosphatase 1B 
(PTP1B) during the endoplasmic reticulum stress response (Krishnan et al. 2011). 
Recent studies have shown that H2S can interact with -SH proteins by creating an 
RSSH pathway from the sulfane sulphur that is formed by the interaction of oxygen 
with oxygen (Toohey 2011, 2012; Aroca et al. 2015). By adding sulfane sulphur to 
the cysteine residue in the active site, Nagahara and Wróbel (2020) postulated that 
polysulfides arranged in the NaHS solutions interact as oxidants and trigger the 
rapid alterable oxidation of lipid phosphatase. According to preliminary studies, 
S-nitrosation of proteins impairs their functionality (Zaffagnini et al. 2013), whilst 
persulfidation can operate (Vandiver et al. 2013) or block (Krishnan et al. 2011) the 
protein’s functionality.
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10.2.6  Regulation of Photosynthesis

H2S has a role in several physiological processes, including photosynthesis. 
However, cyanobacteria Aphanothece halophytica, Synechococcus, and tobacco 
chloroplasts are inhibited by sulfide at greater concentrations (1 mM), while red 
mangrove (Rhizophora mangle) development and photosynthesis are significantly 
impacted at an accumulation of 2 mM (Lin and Sternberg 1992). Conversely, H2S 
controls photosynthesis in plants at lower concentrations. Pre-treating fresh vegeta-
bles with gaseous H2S has a considerable impact on ascorbic acid content holding 
during drying under hot air, including kale (Brassica oleracea var. sabellica), cab-
bage (Brassica oleracea), and parsley (Petroselinum crispum) (Petersen 1948). 
Later, Joshi et al. (1975) demonstrated that exogenous H2S decreases the root respi-
ration and oxidative capacity of the rice plant (Oryza sativa) as well as altering a 
variety of physiological parameters in several rice cultivars. However, there has 
been a significant rise in research into its function in higher plant physiology over 
the past few years (Corpas and Palma 2020).

10.3  Established Roles of H2S in Plant Metabolism

To date many important involvements of the gasotransmitter H2S have been estab-
lished in the defense strategies of the plant, starting from the germination to the 
maturation of fruits (Fig. 10.1). Here all those roles are discussed.

10.3.1  Role of H2S in Fruit Ripening

Fruit ripening is a highly coordinated, genetically programmed, and an irreversible 
phenomenon involving a series of physiological, biochemical, and organoleptic 
changes, that finally leads to the development of a soft edible ripe fruit with desirable 
quality attributes. Hydrogen sulfide (H2S) in association with the two other potential 
signaling molecules, viz., nitric oxide (NO), and melatonin plays a vital role in 
numerous biological events of plants (Liu and Xue 2021). The association of these 
three molecules interacts with ethylene, an imperative enhancer to complete the pro-
cess of fruit ripening. Furthermore, all these three molecules also interact with each 
other in controlling the delay in ripening and subsequent senescence during pre-
harvest and post-storage phases in numerous fruit crops. These molecules are known 
to be incredible latent to save the economically important postharvest quality as they 
can conquer the fruit senescence under variable storing environments.

Hydrogen sulfide (H2S) has been shown to reduce damage induced by biotic and 
abiotic stresses, regulate the ripening and postharvest storage of climacteric and 
non-climacteric fruits and vegetables, thus maintaining the nutritional and edible 
value of postharvest fruits and vegetables. All these characteristics are frequently 
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Fig. 10.1 Contribution of gasotransmitter H2S during various stresses and its impact of plant 
defense. Hydrogen sulfide (H2S) signaling activates a cascade of biochemical events that enhance 
plants’ tolerance to abiotic and biotic stresses, such as controlling reactive oxygen species, activat-
ing the antioxidant defense system, cytosolic osmoprotectants accumulation, and induction of Ca2+ 
increase in cytosol

linked to oxidative stress, and numerous studies have demonstrated that the exoge-
nous administration of H2S could prolong the shelf life of a wide variety of fruits, 
vegetables, and flowers (Corpas and Palma 2020).

10.3.2  Hydrogen Sulfide in Lessening Oxidative Stress

The adverse abiotic conditions negatively affect the growth and quality of crop 
plants, this decrease in net yield is well studied? as a global environmental concern. 
Under abiotic stress, hydrogen sulfide can regulate the plant physiology as a gaso-
transmitter. Numerous studies have shown that by reducing cellular damage and 
noxiousness, H2S could improve plants’ ability to adapt to varied environmental 
pressure scenarios. There have been previous reports on the function of H2S in spe-
cific physiological and metabolic processes, viz., stomatal cycles of opening and 
closing, seed sprouting, improved photosynthesis, and maturation of lateral roots 
(Corpas and Palma 2020). It has been shown that H2S can provoke numerous pro-
tection strategies under the conditions of abiotic stress. Furthermore, an exogenous 
supply of H2S alleviates plant impairment from oxidative stress by exciting numer-
ous enzymatic and non-enzymatic components. H2S dealing recovers the action of 
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antioxidative enzymes to counteract excessive production of ROS and shield the 
cell from oxidative harm.

10.3.3  H2S Can Regulate the Heavy Metal Stress Toxicity

A significant environmental pollutant that threatens both human health and plant 
growth is heavy metal contamination. Initially thought to be poisonous to plants, the 
gasotransmitter H2S has lately been found to have several functions in the control of 
healthy plant growth and development (Huang et al. 2021). As a gasotransmitter, 
H2S exerts a beneficial influence on the growth, development, and stress tolerance 
of plants. It skillfully promotes the production of cellular enzyme- and non-enzyme- 
based antioxidants. Heavy metal stress causes endogenous H2S production in cases 
of soil, water, and air contamination with heavy metals, and H2S lessens the effects 
of metal toxicity on plants (Arif et al. 2021).

10.3.4  Hydrogen Sulfide and Lateral Root Development 
in Plants

One of the compounds that helps the plant withstand stressors is H2S. Plant growth- 
related H2S signalling is exceedingly complex. By causing oscillations in the trans-
port and dispersal of auxins, which are responsible for root formation, this 
gasotransmitter interacts with auxin and actin-binding proteins to regulate root 
growth. H2S is therefore crucial for root growth and development under stress as a 
signalling molecule (Khalid et al. 2021).

10.3.5  Hydrogen Sulfide Interacts with Nitric Oxide 
under Stress

Like nitric oxide (NO), it has been demonstrated that low levels of H2S may have 
positive effects on stressed plants. Additionally, it appears that these gases play a 
variety of physiological roles during the plant life cycle, including seed sprouting, 
stomatal activity, and senescence. NO, a messenger molecule, is hypothesized to 
function in a variety of ways in plants under physiological, pathogenic, and adverse 
environmental conditions. Recently, it was discovered that H2S is a novel gasotrans-
mitter with many functions that are comparable to NO. Depending on their relative 
concentrations, both compounds act as signals or damage promoters in plants either 
cooperatively or antagonistically. Despite this, research indicates that the complex 
biological relationships between NO and H2S involve numerous pathways, depend 
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on plant organ and species, and are affected by experimental conditions. Studies in 
proteomics and biochemistry have revealed that certain target proteins have post- 
translational modifications such as S-nitrosation, which is brought on by NO, and 
persulfidation, which is brought on by H2S, both of which have an impact on plant 
functionality (Corpas et al. 2019).

10.3.6  Gene Regulation by H2S in Plants

It is generally understood that hydrogen sulfide is a crucial, multipurpose gaseous 
signalling molecule that affects a variety of biochemical and molecular processes in 
most plants. A key process by which plants manage the systematic programmes of 
progressive transformation, metabolism, and resistance is the transcriptional regula-
tion of genes (Iranbakhsh et al. 2021). The coordinated systems of several signalling 
channels cause the desired responses in plants to ecological variables. Perception of 
an indication and its subsequent transduction are associated with systematic partici-
pations of an excess of regulatory components, including transcription factors, miR-
NAs, and epigenetic chromatin-remodeling systems. The focus of current research 
is on the role of H2S in the multilayered pre-, transcriptional, and post- transcriptional 
stages of gene programme modifications. Discovering how H2S interacts with miR-
NAs, transcription factors, epigenetic changes, and signal transmission is equally 
important. In addition, research is being done on how H2S interacts with Ca2+, phy-
tohormones, and other signalling molecules (Pandey and Gautam 2020).

10.3.7  Hydrogen Sulfide in Salinity Stress

One of the biggest environmental threats to horticulture and agriculture around the 
world is salt stress. High salt levels result in phytotoxicity, which is seen as general 
plant growth slowdown and poor development. It is now well established that H2S 
controls plant metabolism and growth. Additionally, H2S is crucial in protecting 
plants from the harmful effects of salt pressure (Srivastava et al. 2022).

Plants that can survive a variety of stressors, including excessive salinity, are 
regulated by H2S in a few physiological processes. The oxidative burst, which leads 
to an increase in electrolyte leakage, lipid peroxidation, and protein oxidation, is 
one of the first processes triggered in plant cells in response to salt stress. In fact, 
one of H2S most well-studied effects is its ability to lessen oxidative damage in 
plants under salt stress. In stressed cucumber seedlings, treatment with sodium 
hydrosulfide (NaHS) (an H2S -donor) increased the activity of superoxide dismutase 
(SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), 
glutathione peroxidases (GPX), and dehydroascorbate reductase (DHAR), but 
under the same experimental conditions, H2O2 and lipid peroxide levels decreased 
(Da-Silva and Modolo 2017).
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10.3.8  Hydrogen Sulfide and Drought Stress

Another significant issue that plants are now dealing with in the current water short-
age situation is drought. The overall progression of plants is negatively impacted by 
this abiotic stress, which ultimately leads to a decline in yield. H2S regulates viva-
cious biochemical and physiological processes under drought stress, among a wide 
range of other physiological activities in plant biology (Bhardwaj and Kapoor 2021).

Plants under drought stress experience osmotic stress, oxidative stress, PS II 
damage, cell integrity loss, and other adverse effects that hinder their normal way of 
progression. H2S acts as a signalling molecule in response to drought stress, induc-
ing a variety of modifications in plant cells, including osmoprotectant accumula-
tion. Under drought-induced water deprivation and osmotic stress, adaptation to 
plant may be provided due to accumulation of suitable low molecular-weight osmo-
protectants like soluble sugars, sugar alcohols, proline, and glycine betaine (GB). 
Thakur and Anand (2021) proposed a model for the regulation of drought stress 
tolerance by H2S that involved the synthesis of polyamines and sugars (Chen et al. 
2016). Additionally, exposure to H2S makes it easier to produce glutathione, which 
is essential for stress defence because it scavenges reactive oxygen species (ROS) 
(Calderwood and Kopriva 2014).

10.3.9  H2S against Radiation Stress

Reactive oxygen species are produced as a result of UV-B radiation exposure, which 
causes oxidative damage (Rostami et al. 2019). Plants are adversely affected by UV 
radiation, which has been proven to have detrimental effects by preventing plant 
growth and development. By promoting the accumulation of specific ROS scaven-
gers, UV-absorbing molecules, and other antioxidative enzymes, H2S has been 
revealed to be involved in the amelioration of UV radiation stress (Jasrotia 2021).

10.3.10  Crosstalk Amid Hydrogen Sulfide and Phytohormones 
in Plant Defense

The plant cells contain hydrogen sulfide, which serves as a messenger for an assimi-
latory sulphate reduction. Despite H2S natural release, it has been suggested that its 
exogenous use is useful for reducing a variety of abiotic stressors. It is well estab-
lished that plants are highly dependent on phytohormone signaling during any phys-
iological process. This area of research is a rapidly developing field, since a 
well-defined interactome of H2S with other phytohormones can present novel sig-
naling nodes which can be genetically targeted for yielding multiple stress-tolerant 
traits in the susceptible cultivars. Under varied stress conditions, phytohormones are 
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also engaged in controlling the defensive reactions. Plants’ tolerance to abiotic 
stress is expressly improved by H2S in combination with these phytohormones 
(Banerjee et al. 2018).

10.3.11  Consequence of H2S and Ca2+ Signaling in Abiotic 
Stress Tolerance

It has been revealed that calcium and hydrogen sulfide-mediated signaling pathways 
control several biochemicals, physiological and molecular courses in plants. These 
signaling molecules also support the plants to fight against stresses and play indis-
pensable parts in growth and development of plant. Ca2+ and H2S signaling triggers 
a torrent of biochemical processes that improve plants’ ability to cope up stresses, 
viz., cytosolic osmo-protectants accumulation, activating the antioxidant defense 
system, controlling reactive oxygen species and induction of Ca2+ increase in cyto-
sol (Zulfiqar and Hancock 2020).

10.3.12  H2S and Temperature Stress

Molecules based on H2S might be helpful in protecting against temperature changes. 
Because they are sessile organisms, plants must withstand the temperature that is 
imposed on them by their environment, which is usually not ambient. Numerous 
horticulture crops have been shown to have low and high temperature tolerance in 
part as a result of H2S. For instance, a recent study investigated whether blueberry 
seedlings could benefit from the application of exogenous H2S and hypotaurine, an 
H2S scavenger, to help them withstand cold temperatures. By controlling leaf gas 
exchange, reducing photo-inhibition of PSII and PSI, and increasing proline con-
tent, they discovered that administering H2S (in the form of NaHS) increased toler-
ance (Zulfiqar and Hancock 2020).

10.4  Concluding Remarks

Plants produce a remarkable diversity of structurally and functionally diverse natu-
ral chemicals that serve as adaptive compounds throughout their life cycles. Due to 
their several functions in controlling the progression of the plants, gases like H2S, 
which were once thought to be detrimental to plants, are now considered as benefi-
cial signalling gaseous molecule. NO and CO are now regarded as the two most 
significant endogenous gasotransmitters in plants. Plant scientists face, as far as 
characterizing the effects of climate change on plant food quality and then helping 
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to develop efficient ways to mitigate the decline of key nutrients in plant tissue due 
to eCO2. (e.g., with crop breeding or genetic engineering, fertilizer applications, or 
changes in cultivation techniques). H2S was primarily produced in vivo as an endog-
enous brain active substance, but it is also showing promise as one of the signalling 
molecules at the moment. H2S regulates an extensive range of biochemical and 
physiological processes in plants, including germination, growth and development, 
modulation of defence mechanisms, senescence, and fruit maturation. Aside from 
protecting plants from osmotic pressure, H2S also increases the production of osmo-
protectants, changes the cell cycle, induces apoptosis, and lessens the oxidative 
damage brought on by reactive oxygen species. H2S enhances plant responses to a 
variety of stressful environmental conditions by lessening the harm and toxins 
already inflicted on them. In signalling pathways, H2S also interacts with other sig-
nalling molecules such as CO, H2O2, Ca2+, NO, etc. Persulfidation, a cysteine- 
dependent post-translational alteration, is the main signalling mechanism through 
which H2S regulates the activities of proteins.

Despite encouraging results under controlled conditions, a complete method-
ological and financial feasibility investigation is still required before exogenous H2S 
may be applied widely in the field. Even so, there is a widespread misconception 
that plants are toxic to H2S and their growth is stunted by it. H2S forceful effects in 
plants have been linked to crucial procedures like the control of senescence and 
maturity, the modulation of defensive responses, and plant growth and development.

Recently, it has been discovered that H2S affects the signal transduction path-
ways of phytohormones, which can help plants fight off various abiotic stressors 
like salinity, drought, cold, and heavy metals. H2S may also have the ability to post-
pone the ripening and senescence of fruits during postharvest procedures. There are 
few publications on the H2S-mediated control of plant metabolism during biotic 
stress, which is controlled via phytohormonal interactions, even though the main 
emphasis is typically placed on its utility under abiotic challenges. Therefore, there 
is a lot of room to figure out how H2S helps plants defend themselves against differ-
ent biological challenges.

Acknowledgements The Vice Chancellor of Banasthali Vidyapith (Rajasthan), India, Prof. Ina 
Aditya Shastri, is acknowledged by the authors for her encouragement and all other assistance 
required to complete this work.

References

Abdulmajeed AM, Derby SR, Strickland SK, Qaderi MM (2017) Interactive effects of tempera-
ture and UVB radiation on methane emissions from different organs of pea plants grown in 
hydroponic systems. J Photochem Photobiol B Biol 166:193–201. https://doi.org/10.1016/j.
jphotobiol.2016.11.019

Aghdam MS, Mahmoudi R, Razavi F, Rabiei V, Soleimani A (2018) Hydrogen sulfide treatment 
confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S 

A. Sahariya et al.

https://doi.org/10.1016/j.jphotobiol.2016.11.019
https://doi.org/10.1016/j.jphotobiol.2016.11.019


235

accumulation enhancing antioxidant enzymes activity and promoting phenols accumulation. 
Sci Hortic 238:264–271. https://doi.org/10.1016/j.scienta.2018.04.063

Ali Q, Daud M, Haider MZ, Ali S, Rizwan M, Aslam N, Noman A, Iqbal N, Shahzad F, Deeba 
F (2017) Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum 
aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem 
119:50–58. https://doi.org/10.1016/j.plaphy.2017.08.010

Alvarez C, Calo L, Romero LC, Irene G, Cecilia G (2010) An O-acetylserine(thiol)lyase homolog 
with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant 
Physiol 152:656–669. https://doi.org/10.1104/pp.109.147975

Arif MS, Yasmeen T, Abbas Z, Ali S, Rizwan M, Aljarba NH, Abdel-Daim MM (2021) Role 
of exogenous and endogenous hydrogen sulfide (H2S) on functional traits of plants under 
heavy metal stresses: a recent perspective. Front Plant Sci 11:2063. https://doi.org/10.3389/
fpls.2020.545453

Aroca Á, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational modi-
fication in plant systems. Plant Physiol 168:334–342. https://doi.org/10.1104/pp.15.00009

Aroca A, Zhang J, Xie Y, Romero LC, Gotor C (2021) Hydrogen sulfide signaling in plant adapta-
tions to adverse conditions: molecular mechanisms. J Exp Bot 72(16):5893–5904. https://doi.
org/10.1093/jxb/erab239

Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulphide trapeze: environmental 
stress amelioration and phytohormone crosstalk. Plant Physiol Biochem 132:46–53. https://
doi.org/10.1016/j.plaphy.2018.08.028

Bhardwaj S, Kapoor D (2021) General view on H2S and abiotic stress tolerance in plants. In: 
Singh S et al (eds) Hydrogen Sulfide in plant biology. Academic Press, pp 113–132. https://doi.
org/10.1016/B978- 0- 323- 85862- 5.00010- 5

Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to 
signaling molecule. Nitric Oxide 41:72–78. https://doi.org/10.1016/j.niox.2014.02.005

Chen J, Shang YT, Wang WH, Chen XY, He EM, Zheng HL et al (2016) Hydrogen sulfide-mediated 
polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in 
Spinacia oleracea seedlings. Front Plant Sci 7:1173. https://doi.org/10.3389/fpls.2016.01173

Chen Z, Chen M, Jiang M (2017) Hydrogen sulfide alleviates mercury toxicity by sequestering 
it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol 
Biochem 111:179–192. https://doi.org/10.1016/j.plaphy.2016.11.027

Chen Z, Yang B, Hao Z, Zhu J, Zhang Y, Xu T (2018) Exogenous hydrogen sulfide ameliorates 
seed germination and seedling growth of cauliflower under lead stress and its antioxidant role. 
J Plant Growth Regul 37:5–15. https://doi.org/10.1007/s00344- 017- 9704- 8

Cheng T, Shi J, Dong Y, Ma Y, Peng Y, Hu X, Chen J (2018) Hydrogen sulfide enhances poplar 
tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) 
activity and reducing reactive oxygen/nitrogen damage. Plant Growth Regul 84:11–23. https://
doi.org/10.1007/s10725- 017- 0316- x

Corpas FJ, Palma JM (2020) H2S signaling in plants and applications in agriculture. J Adv Res 
24:131–137. https://doi.org/10.1016/j.jare.2020.03.011

Corpas FJ, González-Gordo S, Cañas A, Palma JM (2019a) Nitric oxide and hydrogen sulfide 
in plants: which comes first. J Exp Bot 70(17):4391–4404. https://doi.org/10.1093/jxb/erz031

Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM (2019b). Hydrogen 
sulfide: A novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J 
Integr Plant Biol 61(7):871–883. https://doi.org/10.1111/jipb.12779

Corpas FJ, González-Gordo S, Muñoz-Vargas MA, Rodríguez-Ruiz M, Palma JM (2021) The 
modus operandi of hydrogen sulfide (H2S)-dependent protein persulfidation in higher plants. 
Antioxidants (Basel) 10(11):1686. https://doi.org/10.3390/antiox10111686

Cui W, Gao C, Fang P, Lin G, Shen W (2013) Alleviation of cadmium toxicity in Medicago 
sativa by hydrogen-rich water. J Hazard Mater 260:715–724. https://doi.org/10.1016/j.
jhazmat.2013.06.032

10 Gasotransmitter Hydrogen Sulfide (H2S) and Its Role in Plant…

https://doi.org/10.1016/j.scienta.2018.04.063
https://doi.org/10.1016/j.plaphy.2017.08.010
https://doi.org/10.1104/pp.109.147975
https://doi.org/10.3389/fpls.2020.545453
https://doi.org/10.3389/fpls.2020.545453
https://doi.org/10.1104/pp.15.00009
https://doi.org/10.1093/jxb/erab239
https://doi.org/10.1093/jxb/erab239
https://doi.org/10.1016/j.plaphy.2018.08.028
https://doi.org/10.1016/j.plaphy.2018.08.028
https://doi.org/10.1016/B978-0-323-85862-5.00010-5
https://doi.org/10.1016/B978-0-323-85862-5.00010-5
https://doi.org/10.1016/j.niox.2014.02.005
https://doi.org/10.3389/fpls.2016.01173
https://doi.org/10.1016/j.plaphy.2016.11.027
https://doi.org/10.1007/s00344-017-9704-8
https://doi.org/10.1007/s10725-017-0316-x
https://doi.org/10.1007/s10725-017-0316-x
https://doi.org/10.1016/j.jare.2020.03.011
https://doi.org/10.1093/jxb/erz031
https://doi.org/10.1111/jipb.12779
https://doi.org/10.3390/antiox10111686
https://doi.org/10.1016/j.jhazmat.2013.06.032
https://doi.org/10.1016/j.jhazmat.2013.06.032


236

Cui W, Cao H, Yao P, Pan J, Gu Q, Xu S, Wang R, Ouyang Z, Wang Q, Shen W (2017) Methane 
enhances aluminum resistance in alfalfa seedlings by reducing aluminum accumulation 
and reestablishing redox homeostasis. Biometals 30:719–732. https://doi.org/10.1007/
s10534- 017- 0040- z

da-Silva CJ, Modolo LV (2017) Hydrogen sulfide: a new endogenous player in an old mechanism of 
plant tolerance to high salinity. Acta Bot Brasilica 32:150–160. https://doi.org/10.1590/0102- 33 
062017abb0229

Dorman DC, Moulin FJ, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome 
oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sul-
fide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 65(1):18–25. 
https://doi.org/10.1093/toxsci/65.1.18

Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photo-
synthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521. 
https://doi.org/10.3389/fpls.2016.00521

Filipovic MR, Jovanović VM (2017) More than just an intermediate: hydrogen sulfide signaling in 
plants. J Exp Bot 68(17):4733–4736. https://doi.org/10.1093/jxb/erx352

Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H2S signal-
ing through persulfidation. Chem Rev 118(3):1253–1337. https://doi.org/10.1021/acs.
chemrev.7b00205

Fu P, Wang W, Hou L, Liu X (2013) Hydrogen sulfide is involved in the chilling stress response in 
Vitis vinifera L. Acta Soc Bot Pol 82:295–302. https://doi.org/10.5586/asbp.2013.031

Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, Chen A, Wink DA 
(2012) Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen 
oxides, oxides of hydrogen sulfide, carbon, dioxygen and their derived species. Chem Res 
Toxicol 25:769–793. https://doi.org/10.1021/tx2005234

García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard 
cell signalling. New Phytol 188(4):977–984. https://doi.org/10.1111/j.1469- 8137.2010.03465.x

García-Mata C, Lamattina L (2013) Gasotransmitters are emerging as new guard cell signal-
ing molecules and regulators of leaf gas exchange. Plant Sci 201–202:66–73. https://doi.
org/10.1016/j.plantsci.2012.11.007

González-Gordo S, Palma JM, Corpas FJ (2020) Appraisal of H2S metabolism in Arabidopsis 
thaliana: in silico analysis at the subcellular level. Plant Physiol Biochem 155:579–588. 
https://doi.org/10.1016/j.plaphy.2020.08.014

Hancock JT (2019) Hydrogen sulfide and environmental stresses. Environ Exp Bot 161:50–56. 
https://doi.org/10.1016/j.envexpbot.2018.08.034

Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee. 
Plant Physiol Biochem 78:37–42. https://doi.org/10.1016/j.plaphy.2014.02.012

Honda K, Yamada N, Yoshida R, Ihara H, Sawa T, Akaike T, Iwai S (2015) 8-Mercapto-cyclic 
GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. Plant Cell Physiol 
56:1481–1489. https://doi.org/10.1093/pcp/pcv069

Hou Z, Wang L, Liu J, Hou L, Liu X (2013) Hydrogen sulfide regulates ethylene-induced stoma-
tal closure in Arabidopsis thaliana. J Integr Plant Biol 55:277–289. https://doi.org/10.1111/
jipb.12004

Huang D, Huo J, Liao W (2021) Hydrogen sulfide: roles in plant abiotic stress response and cross-
talk with other signals. Plant Sci 302:110733. https://doi.org/10.1016/j.plantsci.2020.110733

Iranbakhsh A, Ardebili ZO, Ardebili NO (2021) Gene regulation by H2S in plants. In: Singh S et al 
(eds) Hydrogen Sulfide in plant biology. Academic Press, pp 171–199. https://doi.org/10.1016/
C2019- 0- 03573- X

Jasrotia S (2021) Role of H2S in plants against radiation stress. In: Singh S et al (eds) Hydrogen 
Sulfide in plant biology. Academic, pp 257–266. https://doi.org/10.1016/b978- 0- 323- 85862- 5. 
00012- 9

