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Abstract The interaction between fluid and immersed solid is a nonlinear multi-
physical phenomenon in science and engineering. Due to the challenges of large 
structural deformation, topological changes in the fluid domain, complexity of the 
geometry of the structure and computational efficiency and robustness for simu-
lating fluid structure interaction (FSI) problems, developing accurate and efficient 
finite element numerical methods has always been a research focus in the field of 
computational fluid dynamics. To overcome these difficulties, we present an efficient 
stabilised immersed framework involving finite element method called CutFEM and 
a second-order accurate staggered numerical scheme for fluid–solid coupling. In the 
following work, we apply this novel framework of computational FSI to several 
numerical examples to verify the efficiency and robustness of the proposed scheme, 
and the accuracy is also validated by the results by using the present scheme compared 
with the reference values. 

Keywords Fluid structure interaction · CutFEM · Immersed boundary method ·
Staggered scheme 

92.1 Introduction 

Fluid structure interaction is frequently encountered in science and engineering. It 
specifically refers to the interaction between fluid and immersed solid, which is a 
nonlinear multi-physical phenomenon. The simulation of FSI is of great significance 
in science and engineering applications, such as blood flows in arteries and artificial 
heart valves in biomedicine, various valves, pumps, turbines and vibration of wind
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turbine blades, response of bridges and high-rise buildings to wind and aeroelastic 
response of aircraft in engineering [1]. Due to the challenges of large structural defor-
mation, topological changes in the fluid domain, complexity of the geometry of the 
structure and computational efficiency and robustness for simulating fluid structure 
interaction (FSI) problems, developing efficient and accurate finite element numer-
ical methods has always been a focus and difficulty in the field of engineering. At 
present, the body-fitted mesh method based on arbitrary Lagrangian-Euler formula 
(ALE) is the most widely used in commercial software, which requires complex 
mesh shifting and re-meshing algorithms to capture large deformations of struc-
tures. The process of re-meshing includes a data-mapping strategy from old mesh 
to the new mesh which also introduces error [2]. Hence, low computational effi-
ciency for generating body-fitted meshes and poor convergence for re-meshing algo-
rithms limit the applicability of ALE formulation. To overcome these difficulties, we 
present an efficient stabilised immersed framework involving finite element method 
called Cut Finite Element Method (CutFEM) and a second-order accurate staggered 
numerical scheme for fluid–solid coupling. The key of our immersed framework 
is to solve the Navier–Stokes equation approximately by using the stabilised finite 
element method on the fixed background fluid mesh discretised with hierarchical B-
splines, which does not need to re-mesh. The weak formulations employ the mixed 
Galerkin formulation with the streamline-upwind/Petrov Galerkin (SUPG)/pressure-
stabilizing/Petrov Galerkin (PSPG) stabilization to obtain the numerical solutions of 
the incompressible Navier–Stokes equation [3]. At the same time, the weak-coupling 
staggered scheme is employed to solve the governing equations of fluid and structure 
in fluid–structure coupling [4]. The application of our computational framework is 
demonstrated very efficient and robust by simulation [5, 6]. 

The following work is organized as follows. In Sect. 92.2, we give a brief intro-
duction of our stabilized immersed framework including CutFEM and the staggered 
scheme. In Sect. 92.3, we demonstrate the efficiency and robustness of the proposed 
scheme by using some numerical examples. 

92.2 Theory 

92.2.1 CutFEM Method 

The fluid is assumed to be viscous, incompressible and laminar in our work. The 
governing equations of fluid are solved on Cartesian grids discretized by B-spline. 
The hierarchical B-spline curves can optimize the fluid grids near the immersed 
solids. Compared with traditional Lagrangian basis functions, B-spline functions 
have better performance due to their high-order continuity [7]. 

B-splines are piecewise continuous polynomial functions [8]. Figure 92.1 shows 
B-spline basis functions for different orders Q1, Q2 and Q3, refer to linear, quadratic,
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Fig. 92.1 One-dimensional 
univariate B-spline 

Fig. 92.2 B-Splines in 2D 

cubic B-splines, respectively. For spatial discretization of the hierarchical B-spline 
grid is shown in Fig. 92.2. 

