
Zoltán Porkoláb
Viktória Zsók (Eds.)

Tu
to

ria
l

LN
CS

 1
19

50

8th Summer School, CEFP 2019
Budapest, Hungary, June 17–21, 2019
Revised Selected Papers

Composability,
Comprehensibility
and Correctness of
Working Software

Lecture Notes in Computer Science 11950
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Zoltán Porkoláb · Viktória Zsók
Editors

Composability,
Comprehensibility
and Correctness of
Working Software
8th Summer School, CEFP 2019
Budapest, Hungary, June 17–21, 2019
Revised Selected Papers

Editors
Zoltán Porkoláb
Eötvös Loránd University
Budapest, Hungary

Viktória Zsók
Eötvös Loránd University
Budapest, Hungary

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-42832-6 ISBN 978-3-031-42833-3 (eBook)
https://doi.org/10.1007/978-3-031-42833-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: 3COWS, Designed and drawn by Balázs Dénes Róbert. Used with his kind permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-6819-0224
https://orcid.org/0000-0003-4414-6813
https://doi.org/10.1007/978-3-031-42833-3

Preface

This volume presents the revised lecture notes of selected talks given at the eighth
Central European Functional Programming School, CEFP 2019, held during 17–21
June in Budapest, Hungary at Eötvös Loránd University, Faculty of Informatics.

The summer school was organized in the spirit of intensive programmes. CEFP
involves a large number of students, researchers, and teachers from across Europe.

The intensive programme offered a creative, inspiring environment for presentations
and exchange of ideas on new specific programming topics. The lectures covered a wide
range of programming subjects.

We are very grateful to the lecturers and researchers for the time and effort they
devoted to their talks and lecture notes.

The lecture notes were each carefully checked by reviewers selected from experts.
Each paper had two reviews involving external reviewers as well. The review process
was a single-blind one. Out of the thirteen papers submitted, eleven were accepted for
publication.

Seven tutorials of the partner universities and four student papers were selected
from the students’ workshop presentations organized for the participants of the summer
school. Based on the reviews, the papers were revised and checked by the lecturers and
student authors.

We would like to express our gratitude for the work of all the members of the
Programme Committee and the Organizing Committee.

The web page of the event is https://people.inf.elte.hu/cefp/.

June 2023 Zoltán Porkoláb
Viktória Zsók

https://people.inf.elte.hu/cefp/

Organization

The 8thCEFP2019Summer Schoolwas organized byEötvösLorándUniversity, Faculty
of Informatics, Budapest, Hungary.

The school was supported by Erasmus+ projects. This volume is part of the dis-
semination of the results of the Erasmus+ Key Action 2 (Strategic Partnership for
Higher Education) project No. 2017-1-SK01-KA203-035402: “Focusing Education on
Composability, Comprehensibility and Correctness of Working Software”.

Program Committee Chairs

Viktória Zsók Eötvös Loránd University, Budapest, Hungary
Zoltán Porkoláb Eötvös Loránd University, Budapest, Hungary

Contents

Main Lectures

Writing Internet of Things Applications with Task Oriented Programming 3
Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

Paint Your Programs Green: On the Energy Efficiency of Data Structures 53
Rui Pereira, Marco Couto, Jácome Cunha, Gilberto Melfe,
João Saraiva, and João Paulo Fernandes

Energy Efficient Software in an Engineering Course . 77
João Saraiva and Rui Pereira

Utilizing Rail Traffic Control Simulator in Verified Software Development
Courses . 98

Štefan Korečko

The Role of Functional Programming in Management and Orchestration
of Virtualized Network Resources: Part II. Network Evolution and Design
Principles . 136

Tihana Galinac Grbac and Nikola Domazet

Towards Better Tool Support for Code Comprehension . 165
Tibor Brunner, Máté Cserép, Anett Fekete, Mónika Mészáros,
and Zoltán Porkoláb

Balanced Distributed Computation Patterns . 202
Jianhao Li, Yuri Kim, and Viktória Zsók

PhD Workshop

Tunnel Parsing . 325
Nikolay Handzhiyski and Elena Somova

Finding Code Clone Refactoring Techniques by Mapping Clone Context 344
Simon Baars and Ana Oprescu

Code Quality Metrics for Functional Features in Modern Object-Oriented
Languages . 358

Bart Zuilhof, Rinse van Hees, and Clemens Grelck

x Contents

An Empirical Study on the Energy Efficiency of Matrix Transposition
Algorithms . 375

Gonçalo Lopes, João Paulo Fernandes, and Luís Paquete

Author Index . 393

Main Lectures

Writing Internet of Things Applications
with Task Oriented Programming

Mart Lubbers(B) , Pieter Koopman , and Rinus Plasmeijer

Radboud University, Nijmegen, Netherlands
{mart,pieter,rinus}@cs.ru.nl

Abstract. The Internet of Things (IoT) is growing fast. In 2018, there
was approximately one connected device per person on earth and the
number has been growing ever since. The devices interact with the envi-
ronment via different modalities at the same time using sensors and
actuators making the programs parallel. Yet, writing this type of pro-
grams is difficult because the devices have little computation power and
memory, the platforms are heterogeneous and the languages are low level.
Task Oriented Programming (TOP) is a declarative programming lan-
guage paradigm that is used to express coordination of work, collab-
oration of users and systems, the distribution of shared data and the
human-computer interaction. The mTask language is a specialized, yet
full-fledged, multi-backend TOP language for IoT devices. With the byte-
code interpretation backend and the integration with iTask, tasks can
be executed on the device dynamically. This means that—according to
the current state of affairs—tasks can be tailor-made at run time, com-
piled to device-agnostic bytecode and shipped to the device for inter-
pretation. Tasks sent to the device are fully integrated in iTask to allow
every form of interaction with the tasks such as observation of the task
value and interaction with Shared Data Sources (SDSs). The entire IoT
application—both server and devices—are programmed in a single lan-
guage, albeit using two embedded Domain Specific Languages (EDSLs).

Keywords: Task Oriented Programming · Interpretation · Functional
Programming · Internet of Things

1 Introduction

1.1 Internet of Things

The IoT is growing rapidly and it is changing the way people and machines
interact with the world. The term IoT was coined around 1999 to describe the
communication of Radio-frequency Identification (RFID) devices. RFID became
more and more popular the years after but the term IoT was not associated with
it anymore. Years later, during the rise of novel network technologies, the term
IoT resurged with a slightly different meaning. Today, the IoT is the term for a
system of devices that sense the environment, act upon it and communicate with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 3–52, 2023.
https://doi.org/10.1007/978-3-031-42833-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_1&domain=pdf
http://orcid.org/0000-0002-4015-4878
http://orcid.org/0000-0002-3688-0957
https://doi.org/10.1007/978-3-031-42833-3_1

4 M. Lubbers et al.

each other and the world. At the time of writing, there is about one connected
device per person in the world of which many are part of an IoT system. Gartner
estimates that of these connected devices, there are about 5.8 billion IoT devices
or endpoints connected1. They are already in everyone’s household in the form
of smart electricity meters, smart fridges, smartphones, smart watches, home
automation and in the form of much more. While the number of devices seems
to be growing exponentially fast, programming IoT applications is difficult. The
devices are a large heterogeneous collection of different platforms, protocols and
languages resulting in impedance problems.

The devices in IoT systems are equipped with various sensors and actuators.
These range from external ones such as positioning, temperature and humidity
to more internal ones like heartbeat and respiration [12]. When describing IoT
systems, a layered architecture is often used to compartmentalize the technol-
ogy. For the intents and purposes of this paper the four layer architecture defined
by ITU-T (International Telecommunications Union - Telecommunication Stan-
dardization Sector) will be used as visualized in Fig. 1.

Fig. 1. The four layered IoT architecture as described by the ITU-T.