A. Sahariya et al.

https://doi.org/10.1007/s10534-017-0040-z
https://doi.org/10.1007/s10534-017-0040-z
https://doi.org/10.1590/0102-33062017abb0229
https://doi.org/10.1590/0102-33062017abb0229
https://doi.org/10.1093/toxsci/65.1.18
https://doi.org/10.3389/fpls.2016.00521
https://doi.org/10.1093/jxb/erx352
https://doi.org/10.1021/acs.chemrev.7b00205
https://doi.org/10.1021/acs.chemrev.7b00205
https://doi.org/10.5586/asbp.2013.031
https://doi.org/10.1021/tx2005234
https://doi.org/10.1111/j.1469-8137.2010.03465.x
https://doi.org/10.1016/j.plantsci.2012.11.007
https://doi.org/10.1016/j.plantsci.2012.11.007
https://doi.org/10.1016/j.plaphy.2020.08.014
https://doi.org/10.1016/j.envexpbot.2018.08.034
https://doi.org/10.1016/j.plaphy.2014.02.012
https://doi.org/10.1093/pcp/pcv069
https://doi.org/10.1111/jipb.12004
https://doi.org/10.1111/jipb.12004
https://doi.org/10.1016/j.plantsci.2020.110733
https://doi.org/10.1016/C2019-0-03573-X
https://doi.org/10.1016/C2019-0-03573-X
https://doi.org/10.1016/b978-0-323-85862-5.00012-9
https://doi.org/10.1016/b978-0-323-85862-5.00012-9


237

Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y (2011) Hydrogen sulfide improves drought resis-
tance in Arabidopsis thaliana. Biochem Biophys Res Commun 414:481–486. https://doi.
org/10.1016/j.bbrc.2011.09.090

Jin Z, Wang Z, Ma Q, Sun L, Zhang L, Liu Z, Liu D, Hao X, Pei Y (2017) Hydrogen sulfide medi-
ates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. 
Plant Soil 419:141–152. https://doi.org/10.1007/s11104- 017- 3335- 5

Joshi MM, Ibrahium IKA, Hollis JP (1975) Hydrogen sulphide: effects on the physiology of 
rice plants and relation to straight head disease. Phytophatology 65:1165–1170. https://doi.
org/10.1094/Phyto- 65- 1165

Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford M, Hell R (2000) Genomic and func-
tional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes 
catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253:237–247. 
https://doi.org/10.1016/S0378- 1119(00)00261- 4

Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285:21903–21907. 
https://doi.org/10.1074/jbc.R110.128363

Khalid MF, Hussain S, Fadli A, Shahzad F, Anjum MA, Zakir I, Ahmad S (2021) Hydrogen sulfide 
and lateral root development in plants under stress. In: Singh S et al (eds) Hydrogen Sulfide in 
plant biology. Academic Press, pp 103–111. https://doi.org/10.1016/C2019- 0- 03573- X

Khan MN, Mobin M, Abbas ZK, Siddiqui MH (2017) Nitric oxide-induced synthesis of hydrogen 
sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, 
osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102. https://doi.
org/10.1016/j.niox.2017.01.001

Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-induced sulfhydration of the phosphatase 
PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 4(203):ra86–ra86. 
https://doi.org/10.1126/scisignal.2002329

Li Q, Lancaster JR (2013) Chemical foundations of hydrogen sulfide biology. Nitric Oxide 
35:21–34. https://doi.org/10.1016/j.niox.2013.07.001

Lin G, Sternberg LD (1992) Comparative study of water uptake and photosynthetic gas exchange 
between scrub and fringe red mangroves, Rhizophora mangle L. Oecologia 90(3):399–403. 
https://doi.org/10.1007/BF00317697

Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson E, Wood M, Whiteman HJT 
(2010) A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accu-
mulation. Plant Physiol Biochem 48(931):935. https://doi.org/10.1016/j.plaphy.2010.09.016

Lisjak M, Teklic T, Wilson ID, Wood M, Whiteman M, Hancock JT (2011) Hydrogen sulfide 
effects on stomatal apertures. Plant Signal Behav 6:1444–1446. https://doi.org/10.4161/
psb.6.10.17104

Liu H, Xue S (2021) Interplay between hydrogen sulfide and other signaling molecules in the regu-
lation of guard cell signaling and abiotic/biotic stress response. Plant Commun 2(3):100179. 
https://doi.org/10.1016/j.xplc.2021.100179

Liu Z, Li Y, Cao C, Liang S, Ma Y, Liu X, Pei Y (2019) The role of H2S in low temperature-induced 
cucurbitacin C increases in cucumber. Plant Mol Biol 99:535–544. https://doi.org/10.1007/
s11103- 019- 00834- w

Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Guo T (2016) Alleviation of drought stress by 
hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One 
11(9):e0163082. https://doi.org/10.1371/journal.pone.0163082

Mancardi D, Penna C, Merlino A, Del Soldato P, Wink DA, Pagliaro P (2009) Physiological and 
pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim Biophys 
Acta 787(7):864–872. https://doi.org/10.1016/j.bbabio.2009.03.005

Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP (2021) Nitric oxide and hydrogen sulfide: an 
indispensable combination for plant functioning. Trends Plant Sci 26(12):1270–1285. https://
doi.org/10.1016/j.tplants.2021.07.016

Nagahara N, Wróbel M (2020) H2S, polysulfides, and enzymes: physiological and pathological 
aspects. Biomolecules 10(4):640. https://doi.org/10.3390/biom10040640

10 Gasotransmitter Hydrogen Sulfide (H2S) and Its Role in Plant…

https://doi.org/10.1016/j.bbrc.2011.09.090
https://doi.org/10.1016/j.bbrc.2011.09.090
https://doi.org/10.1007/s11104-017-3335-5
https://doi.org/10.1094/Phyto-65-1165
https://doi.org/10.1094/Phyto-65-1165
https://doi.org/10.1016/S0378-1119(00)00261-4
https://doi.org/10.1074/jbc.R110.128363
https://doi.org/10.1016/C2019-0-03573-X
https://doi.org/10.1016/j.niox.2017.01.001
https://doi.org/10.1016/j.niox.2017.01.001
https://doi.org/10.1126/scisignal.2002329
https://doi.org/10.1016/j.niox.2013.07.001
https://doi.org/10.1007/BF00317697
https://doi.org/10.1016/j.plaphy.2010.09.016
https://doi.org/10.4161/psb.6.10.17104
https://doi.org/10.4161/psb.6.10.17104
https://doi.org/10.1016/j.xplc.2021.100179
https://doi.org/10.1007/s11103-019-00834-w
https://doi.org/10.1007/s11103-019-00834-w
https://doi.org/10.1371/journal.pone.0163082
https://doi.org/10.1016/j.bbabio.2009.03.005
https://doi.org/10.1016/j.tplants.2021.07.016
https://doi.org/10.1016/j.tplants.2021.07.016
https://doi.org/10.3390/biom10040640


238

Pandey AK, Gautam A (2020) Stress responsive gene regulation in relation to hydrogen sulfide in 
plants under abiotic stress. Physiol Plant 168(2):511–525. https://doi.org/10.1111/ppl.13064

Papanatsiou M, Scuffi D, Blatt MR, García-Mata C (2015) Hydrogen sulphide regulates inward- 
rectifying K+ channels in conjunction with stomatal closure. Plant Physiol 168:29–35. https://
doi.org/10.1104/pp.114.256057

Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A (2007) Characterization 
of cysteine-degrading and H2S-releasing enzymes of higher plants-from the field to the 
test tube and back. Plant Biol 9(05):582–588. http://onlinelibrary.wiley.com/enhanced/
doi/10.1055/s- 2007- 965424/

Paul S, Roychoudhury A (2019) Transcript analysis of abscisic acid-inducible genes in response to 
different abiotic disturbances in two indica rice varieties. Theor Exp Plant Physiol 31:249–272. 
https://doi.org/10.1007/s40626- 018- 0131- 4

Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev 
Mol Cell Biol 13:499–507. https://doi.org/10.1038/nrm3391

Petersen E (1948) Preservation of ascorbic acid in vegetables by hydrogen sulphide during air- 
drying. Nature 157:370. https://doi.org/10.1038/157370b0

Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev 
Pharmacol Toxicol 32:109–134. https://doi.org/10.1146/annurev.pa.32.040192.000545

Rostami F, Nasibi F, Manouchehri Kalantari K (2019) Alleviation of UV-B radiation damages 
by sodium hydrosulfide (H2S donor) pre-treatment in Borage seedlings. J Plant Interact 
14(1):519–524. https://doi.org/10.1080/17429145.2019.1662100

Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García-Mata C (2014) Hydrogen sul-
fide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic 
acid-dependent stomatal closure. Plant Physiol 166(4):2065–2076. https://doi.org/10.1104/
pp.114.245373

Serra A-A, Couée I, Heijnen D, Michon-Coudouel S, Sulmon C, Gouesbet G (2015) Genome-wide 
transcriptional profiling and metabolic analysis uncover multiple molecular responses of the 
grass species Lolium perenne under low-intensity xenobiotic stress. Front Plant Sci 6:1124. 
https://doi.org/10.3389/fpls.2015.01124

Shen Q, Jiang M, Li H, Che LL, Yang ZM (2011) Expression of a Brassica napus heme oxygen-
ase confers plant tolerance to mercury toxicity. Plant Cell Environ 34:752–763. https://doi.
org/10.1111/j.1365- 3040.2011.02279.x

Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, Romero LC, Fu L, Yang J, Foyer CH, Pan 
Q, Shen W, Xie Y (2020) Persulfidation-based modification of cysteine desulfhydrase 
and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 
32(4):1000–1017. https://doi.org/10.1105/tpc.19.00826

Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress 
response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 74:99–107. 
https://doi.org/10.1016/j.plaphy.2013.11.001

Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S (2022) Hydrogen sulfide- 
mediated mitigation and its integrated signaling crosstalk during salinity stress. Physiol Plant 
174(1):e13633. https://doi.org/10.1111/ppl.13633

Su N, Wu Q, Liu Y, Cai J, Shen W, Xia K, Cui J (2014) Hydrogen-rich water reestablishes ROS 
homeostasis but exerts differential effects on anthocyanin synthesis in two varieties of radish 
sprouts under UV-A irradiation. J Agric Food Chem 62:6454–6462. https://doi.org/10.1021/
jf5019593

Suh SJ, Wang YF, Frelet A, Leonhardt N, Klein M, Forestier C, Mueller-Roeber B, Cho MH, 
Martinoia E, Schroeder JI (2007) The ATP binding cassette transporter AtMRP5 modulates 
anion and calcium channel activities in Arabidopsis guard cells. J Biol Chem 282(3):1916–1924. 
https://doi.org/10.1074/jbc.M607926200

Sun C, Liu L, Lu L, Jin C, Lin X (2018) Nitric oxide acts downstream of hydrogen peroxide in 
regulating aluminum-induced antioxidant defense that enhances aluminum resistance in wheat 
seedlings. Environ Exp Bot 145:95–103. https://doi.org/10.1016/j.envexpbot.2017.10.020

A. Sahariya et al.

https://doi.org/10.1111/ppl.13064
https://doi.org/10.1104/pp.114.256057
https://doi.org/10.1104/pp.114.256057
http://onlinelibrary.wiley.com/enhanced/doi/10.1055/s-2007-965424/
http://onlinelibrary.wiley.com/enhanced/doi/10.1055/s-2007-965424/
https://doi.org/10.1007/s40626-018-0131-4
https://doi.org/10.1038/nrm3391
https://doi.org/10.1038/157370b0
https://doi.org/10.1146/annurev.pa.32.040192.000545
https://doi.org/10.1080/17429145.2019.1662100
https://doi.org/10.1104/pp.114.245373
https://doi.org/10.1104/pp.114.245373
https://doi.org/10.3389/fpls.2015.01124
https://doi.org/10.1111/j.1365-3040.2011.02279.x
https://doi.org/10.1111/j.1365-3040.2011.02279.x
https://doi.org/10.1105/tpc.19.00826
https://doi.org/10.1016/j.plaphy.2013.11.001
https://doi.org/10.1111/ppl.13633
https://doi.org/10.1021/jf5019593
https://doi.org/10.1021/jf5019593
https://doi.org/10.1074/jbc.M607926200
https://doi.org/10.1016/j.envexpbot.2017.10.020


239

Thakur M, Anand A (2021) Hydrogen sulfide: an emerging signaling molecule regulating drought 
stress response in plants. Physiol Plant 172(2):1227–1243. https://doi.org/10.1111/ppl.13432

Thompson CR, Kats G (1978) Effects of continuous H2S fumigation on crop and forest plants. 
Environ Sci Technol 7:550–553. https://doi.org/10.1021/es60141a001

Toohey JI (2011) Sulfur signaling: is the agent sulfide or sulfane. Anal Biochem 413:1–7. https://
doi.org/10.1016/j.ab.2011.01.044

Toohey JI (2012) The conversion of H2S to sulfane sulfur. Nat Rev Mol Cell Biol 13:803–803. 
https://doi.org/10.1038/nrm3391- c1

Valderrama R, Corpas FJ, Carreras A, Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez 
MV, Colmenero-Varea P, del Río LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 
581:453–461. https://doi.org/10.1016/j.febslet.2007.01.006

Vandiver MS, Paul BD, Xu R, Karuppagounder S, Rao F, Snowman AM, Seok Ko H, Il Lee Y, 
Dawson VL, Dawson TM, Sen N, Snyder SH (2013) Sulfhydration mediates neuroprotective 
actions of parkin. Nat Commun 4:1626. https://doi.org/10.1038/ncomms2623

Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous trans-
mitter. FASEB J 16:1792–1798. https://doi.org/10.1096/fj.02- 0211hyp

Wu Q, Su N, Cai J, Shen Z, Cui J (2015) Hydrogen-rich water enhances cadmium tolerance in 
Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. J Plant 
Physiol 175:174–182. https://doi.org/10.1016/j.jplph.2014.09.017

Xu D, Cao H, Fang W, Pan J, Chen J, Zhang J, Shen W (2017) Linking hydrogen-enhanced rice 
aluminum tolerance with the reestablishment of GA/ABA balance and miRNA-modulated 
gene expression: a case study on germination. Ecotoxicol Environ Saf 145:303. https://doi.
org/10.1016/j.ecoenv.2017.07.055

Xuan L, Li J, Wang X, Wang C (2020) Crosstalk between hydrogen sulfide and other signal 
molecules regulates plant growth and development. Int J Mol Sci 21(13):4593. https://doi.
org/10.3390/ijms21134593

Yang Q, Liu K, Niu X, Wang Q, Wan Y, Yang F, Li G, Wang Y, Wang R (2018) Genome-wide iden-
tification of PP2C genes and their expression profiling in response to drought and cold stresses 
in Medicago truncatula. Sci Rep 8:12841. https://doi.org/10.1038/s41598- 018- 29627- 9

Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire SD, Trost 
P (2013) Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde- 3- 
phosphate dehydrogenase from Arabidopsis thaliana. J Biol Chem 288:22777–22789. https://
doi.org/10.1074/jbc.M113.475467

Zhang D, Du J, Tang C, Huang Y, Jin H (2017) H2S-induced sulfhydration: biological function 
and detection methodology. Front Pharmacol 8:608. https://doi.org/10.3389/fphar.2017.00608

Zulfiqar F, Hancock JT (2020) Hydrogen sulfide in horticulture: emerging roles in the era of climate 
change. Plant Physiol Biochem 155:667–675. https://doi.org/10.1016/j.plaphy.2020.08.010

10 Gasotransmitter Hydrogen Sulfide (H2S) and Its Role in Plant…

https://doi.org/10.1111/ppl.13432
https://doi.org/10.1021/es60141a001
https://doi.org/10.1016/j.ab.2011.01.044
https://doi.org/10.1016/j.ab.2011.01.044
https://doi.org/10.1038/nrm3391-c1
https://doi.org/10.1016/j.febslet.2007.01.006
https://doi.org/10.1038/ncomms2623
https://doi.org/10.1096/fj.02-0211hyp
https://doi.org/10.1016/j.jplph.2014.09.017
https://doi.org/10.1016/j.ecoenv.2017.07.055
https://doi.org/10.1016/j.ecoenv.2017.07.055
https://doi.org/10.3390/ijms21134593
https://doi.org/10.3390/ijms21134593
https://doi.org/10.1038/s41598-018-29627-9
https://doi.org/10.1074/jbc.M113.475467
https://doi.org/10.1074/jbc.M113.475467
https://doi.org/10.3389/fphar.2017.00608
https://doi.org/10.1016/j.plaphy.2020.08.010


241

Chapter 11
Hydrogen Sulfide (H2S) Signaling in Plants 
Responding to Abiotic Stresses

Tauqeer Ahmad Yasir, Muhammad Ahmad, Allah Wasaya, 
Muhammad Ateeq, Saima Kanwal, Abdul Wahid, and Mudassir Aziz

Abstract Hydrogen sulfide (H2S) is an endogenous gasotransmitter that is engaged 
in a variety of plant physiological functions. In recent years, plant scientists are giv-
ing more attention to this gaseous molecule which at first instance was found and 
recognized as a gasotransmitter in mammals. This chapter is mainly focused on the 
importance of H2S as a key mediator in plants against abiotic stresses. The exoge-
nous application of H2S in plants increases adaptation against different abiotic 
stresses like temperature, salt, heavy-metals, and moisture stress. Hydrogen sulfide 
appears in the current decade as an innovative signal mediator which is involved in 
many plant systems. Also, H2S plays a crucial part in regularization of plant systems 
which assures normal plant development, protection against pathogens, senescence 
and maturity. Furthermore, we summarized here, how H2S, as a signaling molecule 
in plants, responds to different abiotic stresses in many cases through a protein post-
translational modification designated persulfidation.
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11.1  Introduction

Hydrogen sulfide (H2S) has been postulated as an important molecule of the gaso-
transmitters family that additionally incorporates nitric oxide (NO) and carbon 
monoxide (CO). Hydrogen sulfide-related research was only published in toxicol-
ogy journals until the early 1990s, indicating that the general bioscience community 
had little interest in this molecule. H2S studies are now published in a variety of 
biological and medical publications covering areas such as physiology, pharmacol-
ogy, and biochemistry. H2S modulates smooth muscular strength, metabolic func-
tions, and growth, demise, and motility in the central nervous system as a secondary 
messenger (Li et  al. 2011; Wang 2012). A computationally intensive pathway 
including several secondary mediators such as calcium ions (Ca2+), hydrogen perox-
ide (H2O2), abscisic acid (ABA), and nitrous oxide (NO2) as well as their interac-
tions was revealed to be involved in the development of stress responses, especially 
cross-adaptation in numerous investigations (Wang et al. 2016). Mechanical stimu-
lation in tobacco plants can cause H2O2 and NO signaling, whereas, at the same 
time, heat shock lead to signaling by Ca2+ and ABA (Gong et al. 1998), that ulti-
mately results in cross-adaptation of plants to such kinds of stresses. In maize seed-
lings, Gong et al. (2001) also reported comparable findings, which depict that the 
signal crosstalk between abscisic acid (ABA), Ca2+, NO, and H2O2 in plants is 
mainly due to cross-adaptation. Calderwood and Kopriva (2014) discovered that 
H2S is a part of this signaling network in plants, which thereafter was also confirmed 
by Guo et al. (2016). Subsequently, the results of many studies established H2S as a 
key mediator in plants. H2S has a wide range of beneficial impacts on plant stress 
tolerance performance and physiological functions, including root organogenesis, 
seed germination, stomatal activities, photosynthesis, leaf senescence, and yield 
(Zhang et al. 2009; Papanatsiou et al. 2015). For instance, H2S enhanced barley’s 
resistance to chromium stress by increasing the rate of photosynthesis and lowering 
Cr uptake (Ali et al. 2017). Under salt stress, H2S boosted chlorophyll and soluble 
protein levels while inhibiting the buildup of reactive oxygen species (ROS), con-
siderably improving rice salt tolerance (Mostofa et al. 2015). Under drought stress, 
the activity of the enzymes L-desulfhydrase and D-desulfhydrase were up-regulated 
in Arabidopsis thaliana, increasing the endogenous H2S generation (Jin et al. 2011). 
Furthermore, there are substantial proofs that gasotransmitters can help plants 
become more tolerant (Jin et  al. 2017; Maryan et  al. 2019). Vishwakarma et  al. 
(2017) reported that the rise and fall in the level of salinity, temperature, moisture or 
osmotic pressure, heavy metals, and UV-irradiation are only a few of the abiotic 
stresses that plants face in nature. Abiotic stress causes changes in plant height, leaf 
shape, and stomatal openness, according to several studies (Jin et al. 2017; Shen 
et al. 2011). Abiotic stresses are the most significant restrictors of plant progression 

T. A. Yasir et al.



243

(Ashraf et al. 2018). It has been generalized the protective effect of H2S in develop-
ing resistance in plants through the knowledge of H2S-linked genes which regulate 
plant functioning during heat, low temperature, drought, waterlogging, and metal 
toxicity. In addition, the significance of H2S as a signaling molecule is addressed to 
answer questions about how it interacts with the other signaling molecules in plants 
(calcium ion, methylglyoxal, and nitric oxide) (Fu et al. 2018). The responses of 
H2S in plants under abiotic stress are discussed in this chapter. Meantime, we con-
centrated on the current developments in H2S roles and interactions with the other 
gasotransmitters under abiotic stresses (Yao et al. 2019).

11.2  Abiotic Stresses and H2S

Global food security is becoming increasingly challenged by climate change. Plants 
are subjected to a range of stress conditions, including salinity, high temperatures, 
drought, and heavy metals, all of which can have a significant impact on a farmer’s 
income. As a result, much effort has gone towards reducing the negative impacts of 
environmental extremes on plants by better understanding the processes and signal-
ing mechanisms involved in plant protection. Plant scientists are increasingly inter-
ested in discovering chemicals that can defend plants against the adverse impact of 
climate change (Hossain and Fujita 2013). Exogenous treatment of phytohormones, 
osmo-protectants, trace elements and signaling molecules have been proven to pro-
tect plants from abiotic stresses, because of their antioxidant and growth-promoting 
properties (Savvides et al. 2016). H2S is associated with various physiological func-
tions in plants, according to growing evidence (Kimura 2014). Multiple environ-
mental stresses have been identified to stimulate H2S production in plants which 
directly or indirectly increased stress tolerance in susceptible plants (Guo et  al. 
2016). Under abiotic stress, endogenous H2S levels in several species of plants 
increase by approximately 2–2.5 fold on average (Shi et al. 2015). The effect of 
sulfur fertilization was linked to the first findings on the biological action of H2S in 
plants (Rennenberg 1983, 1989). Later research linked H2S to other signaling mech-
anisms in plants, primarily those related to oxidative stress (He et al. 2019), and H2S 
finally broke into the stomatal signaling system exactly a decade ago (Lisjak et al. 
2010). Overall, it can be assumed that the release of H2S is critical for the control of 
a variety of plant functions to stimulate the defensive machinery against these situ-
ations (Bloem et al. 2011). Plant cells have long been known to produce and emit 
H2S due to the reduction of SO4

2− to SO3
2− and further catalysis of sulfite reductase 

converts it from SO3
2− to H2S (Filipovic and Jovanovic 2017). Wilson et al. (1978) 

measured H2S emissions from the leaves of cucumber pumpkin (Cucurbita pepo 
L.), (Cucumis sativus L.), cantaloupe (Cucumis melo L.), cotton (Gossypium hirsu-
tum L.), soybean (Glycine max), and corn (Zea mays L.). As the light intensity 
increased the emission increased as well. Rennenberg et al. (1987) reported the first 
evidence for the presence of D- cysteine desulfhydrases (DCDs) and L-cysteine 
desulfhydrases (LCDs) which trigger the generation of H2S in the mitochondria and 
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chloroplasts, and the cytoplasm, respectively, of cucurbit plants or cultivated 
tobacco cells. Several studies have recently shown that exogenous H2S administra-
tion improves plant resilience against abiotic stresses such as drought, salinity, 
heavy metals concentration and extremes temperature. The following sections dis-
cuss reports that suggest possible methods by which H2S priming orchestrates plant 
defense responses when faced with numerous abiotic stress conditions (Fotopoulos 
et al. 2013). Plants produce H2S via LCD or DCD in response to stress in the envi-
ronment and encourage the development of stress responses. Furthermore, surplus 
hydrogen sulfide can be discharged into the atmosphere (Li and Gong 2013; 
Hancock and Whiteman 2014).

11.3  H2S Signaling Pathway

H2S is a signal molecule that plays an important role in all physiological functioning 
from germination to the flowering and fruiting of higher plants (González-Gordo 
et al. 2020), and in response to a variety of abiotic stimuli (Singh et al. 2015). It is 
evident that in jatropha seeds, when immersed in H2O2, there was a rise in the LCD 
activity, and a buildup of H2S was detected (Li et al. 2012a), implying that H2S- 
mediated signal transduction is involved. It also disrupts NO signaling by raising 
and reducing NO levels depending on the situation (Lisjak et al. 2010). In addition 
to Lisjak’s study, H2S has also been shown to have a role in ABA (abscisic acid) 
-dependent NO generation (Scuffi et al. 2014). H2S is produced primarily in plant 
systems in the chloroplast through the process of photosynthetic sulfate assimilation 
which is governed by the sulfite reductase enzyme (Garcia et al. 2015). The enzyme 
cyanoalanine synthase-C1 synthesizes hydrogen sulfide in mitochondria by mash-
ing up β-cyanoalanine enzyme (Yamaguchi et al. 2000). Nevertheless, L-cysteine 
desulfhydrase-1 enzyme is required for the majority of intercellular cytosolic H2S 
synthesis (Alvarez et al. 2010). Enzymes like D-cysteine desulfhydrase and Nifs- 
like proteins have also been reported to produce H2S (Heidenreich et  al. 2005; 
Riemenschneider et al. 2005). Persulfidation is thought to have a role in H2S-based 
signaling in plants, according to several studies (Yang et al. 2013, Paul and Snyder 
2015). In another study, Sen et al. (2012) revealed H2S-induced cysteine-38 persul-
fidation of the P65 subunit of NF-κB, which may provide insight into the likelihood 
of H2S-induced changes in protein activity in terms of structural and functional 
aspects. The effect of reactive nitrogen and oxygen species (RNS and ROS, 
respectively)-induced protein persulfidation on protein activity is a well-known 
phenomenon (Aroca et al. 2017). As a result, ROS and H2S -induced persulfidation 
can be linked and H2S may modulate ROS and NO signaling at various levels 
(Hancock and Whiteman 2016). The persulfidation process helps to study the 
physio-pharmacological changes that occur in the plant due to H2S (Filipovic et al. 
2018). Surprisingly, the persulfidation of proteins includes a set of protein phospha-
tases and kinases which bring about ABA signaling in guard cells (Zhou et al. 2020). 
Significant progress has been made in understanding the complexities of 
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persulfidation processes involved in modifying plant ABA signaling using the 
model plant Arabidopsis. ABA, a crucial plant growth hormone, plays a vital role in 
regulating plant developmental mechanisms, particularly in response to fluctuating 
climatic conditions. (Aroca et al. 2021). H2S interacts with ABA as well with as 
other hormones and ionic compounds like auxin, ethylene, calcium, oxides of car-
bon, and nitrogen (Xuan et al. 2020). ABA suppresses the activity of clade by bind-
ing to the ABA receptors pyrabactin resistance/pyr-like/ controlling constituent of 
ABA receptor (Gong et  al. 2020). Thereafter, Sucrose non-fermenting (SNF1) 
related protein KINASE_2.6 SnRK_2.6/open stomata-1 [OST1] is then activated, 
causing several downstream signaling cascades to be triggered (Gong et al. 2020). 
In guard cells, H2S modulates ABA signaling by the persulfidation of SnRK-2.6 
(Chen et  al. 2020b). SnRK-2.6’s activity of kinase and its integrity with ABA 
Response Element-Binding Factor-2 is enhanced by persulfidation of the Cys-137 
and Cys-131 residues (Chen et  al. 2020b). The activation of downstream target 
genes through the phosphorylation of ABF2 plays a critical role in the regulation of 
stomatal closure. Furthermore, recent research has demonstrated that, preceding 
ABA, H2S triggers the persulfidation of DES-1 at Cys-44 and Cys-205, leading to 
an increase in H2S levels within stomatal cells (Shen et al. 2020). Through the per-
sulfidation of specific residues, Cys-825 and Cys-890, in the NADPH respiratory 
burst oxidase homolog-D (RBOHD), the temporary increase in H2S levels triggers 
an excessive accumulation of reactive oxygen species (ROS), leading to stomatal 
closure. Consequently, the accumulated endogenous ROS in guard cells can hinder 
the ongoing activation of ABA signaling, establishing a negative feedback loop that 
involves the per-sulfide oxidation of RBOHD and DES1. (Shen et al. 2020). H2S- 
mediated protein persulfidation could be used in a variety of ways, such as thiol 
group of cysteine residues (Corpas et al. 2021) and alter the abscisic acid signaling 
in a specific tissue and complex manner.

