A First
Course in
(ategory
Theory

2 Springer



Universitext

Series Editors

Nathanaél Berestycki, Universitidt Wien, Vienna, Austria

Carles Casacuberta, Universitat de Barcelona, Barcelona, Spain
John Greenlees, University of Warwick, Coventry, UK

Angus MacIntyre, Queen Mary University of London, London, UK

Claude Sabbah, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau,
France

Endre Siili, University of Oxford, Oxford, UK



Universitext is a series of textbooks that presents material from a wide variety
of mathematical disciplines at master’s level and beyond. The books, often well
class-tested by their author, may have an informal, personal, or even experimental
approach to their subject matter. Some of the most successful and established books
in the series have evolved through several editions, always following the evolution
of teaching curricula, into very polished texts.

Thus as research topics trickle down into graduate-level teaching, first textbooks
written for new, cutting-edge courses may find their way into Universitext.



Ana Agore

A First Course 1n Category
Theory

@ Springer



Ana Agore

Institute of Mathematics
Romanian Academy
Bucharest, Romania

Vrije Universiteit Brussel
Brussels, Belgium

ISSN 0172-5939 ISSN 2191-6675 (electronic)
Universitext
ISBN 978-3-031-42898-2 ISBN 978-3-031-42899-9  (eBook)

https://doi.org/10.1007/978-3-031-42899-9
Mathematics Subject Classification: 18-01

This work was supported by Fonds Wetenschappelijk Onderzoek, Belgium and Romanian Ministry of
Education and Research, CNCS/CCCDI-UEFISCDI.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.


https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9
https://doi.org/10.1007/978-3-031-42899-9

To my parents



Preface

Categories were first considered in 1945 in a paper by S. Eilenberg and S. Mac Lane
[21] with the purpose of formalizing the concept of “natural transformation”, which
was informally used at that time in many papers from various fields, especially in
algebraic topology. The initial theory introduced in [21] developed rapidly, allowing
for several new mathematical disciplines to arise, as was the case, for example, with
homological algebra. Category theory is based on the idea that many mathematical
properties can be described using diagrams of arrows of different types. Working
in this very general setting allows for a better understanding of the common
constructions and patterns in mathematics and leads to a unified treatment of similar
concepts across different mathematical structures. An early and notable example can
be found in [19], where group cohomology, Lie algebra cohomology and associative
algebra cohomology are recast as derived functors in a suitable module category.

Over the years, category theory has become a universal language allowing
mathematicians to achieve important advancements by exchanging ideas and tech-
niques between seemingly unrelated domains. Using very abstract definitions
that capture the idea behind a certain concept in universal terms rather than its
isolated properties, purely categorical techniques have found their way into most
mathematical areas.

Nowadays category theory is an indispensable tool for doing research not only in
various areas of pure mathematics such as algebraic topology, homological algebra,
algebraic geometry and functional analysis, but also in theoretical computer science
(e.g., the development of algorithms, automata theory), physics (e.g., electrical
circuits), chemistry (e.g., chemical interactions), biology (e.g., biological systems)
and medicine (e.g., genetics). We refer to [52] for an approach to category theory
in the spirit of the applied sciences and to [29] for applications to the cognitive
sciences.

The purpose of this book is to provide students with no prior exposure to
categorical reasoning with an accessible source from which to learn the basic
material. The fundamentals of category theory are clearly and thoroughly covered
with the aim of leaving the reader able to confidently use categorical techniques as
well as to easily explore and understand more advanced topics.
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viii Preface

The book is based on my lecture notes from the graduate course on category
theory that I have taught at Vrije Universiteit Brussel. Additional fully worked
examples and complete proofs have been added with the purpose of making the
material suitable for self-study. Although the reader is expected to be at the advanced
undergraduate level, some background and full references are provided throughout
the book. The prerequisites include familiarity with group theory, rings, modules
and topological spaces, as well as a basic understanding of set theory. As opposed
to the standard category theory monographs by S. Mac Lane [35] and F. Borceux
[8-10], and the more recent ones [5, 34, 47, 48], which are more encyclopedic
in nature and oriented toward researchers rather than students, the present book
serves as a first introduction to the field. The excellent monographs [1, 2, 5, 8—
10, 12, 13,22, 23, 25, 30, 34, 35, 46—48] have been used when preparing these notes
and have influenced the approach and the development of certain topics.

