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Abstract. With the increasing dependency of our society on automated
systems, their correctness is of uttermost importance. Formal methods
for software development, such as the B-Method, belong to rigorous
approaches that may ensure the correctness. They offer mathematical
apparatuses to prove that the software under development meets the
corresponding requirements. But the need to comprehend such appara-
tus makes formal methods unpopular with students. They may not see
the reasons why to use them. And many formal method courses do not
include executable software development or the software developed is
not used in an appropriate environment. Both problems are addressed
by the TD/TS2JC toolset, described in this chapter. The toolset pro-
vides an appropriate virtual railway environment, where verified soft-
ware controllers can run. The controllers can be developed with any for-
mal method that offers translation to the Java programming language.
The chapter also describes two of several control interfaces the toolset
supports. It also introduces a compact, four to six hour long, course
on verified software development with the B-Method, which utilizes the
toolset.
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1 Introduction

One of the well-recognized approaches to the development of correct software
systems is the utilization of formal methods (FMs) for their specification and
verification. FMs are rigorous mathematically based techniques for the specifica-
tion, analysis, development and verification of software and hardware. Rigorous
means that a formal method provides a formal language with unambiguously
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defined syntax and semantics and mathematically based means that some math-
ematical apparatus (formal logic, set theory, etc.) is used to define the language.

The B-Method [1,2,11,15] is a state based, model-oriented formal method,
intended for verified software development. It is one of the few software-related
FMs that is used commonly in industrial practice, primarily in the railway sector.
In this area, it is utilized for the safety-critical software behind automated urban
metro subway systems [5]. The strength of the B-Method lies in a well-defined
development process, which allows to specify a software system as a collection
of components, called abstract machines, and to refine such an abstract spec-
ification to a concrete, implementable one. The concrete specification can be
automatically translated to ADA, C, Java or another programming language.
An internal consistency of the abstract specification and correctness of each
refinement step are verified by proving a set of predicates, called proof obliga-
tions (PObs). The whole development process, including proving, is supported
by Atelier B [18], an industrial-strength software tool.

A significant challenge in teaching formal methods for software development,
including the B-Method, is to design a corresponding course in such a way that
students will be able to develop a working piece of software using the method.
The problem is rooted in the limitations of formal method languages. These
languages usually cover basic constructs only, such as assignments, compositions,
operations and operation calls, conditional statements and loops. The interaction
with the user is no supported at all or limited to the console level. The situation
gets even more complicated if one wishes to use appropriate examples, clearly
showing the benefits of FMs, as advocated in [12–14].

To deal with this challenge, we developed the TD/TS2JC software toolset,
which provides a virtual environment for programs, developed by students using
formal methods. The toolset consists of a modified version of the Train Direc-
tor [17] simulation game and an application, called TS2JavaConn, which allows
using separately developed software controllers with the game. The controllers
are Java programs that control switches and signals in railway scenarios, simu-
lated by the game. The interface of the control programs can be configured, so
the toolset is suitable for various formal methods. There is only one requirement
the formal method has to fulfill: the existence of a compiler from its language
to Java. And because the controllers are in Java, the toolset can be also used in
situations that don’t involve formal methods at all.

While the previous works [9,10] presented the toolset and its utilization in
B-Method courses in general, here we discuss both of these topics in more depth.
Section 2 describes the components of the TD/TS2JC toolset, their communica-
tion and usage. Section 3 presents and explains two different controller configura-
tions and corresponding Java controllers. Section 4 presents a compact B-Method
course, which utilizes the toolset. The total duration of the course is estimated
to four to six hours, so it is ideal for special events, such as summer schools. The
chapter concludes with an evaluation of a particular run of the course in Sect. 5.
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2 TD/TS2JC Toolset

It is no surprise that rail traffic control systems, primarily those related to sig-
naling [5], are one of the most successful domains of formal methods utilization.
This can be attributed to two factors. First, the movement of trains is limited by
tracks, which makes an automated control of their operation much easier than,
for example, that of the road vehicles. Second, the railway is used to transport
large number of passengers and goods at once, so individual accidents may have
more severe consequences than those of other types of vehicles. Therefore, meth-
ods providing means to ensure the correctness of these control systems should
be used. This special position of the rail traffic control systems was the primary
reason why we decided to use virtual environments inspired by such systems
in our FMs course. The decision was reinforced by the fact that the topic of
our course is the B-Method and the B-Method played a key role in the verified
development of the railway control software [5].

In order to provide virtual rail traffic control environments, we developed
the TD/TS2JC toolset, consisting of two software applications. The first one is
a modified version of an already existing simulation game, called Train Director
(TD) [17]. The second one is TS2JavaConn, a newly developed Java application.
The virtual environments are railway scenarios, simulated in TD. Signals and
switches in these scenarios are managed by controllers (control modules) devel-
oped by students in the B-Method and translated to Java. TS2JavaConn serves
as a proxy between TD and the control module. It listens to events occurring in
the simulated scenario and executes methods of the control module accordingly.
Subsequently, it informs TD about changes that should be applied to the sce-
nario. Each control module is accompanied by a configuration file that defines
how the events are translated to the method calls.

From the beginning of the toolset development, our goal was to provide a
solution that is not limited to the B-Method. This is why we do not deal with
formal methods at all in this section. The same is true for Sect. 3, where the
control modules are presented on the Java language level only. The utilization
in a formal methods course is shown in Sect. 4. The toolset, together with a set
of examples, is available at [6].

2.1 Train Director

Train Director (TD) is a computer game, which simulates the work of the rail
centralized traffic control (CTC). A railway scenario in TD consists of a track
layout (track plan) and a train schedule. The player’s task is to manipulate
the signals and switches in the scenario in such a way that the trains arrive
and depart according to the schedule. In TD/TS2JC, which uses the version
3.7 of TD, the task is carried out by the control module. This required several
modifications of the simulator.

The first modification was a removal of those control mechanisms that should
be implemented in control modules. The removed mechanisms, for example, pre-
vented trains from colliding or entering the same section at once. As the removal
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enabled train crashes, the next modification was an addition of train collision
detection. The most significant change was an update of the communication
subsystem of TD. The subsystem included in the version 3.7 of TD allowed to
control the simulation remotely by means of messages that emulate user interac-
tion. For example, when a user clicked somewhere in the simulator, a message in
the form click x y, where x and y are coordinates of the location where he or
she clicked, has been sent. Events such as a train entering the layout or waiting
for a green signal were not handled at all. The updated version communicates
with TS2JC. It sends information about the status of signals and switches and
about events triggered by train operation to TS2JC. From TS2JC, it receives
new states of signals and switches, computed by the control module. The com-
munication is described in more detail in Sect. 2.3. The last modification was an
implementation of a scanning process that creates a list of track sections of the
layout. By track sections we mean track segments between signals, switches and
entry points. The entry points are places where a train may enter or leave the
layout.

Fig. 1. Modified Train Director during simulation. Features specific to TD/TS2JC are
marked with (red) dashed rectangles and labeled by letters C, D and L. (Color figure
online)

New features have been also implemented to the GUI of the simulator (Fig. 1).
These include the indication of the connection with TS2JC (C in Fig. 1) and
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presence of the control module (D) and the possibility to show labels (L) with
the names of switches and signals in the layout. The scenario shown in Fig. 1 is
probably the simplest one that is usable for teaching purposes. It is also utilized
in the short course, presented in Sect. 4. The layout of the scenario contains one
straight track (the thick black dashed line in Fig. 1) with two entry points (e0,
e1) and two signals (sig0, sig1). As with the real railway, the signals guard
the entrance to the track ahead of them. Here, sig0 is meant for the trains
coming from the west (from e0) and sig1 for the trains coming from the east
(from e1). In TD, the trains always obey the corresponding signals. The trains
are represented by orange train engine icons. In Fig. 1, a train named Reg001 is
passing the signal sig0, which is green. The scanning process mentioned above
detects two sections in the layout. The first one is between e0 and the signals
and the second one is between the signals and e1. If there are more signals at
the same place, the one guarding the section is used to name it. So, the sections
in Fig. 1 are (e0, sig1) and (sig0, e1).

Listing 1. Train schedule route2sec.sch.

1 #! t r d i r
2 # no dead lock − d e l a y s between t r a i n s l ong enough
3 S t a r t : 4 :10
4 Tra in : Reg001
5 Ente r : 04 : 10 , e0
6 04 : 1 2 : 3 0 , −, e1
7 .
8 Tra in : IC002
9 Ente r : 0 4 : 1 2 : 4 0 , e1

10 04 : 1 5 : 3 0 , −, e0
11 .

The trains operate according to a schedule, given in a form of a text file with
the extension sch. The scenario in Fig. 1 uses the schedule shown in Listing 1.
Line 1 is mandatory. Other lines starting with the “#” character are regarded
as comments, such as line 2 with notes about the schedule. Line 3 defines the
simulated time at the beginning of each simulation. The rest of the file contains
train schedules. The first train (lines 4–7) is named Reg001 and it enters the
layout from e0 at 4:10. It should leave the layout through e1 at 4:12:30. The
second train is IC002. It travels in the opposite direction, entering the layout at
4:12:40. Its schedule is defined on lines 8–11. The end of each schedule is marked
by a dot (lines 7 and 11).

2.2 TS2JavaConn

The second part of the toolset is a Java application called TS2JavaConn. Its
name is a shortcut for Train Simulator to Java Connector. TS2JavaConn serves
as a middleman between the modified Train Director and control modules.