11.4  Adaptive Response of H2S to Abiotic Stress

The adaptive mechanism of H2S in the reduction of environmental stresses are clas-
sified below into the following subgroups.

11.4.1  Heat Stress and H2S Signaling

High-temperature stress has already become a notable abiotic stress around the 
world as a result of global warming, and the process of heat stress damage and toler-
ance to this stress has gained great popularity (Wahid et al. 2007; Emmati et al. 
2015). After being treated with H2S, plants’ heat tolerance improves as well. Pre- 
treatment with NaHS improves the high-temperature tolerance of wheat seedlings 
in such a way that it is specific to H2S, but not to other sulfur-containing compounds 
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(Yang et al. 2016). High temperatures, like other stresses, can cause endogenous 
production of hydrogen sulfide in many plant species. High-temperature treatment 
at 35 °C boosted LCD activity, which stimulated the formation of cellular H2S in 
3-week-old seedling of tobacco, and this is continuously increased till the third day 
of heat application (Chen et  al. 2016). More intriguingly, high-temperature H2S 
generation can cause the buildup of jasmonic acid, which promotes the synthesis of 
nicotine. These findings imply that nicotine and H2S production are related under 
high-temperature-stressed tobacco plants. Furthermore, heat stress generated a sig-
nificant rise in H2S concentration in strawberry seedlings after the first, fourth and 
eighth hours of exposure to 42 °C in contrast to untreated plants. After the first hour 
of high-temperature stress, 0.1  mM NaHS pretreated plants had a significant 
increase in H2S concentration, which then is slowly minimized to untreated regimes 
(Christou et al. 2014a). Pretreatment of NaHS helps to the enhancement of seedling 
emergence and seedling aliveness, on the other hand reducing enhanced the leakage 
of electrolytes in the roots of plant and MDA gathering in the heat-stressed coleop-
tiles of Zea mays (Li et al. 2013). In addition, H2S increased the performance of 
1-pyrroline 5-carboxylate synthetase (1P5CS) at the time of lowering the perfor-
mance of proline dehydrogenase (PD), resulting in proline buildup. These findings 
suggest that the production of proline may be included in Z. mays’ increased heat 
tolerance when treated with H2S (Li et al. 2013). Meanwhile, due to increased LCD 
activity, pre-treated with the exogenous NO sodium nitroprusside (SNP) donor, dra-
matically enhances the surviving percentage of Zea mays seedlings in the presence 
of high-temperature stress. While the treatment with the H2S donor GYY4137 
improved Z. mays seedlings’ NO-induced heat tolerance, inhibitors of H2S produc-
tion and H2S scavengers inhibited this activity. These findings showed that H2S 
works as a downstream signaling molecule of NO to protect Z. mays seedlings from 
oxidative damage produced by heat stress (Li et al. 2013). It is uncertain what func-
tion H2S plays in plant priming for the acquisition of systemic heat stress resistance. 
Application of H2S levels on temperature endurance in tobacco cells as well as con-
nected with Ca2+ in protecting responses was studied by Li et al. (2012b). The obser-
vations showed that pre-treated NaHS improved the proportion of tobacco mixture 
cultured cells that survived heat stress and their ability to re-grow afterward. 
Furthermore, H2S decreased the activity of S-nitrosoglutathione reductase (GSNOR) 
and downstream antioxidant enzymes, allowing poplars to withstand higher tem-
peratures (Cheng et al. 2018) (Table 11.1).

11.4.2  Drought Stress and H2S Signaling

Low moisture is a key abiotic limitation that has an impact on plant output and qual-
ity all over the world. When leaf water loss exceeds root water intake, membrane 
damage, turgor loss, lowering yield, and cell death occur (Santisree et al. 2018). 
Drought has an impact on crops in both arid and semiarid climates. Plants have 
evolved different systems to sense and send signals that communicate information 
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Table 11.1 Effect of exogenous H2S application against heat stress on various crops

Plant species H2S roles under stress
Source of 
H2S Reference

Zea mays Salicylic acid (SA) promotes H2S 
synthesis; increases the germination of 
seed, survival percentage and tissue 
vitality; increased capability of 
antioxidants

1.5 NaHS 
(mM)

Li et al. (2013) 
and Li (2015)

Nicotiana tabacum Increasing antioxidant activity 0.05 
NaHS 
(mM)

Li et al. (2012b) 
and Li and He 
(2015)

Fragaria × ananassa Controlling homeostasis of ascorbate/
glutathione homeostasis. Expression of 
genes related to heat-shock proteins, 
antioxidants and aquaporins

0.1 NaHS 
(mM)

Christou et al. 
(2014a)

Zea mays Increasing antioxidant activity 0.7 NaHS 
(mM)

Li et al. (2014b)

Poplar Enhancement of GSNOR activity and 
lower the reactive NO alteration

_ Cheng et al. 
(2018)

Fragaria ananassa Betterment in plant phenotypic damage 
created by high temperature, which 
improve antioxidants capacity, improve 
HSP and AQP production

100 mM 
NaHS

Christou et al. 
(2014b)

about water scarcity throughout evolution and diversity (Gong et al. 2020). In this 
cascade, H2S plays a crucial role. The role of H2S in drought tolerance is centered 
on the regulation of guard cell mobility, which is primarily controlled by alterations 
in their turgor condition, which affects both transpiration and gas exchange (Zhang 
et al. 2010a). Drought stress tolerance is improved by H2S in two ways. The first is 
via promoting stomatal closure, which reduces water loss, and two is by increasing 
antioxidant enzyme levels (Li et al. 2017). H2S is known to cause fatty acid break-
down, cyanoamino acid metabolism, endoplasmic reticulum (ER) related amino 
acids activities, and the Kyoto encyclopedia of gene & genome (KEGG) route of 
ribosomal production in large vacuole containing cells when they are stressed by 
drought (Li 2015; Li and He 2015). H2S regulates seed germination, stomatal clo-
sure, and root growth, in addition, it increases low moisture stress tolerance and heat 
shock resistance and reduces metal and oxidative stress (Jin et al. 2011, Wang et al. 
2012). By modulating the energy currency binding cassette (EcBC) movement in 
the ABA-dependent signaling pathway in stomatal cells, H2S increases drought tol-
erance in Vicia fabia, Impatiens walleriana and Arabidopsis thaliana by promoting 
stomatal closure and lowering the loss of water (Garcia-Mata and Lamattina 2010).

Furthermore, Shen et al. (2013) reported that H2S regulates the look of miR-393 
and its specific genetic movement inhibiting reaction-1 and auxin hormone signal-
ing F box amino acids (AFB-1, AFB-2 and AFB-3) in Arabidopsis under drought 
conditions. In guard cells, H2S is necessary for the ABA signaling cascade to work. 
During stomatal closure, the gas combines with ROS and NO (Scuffi et al. 2014). 
The dynamic activation of ion channels and ionic movable proteins located at the 
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vacuolar and plasma membranes causes guard cells to open and close (Gong et al. 
2020). Scuffi et al. (2018) found that hydrogen sulfide drives various ion fluxes that 
cause the closing of stomata in Arabidopsis during drought stress conditions. 
Furthermore, Zhang et al. (2010a) demonstrated that 0.1 mM NaHS concentration 
of H2S modifies the activity of antioxidant enzymes in soybean seedlings, effec-
tively boosting chlorophyll content, lowering MDA content, and increasing the 
level of O2 and H2O2, resulting in increased drought tolerance. In the presence of the 
water shortage effect, the expression arrangement of L/DCD in Arabidopsis seed-
lings was comparable to those genes linked with drought, whose expression was 
highly boosted due to H2S (Jin et al. 2011).

Similarly, pretreatment of F. ananassa roots with NaHS prevented oxidative and 
nitrosative stress, implying that H2S plays an essential function in moisture stress 
mitigation (Christou et  al. 2013). Exogenous treatment of wheat seedling leaves 
with an H2S giver NaHS increased ABA-biosynthesis, its reactivation genetic look, 
and relative water content (Ma et al. 2016). In A. thaliana, I. walleriana, and Vicia 
fabia, H2S-induced stomatal closure was seen (Garcia-Mata and Lamattina 2010). 
In summary, the above discussion clearly highlights that H2S as a signaling mole-
cule shows a vital part in crops opposite to the drought stress. H2S as a signaling 
molecule in plants also increases tolerance in plants against drought stress 
(Table 11.2).

Table 11.2 Effect of exogenous H2S application against drought stress in various crops

Plant species H2S roles under stress
Source of 
H2S Reference

Glycine max Improvement in leaf green pigment and 
reduction in the synthesis of H2O2

0.1 mM 
NaHS

Zhang et al. 
(2010a)

Arabidopsis 
thaliana

Stimulating the look of moisture stress related 
genes

0.08 mM 
NaHS

Jin et al. (2011)

Triticum. 
aestivum

Improved capability of enzymatic and 
non-enzymatic antioxidants, enhance 
membrane stability (MS), close the stomata, up 
regulation of ABA-biosynthesis

500 μM & 
1 mM, NaHS

Ma et al. (2016)

A. thaliana Closed stomata; increase the production of 
H2S, as well as survival rate

GYY-4137 
80 mM 
NaHS

Garcia-Mata 
and Lamattina 
(2010)

Ipomoea 
batatas

Increasing antioxidants capability enhance MS 
of cell

0.8 mM of 
NaHS for 
8 days

Zhang et al. 
(2009)

Vicia fabia Guard cell closure in dose dependent way 500 mM 
NaHS

Garcia-Mata 
and Lamattina 
(2010)

Impatiens 
walleriana

Decrease in water wastage by 20% and 
induction in guard cell closure

500 mM 
NaHS

Garcia-Mata 
and Lamattina 
(2010)

F. ananassa Enhancement in RWC and stomatal 
conductance (SC)

100 mM 
NaHS

Christou et al. 
(2013)
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11.4.3  Salt Stress and H2S Signaling

Salinity is a major worldwide problem that affects the plant at different growth 
stages from sowing to harvesting including germination, vegetative and reproduc-
tive stages. Salt overload disrupts ion equilibrium and redox equilibrium, resulting 
in the production of free radicals (Kabil et  al. 2014). Salinity stress depolarizes 
membranes by activating outward rectifying potassium (K+) channels, which results 
in (potassium) K+ loss (Hirsch et al. 1998). A growing body of research suggests 
that preventing sodium-induced K+ leakage is crucial for plant salinity tolerance 
(Shabala and Cuin 2008). Different transport systems at the plasma membrane (PM) 
and vacuole membranes (VM), including the H+ ATP and ion channeling, appear to 
finely regulate this specific intake and movement of K+ and Na+ (Morsomme and 
Boutry 2000). Similar to drought stress, salt stress causes an osmotic stress response, 
which outcomes in rapid production of H2S signaling molecules. The activation of 
total LCD activity and increased endogenous H2S generation (30–70 nmol/g FW) in 
alfalfa seedlings were progressively produced by increasing the quantity of (Sodium 
chloride) NaCl (50–300 mM) (Lai et al. 2014). Furthermore, abundance research 
investigations on H2S have revealed that H2S is implicated in different environmen-
tal stresses like salt stress (Jiang et al. 2019).

Hydrogen sulfide protects plant against salinity stress-induced oxidative damage 
through improving the effectiveness of antioxidative defense systems (Guo et al. 
2016). Priming of seeds with H2S for 1/2 day considerably reduces the effect of salt 
stress on seedling growth and the emergence of seedlings, as evidenced by enhanced 
germination percentage, seed vigour indices, and the development of wheat seed-
lings in a concentration-dependent fashion (Bao et  al. 2011). In salt stress, H2S 
could protect cucumber seedlings by stabilizing Na+/K+ maintenance, modulating 
endogenous H2S treatments, and boosting the anti-oxidative system (Jiang et  al. 
2019). Exogenous H2S induces osmoregulation in Oryza sativa, C. sativus, and 
C. dactylon in reply to saline stress, according to a growing number of studies (Shi 
et al. 2013, Mostofa et al. 2015). NO creates different types of oxidative and cellular 
changes in plants (Corpas 2019). Exogenous H2S can alleviate both nitrification and 
oxidative stress in strawberry (F. ananassa) plants in the presence of saline or non- 
ionic osmotic variations by preserving the huge redox state of glutathione (GSH) 
and ascorbic acid (AA) (Christou et al. 2013).

Surprisingly, NO and H2S are the two gasotransmitters, helpful in almost all 
physiological and stress related functioning of plant (Mishra et al. 2021). Up-stream 
or down-stream of NO is controlled by H2S (Corpas 2019). NO has a role in H2S- 
enhanced salt tolerance in plants. The buildup of H2S in tomato leaves and roots is 
promoted by NO (Silva et  al. 2017). H2S, on the other hand, cannot induce the 
accumulation of NO, indicating that it operates downstream of NO and hence helps 
tomato plants in tolerating excessive salt (Silva et al. 2017). All of these studies sup-
port that H2S plays a role in in reestablishing redox homeostasis at the time of 
responding plant to extreme saline levels by activating the antioxidant status, main-
taining a high K+ to Na+ ratio (Lai et al. 2014) and accumulating osmolytes (Shi 
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Table 11.3 Effect of exogenous H2S application against salt stress in various crops

Plant species H2S roles under stress
Source of 
H2S Reference

Medicago 
sativa

Activating antioxidant enzyme 0.1 mM 
NaHS

Wang et al. 
(2012)

Triticum 
aestivum

Increase germination rate and growth 0.13 mM 
NaHS for 
12 h

Bao et al. 
(2011)

Arabidopsis 
thaliana

Keep out minimum sodium to potassium ionic 
ratio, enhance the genetic look and the 
phosphorylation of H+ ATPase and sodium to 
potassium ionic antiporter

0.2 mM 
NaHS

Li et al. 
(2014a,b)

Cucumis 
sativus

Maintaining Na+ and K+ homeostasis – Jiang et al. 
(2019)

Oryza sativa Improved capability of antioxidants both non- 
enzymatic and enzymatic; ionic balance

50 mM 
NaHS

Mostofa 
et al. (2015)

et al. 2013). Furthermore, various investigations and the preceding arguments dem-
onstrate that H2S is a plant signaling molecule resistance to extreme salinity stress 
(Table 11.3).

11.4.4  Heavy Metal and Other Metalloids Stress 
and H2S Signaling

Heavy metals (HMs) are metal elements with densities larger than 6 g mL−1, such as 
chromium, copper, and Zinc (Gupta et al. 2013). HMs have become significant type 
of abiotic stresses in plants because of high toxicity and persistence, and it even 
poses a concern to human health via the food chain. Heavy metal stress frequently 
causes oxidative stress, or an overabundance of reactive oxygen species (ROS), 
which causes protein oxidation, peroxidation of lipid, DNA damage, and enzyme 
inactivation (Yadav 2010). On the other hand, lengthy plants have developed a com-
plex antioxidative defending mechanism to hunt excess (ROS) and protect plant 
equilibrium (Foyer and Noctor 2009, 2011). Cd is an extremely poisonous, non- 
soluble heavy metal that interferes with plant physiological systems (Yasir et  al. 
2022). It is absorbed by the plant roots and delivered to the plant’s areal sections, 
producing enzyme inactivation, chlorosis and necrosis by replacing critical cofac-
tors and disrupting the plant’s mineral homeostasis (Sandalio et  al. 2001). 
Furthermore, recent research has demonstrated the relevance of D-CDes and 
L-CDes in the modulation of plant responses to HM stress (Fang et  al. 2016). 
Moreover, H2S generated by L-CDes modulates Cd tolerance in Arabidopsis as a 
downwind signaling molecule of salicylic acid (SA) (Qiao et al. 2016). Although 
SA significantly increases L-CDes enzyme activities, it does not protect L-CDes 
knockout mutants from Cd stress (Qiao et al. 2016). In comparison to Cd treatment 
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alone, Cd stress increased H2S generation in Oryza sativa seedlings, which was 
further improved by exogenous administration of sodium hydrosulfide (NaHS). The 
increase in endogenous H2S levels observed during elevated Cd stress was reduced 
by HT, showing the specificity of H2S build-up under high cadmium stress (Mostofa 
et al. 2015). A lot of findings indicate that H2S is not acting on its own. It’s important 
to look at how H2S interacts with other signaling molecules including NO, Ca2+, and 
salicylic acid (SA). Plants’ endogenous synthesis of NO and H2S responds to Cd 
stress in a significant way (Shi et al. 2014). Exogenous NO and H2S boosts Cynodon 
dactylon tolerance to Cd stress (Shi et al. 2014). NO triggered H2S generation is 
required in Cd stress responses, according to pharmacological investigations (Shi 
et al. 2014). Meanwhile, H2S maintained mineral homeostasis, reduced oxidative 
stress, elevated numerous enzymatic antioxidants, and enhanced the phenotypic 
expression of S. italica under Cd stress conditions (Tian et al. 2017).

Aluminum (Al), an unnecessary metal for plants, has a negative effect on crop 
production and even its survival, particularly in acidic soils. Al stress decreased root 
elongation in barley seedlings but pretreatment with NaHS partially restored the 
root elongation inhibition generated by Al and this recovery was strongly connected 
with the decline in Al build-up in seedlings (Chen et  al. 2013). Furthermore, by 
activating the antioxidant system, NaHS dramatically reduced citrate release and 
oxidative stress (as evidenced by lipid oxidation and ROS blast) caused by Al (Chen 
et al. 2013). Zhang et al. (2010b) obtained comparable results in Triticum aestivum. 
The use of H2S donor increased the activity of the enzymatic ascorbate-glutathione 
(AG) cycle while reduced the formation of ROS, allowing the cell to retain its redox 
status and reduce arsenate toxicity in peas (Singh et al. 2015).

Cr is a typical HM that has a negative impact on plants. Cr3+ and Cr6+ are the most 
common forms, which have been collected from the tanning, leather and textile sec-
tors as well as the painting and steel sectors and became the main cause of pollutants 
in the environment (Gupta et al. 2009). The production of H2S is induced by 10 mM 
Cr6+ in a dosage and time depending orders, with a maximum after a day of Cr6+ 
treatment. Elevated appearance of H2S biosynthesis associated genes DCD, DES, 
and LCD preceded by enhancing H2S generation, showing that Cr6+ stress triggers 
endogenous H2S synthesis via startup its outflow mechanism in Foxtail millet. 
Further research revealed that H2S reduced Cr accumulation in cells not only by 
downregulating the appearance of genes involved in HM intakes, such as ZIP1, 
ZIP4, ZIP3, and ZIP6 and also by upregulating the appearance of genes involved in 
HM efflux, such as MTPC 1, MTPC 2, HMA 3–1, HMA 3–2, in a Ca2+ depending 
order. Exogenous administration of NaHS might boost the wheat emerging seedling 
by enhancing the performance of esterase, amylase, and key enzymatic antioxidants 
while lowering the performance of lipoxygenase in a dose-dependent order. As a 
result, NaHS treatment reduced the amounts of malondialdehyde and H2O2 gener-
ated by Cr while maintaining the high endogenous H2S level (Zhang et al. 2010b). 
Cr toxicity in the soil can cause chlorosis, necrosis, plant development disturbance, 
and plant mortality (Gupta et al. 2009). Cr, for example, caused cell demise in the root 
end of Setaria italica due to an excess of ROS (Fang et al. 2016). Recent studies and 
previous research, as well as the explanation above, show that H2S as a secondary 
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messenger reduces oxidative stress and improves the plant defense system of plant 
against HM stress.

Kaya and Ashraf (2019) looked into the role of NaHS as an H2S donor on straw-
berry seedlings in the presence of iron deficit. Exogenous application of NaHS to 
plant leaves by spraying a 0.2 mM sodium hydrosulfide solution over them. Under 
iron deficiency, strawberry plants developed leaf interveinal chlorosis. The applica-
tion of sodium hydrosulfide foliar, on the other hand, was able to alleviate these 
problems. In young leaves, sodium hydrosulfide enhanced chlorophyll concentra-
tion, and available iron and iron enhancement. Under iron deficiency, the amounts 
of H2O2, EL, and malondialdehyde (MLD) in plant leaves get improved. Exogenous 
application of NaHS reduced H2O2, EL, and malondialdehyde (MLD) while also 
enhancing the performance of important enzymatic antioxidants. This results in 
NaHS being found to be effective in treating chlorosis caused by an iron deficiency 
(Table 11.4).

Table 11.4 Effect of exogenous H2S application against Heavy metals stress in various crops

Plant species
Stress 
applied H2S roles under stress

Sources 
of H2S Reference

Triticum aestivum Al-stress
Al stress

Lowering Al increment, relieving 
the secretion of citrate, and 
oxidative variations

0.6 mM 
NaHS

Zhang et al. 
(2010b)

Hordeum vulgare Lowering Al increment, relieving 
the secretion of citrate, and 
oxidative variations

0.2 mM 
NaHS

Chen et al. 
(2013)

Setaria italica Cd stress Lowering EL and improving 
photosynthetic activity

– Tian et al. 
(2017)

Pisum sativum As stress Enhanced level of nitrogen 
mono-oxide, relieve oxidative 
stress

– Singh et al. 
2015

Setaria italica Cr stress Improved seed germination 50 mM 
NaHS

Fang et al. 
(2016)

Zea mays L. Plasma membrane integrity 500 μM 
NaHS

Kharbech 
et al. 
(2020)

Modulate H2S metabolism 500 μM 
NaHS

Kharbech 
et al. 
(2022)

Oryza sativa Hg stress Improving the transcription of 
bZIP60, alleviating Hg toxicity

– Chen et al. 
(2017)

Brassica oleracea var. 
botrytis

Pb stress Upgrading non-protein thiols 
and total GSH steps

– Chen et al. 
(2018)

Strawberry 
(Fragaria × ananassa 
Duch.)

Iron 
deficiency

Reduces hydrogen peroxide, 
malondialdehyde, and EL. 
enhance iron intake. 
Up-regulating performance of 
enzymatic antioxidants

0.2 mM 
NaHS

Kaya and 
Ashraf 
(2019)
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11.4.5  Cold Stress and H2S Signaling

During exposure of plants to low temperatures stress (> 0 °C) and extremely lower 
temperatures (< 0 °C), they experience cold stress. Cold stress frequently causes cell 
membrane failure, as well as oxidative and osmotic impairment (Chongchatuporn 
et al. 2013). Examined plants protect themselves from cold stress harm by adjusting 
their osmotic pressure and activating their antioxidant system. Exogenous treat-
ments such as methyl jasmonate (MeJA) and SA have been projected in the past to 
help plants recover from cold stress damage (Wang et al. 2009). Chilling treatment 
at 4 °C increased the activities of L.DCD-1 and boosted the expression of L.DCD-1 
genes which raised the accumulation of endogenous H2S (7–15 mol/g FW) in seed-
lings of grape vine (Fu et al. 2013). Furthermore, the latest study on banana fruit 
found that H2S spraying preserved peel hardness, increased lightness values, and 
reduced MDA accumulation during cold stress (Luo et al. 2015). Meanwhile, H2S 
reduced cold stress injury in Musa fruits by increasing antioxidant capacity by 
encouraging the manufacture of both enzymatic and non-enzymatic substances, 
such as important phenylalanine ammonia-lyase, PPO, antioxidant enzymes, and 
total phenolics (Luo et al. 2015). H2S fumigation also inhibited ethylene synthesis, 
implying a negative connection between H2S and ethylene in preserving post- 
harvest traits quality at the time of storage at low temperature. Further research 
revealed that H2S spraying increased the contents of proline by activating the activ-
ity of P5CS and decreasing proline dehydrogenase (ProDH), which could be con-
nected to cold damage tolerance (Luo et  al. 2015). In bermuda grass, Shi et  al. 
(2013) discovered that low-temperature stress levels as 4  °C might promote the 
buildup of intercellular H2S levels. Ma et al. (2015) used comparative proteomics to 
explore the vibrant structures of amino acid outlook in a herbaceous plant like 
Lamiophlomis rotata (Benth.) cultivated at three fluctuating altitudes 4350  m, 
4800 m, and 5200 m, and found that the treatments and enzymatic performance of 
proteins involved in H2S bio-synthesis (OAS-TL, CAS, and L/DCD) improved 
markedly with increasing altitudes from 4800 m to 5200, indicating that H2S per-
forms a key function in L. rotate adaptations to environmental stress at higher eleva-
tions. Hydrogen sulfide increased total phenolic content, the activity of phenylalanine 
ammonia-lyase, and antioxidant capacity in banana fruit, reducing ROS formation 
and enhancing chilling tolerance (Luo et al. 2015).