The first layer is called the perception layer and contains the actual endpoints
with their peripherals. For example in home automation, the sensors reading the
room and the actuators opening the curtains are in the perception layer. As a
special type of device, it may also contain a Sensor Network (SN). A SN is a
collection of sensors connected by a mesh network or central hub. The network
layer is the second layer and it consists of the hardware and software to connect
the perception layer to the world. In home automation, this layer may consist
of a specialized IoT technology such as Bluetooth Low Energy (BLE) or ZigBee
but it may also use existing technologies such as WiFi or wired connections.
The third layer is named support layer and is responsible for the servicing and
business rules surrounding the application. One of its goals is to provide the
API, interfaces and data storage. In home automation this provides the server
storing the data. The fourth and final layer in this architecture is the application
layer. The application layer provides the interaction between the user and the

1 Gartner (August 2019).

Writing Internet of Things Applications with Task Oriented Programming 5

IoT system. In home automation, this layer contains the apps for to read the
measurements and control the devices.

The perception layer often is a heterogeneous collections of microcontrollers,
each having their own peculiarities, language of choice and hardware interfaces.
The hardware needs to be cheap, small-scale and energy efficient. As a result,
the Microcontroller Units (MCUs) used to power these devices do not have a
lot of computational power, a soupçon of memory, and little communication
bandwidth. Typically the devices do not run a full fledged OS but a compiled
firmware. This firmware is often written in an imperative language that needs
to be flashed to the program memory. It is possible to dynamically send the
program to the program memory using Over the Air (OTA) programming [6,7].
Program memory typically is flash based and only lasts a couple of thousand
writes before it wears out2. While devices are getting a bit faster, smaller, and
cheaper, they keep these properties to an extent. The properties of the device
greatly reduce the flexibility for dynamic systems where tasks are created on
the fly, executed on demand and require parallel execution. These problems can
be mitigated by dynamically sending code to be interpreted to the MCU. With
interpretation, a specialized interpreter is flashed in the program memory once
that receives the program code to execute at runtime.

1.2 Task Oriented Programming

TOP is a declarative programming paradigm designed to model interactive sys-
tems [39]. A task is an abstract representation of a piece of work that needs to
be done. It provides an intuitive abstraction over work in the real world. Just
as with real-life tasks and workflow, tasks can be combined in various ways such
as in parallel or in sequence. Furthermore, tasks are observable which means it
is possible to observe a—partial—result during execution and act upon it by for
example starting new tasks. Examples of tasks are filling in a form, sending an
email, reading a sensor or even doing a physical task. The task itself abstracts
away from implementation details such as the interface, the communication and
the sharing of data.

In many implementations the value observable in a task is a three state value
that adheres to the transition diagram seen in Fig. 2. If a task emits no value,
it means that the task has not made sufficient progress to produce a complete
value. It might be the case that some work has been done but just not quite
enough (e.g. an open serial port with a partial message). An unstable value
means that a complete value is present but it may change in the future (i.e. a
side effect). A web editor for filling in a form is an example of a task that always
emits an unstable value since the contents may change over time. Stable values

2 Atmel, the producer of AVR microprocessors, specifies the flash memory of the
MCU in the Arduino UNO to about 10,000 cycles. This specification is a minimal
specification and most likely the memory will be able to sustain many more writes.
However, even if the memory can sustain ten times the amount, it is still a short
time. .

6 M. Lubbers et al.

never change. When the continue button has been pressed, the contents of the
web editor is relayed, the values can never change, hence it is stable.

Fig. 2. State diagram for the legal transitions of task values

Tasks can communicate using task values but this imposes a problem in many
collaboration patterns where tasks that are not necessarily related need to share
data. Tasks can also share data using SDSs. SDSs are an abstraction over any
data. An SDS can represent typed data stored in a file, a chunk of memory, a
database etc. SDSs can also represent external impure data such as the time,
random numbers or sensory data. Similar to tasks, transformation and combi-
nation of SDSs is possible. In this architecture, tasks function as lightweight
communicating threads.

1.3 iTask

The iTask system originated as a system for developing distributed collaborative
interactive web applications and the TOP paradigm grew from it [37]. It is
suitable to model collaboration in almost any domain (see Subsect. 5.2).

The iTask system is implemented as an EDSL hosted in Clean [9]. Compiling
the embedded TOP specification results in a multi-user distributed webserver
offering an interface to users for actually doing the work. By default, implementa-
tion details such as the graphical user interface, serialization and communication
are automatically generated. Section B gives a non-comprehensive overview that
is sufficient for the exercises and examples in this paper.

In iTask a task is implemented as an event-driven stateful rewrite function.
This means that, when there is an event, the function is executed with the
current state of the system and the event as arguments. As a result, it produces
a new state and either a value or an exception. If a value is produced, it consists
of a task value, an update to the user interface and a rewritten function. The
current state of a task can be represented by the structure of the tasks and their
combinators and is dubbed the task tree [29].

SDSs in iTask are based on Uniform Data Sources (UDSs). UDSs are a type
safe, uniform and composable abstraction over arbitrary data through a read-
/write interface [34]. This interface is extended with parametric lenses to also
allow fine-grained control over accessing subsets of the data and filtering noti-
fications [13]. Any type in the host language Clean is an SDS when it imple-
ments the RWShared class collection that contains the read, write and notification
functions. The iTask library contains SDSs for storing data in files, databases,
memory but also to provide access to system information such as date, time
and random streams. Furthermore it contains combinators to apply all types
of transformations to SDSs. Multiple SDSs can be combined to form new SDS,

Writing Internet of Things Applications with Task Oriented Programming 7

SDSs modelling collections can be filtered, information of an SDS can determine
the lens on another one and the data modelled by an SDS can be transformed.

Examples. Example 1 shows a simple example of an iTask application, more
examples are available in Sect. B. In the application, the user can enter a family
tree and when they are finished, view the result. The screenshots in Figs. 3 and 4
show this workflow. Lines 1 to 7 define the data types, Family and Person are
record types with named fields and Gender is an algebraic data type. For any
first order type, the necessary machinery housed in the iTask generic function
collection can be derived automatically [3]. The collection contains functions
for deserialization, serialization, editors, pretty printing and equality. Line 9
shows the derivation of the generic functions for the types in this example. The
actual task is of type Task Family and shown at Line 11. The workflow consists
of two tasks, the first task is for entering (Line 13) and the second one for
viewings (Line 14). They are combined using a sequential task combinator (>>=)
that results in a continue button being shown to the user. At the start of the
workflow, the form is empty, and thus the continue button is disabled. When
the user enters some information, the continue button enables when there is a
complete value. However, the value may still change, as can be seen in the third
figure when the partner tickbox is ticked and a recursive editor appears.

1 :: Family = { person :: Person, partner :: Maybe Person

2 , children :: [Family]

3 }

4 :: Person = { firstName :: String, surName :: String

5 , gender :: Gender, dateOfBirth :: Date

6 }

7 :: Gender = Male | Female | Other String

8
9 derive class iTask Family, Person, Gender

10
11 enterFamily :: Task Family

12 enterFamily

13 = Hint ”Enter a family tree:” @>> enterInformation []

14 >>= λres�Hint ”You Entered:” @>> viewInformation [] res

Example 1. Source code for some example iTask tasks.

1.4 TOP for the IoT

IoT devices are often doing loosely related things in parallel. For example, they
are reading sensors, doing some processing on the data, operating actuators
and communicating with the world. The TOP paradigm is an intuitive descrip-
tion language for theses tasks. Furthermore, due to the execution semantics of
tasks, seemingly parallel operation due to interleaving comes for free. Unfor-
tunately, running iTask tasks on the device is not an option due to the high
memory requirements of the software. Therefore, mTask has been created, a

8 M. Lubbers et al.

Fig. 3. The initial user interface and the enabling of the continue button for the exam-
ple application.

Fig. 4. The user interface after the user ticks the Partner box.

Writing Internet of Things Applications with Task Oriented Programming 9

TOP language for small memory environments like IoT devices that also con-
tains constructions to interact with the peripherals as well. It compiles the tasks
to bytecode and sends them to the IoT device at run time. This allows the cre-
ation of dynamic applications, i.e. applications where tasks for the IoT devices
are tailor-made at runtime and scheduled when needed.