Control modules are loaded directly to TS2JavaConn, which uses the Java
Reflection API to call its methods and process their return values. On the other
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hand, TS2JavaConn maintains a TCP connection with the updated communica-
tion subsystem of TD. The connection is used to receive messages about events
occurring in TD during the simulation and to send commands that change the
state of track devices in TD. Each message received from TD is translated to
a call of a method from the control module. And each command sent to TD is
constructed according to the state of the control module. TS2JavaConn allows
various styles of control modules and each module has a configuration file that
defines how messages from TD are translated to method calls and how to read
the state of the control module. Concrete examples of control modules and con-
figuration files are given in Sect. 3 and interaction between the module and TD
is explained in detail in Sect. 2.3.

Fig. 2. Primary screen of TS2JavaConn (top) and description of its control panel
buttons (bottom).

The primary screen of TS2JavaConn is shown in Fig. 2, which captures the
application in the same moment as TD in Fig. 1. The screen is divided into three
parts. The first one contains the main menu and toolbar for handling control
modules, connection with the simulator and controlling the simulation remotely.
It also includes connection status indicators with the same functionality as the
ones added to TD (C and D in Fig. 1). The second part lists signals, switches,
stations and track sections of the scenario. It also shows the state of these ele-
ments in TD (the “S” column) and in the control module (the “M” column). For
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the track sections, only the state from the control module is shown and it works
only if the control module contains corresponding methods (getters). As we can
see, the entry points are also treated as stations. The third part is a logger that
shows detailed information about the communication between the simulator and
the control module. In the case of an incorrect control module or configuration
file, it also shows corresponding error messages. All the information shown in this
part is saved to a log file, which can be opened from the toolbar. TS2JavaConn
can be used with modified versions of two different simulators – Train Direc-
tor and Open Rails [8]. When TS2JavaConn is opened, it searches for running
instances of these simulators and let the user choose the one to connect to. The
same thing happens after hitting the “Re-connect” button from the toolbar.

Fig. 3. Control module generator screen of TS2JavaConn.

TS2JavaConn also offers a secondary screen with a control module genera-
tor (Fig. 3). The screen is activated by the “Show generator tab” button. The
generator can create configuration files and template code for control modules
in Java and languages of two formal methods – the B-Method and the Perfect
Developer. The template code contains headers of all necessary methods (oper-
ations) and may also include variables representing the scenario elements. For
Java and the B-Method, two types of control modules are available: parametric
and non-parametric. Examples of both are given in Sect. 3.

2.3 Communication with Control Modules

As we will see later, in Sect. 3, each control module contains a central class with
two types of methods:

– getters, which return values of module variables that correspond to states of
track elements in the simulated scenario and

– modifiers, which are called when an event occurs in the simulated scenario.
They may change the values of the module variables.
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Fig. 4. UML sequence diagram illustrating event handling in TD/TS2JC. The numbers
in brackets are numbers of steps in the description of the event handling process.

By track elements we mean entry points, signals, switches, stations and track
sections. However, it is not necessary to define getters for all of them. In total,
there are five types of events:

– A train requests to enter the scenario via an entry point.
– A train stops before a red signal and requests the signal to be cleared.
– A train departs from a station.
– A train leaves a track section.
– A train enters a track section.

TD/TS2JC handles every event in the following way (Fig. 4):

1. After an event occurs, TD composes a message about the event and sends it
to TS2JavaConn. The message contains the type of the event and data about
involved scenario elements and train.

2. TS2JavaConn reads the event message, received from TD, and identifies the
corresponding modifier method of the control module.

3. TS2JavaConn calls the modifier method. Some parts of the method name or
the values of its parameters may be composed from the data received from
TD.

4. After the call of the modifier method is completed, TS2JavaConn calls all the
getters of the control module and composes a remote control message from
the values the getters return.

5. TS2JavaConn sends the remote control message to TD.
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6. TD reads the message from TS2JavaConn and changes the states of the sce-
nario elements accordingly.

The process of the event handling can be also observed in Fig. 1 and 2, which
capture the simulation right after the event “Train Reg001 requests sig0 to be
cleared” was handled. In the logger part of TS2JavaConn (Fig. 2), we can see
that a modifier method1 named reqGreen sig0 was called after the event. And
finally, sig0 has been changed to green in TD (Fig. 1).

Communication similar to the event handling also happens when a control
module is opened: First, the control module is initiated by creating an instance
of its central class. The constructor of the class sets the module variables to their
initial values. TS2JavaConn reads these values by calling the getters. As in the
case of the events, TS2JavaConn then composes a message from the values and
sends the message to TD. Finally, TD sets the scenario elements accordingly and
starts the simulation.

3 Control Modules and Configuration Files

When developing the TD/TS2JC toolset, one of the most important objectives
was to be able to use outputs of verified software development tools as control
modules without any or with minimal modifications. To reach this objective,
it was necessary to support various forms of the control module interface, that
is of the getters and the modifiers. The form of the interface is defined in a
configuration file, accompanying each control module. In this section we present
two distinct control modules for the scenario from Fig. 1. Both provide the same
functionality but differ significantly in the interface.

The first one is introduced in Sect. 3.1 and is an example of so-called non-
parametric module. This means that none of its getters and modifiers has input
parameters and event data from TD are part of the names of the methods. The
second one, in Sect. 3.2, is a fully parametric module, where all the event data
translate to values of parameters of corresponding methods. It is also possible
to create hybrid modules, where some of the data become parts of the method
names and other are parameters.

The description of each control module and configuration file is given in
the following way. First, the complete source code is presented as a listing. The
source codes contain comments marking corresponding parts in terms introduced
in Sect. 2.3. The comments start with “//” in the control modules and with “- -”
in the configuration files. Each listing is followed by a description giving more
details about the code, referencing the corresponding code lines.

3.1 Non-parametric Module

From a conventional programmer point of view, it may look irrational to sup-
port non-parametric modules. This is because such modules require a separate
1 The control module used in this case is the one from Listing 2 and the method is on

lines 49–51.
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method for each combination of the event and used data values received from
TD. However, the support solves two problems related to the utilization of the
toolset in teaching verified software development with formal methods.

First, languages of some formal methods (FMs) may not allow to use input
parameters in specification units2 that translate to the methods of the module.
They may only allow units defining simple state transitions, without an external
influence, which is usually represented by the input parameters.

Second, even if given formal method (FM) supports input parameters, the
ability to use fully functional programs (control modules) without them may
come very handy in the teaching process. For example, in an introductory part
of a longer course. Or in a short course that teaches only the basics of the cor-
responding FM, where aspects of the method related to the utilization of input
parameters are not tackled at all. The latter is also the case of the course intro-
duced in Sect. 4, where a non-parametric one, similar to the module route2sec,
presented here, is used. The complete source code of route2sec in Java can be
found in Listing 2.

Listing 2. Non-parametric control module for the scenario from Fig. 1.

1 pub l i c c l a s s r o u t e 2 s e c {
2

3 // Se t s d e f i n i n g s t a t e s o f t r a c k e l ement s
4 // ( e n t r y p o i n t s & s i g n a l s , sw i t che s , s e c t i o n s )
5 pub l i c enum ST SIG {
6 g reen (0 ) , r ed (1 ) ;
7 pub l i c f i n a l i n t i n d e x ;
8 ST SIG ( i n t i n d e x ) { t h i s . i n d e x = index ; }
9 }

10 pub l i c enum ST SWCH {
11 sw i t ched (0 ) , none (1 ) ;
12 pub l i c f i n a l i n t i n d e x ;
13 ST SWCH( i n t i n d e x ) { t h i s . i n d e x = index ; }
14 }
15 pub l i c enum ST SEC {
16 f r e e (0 ) , occup (1 ) ;
17 pub l i c f i n a l i n t i n d e x ;
18 ST SEC( i n t i n d e x ) { t h i s . i n d e x = index ; }
19 }
20

21 // V a r i a b l e s f o r e n t r y po i n t s , s i g n a l s and s e c t i o n s
22 p r i v a t e r o u t e 2 s e c . ST SIG e0 , e1 , s i g0 , s i g 1 ;
23 p r i v a t e r o u t e 2 s e c . ST SEC e0 s i g 1 , s i g 0 e 1 ;
24

25 // Con s t r u c t o r s e t t i n g the i n i t i a l s t a t e o f the e l ement s

2 We use the term “specification unit” as the corresponding parts (units) of formal
specifications are named differently in different FMs. For example, they are called
operations in the B-Method, events in the Event-B and schemas in the Perfect Devel-
oper.
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26 pub l i c r o u t e 2 s e c ( ) {
27 e0 = ST SIG . r ed ; e1 = ST SIG . r ed ;
28 s i g 0 = ST SIG . r ed ; s i g 1 = ST SIG . r ed ;
29 e 0 s i g 1 = ST SEC . f r e e ; s i g 0 e 1 = ST SEC . f r e e ;
30 }
31

32 // Ge t t e r s f o r e n t r y p o i n t s and s i g n a l s
33 pub l i c r o u t e 2 s e c . ST SIG ge tEn t r y e 0 ( ) { re tu rn e0 ; }
34 pub l i c r o u t e 2 s e c . ST SIG ge tEn t r y e 1 ( ) { re tu rn e1 ; }
35 pub l i c r o u t e 2 s e c . ST SIG g e t S i g s i g 0 ( ) { re tu rn s i g 0 ; }
36 pub l i c r o u t e 2 s e c . ST SIG g e t S i g s i g 1 ( ) { re tu rn s i g 1 ; }
37

38 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to e n t e r from e0
39 pub l i c vo id r eqGreen e0 ( ) {
40 i f ( s i g 1 == ST SIG . r ed && e0 s i g 1 == ST SEC . f r e e )
41 e0 = ST SIG . g reen ; }
42

43 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to e n t e r from e1
44 pub l i c vo id r eqGreen e1 ( ) {
45 i f ( s i g 0 == ST SIG . r ed && s i g 0 e 1 == ST SEC . f r e e )
46 e1 = ST SIG . g reen ; }
47