H2S improves the chilling tolerance of hawthorn fruit, according to Aghdam et al. 
(2018) by improving the performance of enzymatic antioxidants and encouraging phe-
nol accumulation. As a result of these findings, H2S appears to be able to influence the 
look of the associated genome, boost the enzymatic antioxidant activities, and stimulate 
the build-up of phenolic compounds in plants that are subjected to low-temperature 
stress (Li and Jin 2016). H2S (0.5 mM NaHS) significantly increased the performance of 
cytochrome c oxidase, H+-ATPase, and succinate dehydrogenase, resulting in improved 
chilling tolerance and energy status in banana fruiting (Luo et al. 2015). In conclusion, 
the above discussions and many research findings clearly show that H2S as a signaling 
molecule in plants increases cold stress adaption (Table 11.5).
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Table 11.5 Effect of exogenous H2S application against cold stress on various crops

Plant Species H2S response to stress
Sources of 
H2S Reference

Lamiophlomis 
rotate

Improving antioxidant enzyme activity, as 
well as proline and sugar build up

0.05 mM 
NaHS

Ma et al. 
(2015)

Vitis vinifera Increasing SOD activity and VvCBF3 and 
VvICE1 gene expression

0.10 mM 
NaHS

Fu et al. (2013)

Cynodon 
dactylon

Regulate non-enzymatic antioxidant and 
antioxidant enzymes

0.50 mM 
NaHS

Shi et al. 
(2013)

Musa 
paradisiaca L

Higher lightness and peel firmness values; 
formation of MDA

1.00 mM 
NaHS

Luo et al. 
(2015)

Musa 
paradisiaca L

Decrease ethylene production and preventing 
electrolyte leakage

– Li and Jin 
(2016)

Crataegus 
monogyna

Boosting antioxidant enzyme activity and 
promoting phenols build-up

– Aghdam et al. 
(2018)

Musa sp. Decrease build-up of MDA, maintaining a 
higher peel firmness

Luo et al. 
(2015)

11.5  Mode of Action of H2S

Hydrogen sulfide performs its various physiological activities primarily by the oxi-
dative post-translational oxidation of cysteines (RSH) to persulfides (RSSH), 
according to new research (Filipovic et  al. 2018). Multiple persulfidated amino 
acids have really been found in mammalian investigations to date (Krishnan et al. 
2011) and the biomolecular process of protein persulfidation in mammals has been 
extensively documented and discussed further (Paul and Snyder 2015). The SSH 
has higher nucleophilicity and also can combine with electrophilic molecules as 
compared to the SH group. Such reagents are more readily available (Zhou et al. 
2020). Methyl sulfonyl benzo thiazole (MSBT), S4bromobenzyl methanethiosulfo-
nate (BBMTS), and methanethiosulfonate (MMTS) are only a few of the reagents 
available. As a result, by the combination of nucleophilic affinity-based screening, 
bioinformatics analysis, and mass spectrometry detection, the protein persulfidation 
proteome may be characterized (Aroca et al. 2015).

11.5.1  Protein Persulfidation

In A. thaliana, Aroca et al. (2015) presented the very first report of 106 proteins with 
persulfidation modifying cysteines. To improve on its previous investigation, the 
same group has done a logo test with MSBT as a barrier and found proteins in des1 
mutant plants and in wild-type plants, from which most of them were involved in 
glycolysis, amino acid metabolism, protein biosynthesis, redox, and stress responses 
(Aroca et al. 2017). This elevated persulfidation sample is the largest persulfidation 
dataset to date, and it fully recapitulates prior proteomics results. Furthermore, the 
findings also made us aware of persulfidating amino acids in crops. A range of 
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essential proteins, including actin, are found in the persulfidome (Aroca et al. 2017). 
Eight ACTIN genes are found in the Arabidopsis genome, which are classified into 
two groups depending on their roles in the reproductive and vegetative systems 
(Mcdowell et al. 1996). H2S modulates actin dynamics and influences root hair for-
mation, according to Li et al. (2018). The overabundance of H2S promotes f ACTIN2 
(vegetative group) persulfidation at Cys287, resulting in actin cytoskeleton depoly-
merization and root hair development suppression (Li et al. 2018). Complementation 
of actin (2–1) mutant with an ACTIN-2 variant with a Cys-287 mutation specifi-
cally inhibited the H2S depending on suppression of root fibers development (Li 
et al. 2018). In the case of ethylene signaling, an H2S-related persulfidation feed-
back loop inhibits the action of ACC oxidases, the limited rate catalysts in ethylene 
production, which affects root hair elongation (Bleecker and Kende 2000).

Surprisingly, the persulfidation proteome includes a group of protein phospha-
tases and kinases that are implicated in abscisic acid signaling in guard cells (Aroca 
et  al. 2017). Using the model plant Arabidopsis, recent advancement has been 
achieved in understanding the complication of persulfidation in modifying plant 
ABA signaling processes. ABA inhibits the activity of clade A protein phosphatases 
by binding to the ABA receptors Pyrabactin Resistance/ PYR-Like/ ABA Receptor 
Regulatory Component (PYR/ PYL/RCAR) (Gong et  al. 2020). SNF-1 Related 
Protein Kinase-2.6 (SnRK2.6)/ Open Stomata-1 (OST1) is then activated, causing 
several downstream signalling cascades to be triggered (Gong et al. 2020). In guard 
cells, H2S modulates ABA signaling by persulfidating SnRK-2.6 according to Chen 
et  al. (2020b). SnRK-2.6’s kinase action and association with ABA Response 
Element-Binding Factor-2 are enhanced by persulfidation of the Cys-131 and 
Cys-137 residues (Chen et al. 2020b). After then, phosphorylated ABF2 activates its 
downstream target genes, which is important in stomatal closure controls. In addi-
tion, current research shows that in the presence of ABA, H2S activates DES1 by 
persulfidation at Cys44 and Cys205, resulting in a rupture of H2S in guard cells 
(Shen et al. 2020). By persulfidating the NADPH oxidase also called respiratory 
burst oxidase homolog-D (RBOHD) on Cys890 and Cys825 residues, this tempo-
rary rise in H2S increases the over-accumulation of ROS, resulting in guard cell 
closure (Shen et al. 2020). Endogenous ROS build-up in guard cells may hinder 
continued ABA signaling activation, resulting in a negative feedback loop involving 
DES1 and RBOHD persulfide oxidation (Shen et al. 2020). Overall, H2S-mediated 
protein persulfidation has the potential to modify ABA signaling in a tissue-specific 
and complex way.

11.6  Conclusions and Future Perspective

In conclusion, our understanding of H2S is rapidly catching up fast with that of NO 
and H2S is becoming a key signaling modulator involved in a variety of biological 
activities, including the regulation of multitudinous stress responses. Understanding 
of the complexities of signaling cascades and hydrogen sulfide regulation systems 
in crops has advanced to unprecedented levels in recent years (Fig. 11.1).
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Fig. 11.1 The mechanism of H2S-mediated abiotic stress tolerance in plant. CAT catalase, POD 
peroxidase, SOD superoxide dismutase, H2O2 Hydrogen per oxide, ROS Reactive oxygen species, 
APX ascorbate peroxidase, GPX glutathione peroxidase, GR glutathione reductase, H2S hydro-
gen sulfide

There is no doubt that future research developments in this field will pique peo-
ple’s interest. Scientists are presently striving to comprehend the inherent regulatory 
mechanisms of H2S on the modulation of biochemical functions, thanks to the 
advancement of more modern bimolecular biology approaches. Despite the exis-
tence of many persulfidation proteomes (Wang et  al. 2021) and the hundreds of 
proteins that undergo persulfidation in plants body, whereas the purpose and mecha-
nism of persulfidated proteins still are unknown. The strong interaction of persul-
fidation and S-nitrosation on cysteines in response to environmental conditions 
warrants additional study. Comparative proteome investigations of H2S-mediated 
persulfidation in plant cells will undoubtedly give useful insight into the regulation 
mechanisms of H2S-mediated protein persulfidation in plant tissues under certain 
developmental processes or environmental alterations. Progress in the study of plant 
S-nitrosation will have significant implications for persulfidation studies in general. 
In Arabidopsis, the non-canonical catalase Repressor OF Gsnor-1 (ROG-1)/CAT3 
has been identified and characterized as just a “transnitrosylase” that especially 
rearranges S-nitrosoglutathione reductase-1 (GSNOR-1) and modulates NO-based 
redox signaling revealing that enzymatic contributors for protein S-nitrosation sta-
tus exist (Chen et al. 2020a). Undoubtedly, an equilibrium relationship of protein 
persulfidation is required for cellular physiological functions. Additionally, many 
proteins are more susceptible to persulfidation than others, depending on their redox 
state (Fu et al. 2019). A sulfur-dioxygenase (ETHE-1), which oxidizes persulfides 
with in the mitochondrial matrix and considered to be involved in protein persul-
fidation and sulfur signaling, is an interesting find (Lorenz et al. 2018). Investigation 
and identification of persulfidated-functioning proteins, as well as the underlying 
preferential persulfidation pathways, will help us more detailed and extensive 
understanding of how H2S works in plant biology. Exogenous administration of 
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fairly modest levels of H2S donor via fumigation or spray has routinely demon-
strated the beneficial role of H2S on plant growth parameters under a wide range of 
environmental conditions. H2S may have a great value-added capability for the use 
and growth of modern farming, due to the low expense of these chemicals and the 
ease with which they can be administered. As a result, it will be critical to investi-
gate how H2S might be used in agricultural productivity.
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Chapter 12
Hydrogen Sulfide Metabolism and Its Role 
in Regulating Salt and Drought Stress 
in Plants

Akankhya Guru, Kundan Kumar, and Padmanabh Dwivedi

Abstract Environmental stresses such as salinity and drought have a disastrous 
impact on the agricultural sector affecting crop performance, growth, and develop-
ment. Salinity stress minimizes plant growth by means of osmotic stress followed 
by ion toxicity, nutrient imbalance, and oxidative stress. Drought is the predominant 
abiotic stress factor that reduces crop productivity by creating water deficit condi-
tions. To combat salt and drought stresses, numerous defense mechanisms including 
the accumulation of osmolytes, activation of stress-responsive genes, transcription 
factors, and antioxidant defense machinery are involved. Hydrogen sulfide (H2S) 
has turned up as a new gaseous signaling molecule that favors various physio- 
chemical events and helps in acclimatization to variations due to stress in plants. 
The present chapter focuses on exploring the H2S-induced tolerance mechanism of 
action at physicochemical and molecular levels in salt and drought-affected plants.
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12.1  Introduction

Since plants are sessile, they are easily subjected to several abiotic stresses includ-
ing salinity and drought (Li 2013). This leads to the production of reactive oxygen 
species, (ROS) such as superoxide anion (O2

•−), hydrogen peroxide (H2O2), hydroxyl 
radical (•OH), and singlet oxygen (1O2) in plant cells (Choudhary et al. 2017), which 
exert negative influences on the overall growth of plants. To improve crop perfor-
mance, antioxidative enzyme (superoxide dismutase, peroxidase, catalase, etc) pro-
files are increased and thereby imparting stress tolerance in plants via scavenging 
ROS (Guo et al. 2016). 

Hydrogen sulfide (H2S) is currently being evaluated as a signaling molecule 
under changing environmental conditions in plants. Apart from nitric oxide (NO) 
and carbon monoxide (CO), H2S has been regarded as the third most important 
gasotransmitter that controls cell-mediated functions in both plants and animals 
(Williams et al. 2015). Because of its unpleasant and pungent smell, it has been 
treated as an environmental pollutant for so long (Jin and Pei 2015). In the past, H2S 
was believed to be phytotoxic owing to its blocking action on cytochrome c oxidase, 
a central enzyme involved in the mitochondrial electron transport system. Later, its 
role in plant growth, development, fruit maturation, seed germination, stomatal clo-
sure, senescence control, and alleviation of different abiotic stresses in plants was 
confirmed (Table 12.1). H2S, as a stress tolerance molecule, promotes crop growth 
by controlling ROS generation. The use of H2S may enhance the levels of several 
antioxidant components, leading to increased tolerance (Corpas 2019; Corpas and 
Palma 2020). It is currently being used exogenously for extra protection because of 
its key regulatory function in abiotic stress. Currently, this chapter discusses H2S 
biosynthesis, the impact of H2S applied exogenously/endogenously on plants facing 
salinity and drought stress. Furthermore, the fundamental objective of this chapter 
is to deliver enough knowledge about the mechanism involved in H2S signaling- 
induced stress tolerance in crops (Table 12.1).

12.2  Hydrogen Sulfide Metabolism in Plants

The biosynthesis of hydrogen sulfide takes place through different enzymatic path-
ways (Fig. 12.1). The majority of H2S synthesis eventuates in the chloroplast, how-
ever, cytosol and mitochondrion are involved to a certain extent (Aroca et al. 2018). 
Five enzymes namely L-cysteine desulfhydrase, (L-DES), D-cysteine desulfhydrase 
(D-DES), l-3-cyanoalanine synthase (CAS), cysteine synthase (CS), and sulfite 
reductase (SiR) contribute to H2S biosynthesis in plant cells (Yamasaki and Cohen 
2016). The cytoplasmic enzyme L-DES depicts a principal involvement in the H2S 
biosynthesis by converting L-cysteine to pyruvate along with the release of NH4

+ 
and H2S, utilizing pyridoxal 5′-phosphate (PLP) as a cofactor to quicken this reac-
tion. Similarly, in the cytoplasm, D-DES catalyzes the formation of pyruvate, NH3, 
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Table 12.1 Effects of exogenous application of H2S on various abiotic stresses in plants

H2S dose
Abiotic 
stress Crop Protective function Reference

15 mM Salinity Cucumis 
sativus

Maintains Na+/K+ balance, 
regulates H2S metabolism and 
ROS homeostasis

Jiang et al. 
(2019)

0.05 mM Salinity Triticum 
aestivum

Maintenance of lower Na+ content Deng et al. 
(2016)

0.05 mM Drought Triticum 
aestivum

Increased antioxidant levels, 
reduced sugar, and starch contents, 
decreased lipid peroxidation

Ding et al. 
(2018)

100 mM Drought Spinacea 
oleracea

Altered glycine betaine content, 
increased soluble sugars, and 
polyamines levels

Chen et al. 
(2016)

0.2 mM Cadmium Triticum 
aestivum

Reduced oxidative damage Kaya et al. 
(2020)

0.5 mM Alkalinity Brassica 
oleracea

Regulation of glutathione (GSH) 
homeostasis

Montesinos- 
Pereira et al. 
(2018)

0.1 mM Hypoxia Zea mays Elevated endogenous H2S level, 
enhanced alcohol dehydrogenase 
(ADH) activity

Peng et al. 
(2016)

0.15 mM Heat Triticum 
aestivum

Elevated gene expression levels of 
antioxidant enzymes

Min et al. (2016)

0.1 and 
0.5 mM

Chilling Triticum 
aestivum and 
Secale cereale

Decreased malondialdehyde 
content

Kolupaev et al. 
(2019)

100 mM Nickel Oryza sativa Prevented chloroplast damage, 
improved nitrogen metabolism

Rizwan et al. 
(2019)

and H2S from D-cysteine. The mitochondrial enzyme CAS is responsible for cata-
lyzing the condensation of L-cysteine to cyanide (CN−) to produce H2S. Due to the 
phytotoxic nature of CN−, chloroplast and mitochondrial electron transfer chains 
are hindered. Plant cells can control the toxic levels of CN− with the help of CAS 
enzymatic activity (Li 2015a). Another enzyme, cysteine synthase (CS), found in 
the cytoplasm, chloroplast and mitochondria is chiefly associated with the produc-
tion of O-Acetyl-L-serine and H2S from L-cysteine and acetate (Li 2015a). In cyto-
plasm, mitochondrion, and plastid, inorganic sulfur is the source of production of 
cysteine and H2S in presence of the enzyme cysteine synthase (Jez and Dey 2013). 
H2S biosynthesis in chloroplast can be mediated by PLP-dependent transferase, 
although the pathway is yet to be prospected (Majtan et al. 2018). Besides these 
sources, plants can also synthesize H2S by reducing sulfite (SO3

2−) in the presence 
of ferredoxin and a chloroplast enzyme, SiR. In plants, SO3

2− may be produced from 
either sulfur dioxide (SO2) taken up from the atmosphere or sulfate (SO4

2−) via sul-
fur nutrition. SO4

2− produces adenosine 5′-phosphosulfate (APS) in presence of 
ATP sulfurylase. Then, APS reductase catalyzes the further reduction of APS to 
SO3

2− (Li 2015b; González-Gordo et  al. 2020). H2S mediates post-translational 
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Fig. 12.1 Biosynthesis of hydrogen sulfide through different enzymatic pathways. APS Adenosine 
5′-phosphosulfate, L-DES L-cysteine desulfhydrase, D-DES D-cysteine desulfhydrase, CAS 
l-3-cyanoalanine synthase, CS cysteine synthase, SiR sulfite reductase

modification known as persulfidation which is a process involving the transforma-
tion of cysteine thiol group (-SH) into its corresponding persulfide form (-SSH) 
(Corpas et al. 2021). This may lead to changes in the function, subcellular localiza-
tions and structures of target proteins. It has been reported that persulfidation acts as 
an important mechanism in preventing protein damage against oxidative stress 
(Fig. 12.1).

12.3  Insights into H2S - Induced Salinity Tolerance in Plants 
via Modulation of Physico-Chemical Responses

H2S regulates many physio-chemical processes in response to various concentra-
tions of salt treatments in plants. High salinity disintegrates the photosynthetic 
apparatus and reduces the photosynthetic efficiency of crops. The levels of chloro-
phyll pigment as well as other accessory pigments in plants reduces in response to 
salt stress resulting in depreciated crop yield and productivity (Mbarki et al. 2018). 
Application of sodium hydrosulfide (NaHS), a donor of H2S, preceding salt treat-
ment in rice and other crops significantly increased the levels of photosynthetic 
pigments and many other metabolic events (Fig. 12.2). Total chlorophyll and carot-
enoid contents were comparatively higher in NaHS pretreated salt-stressed leaves 
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Fig. 12.2 Application of sodium hydrosulfide (NaHS), a donor of H2S, preceding salt treatment 
significantly enhances photosynthetic pigments and many other metabolic events

than that of plants without NaHS treatment. Therefore, H2S plays a pivotal role in 
triggering salinity tolerance in rice by protecting photosynthetic pigments, improv-
ing photosynthetic efficiency, and promoting chloroplast biogenesis (Mostofa et al. 
2015a). Chlorophyll fluorescence is also affected negatively due to salt stress in 
plants. In strawberry plants susceptible to salinity stress condition, Fv/Fm ratio 
decreased dramatically, which was alleviated by treating plants with NaHS before 
NaCl application (Christou et  al. 2013). Pre-treatment of strawberry roots with 
NaHS ensured maximum photosystem II efficiency, electron transport rate and 
hence improved photosynthetic performance. Further, stomatal conductance of H2S 
pretreated and stressed plants was found to be higher as compared to non-stressed 
and plants without pre-treatment. H2S promoted salt tolerance in wheat seedlings by 
improving the photosynthetic activity of leaves (Ding et al. 2019). Plants exposed to 
NaCl treatment alone showed decreased values for gaseous exchange parameters 
(photosynthesis, transpiration, and stomatal conductance) and leaf chlorophyll con-
tent. The addition of NaHS exogenously to salt-stressed wheat seedlings reduced 
the inhibiting effects of salt stress on leaf photosynthesis and chlorophyll content. 
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This led to the alleviation of foliar injury and the promotion of overall plant height. 
The application of 50 μM NaHS enabled wild-type Arabidopsis to preserve chloro-
phyll and carotenoid pigments in salt-affected leaves (Yastreb et al. 2020) (Fig. 12.2).

H2S could significantly depress the knock-down effect of salt treatment on seed 
germination in wheat. Pre-treatment of wheat grain with NaHS showed higher amy-
lase and esterase activities under stressed conditions (Ye et al. 2015). Under salinity 
stress, seed priming using NaHS successfully ameliorated the suppression of traits 
such as germination rate, germination index, and vigor index in the wheat genotype 
LM15 (salt-sensitive) (Bao et al. 2011). Salt stress reduced the rate of seed germina-
tion in cucumber but the exogenous application of 400 μmoL−1 NaHS could amelio-
rate this effect by stimulating the germination rate of cucumber seeds which could 
be attributed to an elevated level of amylase activity (Yu et al. 2013). Additionally, 
NaHS increased the length of hypocotyl and radicle under salinity stress conditions 
in cucumber. Increased amylase activity facilitated the breakdown of starch to form 
glucose and hence enabling the allocation of carbohydrates to the embryonic axis 
which led to the promotion of hypocotyl and radicle growth. H2S rescued salinity-
induced suppression of plant growth. In barley, 50 or 100 μM NaHS treatment sig-
nificantly increased root length while on the other hand, root length was inhibited 
due to exposure of plants to high NaHS concentration (Chen et al. 2015). Moreover, 
the addition of low NaHS (50 or 100 mM) treatments enhanced the biomass of bar-
ley seedlings and leaf relative water content in comparison to 150 mM salt treatment 
alone. Pre-treatment of 100 μM NaHS mitigated the suppressive effect of salinity 
stress on root elongation in alfalfa (Lai et  al. 2014). NaHS abolished salinity- 
mediated retardation of root growth in Arabidopsis thaliana (Li et al. 2014a, b).

On the other hand, H2S alleviated salinity stress by deterring K+ outflow in alfalfa 
seedlings (Lai et al. 2014). NaHS pre-treated alfalfa plants showed a phenomenal 
enhancement in K+ concentration in roots along with an insignificant increase in 
Na+ content and thus maintaining a high K+/Na+ ratio in stellar cells subjected to salt 
stress. Further, the electron-physiological analysis revealed that endogenous form 
of H2S helps to maintain K+ homeostasis by preventing the salt-activated K+ efflux 
in the root maturation zone of alfalfa seedlings. However, the mechanism of H2S- 
mediated ion homeostasis maintenance in Arabidopsis is different from that of 
alfalfa under salinity stress.

When plants are exposed to salinity stress, they face oxidative bursts usually 
caused due to the accumulation of toxic molecules such as ROS, which results in 
oxidative stress causing an impairment to nucleic acids, lipids, proteins, and carbo-
hydrates. To overcome ROS burst, a complex ROS detoxification system, involving 
enzymatic antioxidant enzymes such as superoxide dismutase (SOD), catalase 
(CAT), peroxidase (POD) and glutathione reductase (GR) among others as well as 
non-enzymatic antioxidant molecules (ascorbate, glutathione, etc.), has evolved by 
plants to maintain the survival of cells. H2S is capable of alleviating oxidative bursts 
and improving crop responses to salinity stress tolerance. In Bermuda grass, exog-
enous application of NaHS could effectively protect plant cells by modulating ROS 
accumulation and associated damage due to oxidative stress accompanied by salin-
ity (Shi et  al. 2013). Under salinity stress, Bermuda grass treated with 500 μM 
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NaHS manifested significantly reduced H2O2, O2
•− and malondialdehyde (MDA) 

concentrations as compared to untreated plants, endowing minimal oxidative dam-
age. NaHS treatment also alleviated salt-induced decrease in glutathione redox state 
via increasing GR activity. Increased CAT and POD values might have contributed 
to lower H2O2 and O2

•− content and hence assisted in plants adaptation to salt stress.
Exogenous H2S application regulated ascorbate and glutathione metabolism, 

which, consequently, strengthened the antioxidant mode of action and allowed 
maize plants to combat oxidative stress triggered by salt stress (Shan et al. 2014). In 
wheat, NaHS pretreatment promoted salinity tolerance by stimulating antioxidant 
enzymatic activities and decreasing MDA content (Ye et  al. 2015). When salt- 
stressed wheat plants were exposed to NaHS treatment, the activities of SOD, CAT, 
and POD increased significantly following the decline in H2O2 and MDA contents. 
This confirmed that H2S treatment assuaged salinity stress in wheat leaves by 
improving the antioxidant defense system (Ding et  al. 2019). Unexpectedly, 
hypotaurine- mediated infiltration of tobacco leaves suppressed the endogenous 
level of H2S which had a negative impact on the profile of antioxidative enzymes 
(SOD, CAT, and APX) under NaCl stress (da-Silva et al. 2017).

To withstand devastating effects of salinity stress, osmolytes such as proline, 
total soluble sugars, and sucrose are accumulated to ease the survival of plants by 
offsetting osmotic pressure and adjusting the stability of the cell membrane. 
Exogenous application of NaHS induced production of osmolytes (L-proline, 
sucrose) under NaCl stress condition, conferring salt tolerance in Bermuda grass 
(Shi et al. 2013). However, proline synthesis does not always correspond with abi-
otic stress tolerance in plants, that somewhat, is dependent on proline turnover 
(Kishor and Sreenivasulu 2014). It has been observed in numerous studies that pro-
line imparts tolerance to numerous abiotic stresses (Loutfy et  al. 2012; Mostofa 
et al. 2015b). In rice, a high amount of proline synthesis was not desirable because 
prior application of NaHS in salt-stressed plants decreased the rate of water loss 
(increased relative water content) by decreasing the concentration of Na+ (Mostofa 
et al. 2015a, b). Analogously, in cucumber, NaHS application receded the proline 
pool induced by the salinized condition in radicles and hypocotyls (Li-Xu 
et al. 2013).

H2S interacts with another gasotransmitter molecule, NO, in response to differ-
ent abiotic stresses including salinity and drought (Karle et al. 2021). The interac-
tion of H2S and NO promotes root development via auxin-dependent pathways in 
stressed plants (Mishra et al. 2021). For example, H2S enhances adventitious root 
formation with the help of NO in plant species such as Ipomoea batatas, Salix mat-
sudana, G. max and C. sativus under external stress conditions. It has been reported 
that the signaling molecule H2S acts through two distinct pathways i.e., HO-1 (heme 
oxygenase 1)/CO and Ca2+/CaM1 (calmodulin) which are then passed on to NO via 
feedback control to trigger lateral root development. Furthermore, H2S and NO are 
actively involved in the adjustment of stomatal movement. In salt-treated tomato 
plants, H2S stimulates NO concentration and positively balances stomatal closure to 
prevent the loss of water and to hold osmotic balance at cellular and tissue levels. 
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Also, H2S-NO interaction participates in ameliorating heavy metal stress-induced 
cell death in plants. In mung bean plants, H2S and NO prevent damage due to Cd2+ 
stress by repairing photosynthetic apparatus (Khan et al. 2020). The coordination 
between NO, H2S, and melatonin improves gaseous exchange parameters and pho-
tochemical efficiency in cucumbers under salinity stress. In addition, melatonin 
induced H2S when interacts with NO reduces the accumulation of salt-induced ROS 
and hence prevents oxidative damage in cucumber leaves (Sun et al. 2021).