For given the knot vector p = {ξ0, . . . , ξn+b+1}, is a non-decreasing set of coor-
dinates, where b is the order of polynomials and n is the number of basis functions 
used for the construction of B-spline curves, defined in the interval

[
ξi , ξi+b+1

]
. The  

B-spline basis functions Ni,b are given as [5] 

Ni,0(ξ ) =
{
1 if  ξi ≤ ξ ≤ ξi+1 

0 otherwise 
(92.1) 

Ni,b(ξ ) = ξ − ξi 
ξi+b − ξi 

Ni,b−1(ξ ) + ξi+b+1 − ξ 
ξi+b+1 − ξi+1 

Ni+1,b−1(ξ ) 
(92.2) 

The current main work presents a new computational framework motivated by 
the developments in body-unfitted methods proposed by Burman et al. [9]. CutFEM 
builds on a general finite element formulation for the approximation of PDEs. The 
basic idea behind CutFEM is to make the discretization as independent as possible 
of the geometric description and minimize the complexity of mesh generation [9]. 
Figure 92.3 shows that for a condition consisting of two domains: fluid domain � f
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Fig. 92.3 Discretization: a geometry consisting of two domains b discretization with elements 
c elements belonging to the fluid domain � f 

and solid domain �s and some cells of the background grid are cut by the interface 
between fluid domain and solid domain are cut-cells. 

The accurate imposition of interface conditions is the key to the application of 
CutFEM. Boundary conditions can be imposed on the background grid by using 
Lagrange multiplier or penalty method [10]. However, the fluid mesh is not aligned 
with the boundary of the immersed solid, which increases the difficulty of imposing 
interface conditions. Number of researches have shown in recent studies [3] have  
proved that Nitsche method is an efficient and accurate strategy for boundary and 
interface conditions applied to the finite element formulation. Therefore, at the fluid– 
structure interface, we use Nitsche method to enhance the equilibrium of the fluid– 
structure interface [11]. Nitsche’s method are applied in combination with the stabi-
lization strategy to avoid the numerical instability associated with very small cutting 
elements [12]. The terms of Nitsche’s method for enforcing the interface equilibrium 
conditions are as follows: 

B f N
({
w f , R

}
,
{
v f , p

}) = γN1

∫

�D 

w f · (
v f − vs

)
d� −

∫

�D 

w f · (
σ
({
v f , p

}) · n f )d�

− γN

∫

�D

(
σ
({
w f , R

}) · n f ) · (
v f − vs

)
d� (92.3) 

where n f is the unit outward normal on the boundary � f , σ is stress tensor. v f and 
vs is the velocity of the fluid and solid respectively. w f and R are weight function 
of pressure and velocity, respectively. � is the boundary of the fluid. γN1 is a penalty 
parameter and γN1 ≥ 0. γN2 allows to choose between the symmetric γN2 = 1 and 
the unsymmetric γN2 = −1 variants of Nitsche’s method [5]. 

If the intersections of boundary and cut element are very small, the system matrix 
may be very ill conditioned. The present work follows CutFEM, which uses ghost-
penalty terms to alleviate numerical instability and to weakly enforce an appropriate 
amount of smoothness of the solution across the edges between the cut cells and 
across the edges between the cut cells and the interior cells (see Fig. 92.4), the ghost
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Fig. 92.4 Ghost-penalty 
operator is applied to the 
blue boundary 

penalty term is defined as 

B f GP({w f , R)}, {(v f , p)}) = γ u GPμG1
(
w f , v f

) + γ p GP 

1 

μ 
g3(R, p) (92.4) 

where B f GP({w f , R)}, {(v, p)}) is the ghost-penalty term corresponding to the 
stability of the cut cells. G1

(
w f , v f

)
is defined as jump operator as a vector-valued 

problem. γ u GP and γ p GP are the dimensionless ghost penalty parameters for velocity 
and pressure [5]. 

92.2.2 Staggered Scheme for Fluid Solid Coupling 

The solution approach of fluid–structure coupling has a significant impact on the 
accuracy and efficiency of FSI numerical method. In FSI problems, the solution 
strategies are divided into strongly coupled and weakly coupled solution strategies. 
Based on Dirichlet–Neumann coupling, Dettmer et al. [6] proposed the second order 
accurate weakly coupled numerical scheme used for our present work. 

