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Abstract. Team assembly is a problem that demands trade-offs
between multiple fairness criteria and computational optimization. We
focus on four criteria: (i) fair distribution of workloads within the team,
(ii) fair distribution of skills and expertise regarding project require-
ments, (iii) fair distribution of protected classes in the team, and (iv)
fair distribution of the team cost among protected classes. For this prob-
lem, we propose a two-stage algorithmic solution. First, a multi-objective
optimization procedure is executed and the Pareto candidates that sat-
isfy the project requirements are selected. Second, N random groups are
formed containing combinations of these candidates, and a second round
of multi-objective optimization is executed, but this time for selecting
the groups that optimize the team-assembly criteria. We also discuss the
conflicts between those objectives when trying to understand the impact
of fairness constraints in the utility associated with the formed team.

1 Introduction

Given a set of optimization criteria and constraints, team assembly targets at
selecting, from a pool of candidates who each have a set of skills, a set of individ-
uals that jointly fulfils the requirements of a predefined project. Decision-makers
have to establish a clear understanding of project requirements and teams’ envi-
sioned tasks so that they can be translated into computationally tractable formal
requirements, respectively, as well as choose between various ways of assigning
candidates into teams [9]. Moreover, team assembly is often a socially, ethically
and legally sensitive activity, especially when conducted in high-stakes domains,
such as formal education or professional work contexts. A particularly salient
set of concerns relates to unfair bias which can disadvantage members of pro-
tected groups (such as gender or ethnic groups) and marginalized communities.
Whether technical or social in terms of its origin [7], the bias introduced in
(or reproduced by) team assembly algorithms can result in unfair treatment of
candidates in the team assembly process, even unlawful discrimination.

Existing work has developed methods for improving team-assembly algo-
rithms in different respects, such as reducing the cost of team assembly [2],
distributing the workload more equitably among candidates [1] and improving
the representation of different demographic groups in the resulting teams [2].
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Whereas a large body of work is devoted to developing methods for identify-
ing and mitigating wrongful bias and unfairness in algorithms and software [13],
research that addresses these issues in the context of computational team assem-
bly remains scarce. Most existing approaches are designed for incremental solu-
tions where teams are formed by selecting one candidate in sequence after the
other, and optimize only a single distributive desideratum. Our work is moti-
vated by the observation of two problems with this approach. On the one hand,
decision-makers often have multiple objectives that need to be balanced or prior-
itized [11], and it is unlikely that a single fairness-objective can capture a holistic
set of contextual values relevant to a given team-assembly process. On the other
hand, an incremental approach to team-assembly can be undesirable in certain
team-assembly contexts, such as when choosing one candidate at time t1 closes
off the possibility to choose another more suitable candidate later at time t2.

To address these issues, we formulate team-assembly as a multi-objective
optimization procedure motivated by the assumption that fairness-aware team-
assembly should achieve several objectives constitutive a more holistic notion of
fairness in team-assembly. We describe our framework and illustrate its bene-
fits by employing four criteria for fairness-aware team-assembly. Ideally, a team
assembly algorithm would compare every possible team-composition in light of
these criteria and choose the one that minimizes a target objective. However,
this approach can be expensive especially when the candidate pool is large.
To address this issue, we propose a two-step team-assembly procedure: First, a
multi-objective optimization procedure is executed and the Pareto candidates
that satisfy the project requirements are selected. Second, N random groups
are formed containing combinations of these candidates, and a second round of
multi-objective optimization is executed, but this time for selecting the groups
that optimize the team-assembly criteria. The choice between teams is deter-
mined according to a combination of all fairness criteria. This algorithm is not
as cheap as selecting the best candidates incrementally, and it is not as expensive
as testing all possible groups that can be formed. Instead, the proposed algorithm
filters the best candidates among the ones that fulfill the project requirements,
and it forms several random groups containing these candidates. When selecting
a group that is already formed one can directly access the fairness metrics, and
it is easier for the algorithm to minimize a given criterion or a set of criteria.