12.4  Gene Regulation by H2S During Plant Salinity Stress

H2S is considered as a master regulator of abiotic stress tolerance mechanism 
through up-regulation and down-regulation of various stress-responsive genes and 
thus transits relevant signaling networks (Karle et al. 2021; Shi et al. 2015). H2S- 
mediated regulation mechanism is complex and the regulatory loop involves stress 
stimulus perception from external circumstances accompanied by activation of sig-
naling route entangling interactions among proteins, transcription factors, and pro-
moters and modified protein genesis integrating the defense framework of 
antioxidative enzymes in plants (Aroca et al. 2018).

We know that salinity results in excess buildup of Na+ in plant cells which in turn 
causes K+ deficiency due to less K+ uptake (Munns and Tester 2008). There are 
several mechanisms evolved by plants to tolerate salinity, among which reduction of 
Na+ accumulation in plants by preventing entry of Na+ into roots primarily ranks the 
best. To combat salt stress and maintain ionic homeostasis in the cytosol, SOS (salt 
overly sensitive) pathway is necessary (Zhu 2002). In cucumber roots, plasma 
membrane PM H  +  -ATPase, SOS1, and potassium channel SKOR genes were 
upregulated during salt stress in contrast to the control, although the reverse was 
noticed in leaves (Jiang et al. 2019). The gene expression might be affected as a 
consequence of root irrigation treatment procedure or induction of any signal in 
roots. H2S mitigated the elevation in transcript level of the above-mentioned genes 
in roots induced by salt stress and thus maintained Na+/K+ balance for the improve-
ment of salinity tolerance. H2S pretreatment controlled the expression of SOS path-
way genes (SOS2, SOS3, and SOS4) and preserved Na+/K+ homeostasis in 
salt-stressed strawberry plants (Christou et al. 2013). H2S induced the up-regulation 
of SOS1, which participated in the removal of excess Na+ and, therefore, enhanced 
endurance to salinity stress in wheat (Deng et al. 2016).

H2S treatment displayed elevated expression of Triticum aestivum glutathione 
synthetase (TaGS) and Triticum aestivum dehydroascorbate reductase (TaDHAR) 
genes, enhancing ascorbate and glutathione activity in wheat leaves, and in addition 
to that, SOS pathway genes- TaSOS1, TaSOS2, and TaSOS3 showed upregulation in 
their expression levels (Ding et al. 2019). This implies that H2S protected wheat 
seedlings against salt stress via modulating the metabolism of ascorbate and gluta-
thione and the SOS pathway. Plant adaptation to salinity stress can be improved by 
the involvement of MAPK (mitogen-activated protein kinase) cascades (Rodriguez 
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et  al. 2010). The elevated expression of the MPK4 gene in NaHS treated wheat 
seedlings imparted salt tolerance by regulating osmolytes production (Ding et al. 
2019). Under salinity conditions, H2S enhanced the expressions of PM-H+ ATPase 
genes namely AHA3 and AHA4 in Arabidopsis roots, thereby improving plants tol-
erance to salt stress via modulating PM-H+ ATPase activity both at the phosphoryla-
tion and transcription levels and inducing high protein activity of the PM Na+/H+ 
antiporter which led to the maintenance of ionic homeostasis at the intracellular 
level (Li et al. 2014a, b). In alfalfa seedling roots, samples treated with NaCl and 
NaHS showed increased endogenous H2S levels which in turn up-regulated the tran-
script levels of GR, DHAR, and monodehydroascorbate reductase (MDHAR) genes, 
strengthening the AsA-GSH metabolic pathway and further, partly hindering salt-
triggered oxidative damage (Lai et al. 2014).

12.5  Physico-Chemical and Molecular Effects of H2S Under 
Drought Stress

Drought is the most predictable and damaging among all abiotic stresses, that 
severely affect plant yield. It prompts desiccation, osmotic imbalance, and wilting 
in various crops and varieties around the world (Banerjee and Roychoudhury 2017). 
Drought leads to the overproduction of ROS that triggers disturbance in cellular 
redox homeostasis. Exogenous application of H2S or H2S donors alleviates the 
harmful consequences of drought stress in plants. For example, exogenous treat-
ment of NaHS in wheat seedlings subjected to drought stress caused by polyethyl-
ene glycol 6000 (PEG 6000) increased seed germination depending upon 
concentration (Zhang et al. 2010). Drought stress was relieved by treating seedlings 
with solely NaHS but no other S2, SO4

2−, SO3
2−, HSO4

−, or HSO3
− containing com-

pounds. This underlined the importance of H2S in reducing drought vulnerability 
(Zhang et al. 2010). Lowered lipoxygenase (LOX) activity and malondialdehyde 
(MDA) concentration along with the enhanced ascorbate peroxidase (APX) and 
CAT activity were observed in treated seeds (Zhang et  al. 2010). Plant survival 
under drought stress requires the retention of cellular redox equilibrium and the 
triggering of antioxidative defense pathway (Gong et al. 2020). H2S helps plants 
improve their antioxidant responses through glutathione and ascorbic acid metabo-
lism, which ameliorates tolerance against drought (Hancock and Whiteman 2015). 
Moreover, the physiological production of H2S is rather limited, it is doubtful that 
these positive antioxidant effects can directly scavenge ROS by H2S synthesis. 
MicroRNA (miRNA) pathway modulation might potentially be a suitable choice 
(Shen et al. 2013).

In plant-cells, the ascorbate-glutathione (AsA-GSH) cycle is one of the most 
important antioxidant replenishment mechanisms (Banerjee and Roychoudhury 
2016). During drought stress, Shan et al. (2011) reported that NaHS-treated wheat 
seedlings increased the activities of AsA-GSH cycle enzymes such as APX, GR, 
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and DHAR with respect to non-treated samples. Significant increases in cellular 
osmolyte accumulation, such as AsA and GSH limits MDA generation and electro-
lyte leakage in drought-stressed plants (Shan et al. 2011). H2S has improved drought 
tolerance in rice possibly via two mechanisms i.e., (1) enhancing the antioxidant 
capacity to re-establish redox balance; and (2) modulating the abscisic acid (ABA) 
signaling pathway and activating downstream drought linked genes (Zhou et  al. 
2020). H2S-mediated drought tolerance is relatable to the induced expression of 
genes along with the up-regulation in the transport of ions especially iron in wheat 
(Li et al. 2017). It has been reported that the pre-treatment with H2S triggered the 
synthesis of novel proteins as well as other macromolecules to prevent membrane 
and protein damage during drought stress. In addition, acceleration of genes related 
to sugar metabolic pathways resulted in adjusting osmotic pressure and thereby 
reducing the damage due to drought stress in wheat plants. Also, H2S influenced 
signaling pathways of plant hormones, transcription factors, and protein kinases (Li 
et al. 2017). H2S seems to have a wide range of effects on plant survival and growth, 
as evidenced by these research findings.

According to Wei et al. (2017), H2S increases senescence-associated gene (SAGs) 
expression followed by inhibition of chlorophyll degradation in detached leaves, 
and the scientists hypothesized that S-nitrosoglutathione reductase was involved, 
implying the active participation of NO metabolism. In certain cases, H2S causes 
stomatal closure, whereas, in others, the stomatal opening is influenced (Garca- 
Mata and Lamattina 2013; Lisjak et al. 2011). This obvious abnormality has lately 
been studied further (Honda et al. 2015). These authors discovered that brief expo-
sure to an H2S donor resulted in stomatal closure, whereas long-term exposure led 
to larger stomatal apertures. It was revealed that 8-mercapto-cGMP mediates the 
effects of H2S, which is very significant. Ca2+, cADP ribose, and slow anion channel 
1 were discovered to be implicated downstream of this signaling molecule. Jin et al. 
(2013) investigated the role of H2S in controlling stomatal movement as well as the 
relationship between H2S and ABA metabolism in signal transduction in Arabidopsis 
plants by knocking down the L-cysteine desulfhydrase (LCD) gene. They also dis-
covered that H2S regulates the expression of ABA receptor candidates, potassium 
ions, and calcium ion channels in guard cells. H2S may be implicated in ethylene 
signaling, which leads to the stomata closure (Liu et al. 2011). The importance of 
H2S and its interplay with NO and ABA were studied further using an L-cysteine 
desulfhydrase (DES1) mutant in Arabidopsis (Scuffi et al. 2014). Upon H2S treat-
ment under drought stress, the expression profiles of genes that control ABA metab-
olism were changed in roots and leaves in various ways, however, the expression 
levels of ABA receptors were upregulated in both roots and leaves. In addition to 
stomatal activity, multiple studies have found that H2S aids drought tolerance by 
accumulating osmolytes such as proline and interacting with the calcium messenger 
network (Li et al. 2014a, b).

Various cellular processes are linked by mitogen-activated protein kinases 
(MAPKs), which are stimulated by developmental and environmental inputs form 
cellular signaling systems (Danquah et al. 2015). In MAPK signaling channels, H2S 
plays a crucial function. Drought-induced stress responses are regulated by the 
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H2S- MAPKs cascade, which is implicated in ABA-dependent stomatal movement 
(Du et al. 2019). Drought stress also stimulates H2S biosynthesis as well as MAPK 
gene expression (Samajová et  al. 2013). In the lcddes1 double mutant lacking 
endogenous H2S production, MAPK expression is reduced (Du et  al. 2019). 
Furthermore, in contrast to wild-type Arabidopsis, the mpk4 mutant’s growth is 
hampered during drought stress, and H2S-induced stomatal closure is hindered in 
the mpk4 mutant.

Chen et  al. (2016) created a model to highlight the role of H2S in regulating 
drought stress tolerance via modulation in the accumulation of polyamines and sug-
ars. Exogenous application of NaHS to drought-stressed Spinacea oleracea seed-
lings led to the elevated levels of expression of genes for polyamine biosynthesis, 
such as ornithine decarboxylase (ODC), N-carbamoyl putrescine amidohydrolase 
(CPA), and arginine decarboxylase (ADC), and downregulation in the expression of 
S-adenosyl-Met-decarboxylase (SAMDC). The recent findings indicated the ability 
of H2S to give considerable drought stress protection in Medicago sativa, resulting 
in severe cellular damage and nitro-oxidative stress in the treated samples (Antoniou 
et al. 2020). This defense appears to be accomplished by a combination of increased 
physiological activity, equilibrium of reactive oxygen and nitrogen species, and 
transcriptional control of defense-related pathways. In conclusion, the foregoing 
discussion clearly demonstrates the extensive effect of H2S on plant drought toler-
ance and serves as a useful reference for boosting crop resilience and output 
(Fig. 12.3).

Fig. 12.3 Ameliorative actions of H2S in plants under drought stress. ABA abscisic acid, MDA 
malondialdehyde, ROS reactive oxygen species
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12.6  Conclusion and Future Perspectives

Plant cells emit H2S as a survival signal under salinity and drought stress. H2S pro-
motes systemic resistance against stressed environment by re-establishing redox 
equilibrium, increasing osmolyte accumulation, ensuring ion balance, and modulat-
ing gene expression, along with many other factors. With its ability to undergo reac-
tion with thiol groups, it also boosts plant resistance to soil salinity and drought 
stress. However, most of the physiological studies in plants are based on exogenous 
treatment with H2S or H2S donors. Genetic researches on H2S metabolism are very 
poor. Thus, the process of endogenous H2S generation in plants, as well as the signal 
transduction channels between plant cells and tissues, must be investigated in future. 
Additionally, H2S interacts with other signaling compounds to protect plants against 
salinity and drought stress conditions. How plants respond to this interaction needs 
to be clearly understood. As we know that omics play a major role in abiotic stress 
adaptation in plants, future research should be focused on a systematic analysis of 
omics-based approaches to critically understand the H2S signaling pathway for 
improving salt and drought stress in crop cultivars.
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Chapter 13
Functional Roles of Hydrogen Sulfide 
in Postharvest Physiology of Fruit 
and Vegetables

Deep Lata, Divya Vani Vaka, V. S. Karthik Nayaka, A. J. Sachin, 
Aaisha Nasim, Shubhra Shekhar, and Mohammed Wasim Siddiqui

Abstract Hydrogen sulfide (H2S) is a naturally occurring gaseous molecule in 
plants and a potential signalling molecule that regulates many physiological pro-
cesses in the plant system. Various studies have reported the beneficial effect of H2S 
in delaying the fruit ripening, senescence, and better fruit quality during storage. It 
reduces oxidative damage, membrane permeability, and lipid peroxidation by boost-
ing the antioxidant defence mechanism in many fruits and vegetables. It has a 
greater potential for use in the postharvest industry for reducing postharvest decay 
and improving fruit quality with extended storage life. This chapter is mainly 
focused on the role of H2S in postharvest physiology, its signalling action, and 
cross-talk with other hormones viz. ethylene, abscisic acid, and nitric oxide during 
fruit ripening.
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13.1  Introduction

Consumer awareness of nutritional and safe food has increased the demand for fresh 
consumption of fruits and vegetables. It has also increased the need for better pro-
duction strategies, management practices, and fewer post-harvest losses in fruits 
and vegetables (Kader 2005). A report of various studies conducted by FAO indi-
cated that a huge quantity of horticultural products is wasted due to improper post-
harvest handling (Porat et al. 2018). To reduce the postharvest losses, traders use 
many synthetic chemicals which have raised several issues such as pathogen resis-
tance, residual effect, and other food safety issues (Deng et al. 2013). Therefore, 
there is a greater need for establishing an eco-friendly and safe alternative to the 
commercially used synthetic harmful chemical compounds. Toward this goal, sev-
eral naturally occurring compounds, such as salicylic acid (Reddy et  al. 2016; 
Reddy and Sharma 2016), methyl jasmonate, hydrogen sulfide, nitric oxide, etc. 
have been used as a postharvest treatment for different fruits and vegetables (Gong 
et al. 2018; Lata et al. 2018, 2021; Siddiqui et al. 2021a, b).

Hydrogen sulfide (H2S) is a colorless gaseous molecule having a foul smell and 
is present naturally in plants. It is well known for its various signalling actions and 
regulation of numerous physiological functions in plants (Li et al. 2017a; Lata et al. 
2022). In the bygone era, H2S was known for its phytotoxic effect on plants and 
animals but previous studies had proven the beneficial effect of H2S as a signalling 
molecule during pathogenic and environmental stresses (Chen et  al. 2016; Fang 
et al. 2017; Paul and Roychoudhury 2020; Corpas and Palma 2020). Postharvest 
application of H2S delayed tissue browning, ripening, softening, maintained green 
color, and inhibited postharvest decay in various horticultural crops (Gao et  al. 
2013; Fu et  al. 2014; Al Ubeed et  al. 2017; Deshi et  al. 2020; Yao et  al. 2020; 
Molinett et al. 2021; Lata et al. 2022). In this chapter, the effect of H2S application 
on postharvest physiology and the storage life of various fruits and vegetables have 
been discussed.

13.2  Role in Plant Physiology, Biochemistry and Signalling

H2S is confirmed as the third gasotransmitter next to nitric oxide (NO) and carbon 
monoxide (CO) because of its major role in various physiological processes in both 
plants as well as animals (Tan et al. 2010; Corpas and Palma 2020; Mishra et al. 
2021). The presence of H2S in plants had been known for many years but very few 
studies have been conducted on its role in plant physiology. Recently, many studies 
have reported the contribution of H2S in signalling pathways of different processes 
during growth and development, for example, germination, root initiation, autoph-
agy, movement of stomata, photosynthesis, etc. (Scuffi et  al. 2014; Papanatsiou 
et al. 2015; Jia et al. 2015; Duan et al. 2015; Jin and Pei 2016; Aroca et al. 2017; Liu 
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and Xue 2021). Additionally, H2S enhanced the tolerance level of different abiotic 
stresses such as moisture stress, osmotic imbalance, salt stress, low-temperature 
stress, heavy metal stress, etc. (Fu et al. 2013; Lai et al. 2014; Ali et al. 2015; Chen 
et  al. 2016; Jin et  al. 2017; Khan et  al. 2017; Fang et  al. 2017). Various studies 
showed that H2S enhanced the product quality and nutritional value during abiotic 
stresses in various horticultural crops (Qian et al. 2014; Reich et al. 2016; Kaya 
et al. 2018). Besides, the signalling action of H2S on plant defense responses against 
pathogens and other developmental processes, for example, fruit ripening, senes-
cence, and softening had been well proven (Corpas and Palma 2020; Zhang et al. 
2021; Mishra et al. 2021).

Biosynthesis of H2S in plants occurs due to the catalysis of sulfite to sulfide by 
sulfite reductase. This process involves two cysteine-dependent reactions in which 
O-acetylserinelyase gene family takes part. At first, L-cysteine is converted into 
H2S, NH3, and pyruvate by the enzyme L-cysteine desulfhydrase (LCD) and the 
second process consists of conversion of cysteine to cyanide using β-cyanoalanine 
synthase which produces H2S (Hatzfeld et al. 2000; Riemenschneider et al. 2005). 
In Arabidopsis, catalysis of cysteine to H2S is governed by two genes namely 
AtNFS1 and AtNFS2 and other genes namely CYSC1, CYS-D1, and CYS-D2 which 
were identified to encode β-cyanoalanine synthase (Jost et al. 2000; Leon et al. 2002).

Biochemical aspects of H2S are studied extensively and proposed that it shows 
signalling activities mainly through the oxidation of cysteine residues into persul-
fides during post-translation process (Filipovic and Jovanović 2017; Ruetz et  al. 
2017; Kimura 2020). It has been studied that a small concentration of H2S can also 
exhibit signalling properties along with other substances such as hormones, free 
radicals or reactive oxygen species (ROS), nitric oxide (NO), etc. during biotic and 
abiotic stresses and various physiological processes (Hancock and Whiteman 2014; 
Christou et al. 2014; Ziogas et al. 2015; Antoniou et al. 2016).

13.3  Role in Postharvest Physiology

Postharvest losses in horticultural crops are a serious global concern that is more 
prevalent in developing countries. In this aspect, various approaches have been 
implemented to reduce the postharvest losses of fresh fruits and vegetables. In this 
regard, H2S can be a useful tool in maintaining the postharvest quality and storage 
life of perishable produce. It delays color change, respiration, ethylene production 
rate, ripening, senescence, and softening and also alleviates chilling injury during 
cold storage. Exogenous application of H2S prevents oxidative stress, microbial 
infection, regulates postharvest ripening, and senescence in many horticultural 
crops (Gao et al. 2013; Hu et al. 2014b; Ni et al. 2016; Ge et al. 2017; Siddiqui 
et al. 2021a).
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13.3.1  Effect on Postharvest Ripening and Senescence

Postharvest ripening and senescence of horticultural products are directly related to 
respiration and ethylene production rate. Higher respiration rate and production of 
ethylene promote overripening and senescence in harvested fruits and vegetables 
(Razzaq et al. 2013). H2S acts as an ethylene antagonist and inhibits ethylene bio-
synthesis by down regulating the expression of genes responsible for ethylene bio-
synthesis and signal transduction (Luo et  al. 2015; Li et  al. 2015b; Zheng et  al. 
2016; Ge et al. 2017). In the plants, cytochrome c oxidase and succinate dehydroge-
nase play a key role in cellular respiration, subsequent energy metabolism, and the 
tricarboxylic acid cycle (TCA) (Brunori et  al. 1987; Affourtit et  al. 2001). H2S 
increases the cytochrome c oxidase and succinate dehydrogenase activities thus 
producing higher energy which leads to lesser consumption of energy and finally 
reduce the respiration and senescence processes (Henriksson and Reitman 1977; Li 
et al. 2016).

In climacteric fruits like bananas, postharvest application of H2S slowed down 
the ripening and senescence process by constraining the effect of ethylene and also 
maintained the green color, soluble protein content, and total antioxidant activity 
(Ge et  al. 2017; Siddiqui et  al. 2021a). H2S treatment down-regulated the gene 
expression associated with ethylene biosynthesis such as MaACO1, MaACS1, 
MaACS2, and MaPL (pectate lyase) and also enhanced the expression of MaETR, 
MaERS1, and MaERS2 (ethylene receptors). Similarly, H2S suppressed the expres-
sion of genes MdACS1, MdACS3, MdACO1, MdACO2, MdETR1, MdERS1, 
MdERS2, MdERF3, MdERF4and MdERF5 involved in ethylene biosynthesis and 
signal transduction (Zheng et al. 2016). Postharvest application of H2S reduced the 
ethylene production in kiwi fruit, which resulted in delayed senescence and soften-
ing and led to the longer storage life of fruits (Gao et al. 2013). H2S suppressed the 
gene expression responsible for ethylene biosynthesis (AdACS1, AdACS2, AdSAM, 
AdACO2, and AdACO3) and also AdCP1 and AdCP3 (cysteine protease related 
genes) which reduced the ethylene production in kiwi fruits (Li et al. 2017b).

In non-climacteric fruits like strawberries, mulberry, and grapes, postharvest 
application of H2S reduced the respiration rate, ethylene-associated softening, and 
senescence of fruits (Zhang et al. 2014; Hu et al. 2014b; Ni et al. 2016). Various 
studies have suggested that H2S effectively delayed the ripening and senescence 
process in different horticultural crops (Table 13.1).

13.3.2  Effect on Visual Appearance, Nutritional Quality 
and Shelf-Life

Harvested fruits and vegetables are living entity and use carbohydrate reserves as a 
substrate during storage. Thus, respiration rate is a crucial factor that determines the 
quality and shelf life of perishable products during storage. A higher respiration rate 
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Table 13.1 Effect of H2S on ripening and senescence of harvested fruits and vegetables

Crop Concentration
Storage 
conditions Effect Reference

Apple 0.4 mmol/L H2S 25 ± 0.5 °C 
& 85–90% 
RH

Expression of MdACO1, 
MdERS1, MdETR1 and 
MdPG1genes that are responsible 
for ethylene biosynthesis and 
signal transduction were 
suppressed thus delaying the 
senescence up to 5 days.

Zheng 
et al. 
(2016)

Banana cv. 
Brazil

Ethephon 
1.0 g/L + NaHS 
(sodium 
hydrosulphide) 
1 mM

25 °C & 
85–90% RH

Improved the expression of 
MaETR, MaERS1 and MaERS2 
(ethylene receptor genes) and 
suppressed the expression of 
MaACO1, MaACS1, MaACS2 
(ethylene synthesis genes) and 
pectate lyase MaPL, thus 
antagonizing the effect of ethylene 
and delaying the senescence

Ge et al. 
(2017)

Broccoli 0.8 mM NaHS 20 °C & 
85–90% RH 
for 4 days in 
dark

Postponed senescence up to 
4 days by maintaining higher ATP 
contents and energy charges by 
increasing the activity the 
enzymes involved in glycolysis, 
tricarboxylic acid cycle, electron 
transport chain etc.

Li et al. 
(2017a)

Chilean 
strawberry

0.2 mM NaHS 20 °C Delayed the pectin degradation by 
decreasing the activity of pectate 
lyase, polygalacturonase and 
expansion thus delaying the 
senescence and extending the 
shelf life up to 6 days.

Molinett 
et al. 
(2021)

Kiwi fruit Ethephon 
0.4 g/L + NaHS 
1 mM

25 °C & 
85–90% RH

Down regulated the expression of 
genes AdACS1, AdACS2, AdSAM, 
AdACO2 and AdACO3 involved in 
ethylene biosynthesis, thus 
inhibiting ethylene synthesis and 
alleviating the ripening process.

Li et al. 
(2017b)

Kiwi fruit 
cv. Jinkui

45 and 90 μmol/L 
H2S

25 °C & 
85–90% RH

Delayed the maturity and 
senescence up to 18 days

Zhu et al. 
(2014)

Kiwi fruit 1.0 mM NaHS 20 ± 0.5 °C 
& 85–90% 
RH

Delayed the senescence by 
enhancing the antioxidant activity.

Gao et al. 
(2013)

Mulberry 0.8 mM NaHS 2.0 ± 0.2 °C 
& 85–90% 
RH

Attenuated the senescence by 
reducing the respiration rate, 
delaying the increase of soluble 
pectin and anthocyanin content.

Hu et al. 
(2014a)

Navel and 
Valencia 
oranges

100 μL/L H2S 20 °C & 
65–70% RH 
for 5 weeks

Reduced the accumulation of 
ethanol and delayed the 
senescence till 5 weeks

Alhassan 
et al. 
(2020)

(continued)
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Table 13.1 (continued)

Crop Concentration
Storage 
conditions Effect Reference

Pak choy 250 μL/L H2S 6 days at 
10 °C

Reduced the respiration rate and 
ethylene production, delayed 
senescence, degradation of 
chlorophyll, weight loss and ionic 
leakage

Al ubeed 
et al. 
(2018)

Peach cv. 
Dahong

NO 
15 μL/L + H2S 
20 μL/L

25 ± 0.5 °C 
& 85–90% 
RH

Reduced the softening by 
inhibiting cell membrane 
polysaccharides solubilisation and 
de-polymerization, ethylene 
biosynthesis and activity of cell 
wall degrading enzymes (PG, PE 
and EGase).

Zhu et al. 
(2019)

Pear 2.0 mM NaHS 20 °C Delayed the senescence up to 
8 days by reducing the softening 
and decay.