The steps for the staggered scheme are described as follows. First, update time 
step tn+1 = tn +�t , and then predict force on the solid Fs p 

n+1, solve the solid problem 
for ds 

n+1 and v
s 
n+1 using F

s p 
n+1. Then, reposition immersed solid, update cut cell data 

to get traction force F f n+1 on fluid interface. After that, we introduce the relaxation 
factor β, The parameter β (0 < β ≤ 1) is defined as the relaxation factor. The value 
of β influence the stability of the proposed staggered solution strategy. Then use the 
formula Fn+1 = −β F f n+1 + (1 − β)Fs p 

n+1 to correct the traction force on the solid. 
Finally, proceed to next time step. As demonstrated with the numerical examples 
[4, 6, 13], the application of this staggered scheme makes the FSI simulation very 
efficient.
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Fig. 92.5 Unsteady flow over cylinder bodies: a geometry and boundary condition b hierarchical 
b-spline mesh 

92.3 Numerical Examples 

92.3.1 Unsteady Flow Over Fixed Circular Bodies for Re = 
100 

The flow over the circular cylinders has always been focus in ocean engineering. The 
numerical simulations of two-dimensional flow around circular cylinders have been 
widely used in the field of ocean engineering. Due to the common phenomenon of 
interference between multiple cylinders, the research on the flow around multiple 
cylinders is of great significance. 

In this numerical example, we employ our stabilized immersed framework to 
simulate. Figure 92.5 shows the geometry and boundary conditions of the problem 
and a level-3 hierarchical meshes discretized with B splines for simulations. Prop-
erties of the fluid are: density, ρ f = 103kg/m3 and viscosity, μ f = 1 kg/m s. The  
uniform velocity of v∞ = 1.0 m/s  is imposed at the inlet in X-direction so that the 
Reynolds number is Re = ρ Dv∞/μ = 100. Figure 92.6 shows flow over multiple 
fixed circular cylinders for Re = 100 of evolution of lift coefficient and drag coeffi-
cient, respectively. Due to the interference effect between the two cylinders, the drag 
coefficients of the upstream and downstream cylinders are different. Figure 92.6a 
shows the drag coefficients of the upper and lower cylinders with the same vertical 
y-axis almost overlap. For the upper and lower cylinders located on the same vertical 
y-axis, the lift curves shown in Fig. 92.6b are symmetric and illustrate that the near 
wake of two parallel cylinders is symmetrical and opposite. Figures 92.7b and 92.8b 
depict the symmetrical vortex shedding at the end of cylinders.

92.3.2 Vortex Induced Vibration of a Circular Cylinder 

Vortex-induced vibration is one of the main causes of fatigue failure of structures. 
Therefore, the research on forced vibration and vortex-induced vibration of a cylinder
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Fig. 92.6 Time history for flow over fixed cylinders of a drag coefficient b lift coefficient 

Fig. 92.7 Contours of pressure different time a t = 10 b t = 100 

Fig. 92.8 Contours of velocity for different time a t = 10 b t = 100
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Fig. 92.9 VIV of circular cylinder: a geometry and boundary condition b hierarchical b-spline 
mesh 

Table 92.1 The vibration response characteristics of cylinder system 

Re Vortex shedding frequency fs Normalized displacement 

90 0.1440430 0.0012901 

100 0.1654053 0.0029205 

110 0.1986694 0.3505286 

120 0.1989746 0.3394329 

130 0.2282715 0.0060493 

is of great significance for offshore engineering risers. The numerical example for 
VIV is concerned with an elastically mounted rigid circular cylinder. 

The geometry and boundary conditions of this problem and hierarchical meshes 
discretized with B splines for simulations are shown as Fig. 92.9. The density of the 
fluid is ρ f = 103 kg/m3 and its viscosity is μ f = 0.1 kg/m s. For this example, we 
only consider the transverse degree of freedom. The properties of the structure are: 
mass, m = 117.10 g, the damping coefficient and stiffness are c = 0.35317 g/s and 
k = 184.92 g/s2 , respectively. The natural frequency fn = 0.2Hz. We conduct simu-
lations for Re within 90–130. The normalized values of the cylinder’s displacement 
amplitude and vortex shedding frequency are shown in Table 92.1. It is observed 
from Fig. 92.10 that there is an interval where the vortex shedding frequency fs 
coincides with the natural frequency fn = 0.2Hz. The amplitude performed by the 
cylinder-spring system has the order of magnitude of the diameter of the cylinder in 
this Re interval. Figure 92.10 illustrates the amplitude values and the range of Re 
where the ‘lock-in’ occurs match well with other simulation results from the litera-
ture [14–17]. The results above-mentioned illustrate the capability of the immersed 
FSI framework.