The first chapter introduces the fundamental concepts needed in the sequel.
Important notions such as (sub)categories, functors, natural transformations, repre-
sentable functors, which form the backbone of category theory, are well illustrated
by many familiar examples. A concise description of the duality principle, a crucial
reasoning process in category theory, is also presented. The first important result we
present is Yoneda’s lemma, which allows us to embed any (locally small) category
into a category of functors on that category. This generalizes the well-known group
theory result called Cayley’s theorem, stating that any group is isomorphic to a
subgroup of a symmetric group.

The second chapter treats the general theory of limits and colimits. Both are
very general concepts which arise in various forms in all fields of mathematics.
We introduce them gradually, starting with some special cases which might be
familiar to the reader such as: (co)products, (co)equalizers, pullbacks and pushouts.
A variety of detailed examples are included to illustrate the newly introduced
concepts. (Co)products and (co)equalizers are not only important special cases of
(co)limits but also generic in the sense that all (co)limits can be constructed out of
these two special cases. Certain types of functors are considered in connection to the
existence of (co)limits. The existence of (co)limits in several important categories
such as functor categories or comma categories is investigated in detail as well.

The third chapter deals with one of the most important notions in category
theory: adjoint functors. Several descriptions of adjoint functors are presented
and the theory is illustrated by a wide range of examples from various areas of
mathematics. Many important constructions in mathematics are shown to be part
of an adjunction, including for instance the classical free constructions present in
algebra, localizations in ring theory or Stone—Cech compactifications of topological
spaces. Important related concepts such as equivalence of categories, (co)reflective
subcategories or localization of categories are also investigated and well illustrated
by a plethora of detailed examples. Deeper connections with the concepts introduced
in the previous chapters are emphasized. For instance, (co)limits and representable
functors are equivalently described by means of adjoint functors. Going beyond
what is usually covered by an introductory text in category theory, the book ends
with a more advanced topic, the adjoint functor theorem. More precisely, two



Preface ix

variations of this celebrated theorem, namely Freyd’s Adjoint Functor Theorem and
the Special Adjoint Functor Theorem, are considered. They provide different kinds
of necessary and sufficient conditions for a functor to admit a left or a right adjoint.

I would like to take this opportunity to thank my coauthors as well as my
colleagues and students from Vrije Universiteit Brussel for everything I have learned
from them. My warmest thanks to Gigel Militaru for teaching me category theory
when I was a student and for the many wise suggestions he made after reading
a first draft of this book as well as to Alexandru Chirvasitu for the countless
illuminating discussions. I am very grateful to the Springer editors, especially
to Rémi Lodh, and to the anonymous referees for their comments and advice
which greatly improved the book’s presentation. During the preparation of this
manuscript, my work was supported at different stages by FWO (Fonds voor
Wetenschappelijk Onderzoek—Flanders) and a grant of Ministry of Research,
Innovation and Digitization, CNCS/CCCDI-UEFISCDI, project number PN-III-P4-
ID-PCE-2020-0458.

Bucharest, Romania Ana Agore
Brussels, Belgium
June 2023
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N set of natural numbers
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| X| cardinality of the set X

C inclusion

fix restriction of a map f to a subset X of its domain
® tensor product

HJG H is a normal subgroup of G

Gap abelianization of the group G

G(M) universal enveloping group of the monoid M

ker f kernel of the morphism f

Imf image of the morphism f

s—lx localization of the ring (module) X by the multiplicative set S
Cx discrete category on the set X

PO(X, <) category associated to the pre-ordered set (X, <)
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Field category of fields

rM category of left R-modules

Mg category of right R-modules
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(FlG)
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Frequently Used Notations

category of topological spaces

category of Hausdorff topological spaces

category of compact Hausdorff topological spaces

category of pre-ordered sets and order preserving maps
category of partially ordered sets and order preserving maps
hom set in the category C between A and B

hom bifunctor

covariant hom functor

contravariant hom functor

category of small categories

category of functors from the small category [ to the category C
comma category of the functors F: A — C,G: B — C
set of cones on the functor F' with vertex C

set of cocones on the functor F with vertex C

cone functor

cocone functor

limit of the functor F

limit functor

colimit of the functor F

colimit functor

naturally isomorphic functors

class of all natural transformations between the functors F' and
G

Godement product of the natural transformations « and

F is left adjoint to G (or G is right adjoint to F')