2 Related Work

Team-Assembly. Research on computational team-assembly is diverse, partly
due to the variety of application areas and computational approaches. [10] pro-
poses a team recommender that groups individuals within a social network based
on pre-defined skill requirements. [14] presents an approach to form and recom-
mend emergent teams based on how software artifacts are changed by developers,
while [17] proposes building teams based on the personality of the team members
using a classifier to predict the performance of the constructed teams. [16] frames
team-assembly as a group recommendation, where it forms a team of users, each
of whom has specific constraints, and recommends items to that team.
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Bias and Fairness in Team-Assembly. Research on fair machine learning devel-
oped various ways for identifying and addressing unfair bias. In most works,
fairness is framed as a local resource allocation problem where a given good
should distribute efficiently without violating some pre-defined fairness con-
straint(s). Examples of metrics include Statistical Parity [6], which requires that
the distribution of positive outcomes is statistically independent of so-called pro-
tected attributes (e.g., gender), and Equalized Odds [8], which requires parity
in group-relative error rates. Different techniques can be applied throughout the
system pipeline to mitigate bias in data, algorithms, or output distributions [15].
While research on fairness specifically in computational team-assembly contexts
remains scarce, there are some notable exceptions. For example, [4] formulates
the task of team-formation as an instance of fair allocation: a procedure for
assigning students to projects should involve fair division, which is defined in
terms of balanced workloads and tasks in the resulting teams. Another example
is [2], which examines the fair team-formation problem in an online labour mar-
ketplace. To the best of our knowledge, [12] presents the most similar setting
to our work, exploring a problem where teams have multidisciplinary require-
ments and the selection of members is based on the match of their skills and the
requirements. For assembling multiple teams and allocating the best members
in a fair way between the teams, it suggests a heuristic incremental method as
a solution to create team recommendations for multidisciplinary projects.

3 Motivation

Team Assembly as One-Shot Subset Selection. Our approach is designed for
subset selection cases where a team is formed by choosing an optimal set of indi-
viduals from a larger set of candidates, where project-to-team fit is evaluated by
considering project requirements and candidates’ skills. Our motivation is that,
subset selection has received comparably less attention in research on fairness
in algorithmic decision-making (see, however, [5]). Also, existing approaches to
fairness-aware team assembly have largely focused on an incremental approach
to selecting candidates, which can undesirable or suboptimal in certain cases
since the overall composition of the team can be known only by selecting all
candidates. Hence, we address a gap in the research literature by focusing on
subset selection in an one-shot team assembly setting.

Multi-Objective Fairness in Team Assembly. We approach fairness-aware team
assembly from the perspective of multi-objective optimization, observing the
limitations of previous works that employ a single fairness metric. In particular,
using a single measure does not allow the decision-maker to evaluate resulting
team-compositions from a holistic evaluative perspective nor to identify trade-
offs that may arise between their (un)desirable properties [11]. Our approach
takes these notions into account, and recognizes that team assembly procedures
can be multi-faceted in terms of the values they should promote and the goods
and opportunities that are distributed therein. For example, in real-life con-
texts of team assembly, the decision-maker is not only distributing access to
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the team, but also allocating tasks and responsibilities between accepted team-
members. Our notion of multi-objective fairness captures this idea, and we use
it to denote the general sentiment that multiple goods and opportunities should
be distributed fairly with due regard also for the overall utility generated.

For fairness-aware team assembly, we apply 4 objectives: (a) Fair Represen-
tation: The distribution of protected attributes within a team should be fair
in terms of being as equitable as possible. (b) Fair Workload Distribution: The
distribution of tasks within a team should be fair in terms of being as equal as
possible. (c) Fair Expertise Distribution: The distribution of skills within a team
should be fair in terms of being as equal as possible. (d) Fair Cost Distribution:
The distribution of the cost within a team should be as fair as possible consider-
ing the protected attributes associated with candidates. Each objective equalize
some benefit, or resource that many consider important in team assembly.

4 Problem Formulation

Let S = {s1, . . . , sm} be a set of skills, A be a binary sensitive attribute that
can assume values A0 or A1, U = {u1, . . . , uk} be a set of individuals, i.e.,
the candidate pool, and P be a set of requirements for a project, i.e., a sub-
set of the skill set (P ⊂ S). An individual u ∈ U is represented as a combi-
nation of a cost profile (uS) containing the hiring cost associated with their
skills, and a value (uA) associated with a sensitive attribute. The cost profile is
obtained through a function θ that returns the cost of a certain skill, for example,
uS = (θ(s1, u), θ(s2, u), . . . , θ(sm, u)) represents user u according to their cost in
skills {s1, s2, . . . , sm}. We assume a user has a certain skill as long as the cost
associated with that skill is greater than 0.