1.5 Structure of the Paper

This section contains the introduction to IoT, TOP and iTask. The mTask
ecosystem is explained in Sect. 2 followed by a language overview in Sect. 3.
Section 4 contains gradually introduces more mTask concepts and provides a
step by step tutorial for creating more interesting IoT applications. Section 5
contains the related work and Sect. 6 concludes with discussions. Background
material on EDSL techniques is available in Sect.A. An iTask reference manual
containing all the tasks and functions required for the exercises can be found
in Sect. B and Sect. C contains detailed instructions on setting up an mTask
development distribution.

Inline code snippets are typeset using a teletype font.

Program definitons are typeset in listings with a double left vertical border

Definition 1. This is an example definition.

Program examples are typeset in listings with a single left and bottom border

Example 2. This is an example example.

Exercise 0 (The title of the example exercise). Exercises are numbered and
typeset like this. The filename of the skeleton—located in the distribution, see
Sect. C—is typeset in teletype and placed between brackets (fileName).

2 mTask system architecture

2.1 Blink

Traditionally, the first program that one writes when trying a new language is the
so called Hello World! program. This program has the single task of printing
the text Hello World! to the screen and exiting again. On microcontrollers,
there often is no screen for displaying text. Nevertheless, almost always there is
a rudimentary single pixel screen, namely an—often builtin—LED. The Hello
World equivalent on microcontrollers blinks this LED.

Example 3 shows how the logic of a blink program might look when using the
Arduino C++ dialect. The main event loop of the Arduino language continuously
calls the user defined loop function. Blink’s loop function alternates the state of
the pin representing the LED between HIGH and LOW, turning the LED off and
on respectively. In between it waits for 500 ms so that the blinking is actually

10 M. Lubbers et al.

visible for the human eye. Compiling this results in a binary firmware that needs
to be flashed onto the program memory.

Translating the traditional blink program to mTask can almost be done
by simply substituting some syntax as seen in Example 4. E.g. digitalWrite

becomes writeD, literals are prefixed with lit and the pin to blink is changed to
represent the actual pin for the builtin LED of the device used in the exercises.
In contrast to the imperative Arduino C++ dialect, mTask is a TOP language
and therefore there is no such thing as a loop, only task combinators to com-
bine tasks. To simulate this, the rpeat task can be used, this task executes the
argument task and, when stable, reinstates it. The body of the rpeat contains
similarly named tasks to write to the pins and to wait in between. The tasks are
connected using the sequential >>|. combinator that for all intents and purposes
executes the tasks after each other.

Exercise 1 (Blink the builtin LED). Compile and run the blink program to test
your mTask setup (blinkImp). Instructions on how to install mTask and how to
find the example code can be found in Sect. C.

void loop() {

digitalWrite(BUILTIN_LED, HIGH);

delay(500);

digitalWrite(BUILTIN_LED, LOW);

delay(500);

}

Example (3) Blink in Arduino.

blink :: Main (MTask v ()) | mtask v

blink = {main = rpeat (

writeD d2 (lit True)

>>|. delay (lit 500)

>>|. writeD d2 (lit False)

>>|. delay (lit 500)

)}

Example (4) Blink in mTask

2.2 Language

The mTask language is a TOP EDSL hosted in the pure lazy functional program-
ming language Clean [9]. An EDSL is a language embedded in a host language
created for a specific domain [23]. The two main techniques for embedding are
deep embedding—representing the language as data—and shallow embedding—
representing the languages as function. Depending on the embedding technique,
EDSLs support one or multiple backends or views. Commonly used views are
pretty printing, compiling, simulating, verifying and proving properties of the
program. Deep and shallow embedding have their own advantages and disadvan-
tages in terms of extendability, type safety and view support that are described
in more detail in Sect. A.

Writing Internet of Things Applications with Task Oriented Programming 11

2.3 Class Based Shallow Embedding

There are also some hybrid approaches that try to mitigate the downsides of the
standard embedding techniques. The mTask language is using class-based—or
tagless—shallow embedding that has both the advantages of shallow and deep
embedding while keeping the disadvantages to a minimum [10]. This embedding
technique is chosen because it allows adding backends and functionality orthog-
onally, i.e. without touching old code. E.g. adding functionality orthogonally is
useful to add constructions for interact with new peripherals without requiring
other backends to implement them. At the time of writing there is bytecode
generation, symbolic simulation and pretty printing available as a backend.

Definition 2 shows an illustrative example of this embedding technique using
a multi backend expression language. In class-based shallow embedding the lan-
guage constructs are defined as type classes (intArith and boolArith). In contrast
to regular shallow embedding, functions in class based shallow embedding are
overloaded in the backend and in the types. Furthermore, the functions can be
overloaded and contain class constraints, i.e. type safety is inherited from the
host language. Lastly, extensions can be added easily, just as in shallow embed-
ding. When an extension is made in an existing class, all views must be updated
accordingly to prevent possible runtime errors. But when an extension is added
in a new class, this problem does not arise and views can choose to implement
only parts of the collection of classes.

class intArith v where
lit :: t � v t | toString t

add :: (v t) (v t) � (v t) | + t

sub :: (v t) (v t) � (v t) | - t

class boolArith v where
and :: (v Bool) (v Bool) � (v Bool)

eq :: (v t) (v t) � (v Bool) | == t

Definition 2. A minimal class based shallow EDSL.

A backend in a class based shallowly EDSL is just a type implementing some
of the classes which makes adding backends relatively easy. It is even possible to
create partial backends that do not support all classes from the language. The
type of the backend are often—e.g. in the PrettyPrinter type—phantom types,
only there to the resulting expression type safe. Example 5 shows an example of
two backends implementing the expression Domain Specific Language (DSL).

:: PrettyPrinter a = PP String

runPrinter :: (PrettyPrinter t) � String

runPrinter (PrettyPrinter s) = s

instance intArith PrettyPrinterwhere
lit x = PP (toString x)

add (PP x) (PP y) = PP (x +++ ”+” +++ y)

...

instance boolArith PrettyPrinterwhere ...

12 M. Lubbers et al.

:: Evaluator a = Eval a

runEval :: (Evaluator a) � a

runEval (Eval a) = a

instance intArith Evaluatorwhere ...

instance boolArith Evaluatorwhere ...

Example 5. A minimal class based shallow EDSL.

A downside of using classes instead of functions is that the more flexible
implementation technique makes the type errors more complicated. Also, as
a consequence of using classes instead of data, a program wanting to use the
same expression twice has to play some tricks (see Example 2). If the language
supports rank-2 polymorphism, it can use the same expression for multiple back-
ends. Another solution is to create a combinator backend that combines the two
argument backends in a single structure.

printAndEval :: (∀v: v t | intArith, boolArith v) � (String, t)

printAndEval c = (runPrinter c, runEval c)

:: Two l r a = Two (l a) (r a)

printAndEval‘ :: (Two PrettyPrinter Evaluator t) � (String, t)

printAndEval‘ (Two (PP t) (Eval a)) = (t, a)

instance intArith (Two l r) | intArith l & intArith r where
lit x = Two (lit x) (lit x)

add (Two lx rx) (Two ly ry) = Two (add lx ly) (add rx ry)

instance boolArith (Two l r) | boolArith l & boolArith r where
eq (Two lx rx) (Two ly ry) = Two (eq lx ly) (eq rx ry)

Example 6. Using multiple backends simultaneously in a shallow EDSL.

2.4 DSL design

To leverage the type checker of the host language, types in the mTask language
are expressed as types in the host language, to make the language type safe.
However, not all types in the host language are suitable for microcontrollers
that may only have 2KiB of RAM so class constraints are therefore added to the
EDSL functions (see Definition 3). The most used class constraint is the type

class collection containing functions for serialization, printing, iTask constraints
etc. Many of these functions can be derived using generic programming. An even
stronger restriction on types is defined for types that have a stack representation.
This basicType class has instances for many Clean basic types such as Int, Real
and Bool but also for tuples. The class constraints for values in mTask are

omnipresent in all functions and therefore often omitted throughout this paper
for brevity and clarity.