92.3.3 Flexible Beam in Cross Flow 

In this numerical example, we focus on the coupling of fluid and a flexible structure. 
The geometry and boundary conditions of this problem and hierarchical meshes
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Fig. 92.10 Displacement amplitude of circular cylinder of vortex induced vibration

discretized with B splines for simulations are shown in Fig. 92.11. Properties of 
fluids: density, ρ f = 103 kg/m3, and viscosity, μ f = 0.1 kg/m s. Properties of 
structure: density, ρs = 103kg/m3 , Young’s modulus, E = 200 kPa and Poisson’s 
ratio νs = 0.3. The inlet velocity is parabolic defined as vin  = 20/6[y(0.6− y)]. The  
time history of lateral displacement of point A and point B is shown in Fig. 92.12. 
The contour plots of fluid velocity at different times are shown in Fig. 92.13. 

Fig. 92.11 Beam in cross flow: geometry, boundary condition and hierarchical B-spline mesh
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Fig. 92.12 Time history of X-displacement of point A and B 

Fig. 92.13 Contour plots of fluid velocity at different times a t = 1 b t = 5 

92.3.4 Vortex-Induced Vibrations of a Flexible Beam 

We take this example as a benchmark example to test the fluid-flexible structure 
interaction. Figure 92.14 shows hierarchical meshes discretized with B splines and 
the geometry and boundary conditions of this problem. The density and viscosity of 
fluid are ρ f = 103kg/m3 and μ f = 1 kg/m s. The properties of this flexible structure 
are: density is ρs = 104kg/m3 , Young’s modulus is E = 1.4 × 106 Pa and Poisson’s 
ratio is νs = 0.4.
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Fig. 92.14 Flexible beam: geometry, boundary condition and hierarchical B-spline mesh 

Fig. 92.15 Time history of Y-displacement of point A 

The inlet velocity is defined as vin  = 6/0.1681y(0.41 − y). The beam attached 
behind a fixed square body starts to oscillate due to vortices shedding by the corners 
of the square body. 

Evolution of Y-displacement of the beam against time is presented in Fig. 92.15 
and it shows the oscillation. Figure 92.16 shows the contour plots of velocity in x 
direction at two different times for the background meshes discretized with B splines.
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Fig. 92.16 Contour plots of fluid velocity at different times a t = 5 b t = 12 

92.4 Conclusion 

In our paper, we present an immersed stabilised framework for the simulation of 
fluid–structure interaction problems. We apply this numerical framework to several 
numerical examples and the robustness of the proposed scheme are demonstrated by 
the example of vortex induced vibration of flexible beam where the structure under-
goes the large deformation, the example of flow over fixed cylinder demonstrated 
the efficiency of our proposed numerical scheme. As demonstrated with the example 
of VIV of cylinder, the accuracy is verified by the results obtained with our stabi-
lized scheme are consistent with the reference value. The following research work 
is expected to employ this proposed framework to high performance computing 
architecture and large-scale industrial simulation. 
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6. Dettmer, W.G., Lovrić, A., Kadapa, C., et al.: New iterative and staggered solution schemes for 
incompressible fluid-structure interaction based on Dirichlet-Neumann coupling. Int. J. Numer. 
Methods Eng. 122(19), 5204–5235 (2021) 

7. Schillinger, D., Rank, E.: An unfitted hp-adaptive finite element method based on hierarchical 
b-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 
200(47), 3358–3380 (2011) 

8. Rüberg, T., Cirak, F.: A fixed-grid b-spline finite element technique for fluid–structure 
interaction. Int. J. Numer. Methods Fluids 74(9), 623–660 (2014) 

9. Burman, E., Claus, S., Hansbo, P., et al.: Cutfem: discretizing geometry and partial differential 
equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015) 

10. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002) 
11. Hansbo, P., Hermansson, J., Svedberg, T.: Nitsche’s method combined with space–time finite 

elements for ale fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 
193(39–41), 4195–4206 (2004) 
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