48 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to c l e a r s i g 0
49 pub l i c vo id r e qG r e e n s i g 0 ( ) {
50 i f ( e1 == ST SIG . r ed && s i g 0 e 1 == ST SEC . f r e e )
51 s i g 0 = ST SIG . g reen ; }
52

53 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to c l e a r s i g 1
54 pub l i c vo id r e qG r e e n s i g 1 ( ) {
55 i f ( e0 == ST SIG . r ed && e0 s i g 1 == ST SEC . f r e e )
56 s i g 1 = ST SIG . g reen ; }
57

58 // Mod i f i e r s c a l l e d when a t r a i n e n t e r s the c o r r e s p ond i n g
59 // s e c t i o n from the c o r r e s p ond i n g d i r e c t i o n
60 pub l i c vo id e n t e rN I e 0 s i g 1 ( ) {
61 e 0 s i g 1 = ST SEC . occup ;
62 e0 = ST SIG . r ed ; s i g 1 = ST SIG . r ed ; }
63

64 pub l i c vo id e n t e r I N s i g 0 e 1 ( ) {
65 s i g 0 e 1 = ST SEC . occup ;
66 s i g 0 = ST SIG . r ed ; e1 = ST SIG . r ed ; }
67

68 pub l i c vo id e n t e rN I e 1 s i g 0 ( ) {
69 s i g 0 e 1 = ST SEC . occup ;
70 s i g 0 = ST SIG . r ed ; e1 = ST SIG . r ed ; }
71

72 pub l i c vo id e n t e r I N s i g 1 e 0 ( ) {
73 e 0 s i g 1 = ST SEC . occup ;
74 e0 = ST SIG . r ed ; s i g 1 = ST SIG . r ed ; }
75
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76 // Mod i f i e r s c a l l e d when a t r a i n l e a v e s the c o r r e s p ond i n g
77 // s e c t i o n from the c o r r e s p ond i n g d i r e c t i o n
78 pub l i c vo id l e a v eN I e 0 s i g 1 ( ) { e 0 s i g 1 = ST SEC . f r e e ; }
79 pub l i c vo id l e a v e I N s i g 1 e 0 ( ) { e 0 s i g 1 = ST SEC . f r e e ; }
80

81 pub l i c vo id l e a v e I N s i g 0 e 1 ( ) { s i g 0 e 1 = ST SEC . f r e e ; }
82 pub l i c vo id l e a v eN I e 1 s i g 0 ( ) { s i g 0 e 1 = ST SEC . f r e e ; }
83

84 }

The whole module route2sec is defined in its central class, with the same
name. It uses values from enumerated sets for the states of signals (the set
ST SIG), switches (ST SWCH) and track sections (ST SEC). The sets3 are defined
on lines 5–19 of the module. The set ST SWCH (lines 10–14) can be excluded as
the layout does not contain switches.

The instance variables, defined on lines 22–23, provide an internal represen-
tation of the state of the scenario. Here we have a separate variable for each
entry point, signal and section and the variables have the same names as the
corresponding elements in the scenario. However, such one-to-one correspon-
dence between the elements and the variables is not mandatory. A programmer
is free to choose whatever representation desired as the variables of the mod-
ule are never accessed directly when communicating with TD. The variables are
initialized in the constructor on lines 26–30.

Lines 33–36 contain the getters, returning the states of entry points and
signals. These getters are mandatory4. The module may also include getters for
the track sections, but their only purpose is to display states of the sections in
TS2JavaConn.

Lines 39–56 define modifiers called when a train wants to enter the scenario
from the corresponding entry point or clear the corresponding signal. All four
of them work in the same way: “Check whether the section to be entered is free
and closed from the other side. If yes, set the signals and entry points involved
accordingly.”

The next four modifiers (lines 60–74) respond to the “train entering a section”
events. There are four of them, while the scenario contains only two sections.
This is because there is a separate method for each direction. The direction to
which the method belongs is defined by the order of the track element names in
its header. For example, enterNI e0 sig1 is called when a train enters the section
(sig0, e1) from e0 and enterIN sig1 e0 when it enters the same section from
sig1. The letter “N” in method names means “entry point” and “I” means
“signal”. These shortcuts have been introduced to ensure unambiguity when
different types of track elements have the same names. Each of these methods
marks the corresponding section as occupied and sets the signals guarding it to
red. Similar modifiers for the “train leaving a section” events are defined on lines
78–82.

3 Technically, the enumerated sets are classes, too.
4 If a scenario contains switches, their getters are mandatory, too.
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For TS2JavaConn to understand the control module from Listing 2, the con-
figuration file shown in Listing 3 is needed.

Listing 3. Configuration file of the non-parametric module from Listing 2.

1 mainClassName=rou t e 2 s e c . c l a s s
2

3 −− Ent ry po i n t r e p r e s e n t a t i o n and g e t t e r s
4 e n t r y S t a t e=ST SIG
5 ent ryOpenSta te=green
6 e n t r yC l o s e S t a t e=red
7 getEntryNames=ge tEn t r y %name%
8 getEntryOut=%ST SIG%
9

10 −− S i g n a l r e p r e s e n t a t i o n and g e t t e r s
11 s i g S t a t e=ST SIG
12 s i g n a l G r e e nS t a t e=green
13 s i g n a lR e dS t a t e=red
14 getS igna lNames=g e t S i g %name%
15 ge tS i gna lOu t=%ST SIG%
16

17 −− Switch r e p r e s e n t a t i o n and g e t t e r s
18 swchState=ST SWCH
19 sw i tchOpenState=sw i t ched
20 sw i t c hC l o s e S t a t e=none
21 getSwitchNames=getSwch %name%
22 getSwitchOut=%ST SWCH%
23

24 −− Se c t i o n r e p r e s e n t a t i o n
25 s e c t i o n S t a t e=ST SEC
26 s e c t i o n F r e e S t a t e=f r e e
27 s e c t i onOccupS ta t e=occup
28

29 −− Mod i f i e r s f o r t r a i n r e q u e s t s to e n t e r the s c e n a r i o ,
30 −− c l e a r a s i g n a l and depa r t a s t a t i o n
31 r e qu e s tDepa r t u r eEn t r y=reqGreen %name%
32 r eque s tG r e en=reqGre en %name%
33 r e q u e s tD ep a r t u r e S t a t i o n=%i gno r e%
34

35 −− Mod i f i e r s f o r s e c t i o n e n t e r i n g and l e a v i n g e v en t s
36 s e c t i o nE n t e r=

en t e r%sho r t c u tAc t%%sho r t cu tNx t% %nameAct% %nameNxt%
37 s e c t i o nL e a v e=

l e a v e%sho r t c u tP r e%%sho r t c u tAc t% %namePre% %nameAct%
38

39 −− Track e lement s h o r t c u t s
40 s i g n a l S h o r t c u t=I
41 sw i t c hSho r t c u t=W
42 e n t r y Sho r t c u t=N
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The first line of the file in Listing 3 specifies the filename of the compiled
version of the control module central class. Lines 4–27 define how the track
elements, namely entry points, signals, switches and sections, are represented
and how the corresponding getters look.

For entry points, the representation and getters definition is given on lines
4–8. In this case, the states of the entry points are values from an enumerated
set named ST SIG (line 4). It is also possible to use the integer (value %int%)
or the boolean (value %boolean%) type for the state values. Line 5 defines the
value for an opened entry point and line 6 for a closed entry point.

The interface of the entry point getters is given on lines 7–8. The name of the
getter is specified on line 7 as a combination of a fixed part and the placeholder
%name%, which means the corresponding entry point name in the scenario. Two
additional placeholders can be used when naming the getters:

– %number% – the numerical part of the element name and
– %shortcut% – a shortcut of the corresponding track element type. The short-

cuts are defined on lines 40–42.

It is possible to combine the placeholders. For example, if line 7 in Listing 3 has
been defined as

7 getEntryNames=get%sh o r t c u t%%number%

then the getters for the entry points will be

33 pub l i c r o u t e 2 s e c . ST SIG getN0 ( ) { re tu rn e0 ; }
34 pub l i c r o u t e 2 s e c . ST SIG getN1 ( ) { re tu rn e1 ; }

The return type of the entry point getters is specified on line 8. If it is an
enumerated set, as in this case, its name is enclosed in the percent signs (%
ST SIG%) and only the set already defined for the corresponding state values
(line 4) can be used.

In the same way, the representation and getters are defined for signals (lines
11–15) and switches (lines 18–22). As this scenario does not contain switches,
lines 18–22 can be omitted. We included them primarily to explain the switch
state values, which may not be clear from the names of the corresponding prop-
erties. Line 19 defines the value used for a switch set to the diverging track
(value switched) and line 20 the value for the straight track. The part for sec-
tions (lines 25–27) lacks the properties getSectionNames and getSectionOut as
there are no section getters in the control module. These properties are used in
the configuration file in Listing 5.

The names of the modifiers are given on lines 30–37. The names of the meth-
ods called when a train requests to enter the scenario (line 31) or to clear a signal
(line 32) are defined in the same way as for the getters. Line 33 sets the names of
modifiers called when a train leaves a station. Our module does not contain any
stations. Therefore, we decided to use the %ignore% placeholder to indicate that
the module does not handle such events. A rather complicated interface of the
modifiers for the section entering (line 36) and section leaving (line 37) events
requires six placeholders:
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– %shortcutAct% and %nameAct% – the shortcut and name of the scenario
element from which the train enters or leaves the track section,

– %shortcutNxt% and %nameNxt% – the shortcut and name of the element from
which the train will leave the section it is now entering and

– %shortcutPre% and %namePre% – the shortcut and name of the element from
which the train entered the section it is now leaving.

The configuration file ends with the definition of the shortcuts for signals,
switches and entry points on lines 40–42. Line 41 is for switches, so it can be
omitted.

