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Abstract Asthma is a chronic condition of the airways that is typified by bronchial 
hyperresponsiveness, variable airflow obstruction, and airway inflammation. Most 
patients can achieve disease control using inhaled corticosteroids, with some need-
ing adjunct long-acting bronchodilator therapy. However, an important minority of 
patients have persistent symptoms and exacerbations despite these treatments. The 
landmark AMAZES study showed that the macrolide azithromycin significantly 
reduced the exacerbation rate in this population, using a randomized parallel group 
design. The efficacy of macrolides in chronic asthma was recently confirmed in a 
Cochrane systematic review, which analyzed 25 randomized controlled trials with a 
total of 1973 patients. Mechanistic studies have shown that this therapeutic effect is 
mediated by reduced mucosal inflammation, improved airway mucus clearance, and 
favorable modulation of host-pathogen interactions. 
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1 Introduction 

Asthma is one of the most common respiratory diseases in all age groups, affecting 
1–18% of the general population in different countries. The incidence of asthma has 
been increasing over the past several decades [1]. Asthma is characterized by airway

K. Undela 
Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research 
(NIPER) Guwahati, Kamrup, Assam, India 

A. Adatia · G. Ferrara (✉) 
Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, 
College of Health Sciences, University of Alberta, Edmonton, AB, Canada 
e-mail: ferrara@ualberta.ca 

B. H. Rowe 
Department of Emergency Medicine, Faculty of Medicine & Dentistry and School of Public 
Health, both in the College of Health Sciences, University of Alberta, Edmonton, AB, Canada 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
B. K. Rubin, M. Shinkai (eds.), Macrolides as Immunomodulatory Agents, Progress 
in Inflammation Research 92, https://doi.org/10.1007/978-3-031-42859-3_7

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42859-3_7&domain=pdf
mailto:ferrara@ualberta.ca
https://doi.org/10.1007/978-3-031-42859-3_7#DOI


inflammation, leading to variable symptoms, often in the form of exacerbations, 
comprising wheezing, shortness of breath, chest tightness, and cough. A hallmark of 
asthma is variable and reversible expiratory airflow limitation, which is also diag-
nostic for this condition, although patients with untreated asthma may develop fixed 
airflow limitation over time [2].
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Airway inflammation in asthma can be subclassified based on the presence or 
absence of type 2 (T2) immune signature. Asthma with elevated T2 immune 
response (T2-high asthma) is characterized by excessive expression of the cytokines 
including interleukin (IL)-4, IL-5, and IL-13, and the alarmins thymic stromal 
lymphopoietin (TSLP), IL-25, and IL-33. Patients with T2-high asthma typically 
have elevated fractional exhaled nitric oxide measurements, blood and sputum 
eosinophils, and/or serum immunoglobulin E (IgE). Patients with T2-low asthma 
are generally identified as those in whom such markers of a T2 immune signature are 
absent [3]. 

The main approach to treat asthma and prevent exacerbations is to treat airway 
inflammation with inhaled corticosteroids (ICS) beginning in the earliest phases of 
the condition, although the frequency and dosing of this treatment depend on disease 
severity and symptom burden. Additionally, inhaled short-acting beta 2 agonists 
(SABA), long-acting beta 2 agonists (LABA) and long-acting muscarinic antago-
nists (LAMA) can be added to treat persistent or severe airflow limitation and 
symptoms [1]. 

The current Global Initiative for Asthma (GINA) guidelines provide guidance on 
how to diagnose asthma and how to treat patients experiencing different levels of 
severity by sequentially introducing and increasing the dosage and combination of 
asthma controller medications [1]. While ICS agents, often combined with LABAs 
and LAMAs, and novel treatments (e.g., leukotriene receptor antagonists [LTRA], 
biologic agents) have improved the lives of people living with the disease, symptom 
control has been elusive for some patients. Despite the progress achieved over the 
last 30 years, asthma morbidity and mortality remain a problem for national 
healthcare systems [4, 5]. Moreover, several questions and challenges still exist in 
the management of patients with asthma, especially in low- and middle-income 
countries. 