Hu et al. 
(2014b)

Strawberry 0.8 mM NaHS 20 ± 0.5 °C 
& 85–90% 
RH

Improved postharvest shelf life by 
decreasing the respiration rate and 
inhibiting the activity of PG

Hu et al. 
(2012)

Tomato 
‘Micro 
Tom’

Ethephon 
1.0 g/L + NaHS 
0.90 mM

25 °C & R.H 
85–90%

Delayed the senescence up to 
7 days by antagonizing the 
ethylene effect and decreasing 
ROS level (MDA, H2O2 and O2

•-)

Yao et al. 
(2018)

Water 
spinach

2.4 mM NaHS 12–14 °C & 
R.H 85–95% 
in dark

Delayed the senescence by 
reducing the respiration rate and 
enhancing antioxidant enzyme 
activity (SOD, CAT, POD)

Hu et al. 
(2015)

deteriorates the quality and shortens the shelf-life of the produce (Hu et al. 2012). 
H2S reduced the respiration rate in many horticultural crops (Chang et al. 2014; Li 
et al. 2016; Al Ubeed et al. 2017; Ali et al. 2019). It helps to maintain adequate 
energy levels in fresh produce, which leads to better quality in terms of freshness 
and higher shelf life (Aghdam et al. 2018). The external colour of fruits and vegeta-
bles is an important criterion for marketing and consumer acceptability of produce. 
Thus, discoloration is a major limitation during storage of perishable produce. 
Postharvest treatment with H2S showed positive results in maintaining the color of 
different horticultural crops (Al Ubeed et  al. 2017; Yao et  al. 2020; Deshi et  al. 
2020; Siddiqui et al. 2021b). Li et al. (2015b) suggested that postharvest application 
of NaHS (H2S releasing compound) down regulated the expression of genes for 
example BoCLH1, BoNYC, BoRCCR, BoSGR, and BoPPH which are responsible 
for chlorophyll degradation in broccoli and maintained 6 days’ shelf life. H2S plays 
a key role in reducing the enzymatic browning in fresh produce by inhibiting the 
activities of phenylalanine ammonialyase (PAL), polyphenol oxidase (PPO), and 
peroxidase (POD) enzymes (Hu et al. 2014b; Ali et al. 2018; Deshi et al. 2020). 
However, fruits and vegetables are rich source of nutrition like vitamins, essential 
amino acids, phenols, flavonoids, antioxidants, etc. Therefore, retention of these 
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nutritional components during storage is a major objective. H2S as postharvest treat-
ment influences the concentration of these components during storage. Application 
of H2S retained higher phenolic compounds, anthocyanins, total carotenoids, ascor-
bic acid, and flavonoids during storage in different horticultural crops and main-
tained better quality and longer marketable life (Table 13.2).

Biochemical parameters such as TSS (total soluble sugars), acidity, and sugars 
contribute majorly to the organoleptic quality of fresh produce (Fallik and Ilic 
2018). Similarly, rapid loss of firmness accelerates softening and postharvest decay. 
Therefore, retention of higher firmness during storage in fruits and vegetables is a 
crucial factor for better quality and storage life of produce (Barrett et al. 2010; Saei 
et al. 2011). H2S retained better firmness of fruits and vegetables during storage by 
reducing the activity of pectin methylesterase (PME), endo-β-1,4-glucanase (EGase) 
and polygalacturonase (PG) (Hu et al. 2012; Chang et al. 2014). Postharvest appli-
cation of H2S maintained higher firmness, sugars and titratable acidity, ascorbic 
acid, phenols, flavonoids, and sensory quality in fruits and vegetables (Table 13.2).

13.3.3  Effect on Membrane Permeability 
and Lipid Peroxidation

During storage, temperature stress and microbial infections lead to membrane dis-
integration and permeability. Membrane permeability occurs due to lipid peroxida-
tion and ionic leakage. In lipid peroxidation, lipoxygenase (LOX) is the major factor 
that induces alteration in cell membrane lipids and promotes higher electrolytic 
leakage and malondialdehyde (MDA) accumulation (Imahori et al. 2008). Higher 
concentration of electrolytic leakage and MDA damage the cell membrane integrity 
(Aghdam et al.2018). Many studies have reported that H2S reduced lipid peroxida-
tion and membrane permeability in several fruits and vegetables (Chang et al. 2014; 
Zhu et  al. 2014; Yonggen et  al. 2015; Ni et  al. 2016; Siddiqui et  al. 2021a, b). 
Postharvest application of H2S inhibits the activity of LOX enzyme and reduces 
electrolytic leakage and MDA concentration in different horticultural crops 
(Table 13.3).

13.3.4  Effect on Chilling Injury Alleviation

Cold storage of fruits and vegetables prolongs their storage life and maintains their 
quality. However, storage of perishable produce at low temperatures often results in 
chilling injury (Wang 1994; Hakim et al. 1999). Chilling injury (CI) causes surface 
pitting, internal breakdown, discoloration of pulp, uneven ripening or failure to 
ripen, imbalance metabolism, electrolytic leakage, and peroxidation of lipids in 
fruits and vegetables (Wang 1994; Aghdam et al. 2013; Garcia-Pastor et al. 2020). 
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Table 13.2 Effect of H2S on visual appearance, nutritional quality and shelf life of fruits and 
vegetables

Crop Concentration
Storage 
conditions Effect Reference

Apple 0.4 mM NaHS 25 ± 0.5 °C 
& 85–90% 
RH

Maintained higher levels of 
soluble protein and reducing 
sugars and lower concentration of 
free amino acids and protease.

Zheng 
et al. 
(2016)

Banana cv. 
Brazil

Ethephon 
1.0 g/L + NaHS 
1 mM

25 °C & 
85–90% RH

Improved flavonoid content, 
decreased the yellow colour 
development, sugar conversion 
and maintained firmness of fruits.

Ge et al. 
(2017)

Broccoli 2.4 mM NaHS 25 °C & 
85–90% RH

Maintained higher soluble protein, 
reducing sugar, soluble solid, 
anthocyanins carotenoids and 
ascorbic acid.

Li et al. 
(2014)

Tomato 
‘Micro 
Tom’

Ethephon 
1.0 g/L + NaHS 
0.90 mM

25 °C & 
85–90% RH

Delayed colour transition and 
softening, maintained higher 
flavonoids, reducing sugar, 
ascorbic acid antioxidant activity

Zhong 
et al. 
(2021)

Tomato var. 
‘Micro 
Tom’

Ethephon 
1.0 g/L + NaHS 
0.90 mM

25 °C & 
85–90% RH

Maintained higher soluble 
proteins, sugars, anthocyanins, 
ascorbic acid and flavonoids

Yao et al. 
(2020)

Valencia 
orange

100 μL/L H2S 20 °C & 
65–70% RH 
for 5 weeks

Improved the shelf life by 
maintaining lower soluble sugars 
and higher acidity.

Alhassan 
et al. 
(2020)

Brinjal Phenylalanine 
7.5 mM and 
NaHS 3 mM/L

7 ± 1 °C 
85% & RH 
for 21 days

Exhibited lower weight loss and 
higher fruit firmness, anthocyanin, 
vit C, titratable acidity.

Najafi 
et al. 
(2021)

Broccoli 0.96 mmol/L H2S 25 °C & 
85–90% RH

Inhibited the yellowing and 
degradation of chlorophyll by 
down-regulating the expression of 
genes (BoSGR, BoNYC, BoCLH1, 
BoPPH, and BoRCCR) and 
reduced ethylene synthesis 
(BoACS2 and BoACS3) up to 
5 days

Li et al. 
(2015a)

Pear 2.0 mM NaHS 20 °C Alleviated the browning by 
decreasing the activity of PAL and 
PPO. Maintained higher level of 
reducing sugar, soluble protein 
and amino acids.

Hu et al. 
(2014b)

Passion 
fruit

2 mM NaHS 5 ± 1 °C for 
35 days

Improved the quality and shelf life 
by maintaining better anthocyanin, 
fresh weight and higher acidity, 
soluble solid, sugar and vit C.

Liu et al. 
(2019)

Litchi cv. 
Purbi

2 mM NaHS 28 °C & 
70–75% RH

Inhibited the pericarp browning 
by alleviating the oxidative 
damages and enhanced 
antioxidant activity.

Deshi 
et al. 
(2020)

(continued)
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Table 13.2 (continued)

Crop Concentration
Storage 
conditions Effect Reference

Litchi cv. 
Purbi

2 mM NaHS 7 ± 1 °C & 
85–90% RH

Retained higher membrane 
integrity, TSS, titratable acidity, 
anthocyanin, total phenolics and 
antioxidant activity.

Siddiqui 
et al. 
(2021b)

Strawberry 0.8 mM NaHS 
+5 μmmol/L 
nitric oxide

(20 ± 1) °C Preserved the fruit quality by 
reducing the rate of respiration, 
maintained firmness and red 
colour of peel.

Chang 
et al. 
(2014)

Grape 
Kyoho

1.0 mM NaHS 25 °C & 
85–90% RH

Inhibited rachis browning, 
softening and berry rotting by 
improving the activity of APX, 
CAT and maintaining higher 
levels of ascorbic acid, flavonoids 
and phenols.

Ni et al. 
(2016)

Water 
spinach

2.4 mM NaHS 12–14 °C & 
R.H 85–95%

Alleviated the yellowing of leaves 
up to 8 days by decreasing 
chlorophyll degradation

Hu et al. 
(2015)

Carrot 0.4 mM NaHS 5 ± 2 °C for 
10 days

Reduced surface discoloration by 
lower accumulation of peroxide, 
MDA and inhibiting PPO, POD 
activity.

Chen et al. 
(2018)

PAL phenylalanine ammonialyase, PPO polyphenol oxidase, POD peroxidase, CAT catalase, APX 
ascorbate peroxidase, MDA malondialdehyde

Table 13.3 Effect of H2S on membrane permeability and lipid peroxidation in different fruit crops

Crop Concentration
Storage 
conditions Effect Reference

Grape cv. 
Kyoho

1.0 mM 
NaHS

25 °C & 
85–90% RH

Inhibited the activity of LOX, 
lowered MDA content, lipid 
peroxidation and ionic leakage.

Ni et al. 
(2016)

Kiwi fruit 
cv. Jinkui

45 μM H2S 25 °C & 
85–90% RH

Increased SOD, CAT and POD 
activity, thereby reducing ROS 
damage and membrane permeability

Zhu et al. 
(2014)

Litchi cv. 
Purbi

2 mM NaHS 7 ± 1 °C and 
85–90% RH

Reduced the accumulation of MDA 
and membrane leakage, and 
improved membrane integrity.

Siddiqui 
et al. 
(2021b)

Pear 2 mM NaHS 20 °C Reduced the activity of LOX, and 
lipid peroxidation, maintained 
higher membrane integrity.

Hu et al. 
(2014b)

Sweet 
potato

2.0 mM 
NaHS

20 ± 0.5 °C & 
85–90% RH

Activated antioxidant enzymes and 
attenuated LOX activity and resulted 
in reduced peroxidation of lipids.

Tang et al. 
(2014)

LOX lypoxygenase, MDA malondialdehyde, SOD superoxide dismutase, CAT catalase, ROS reac-
tive oxygen species
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Table 13.4 Effect of H2S on chilling injury alleviation in fruits and vegetables

Crop Concentration
Storage 
conditions Effect Reference

Banana 0.5 mM NaHS 7 °C for 
14 days 
+20 °C for 
6 days

Alleviated CI by maintaining the cell 
membrane integrity, decreased MDA 
level and electrolyte leakage, 
maintained higher activity of CCO, 
SDH and ATPase, which enhanced 
energy status and chilling tolerance

Li et al. 
(2016)

Banana 0.5 mM NaHS 25 °C & 
85–90% RH

Ameliorated the chilling injury by 
enhancing the activity of CAT, SOD, 
APX and improving proline content 
(by promoting P5CS activity).

Luo et al. 
(2015)

Brinjal Phenyl alanine 
7.5 mM and 
NaHS 3 mM

7 ± 1 °C & 
85% RH for 
21 days

Reduced the discolouration and 
surface pitting by increasing proline, 
phenols, flavonoids and the activity 
of POD, CAT, SOD and APX.

Najafi 
et al. 
(2021)

Hawthorn 1.5 mM NaHS 1 °C for 
20 days

Enhanced chilling tolerance and 
maintained membrane integrity by 
reducing the production of ROS and 
enhanced CAT, APX and SOD 
activity.

Aghdam 
et al. 
(2018)

CI chilling injury, MDA malondialdehyde, CCO cytochrome c oxidase, SDH succinate dehydroge-
nate, CAT catalase, APX ascorbate peroxidase, SOD superoxide dismutase

CI also reduces the fruit quality, and storage life and makes produce susceptible to 
postharvest decay (Aghdam and Bodbodak 2013). H2S as postharvest treatment 
alleviates the CI in many horticultural produces during low-temperature storage 
(Table 13.4). It enhances proline accumulation by increased activity of 1-pyrroline- 5-
carboxylate synthetase and decreased activity of proline dehydrogenase (Luo et al. 
2015). Proline helps in osmotic balance by maintaining the high concentration of 
ions in the cytosol which enhance the chilling tolerance capacity of production. H2S 
also boosts the defence mechanism by increasing the activity of catalase (CAT), 
superoxide dismutase (SOD), and ascorbate peroxidase (APX) which reduces oxi-
dative damages and accumulation of malondialdehyde (MDA) in fresh fruits and 
vegetables (Aghdam et al. 2018). Antioxidant enzymes increase chilling tolerance 
and reduce the extent of chilling injury symptoms. Thus, H2S can effectively allevi-
ate the chilling injury during cold storage of different fruits and vegetables 
(Table 13.4).

13.3.5  Effect on Postharvest Disease Resistance

Postharvest decay of horticultural produce during storage and handling is one of the 
main reasons for postharvest losses. As a sulfur-containing compound, H2S induces 
“sulfur induced resistance” in plants and plays a key role in reducing postharvest 
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decay (Bloem et al. 2012). H2S signaling is associated with the resistance response 
of plants against pathogen infections. H2S activates the enzyme L-cysteine desulf-
hydrase (LCD) against microbial infection (Bloem et al. 2012). The growth of fun-
gal pathogens like Aspergillus niger, Penicillium expansum, Monilinia fructicola, 
Penicillium italicum, Rhizopus nigricans, etc. was inhibited by H2S fumigation dur-
ing storage (Hu et  al. 2014b; Tang et  al. 2014; Wu et  al. 2018). H2S created an 
intracellular burst of harmful free radicals and reduced the genes expression coding 
antioxidant enzymes inside the microbial cells (Fu et al. 2014). Postharvest applica-
tion of NaHS as an H2S donor effectively reduced the fungal decay in several horti-
cultural crops (Table 13.5).

Table 13.5 Effect of H2S on postharvest diseases resistance of fruits and vegetables

Crop Concentration
Storage 
conditions Effect Reference

Banana 1.0 mM NaHS 22–25 °C 
and RH 
60–65%

Reduced decay by inhibiting germ 
tube elongation and cytoplasm 
fragmentation.

Su mon 
et al. 
(2021)

Strawberry 0.8 mM NaHS 
& 5 μmmol/L 
NO

(20 ± 1) °C Enhanced the activities of CHI and 
GNS, which are responsible for 
weakening fungal cells decay, thus 
enhanced disease resistance and 
reduced decay.

Chang 
et al. 
(2014)

Sweet Cherry 
Lapins & 
Regina

1 mM NaHS 0 °C and 
>90% RH

Improved resistance to pitting 
injury, which is the result of 
chilling injury by reducing the cell 
wall disassembly through 
inhibiting β-GAL and PG activity

Zhi and 
Dong 
(2018)

Sweet Potato 2.0 mM NaHS 20 ± 0.5 °C 
& RH 
85–90%

Reduced the fungal growth of 
Rhizopus nigricans, Mucor 
rouxianus and Geotrichum. 
candidum that is responsible for 
black or soft rot.

Tang et al. 
(2014)

Peach 50 mM NaHS 25 °C & 
80% RH

Pathogenicity of Monilinia 
fructicola responsible for brown 
rot was reduced by inhibiting the 
spore germination and mycelial 
growth

Wu et al. 
(2018)

Pear 0.5 mM NaHS 20 °C Reduced the growth of aspergillus 
Niger and Penicillium expansum

Hu et al. 
(2014b)

Apple, 
kiwifruit, pear, 
mandarin, 
sweet orange 
and tomato

0.5 mM NaHS 25 °C for 
4 days

Postharvest decay caused by 
aspergillus Niger and Penicillium 
italicum was reduced by inhibiting 
the activity of SOD and CAT in 
microbial cell, which led to 
increased ROS level and oxidative 
damage, resulting in inhibition of 
spore germination and growth of 
mycelia.

Fu et al. 
(2014)

CHI chitinase, GNS glucosamine N-acetyl-6-sulphate, β-GAL β galactase, PG polygalacturonase, 
SOD superoxide dismutase, CAT catalase, ROS reactive oxygen species
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13.3.6  Effect on Antioxidant System

Antioxidants help to cope with oxidative damages caused due to the imbalance 
metabolism of horticultural produce during storage. Oxidative stress results in the 
production of harmful ROS that cause oxidative injury and accelerates senescence 
and ripening in fruits and vegetables. Various studies have suggested that posthar-
vest application of H2S inhibited ROS production and delayed the senescence and 
ripening during storage. H2S scavenges ROS such as superoxide ion, hydrogen per-
oxide, peroxynitrite, etc. produced during senescence, lipid peroxidation, and chill-
ing injury (Nagy 2015; Hu et al. 2014b). The possible mechanism is the role of H2S 
in counteracting the ROS effect through sulphur metabolism which maintains redox 
homeostasis (Hancock and Whiteman 2014). This mechanism regulates the gene 
expression and protein activities related to ROS production. Another possibility is 
that redox balance is maintained by H2S through increased antioxidant enzymes 
activity (CAT, SOD, POD, APX, glutathione reductase, etc.,) during postharvest 
storage (Gao et al. 2013; Ni et al. 2016; Liu et al. 2017; Yao et al. 2018; Siddiqui 
et al. 2021a, b). Higher antioxidant capacity enhanced by postharvest treatment of 
H2S delayed ripening, senescence, and decay and enhanced the low-temperature 
tolerance in many fruits and vegetables (Table 13.6).

Table 13.6 Effect of H2S on antioxidant system

Crop Concentration
Storage 
conditions Effect Reference

Apple 0.4 mM NaHS 25 ± 0.5 °C 
& 85–90% 
RH

Inhibited ROS damage by 
promoting the antioxidants 
content (ascorbic acid, total 
phenolics, and flavonoids), 
antioxidant enzyme activity 
(CAT, SOD, POD, GR, and 
APX).

Zheng et al. 
(2016)

Broccoli 2.4 mM NaHS 25 °C & 
85–90% RH

Enhanced the activity of GR, 
APX, POD and CAT.

Li et al. 
(2014)

Carrot 0.4 mM NaHS 5 ± 2 °C for 
10 days

Improved the antioxidant 
capacity and enzyme activity 
(CAT, APX GR).

Chen et al. 
(2018)

Strawberry 0.8 mM NaHS 20 ± 0.5 °C 
& 85–90% 
RH

Elevated the activity of POD, 
CAT, GR and APX, against the 
damaging effects of 
ROS. Lowered H2O2 and O2 
•− content.

Hu et al. 
(2012)

Tomato 
‘Micro 
Tom’

Ethephon 
1.0 g/L + NaHS 
0.90 mM

25 °C & 
85–90% RH

Increased the activity of APX, 
CAT and POD. Upregulated the 
expressions of the antioxidant 
genes SlCAT1, SlAPX2, 
SlPOD12 and SlCuZnSOD.

Yao et al. 
(2018) and 
Zhong et al. 
(2021)

GR glutathione reductase, POD peroxidase, CAT catalase, APX ascorbate peroxidase, SOD super-
oxide dismutase, ROS reactive oxygen species
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13.4  Cross-Talk of H2S with Phytohormones and Signalling 
Molecule During Ripening

H2S coordinates with other phytohormones like ethylene and abscisic acid (ABA) 
and other signaling molecules including nitric oxide during the ripening process. It 
regulates the feedback mechanism of ethylene biosynthesis and suppresses ethylene 
signalling which delays ethylene-mediated ripening, senescence, and abscission in 
fruits and vegetables (Gao et al. 2013; Ge et al. 2017; Yao et al. 2020). H2S inhibited 
the ethylene production by downregulating the expression of genes (ACO1, ACO4, 
ACS6, ERF1, and ETR4) related to ethylene biosynthesis. (Li et al. 2015b; Zheng 
et al. 2016; Liu et al. 2020).

It has been proven that ABA triggers ethylene biosynthesis and can alter the gene 
expression associated with H2S biosynthesis (Mou et al. 2016; Tayal et al. 2021). 
H2S balances ABA signalling by accelerating the persulfidation of respiratory burst 
oxidase protein D (NADPH oxidase isomer) which produces higher ROS. Over- 
production of ROS results in negative feedback and inhibits ABA signaling (Shen 
et al. 2020). However, the interaction between H2S and ABA in the fruit ripening 
process is not very clear.

Both H2S and NO are identified as important signaling molecules that inhibit 
ethylene biosynthesis and down-regulate its signalling action (Corpas et al. 2020). 
H2S regulates many physiological processes in plants that are linked with NO sig-
naling (Corpas et al. 2020; Mishra et al. 2021). H2S mediated persulfidation (con-
version of cysteine, a part of thiol group to persulfide) is linked with NO which 
modifies the target proteins using the S-nitrosation process (Corpas et  al. 2019). 
These authors studied that H2S and NO regulate fruit ripening in Capsicum fruit. 
Results indicated that H2S and NO regulated the redox balance in fruits by reducing 
the activity of the enzyme NADP-isocitrate dehydrogenase (substrate of persulfida-
tion). In the ripening process, both H2S and NO modulate the production of NADPH 
by regulating the enzymes involved (NADPH oxidase, 6-phosphogluconate dehy-
drogenase, glucose-6-phosphate dehydrogenase, and NADP-malic enzyme). This 
mechanism helps in redox homeostasis and higher energy production in harvested 
produce during ripening (Muñoz-Vargas et al. 2018). H2S and NO also regulate the 
antioxidant defense system which indicates their key role in fruit ripening and 
senescence (Palma et al. 2020; Tayal et al. 2021).

13.5  Conclusion and Future Aspects

The application of H2S has a key role in the postharvest physiology of harvested 
fruits and vegetables. The signalling action of H2S includes delay in ripening, senes-
cence, softening, and alleviation of chilling injury and postharvest decay by higher 
antioxidant activity. Future work may include the study of combining the effect of 
H2S with other postharvest treatments to improve the quality and storage life of 
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harvested produce. The effect of H2S on ripening-related signaling molecules, gene 
expression, and antioxidant mechanisms should be studied in-depth. In terms of 
food safety, residual effect or allergies caused by sulfur need a thorough detail. 
Crosstalk of H2S with other phytohormones and signalling molecules should be 
paid more attention.
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Chapter 14
Carbon Compounds as Gasotransmitters 
in Plants Under Challenging Environment

Swarnavo Chakraborty and Aryadeep Roychoudhury

Abstract The sessile nature of plants compels them to experience a series of envi-
ronmental stresses regularly. These stressors are the prime threats to plant growth 
and yield, due to alterations in the redox homeostasis of the cells, an increase in the 
production of toxic metabolites, and a rise in the level of oxidative damage within 
the plant system. Hence, plants have to develop robust mechanisms for sustenance 
against different stressors and also for the re-establishment of the homeostatic bal-
ance within the stressed cells. Currently, the study of different gasotransmitters in 
association with environmental stress tolerance in plants has attracted much of the 
attention of the scientific world. Moreover, various stressors have been found to 
induce the levels of these gasotransmitters within the plants. These gaseous signal-
ing molecules function via up-regulation of anti-oxidative machinery, which in turn 
can render the stress-associated toxic metabolites harmless and also mediate toler-
ance against different forms of plant stress. This review mainly focuses on the role 
of some gasotransmitters in plant stress tolerance, which constitute the element car-
bon as an important component.
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14.1  Introduction

Gasotransmitters can be defined as a group of small gaseous signaling molecules, 
responsible for the transmission of biological signals within the organism, where 
the gas molecule has been generated. These molecules have the power to alter the 
functions of cells capable of producing a target protein having an important physi-
ological role inside the cell. These gaseous molecules have to fulfill certain criteria, 
like the potential to freely traverse across biological membranes, small size, speci-
ficity in terms of function at certain physiological levels, specificity of the molecular 
and cellular targets, regulated and endogenous enzymatic production by specific 
enzymes, and the functions can be mimicked via administration of a donor (Wang 
2002). Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are 
the most recognized gasotransmitters in biological systems. However, other gaseous 
molecules like ammonia, methane, ethylene, ozone, carbon dioxide, etc. are not 
traditionally considered gasotransmitters, but these molecules can potentially carry 
out the roles of gasotransmitters. Currently, there has been a rapid expansion in 
research on these molecules, owing to the extensive role of various gasotransmitters 
in biological systems and medicinal sectors as well (Wang 2018). The study of the 
role of different gasotransmitters and their biological applications as signaling mol-
ecules has been one of the key fields of research for the past few decades. Moreover, 
to aid in a better understanding of new signaling cascades, the production of endog-
enous plant gasotransmitters has been meticulously analyzed.

Plants are regularly challenged by a wide range of biotic and abiotic stressors, 
including heavy metals, extreme temperature, involved in many cell signaling path-
ways salinity, drought, ultraviolet rays, etc. These stressors can have serious impli-
cations on the plants, via alterations in leaf morphology, plant height, stomatal 
movements, etc. (Shen et al. 2011; Ali et al. 2017; Jin et al. 2017). Moreover, these 
alterations can result in the disruption of plant physiological mechanisms, which 
involves changes in the levels of certain stress-related molecules like hydrogen per-
oxide, malondialdehyde, proline, and certain electrolytes. As a part of the protective 
response, anti-oxidative enzymatic activities change which mediate the detoxifica-
tion of the toxic metabolites produced as a result of stress imposition and re-estab-
lishment of redox homeostasis in plants. In addition, most of the gasotransmitters 
tend to up regulate the activities of a series of protective anti-oxidative enzymes and 
reduce the toxic effects of the detrimental Reactive Oxygen Species (ROS) pro-
duced in response to stress imposition. Existing studies on gasotransmitters indicate 
the generation of these signaling molecules in response to various plant abiotic 
stressors (Abdulmajeed et al. 2017; Cui et al. 2017; Jia et al. 2018a, b) and also aid 
in the development of plant tolerance against the detrimental effects of these stress-
ors (Jin et al. 2017; Xu et al. 2017; Maryan et al. 2019). Therefore, these biological 
gaseous signaling molecules and mediators generated via complex intracellular and 
extracellular pathways help in the synergistic or antagonistic regulation of various 
important plant processes.
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14.2  Carbon Monoxide: A Ubiquitous Carbon 
Gasotransmitter in Plants

Carbon monoxide (CO) has a wide range of plant physiological functions, including 
the induction in CO production in response to different environmental stressors. 
This gaseous molecule is odorless, tasteless, and colorless in nature, and comprises 
one atom of oxygen and one atom of carbon. CO is considered a poisonous gas, 
generated from forest fires, volcanic eruptions, incomplete combustion of certain 
organic compounds, etc. Wilks (1959) first reported the existence of biosynthetic 
mechanisms of CO in plants. CO is involved in many cell signaling pathways and 
intercellular communication at physiological concentrations. The production of CO 
in terrestrial plants has been widely reported by different groups (Siegel et al. 1962; 
Fischer and Luttge 1978). In addition, Siegel and Siegel (1987) demonstrated the 
presence of a robust light-independent CO source, in association with soil-air and 
soil-surface interface of smaller plant groups. Upon application of ascorbic acid or 
hydrogen peroxide, the methylene bridges in heme break, resulting in the release of 
CO (Dulak and Józkowicz 2003). Apart from this non-enzymatic metabolism of 
heme, another potentially active and ubiquitous enzyme, heme oxygenase (EC 
1.14.99.3; HO) is involved in the enzymatic production of CO in plants as well as 
animals (Bilban et al. 2008; He and He 2014a, b). This key enzyme catalyzes the 
cleavage of heme into CO, upon exposure to reducing agents (Gisk et al. 2010).