Furthermore, expressions overloaded in backend add all mTask classes as
constraints. To shorten this, a class collection is defined that contains all standard

Writing Internet of Things Applications with Task Oriented Programming 13

mTask classes to relieve this strain. However, classes for peripherals—or other
non standard classes that not all backends have—need to be added still.

class type t | iTask, ... ,fromByteCode, toByteCode t

class basicType t | type t where ...

class mtask v | arith, ..., cond v

someExpr :: v Int | mtask v

readTempClass :: v Bool | mtask, dht v

Definition 3. Classes and class collections for the mTask EDSL.

The mTask language is a TOP language and therefore supports tasks. For
seamless integration, the TaskValue type from iTask is used for task values in
mTask as well (see Definition 4). The leafs are basic tasks (i.e. editors) and
the forks are task combinators. Every evaluation step, the task tree is traversed
from the root up and nodes are rewritten while at the mean time keeping track
of the task value of the tree as a whole. This means that there is a difference
in execution between expressions and tasks. Expressions are always evaluated
completely and therefore block the execution. Tasks on the other hand have
small evaluation steps to allow seemingly parallel execution when interleaved.

:: TaskValue t = NoValue | Value a Bool //from iTasks
:: MTask v t :== v (TaskValue t)

Definition 4. The mTask task types.

2.5 Backends

The classes are just a description of the language. It is the backend that actually
gives meaning to the language. There are many backends possible for a TOP pro-
gramming language for tiny computers. At the time of writing, there is a pretty
printing, symbolic simulation and bytecode generation backend. These lecture
notes only regard the bytecode generation backend but the other backends will
be briefly discussed for completeness sake.

Pretty Printer. The pretty printing backend produces a pretty printer for the
given program. The only function exposed is the showMain (Definition 5) function
which runs the pretty printer and returns a list of strings containing the pretty
printed result as shown in Example 7. The pretty printing function does the best
it can but obviously cannot reproduce the layout, curried functions and variable
names.

:: Show a // from the mTask Show library
showMain :: (Main (Show a)) � [String] | type a

Definition 5. The entrypoint for the pretty printing backend.

14 M. Lubbers et al.

blink :: Main (MTask v Bool) | mtask v

blink =

fun λblink = (λstate�
writeD d13 state

>>|. delay (lit 500)

>>=. blink o Not)

In {main = blink true}

Start :: [String]

Start = showMain blink

// output:
// let f0 a1 = writeD(D13, a1) >>=λa2.(delay 1000) >>| (f0 (Not a1)) in (f0 True)

Example 7. Pretty printing backend example.

Simulator. The simulation backend produces a symbolic simulator embedded
in iTask for the given program. When task resulting from the simulate function
presents the user with an interactive simulation environment (see Definition 6,
Example 8 and Fig. 5). From within the environment, tasks can be rewritten,
peripheral states changed and SDSs interacted with.

:: TraceTask a // from the mTask Show library
simulate :: (Main (TraceTask a)) � [String] | type a

Definition 6. The entrypoint for the simulation backend.

Start :: *World � *World

Start w = doTasks (simulate blink) w

Example 8. Simulation backend example.

2.6 Bytecode

Programs written in mTask are compiled to bytecode to be integrated in iTask.
The microcontroller stores the tasks in their RAM, leaving the program memory
untouched. In TOP, it is not uncommon to create tasks every minute. Writing
the program memory of an MCU every minute would wear a typical MCU out
within a week (see footnote 2).

A complete specification of an mTask program—including the SDSs and
peripherals—of type t has the following type in the host language: :: Main (

MTask BCInterpret t). Under the hood, BCInterpret is a monad stack that gen-
erates the bytecode when executed. Interplay between mTask and iTask happens
via three different constructions that are visualized in Fig. 6.

Writing Internet of Things Applications with Task Oriented Programming 15

Fig. 5. Simulator interface for the blink program.

Fig. 6. The world of TOP applications that supports devices.

Connecting Devices. For a device to be suitable for mTask, it needs to be able
to run the Run-time System (RTS). At the time of writing, the RTS is ported to
Arduino compatible xtensa boards such as the LOLIN D1 Mini and NodeMCU,
Arduino compatible AVR boards such as the Arduino UNO, and for platforms
running OSs such as Linux, Windows or MacOS regardless of the architecture.

The withDevice function offers access to a specific device given the com-
munication specification (see Definition 7). The first argument of the function
contains the information about the connection that is used to communicate with
the device. Any reliable sequential character based connection is suitable as a
means of communication between the device and the server. In the mTask system

16 M. Lubbers et al.

at the time of writing, channelSync instances are available for TCP connections
and serial port connections.

The second argument is a function that—given a device handle—produces
a task that can do something with the device. The task resulting from the
withDevice function will first setup a connection to the device and exchange
specifications. After the initialization, the task retrieved from the function in
the second argument is executed. When this task is finished, the connection
with the device is closed down again.

:: MTDevice // Abstract device representation
:: Channels // Communication channels

class channelSync a :: a (Shared Channels) � Task ()

withDevice :: a (MTDevice � Task b)

� Task b | iTask b & channelSync, iTask a

instance channelSync TCPSettings, TTYSettings

Definition 7. Connecting mTask devices to an iTask server

Lifting Tasks. Sending a task to a device always occurs from within iTask
and is called lifting a task from mTask to iTask. The function for this is called
liftmTask (see Definition 8). The first argument is the mTask program and the
second argument is the device handle. The resulting task is an iTask proxy task
representing the exact state of the mTask task on the device.

Under the hood it first generates the bytecode of the mTask task by evalu-
ating the monad. This bytecode is bundled with metadata of the (lifted) SDSs
and peripherals and sent to the device. The device executes the task and notifies
the server on any changes in task value or when it writes a lifted SDS. These
changes are immediately reflected in the server resulting either in a changed
observable task value or a server side write to the SDS to which the lifted SDS
was connected. On the server side, the liftmTask task also subscribes to all lifted
SDS so that when the SDS on the server changes, the device can be notified as
well. The result is that this lifted task reflects the exact state of the mTask task.

liftmTask :: (Main (MTask BCInterpret u)) MTDevice � Task u | iTask, type u

Definition 8. Lifting an mTask to an iTask task.

2.7 Skeleton

Subsect. 2.1 showed an example mTask task that blinks the builtin LED. This
is not yet a complete Clean/iTask program that can be executed. A skeleton
follows that can be used as a basis for the exercises that is explained line by line.
Future snippets will again only give the mTask code for brevity.

Writing Internet of Things Applications with Task Oriented Programming 17

1 module blink

2
3 import StdEnv, iTasks //iTasks imports
4 import Interpret, Interpret.Device.TCP //mTask imports
5
6 Start :: *World � *World

7 Start w = doTasks main w

8
9 main :: Task Bool

10 main = enterDevice >>= λspec�withDevice spec

11 λdev�liftmTask blink dev -|| viewDevice dev

12 where
13 blink :: Main (MTask v Bool) | mtask v

14 blink = ... //e.g. blink from Listing 4

Example 9. An mTask skeleton program.

Line 1 declares the name of the module, this has to match the name of the file-
name. Line 3 import StdEnv and iTasks libraries, these imports are required when
using iTasks. Line 4 imports the Interpret—the mTask bytecode backend—and
Interpret.Device.TCP—the TCP device connectivity modules. Both imports are
always required for these exercises. Line 6 and 7 gives the Start function, the
entry point for a Clean program. This start function always calls the iTask spe-
cific entry point called doTasks that starts up the iTask machinery and launches
the task main.