Chapter 1 ®
Categories and Functors Qe

1.1 Set Theory

We start by setting very briefly the set theory model that will be assumed to hold
throughout. The main issue that arises is that most categories of interest have as
objects all sets, all groups, all topological spaces, etc. Therefore, a proper definition
of a category which includes the examples mentioned above is not possible in the
classical Zermelo—Fraenkel set theory. One way to get around this issue is by using
the von Neumann—Bernays—Godel (NBG) set theory which introduces, in addition
to sets, the notion of a class to play the role of these “big sets” consisting of all sets,
all groups, etc. More precisely, the connection between sets and classes is given by
the so-called limitation of size axiom:

A class is a set if and only if it is not bijective with the class of all sets.

To conclude, we can use the word class to designate any collection of mathematical
objects; all sets are obviously classes.

The NBG axioms are in fact a conservative extension of the ZFC axioms.
Therefore, all statements about sets which can be proved in NBG hold in ZFC as
well. An important axiom included in NBG which will be used in many places in
the sequel is the following form of the axiom of choice:

We can choose an element from each of any class of nonempty sets.

Moreover, the following consequence of the NBG axioms will be intensively used
throughout: if A is a set and B is a subclass of A then B is a set. A detailed account
of the NBG set theory axioms can be found, for instance, in [51] or in the Appendix
of [46].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
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2 1 Categories and Functors
1.2 Categories: Definition and First Examples

We start by providing the definition of a category and many examples which may
already be familiar to the reader.

Definition 1.2.1 A category C consists of the following data:

(1) aclass Ob C whose elements A, B, C, ...are called objects;

(2) for every pair of objects A, B, a (possibly empty) set Hom¢ (A, B), whose
elements are called morphisms from A to B. An element f € Hom¢(A, B) will
be denoted by f: A — B; A and B are called the domain and the codomain of
f, respectively;

(3) for every triple of objects A, B, C, a composition law

Hom¢ (A, B) x Homg (B, C) — Homg(A, C)

(.9 golf;

(4) for every object A, a morphism 14 € Homg(A, A), called the identity on A

such that the following axioms hold:

(1) associative law: given morphisms f € Homg(A, B), g € Homg(B, C),
h € Hom¢(C, D) the following equality holds:

ho(gof)=(hog)of;

(i) identity law: given a morphism f € Hom¢(A, B) the following identities hold:
lpof=f=foly.

A category C whose class of objects Ob C is a set is called a small category.
Furthermore, a category will be called finite if it contains only finitely many
morphisms.

Note that, in certain references such as [35], the hom-sets are allowed to be
classes. In that framework, categories as in Definition 1.2.1 are called locally small.

Examples 1.2.2

(1) Any set X can be made into a small category, called the discrete category on
X and denoted by Cy, as follows:

ObCx =X

Bifx #y

, f ,y€eX.
{1x} ]f_x:y Oreveryx y

Homg, (x, y) = {
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The only possible compositions of morphisms are 1, o 1, = 1, for all x €
X. Throughout, we denote by n the discrete category on a set with n € N
elements. For n = 0 we obtain the empty category with no objects and no
morphisms.

(2) More generally, any pre-ordered set' (X, <) defines a small category
PO(X, <) as follows:

ObPO(X, <) = X

Pifx £y

, for every x, y € X,
fir, ) if x < y v

Hompo(x, <)(x, ¥) = {

where uy , denotes the unique morphism from x to y. The composition of
morphisms is given by the rule uy_; o uyx y = uy, ,, while the identity on any
x € XiSuy x.

Moreover, following the same idea, we can further generalize this example
to the level of classes. For instance, consider the class of all sets pre-ordered
by inclusion; we obtain a category denoted by Set(C) which has the class of
all sets as objects and for all sets A, B we have

Homsac)(A. B) = { n )i 4 £
where u,4 p denotes the unique morphism from A to B. Composition of
morphisms is defined as in the case of pre-ordered sets.