First, asthma can present with a variety of clinical phenotypes and variable 
severity, and, often, inhaled drugs are unavailable or fail to achieve asthma control. 
In such cases, oral corticosteroids and, in patients with T2-high asthma, biologics 
targeting T2 inflammation such as IgE, IL-5/5R, IL-4alpha (which inhibits IL-4 and 
IL-13 signaling), or TSLP may be required [1, 2]. These severe cases account for a 
significant proportion of asthma-related morbidity and costs [6, 7], and often bio-
logics are unavailable or prohibitively expensive [8]. Second, even inhalers are not 
always easy to use, especially for children and elderly patients, contributing to the 
main problem of nonadherence to treatment and suboptimal asthma control [9]. 

Therefore, there is still a need for new treatment modalities, and macrolide 
antibiotics have been investigated for several decades, thanks to their interesting 
properties [10]. Macrolides were initially investigated as potential corticosteroid-
sparing agents [11]. Later, the possibility that asthma inflammation and asthma



exacerbations could be sustained by intracellular pathogens such as Chlamydia 
pneumoniae triggered interest in testing macrolides in patients with asthma 
[12, 13]. Finally, a well-designed, well-powered, and well-executed randomized 
controlled trial (RCT) demonstrated the benefit of treating with azithromycin to 
reduce asthma exacerbations in patients with moderate-severe asthma [14]. In this 
chapter, we reviewed the mechanisms behind the effect of macrolides in asthma, and 
the evidence for their use in acute and chronic forms of asthma. 
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2 Mechanisms of Action of Macrolides in Asthma 

The mechanisms of macrolide therapy in asthma are incompletely understood. 
Myriad bioactive properties of macrolides have been described and are thought to 
contribute to their therapeutic effects including the modulation of mucosal inflam-
mation, airway mucus, host-pathogen interactions, and gastrointestinal motility. 
Please refer to Fig. 1 for summary. 

2.1 Anti-inflammatory and Immunomodulatory Effects 

Macrolides have been shown in multiple small studies to attenuate eosinophilic and 
neutrophilic airway inflammation in T2-high and T2-low asthma, respectively

Fig. 1 Mechanisms of macrolides in asthma. Macrolides (a) reduce mucus hypersecretion and plug 
formation by inhibiting IL13-induced goblet cell hyperplasia and mucin glycoprotein MUC5AC 
production, (b) modulate airway inflammation by downregulating inflammatory cytokines (e.g., 
IL-1β, IL-6) and augmenting neutrophil efferocytosis, (c) reduce airway microbial diversity by 
inhibiting Haemophilus spp. and, in colonized patients, blocking biofilm growth of Pseudomonas 
aeruginosa by interrupting quorum sensing, and (d) may reduce asthma symptoms due to gastro-
esophageal reflux by increasing gastrointestinal motility (not shown). IL interleukin



[15]. For example, a small RCT of clarithromycin in T2-low asthma demonstrated a 
reduction in the neutrophil chemoattractant IL-8 (chemokine (C-X-C motif) ligand 
8, CXCL8) and total neutrophils found in sputum. Conversely, in the landmark 
AMAZES trial [14], a large randomized parallel-group study, azithromycin signif-
icantly reduced exacerbation rates with no apparent reduction in sputum eosinophil 
or neutrophil abundance. Thus, the clinical effects of azithromycin do not appear to 
be mediated by the amelioration of luminal granulocyte infiltration, although the 
sputum analysis methods used may not have fully captured the airway inflammatory 
endotype [16].
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Azithromycin has been shown to downregulate inflammatory cytokines in the 
airway including IL-1β, IL-6, and extracellular DNA [17]. The decrease in sputum 
extracellular DNA is of particular interest given the emerging role of neutrophil 
extracellular traps (which are comprised of DNA, histones, and granular proteins) in 
asthma with sputum neutrophilia [18]. Azithromycin also augments the phagocytic 
function of alveolar macrophages. It promotes efferocytosis of neutrophils [19] and 
bronchial epithelial cells [20], and it enhances the phagocytosis of bacteria 
[21]. Creola bodies, which are clusters of apoptotic epithelial cells, are readily 
identified in sputa of patients with asthma, and their efficient clearance is important 
for the control of airway inflammation [22]. 