The main task first starts with an editor on Line 10. This editor presents an
interface to the user connecting to the server for it to select a device as seen
in Fig. 7. The enterDevice task allows selecting devices from presets and allows
changing the parameters to select a custom device. After entering the IP address
the device shows, the task continues with connecting the device withDevice that
takes a function requiring a device and resulting in a task. This function (Line 11)
executes the blink task and shows some information about the device at the
same time. Line 13 and 14 contain the actual task, for example the task shown
in Example 9.

Fig. 7. The interface for the enterDevice task.

18 M. Lubbers et al.

3 mTask language

3.1 Expressions

The classes for expressions—i.e. arithmetic functions, conditional expressions
and tuples—are listed in Definition 9. Some of the class members are oddly
named (e.g. +.) to make sure there is no name conflict with Clean’s builtin
overloaded functions that are of a different kind (* instead of *�*). There is no
need for loop control due to support for tail call optimized recursive functions and
tasks. The types speak for themselves but there are a few functions to explain.
The lit function lifts a value from the host language to the mTask domain. For
tuples there is a useful macro (topen) to convert a function with an mTask tuple
as an argument to a function with a tuple of mTask values as an argument.

class arith v where
lit :: t � v t | type t

(+.) infixl 6 :: (v t) (v t) � v t | basicType, +, zero, t

...

(==.) infix 4 :: (v a) (v a) � v Bool | basicType, == a

...

class cond v where
If :: (v Bool) (v t) (v t) � v t | type t

class tupl v where
first :: (v (a, b)) � v a | type a & type b

second :: (v (a, b)) � v b | type a & type b

tupl :: (v a) (v b) � v (a, b) | type a & type b

Definition 9. The mTask classes for arithmetic, conditional and tuple expressions.

3.2 Functions

Functions are supported in the EDSL, albeit with some limitations. All user
defined mTask functions are typed by Clean functions so that they are type-
safe and are first class citizens in the DSL. They are defined using the multi-
parameter typeclass fun. The first parameter (a) of the typeclass is the shape of
the argument and the second parameter (v) is the backend (see Definition 10).
Functions may only be defined at the top level and to constrain this, the main

type is introduced to box a program.

:: Main a = {main :: a}

:: In a b = In infix 0 a b

class fun a v where
fun :: ((a � v s) � In (a � v s) (Main (v u))) � Main (v u) | ...

Definition 10. The mTask classes for functions definitions.

For every possible arity of the function, a separate implementation for the
fun class has to be defined (see Example 10) The listing gives example instances
for arities zero to two for backend T. Defining the different arities as tuples

Writing Internet of Things Applications with Task Oriented Programming 19

of arguments instead of a more general definition forbids the use of curried
functions. All functions are therefore known at compile time and when a function
is called, all arguments are always known which is beneficial for keeping the
memory requirements low.

:: T a // a backend
instance fun () T

instance fun (T a) T | type a

instance fun (T a, T b) T | type a & type b

Example 10. Different class instances for different arities in mTask functions.

To demonstrate the use, Example 11 shows examples for two functions. The
type constraint on the function arguments forbid the use of higher order functions
because functions do not have instances for all classes of the collection. The
functions (sum, factorial) constructs the program that calculates the result of
the arguments. In the bytecode backend, there is full tailcall optimization and
therefore, writing factorial as factorial‘ pays off in memory usage.

sum :: Int Int � Main (v Int)

sum x y =

fun λsum = (λ(l, r)�l +. r) In
{main = sum (lit x, lit y)}

factorial :: Int � Main (v Int) | mtask v

factorial x =

fun λfac = (λi�
If (i ==. lit 0) (lit 1) (i *. fac (i -. lit 1)))

In {main = fac (lit i)}

factorial‘ :: Int � Main (v Int) | mtask v

factorial‘ x =

fun λfacacc = (λ(n,a)�
If (n ==. lit 0) a (facacc (n -. lit 0, n *. a)))

In fun λfac = (λi�
facacc (i, lit 1))

In {main = fac (lit i)}

Example 11. Example mTask functions.

Functional Blinking. The mTask blink implementation does not show the
advantage of function or TOP. With functions, the blink behaviour can be lifted
to a function to make the program more functional and composable (see Exam-
ple 12). The function takes a single argument, the state and recursively calls
itself. It creates an infinite task that first waits 500 ms. Then it will write the
current state to the pin followed by a recursive call to with the inverse of the
state.

20 M. Lubbers et al.

blinkTask :: Main (MTask v Bool) | mtask v

blinkTask

= fun λblink = (λx�
delay (lit 500)

>>|. writeD d2 x

>>=. blink o Not)

In {main = blink (lit True)}

Example 12. A functional mTask translatation of Hello World! (blink)

Exercise 2 (Blink the builtin LED with a different interval). Change the blinking
interval of the functional blink program (blink).

3.3 Basic Tasks

Definition 11 shows the classes for the basic tasks in mTask. Interaction with
peripherals also occurs through basic tasks and they are shown later. To lift a
value in the expression domain to the task domain, the basic task rtrn is used.
The resulting task will forever yield the given value as a stable task value. The
rpeat task continuously executes the argument task, restarting it when it yields
a stable value. The resulting compound task itself never yields a value. The delay

task emits no value while waiting for the elapsed number of milliseconds. When
enough time elapsed, it returns the number of milliseconds that it overshot the
target time as a stable value.

class rtrn v where
rtrn :: (v t) � MTask v t | type t

class rpeat v where
rpeat :: (MTask v a) � MTask v () | type a

class delay v

delay :: (v Int) � MTask v Int | type n

Definition 11. The mTask classes for basic tasks.

3.4 Parallel Task Combinators

Task combinators can be divided into two categories, namely parallel and sequen-
tial combinators. In parallel combination, the evaluation of the two tasks are
interleaved, resulting in seemingly parallel execution. In contrast to iTask, there
are only two parallel combinators available in mTask. Definition 12 shows the
class definitions. Both combinators execute the two argument tasks in an inter-
leaved fashion resulting in parallel execution.

class .&&. v where
(.&&.) infixr 4 v :: (MTask v a) (MTask v b) � MTask v (a, b) | ...

class .||. v where
(.||.) infixr 3 v :: (MTask v a) (MTask v a) � MTask v a | ...

Definition 12. The mTask classes for parallel task combinators and the rules for
combining the value.

Writing Internet of Things Applications with Task Oriented Programming 21

The resulting task value for the conjunction combinator .&&. is a pair of
the task values of the children. The resulting task value for the disjunction
combinator .||. is a single task value, giving preference to the most stable one.
The exact task value production is explained as a Clean function in the listing
below.

(.&&.) :: (TaskValue a) (TaskValue b) � TaskValue (a, b)

(.&&.) (Value l s1) (Value r s2) = Value (l, r) (s1 && s2)

(.&&.) _ _ = NoValue

(.||.) :: (TaskValue a) (TaskValue a) � TaskValue a

(.||.) (Value _ True) _ = Value l True

(.||.) (Value _ _) (Value r True) = Value r True

(.||.) NoValue r = r

(.||.) l _ = l

Definition 13. The rules for the task value of the parallel combinators.

When using the parallel combinator .&&. the result is something of type v (

a, b). This means that it is a tuple in the mTask language and not in the host
language and therefore pattern matching the tuple directly is not possible. For
that, the topen macro is defined as can be seen in the listing together with an
example of the usage.

topen :: (v (a, b) � c) (v a, v b) � c | tupl v

topen f x :== f (first x, second x)

firstPinToYield :: MTask v Int

firstPinToYield = readA A0 .||. readA A1 >>~. rtrn

sumpins :: MTask v Int

sumpins = readA A0 .&&. readA A1 >>~. topen λ(x, y)�rtrn (x +. y)

Example 13. An example of the usage of the parallel combinators.

3.5 Threaded Blinking

Now say that we want to blink multiple blinking patterns on different LEDs
concurrently. Intuitively we want to lift the blinking behaviour to a function and
call this function three times with different parameters as done in Example 14.

void blink (int pin, int wait) {

digitalWrite(pin, HIGH);

delay(wait);

digitalWrite(pin, LOW);

delay(wait);

}

void loop() {

blink (1, 500);

22 M. Lubbers et al.

blink (2, 300);

blink (3, 800);

}

Example 14. Naive approach to multiple blinking patterns in Arduino C++.