Any set of more than 2 and less than |U | individuals is considered a team T .
And the number of project requirements that are fulfilled by a team is referred
to as coverage. The aim of the team-assembly method is to select among all
teams that cover the project requirements, the team that minimizes five objec-
tives: team cost, workload uneven distribution, expertise uneven distribution,
representation parity, and cost difference. These objectives are described next.

Team Cost. The total cost of hiring a team for a project is defined as:

Cost(T, P ) =
∑

u∈T

∑|S∩P |
j=1

θ(sj , u). (1)

It can be described as the summation of the cost associated with each team
member’s skills that match the project requirements. It is worth mentioning that
one candidate can contribute to more than one task in the project, in the case
when their skills coincide with more than one project requirement.
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Workload Uneven Distribution is calculated as the standard deviation of
the cost associated with each member of the team:

Workload(T, P ) =

√
1

|T |
∑

u∈T

(∑|S∩P |
j=1

θ(sj , u) − Cost(T )
|T |

)2

. (2)

A team in which the total cost is well distributed among members (low
variance) is considered fair, whereas a team in which the cost is concentrated
among a few members (high variance) is considered unfair.

Expertise Uneven Distribution. It is important to ensure that not just the
costs are well distributed among candidates, but that the costs are also well dis-
tributed among project requirements. The unevenness of expertise distribution
is calculated as:

Expertise(T, P ) =

√
1

|P |
∑|S∩P |

j=1

( ∑
u∈T

θ(sj , u) − Cost(T )
|P |

)2

. (3)

In a similar fashion to the workload distribution, this objective measures the
standard deviation of the cost associated with each project requirement. A fair
team is expected to distribute their cost among requirements as even as possible,
thus resulting in a low standard deviation value.

Representation Parity. It measures the difference between the occurrences of
A0 and A1 within a team as potential values for a sensitive attribute A. The
objective is calculated as:

Representation(T,A) =

√
(|f(T,A0)| − |f(T,A1)|)2

|T | , (4)

where function f(T,A0) returns a set containing the members of T associated
with sensitive attributes A0, as well as in the case of attribute A1. A low Repre-
sentation Parity indicates a fair distribution of attribute A whereas a high value
indicates a majority of members associated with one of the classes, A0 or A1.

Cost Difference. It measures the difference between the cost allocated to two
categories, A0 and A1, within a team. The total cost of team members associated
with a certain sensitive attribute, named Cost Attribute (CA), is calculated as:

CA(T, P,A0) =
∑

u∈f(T,A0)

∑|S∩P |
j=1

θ(sj , u), (5)

in the case of attribute A0. And the Cost Difference objective is calculated as:

CostDiff(T,A, P ) =

√
(CA(T, P,A0) − CA(T, P,A1))2

Cost(T, P )
. (6)
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As mentioned before, our goal is to select a team T that fulfils the project P
requirements and that minimizes the multi-objective condition:

argminT (Cost(T, P ),Workload(T, P ), Expertise(T, P ), Representation(T,A),

CostDiff(T,A)).

4.1 Multi-Objective Fairness in Team Assembly

In this section, we propose a method designed for assembling teams with multiple
fairness constraints. The method assumes a pool of candidates from which the
team will be selected, a project and a sensitive attribute associated with each of
the candidates. The method formulates fairness-aware team-assembly as a multi-
objective optimization problem that is performed in two stages: first, project
requirements are considered as objectives, and the best candidates are selected
for the next phase. Second, multiple teams are formed with these candidates
and fairness constraints are calculated for each of the teams. This time the
fairness constraints are assumed as objectives, and the team that minimizes these
constraints while fulfilling the project requirements is selected as the fairer.