(3) A monoid (M, -) can be seen as a small category M with a single object
denoted by * and the set of morphisms Homp(x, %) = M. The composition
of morphisms in M is given by the multiplication of M and the identity on *
is just the unit 1,,. In particular, using the same idea, any group can be made
into a category.

(4) The category Set of sets has the class of all sets as objects while Homget (A, B)
is the set of all functions from A to B. Composition is given by the usual
composition of functions and the identity on any set A is the identity map 14.
Set is not a small category.

(5) FinSet is the category whose objects are finite sets, and Hompjnget (A, B) is
just the set of all functions between the two finite sets A and B. FinSet is also
not a small category; this can be easily seen by noticing that { X} is a singleton
and therefore a finite set for every set X. However, as opposed to Set, the
category FinSet satisfies the following property: by choosing? exactly one
object from each isomorphism class of finite sets together with all functions

LA set X is called pre-ordered if is endowed with a binary relation < which is reflexive and
transitive.

2 Recall that the axiom of choice is assumed to hold.
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between them we obtain a category, called a skeleton of FinSet, which is small.
Categories such as FinSet which admit a small skeleton are called essentially
small and will be treated in more detail in Sect. 3.8. Set is not an essentially
small category as we will see in Example 3.8.15, (2).

(6) Consider RelSet to be the category defined as follows:

Ob RelSet = Ob Set
Homgejset(A, B) =P(A x B)={f | f C A x B}, for every A, B € Ob Set.

The composition of morphisms in RelSet is defined as follows: given f C
A x Band g C B x C we consider

gof={(a,c)e AxC|3be Bsuch that(a, b) € fand (b, ¢) € g}.

Finally, the identity is defined as 14 = {(a, a) | a € A}. RelSet is called the
category of relations.

(7) Grp is the category of groups, where Ob Grp is the class of all groups while
Homgrp(A, B) is the set of all group homomorphisms from A to B. Similarly,
Mon denotes the category of monoids with monoid homomorphisms between
them.

(8) SiGrp denotes the category of simple® groups with group homomorphisms
between them.

(9) Ab is the category of abelian groups with group homomorphisms between
them. Throughout, we use multiplicative notation for the group structure on
an arbitrary group and additive notation for abelian groups.

(10) Div is the category of divisible* groups with group homomorphisms between
them.

(11) Rng is the category of rings with ring homomorphisms between them.

(12) Ring (resp. Ring®) is the category of (resp. commutative) unitary rings with
unit preserving ring homomorphisms between them.

(13) Field is the category of fields® with field homomorphisms between them.

(14) For a ring with unity R, we denote by g M the category of left R-modules
with morphisms between two R-modules given by R-linear functions. The
category of right R-modules Mpg can be defined analogously. In particular,
if K is a field then g M (resp. kM%) denotes the category of vector spaces
(resp. finite-dimensional vector spaces) over K.

3 A non-trivial group is called simple if its only normal subgroups are the trivial group and the
group itself.

4 An abelian group (G, +) is called divisible if for every positive integer n and every g € G, there
exists an & € G such that nh = g.

3 Throughout, a field means a commutative division ring.
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s)

(16)

a7

(18)

19)

Furthermore, if R is commutative and S C R is a multiplicative subset of
R.° then g M3~ stands for the category of left R-modules on which § acts as
an automorphism, i.e., for all s € S and M € Ob RMET the multiplication
map ps: M — M, us(m) = sm is invertible; the morphisms between two
such objects are given by R-linear functions.

For a field K, we denote by Algy the category of unital and associative
K -algebras together with algebra homomorphisms between them. Similarly,
Alg% stands for the category of unital, associative and commutative K-
algebras.

Top is the category of topological spaces where Ob Top is the class of all
topological spaces while Homrep (A, B) is the set of continuous functions
between A and B. Top, stands for the category of pointed topological spaces,
that is, the objects are pairs (A, ap) where A is a topological space and ap € A
while the morphisms between two such pairs (A, ag) and (B, bg) are just
continuous functions f: A — B such that f(ag) = bo.

Haus is the category of Hausdorff topological spaces where Ob Haus is the
class of all Hausdorff topological spaces while Hompaus(A, B) is the set
of continuous functions between A and B. Similarly, KHaus denotes the
category of compact Hausdorff topological spaces.