In plants, the expressions and subsequent enzymatic activities of HOs have been 
detected in several plant species. HO1 is one such enzyme in plants, displaying 
induction upon exposure to different environmental stressors, like ultraviolet-B 
(UV-B) rays, heavy metal toxicity, salinity, drought-induced osmotic stress, wound-
ing, low-temperature imposition, and deficiency of certain nutrients (Yannarelli 
et al. 2006; Han et al. 2008; Xie et al. 2008, 2015; Liu et al. 2010; Lin et al. 2014a, 
b; Zhang et al. 2015). Figure 14.1 depicts the role of CO in plant stress tolerance 
under challenging environmental conditions. Shekhawat and Verma (2010) 
explained the role of the HO1/CO system in a wide range of plant abiotic and oxida-
tive stress tolerance. The most potent mechanism of CO-mediated protection in 
plants is the regulation of the antioxidant systems to render tolerance against salin-
ity stress. Liu et al. (2007) demonstrated the alleviation of salt imposed inhibition of 
germination and subsequent lowering of lipid peroxidation and oxidative damage 
parameters in rice, via exogenous supply of CO aqueous solution. Moreover, during 
salt stress in Cassia obtusifolia, both the exogenous supply of CO solution and 
endogenous generation of CO relieved the toxic effects of salt exposure (Zhang 
et al. 2012). In addition, Ling et al. (2009) have also shown that CO aqueous solu-
tion induced repression of toxic superoxide production in wheat plants, which even-
tually resulted in suppression of programmed cell death and improvement of root 
growth parameters.

Polyethylene glycol-6000 (PEG-6000)-induced osmotic stress in plants leads to 
the decline of seed germination percentage and a higher rate of peroxidation of 
membrane lipids. The HO1/CO system resulted in the potential amelioration of 
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Fig. 14.1 Carbon monoxide (CO) provides plant tolerance against a myriad of environmental 
stressors

PEG-induced damage in plants (Liu et al. 2010). Interestingly, this system also led 
to the improvement of drought-imposed restrictions on stomatal movements in 
many plants (Song et al. 2008; She and Song 2008). CO has been found to induce 
the activation of glutathione metabolism in Medicago sativa plants, thereby reduc-
ing the toxic effects of heavy metals like cadmium (Han et al. 2008). Similarly, in 
Arabidopsis thaliana plants, CO production was found to be directly related to the 
generation of tolerance against cadmium toxicity via regulation of iron homeostasis 
and reduction in NO production (Han et al. 2014). Mercury toxicity induced dam-
ages in alfalfa, Brassica napus and Indian mustard, including inhibition of growth 
of roots and enhanced peroxidation of lipids have also been found to be repaired 
upon CO administration (Han et al. 2007; Shen et al. 2011; Meng et al. 2011). In 
addition, Cui et al. (2013) have shown the potential of CO in amelioration of oxida-
tive damages imposed due to aluminum toxicity in Medicago sativa plants.

Certain environmental conditions like high or low temperatures are the prime 
factors that limit plant growth and yield, including the germination of seeds. CO 
administration led to a marked increase in the anti-oxidative enzyme activities asso-
ciated with the glutathione-ascorbate cycle, accumulation of the reduced form of 
glutathione, and also reduced the levels of toxic hydrogen peroxide (H2O2), thereby 
generating tolerance amongst plants against extremes of temperatures like cold 
stress (Bai et al. 2012). In addition, pre-treatment with 5-aminolevulinic acid (ALA) 
resulted in up-regulation of HO1 and CO production in soybean, thereby rendering 
tolerance against chilling stress via induction of heme catabolic pathways 
(Balestrasse et al. 2010). Moreover, HO1 expression has been reported upon irradia-
tion with UV-B radiation in soybean plants. Such irradiation was associated with the 
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accumulation of toxic ROS, ultimately leading to the imposition of oxidative dam-
ages in plants. However, the HO1 accumulation in response to UV-B stress led to 
potential amelioration of the damages incurred by the plants and thereby rendering 
cellular protection from oxidative injuries (Yannarelli et al. 2006). Xie et al. (2012) 
mentioned the possible role of CO in UV-C tolerance in plants as well. An 
Arabidopsis mutant HY1, exhibited hypersensitivity to UV-C marked by impaired 
biosynthesis of flavonoids and carotenoids and poor anti-oxidative defenses, prob-
ably due to disruption of CO production in these plants. In addition, induction of 
endogenous CO production has also been found during deficiency of iron in certain 
plants, thereby pointing at the possibility of CO in the mitigation of iron deficiency. 
This was further demonstrated by Kong et al. (2010), where exogenous CO applica-
tion resulted in the mediation of iron homeostasis in iron-starved Arabidopsis seed-
lings. Interestingly, the HO1 gene in Brassica napus has been reported to regulate 
lateral rooting during the imposition of osmotic and salt stress (Cao et al. 2011). In 
rice and tomato plants, this gene was also found to control the formation of lateral 
roots in response to cobalt chloride toxicity (Xu et al. 2011).

Toxicity due to different environmental stressors resulted in oxidative stress in 
plants, owing to the generation of ROS within the system. These toxic species are 
formed via the transfer of high-energy electrons to molecular oxygen (Mittler 2002), 
along with H2O2 and superoxide radicals (O2

•–) as intermediates, but certain perox-
ides and singlet oxygen (1O2) are also considered as ROS which are generated in 
plants. The primary targets of these species are cellular macromolecules, like lipids 
associated with membranes, proteins and nucleotides, either in DNA or RNA. Upon 
interaction with these macromolecules, these harmful ROS lead to the generation of 
peroxides as the end products, thereby resulting in serious damage at the cellular 
level. CO has the potential to regulate the levels of intracellular ROS by a range of 
mechanisms displaying significant consequences within the system. Wu et  al. 
(2011) demonstrated lowering of the production of H2O2 and subsequent delaying 
of programmed cell death in the aleurone layers of wheat, due to up-regulated HO1 
expression in response to some environmental cues. Moreover, the HO1/CO system 
has probable roles in the modulation of the NADPH oxidase proteins and is com-
monly considered the potent source of toxic ROS involved in a diverse range of 
signaling cascades in plants. In addition, CO induced lowering of superoxide radi-
cal production, probably due to the downregulated activity of NADPH oxidase, 
resulting in delaying of programmed cell death (PCD) during salinity stress in 
wheat (Ling et al. 2009). Also, in Brassica juncea, amelioration of cadmium toxic-
ity has been reported to be mediated by HO1 regulated strengthening of the antioxi-
dant system, leading to H2O2 detoxification (Li et al. 2012). Therefore, it can be 
concluded that ROS activities generate a positive feedback signal that results in the 
up-regulated generation of CO molecules. For instance, higher levels of detrimental 
H2O2 molecules resulted in up-regulation of HO activity due to higher expression of 
HO1 mRNAs (Wei et  al. 2013). Similarly, UV-B irradiation also resulted in up- 
regulated HO1 mRNA expression, due to toxic ROS generation (Yannarelli 
et al. 2006).
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CO can also induce the closure of stomata in a dose-dependent fashion and is 
associated with the process of abscisic acid-mediated stomatal movements upstream 
of NO production (She and Song 2008). CO-induced stomatal closure has been 
reported to be modulated by hydrogen peroxide (the key ROS generated during 
plant stress) signaling in plants (She and Song 2008). Wang and Liao (2016) 
explained the increase in production of CO and subsequent up-regulation of HO 
activity upon exogenous abscisic acid administration, leading to the closure of sto-
mata in the leaves of Vicia faba. In addition, CO-mediated regulation of stomatal 
movements is operational in plants via an elaborate cross-talk of CO with two other 
key plant gasotransmitters like H2S and NO. These gaseous molecules tend to regu-
late the enzymatic biosynthesis of each other and ultimately form a part of a com-
mon signaling mechanism, which needs further scientific elaboration. CO as a 
gaseous signaling component has already been studied in quite detail in animals, but 
information regarding the physiological role of this gasotransmitter in plants is 
rather in their early stages. The potency of CO to act as a protective molecule against 
plant stress via interplay with other signaling molecules is well established. 
However, the detailed mechanisms, governing the transduction events in 
CO-mediated signaling, need greater clarification. Therefore, the improvement of 
molecular, pharmacological, and physiological methods for a better view of the CO 
transduction pathways is mandatory.

14.3  Other Forms of Carbon Gasotransmitters in Plants

14.3.1  Methane (CH4)

CH4 was the first gas identified to be produced in rice by Nouchi et al. (1990). In 
addition, CH4 production has been observed under anaerobic conditions by paddy 
cultivations. Several reports indicate the production of this gaseous molecule upon 
exposure to UV radiation in a range of plants, including tobacco, Crataegus laevi-
gata, Betula populifolia, Malus domestica, Quercus robur, Plantago lanceolata, 
Salix caprea, Salix alba, Brassica oleracea and certain citrus fruits (McLeod et al. 
2008; Bruhn et al. 2009, 2014; Messenger et al. 2009). Under low light conditions, 
poplar plants have been found to produce CH4 while in alfalfa, induction of gas 
production has been reported under salinity and heavy metal stress like copper, 
aluminum, cadmium, etc. (Brüggemann et al. 2009; Zhu et al. 2016; Samma et al. 
2017; Gu et al. 2018). It is known that PEG induces osmotic stress or water shortage 
situation within the plant system. Hence, PEG treatment in maize seedlings demon-
strated an up-regulation in the production of CH4 (Han et al. 2017). In addition, 
high-temperature exposures led to the generation of CH4 in pea plants (Abdulmajeed 
et  al. 2017). In alfalfa seedlings, application of methane solution (containing 
0.39 mM CH4) aided in the re-establishment of the redox homeostasis of the cells 
during copper toxicity, via enhancement of the activities of amylase enzymes, incre-
ment of total sugar levels, alteration in the proline metabolism and reduction of the 
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levels of thiobarbituric acid reacting substances (Samma et al. 2017). Similar resto-
ration of cellular redox homeostasis and maintenance of organic acid levels during 
aluminum stress has also been reported, via the administration of methane-rich 
water (Cui et al. 2017). Aluminum toxicity-triggered oxidative damages in plants 
have also been found to be reduced due to the up-regulation of methane-induced 
antioxidative machinery. Moreover, treatment with 1.3 mM CH4 helped in the res-
toration of cellular homeostasis and glutathione metabolism during cadmium toxic-
ity in plants (Gu et al. 2018). Genetic evidence also indicates that the application of 
methane solution in plants helped in the modulation of certain important heavy 
metal transporters during cadmium stress (Gu et al. 2018). Zhu et al. (2016) have 
shown the use of 50% methane-rich water in alfalfa in the reduction of salt- induced 
peroxidation of lipids and excess accumulation of ROS, leading to the establish-
ment of ionic homeostasis, optimization of seed germination, and lowering of oxi-
dative damage indices within the system. Application of 0.65  mM CH4 during 
osmotic stress in maize seedlings resulted in the up-regulation of levels of essential 
sugars and modulation of ascorbate metabolism, generating overall plant stress tol-
erance (Han et al. 2017). Hence, it is evident that CH4 plays a rather positive role in 
the establishment of abiotic stress tolerance in different plants.

14.3.2  Ethylene (C2H4)

C2H4, as an important gaseous phytohormone, has also been considered an out-
standing candidate for the gasotransmitter family. Apart from its conventional role 
as a phytohormone, it has also been widely studied for its importance as a gasotrans-
mitter within the plant system. Plant responses to a myriad of environmental stress-
ors are modulated via the cross-talk between ethylene with other members of the 
gasotransmitter family including NO and H2S. Enrichment of UV-B rays and expo-
sure to excess light intensity, results in detrimental implications on the photosyn-
thetic efficiency of plants, due to over-accumulation of toxic ROS within the system 
(Takahashi and Badger 2011; Demarsy et al. 2018). The absence of optimal light 
intensity also leads to the reduction of photosynthetic efficiency. Interestingly, both 
light insufficiency as well as excessive light exposure in plants, triggers the meta-
bolic pathways associated with NO and C2H4 cross-talk, thereby regulating the 
light-induced senescence in plants (Kolbert et al. 2019). Light-imposed stress trig-
gers the generation of both NO and C2H4 in Arabidopsis plants (Magalhaes et al. 
2000). Both higher light intensity and light exposure for a short time resulted in 
up-regulation of cascades associated with C2H4 and NO interplay mainly in the 
shoot tissues of Arabidopsis. Similarly, exposure to UV-B radiation triggers the pro-
duction of C2H4 and NO in various plant organs and species (Mackerness et  al. 
2001; Vanhaelewyn et al. 2016). Exogenous application of NO donors in various 
plants induced the UV-B regulated generation of C2H4 even in the seedling stage. 
During UV-B triggered stomatal closure, C2H4 seems to act as a signal upstream of 
NO. This can be implicated by the fact that UV-B induced closure of stomata was 
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promoted due to the accumulation of NO in the guard cells of Vicia faba, followed 
by the C2H4 evolution peak (He et al. 2011). Moreover, depending on the light inten-
sity available, C2H4 can induce the opening or closure of stomata, via modulation of 
NO accumulation in the guard cells. The effects of NO and C2H4 on the movement 
of stomata rather show a positive correlation under dark conditions.

Both cold and heat stress have been reported to have serious ill effects on the 
plant system, which can adversely affect plant development and growth. To bypass 
these ill effects, plants tend to adopt certain mechanisms, which involve alteration 
in the molecular, physiological, and biochemical plant processes, in which the inter-
action between C2H4 and NO forms a crucial part (Majláth et al. 2012; Parankusam 
et al. 2017). Alteration in the emission of C2H4 is associated with plant cold stress 
tolerance, via activation of robust anti-oxidative machinery (Guo et  al. 2014). 
Interestingly, it has been observed that the C2H4 and NO interaction in cold stress 
tolerance display a rather antagonistic relationship during fruit ripening. Cold stored 
mangoes upon exposure to different concentrations of NO fumigation, exhibited a 
lowering of C2H4 production, associated with delaying of fruit ripening, softening, 
and color development, along with a marked increase in the level of tolerance to 
chilling injury (Zaharah and Singh 2011). In addition, this antagonistic relationship 
between these two gasotransmitters, also enhanced fruit chilling tolerance due to 
regulation of the anti-oxidative enzymatic and sugar metabolism, thereby delaying 
senescence of fruits and improving their quality. On the other hand, heat stress can 
also negatively affect the rates of respiration and photosynthesis, membrane stabil-
ity, membrane fluidity and stability, overall metabolism, and cytoskeletal move-
ments, mostly due to the accumulation of toxic ROS and unfolded proteins. In 
alfalfa, exposure to heat stress resulted in increased NO and decreased C2H4 produc-
tion (Guo et al. 2014). However, the link between C2H4 and NO during heat expo-
sure in plants is rather poorly addressed.

Alteration in osmotic homeostasis and loss of turgor of cells are the common 
outcomes of drought stress in plants. In addition, osmotic stress can also reduce 
photosynthetic efficiency and affect stomatal movements. Synthesis of osmoprotec-
tants and antioxidants at the cellular level, regulated by the NO-C2H4 cross-talk, 
forms the basis of drought stress tolerance in various plants. For instance, in 
Arabidopsis, the production of these two gasotransmitters enhanced the endurance 
potential of plants against drought stress (Nabi et al. 2019). Moreover, this interac-
tion of NO-C2H4 plays an important role in the regulation of plant cell death and 
defense responses due to drought-induced osmotic shock. In addition, the role of 
other phytohormones like abscisic acid tends to regulate the levels of these two 
gasotransmitters in an antagonistic manner, i.e., up-regulation of NO generation and 
down-regulation of C2H4 production within the stomata (Sós-Hegedus et al. 2014; 
Wilkinson and Davies 2010). However, time dependent C2H4-NO interaction in dif-
ferent plant organs tends to display a range of intolerance parameters against 
drought. In addition, during hypoxic conditions, aerenchyma formation has been 
reported to be induced due to NO production in wheat plants (Wany et al. 2017). NO 
production in these oxygen-deprived roots triggered an over-production of ethylene. 
This in turn helped in the modulation of stress responses in plants like lipid 
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peroxidation, ROS generation, DNA damage, nitration of proteins, and induction of 
certain important enzymes like cellulases.

One of the most detrimental forms of abiotic stress is salt stress, which leads to 
disruption of physiological functions including disturbance in growth parameters, 
early senescence, reduction in yield and fertility, induction of programmed cell 
death (PCD), and alterations in cellular structures (Munns and Tester 2008; Peleg 
and Blumwald 2011; Zhu 2016). The association helps in the activation of defense 
pathways that mediate salt tolerance among plants. This interaction has been first 
demonstrated in the callus of Arabidopsis, where a considerable reduction in the 
electrolyte leakage has been reported as a protective response against salt stress 
(Wang et al. 2009). In callus cultures, salt stress imposition resulted in the rapid 
accumulation of NO and C2H4 production. Moreover, these two gasotransmitters 
functioned in a dose/concentration- as well as time-dependent manner, thereby 
leading to progressive reduction in ROS accumulation in the stressed cells. In addi-
tion, the NO-C2H4 interaction triggered protective strategies against salt stress, 
including regulation of PCD, cell viability, cellular K+/Na+ ratio, developmental and 
metabolic processes, and rate of protein and DNA degradation; all these responses 
rather varied from plant cell organs and types, thus generating an array of responses 
due to NO-C2H4 interaction (Poór et al. 2015).

Sometimes, an inadequate supply of certain important plant nutrients like phos-
phorus, iron, magnesium, etc. can seriously affect overall plant growth and produc-
tivity. Ethylene application indicated the positive induction of certain iron-acquisition 
genes. Similarly, these genes also demonstrated an up-regulation upon NO treat-
ment, indicating a possible link between these two gasotransmitters, as a part of iron 
insufficiency response. Also, NO application has been involved in the regulation of 
expression of many ethylene biosynthetic genes and vice-versa in tomato and 
Arabidopsis, again pointing to the robust interplay between these two gases (García 
et al. 2010; Romera et al. 2011). However, during phosphorus deficiency in rice, 
roots demonstrated a rapid production of NO, then followed by a rather slower 
emission of C2H4, suggesting an upstream action of NO, as compared to that of C2H4 
in the cascades involved in plant phosphorus insufficiency. However, this interac-
tion amongst these gases helped in the increment of phosphorus levels in deficient 
rice plants (Zhu et al. 2017). A similar increase in C2H4 and NO accumulation has 
also been observed in the case of magnesium deficiency in Arabidopsis, and such 
accumulation tends to be accompanied by enhanced development of root hairs. 
Interestingly, these two gasotransmitters tend to mutually and synergistically modu-
late each other’s response, as inhibition of either of the gasotransmitter prevented 
the development of root hairs in magnesium-deprived plants (Liu et al. 2017). On 
the other hand, contamination with heavy metals also induces detrimental conse-
quences within the plants. The primary theme of any form of heavy metal toxicity 
in plants is oxidative stress-induced disrupted cellular redox homeostasis and a 
series of morphological and physiological alterations in plants leading to extensive 
cellular and tissue damage. The role of C2H4 and NO interplay during exposure to 
heavy metals like cadmium, arsenate, arsenite, copper, zinc, lead, nickel, etc. have 
been reported in plants (Zhu 2016; Sahay and Gupta 2017). Preliminary studies on 
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cadmium stress in pea indicated the triggering of ROS metabolism as a result of 
C2H4 and NO interactions. In addition, this gaseous interplay could also regulate the 
levels of other hormones like salicylic acid and jasmonic acid in plants. However, 
most of the suggested models hint that C2H4 and NO function in an antagonistic 
fashion, with C2H4 levels increasing and NO accumulation decreasing, as a result of 
cadmium toxicity in plants (Rodríguez-Serrano et  al. 2009). Interestingly, upon 
short-term imposition of cadmium stress in soybean, up-regulated expressions of 
both C2H4 and NO biosynthetic genes were observed (Chmielowska-Bak et  al. 
2013). Hence, the interactions of these gaseous molecules at the molecular and bio-
chemical levels in plants need to be deciphered in a better way.

Ethylene has been found to play a crucial role in the mechanism of stomatal 
closure. The participation of H2S has been reported in the processes associated with 
C2H4 induced closing of stomata. However, a clear view depicting to entire signal-
ing involving C2H4 and H2S has not still been deciphered properly. The central 
theme of any form of abiotic stress is osmotic stress and H2S governs the feedback 
regulation of the biosynthesis of ethylene in plants during osmotic stress. Similarly, 
ethylene administration also induced the generation of H2S within the stressed 
guard cells (Jia et  al. 2018a, b). This H2S-C2H4 interplay tends to form a down-
stream component of the signaling cascades involved in osmotic stress response, 
particularly associated with the C2H4 regulated stomatal closure during stress impo-
sition in plants.

14.3.3  Carbon Dioxide (CO2)

Stomatal closure is one of the most common adaptations in response to osmotic 
stress induced due to any form of stress imposition in plants. Many gasotransmitters 
are involved in the modulation of stomatal movements in plants. Carbon dioxide 
(CO2) is one of such gaseous molecules, which has often not been considered an 
important gasotransmitter in plants, also triggering stomatal closure. The ability to 
close and open in response to different environmental cues makes the stomatal 
apparatus a fascinating and dynamic system. The closing and opening of the sto-
mata are under the direct control of the turgidity and flaccidity of the guard cells, 
which has an essential role in photosynthesis and transpiration. Higher levels of 
CO2 induce the closure of the stomatal apparatus, along with the toxic ROS serving 
as one of the key components in the regulatory cascades. ROS plays a key role in the 
mediation of the acclimation against different stressors in plants, and ROS genera-
tion is commonly found to be associated with the principle of oxidative stress 
induced as a result of plant stress. Just like CO2, ROS also acts as major modulators 
of stomatal movements in plants, particularly during biotic or abiotic stress imposi-
tion in plants.

Interestingly, ROS signals are intricately associated with the high-level CO2 trig-
gered movements of the stomatal apparatus in plants. The rate at which different 
materials can pass through the stomatal apparatus (stomatal conductance) is 
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negatively regulated by the levels of CO2 in the surroundings. Moreover, a rise in 
CO2 levels can result in a reduction in the apertures of the stomatal apparatus and 
also the stomatal number per unit area of the leaf, thereby decreasing the stomatal 
conductance progressively. Decreased conductance of stomata results in a fall in the 
rate of evapotranspiration, which in turn mediates the conservation of water and 
generates a cooling effect in the plants during stress, due to reduction in water loss 
via leaves (Long and Ort 2010; Keenan et  al. 2013). However, this reduction in 
stomatal conductance as a protective strategy against different stressors might result 
in sub-optimal yields (Engineer et al. 2016). After the entry of CO2 inside the cells, 
this gaseous molecule is sensed by certain specific plasma membrane receptors. 
Several propositions indicate that β-carbonic anhydrase in plants carries out the 
function of the receptors that can sense CO2 (Frommer 2010) and also plays an 
important role in the movements of stomata in response to alterations in the CO2 
levels in Arabidopsis. Carbonic anhydrases also mediate the conversion of CO2 into 
HCO3

−. Treatment of plants with higher doses of HCO3
− leads to the production of 

ROS and also induces the plasma membrane-associated NADPH oxidase, which 
can also mediate stomatal closure, indicating the crucial role of ROS in the CO2 
induced closure of the stomatal apparatus. Moreover, the guard cells displayed a 
sharp decrease in the levels of ROS at elevated concentrations of CO2. This can be 
explained by the fact that high CO2 levels reduce oxygenase activity of RuBisCo, 
thereby leading to a subsequent reduction in glycolate oxidase activity (associated 
with the process of photorespiration), which in turn results in a considerable decline 
in ROS generation (Fahnenstich et al. 2008). Thus, NADPH oxidase-mediated pro-
duction of ROS efficiently controls the high CO2 regulated closure of stomatal aper-
tures in plants. In addition, a series of cell wall-associated peroxidases also 
contribute to the process of high CO2-induced movements of stomata. However, the 
signaling cascades involving ROS in CO2 modulated stomatal movements can con-
stitute other signaling members, but the detailed scientific information has not yet 
been gathered, as it depends on the unraveling of other molecules involved in the 
cascades. Deciphering of such information and subsequent translation of this knowl-
edge into important crop plants can aid in the generation of stress tolerance and also 
lead to enhancement in crop yield.