Given a candidate pool (U) and set of project requirements (P ), the first
action is to filter candidates with at least one skill required by the project. The
filtering process removes all users for which |u ∩ P | = 0, and the remaining
candidates are referred to as Up. The candidates in Up are then submitted to a
multi-objective optimization step with the aim of selecting the best candidates
for this specific project according to the Pareto dominance concept. According
to this concept, a candidate dominates another if they perform better in at least
one of the project requirements. A candidate is considered non-dominated if they
are not dominated by any other candidate in the population, and the set of all
non-dominated candidates compose the Pareto candidates subset.

At this point, the paretoCandidates subset contains the non-dominated can-
didates considered as the most suitable for the given project, but our notion of a
fair team can only be assessed when having a formed team. The next step is to
form a reasonable amount of teams containing a fixed number of Pareto candi-
dates selected randomly. The number of random teams (N) as well as the size of
these teams (M) are provided as parameters for the method. Once the teams are
formed, it is possible to calculate their coverage, as well as their fairness objec-
tives with Eqs. 1, 2, 3, 4 and 6. The teams that fulfil the project requirements are
filtered out and considered in the following step. Cost, Workload, Expertise,
Representation and CostDifference are then calculated, and each team end up
being represented according to the values calculated for its objectives. A second
round of multi-objective optimization is executed. This time, teams are being
compared instead of candidates, with the same understanding as in from the first
case. Given two arbitrary teams, two are the possibilities: (i) one team dominates
the other if it has at least one objective with a lower value than the other team,
or (ii) the two teams do not dominate each other. The non-dominated teams are
referred to as Pareto teams. Finally, all objectives measured for Pareto teams
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are summed up as an indicator of an overall unfairness, and the method selects
the team T with the lower unfairness value.

5 Experiments

We evaluated the proposed method in a dataset obtained from the freelancer1

website, in which candidates register themselves to be hired as freelance workers.
The dataset contains 1,211 candidates who self-declared their costs and their
expertise in 175 skills [2]. In the information available in the dataset, users
are associated with skills in a binary fashion, but no information is provided
about the cost of each skill separately. We decided that the cost declared by
the users is the same for every skill in which they have the expertise, meaning
that if user u declared a cost c and they are hired for a project in which they
will contribute with two skills, then the total cost associated with this user is
2 × c. [2] attributes a hypothetical binary sensitive attribute to each candidate,
and generates several versions of the same dataset, associating candidates with
this attribute in different proportions. We decided to use the dataset in which
members are equally represented in the candidate pool (50/50), and the dataset
in which members are more unevenly represented (10/90). The dataset contains
also the requirements for 600 projects.

We applied two other team-assembly methods to the same task for the sake
of comparison. The first method, named Incremental, selects the most suitable
candidates incrementally until the project requirements are fulfilled. The second
method, named Fair Allocation, operates in a similar fashion, but this time

Table 1. Cost, Workload, Expertise, Representation, Cost Difference, and number
of formed teams for Incremental, Fair Allocation and Multi-Objective methods. Multi-
Objective can optimize different criteria, and its results are presented according to seven
objectives: Random, Top-Cost, Top-Workload, Top-Expertise, Top-Representation,
Top-Cost Difference and Top-Sum. The best results for each objective are in bold-
face, and the second-best results are in underlining.

Classes Algorithm Cost Workload Expertise Representation Cost Teams

Dist. Difference

50/50

Incremental 23.311 (15.548) 0.035 (0.034) 0.025 (0.026) 0.480 (0.378) 0.610 (0.345) 486
Fair Allocation 29.201 (20.453) 0.042 (0.040) 0.032 (0.032) 0.238 (0.268) 0.447 (0.286) 486

M
u
lt
i-
O

b
j.