2.2 Effects on Airway Secretions 

Macrolides appear to have significant beneficial effects on airway secretions. Mucus 
hypersecretion and altered mucus composition are well-established pathologic fea-
tures of asthma [23], and recent studies have clearly demonstrated that luminal 
mucus plugging is a major contributor to chronic airflow obstruction in patients 
with asthma [24, 25]. Macrolides are partial antagonists of neutrophil elastase [26], a 
neutrophil granule protease that induces mucin glycoprotein MUC5AC production 
by goblet cells [27], and inhibiting IL13-induced goblet cell hyperplasia [28], thus 
attenuating mucus hypersecretion [29]. The increased mucus viscoelasticity that 
results from crosslinking cysteine residues on MUC5AC is also a key mechanism 
of mucus plug formation in asthma [24], so it is plausible that azithromycin 
additionally reduces luminal mucus plugging. 

2.3 Antimicrobial Effects 

Macrolides are bacteriostatic antibiotics that block protein synthesis by inhibiting the 
50S ribosomal subunit. Azithromycin and clarithromycin are active against gram-
positive, gram-negative, and atypical respiratory pathogens including Streptococcus 
pneumoniae, Haemophilus spp., Mycoplasma pneumoniae, and Chlamydophila 
pneumoniae [30]. Chronic azithromycin does not reduce the total bacterial load in



patients with asthma, but it does decrease respiratory microbial diversity, particularly 
by greatly reducing the abundance of Haemophilus spp. [31]. This reduction in 
Haemophilus spp. is likely clinically important given that a) the baseline abundance 
of Haemophilus influenzae in sputum appears to predict the efficacy of azithromycin 
[32] and b) the reduction of Haemophilus influenzae is associated with a reduction in 
pro-inflammatory cytokines, especially in patients with noneosinophilic asthma 
[17]. Such antimicrobial effects of macrolides are likely to play a larger role in 
patients predisposed to recurrent infective exacerbations such as those with comor-
bid primary ciliary dyskinesia and immunodeficiencies [33–35]. 
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Azithromycin also inhibits biofilm growth of Pseudomonas aeruginosa by 
interrupting quorum sensing, the process by which bacteria modulate gene expres-
sion in response to population density [36], and by impairing twitching motility, 
which facilitates the formation of cell aggregates [37]. These mechanisms are 
thought to partly underlie the benefit of azithromycin in cystic fibrosis and noncystic 
fibrosis bronchiectasis [38]. Comorbid bronchiectasis and attendant Pseudomonas 
colonization is common in severe asthma [39, 40], and recent studies demonstrated 
that severe asthma cohorts have a significantly increased pathogenic cystic fibrosis 
transmembrane conductance regulator (CFTR) allele frequency [41, 42], suggesting 
a possible disease-modifying effect. Hence, the inhibition of biofilm development 
may be an important mechanism in such patients. 

2.4 Effects on Gastrointestinal Motility 

Azithromycin and erythromycin ligate the motilin receptor, resulting in increased 
gastrointestinal motility. Though generally viewed as an adverse off target effect 
(that causes diarrhea in an important minority of patients), some authors have argued 
that the increased gastrointestinal motility treats unrecognized gastroesophageal 
reflux disease (GERD) that triggers asthma symptoms and hence improves asthma 
control [43]. The role of GERD in triggering asthma symptoms is controversial, and 
a recent Cochrane review failed to demonstrate that the treatment of GERD signif-
icantly improves asthma outcomes [44]. It is plausible, nonetheless, that in a subset 
of patients, such as those with obesity, this mechanism plays a role. 