3.2 Parametric Module

Albeit it is not so obvious in this case, parametric modules offer more com-
pact interface as there is no need for a separate method for each combination of
involved scenario elements. The parametric module route2secP (Listing 4) con-
trols the scenario in the same way as the nonparametric route2sec from Listing
2, but there are several differences in the interface and representation of the
scenario elements and their states:

– scenario elements are defined as members of the enumerated sets SIGNALS
and SECTIONS,

– states of the scenario elements are expressed as integers,
– instance variables are arrays of the scenario elements state values and
– scenario elements related to the getters and modifiers are given as their

parameters.

Listing 4. Parametric control module for the scenario from Fig. 1.

1 pub l i c c l a s s r ou t e2 secP {
2

3 // Se t s d e f i n i n g t r a c k e l ement s
4 // ( e n t r y p o i n t s & s i g n a l s , s e c t i o n s )
5 pub l i c enum SIGNALS {
6 e0 (0 ) , e1 (1 ) , s i g 0 (2 ) , s i g 1 (3 ) ;
7 pub l i c f i n a l i n t i n d e x ;
8 SIGNALS( i n t i n d e x ) {
9 t h i s . i n d e x = index ; }

10 }
11 pub l i c enum SECTIONS {
12 e 0 s i g 1 (0 ) , s i g 0 e 1 (1 ) ;
13 pub l i c f i n a l i n t i n d e x ;
14 SECTIONS( i n t i n d e x ) {
15 t h i s . i n d e x = index ; }
16 }
17

18 // Array v a r i a b l e s f o r e n t r y p o i n t s & s i g n a l s and s e c t i o n s
19 p r i v a t e i n t [ ] s i g n a l s = {0 , 0 , 0 , 0} ; // en t r y p . & s i g n a l s
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20 p r i v a t e i n t [ ] s e c t i o n s = {0 ,0} ;
21

22 // c o n s t r u c t o r ( empty )
23 pub l i c r ou t e2 secP ( ) { }
24

25 // Ge t t e r s f o r e n t r y p o i n t s & s i g n a l s and s e c t i o n s
26 pub l i c i n t g e tS i g ( rou t e2 secP . SIGNALS s i g ) {
27 re tu rn s i g n a l s [ s i g . i nd ex ] ; }
28 pub l i c i n t getSec ( rou t e2 secP . SECTIONS sec ) {
29 re tu rn s e c t i o n s [ s e c . i nd ex ] ; }
30

31 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to e n t e r from e0/e1
32 pub l i c vo id r e qEn t e r ( r ou t e2 s ecP . SIGNALS s i g ) {
33 switch ( s i g ) {
34 case e0 :
35 i f ( ( s i g n a l s [ SIGNALS . e0 . i nd e x ] == 0 &&
36 s i g n a l s [ SIGNALS . s i g 1 . i nd ex ] == 0 &&
37 s e c t i o n s [ SECTIONS . e 0 s i g 1 . i nd ex ] == 0) ) {
38 s i g n a l s [ SIGNALS . e0 . i nd ex ] = 1 ;
39 } break ;
40 case e1 :
41 i f ( ( s i g n a l s [ SIGNALS . e1 . i nd e x ] == 0 &&
42 s i g n a l s [ SIGNALS . s i g 0 . i nd ex ] == 0 &&
43 s e c t i o n s [ SECTIONS . s i g 0 e 1 . i nd ex ] == 0) ) {
44 s i g n a l s [ SIGNALS . e1 . i nd ex ] = 1 ;
45 } break ;
46 }
47 }
48

49 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to c l e a r s i g 0 / s i g 1
50 pub l i c vo id r eqGreen ( rou t e2 secP . SIGNALS s i g ) {
51 switch ( s i g ) {
52 case s i g 0 :
53 i f ( ( s i g n a l s [ SIGNALS . s i g 0 . i nd e x ] == 0 &&
54 s i g n a l s [ SIGNALS . e1 . i nd ex ] == 0 &&
55 s e c t i o n s [ SECTIONS . s i g 0 e 1 . i nd ex ] == 0) ) {
56 s i g n a l s [ SIGNALS . s i g 0 . i nd ex ] = 1 ;
57 } break ;
58 case s i g 1 :
59 i f ( ( s i g n a l s [ SIGNALS . s i g 1 . i nd e x ] == 0 &&
60 s i g n a l s [ SIGNALS . e0 . i nd ex ] == 0 &&
61 s e c t i o n s [ SECTIONS . e 0 s i g 1 . i nd ex ] == 0) ) {
62 s i g n a l s [ SIGNALS . s i g 1 . i nd ex ] = 1 ;
63 } break ;
64 }
65 }
66

67 // Mod i f i e r c a l l e d when a t r a i n e n t e r s a s e c t i o n
68 pub l i c vo id e n t e r ( r ou t e2 secP . SECTIONS sec ) {
69 switch ( s e c ) {
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70 case e 0 s i g 1 :
71 s e c t i o n s [ SECTIONS . e 0 s i g 1 . i nd ex ] = 1 ;
72 s i g n a l s [ SIGNALS . e0 . i nd ex ] = 0 ;
73 s i g n a l s [ SIGNALS . s i g 1 . i nd ex ] = 0 ;
74 break ;
75 case s i g 0 e 1 :
76 s e c t i o n s [ SECTIONS . s i g 0 e 1 . i nd ex ] = 1 ;
77 s i g n a l s [ SIGNALS . e1 . i nd ex ] = 0 ;
78 s i g n a l s [ SIGNALS . s i g 0 . i nd ex ] = 0 ;
79 break ;
80 }
81 }
82

83 // Mod i f i e r c a l l e d when a t r a i n l e a v e s a s e c t i o n
84 pub l i c vo id l e a v e ( rou t e2 secP . SECTIONS sec ) {
85 s e c t i o n s [ s e c . i nd ex ] = 0 ; }
86 }

As in the case of route2sec, the parametric module is defined in one class
(Listing 4). And again, the code of the class starts with enumerated sets dec-
larations (lines 5–16 in Listing 4). However, the sets SIGNALS and SECTIONS
hold scenario elements and not their states. These sets are needed because the
elements are parameters of the methods of the module. On the other hand, the
element states are integers (0 and 1) here, so no enumerated sets for them are
necessary.

Regarding the enumerated sets, there is one more difference between this
module and the non-parametric one. In Java, each member of an enumerated set
is represented by its name and index. The non-parametric route2sec uses only the
values while route2secP relies heavily on the indices. This is because the instance
variables (lines 19–20) are arrays that hold values of the scenario elements states
on the positions given by the corresponding indices in the enumerated sets (for
signals in SIGNALS and for sections in SECTIONS). The variables are initialized
when declared, so the constructor (line 23) is empty.

The getters are defined on lines 26–29 and the modifiers occupy the rest
of the module. The getter getSig returns states of the entry points and signals
and getSec of the track sections. A getter may have only one input parameter,
the element which state it returns. The modifier reqEnter is called when a train
wishes to enter the scenario via e0 or e1 and reqGreen when it requests to clear
sig0 or sig1. All section entering events are handled by the method enter and all
section leaving ones by leave. A parametric module may be defined in a different,
probably simpler, way. The form presented here has been chosen because it is
nearly identical to a parametric module when developed in the B-Method using
the template code generated by TS2JavaConn.

The configuration file of the module route2secP can be found in Listing 5
and follows the same structure as the one in Listing 3. Regarding the differences,
this file contains additional properties for method parameters and track element
representation and the unnecessary properties related to switches are excluded.
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A minor difference is also the utilization of the integer type (placeholder %int%)
and the values 0 and 1 for the track element states.

Listing 5. Configuration file of the parametric module from Listing 4.

1 mainClassName=route2 secP
2

3 −− Ent ry po i n t r e p r e s e n t a t i o n and g e t t e r s
4 e n t r y S t a t e=%i n t%
5 ent ryOpenSta te=1
6 e n t r yC l o s e S t a t e=0
7 e n t r y I n d e x=SIGNALS
8 entry IndexName=%name%
9 getEntryNames=ge tS i g

10 getEntryParams=%SIGNALS%
11 getEntryOut=%i n t%
12

13 −− S i g n a l r e p r e s e n t a t i o n and g e t t e r s
14 s i g S t a t e=%i n t%
15 s i g n a l G r e e nS t a t e=1
16 s i g n a lR e dS t a t e=0
17 s i g I n d e x=SIGNALS
18 s ig IndexName=%name%
19 getS igna lNames=ge tS i g
20 ge tS igna lPa rams=%SIGNALS%
21 ge tS i gna lOu t=%i n t%
22

23 −− Se c t i o n r e p r e s e n t a t i o n and g e t t e r s
24 s e c t i o n S t a t e=%i n t%
25 s e c t i o n F r e e S t a t e=0
26 s e c t i onOccupS ta t e=1
27 s e c t i o n I n d e x=SECTIONS
28 sec t ion IndexName=%west% %ea s t%
29 getSect ionNames=getSec
30 getSec t i onParams=%SECTIONS%
31 ge tSec t i onOut=%i n t%
32

33 −− Mod i f i e r s f o r t r a i n r e q u e s t s to e n t e r the s c e n a r i o ,
34 −− c l e a r a s i g n a l and depa r t a s t a t i o n
35 r e qu e s tDepa r t u r eEn t r y=reqEn t e r
36 r eque s tDepa r tu r eEnt r yPa rams=%SIGNALS%
37 r e que s tG r e en=reqGreen
38 r eques tGreenParams=%SIGNALS%
39 r e q u e s tD ep a r t u r e S t a t i o n=%i gno r e%
40

41 −− Mod i f i e r s f o r s e c t i o n e n t e r i n g and l e a v i n g e v en t s
42 s e c t i o nE n t e r=en t e r
43 s e c t i onEn te rPa rams=%SECTIONS%
44 s e c t i o nL e a v e=l e a v e
45 s ec t i onLeaveParams=%SECTIONS%
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The properties defining the parameters of the getters and modifiers can be
found on lines 10, 20, 30, 36, 38, 43 and 45 in Listing 5. In general, their values are
comma-separated lists of placeholders, defining the types of the parameters of the
corresponding methods. In this module, all methods have only one parameter,
so there is always just one value for each property.