Random 40.862 (23.391) 0.045 (0.045) 0.035 (0.036) 0.343 (0.339) 0.419 (0.351) 506
Top-Cost 26.099 (16.876) 0.035 (0.038) 0.026 (0.027) 0.450 (0.360) 0.595 (0.333) 506
Top-Workload 42.294 (27.074) 0.018 (0.029) 0.032 (0.036) 0.434 (0.367) 0.471 (0.357) 506
Top-Expertise 37.943 (23.646) 0.039 (0.039) 0.011 (0.020) 0.445 (0.363) 0.525 (0.359) 506
Top-Repres. 28.503 (17.531) 0.036 (0.038) 0.028 (0.027) 0.143 (0.170) 0.393 (0.251) 505
Top-Cost Diff. 41.458 (25.980) 0.040 (0.040) 0.037 (0.036) 0.188 (0.197) 0.091 (0.196) 506
Top-Sum. 39.147 (22.969) 0.032 (0.035) 0.028 (0.029) 0.144 (0.174) 0.107 (0.206) 506

10/90

Incremental 23.423 (15.693) 0.035 (0.034) 0.025 (0.026) 0.758 (0.341) 0.875 (0.239) 486
Fair Allocation 31.212 (20.802) 0.046 (0.040) 0.034 (0.030) 0.413 (0.370) 0.600 (0.328) 484

M
u
lt
i-
O

b
j.

Random 40.939 (25.097) 0.044 (0.047) 0.035 (0.038) 0.722 (0.354) 0.748 (0.350) 506
Top-Cost 26.159 (17.047) 0.035 (0.038) 0.026 (0.027) 0.729 (0.347) 0.843 (0.253) 506
Top-Workload 42.525 (27.463) 0.018 (0.029) 0.033 (0.036) 0.828 (0.297) 0.836 (0.285) 505
Top-Expertise 38.140 (23.855) 0.039 (0.040) 0.011 (0.020) 0.795 (0.327) 0.842 (0.298) 506
Top-Repres. 30.231 (19.608) 0.039 (0.041) 0.030 (0.032) 0.435 (0.390) 0.594 (0.353) 506
Top-Cost Diff. 34.961 (22.256) 0.040 (0.039) 0.032 (0.031) 0.470 (0.377) 0.459 (0.439) 506
Top-Sum. 37.661 (23.700) 0.035 (0.038) 0.027 (0.030) 0.432 (0.389) 0.460 (0.436) 505

1 https://www.freelancer.com/.

https://www.freelancer.com/
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considering users associated with a sensitive attribute and forcing as much as
possible that the formed team has a fair distribution of this attribute among its
members. For more details, see at [3].

Multi-Objective, Incremental and Fair Allocation were evaluated for forming
a team for each of the 600 projects in the freelancer dataset, and the aver-
age value obtained for each of the objectives presented in Sect. 4 were calcu-
lated. The results are reported in Table 1, separately for the two datasets con-
taining different proportions of the sensitive attributes, 50/50 and 10/90. The
results of Multi-Objective are presented according to five different optimiza-
tion objectives, named configurations: Top-Cost, Top-Workload, Top-Expertise,
Top-Representation and Top-Cost Difference, along with a Random selection
variation. On average, the first round of multi-objective optimization reduced
the number of candidates by 77%, meaning that the candidates dominated oth-
ers with compatible skills represent 23% of the total. In the second round of
multi-objective optimization, the teams were reduced by 98% on average. The
teams that dominate the others represent only 2%. This reflects how much the
teams formed randomly can be internally equivalent or redundant.

In general, the Incremental method was the most efficient in minimizing
the total cost and the size of the formed teams. The Multi-Objective method
was able to assemble a slightly higher number of teams than other methods,
probably because of forming teams in one-shot instead of incrementally. When
configured to minimize a specific objective, the Multi-Objective method was
efficient in selecting the teams, except when the objective was the Cost, and
when the objective was the Representation and the dataset contained an uneven
distribution of classes (10/90). In the former case, Incremental was the most
efficient method, and in the latter case, the Fair Allocation performed better.

In the context of Multi-Objective fairness, it is preferable that a team presents
a good balance of objectives instead of an extremely low value for one objec-
tive despite the others. E.g., when configured to optimize the Expertise objec-
tive (Top-Expertise) in the uneven dataset (10/90), Multi-Objective selected,
on average, teams with a fairly high Representation (0.795) and Cost Difference
(0.842) values. The Top-Sum configuration, on the other hand, selected teams
with the second-best average values (highlighted with underline in Table 1) for
three out of five objectives, for both datasets. The two objectives in which the
configuration did not perform well were Cost and Expertise, which leads us to
the next step of analyzing potential conflicts between objectives in the results.