14.4  Conclusion and Future Perspectives

Over the past few years, the role of gasotransmitters in association with plant envi-
ronmental stress response has been considered a hot issue and potential research has 
been conducted in this area. Present reports indicate that plants can synthesize such 
gaseous molecules during adverse environmental conditions and thereby resulting 
in the mediation of plant tolerance against a myriad of detrimental environmental 
cues. The gasotransmitters enhance stress tolerance in plants via mitigation of oxi-
dative damages, reduction of peroxidation of membrane lipids, maintenance of 
ionic and metabolic homeostasis, and also by regulation of anti-oxidative enzymatic 
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activities in plants. Many growing studies indicate that gasotransmitters are pro-
duced within the plant system under conditions of abiotic and biotic stress, but 
future research is necessary, particularly focusing on the molecular insights involv-
ing the biosynthesis of these gaseous molecules. In addition, the possible interac-
tions of these gasotransmitters with other cellular mediators and the subsequent 
transcriptional, translational and post-translational alterations taking place as a part 
of the signaling mechanism also demand a clearer understanding. Although a series 
of advances have been observed in the field of gasotransmitter research, investiga-
tion of the direct molecular target of these gaseous molecules and the downstream 
signaling processes still remains to be partially elucidated in plants. Several new 
approaches, like in situ real-time quantifications of these gaseous molecules and 
their rate of production in different cellular organelles, can provide further informa-
tion associated with plant research in this regard. These data will aid in a more 
comprehensive understanding of the gasotransmitter biology within different mem-
bers of the plant kingdom.
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Chapter 15
Carbon Monoxide (CO) and Its 
Association with Other Gasotransmitters 
in Root Development, Growth 
and Signaling

Piyush Mathur , Rewaj Subba , and Soumya Mukherjee 

Abstract In higher plants, the root formation is accomplished through cell signal-
ing that regulates meristem differentiation. Off late, carbon monoxide (CO) has 
been discovered to be an important gaseous regulator of cellular components and it 
controls various metabolic pathways in animal and plant system. Root architecture 
is regulated by precise signaling-mediated by CO, nitric oxide (NO), and hydrogen 
sulphide (H2S). Like in the animal systems, CO also plays regulatory roles in vari-
ous biological processes in plants such as seed germination, stomatal closure and 
root development. Intracellular CO is majorly produced by the activity of heme 
oxygenase (HO) isoforms present in various plant tissues. Apart from the enzymatic 
pathway, CO is also known to be non-enzymatically produced from routes of lipid 
peroxidation and ureide metabolism pathways. CO resembles structural and chemi-
cal similarities to NO (diatomic gas). It is interesting to know that pieces of evi-
dence in the animal system have revealed the presence of associative crosstalk 
between NO synthase (NOS) and CO-HO components. CO in plant cells is known 
to provide a similar response to that of NO where dose-dependent effects have been 
reported. CO-NO crosstalk has some evidence from investigations in various plant 
systems, but not much information is available on CO-H2S interactions during root 
development. Although persuasive at present, evidence shows that H2S can alter the 
activity of HO and thus participates in NO signaling cascades. The present chapter 
reviews the inter-relations among CO, NO, and H2S in mediating root development 
and signaling in higher plants.
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15.1  Introduction: Root Apex Cognition, Shaping of Root 
Architecture, and Rhizosphere Signaling

The rhizosphere is a distinct interface of plant-soil communication that is influenced 
by various factors. In this context, it is critical to evaluate the rhizosphere’s micro-
bial flora, which controls plant development and nutrient acquisition in plants. Soil 
organic matter (SOM) and humus production, among the several abiotic variables 
controlling the biology of the rhizosphere, play a crucial role in regulating nutrient 
uptake in roots. The soil-root interface exchanges a wide range of metabolites. Cell 
wall thickening is absent at the root tip’s developing apex. Root hairs abound in the 
absorptive zone of roots. This zone is active in the exchange of nutrients from the 
soil solution. The amounts of nitric oxide (NO) formation in this root area are 
believed to be influenced by nitrogen availability in the soil.

Furthermore, rhizosphere nutrition levels have a strong influence on root mor-
phology and architecture (Forde and Lorenzo 2001; Forde 2002). Root development 
is critical for optimum plant growth in normal and challenging environments 
(Villordon et al. 2014). Root formation is accomplished signaling events associated 
with meristem differentiation. The ground meristem’s quiescent centre contains 
stem cells that eventually develop various regions of the root (Motte et al. 2019). 
Various signaling networks are responsible for changes in root morphology and 
fine-tuning of root development (Meng et  al. 2019). For instance, under selenite 
stress, NO and cytokinin accumulation in Arabidopsis wild-type and nitrate 
reductase- deficient mutants (nia1nia2) are low in the root meristem (Lehotai et al. 
2016). During Arabidopsis root growth, ethylene receptors (ETR1, ETR2, ERS1, 
and ERS2) transduce the phosphorylation signal to downstream pathways associ-
ated with auxin and cytokinin interaction (Liu et  al. 2017). During root growth, 
auxin signaling involves regulation of auxin and cytokinin metabolism. Genetic 
approaches can be used to comprehend the mechanism of these hormones’ compli-
cated interplay during root growth. Biochemical, molecular, and pharmacological 
studies over the last few decades have revealed that the gasotransmitters NO, CO, 
and H2S (hydrogen sulphide) are involved in growth, morphogenesis and plant sig-
naling in distinct ways (Xie et al. 2008; Kolbert et al. 2019).

There are just about 30 papers on the combined involvement of NO, CO, and H2S 
crosstalk in root growth. Deciphering gene network for root development, stress 
amelioration (NO, CO, and H2S donors) antioxidative defense and plant tolerance 
are some of the recently discovered trends from diverse publications. Although 
reports on NO in relation to root physiology is on the rise (622 reports from 2000 to 
2020), there are far fewer for CO (33) and H2S (129) mediated root signaling in the 
PubMed database. The reports obtained till date show a larger increase in reports of 
H2S and CO in the context of root development.

Regulation of root architecture related to CO, NO, and H2S metabolism during 
physiological and stressful situations is linked to the zonal differentiation of roots 
(Mukherjee and Corpas 2020). ROS accumulation, root lignification, and tyrosine 
nitration of numerous regulatory proteins are all linked to the NO signaling in roots. 
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Anoxia-induced aerenchyma development appears to be aided by indole acetic acid 
(IAA)-NO interaction. In roots, CO signaling affects glutathione metabolism and 
interacts with IAA, NO, and jasmonic acid (JA) activity. H2S preferentially regu-
lates ion homeostasis, electrolyte leakage, and root development regulation path-
ways involving reactive oxygen species (ROS), mitogen activated protein kinase 
(MAPK), and auxin (Mukherjee and Corpas 2020). H2S inhibits the production of 
ethylene, which further limits root development. Modulation of biosynthesis and 
triggering is involved in crosstalk among the three gasotransmitters (NO, CO, 
and H2S).

15.2  Historical Perspectives of CO as a Signaling Molecule 
in Plants

The past few decades ago, in the early twentieth century, CO was considered toxic. 
It is a diatomic gas with low molecular weight and shows a ubiquitous distribution 
in nature. Off late, it has been discovered to be an important gaseous regulator of 
cellular components and it controls a wide range of biological activity in plants (Xie 
et al. 2008). CO is produced in biological systems primarily as the oxidation prod-
uct of heme-methene bridge, which is catalyzed by heme oxygenase enzymes (HOs, 
EC 1.14.14.18) (Bilban et  al. 2008). In animal systems, CO functions as a neu-
rotransmitter (Boehning et  al. 2003), a platelet aggregation inhibitor (Brüne and 
Ullrich 1987), and also represses acute hypertension (Motterlini et al. 1998).

Like in the animal system, CO regulates various biological processes in plants 
such as seedling growth (Dekker and Hargrove 2002), root development, and sto-
matal closure (Cui et al. 2015). CO brings about stress alleviation in plants sub-
jected to oxidative damage (Meng et al. 2011). Interestingly, CO also interacts with 
other biomolecules (NO, H2S, and phytohormones) during plant growth and devel-
opment, in addition to acting as a signaling molecule. Here we review the role of 
CO and its interaction with NO and H2S in regulating root development and signal-
ing in plants.

15.3  Biosynthetic Regulation of CO in Plants

Various pieces of evidence provide clues to the biosynthetic routes of CO in plant 
tissues (Shekhawat and Verma 2010; Mahawar and Shekhawat 2018). Intracellular 
CO is majorly produced through metabolic reactions mediated by HO isoforms 
present in various plant tissues. HOs catalyze (O2 and NADPH-dependent) the con-
version of heme compound which is oxidized to biliverdin (BV) and the reaction is 
accompanied by the formation of CO and also releases free iron (Fe2+) (Bilban et al. 
2008). BV is converted by the activity of biliverdin reductase which liberates 
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bilirubin (BR) in plant cells. Investigation in the animal system has reported three 
HO isozymes HO1, HO2, and HO3 ranging from 32–36  kDa in size. Evidence 
reveals that HO1 is largely modulated by environmental cues while the other two 
isoforms show constitutive expression with relatively lower activity. Muramoto 
et al. (2002) have reported that recombinant-heme oxygenase (AtHO1) localized in 
the plastid is responsible for the in vitro formation of CO from heme as a substrate 
for HO. HO1 and HO2 sub-family contains HO genes reported in various plants 
(Shekhawat and Verma 2010). However, HO2 subfamily enzymes do not exhibit 
CO liberating activity in plant cells. Plants like Arabidopsis, soybean or rice have 
been investigated for the presence of HO transcripts (Liu et al. 2007; Han et al. 2008).

Apart from the enzymatic pathway, CO is also known to be non-enzymatically 
produced from routes of lipid peroxidation and ureide metabolism pathways. CO is 
generated from reactions of splitting of heme-methylene bridges which occurs in 
presence of H2O2 and ascorbic acid (Zilli et al. 2014). Plant roots are responsive to 
altered levels of CO generation and associated signaling routes during abiotic stress, 
pathogen attack and photoperiods (Cui et al. 2015; Chen et al. 2017). According to 
Wang and Liao (2016) endogenous levels of auxin, NO, and JA are known to regu-
late CO generation in plants.

15.4  Brief Role of CO in Plant Growth and Development

Investigations provide evidence that CO regulates cellular signaling in plants. CO, 
for example, delayed gibberellins (GA)-induced programmed cell death (PCD) in 
wheat aleurone cells by increasing the expression of major antioxidative enzymes 
like ascorbate peroxidase (APX) and catalase (CAT) thus leading to a subsequent 
reduction in H2O2 content (Wu et al. 2010). Several studies have shown that CO 
exhibits concentration-dependent effects on seed germination. Modest amounts of 
exogenous CO (0.1 or 1%) enhanced seed germination of foxtail (Setaria faberi). 
However, germination reduced with higher percent of CO due to inhibition of mito-
chondrial respiration (Dekker and Hargrove 2002). The physiological process of 
seed germination in Oryza sativa was enhanced by both CO donor heme and CO 
aqueous in a dose-dependent manner by activating amylase activity and enhancing 
the generation of energy resources (Liu et al. 2007). CO was also found to play a 
role in radicle emergence in wheat (Liu et al. 2010) and Brassica sp. (Liu et al. 
2010; Amooaghaie et al. 2015).

Stomatal movement is an important regulator of plant water status, leaf vapor 
pressure, and transpiration that can be regulated by a variety of environmental or 
hormonal responses. Under drought and humidity stress, abscisic acid (ABA) is a 
critical factor to control stomatal conductance (Grondin et al. 2015). After discover-
ing that ABA treatment increased CO content catalysed by the reaction of HO, 
researchers looked into the link of CO mediated stomatal movement. Further find-
ings revealed that hematin and CO could enhance CO release and stomatal closure 
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in relation with time and concentration (Cao et al. 2007a). CO has stomatal move-
ment effects like NO and H2O2 (She and Song 2008; Song 2008).

15.5  CO Orchestrates Root Development and Signaling 
in a Normal and Challenging Environment

15.5.1  Lateral and Adventitious Rooting Mediated by CO

Lateral root (LR) is formed during the pericycle of the parent root when mature 
cells are driven to dedifferentiate and proliferate to produce an LR primordium, 
which eventually leads to LR emergence. LR is critical for the formation of the plant 
root network, necessary for growth and establishment (Guo et al. 2008). The devel-
opment of LR has been demonstrated to be induced by CO. Hematin promotes the 
overall LR proliferation in rapeseed seedlings in a dose-dependent manner, but the 
favourable effects were completely reversed by the scavenger haemoglobin (Hb) or 
inhibitor zinc protoporphyrin-IX (ZnPPIX) (Cao et  al. 2007a). Exogenous CO 
increased the expression and quantity of heme oxygenase-1 (LeHO-1) proteins, 
which accelerated the growth of LR in tomato (Guo et al. 2008).

Adventitious root (AR) formation is a vital phase in vegetative propagation that 
includes re-establishing meristem tissue in explants (Liao et  al. 2012). Multiple 
endogenous and exogenous variables influence AR production due to the action of 
IAA (Xuan et al. 2008). CO showed favourable effects on AR development in mung 
bean seedlings. CO enhanced AR proliferation in low-IAA containing seedlings of 
cucumber. According to Xuan et al. (2008), during AR, specific genes (CSDNAJ-1 
and CSCDPK1/5) are expressed. AR formation by methane-rich water (MRW) was 
also shown to be inhibited by ZnPPIX (Cui et al. 2015). Furthermore, CO may pro-
mote AR formation in IAA-depleted seedlings by upregulating NO production 
(Xuan et al. 2012). Endogenous HO-1 has also been implicated in the production of 
AR in cucumber explants caused by hydrogen-rich water (HRW) (Lin et al. 2014).

15.5.2  CO and NO-Mediated Pathways Involve HO Signaling 
in Roots

CO resembles structural and chemical similarities to NO, which is also a diatomic 
gas. The two gaseous molecules reveal similar molecular masses (30.01 and 28.01), 
and also in physic-chemical properties like water solubility and bond lengths 
(Hartsfield 2002). Although the two gases have some properties in common, differ-
ences exist in their potential for redox reaction and affinity to various metals.

NO can form stable NO-metal complexes by forming nitrosonium ion produced 
by the virtue of its free electron (Hartsfield 2002). However, CO does not possess 
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any free electrons (Hartsfield 2002). Although NO has a higher affinity to heme 
proteins, it is also known to facilitate CO in binding to heme proteins. On the other 
way around, in animal systems CO regulates endogenous NO distribution in the 
cells and, therefore, participates in amplifying the NO-mediated signaling responses 
(Piantadosi 2002). It is interesting to know that evidence in the animal system has 
revealed the presence of associative crosstalk between NO-NOS and CO-HO 
components.

Thus, presumptive evidence in both animal and plant systems reveals that 
NO-CO crosstalk is an important component of NO signaling in cells. CO in plant 
cells is known to provide a similar response to that of NO where dose-dependent 
effects have been reported. The effects of CO have been reported in various instances 
like regulation of stomatal movement (Song et al. 2008) and ion homeostasis (Xie 
et al. 2008). An interaction between CO and NO alleviates stress-induced radicle 
emergence in Triticum sp. (Liu et al. 2010). Similarly, NO activity controls expres-
sion of HO transcripts in Glycine max (Santa-Cruz et al. 2010). A commonly used 
CO donor (hemin) instigates NO signaling as a downward response to auxin regu-
lated AR formation (Xuan et al. 2012). Similarly, a CO-mediated increase in NO 
accumulation has been observed in the roots of salt-stressed wheat seedlings (Xie 
et al. 2008). CO signaling, therefore, operates through NO/cGMP-dependent routes 
in plant roots subjected to challenging environments. Instances of nutrient depriva-
tion like iron deficiency have been known to be mitigated by the combined effect of 
CO and NO in Arabidopsis roots (Kong et al. 2010). CO exerts growth promoting 
effects associated with lateral and adventitious rooting. LR emergence is a precise 
signaling event during the formation of pericycle which in turn produces the LR 
primordia. Furthermore, phenotypic plasticity in roots is associated with the regula-
tion of LR initiation and its proliferation (Guo et al. 2008). Reports suggest that CO 
in aqueous and hemin-mediated forms can induce LR and AR formation. 
Pharmacological studies with CO scavengers (Hb and ZnPPIX) can reverse the 
effects of CO on root growth (Cao et al. 2007b).

The enzymatic pathway of CO generation in plants is accomplished mainly by 
the activity of HO. Expression of tomato heme oxygenase-1 (LeHO-1) has been 
associated with CO-mediated lateral root formation and proliferation of root hair 
(Guo et al. 2008). CO-mediated regulation of AR formation is orchestrated by the 
activity of various other biomolecules and gasotransmitters namely NO and 
H2S. Reports suggest that cucumber plants under low IAA show AR formation trig-
gered by CO which is also accompanied by increased expression of genes, namely 
DNAJ-1 and CDPK1/5 (Xuan et al. 2008). CO-induced AR formation is possible by 
the addition of methane-rich water to plants. Pharmacological analysis by use of 
specific CO-inhibitors like ZnPPIX indicates that CO participates in signaling dur-
ing LR emergence and its growth (Cui et  al. 2015). Methane water-induced CO 
regulates adventitious rooting mediated by the signaling of HO/CO and Ca2+ path-
ways. Furthermore, reports suggest that auxin signaling and cell cycle regulation 
appear to be crucial components in the molecular pathway of CO-dependent AR 
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formation. Earlier evidence suggests the role of HO1/CO system in root develop-
ment in higher plants where temporal regulation of HO1 expression is crucial for 
rooting response (Xuan et al. 2008; Cui et al. 2015). Contrastingly, CO can alter the 
responses of Arabidopsis nia1/2/noa1 mutants during salinity stress, thus modulat-
ing the antioxidative defense mechanisms (Xie et al. 2013).

Reports indicate the role of CO-regulated AR formation (methane-rich water) 
and Ca2+-CaM signaling. CO promotes endogenous NO production during AR for-
mation in seedlings under low IAA levels (Xuan et al. 2012). Similarly, hydrogen 
water-induced adventitious root formation includes association of high activity of 
HO-1 isoform. Both NO and CO signaling appears to exert mutualistic and positive 
effects during adventitious rooting which is associated with a surge in HO activity. 
Chen et al. (2017) have reported H2-CO interaction in mitigating drought conditions 
and promoting AR development. It is, however, important to know that the concen-
tration of CO donors (hematin and aqueous CO) promoted AR formation, but 
appeared inhibitory at the higher concentrations. The effect of H2/CO interaction on 
AR formation was altered by treatment with Hb or ZnPPIX. Stress ameliorating 
roles of CO has been affirmed in the roots of Medicago sativa where improvement 
in glutathione (GSH) has been observed in Cd-stressed plants (Han et al. 2008). In 
this context, exogenous CO exerts regulatory effects on enzymes of the GSH metab-
olism pathway and subsequently modulates the GSH:GSSG (reduced:oxidized glu-
tathione) ratio. A positive correlation has been obtained between CO-mediated Cd 
stress amelioration and an increase in HO 1 transcripts. Mung bean hypocotyls also 
exhibit promoting effects of CO on AR formation (Xu et al. 2006). Similarly, alfalfa 
plants show osmotic tolerance associated with H2-mediated AR initiation and an 
increase in HO 1 (Jin et al. 2016). H2 and CO in combination promote adventitious 
rooting (Lin et al. 2014). Improvement in root proliferation by application of CO 
has been observed during Hg toxicity in Brassica juncea plants (Meng et al. 2011). 
Similarly, CO is involved in the modulation of root growth and signaling in tobacco 
plants subjected to heat stress (Cheng et al. 2018).

The association of NO in the CO signaling pathway in plants mostly seems to be 
functioning as a downstream component (Xie et al. 2008). During salinity stress in 
roots of wheat seedlings, NO signal is associated with regulation of ion homeosta-
sis. Application of both exogenous CO and NO donors (aqueous CO, sodium nitro-
prusside (SNP), and diethylenetriamine-nitric oxide (DETANO)) provides a similar 
response to that of CO signaling. Thus, wheat seedling roots subjected to salt stress 
(150 mM NaCl) show precise interaction of CO and NO in mediating resilience in 
moderately tolerant varieties (Xie et al. 2008). Thus, in this context, endogenous 
CO production in the roots corroborates with an increase in HO activity. Furthermore, 
exogenous application of CO induced a higher accumulation of NO in the root api-
cal meristems of roots. Thus, our current understanding of CO-NO crosstalk can be 
summarized as events of root signaling, antioxidative defense, primordia genera-
tion, and phenotypic plasticity in primary, lateral, and adventitious roots under nor-
mal and challenging environments.
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15.6  Does H2S-NO Crosstalk Mimic CO Signaling in Roots?

H2S in plants appears to be involved in signaling and crosstalk with the other two 
gasotransmitters, namely NO and CO. H2S metabolism in plant cells shows spatial- 
temporal regulation and is related to sulfide signaling in the cytosol and organelles 
like chloroplast and mitochondria (García et al. 2015). Pieces of evidence suggest 
that in certain cases H2S functions similarly to NO (Kolluru et al. 2015). H2S signal-
ing can modulate the activity of proteins by carrying out protein persulfidation 
which in turn modulates metabolism (Aroca et al. 2015). Persulfides are low molec-
ular weight signaling molecules that regulate cysteine and sulfide homeostasis in 
plants (Kimura et al. 2017). Unlike CO, NO and H2S are represented by the families 
of reactive nitrogen and sulphur species (RNS and RSS, respectively).

H2S controls primary, lateral, and adventitious roots in a variety of plants in nor-
mal and stressed situations. Hypoxia prevents the amount of the root and shoot 
system, resulting in a reduction in agricultural yield. H2S biosynthesis is known to 
be induced in cells during hypoxia (Cheng et al. 2013). NaHS (a H2S donor) supple-
mentation relieved Al toxicity-induced suppression of root length in Hordeum vul-
gare L., with a subsequent reduction in Al levels in seedlings thus suggesting redox 
homeostasis (Chen et al. 2013). Similar benefits have been discovered in the case of 
Zn poisoning (Liu et al. 2016). NaHS treatment to strawberry roots increased H2S 
production in leaves (Christou et al. 2013). In Medicago sativa (Wang et al. 2012) 
and Arabidopsis, NaHS restored ion homeostasis (Li et al. 2014). The control of Na+ 
transport, membrane potential, and H2O2 activity are parts of the H2S signaling sys-
tem. In heat-stressed strawberry roots, H2S treatment induced gene expression of 
heat shock proteins and aquaporins (Christou et al. 2014). H2S treatment in roots 
transcriptionally integrates a dynamic signaling network of heat shock protection 
pathways. Interestingly, H2S reduced tip damage in roots of pea plants by decreas-
ing ethylene synthesis in hypoxia-stressed roots (Cheng et al. 2013). During heat 
stress, maize roots exposed to H2S showed a reduction in electrolytic leakage (Li 
et al. 2013). During adventitious rooting, H2S regulated IAA and NO-signaling as a 
upstream regulator (Zhang et al. 2009). H2S-facilitated adventitious rooting and its 
association with CO requires HO-1 activity (Lin et al. 2012). Hydroponic culture of 
Fragaria ananassa cv. Camarosa roots were treated with NaHS for 48 h and dem-
onstrated tolerance to salinity. Various stress priming molecules in plant aerial 
organs were used to investigate the stress priming effects of H2S (Christou et al. 
2013). By reducing the K+ outward-rectifying channel genes in alfalfa roots, NaHS 
therapy ideally maintained K+/Na+ equilibrium (Lai et  al. 2014). In salt-stressed 
barley, a similar mechanism operates. NaHS controlled Na+ build-up in salt-stressed 
barley seedling roots by upregulating H+-ATPase, H+-ATPase subunit, and the vacu-
olar Na+/H+ antiporter (Chen et al. 2015). H2S also induced restriction of primary 
root proliferation, accompanied by the ROS-NO pathway (Zhang et al. 2017). H2S 
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toxicity in Arabidopsis roots results in the production of ROS and NO, which in turn 
activates MAPK6. In Arabidopsis, high levels of NaHS reduced primary root length 
via a NO-dependent mechanism. The test’s malleability was determined by using 
the NOS inhibitor NG-nitro-L-Arg-methyl ester (L-NAME) or the NO scavenger 
2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) to 
ameliorate H2S-facilitated PR growth inhibition.

Although CO-NO interaction has some pieces of evidence, not much informa-
tion is available for CO-H2S signaling during root development. Figure 15.1 shows 
summarized evidence of the roles of NO and H2S in mediating CO signaling in 
roots. Although persuasive at present, evidence shows that H2S can alter the activity 
of heme oxygenase and thus participates in NO signaling cascades. On the other 
way around, CO-H2S signaling can function as a canonical pathway to NO-mediated 
effects in plant root development and signaling. However, concrete evidence is still 
required to decipher the precise role of CO and H2S in regulating NO signaling dur-
ing root development.

Fig. 15.1 The associative roles of NO and H2S in mediating CO-induced regulation of root dif-
ferentiation, growth and signalling. HO heme oxygenase
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15.7  Rhizospheric CO Generation and Root Phenotyping: 
Future Perspectives

More investigations are necessary to explain the importance of wetlands in regulat-
ing CO levels in the root zones. Algal development in marshy, well-lit areas appear 
to be good source of CO generation in the rhizosphere (King 2000). Degradation of 
organic matter by bacteria may potentially contribute to accumulation of CO levels 
in soils. Rhizosphere CO is expected to be devoured by a variety of bacteria, includ-
ing aerobic CO oxidizers, methane/ammonia oxidizers, and anaerobes including 
acetogenins, methanogens, and sulfate reducers (Ragsdale 2004; King 2006). 
Modulation of CO levels in saline marshy soils suggests that lithotrophic and het-
erotrophic bacteria produce and oxidize CO at the same time (King 2006). CO has 
been reported to be consumed by soybean and corn roots during incubation at 
100 ppm concentrations. When the roots were incubated with CO concentrations in 
the air, they also emitted CO (King and Crosby 2002). Cultivated soils absorb CO 
at a rate of 3–6 mg CO m−2 per day (King and Crosby 2002).

Root-soil interfaces at forest and grazing environments have different CO con-
sumption capacities. The microbial makeup of the soil in situ has an impact on rates 
of CO exchange (King and Crosby 2002). CO exchange in plant roots is influenced 
by organic content in soil, and CO-oxidizing bacteria. Wetland CO emissions are 
regulated by rhizosphere CO consumption by macrophyte roots, according to a 
kinetic study (Rich and King 1998). Furthermore, for different plant species, the 
amount and diversity of CO-oxidizing bacteria in the rhizosphere vary. Soil humic 
compounds play a big role in rhizosphere CO generation (Rich and King 1998). CO 
interaction among soil, microorganisms, and plant roots is elucidated by bacteria 
which are capable of oxidizing CO in the rhizosphere (Rich and King 1998). The 
oxidation of rhizosphere carbon is largely regulated by root respiration, which 
increases at higher temperatures. Plant roots have been seen to consume CO regard-
less of nitrate or NO levels. High CO uptake was observed in root-soil interface with 
high organic content, suggesting that plant succession plays a key role in CO 
dynamics (King and Weber 2008). The assembly of CO-oxidizer bacteria is influ-
enced by the environment. Some of the most prevalent CO-oxidizers in the rhizo-
sphere are Carboxydothermus sp., as well as members of the Rhizobiaceae and 
Burkholderia (King and Weber 2007).

Thus, it is important to undertake future investigations on the role of rhizospheric 
CO in the regulation of root growth, phenotypic plasticity, and nutrient acquisition. 
Marshy wetlands and mangrove soils also show seasonal variations in NO and H2S 
emissions. Thus, it would be interesting to decipher the integrative role of these 
gaseous molecules in the regulation of humus composition, rhizospheric microflora, 
and their subsequent impact on root growth and signaling. As a result, biochemical 
and molecular research is needed to unravel the complicated mechanism of NO, 
CO, and H2S interaction in the rhizosphere, which is thought to play a role in soil 
fertility, plant growth, and yield of the crop. Rhizobiology will gain a new dimen-
sion concerning NO, CO, and H2S crosstalk which may appear to be advantageous 
in crop management, especially in arid areas of cultivation.
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