As track elements are now members of enumerated sets, additional properties
are required to define them. For the entry points, these can be found on lines
7–8 in Listing 5. Line 7 specifies the name of the enumerated set and line 8
how the names of its members are constructed from the entry points in the
scenario. The property on line 8 can use the placeholders %name%, %number%
and %shortcut%, in the same way as already discussed in Sect. 3.1. The same
properties for signals are on lines 17–18 and for sections on lines 27–28. The
section names (line 28) are formed from

– the name of the track element on their west (left) end (placeholder %west%),
– the underscore and
– the name of the track element on their east (right) end (%east%).

How the section names look in the module route2secP can be seen on line 12 in
Listing 4.

4 Teaching Verified Software Development in B-Method
with TD/TS2JC Toolset

In this section, we describe a course on Software Development with the B-
Method, which utilizes the toolset. The course is intended for events such as
summer schools and its typical duration is four to six hours. The description
provided here covers both the body of knowledge to be given to the course par-
ticipants and the process of the course, including examples and tasks.

Fig. 5. Track layouts of scenarios used in the course: a straight track with two (a) and
three (b) sections.
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The language and development process of the B-Method is explained on a
control module for a straight track with two sections (Fig. 5 a). The module is
equivalent to the one in Listing 2. Within the course, the participants develop a
similar control module for a straight track with three sections (Fig. 5 b). Both
modules are non-parametric and, except of the class name on line 1, they use
the same configuration file as the one in Listing 3.

The course starts with the lecturer informing the participants that the B-
Method [1,2,11,15] was originally developed by J.R. Abrial and combines his pre-
vious invention, the Z-notation [16], with a minimalistic programming language,
based on the language of Guarded commands [4] by E.W. Dijkstra. According to
the taxonomy presented in [3], the B-Method belongs to so-called heavyweight
formal methods as it involves theorem proving to verify software correctness.

4.1 Software Development Process of B-Method

The highlight of the method is the development process that fully incorporates
formal verification. First, a formal specification of a system, consisting of com-
ponents called abstract machines, is written. An abstract machine, or simply a
machine, consists of a set of variables that defines its state and a set of oper-
ations that define state transitions. The specification of each machine (which
has variables) contains a formula that defines its invariant properties. The B-
Method allows to formally prove that these properties hold in every state of
the machine. Machines are then developed to implementable components, called
implementations.

Fig. 6. Development of a specification component in B-Method: in general (a), in the
course (b), legend (c).

This development process, which is also called stepwise refinement, consists
of one or more steps. Multiple-steps process (Fig. 6 a) involves intermediate
components, called refinements. One-step process (Fig. 6 b) goes directly from a
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machine to an implementation and it is the one chosen for this course. Refine-
ments and implementations are components similar to machines. They contain
invariant properties, too. These properties also define a relation between their
variables and the variables of components they refine. And, again, it is possi-
ble to formally prove that they hold in each state of the component. In this
way, it is possible to verify that the properties once defined at the abstract level
(machines) still hold in the executable implementation. This is the reason why
we can say that the B-Method offers a verified software development process. At
each step, the specification may consist of multiple components and the number
of components may vary. The number of refinement steps can also be different for
each component. In this short course, we develop a control module that consists
of one component, refined in one step from a machine to an implementation.
Of course, the TD/TS2JC toolset allows for modules developed from multiple
components, as it is shown in [9].

4.2 B-Language

The course continues with an explanation of the B-language, a specification
language in which the components are written. The B-language can be divided
to two parts:

– A mathematical notation to write expressions and predicates on data in terms
of the Zermelo-Fraenkel set theory.

– The Generalized Substitution Language (GSL), a minimalistic programming
language with the formal semantics defined by the weakest pre-condition cal-
culus [4].

Table 1. Selected operators of the mathematical notation of B-language.

Operator Meaning

& and (logical conjunction)

not not (logical negation)

=> then (logical implication)

<=> logical equivalence

= equals

{ start of a set

} end of a set

: belongs to (a member to a set)

The mathematical notation is quite complex, fortunately we need just a small
portion of it here. This portion is given in Table 1.

The commands of GSL are called generalized substitutions (GS ) and those
relevant to the course are listed in Table 2. The symbols introduced in Table 2
have the following meaning:
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Table 2. Selected commands of GSL and their informal meaning.

Command Meaning

skip Do nothing

x := e Assignment of values of expressions e to variables x

S1 ; S2 Sequential composition: do S1, then S2

S1 || S2 Parallel composition: do S1 and S2 at once

PRE E THEN S1 END If E holds, do S1. Otherwise, do anything

SELECT E THEN S1 END If E holds, do S1. Otherwise, do not execute

CHOICE S1 OR S2 END Bounded choice: do S1 or S2

IF E THEN S1 ELSE S2 END If E holds, do S1. Otherwise, do S2

– x is a comma-separated list of variables,
– e is a comma-separated list of expressions over variables, with the same length

as x,
– S1 and S2 are GS (GSL commands) and
– P and E are predicates.

In the case that the ELSE branch is omitted in the IF command, S2 is con-
sidered equal to skip. There are two significant omissions in Table 2. The first
one is so-called unbounded non-determinism, which is like the bounded choice,
but allows to introduce local variables. The second one is a do-while loop, which
includes a loop invariant. Both of them, together with other, derived, GSL com-
mands, and the mathematical notation are described in [1,11,15].

The formal semantics of GS is defined in the weakest pre-condition calculus
of E.W. Dijkstra [4]. The weakest pre-condition of a GS S1 with respect to a
post-condition P is the predicate (1),

[S1]P (1)

which is satisfied in exactly all states from which an execution of S1 is guaranteed
to terminate in a state satisfying P.

The weakest pre-conditions of the commands from Table 2 can be found in
Table 3. The operators are from the mathematical notation and are listed in
Table 1. The notation (2)

P[x := e] (2)

is the predicate P with all free occurrences of variables from x replaced by the
corresponding expressions from e.

There are two interesting things one may notice in Table 3. First, the IF
command is just a combination of the commands CHOICE and SELECT and it
can be written in the form (3).

CHOICESELECT E THEN S1 END OR
SELECT not(E) THEN S2 END END

(3)
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Table 3. Formal semantics of GSL commands from Table 2.

Command Weakest pre-condition

[skip]P P

[x := e]P P[x := e]

[S1 ; S2]P [S1]([S2]P)

[PRE E THEN S1 END]P E & [S1]P

[SELECT E THEN S1 END]P E =>[S1]P

[CHOICE S1 OR S2 END]P [S1]P & [S2]P

[IF E THEN S1 ELSE S2 END]P (E =>[S1]P) & (not(E) =>[S2]P)

Second, the semantics of the parallel composition is not defined here. This is
because the simplest case (4) of the parallel composition can be written in the
form (5).

x1 := e1 || x2 := e2 (4)
x1,x2 := e1,e2 (5)

The B-Method also offers rules to transform more complicated cases of multi-
ple GS to the case (4). These rules are not needed in the course, but an interested
reader can find them in [1,11].

Within the course, the comprehension of this theory can be fortified by Exer-
cise 1.

Exercise 1. Generalized Substitution Syntax and Semantics.
Task
Compute the weakest pre-condition (6).

[IF sig1=red & e0 sig1=free
THEN e0:=green ‖ e0 sig1:=occup END] (e0=green)

(6)

Solution
First, we use the semantics of IF from Table 3 and the form (5) of (4) to rewrite
(6) to (7).

( (sig1=red & e0 sig1=free) => [e0,e0 sig1:=green,occup](e0=green) )
& ( not(sig1=red & e0 sig1=free) => [skip](e0=green) ) (7)

Applying the semantics of skip and := from Table 3 to (7), we get (8).

( (sig1=red & e0 sig1=free) => (green=green) )
& ( not(sig1=red & e0 sig1=free) => (e0=green) ) (8)

The form (8) is equivalent to (9).

( (sig1=red & e0 sig1=free) => true )
& ( not(sig1=red & e0 sig1=free) => (e0=green) ) (9)
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According to the definition of the logical conjunction and implication, (9) can
be further reduced to (10), and, finally, to (11), which is the final form of (6).

true & (not(sig1=red & e0 sig1=free) => (e0=green)) (10)
not(sig1=red & e0 sig1=free) => (e0=green) (11)

(End of Exercise 1)
�

4.3 Abstract Specification

A development of a software system in the B-Method starts with a formal
abstract specification, consisting of (abstract) machines. A typical machine
resembles an object in the object oriented programming as it encapsulates a
set of variables, defining its state, with a set of operations, defining state tran-
sitions.

A machine is defined in a textual form consisting of several clauses. Only
one of them, the MACHINE clause, which defines its name and may also list its
formal parameters, is mandatory. To cover all purposes a machine can serve and
corresponding combinations of clauses is out of the scope of this short course.
Therefore, we will limit ourselves to the clauses we need for the control modules
to be developed. And we explain them on a particular example of a machine
representing a control module for the scenario from Fig. 5 a). But before that, in
Exercise 2, we use the Train Director part of the TD/TS2JC toolset to emulate
a process of customer requirements analysis, which should result in the invariant
properties of the machine.

Exercise 2. From requirements to invariant properties.

Task

1. Launch the version of Train Director that is a part of the TD/TS2JC toolset
and open the railway scenario route2sec.trk, with the track layout as in
Fig. 5 a), in it.