Tension Between Objectives. Conflicts between objectives might emerge in
situations when one objective is minimized, and another (or a set) goes up as
a side effect. We noticed that minimizing the Workload objective increases the
total cost of teams in both datasets (see Top-Workload configuration of Multi-
Objective in Table 1). These were the configurations in which the average cost
of selected teams presented the highest values, 42.294 in the case of the 50/50
dataset, and 42.525 in the case of the 10/90 dataset. These values are 181.4% and
181.5% higher than the lowest cost obtained in the results, respectively. Workload
and Expertise, however, are fairness objectives that do not take into account the
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sensitive attribute associated with candidates, differently from Representation
and Cost Difference, which are both calculated according to how many team
members belong to each of the classes derived from this attribute. Top-Sum
configuration of Multi-Objective performed especially well regarding those two
objectives, obtaining relatively close values to the lowest ones obtained in the
experiments. In general, ensuring an equal distribution of costs among protected
groups (Cost Difference) had a bigger impact on the total cost than ensuring
that both groups are equally represented in the teams (Representation).

Impact of Class Distribution. The trade-offs between objectives as well as
their absolute values can vary depending on how the classes derived from the sen-
sitive attribute are distributed within the candidate pool. Workload and Exper-
tise objectives were not impacted by the difference in the datasets, but Represen-
tation and Cost Difference, on the other hand, presented substantially different
values depending on the proportion in which users are distributed in classes. The
lowest average value calculated for the Representation objective increased from
0.143 in the 50/50 dataset, to 0.413 in the 10/90 dataset, an increase of approx-
imately 289%, and the Cost Difference objective increased even more, its lower
value went from 0.091 to 0.459, an increase of more than 500%. When focus-
ing on Top-Sum configuration of the Multi-Objective team-assembly method, a
significant decrease of approximately 82.5% (from 0.610 to 0.107) was observed
in the Cost Difference if compared to the Incremental method, and of approxi-
mately 76% if compared to the Fair Allocation method, in the case of the 50/50
dataset. In the case of the 10/90 dataset, however, the differences were slightly
different, the Cost Difference was reduced by approximately 23.4% (from 0.6
to 0.46) when compared to the Fair Allocation method, but the Representa-
tion went higher, increasing some 4.6% (from 0.413 to 0.432). If compared to
the Incremental method, the Top-Sum configuration performed better on those
objectives: the Cost Difference was reduced by 47% (from 0.875 to 0.460), and
the Representation was reduced by 40% (from 0.758 to 0.432).

Fig. 1. The impact of N in cost, workload, expertise, representation and cost difference.

Fig. 2. The impact of M in cost, workload, expertise, representation and cost difference.
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Impact of the Number of Random Teams. Multi-Objective receives N and
M as parameters. First, N was set equal to 10, 100, 1,000 and 10,000, and the
impact of these decisions on the team-assembly objectives can be seen in Fig. 1.
One could expect that the number of random teams has a direct impact on
the probability of the method forming a team that fulfils the team-assembly
criteria, simply because when there are more teams there are more options to
choose from. But this holds true to a certain limit, after which the improvement
in the results is ordinary. We decided to configure the method to form 1,000
random teams once this is a point where all curves curve get more stable, as
one can see in Fig. 1. M was then set equal to 3, 5, 10 and 20, and the impact
of these decisions on the team-assembly objectives can be seen in Fig. 2. It is
evident how the Cost, Workload and Expertise objectives increase as the teams
get bigger, except for the workload distribution when teams are formed with 5
members. In this case, the workload gets slightly better distributed among team
members than when teams are formed with 3 members. On the other hand,
Representation and Cost Difference objectives present the opposite behaviour,
they get lower as the teams get bigger, probably because it is more likely to get
even distributions when there are more members to distribute among classes.

6 Conclusions

In this paper, we argued in favour of a wider notion of fairness in the context
of team assembly by framing the task of forming teams as a multi-objective
optimization procedure. We have also proposed an algorithm for assembling
teams with multiple fairness constraints that assembled teams in a one-shot
fashion, as opposed to incremental methods proposed previously in the literature.
Our method is flexible enough that it can be applied to situations when one single
objective needs to be minimized (or maximized), as well as in situations when
all objectives need to be optimized jointly.
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