3 Evidence of Macrolide Treatment Effectiveness 

3.1 Acute Asthma 

In general, acute asthma exacerbations are the result of exposures to airway irritants 
(i.e., air pollution, indoor fumes, viruses, environmental allergens, etc.) and/or loss 
of control due to management nonadherence. Consequently, the focus of treatment 
in acute asthma is an aggressive approach to reversing the inflammatory cause of the



exacerbation. For example, acute severe exacerbations are treated with SABA and 
short-acting anticholinergic (SAAC) agents, [45] systemic [46] and inhaled cortico-
steroids [47], and intravenous magnesium sulfate [46]. Since most patients respond 
to treatment and can avoid admission to hospital, current guidelines recommend the 
use of systemic [46] and inhaled corticosteroids [47] for all discharged patients and 
strategies to avoid triggers. 
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Since bacterial infections are thought to play a negligible role in most acute 
exacerbations, current guidance recommends against the universal use of antibiotics 
and restricts their use to cases where there are signs, symptoms, or investigations that 
confirm a bacterial infection. Despite these recommendations, these therapeutic 
agents remain prescribed in the management of patients with acute asthma. The 
anti-inflammatory mechanism of action of macrolides has the potential to contribute 
to the management of acute asthma and hence the interest in exploring the evidence. 

The evidence base for this approach arises from a Cochrane systematic review 
that was last updated in 2018 involving 6 studies and 681 adults and children with 
exacerbations of asthma [48]. Importantly, most studies explicitly excluded patients 
with signs/symptoms of a bacterial infection. Four of the six studies involved 
macrolides and comparisons were made to standard of care or placebo. Overall, 
there was significant among-study heterogeneity, poor outcome reporting, and the 
evidence was imprecise. The authors concluded that there was insufficient evidence 
to support the use of antibiotics in adults and children with exacerbations of asthma. 

An important issue to consider when prescribing antibiotics are the adverse 
effects such as gastrointestinal side effects, antibiotic-induced diarrhea, rash, and 
other allergies. The RCTs included in the systematic review reported adverse effects 
over the short-term and found no difference between those receiving antibiotics and 
those who did not. These results are imprecise and of low quality. 

Given this evidence, in patients experiencing an exacerbation of asthma, we 
support an approach of seeking confirmation of bacterial infection and treating 
those patients with antibiotics. In the absence of clear bacterial infection, we 
recommend maximizing the anti-inflammatory management of all patients 
experiencing an exacerbation of asthma using systemic [46] and inhaled corticoste-
roids [47]. Finally, antibiotics might be a reasonable alternative in cases where 
patients have not fully recovered from their asthma symptoms following aggressive 
anti-inflammatory treatment. 

3.2 Chronic Asthma 

The use of macrolides for the management of chronic asthma has been a vigorously 
debated topic for the past three decades. Preliminary studies on macrolides in people 
with asthma have suggested a steroid-sparing effect [11, 49], while later reports have 
demonstrated an anti-inflammatory effect of this class of antibiotics, whereby 
macrolides also seem to decrease bronchial hyperresponsiveness associated with 
eosinophilic inflammation [50–53]. Recent studies have identified the effects of