2. Imagine that your task is to develop a control module for this scenario. The
control module

– represents entry points and signals by variables e0, e1 and sig0, sig1 with
values green and red,

– represents track sections by variables e0 sig1, sig0 e1 with values free and
occup (occupied),

– reacts to a request from a train to enter a section by setting the corre-
sponding signal or entry point and

– assumes that all trains obey the values it sets for the entry points and
signals (i.e. a train enters a section only when the corresponding signal
(entry point) is green).

3. Specify invariant properties that ensure safety of the trains in the scenario
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– informally, in English and
– formally, using the mathematical notation of the B-language and the vari-

ables defined above.

Use simulation of the scenario in the Train Director to explore possible situations.
You can clear the signals manually by clicking on them and change the train
schedule by editing the text file route2sec.sch.

Solution
Informally, the invariant properties can be specified as follows:

1. Only one of the signals (entry points) guarding a section can be green.
2. If any of the signals (entry points) guarding a section is green, the section

itself must be free.

These statements can be formally expressed in several ways. One of them is
given in Listing 6 on lines 12–13 (the first statement) and lines 14–16 (the second
statement).

(End of Exercise 2)
�

The machine specifying a non-parametric controller for the scenario from
Fig. 5 a) can be found in Listing 6. The interface and functionality of the con-
troller is identical to the Java version from Listing 2 and its final, executable,
version will use the same configuration file (Listing 3).

Listing 6. Machine route2sec of a non-parametric module for the two section track
from Fig. 5 a).

1 MACHINE r o u t e 2 s e c
2 SETS
3 ST SIG={green , r ed } ;
4 ST SWCH={sw i tched , none } ;
5 ST SEC={ f r e e , occup}
6

7 CONCRETE VARIABLES e0 , e1 , s i g0 , s i g1 , e 0 s i g 1 , s i g 0 e 1
8

9 INVARIANT
10 e0 : ST SIG & e1 : ST SIG & s i g 0 : ST SIG & s i g 1 : ST SIG &
11 e 0 s i g 1 : ST SEC & s i g 0 e 1 : ST SEC &
12 ( e0=green => s i g 1=red ) & ( s i g 1=green => e0=red ) &
13 ( e1=green => s i g 0=red ) & ( s i g 0=green => e1=red ) &
14 ( e0=green => e 0 s i g 1=f r e e ) & ( s i g 1=green => e 0 s i g 1=f r e e )
15 &
16 ( e1=green => s i g 0 e 1=f r e e ) & ( s i g 0=green => s i g 0 e 1=f r e e )
17

18 INITIALISATION
19 e0 := red | | e1 := red | | s i g 0 := red | | s i g 1 := red | |
20 e 0 s i g 1 := f r e e | | s i g 0 e 1 := f r e e
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21

22 OPERATIONS
23 s s <−− ge tS i g s i g0 = BEGIN s s := s i g 0 END;
24 s s <−− ge tS i g s i g1 = BEGIN s s := s i g 1 END;
25 s s <−− getEntry e0 = BEGIN s s :=e0 END;
26 s s <−− getEntry e1 = BEGIN s s :=e1 END;
27

28 reqGreen e0 =
29 IF s i g 1=red & e 0 s i g 1=f r e e THEN e0 := green END;
30 reqGreen e1 =
31 IF s i g 0=red & s i g 0 e 1=f r e e THEN e1 := green END;
32 reqGreen s ig0 =
33 IF e1=red & s i g 0 e 1=f r e e THEN s i g 0 := green END;
34 reqGreen s ig1 =
35 IF e0=red & e 0 s i g 1=f r e e THEN s i g 1 := green END;
36

37 ente rNI e0 s ig1 =
38 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
39 ente r IN s ig0 e1 =
40 BEGIN s i g 0 e 1 :=occup | | s i g 0 := red | | e1 := red END;
41 ente rNI e1 s ig0 =
42 BEGIN s i g 0 e 1 :=occup | | s i g 0 := red | | e1 := red END;
43 ente r IN s ig1 e0 =
44 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
45

46 l e aveNI e0 s ig1 = BEGIN e 0 s i g 1 := f r e e END;
47 l e ave IN s ig0 e1 = BEGIN s i g 0 e 1 := f r e e END;
48 l e aveNI e1 s ig0 = BEGIN s i g 0 e 1 := f r e e END;
49 l e ave IN s ig1 e0 = BEGIN e 0 s i g 1 := f r e e END
50

51 END

The MACHINE clause with the machine name (route2sec, on line 1 in Listing
6) is followed by the SETS clause on lines 2 to 5. This clause defines three enu-
merated sets with their members in curly brackets. They are considered types in
the B-language. Line 4 can be omitted as the scenario does not contain switches.

The CONCRETE VARIABLES clause names state variables of the machine.
A machine may have two types of state variables. The first one is concrete
variables, as in this case. Such variables remain the same in each subsequent
refinement or implementation of the component. Therefore, there are certain
restrictions on them as they must be implementable, that is automatically trans-
latable to a common programming language. For the second type, we have the
ABSTRACT VARIABLES clause and these variables can be of any type definable
in the B-language.

The invariant properties of the machine are specified as a predicate in the
INVARIANT clause (lines 9–16). It is divided into the typing invariant (lines 10–
11), defining the types of the state variables, and safety properties (lines 12–16)
that are those formulated in Exercise 2.
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The next clause is INITIALISATION (lines 18–20) with a command in GSL,
which assigns initial values to all state variables. It regards all sections as empty
and sets all signals and entry points to red.

GSL is also used in the OPERATIONS clause (lines 22–51) with all the oper-
ations of the component. The operations are separated by semicolons and their
interface and functionality is the same as that of the methods in the Java module
in Listing 2. In the B-language, a general form of an operation is (12),

y <-- op(x) =
PRE P THEN S END

(12)

where y is a comma-separated list of its output parameters, op its name and x
a comma-separated list of its input parameters. The predicate P, called the pre-
condition of the operation, defines conditions under which it should be called.
In operations with input parameters, it also defines their properties, including
types. S is a command (a GS) that forms the body of the operation. For machines,
it is required that operations are atomic state transitions without intermediate
states. Because of this, they cannot contain the sequential compositions or loops.

If P is true and there are no input parameters, the form (12) is reduced
to (13). This is the case of getters in our machine (lines 23–26). Remaining
operations do not even have output parameters so they are written in the form
(14). If S contains only compositions and assignments, it is common to place it
between the keywords BEGIN and END. All operations in Listing 6, except of
those in lines 28–35, use these keywords.

y <-- op = S (13)
op = S (14)

Verification of Machine. To verify the correctness of a formal specification
written in the B-language, one must prove a set of formulas, called proof obli-
gations (PObs), for each machine of the specification. To explain this topic in
a concise way, we restrict ourselves to machines like the one in Listing 6. In
general, such a machine can be written as in Listing 7.

Listing 7. General form of a machine with clauses as in Listing 6.

1 MACHINE M
2 SETS St
3 CONCRETE VARIABLES v
4 INVARIANT I
5 INITIALISATION T
6 OPERATIONS
7 y <−− op ( x ) =
8 PRE P THEN S END
9 END
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The PObs for the machine are (15) and (16). The POb (16) must be proved
for every operation of the machine.

[T]I (15)
P & I => [S]I (16)

I => [S]I (17)

The POb (15) means that the initialisation must establish the invariant and (16)
that each operation must preserve it. If P is true, (16) is reduced to (17).

Exercise 3. Proving the proof obligations.
Task
For the machine route2sec from Listing 6, prove (17) for the operation req-
Green e0.

Solution
The POb has the form (18). The letter I represents the invariant of route2sec,
that is lines 10–16 from Listing 6.

I => [IF sig1=red & e0 sig1=free THEN e0:=green END]I (18)

After applying the GS semantics (Table 3) to (18), we get (19).

I => ( ((sig1=red & e0 sig1=free) =>[e0:=green]I) &
(not(sig1=red & e0 sig1=free) =>I)) )

(19)

In the rest of the exercise, we use the tautologies (20)–(22) of the propositional
logic.

( a =>(b & c)) <=> ((a =>b) & (a =>c)) (20)
(a =>(b=>c)) <=> (( a & b) =>c) (21)

(a & b) => b (22)

Utilizing (20), we can split (19) to (23) and (24).

I =>((sig1=red & e0 sig1=free) => [e0:=green]I) (23)
I =>(not(sig1=red & e0 sig1=free) => I) (24)

Considering (21), the formulas (23) and (24) can be rewritten to (25) and (26).

(I & (sig1=red & e0 sig1=free)) => [e0:=green]I (25)
(I & not(sig1=red & e0 sig1=free)) => I (26)

According to (22), (26) is true. What remains is to resolve (25). This requires to
“dive into” the invariant I of route2sec, which is quite a long formula, consisting
of 14 conjuncts. Therefore, in the rest of this solution and starting with (27),
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we omit those conjuncts that repeat in the same form on both sides of the
implication and are not important for the proof.

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
[e0:=green] (e0:ST SIG & (e0=green => sig1=red) &

(sig1=green => e0=red) &
(e0=green => e0 sig1=free))

(27)

First, we use the semantics of assignment (Table 3) to transform (27) to (28).

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
(green:ST SIG & (green=green => sig1=red) &
(sig1=green => green=red) &
(green=green => e0 sig1=free))

(28)

Some of the expressions in (28) can be reduced to true or false, resulting in (29).

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
(true & (true => sig1=red) &
(sig1=green => false) &
(true => e0 sig1=free))

(29)

Considering the definition of logical implication and conjunction, (29) can be
further reduced to (30).

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
(sig1=red &
not(sig1=green) &
e0 sig1=free)

(30)

According to (20), (30) can be split into 3 separate formulas, (31)–(33), to prove.