PreOrd is the category whose objects are pre-ordered sets and the morphisms
between two pre-ordered sets are order preserving maps.” Similarly, Poset
is the category whose objects are partially ordered sets® and the morphisms
between two partially ordered sets are order preserving maps.

For a field K, we denote by Matg the category whose object class is the set of
natural numbers N. The morphisms in Matg between two objects m, n € N
are all n x m matrices with entries in K and the composition of morphisms is
given by matrix multiplication:

Hommaty (m, n) x Hommag, (n, p) — Hommag, (m, p)
(A, B) — BA.
The identity morphism on any n € N is given by the n x n identity matrix,
where the 0 x 0 identity matrix is by definition the zero matrix. Furthermore,

by convention, if either m or n is zero, we have a unique n x m matrix called
a null matrix. O

Remark 1.2.3 Notice that although we sometimes work with categories whose
objects are sets, morphisms in the sense of Definition 1.2.1 need not be functions.
This situation is best illustrated in Example 1.2.2, (6).

6 8 is called a multiplicative subset of the ring R if 1z € S and for all 5, 5" € S we have ss’ € S.

7 Given two pre-ordered sets (X, <x) and (Y, <y),amap f: X — Y is called order preserving
if x <x y implies f(x) <y f(y).

8 A set X is called partially ordered if is endowed with a binary relation < which is reflexive,
antisymmetric and transitive.
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Definition 1.2.4 Let C, C’ be two categories. We shall say that C’ is a subcategory
of C if the following conditions are satisfied:

(i) ObC' C Ob C, i.e., any object of C’ is an object of C;
(i) Homg (A, B) € Homg(A, B) forevery A, B € Ob(';
(iii) the composition of morphisms in C’ is induced by the composition of
morphisms in C;
(iv) the identity morphisms in C" are identity morphisms in C.

Moreover, C' is said to be a full subcategory of C if for every pair (A, B) of objects
of C' we have

Hom¢/ (A, B) = Hom¢(A, B).

Examples 1.2.5 (1) The category FinSet is a full subcategory of Set.

(2) The category Ab is a full subcategory of Grp.

(3) The category g M52 is a full subcategory of g M.

(4) The category Haus is a full subcategory of Top.

(5) Ring is a subcategory of Rng but not a full subcategory as not all morphisms in
Rng between unitary rings are unit preserving.

(6) Set is a subcategory of RelSet but not a full subcategory since not every subset
of a cartesian product defines a function. U

1.3 Special Objects and Morphisms in a Category

The notions of monomorphism and epimorphism which we will introduce next
are generalizations to arbitrary categories of the familiar injective and surjective
functions from Set.

Definition 1.3.1 Let C be a category and f € Homg(A, B).

(1) f iscalled a monomorphism if for any g1, g2 € Hom¢(C, A) suchthat fog) =
f o g wehave g1 = g2;

(2) f is called an epimorphism if for any h1, hy € Homg(B, C) such that hjo f =
hy o f we have hy = hy;

(3) f is called an isomorphism if there exists an f/ € Homg(B, A) such that f o
f' = 1pand f o f = 14. In this case we say that A and B are isomorphic
objects.

Although in Set monomorphisms (resp. epimorphisms) coincide with injective
(resp. surjective) functions, this is no longer true in an arbitrary category whose
objects and morphisms are sets and functions, respectively, as we will see in
Example 1.3.2, (4) and (5).
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Examples 1.3.2

(1) In each of the categories Set, Grp, Ab, g M monomorphisms coincide with
the injective homomorphisms, while in Top and KHaus monomorphisms
coincide with the injective continuous maps. We will only prove here that
monomorphisms in Set coincide with injective functions. Indeed, suppose
f: A — Bisaninjective mapand g, h: C — A aresuchthat foh = fog.
Then, we have f(h(c)) = f(g(c)) for any ¢ € C and since f is injective we
get h(c) = g(c) forany c € C, i.e., g = h as desired.

Assume now that f: A — B is a monomorphism and let a, a’ € A be such
that f(a) = f(a’). We denote by i, : {¥} — A, respectively iy : {¥} — A,
the maps given by i,(*) = a, iy (*) = a’. This implies that f oi, = f o iy
and since f is a monomorphism we obtain i, = i,. Therefore a = @’ and f is
indeed injective.