Unfortunately, this does not work because the delay function blocks all fur-
ther execution. The resulting program will blink the LEDs after each other
instead of at the same time. To overcome this, it is necessary to slice up
the blinking behaviour in very small fragments so it can be manually inter-
leaved [17]. Example 15 shows how to implement three different blinking pat-
terns in Arduino using the slicing method. If we want the blink function to be a
separate parametrizable function we need to explicitly provide all references to
the required state. Furthermore, the delay function can not be used and polling
millis is required. The millis function returns the number of milliseconds that
have passed since the boot of the MCU. Some devices use very little energy
when in delay or sleep state. Resulting in millis potentially affects power con-
sumption since the processor is basically busy looping all the time. In the simple
case of blinking three LEDs on fixed intervals, it might be possible to calculate
the delays in advance using static analysis and generate the appropriate delay

code. Unfortunately, this is very difficult in general when the thread timings are
determined at run time. Manual interleaving is very error prone, requires a lot of
pointer juggling and generally results in spaghetti code. Furthermore, it is very
difficult to represent dependencies between threads, often state machines have
to be explicitly programmed by hand to achieve this.

long led1 = 0, led2 = 0, led3 = 0;

bool st1 = false, st2 = false, st3 = false;

void blink(int pin, int delay, long *lastrun, bool *st) {

if (millis() - *lastrun > delay) {

digitalWrite(pin, *st = !*st);

*lastrun += delay;

}

}

void loop() {

blink(1, 500, &led1, &st1);

blink(2, 300, &led2, &st1);

blink(3, 800, &led3, &st1);

}

Example 15. Threading three blinking patterns in Arduino.

Blinking multiple patterns in mTask is as simple as combining several calls
to an adapted version of the blink function from Example 9 with a parallel
combinator as shown in Example 16. The resulting task tree of a single blink
function call can then be visualized as in Fig. 8.

Writing Internet of Things Applications with Task Oriented Programming 23

Fig. 8. The task tree for the blink task.

1 blink :: Main (MTask v Bool) | mtask v

2 blink

3 = fun λblink = (λ(p, x, y)�

4 delay y

5 >>|. writeD p x

6 >>=. λx�blink (p, Not x, y))

7 In {main = blink (d1, true, lit 500)

8 .||. blink (d2, true, lit 300)

9 .||. blink (d3, true, lit 800)}

Example 16. An mTask program for blinking multple patterns. (blinkThread)

Exercise 3 (Blink the builtin LED with two patterns). Adapt the program in
Example 16 so that it blinks the builtin LED with two different patterns con-
currently. The times for the patterns are queried from the user.

The function signature for blink becomes (blinkThread)

blink :: Int Int � Main (MTask v Bool) | mtask v

You should enterInformation to get the information from the user (see
Sect. B.2).

3.6 Sequential Task Combinators

The second way of combining tasks is sequential combination in which tasks are
executed after each other. Similar to iTask, there is one Swiss army knife sequen-
tial combinator (>>*.) which is listed in Definition 14. The task value yielded
by the left-hand side is matched against all task continuations (Step v t u) on
the right-hand side, i.e. the right-hand side tasks observes the task value. When
one of the continuations yields a new task, the combined task continues with it,
pruning the left-hand side. All other sequential combinators are derived from the
step combinator as default class member instances. Their implementation can
therefore be overridden to provide a more efficient implementation. For example,
the >>=. combinator is very similar to the monadic bind, it continues if and only
if a stable value is yielded with the task resulting from the function. The >>~.

24 M. Lubbers et al.

combinator continues when any value, stable or unstable, is yielded. The >>|.

and >>.. combinators are variants that do not take the value into account of the
aforementioned combinators.

class step v where
(>>*.) infixl 1 :: (MTask v t) [Step v t u] � MTask v u | ...

(>>=.) infixl 0 :: (MTask v t) ((v t) � MTask v u) � MTask v u | ...

(>>=.) m f = m >>*. [IfStable (λ_�lit True) f]

(>>~.) infixl 0 :: (MTask v t) ((v t) � MTask v u) � MTask v u | ...

(>>~.) m f = m >>*. [IfValue (λ_�lit True) f]

(>>|.) infixl 0 :: (MTask v t) (MTask v u) � MTask v u | ...

(>>|.) m f = m >>=. λ_�f

(>>..) infixl 0 :: (MTask v t) (MTask v u) � MTask v u | ...

(>>..) m f = m >>~. λ_�f

:: Step v t u

= IfValue ((v t) � v Bool) ((v t) � MTask v u)

| IfStable ((v t) � v Bool) ((v t) � MTask v u)

| IfUnstable ((v t) � v Bool) ((v t) � MTask v u)

| IfNoValue (MTask v u)

| Always (MTask v u)

Definition 14. The mTask classes for sequential task combinators.

The following listing shows an example of a step in action. The readPinBin

function will produce an mTask task that will classify the value of an analog
pin into four bins. It also shows how the nature of embedding allows the host
language to be used as a macro language.

readPinBin :: Main (MTask v Int) | mtask v

readPinBin = {main = readA A2 >>*.

[IfValue (λx�x <. lim) λ_�rtrn (lit bin)

\\ lim�[64,128,192,256]

& bin�[0..]]}

Example 17. An example task using sequential combinators.

3.7 Shared Data Source

In mTask it is also possible to share data between tasks type safely using SDSs.
Similar to functions, SDSs can only be defined at the top level.

The sds class contains the function for defining and accessing SDSs. With the
sds construction function, local SDSs can be defined that are typed by functions
in the host language to assure type safety. The other functions in the class are
for creating get and set tasks. The getSds returns a task that constantly emits
the value of the SDS as an unstable task value. setSds writes the given value to
the task and re-emits it as a stable task value when it is done.

Writing Internet of Things Applications with Task Oriented Programming 25

Definition 18 and Example 15 present the definitions and an example. The
artificial example shows a task that mirrors a pin value to another pin using an
SDS.

:: Sds a

class sds v where
sds :: ((v (Sds t)) � In t (Main (MTask v u)))

� Main (MTask v u) | type t & type u

getSds :: (v (Sds t)) � MTask v t | type t

setSds :: (v (Sds t)) (v t) � MTask v t | type t

Definition 15. The mTask class for SDS tasks.

localvar :: Main (MTask v ()) | mtask v

localvar = sds λx=42 In {main = rpeat (readA D13 >>~. setSds x)

.||. rpeat (getSds x >>~. writeD D1)}

Example 18. An example mTask task using SDSs.

3.8 Lifted Shared Data Sources

The liftsds class is defined to allow iTask SDSs to be accessed from within
mTask tasks. The function has a similar type as sds and creates an mTask SDS
from an iTask SDS so that it can be accessed using the class functions from the
sds class. Definition 16 and Example 19 show an example of this where an iTask
SDS is used to control an LED on a device. When used, the server automatically
notifies the device if the SDS is written to and vice versa. The liftsds class only
makes sense in the context of actually executing backends. Therefore this class
is excluded from the mtask class collection.

:: Shared a // an iTasks SDS
class liftsds v | sds v where
liftsds :: ((v (Sds t)) � In (Shared t) (Main (MTask v u)))

� Main (MTask v u) | type t & type u

Definition 16. The mTask class for iTask SDSs.

lightSwitch :: (Shared Bool) � Main (MTask v ()) | mtask v & liftsds v

lightSwitch s = liftsds λx=s In {main = rpeat (getSds x >>~. writeD D13)}

Example 19. An example mTask task using iTask SDSs.

3.9 Interactive Blinking

Example 17 showed that Clean can be used as a macro language for mTask,
customizing the tasks using runtime values when needed. SDSs can also be used
to interact with the mTask tasks during execution. This can for example be
used to let the user control the blinking frequency. Example 20 shows how the
blinking frequency can be controlled by the user using SDSs.