(sig1:ST SIG & sig1=red & e0 sig1=free) => sig1=red (31)
(sig1:ST SIG & sig1=red & e0 sig1=free) => not(sig1=green) (32)
(sig1:ST SIG & sig1=red & e0 sig1=free) => e0 sig1=free (33)

Utilizing (22), (31) and (33) can be reduced to true directly as the right-hand
side of the implication is one of the conjuncts on the left-hand side in both cases.
And because the set ST SIG consists of only two members, red and green, the
right-hand side of (32) follows from the first two conjuncts on the left-hand side.

(End of Exercise 3)
�

B-Method in Atelier B. After getting familiar with the B-language and
abstract machines and trying the formal verification in a pen-and-paper way,
it is time to get some experience with Atelier B, the development environment
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and prover for the B-Method. In Exercise 4, we create a new project in Atelier
B with the machine from Listing 6, which we type check and prove. This and
the following exercises use the archive [7] of support materials and assume that
the archive is unpacked into the folder C:/VSD. If one chooses another folder, he
or she has to alter the steps accordingly.

Exercise 4. Machine specification and proof in Atelier B.
Instructions

1. Unpack the course package [7] to C:/VSD.
2. If not yet installed, download Atelier B from [18], install and run it. The

primary window of Atelier B appears. The following steps are carried out in
Atelier B.

3. Create a new workspace
– workspace name: bcourse.
– workspace database directory: C:/VSD/bdb.

4. Set the “Default project directory” to C:/VSD/Bprojects.
5. Create a new project called route2sec.
6. In the left panel (“Workspaces”), right click on the name of the project and

choose “Add Components”.
7. In the dialog “Select one or more files to add”, locate and open the file

C:/VSD/Bprojects/route2sec/route2sec.mch. It contains the machine
from Listing 6.

8. In the main part of the primary window, which is located right to the
“Workspaces” panel, choose “Classical view” from the dropdown menu (if
not already chosen). A list of project components appears in the main part.
The list contains route2sec.mch only.

9. Double click on the route2sec.mch in the list. This opens the editor window
of Atelier B.

10. Explore the possibilities of the editor window and close it without saving
changes in the file.

11. Right click on the route2sec.mch in the main part of the primary window
and choose “Type check”. This will check the syntax of the component.
Provided that you didn’t change anything in the file, this task should finish
with success.

12. In the same way as in the previous step, choose “Generate PObs”. This will
generate the proof obligations of the component. There should be eight of
them.

13. In the same way as in the previous step, choose “Proof” and then “Automatic
(Force 0)”. This will launch the automatic prover of Atelier B, which tries
to prove the generated PObs of the component. The prover can be launched
with different amount of resources (memory and time) allocated. There are
four options in the menu - from the least amount (“Force 0”) to the greatest
amount (“Force 3”). As the PObs of route2sec.mch are simple, Force 0 is
sufficient.
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14. Choose the “Proof” option, as in the previous step, and then “Interactive
Proof”. This opens the interactive prover window of Atelier B. The inter-
active prover is used for human-assisted proving when the automatic prover
fails.

15. In the part “Situation” of the interactive prover window, double click on
route2sec and then on PO0. The formula of the corresponding POb appears
in the main part of the prover window. Notice the similarity between this
formula and the ones we had in Exercise 3.

16. Close the interactive prover window and return to the primary window.
17. Notice that the type checking, POb generation and some of the proof options

are also available from the toolbar.
18. If time allows, explore the functionality of Atelier B further. Corresponding

documentation can be found in the main menu (“Help” and then “Manuals”).

(End of Exercise 4)
�

4.4 Refinement to Implementation

The B-Method allows for a sophisticated development (refinement) process, with
multiple steps and changes in both data representation and functionality of oper-
ations. Considering the limited duration of the course, we opted for a minimal-
istic form of refinement. This consists of only one step, directly from a machine
to an implementation. And this step is only necessary because of certain limita-
tions of different types of components in the B-Method. As we mentioned earlier,
machine operations must be atomic state transitions, so sequential composition
and loops are prohibited. In implementations, only commands compatible with
those of sequential imperative programming languages are allowed. This rules
out parallel composition and PRE, SELECT and CHOICE in their pure form (IF
is allowed). Abstract (unimplementable) variables and constants are forbidden,
too. On the other hand, sequential composition and loops can be used. Refine-
ments, as intermediate components, are a mixed bag. They can use both the
abstract and concrete data and all commands, except of the loops, are allowed
in them. All refinements and the implementation of a machine must have the
same interface as the machine. By the interface we mean the list of component
parameters and headers of its operations. No operation can be added or removed
during the refinement process.

A straightforward implementation of the machine route2sec is the component
route2sec i in Listing 8.

Listing 8. Implementation component, refined from the abstract machine in Listing
6.

1 IMPLEMENTATION r o u t e 2 s e c i
2 REFINES r o u t e 2 s e c
3

4 INITIALISATION
5 e0 := red ; e1 := red ; s i g 0 := red ; s i g 1 := red ;
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6 e 0 s i g 1 := f r e e ; s i g 0 e 1 := f r e e
7

8 OPERATIONS
9 s s <−− ge tS i g s i g0 = BEGIN s s := s i g 0 END;

10 s s <−− ge tS i g s i g1 = BEGIN s s := s i g 1 END;
11 s s <−− getEntry e0 = BEGIN s s :=e0 END;
12 s s <−− getEntry e1 = BEGIN s s :=e1 END;
13

14 reqGreen e0 =
15 IF s i g 1=red & e 0 s i g 1=f r e e THEN e0 := green END;
16 reqGreen e1 =
17 IF s i g 0=red & s i g 0 e 1=f r e e THEN e1 := green END;
18 reqGreen s ig0 =
19 IF e1=red & s i g 0 e 1=f r e e THEN s i g 0 := green END;
20 reqGreen s ig1 =
21 IF e0=red & e 0 s i g 1=f r e e THEN s i g 1 := green END;
22

23 ente rNI e0 s ig1 =
24 BEGIN e 0 s i g 1 :=occup ; e0 := red ; s i g 1 := red END;
25 ente r IN s ig0 e1 =
26 BEGIN s i g 0 e 1 :=occup ; s i g 0 := red ; e1 := red END;
27 ente rNI e1 s ig0 =
28 BEGIN s i g 0 e 1 :=occup ; s i g 0 := red ; e1 := red END;
29 ente r IN s ig1 e0 =
30 BEGIN e 0 s i g 1 :=occup ; e0 := red ; s i g 1 := red END;
31

32 l e aveNI e0 s ig1 = BEGIN e 0 s i g 1 := f r e e END;
33 l e ave IN s ig0 e1 = BEGIN s i g 0 e 1 := f r e e END;
34 l e aveNI e1 s ig0 = BEGIN s i g 0 e 1 := f r e e END;
35 l e ave IN s ig1 e0 = BEGIN e 0 s i g 1 := f r e e END
36

37 END

There are several differences between the components route2sec and route2sec i:

– The keyword MACHINE is replaced by IMLEMENTATION (line 1 in Listing
8).

– The clauses SETS and CONCRETE VARIABLES are not present as the ones
already defined in the machine are sufficient.

– The clause INVARIANT is omitted as no new variables are introduced and
there is no need to define new properties over the concrete variables from the
machine.

– All parallel compositions are replaced by sequential compositions in the INI-
TIALISATION and OPERATIONS clauses.

Verification of Implementation. Refinements and implementations are veri-
fied against themselves and components they refine. Again, we will not deal with
the most general case but only with a simplified one, as given in Listing 9.
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Listing 9. General form of an implementation with clauses as in Listing 8 and INVARI-
ANT.

1 IMPLEMENTATION M i
2 REFINES M
3 INVARIANT J
4 INITIALISATION T1
5 OPERATIONS
6 y <−− op ( x ) =
7 BEGIN S1 END
8 END

The PObs for the implementation are (34) and (35) and (35) must be proved
for every operation of the implementation. The PObs of the refinement compo-
nents have the same form.

[T1](not([T] not(J))) (34)
P & I & J => [S1’](not([S] not(J & y’=y))) (35)

While these PObs look rather complicated, their resolution is trivial in the
case of route2sec i. This is because

– the implementation route2sec i does not contain invariant, so J is true and
– the weakest preconditions of the operation bodies of the machine (S) and the

implementation machine (S1) are the same, because the right-hand sides of
the assignments do not contain any state variables (that occur on the left-
hand sides).

When looking on the general form of machine operation (12), and POb (35),
one may wonder why we did not use PRE instead of IF in the machine route2sec
(Listing 6). It is true that if we replace all IF keywords with PRE in Listing 6,
then such machine can be refined to the implementation from Listing 8 and the
verification will go without problems. But, it can also be refined to an imple-
mentation that differs from the one in Listing 8 in additional ELSE parts of the
IF commands. And it will verify perfectly fine, regardless on what is inside the
ELSE parts. In the case that these operations are called from another compo-
nent in the same specification, it is OK. Because, in such a case it will not be
possible to prove any component that calls them outside of their pre-conditions.
But the operations of our verified control module will be called from outside of
the verified part, where no one cares whether any conditions are met.

Implementation in Atelier B and BKPI Compiler. What remains is to
finish the development of our control module in Atelier B and translate it to
an executable form that can be run with the TD/TS2JC toolset. This is done
in Exercise 5. The exercise requires both Java Runtime Environment and Java
Development Kit installed. Similarly to Exercise 4, it assumes that the archive
[7] is unpacked to C:/VSD.
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Exercise 5. Implementation to executable code in Atelier B and BKPI compiler.
Instructions

1. In Atelier B, open the project route2sec, created in Exercise 4.
2. In the left panel (“Workspaces”), right click on the name of the project and

choose “Add Components”.
3. In the dialog “Select one or more files to add”, locate and open the file

C:/VSD/Bprojects/route2sec/route2sec_i.imp. It contains the imple-
mentation from Listing 8.