Note that the proof above can be carried over verbatim to the categories Top
and KHaus by simply considering on {*} the indiscrete topology.’

(2) Similarly, in each of the categories Set, Grp, Ab, g M epimorphisms coincide
with the surjective homomorphisms, while in Top and KHaus epimorphisms
coincide with the surjective continuous functions. We prove here that epi-
morphisms in Set and Grp coincide with surjective functions and surjective
homomorphisms, respectively.

Consider first an epimorphism f: A — B in Set. Define g, h: B — {0, 1}
as follows:

1, if be f(A)

=1, for all B.
0, if b f(A) h(b) , forall b e

gb) = {

Then, for any b € B, we have (ho f)(b) =1 = (g o f)(b) and since f is an
epimorphism we obtain g = h. This shows that the image of f is the entire B,
as desired.

Next we look at epimorphisms in Grp. Let f: G — H be an epimorphism
in Grp and denote by K = Im (f) the image of f. Assume that K # H. If
K is a normal subgroup of H we can form the quotient group H /K. Consider
now two group homomorphisms 7, u: H — H/K, where 7 is the canonical
projection and u is the trivial homomorphism defined by 7w (h) = hK,u(h) = K
for all » € H. Obviously u o f = m o f and since f is an epimorphism we
obtain u = . Therefore, K = H which contradicts our assumption. Hence, K
cannot be a normal subgroup of H. In particular, note that the index of K in H
is at least 3, otherwise K would be a normal subgroup of H ([49, Proposition
2.62]). This allows us to choose three distinct right cosets K, Kx and Ky, for
some x, y € H.Let S(H) be the set of permutations on H and define o € S(H)

° The topology consisting only of the set itself and the empty set is called the indiscrete topology.
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as follows:

kx, if h =ky
o(h) = { ky, if h=kx , ke K.
h, if h¢ KxUKy

Consider now the group homomorphisms ¥, £ : H — S(H) defined as follows
forallt, h € H:

Y () (h) =th, E@)(h)=0""oy(t)oo(h).
First, we show that ¢ o f = £ o f. Indeed, forany g € G and h € H, we have
¥ (f(2)(h) = f(g)h and respectively £(f(g))(h) = o' o ¥ (f(g)) o o (h).

Keeping in mind that f(g) € K for all g € G, if h = ky for some k € K,
we have

Ef @)y =0"" oy (f(@)(kx) =0""(f(@kx) = f(@ky=1(f () (ky).

Similarly, if # = kx for some k € K, we obtain

E(f(@)kx) =0 oy (f(@)ky) =0 (f(2)ky) = f(g)kx =¥ (f(g))(kx).

Finally, 7 ¢ Kx U Ky yields

Ef@)) =07 oy (f(@)(h) =0 (f(@h) = f(@h =y (f(@)h).

To conclude, we have proved that ¥ o f = & o f and since f is an epimorphism
in Grp we obtain = £. However, this is not true as we have

vy ) =y,
tE Hhwy=cloy(y ooy = toy ™) =07 n) = 14.

Clearly y~!x # 1y as Kx and Ky are distinct cosets. Therefore ¥ # £ and
we have reached a contradiction. We can now conclude that K = H and f is
surjective.

Conversely, assume now that f: A — B is a surjective map in Set and let
f1,t2: B — C be two maps such that #; o f = tp o f. As f is surjective, for
any b € B there exists some a € A such that f(a) = b and we obtain

nb) =n(f(@)=n(f@)=n®),

i.e., f1 = t, which shows that f is an epimorphism in Set. Note that the
argument above can be used verbatim for the categories Grp, Ab, g M in order
to show that surjective morphisms are epimorphisms.
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In each of the categories Set, Grp, Ab, g M, isomorphisms coincide with the
bijective homomorphisms. In Top, isomorphisms are exactly the homeomor-
phisms, i.e., continuous bijections whose inverses are also continuous.