26 M. Lubbers et al.

1 main :: Task Bool

2 main = enterDevice >>= λspec�withDevice spec

3 λdev�withShared 500 λdelayShare�
4 liftmTask (blink delayShare) dev

5 -|| updateSharedInformation [] delayShare <<@ Title ”Interval”
6 where
7 blink :: (Shared s Int) � Main (MTask v Bool) | mtask, liftsds v & RWShared s

8 blink delayShare =

9 liftsds λdelaysh=delayShare
10 In fun λblink = (λx�
11 writeD d2 x

12 >>|. getSds delaysh

13 >>~. delay

14 >>|. blink (Not x))

15 In {main = blink (lit True)}

Example 20. An mTask program for interactively changing the blinking frequency.
(blinkInteractive)

Line 3 shows the creation of the controlling iTask SDS using withShared (see
Sect. B.4).

Line 4 and 5 compromise the device function for withDevice. It lifts the blink

task to iTask and provides the user with an updateSharedInformation for the
delay SDS. The blink task itself is hardly modified. Line 9 lifts the SDS to an
mTask SDS using liftsds (see Subsect. 3.8). Note that the >>~. combinator is
used since the getSds task always yields an unstable value. The lifted SDS can
be accessed as usual using the getSds task (Line 12). The value this yields is
immediately fed to delay. The mTask machinery takes care of synchronising the
SDSs, when the user changes the delay, it is automatically reported to the device
as well.

Exercise 4 (Blink the builtin LED on demand). Adapt the program in Exam-
ple 20 so that the user can control whether the LED blinks or not.

The blink function will then have the following type signature
(blinkInteractive):

blink :: (Shared s Bool) � Main (MTask v Bool) | mtask, liftsds v & RWShared s

3.10 Peripherals

Interaction with the General Purpose Input/Output (GPIO) pins, and other
peripherals for that matter, is also captured in basic tasks. Some peripherals
need initialization parameters and they are defined on the top level using host
language functions similar to SDSs and functions. Typically from tasks reading
peripherals such as sensors an unstable value can be observed.

Writing Internet of Things Applications with Task Oriented Programming 27

General Purpose Input/Output. For each type of pin, there is a function
that creates a task that—given the pin—either reads or writes the pin. The class
for GPIO pin access is shown in Definition 17. The readA/readD task constantly
yields the value of the analog pin as an unstable task value. The writeA/writeD
writes the given value to the given pin once and returns the written value as a
stable task value. Note that the digital GPIO class is overloaded in the type of
pin because analog pins can be used as digital ones as well.

class aio v where
readA :: (v APin) � MTask v Int

writeA :: (v APin) (v Int) � MTask v Int

class dio p v | pin p where
readD :: (v p) � MTask v Bool

writeD :: (v p) (v Bool) � MTask v Bool

:: Pin = AnalogPin APin | DigitalPin DPin

class pin p :: p � Pin | type p

instance pin APin, DPin

Definition 17. The mTask classes for GPIO tasks.

Peripherals. All sensors have the same general structure in their classes and
to illustrate this, the Digital Humidity and Temperature sensor (DHT) and
LED matrix are shown. Using the DHT function, the device can be initialized
with the correct parameters and used safely within the task. The temperature

and humidity task respectively query the temperature and the relative humidity
from the sensor and yield it as an unstable task value. This interface matches
the C++ interface very closely but the semantics have been transformed to be
suitable as a task. Note that this class is not part of the mtask class collection
and needs to be added as a separate constraint. At the time of writing, mTask
supports in a similar fashion DHTs, LED matrices, ambient light sensors, passive
infrared sensors, sound level sensors and air quality sensors.

:: DHT

:: DHTtype = DHT11 | DHT21 | DHT22

class dht v where
DHT :: p DHTtype ((v DHT) � Main (v b)) � Main (v b) | pin p & ...

temperature :: (v DHT) � MTask v Real

humidity :: (v DHT) � MTask v Real

Definition 18. The mTask classes for the DHT.

:: LEDMatrix

class LEDMatrix v where
ledmatrix :: DPin DPin ((v LEDMatrix) � Main (v b)) � Main (v b) | type b

LMDot :: (v LEDMatrix) (v Int) (v Int) (v Bool) � MTask v ()

28 M. Lubbers et al.

LMIntensity :: (v LEDMatrix) (v Int) � MTask v ()

LMClear :: (v LEDMatrix) � MTask v ()

LMDisplay :: (v LEDMatrix) � MTask v ()

Definition 19. The mTask classes for the LED matrix.

4 IoT applications with TOP

The following subsections are a hands-on introduction to writing more complex
applications in mTask and iTask. Both mTask and iTask are hosted in Clean
which has a similar syntax to Haskell. Peter et al. provide a concise overview of
the syntactical differences [1]. The skeletons for the exercises are listed between
brackets and can be found in the mTask/cefp19 directory of the distribution3.
Section C contains detailed setup instructions. Solutions for all exercises are
available in Sect. D.

4.1 Hardware and Client

For the examples we use the WEMOS LOLIN D1 mini4 (Fig. 9). The D1 mini is
an ESP8266 based prototyping board containing 1 analog and 11 digital GPIO
pins and a micro USB connection for programming and debugging. It can be
programmed using MicroPython, Arduino or LUA.

It is assumed that they are preinstalled with the mTask RTS and that it has
the correct shields attached. Details on how to compile and run the mTask RTS
on the device can be found in Sect. C.4.

The devices are installed on a three-way splitter and setup with an OLED,
SHT and Matrix LED shield. The OLED shield is used for displaying runtime
during operation. When booting up, it shows the WiFi status and when con-
nected it shows the IP address that one should enter in the device selection
screen of the server application. Furthermore, the OLED screen contains two
buttons that can be accessed from within mTask to get some kind of feedback
from the user. The SHT shield houses a DHT sensor that can be accessed from
mTask as well. The LED matrix can be accessed through mTask and can be
used to display information.

4.2 Temperature

Reading the ambient temperature off the device is achieved using the DHT sensor
connected as a shield to the main board. The DHT shield contains an SHT30
sensor. When queried via I2C, the chip measures the temperature with a ±0.4 ◦C
accuracy and the relative humidity with a ±2% accuracy.

It is accessed using the mTask dht class (see Subsect. 3.10). For example,
the following program will show the current temperature and humidity to the
3 https://ftp.cs.ru.nl/Clean/CEFP19/.
4 https://wiki.wemos.cc/products:d1:d1 mini.

https://ftp.cs.ru.nl/Clean/CEFP19/
https://wiki.wemos.cc/products:d1:d1_mini

Writing Internet of Things Applications with Task Oriented Programming 29

Fig. 9. The mainboard of the WEMOS LOLIN D1 mini.

user. The yielded values from the temperature and humidity tasks are in tenths
of degrees and percents respectively instead of a floating point value. Therefore,
a lens is applied on the editor to transform them into floating point values.

1 main = enterDevice >>= λspec�withDevice spec

2 λdev�liftmTask temp dev >&> viewSharedInformation () [ViewAs templens]

3 where
4 templens = maybe (0.0, 0.0) λ(t, h)�(toReal t / 10.0, toReal h / 10.0)

5
6 temp :: Main (MTask v (Int, Int)) | mtask, dht v

7 temp = DHT D4 DHT22 λdht�{main=temperature dht .&&. humidity dht}

Example 21. An mTask program for measuring the temperature and humidity.
(tempSimple)

Exercise 5 (Show the temperature via an SDS). Modify the application so that
it writes the temperature in an SDS. Writing the temperature constantly in the
SDS creates a lot of network traffic. Therefore it is advised to create a function
that will memorize the old temperature and only write the new temperature
when it is different from the old one. Use the following template (tempSds):

main = enterDevice >>= λspec�withDevice spec

λdev�withShared 0 λsh�
liftmTask (temp sh) dev

-|| viewSharedInformation ”Temperature” [ViewAs templens] sh

where
templens t = toReal t / 10.0

temp :: (Shared s Int) � Main (MTask v ()) | mtask, dht, liftsds v & RWShared s

With the writeD functions from mTask (see Subsect. 3.10) the digital GPIO
pins can be controlled. Imagine a heater attached to a GPIO pin that turns on
when the temperature is below a given limit.