4. Type check, generate and prove PObs of route2sec_i.imp in the same way
as for route2sec.mch in Exercise 4.

5. Close Atelier B.
6. Run the BKPI compiler.

It is the file C:/VSD/BKPICompiler/BKPIcompiler.jar and we will use it
to translate route2sec_i.imp to Java.

7. In the the BKPI compiler, right click on route2sec and choose “Generate
Java code”.

8. In a file manager (e.g. Explorer), navigate to the folder
C:/VSD/Bprojects/route2sec/java.

9. Delete MainClass.java and compile route2sec.java. To compile, just run
compile.bat.

10. Run Train Director and open the file C:/VSD/scenarios/route2sec.trk in
it.

11. Run TS2JavaConn and load (open) the module
C:/VSD/Bprojects/route2sec/java/route2sec.class in it.

12. Start the simulation, in Train Director or TS2JavaConn.

(End of Exercise 5)
�

4.5 Three Sections Control Module Development Project

Finally, the course participants may try the verified development process on a
control module for the three track sections scenario from Fig. 5 b).

Exercise 6. Development of a control module for the three sections scenario.
Task
Develop a verified control module for the three track sections scenario from Fig. 5
b). The invariant of the machine of the module has to contain safety conditions
that prevent collision of trains in the scenario. Use the control module template
generator of TS2JavaConn to create an initial form of the module machine in
the B-language. Alternatively, you can start with the machine from Listing 10.
Follow the TODO comments to modify the machine.

Listing 10. Initial form of the abstract machine route3sec.

1 MACHINE r o u t e 3 s e c
2 SETS
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3 ST SIG={green , r ed } ;
4 ST SWCH={sw i tched , none } ;
5 ST SEC={ f r e e , occup}
6

7 CONCRETE VARIABLES
8 e0 , e1 , s i g0 , s i g1 , s i g2 , s i g3 ,
9 e0 s i g 1 , s i g 0 s i g 3 , s i g 2 e 1

10

11 INVARIANT
12 e0 : ST SIG & e1 : ST SIG &
13 s i g 0 : ST SIG & s i g 1 : ST SIG & s i g 2 : ST SIG & s i g 3 : ST SIG &
14 e 0 s i g 1 : ST SEC & s i g 0 s i g 3 : ST SEC & s i g 2 e 1 : ST SEC &
15 ( e0=green => s i g 1=red ) & ( s i g 1=green => e0=red )
16 /∗TODO: f i n i s h s a f e t y c o n d i t i o n s f o r the r e l a t i o n s
17 between s i g n a l s ( e n t r y p o i n t s ) ∗/
18 &
19 ( e0=green => e 0 s i g 1=f r e e ) &
20 ( s i g 1=green => e 0 s i g 1=f r e e )
21 /∗TODO: f i n i s h s a f e t y c o n d i t i o n s f o r the r e l a t i o n s
22 between s i g n a l s ( e n t r y p o i n t s ) and s e c t i o n s ∗/
23

24 INITIALISATION
25 e0 := red | | e1 := red | |
26 s i g 0 := red | | s i g 1 := red | | s i g 2 := red | | s i g 3 := red | |
27 e 0 s i g 1 := f r e e | | s i g 0 s i g 3 := f r e e | | s i g 2 e 1 := f r e e
28

29 OPERATIONS
30 s s <−− ge tS i g s i g0 = BEGIN s s := s i g 0 END;
31 s s <−− ge tS i g s i g1 = BEGIN s s := s i g 1 END;
32 s s <−− ge tS i g s i g2 = BEGIN s s := s i g 2 END;
33 s s <−− ge tS i g s i g3 = BEGIN s s := s i g 3 END;
34 s s <−− getEntry e0 = BEGIN s s :=e0 END;
35 s s <−− getEntry e1 = BEGIN s s :=e1 END;
36

37 reqGreen e0 =
38 IF s i g 1=red & e 0 s i g 1=f r e e THEN e0 := green END;
39 reqGreen e1 = sk i p ;
40 reqGreen s ig0 = sk i p ;
41 reqGreen s ig1 = sk i p ;
42 reqGreen s ig2 = sk i p ;
43 reqGreen s ig3 = sk i p ;
44 /∗TODO: r e p l a c e s k i p i n the p r e v i o u s o p e r a t i o n
45 with a p p r o p r i a t e commands∗/
46

47 ente rNI e0 s ig1 =
48 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
49 e n t e r I I s i g 0 s i g 3 =
50 BEGIN s i g 0 s i g 3 :=occup | | s i g 0 := red | | s i g 3 := red END;
51 ente r IN s ig2 e1 =
52 BEGIN s i g 2 e 1 :=occup | | s i g 2 := red | | e1 := red END;
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53

54 ente rNI e1 s ig2 =
55 BEGIN s i g 2 e 1 :=occup | | s i g 2 := red | | e1 := red END;
56 e n t e r I I s i g 3 s i g 0 =
57 BEGIN s i g 0 s i g 3 :=occup | | s i g 0 := red | | s i g 3 := red END;
58 ente r IN s ig1 e0 =
59 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
60

61 l e aveNI e0 s ig1 = BEGIN e 0 s i g 1 := f r e e END;
62 l e a v e I I s i g 0 s i g 3 = BEGIN s i g 0 s i g 3 := f r e e END;
63 l e ave IN s ig2 e1 = BEGIN s i g 2 e 1 := f r e e END;
64 l e aveNI e1 s ig2 = BEGIN s i g 2 e 1 := f r e e END;
65 l e a v e I I s i g 3 s i g 0 = BEGIN s i g 0 s i g 3 := f r e e END;
66 l e ave IN s ig1 e0 = BEGIN e 0 s i g 1 := f r e e END
67

68 END

Solution
In essence, the process of the control module development is the same as in
Exercise 4 and Exercise 5. The parts that must be changed in the machine from
Listing 10 can be found in Listing 11. The differences between the machine
and its implementation are the same as between the ones in the aforementioned
exercises.

Listing 11. Invariant and selected operations of the final form of the machine route3sec
from Listing 10.

1 INVARIANT
2 e0 : ST SIG & e1 : ST SIG &
3 s i g 0 : ST SIG & s i g 1 : ST SIG & s i g 2 : ST SIG & s i g 3 : ST SIG &
4 e 0 s i g 1 : ST SEC & s i g 0 s i g 3 : ST SEC & s i g 2 e 1 : ST SEC &
5 ( e0=green => s i g 1=red ) & ( s i g 1=green => e0=red ) &
6 ( s i g 0=green => s i g 3=red ) & ( s i g 3=green => s i g 0=red ) &
7 ( e1=green => s i g 2=red ) & ( s i g 2=green => e1=red ) &
8 ( e0=green => e 0 s i g 1=f r e e ) &
9 ( s i g 1=green => e 0 s i g 1=f r e e ) &

10 ( s i g 0=green => s i g 0 s i g 3=f r e e ) &
11 ( s i g 3=green => s i g 0 s i g 3=f r e e ) &
12 ( e1=green => s i g 2 e 1=f r e e ) &
13 ( s i g 2=green => s i g 2 e 1=f r e e )
14

15 OPERATIONS
16 reqGreen e1 =
17 IF s i g 2=red & s i g 2 e 1=f r e e THEN e1 := green END;
18 reqGreen s ig0 =
19 IF s i g 3=red & s i g 0 s i g 3=f r e e THEN s i g 0 := green END;
20 reqGreen s ig1 =
21 IF e0=red & e 0 s i g 1=f r e e THEN s i g 1 := green END;
22 reqGreen s ig2 =
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23 IF e1=red & s i g 2 e 1=f r e e THEN s i g 2 := green END;
24 reqGreen s ig3 =
25 IF s i g 0=red & s i g 0 s i g 3=f r e e THEN s i g 3 := green END;

(End of Exercise 6)
�

5 Conclusion

This chapter presented a compact four-to-six-hour long course on formal veri-
fied software development in the B-Method. We do hope that, with additional
materials [6] and [7], the chapter provides enough information for an interested
reader to go through the course by him or herself. The B-Method was chosen
because of the tool support, provided by the freely available Atelier B integrated
development environment and prover, and an impressive track record of indus-
trial utilization. This course has been carried out during the Central European
Functional Programming (CEFP) summer school in June 2019, in Budapest. A
special feature of the course is the utilization of the TD/TS2JC toolset. The cen-
terpiece of the toolset is a modified railway traffic control game, Train Director.
It provides a virtual environment for the software developed during the course by
its participants, that is for railway controllers. The participants use the toolset
at least at the beginning and at the end of the development; at the beginning
to examine the scenario for which the controller will be developed and after the
development to run the controller with the scenario. A questionnaire given to
the participants after the course at the CEFP summer school confirmed the pos-
itive impact of the tool set. From 15 participants, 66.7% agreed that the toolset
helped them to understand the importance of formal methods and for 99.3%
it mattered that they had been able to see their formally developed software
running.

The TD/TS2JC toolset had been developed with universality in mind and can
be used with any formal method that provides translation to the Java program-
ming language and, also, directly with Java. The chapter tried to demonstrate
this universality by describing different types of control modules and correspond-
ing configuration files.

The course presented here includes some pen-and-paper exercises dealing
with formal semantics of the B-Method and formal proof. To remind concise,
these exercises do not use the formal system behind the B-Method, but try
to explain the topic in a way understandable for a common programmer. The
course focuses on formulation of the abstract specification and understanding
the importance and process of formal verification by mathematical proof. The
development to implementation is, deliberately, trivial. A more complex sce-
nario with the specification consisting of multiple components and a nontrivial
refinement can be found in [9].
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