In the category Div of divisible groups, the quotient map g: Q — Q/Z is
obviously not injective but it is a monomorphism. Indeed, let G be another
divisible group and f, g: G — Q be two morphisms of groups such that go f =
q o g. Denoting f — g by h we obtain g o h = 0. Now for any x € G we have
q(h(x)) = 0 and thus h(x) € Z. Suppose there exists some xg € G such
that 4 (xg) # 0. We can assume without loss of generality that 2 (xg) € N\{0}.
Since we are working with divisible groups, we can find some yp € G such that
xo0 = 2h(x0)yo. Applying & to the above equality we obtain

h(x0) = 2h(x0)h(yo),

which is an obvious contradiction since h(x) € Z for all x € G and h(xg) # O.
Hence we get & = 0, which implies that f = g. This proves that ¢ is indeed a
monomorphism in Div.

In the category Ring® of unitary commutative rings, the inclusion i: Z — Q
is obviously not surjective but it is an epimorphism. Indeed, let R be another
commutative ring together with two ring morphisms f, g: Q@ — R such that
f oi = goi.Consider now z € Z\{0}; then we have 1 = f(1) = f(2) f(1/2)
and therefore f(1/z) = 1/f(z). Similarly we can prove that g(1/z) = 1/g(2)
and since f and g coincide on Z we get f(1/z) = g(1/z). Now for any 7’ € Z
we have

f@ /)= fE)f/2) = gzhHg(l/z) = g(Z'/2).

Therefore f = g, which implies that i is an epimorphism in Ring®.

In a similar manner one can show that if R is a commutative ring with unity

and (ST'R, j) is its localization with respect to the multiplicative set S C R
then j: R — S™!R defined by j(r) = 7. forall ¥ € R, is also an epimorphism
in Ring®. We refer to [3, Chapter 11] for more details on localization of rings.
It can be easily seen that the inclusion i: Z — @Q is a monomorphism in
the category Ring® of unitary commutative rings and also an epimorphism by
Example 1.3.2, (5). Therefore, it provides an example of a morphism which is
both a monomorphism and an epimorphism but not an isomorphism.
Let (7, ) be a topological space such that t is different from the discrete
topology.!? Consider now the set T endowed with the discrete topology
P(T). Then the identity Id7: (T, P(T)) — (T, t) is obviously bijective and
a continuous map between the two topological spaces. Therefore, Idr is a
morphism in Top but not an isomorphism as the inverse map Idr: (T, 1) —
(T, P(T)) is obviously not continuous.

10 The topology consisting of all subsets of T is called the discrete topology on T.
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(8) A rather special situation occurs in KHaus, the subcategory of Top con-
sisting of all compact Hausdorff topological spaces. As opposed to the cat-
egory of topological spaces, in KHaus any bijective continuous map f €
HomgHaus(K, H) is automatically an isomorphism. Indeed, it will suffice to
show that the inverse map f -l. H — K is continuous too. To this end, we
need to show that images of closed sets of K under f are closed in H ([39,
Theorem 18.1]). Consider U to be a closed subset of K; as K is compact it
follows that U is compact as well ([39, Theorem 26.2]). Moreover, as the image
of a compact space under a continuous map is compact ([39, Theorem 26.5]) we
obtain f(U) compact. Now recall that compact subspaces of Hausdorff spaces
are closed ([39, Theorem 26.3]). Therefore f(U) is closed, as desired.

(9) In the category PO(X, <) associated to a partially ordered set (X, <), any
isomorphism is an identity morphism. Indeed suppose f: x — 1y is an
isomorphism; this implies that x < y. If g: y — x is the inverse of f then
we also have y < x. Due to the antisymmetry of < we obtain x = y. Therefore
f: x — x must be the identity on x. (]

It can be easily seen that an isomorphism is in particular a monomorphism and
an epimorphism. However, the converse is not necessarily true: a morphism that is
both a monomorphism and an epimorphism need not be an isomorphism, as we have
seen, for instance, in Example 1.3.2, (6). This motivates the following definition:

Definition 1.3.3 A morphism that is both a monomorphism and an epimorphism
is called a bimorphism. A category with the property that every bimorphism is an
isomorphism is called balanced.

Examples 1.3.4

(1) The inclusion i: Z — @ is a bimorphism in the category Ring® of unitary
commutative rings. Consequently, Ring® is not a balanced category.

(2) The identity map Idr: (T, P(T)) — (T, t) defined in Example 1.3.2, (7) is
obviously a bimorphism in Top but not an isomorphism. Therefore, Top is not
a balanced category.

(3) The categories Set, Grp, Ab, g M are balanced. O

Definition 1.3.5 A category in which every morphism is a