macrolides on various clinical outcomes of asthma, such as exacerbations requiring 
hospitalization, emergency department (ED) visits, use of systemic corticosteroids 
[54, 55], symptoms, asthma control, quality of life [56, 57], change in rescue 
medication [58, 59], and/or lung function tests such as forced expiratory volume 
in 1 second (FEV1) and peak expiratory flow (PEF) [54, 55, 57, 59]. 
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Most RCTs have evaluated the efficacy of azithromycin [14, 52, 54, 57, 58, 60– 
63], followed by clarithromycin [50, 51, 53, 59, 62, 64, 65], roxithromycin [66–69], 
and oleandomycin [11, 49]. A well-designed RCT (AMAZES study) with a large 
sample size of well-selected participants identified that azithromycin 500 mg three 
times weekly for 48 weeks reduced asthma exacerbations and improved the quality 
of life of adults with symptomatic asthma despite the current use of moderate-to-high 
doses ICS and LABA therapy [14]. In another RCT, children aged 1–3 years with 
recurrent asthma-like symptoms responded positively to a 3-day course of an 
azithromycin oral solution (10 mg/kg per day). The mean duration of episodes of 
asthma-like symptoms after treatment with azithromycin was 3.4 days compared 
with 7.7 days for children receiving placebo. Evidence suggests that the effect 
increases with early initiation of therapy [70]. An RCT conducted to evaluate the 
effect of 16 weeks of clarithromycin in addition to fluticasone in adults with mild-to-
moderate persistent asthma suboptimally controlled with low-dose ICS agents alone 
demonstrated no beneficial effect on asthma control or lung function when 
clarithromycin was added to fluticasone. A significant reduction in airway 
hyperresponsiveness, however, was observed with clarithromycin treatment in this 
study [59]. 

The most recent Cochrane systematic review on macrolides for chronic asthma 
included 25 RCTs and involved 1973 patients. The primary findings were that 
macrolides likely reduce exacerbations requiring hospitalizations, ED visits, and/or 
treatment with systemic corticosteroids compared with placebo, and may reduce 
asthma symptoms, resulting in slightly improved asthma control [10]. Another 
systematic review of three RCTs identified that children treated with macrolides 
had a significantly lower time to symptom resolution and a decrease in the severity of 
symptoms than controls. No difference was detected, however, in hospitalization and 
time to the next exacerbation between groups [71]. 

Overall, the current evidence suggests that macrolides provide a potential benefit 
to patients with moderate-severe asthma. International guidelines and consensus 
statements suggest adding azithromycin if a patient has persistent, uncontrolled 
asthma despite high-dose ICS and LABA therapy, as an alternative to biologics 
[1, 72, 73]. Hence, macrolide therapy may be especially useful in resource limited 
settings where biologics are not widely available. Macrolide therapy is also one of 
the only evidence-based treatments available for patients with T2-low asthma who 
do not adequately respond to high-dose ICS, LABA, and LAMA treatment and is 
thus widely used in this patient population [74].
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4 Conclusions 

Macrolides have been investigated in different asthma populations and in different 
clinical settings. There is no convincing evidence for the use of macrolides to treat 
acute asthma exacerbations in the absence of concurrent bacterial infection. Con-
versely, a large, well-designed RCT in chronic asthma clearly demonstrated that 
azithromycin reduces asthma exacerbation rates in patients who are inadequately 
controlled despite ICS and LABA therapy [14]. This finding was confirmed by a 
Cochrane systematic review [10] and a meta-analysis of individual patient data [75]. 

International guidelines and position statements recommend considering chronic 
azithromycin therapy in uncontrolled patients already treated with high-dose ICS 
and LABA therapies as an alternative to biologics [1, 72, 73]. Hence, it may be 
particularly useful in resource-constrained healthcare settings where the cost of 
biologics is prohibitive. Macrolides are generally considered to be safe, although 
this aspect has not been widely studied in resource-limited settings where older 
classes of drugs (e.g., digoxin) are still widely used. 

Chronic use of antibiotics may increase the development of antibiotic-resistant 
bacterial strains that cause respiratory and systemic infections. Whether the use of 
macrolides for the treatment of asthma aggravate this problem, particularly in areas 
where antibiotic resistance is already a serious issue, is a question that needs to be 
addressed with properly designed studies and surveillance strategies. A clear risk/ 
benefit assessment and strict patient selection criteria for the use of macrolides in 
chronic asthma are paramount to secure individual benefit and to avoid potential 
detrimental consequences for the patient and the community. 
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