30 M. Lubbers et al.

Exercise 6 (Simple thermostat). Modify the previous exercise so that a thermo-
stat is mimicked. The user enters a temperature target and the LED will turn on
when the temperature is below the target. To quickly change the temperature
measure, blow some air in the sensor. Use the following template (thermostat):

main = enterDevice >>= λspec�withDevice spec

λdev�withShared 0 λtempShare�
withShared 250 λtargetShare�
liftmTask (temp targetShare tempShare) dev

-|| viewSharedInformation ”Temperature” [ViewAs tempfro] tempShare

-|| updateSharedInformation ”Target” [UpdateAs tempfro λ_�tempto] targetShare

where
tempfro t = toReal t / 10.0

tempto t = toInt t * 10

temp :: (Shared s1 Int) (Shared s2 Int)

� Main (MTask v ()) | mtask, dht, liftsds v & RWShared s1 & RWShared s2

...

4.3 LED matrix

Fig. 10. The Answer printed on the LED matrix.

The LED matrix shield can be used to display information during the execu-
tion of the program. Every LED of the 8×8 matrix can be controlled individually
using the functions from Subsect. 3.10. The program in Example 22 shows an
iTask program for controlling the LED matrix. It allows toggling the state of a
given LED and clear the display.

To present the user with a nice interface (Fig. 11), a type is created that
houses the status of an LED in the matrix. The main program is very similar to
previous programs, only differing in the device part. The >^* combinator is a spe-
cial kind of parallel combinator that—instead of stepping to a continuation—
forks off a continuation. This allows the user to schedule many tasks in parallel.
Continuations can be triggered by values or by actions. In this example, only
actions are used that are always enabled. One action is added for every operation
and when the user presses the button, the according task is sent to the device.

Writing Internet of Things Applications with Task Oriented Programming 31

Fig. 11. The user interface for the LED matrix application

The toggle and clear tasks are self-explanatory and only use LED matrix mTask
functions (see Definition 19).

1 :: Ledstatus = {x :: Int, y :: Int, status :: Bool}

2 derive class iTask Ledstatus

3
4 main = enterDevice >>= λspec�withDevice spec

5 λdev� viewDevice dev >^*

6 [OnAction (Action ”Toggle”) (always (

7 enterInformation () [] >>= λs�liftmTask (toggle s) dev

8 >>~ viewInformation ”done” []))

9 ,OnAction (Action ”Clear”) (always (

10 liftmTask clear dev

11 >>~ viewInformation ”done” []))

12] @! ()

13 where
14 dot lm s = LMDot lm (lit s.x) (lit s.y) (lit s.status)

15
16 toggle :: Ledstatus � Main (MTask v ()) | mtask, LEDMatrix v

17 toggle s = ledmatrix D5 D7 λlm�{main=dot lm s >>|. LMDisplay lm}

18
19 clear :: Main (MTask v ()) | mtask, LEDMatrix v

20 clear = ledmatrix D5 D7 λlm�{main=LMClear lm >>|. LMDisplay lm}

Example 22. An interactive mTask program for interacting with the LED matrix.
(matrixBlink)

Toggling the LEDs in the matrix using the given tasks is very user intensive
because for every action, a task needs to be launched. Extend the program so
that there is a new button for printing the answer to the question of life, universe

32 M. Lubbers et al.

and everything5 as seen in Fig. 10. There are two general approaches possible
that are presented in Assignment 7 and 8.

Exercise 7 (LED Matrix 42 using iTask). Write 42 to the LED matrix using
only the toggle and the clear mTask tasks and define all other logic in iTask
You can add the continuations as follows (matrixBlink):

OnAction (Action ”42”) (always (iTask42 dev))

The iTask task should then have the following type signature:

iTask42 :: MTDevice � Task ()

In this situation, a whole bunch of mTask tasks are sent to the device at
once. This strains the communication channels greatly and is a risk for running
out of memory. It is also possible to define printing 42 in solely in mTask. This
creates one bigger task that is sent at once.

Exercise 8 (LED Matrix 42 using mTask). Write 42 to the LED matrix as a
single mTask task. This results in the following continuation (matrixBlink):

OnAction (Action ”42mtask”) (always (liftmTask mTask42 dev))

The mTask task should then have the following type signature:

mTask42 :: Main (MTask v ()) | mtask, LEDMatrix v

4.4 Temperature Plotter

This final exercise is about creating temperature plotter with an alarm mode.
This application uses all components of the device and communicates with the
server extensively. I.e. the LED matrix to show the plot, the OLED shield buttons
to toggle the alarm, the builtin LED to show the alarm status and the DHT shield
to measure the temperature. Figure 12a shows an implementation in action.
Figure 12b shows the user interface for it.

Exercise 9 (Temperature plotter). There are several tasks that the plotter needs
to do at the same time

Plot The main task of the program is to plot the temperature over time on the
LED matrix. The range of the graph is specified in the limitsShare and may
be changed by the user.

Report The temperature has to be reported to the server every interval. This is
achieved by writing the current temperature in the lifted tempShare SDS. The
server is automatically notified and the user interface will update accordingly
Preferably it only writes to the SDS when the temperature has changed.

5 The exact question is left as an exercise to the reader but the answer is 42 [2].

Writing Internet of Things Applications with Task Oriented Programming 33

Fig. 12. The reference implementation of the plotter in action

Set alarm When the temperature is higher than a certain limit, the builtin
LED should turn on. The current limit is always available in the lifted
alarmShare.

Unset alarm When the alarm went off, the user should be able to disable it
by pressing the A button that resides on the OLED shield.

The exercise is quite elaborate so please keep in mind the following tips:

– Start with the preamble and a skeleton for the tasks.
The preamble should at least lift the SDSs and define the peripherals (LED
matrix and DHT).

– Use functions for state as much as possible.
Especially for measuring the temperature, you do not want to write to the
temperature SDS every time you measure. Therefore, keep track of the old
temperature using a function or alternatively a local SDS.

– Write functions for routines that you do multiple times.
For example, clearing a row on the LED matrix is a tedious job and has to
be done every cycle. Simplify it by either writing it as a Clean function that
generates all the code or an mTask function that is called.

Create the plotter using the following template (plotter):

BUILTIN_LED :== d3

ABUTTON :== d4

main = enterDevice >>= λspec�withDevice spec

λdev�withShared (220, 250) λlimitsShare�
withShared 1000 λwaitShare�
withShared 0 λtempShare�
withShared 250 λalarmShare�
liftmTask (temp limitsShare waitShare tempShare alarmShare) dev

-|| updateSharedInformation ”Graph Min/Max (C, C)” [] limitsShare

-|| updateSharedInformation ”Granularity (ms)” [updater] waitShare

-|| viewSharedInformation ”Temperature (C)” [ViewAs tempfro] tempShare

-|| updateSharedInformation ”Alarm (C)” [UpdateAs tempfro λ_�tempto] alarmShare

where

34 M. Lubbers et al.

tempfro t = toReal t / 10.0

tempto t = toInt t * 10

updater :: UpdateOption Int Int

updater = UpdateUsing (λx�(x, x)) (const fst)

(panel2

(slider <<@ minAttr 5 <<@ maxAttr 10000)

(integerField <<@ enabledAttr False))

temp :: (Shared s1 (Int, Int)) (Shared s2 Int) (Shared s3 Int) (Shared s4 Int)

� Main (MTask v ())

| mtask, dht, liftsds, LEDMatrix v

& RWShared s1 & RWShared s2 & RWShared s3 & RWShared s4

temp limitsShare delayShare tempShare alarmShare =

...

5 Related Work

The novelties of the mTask system can be compared to existing systems in
several categories. It is an interpreted (Subsect. 5.1) TOP (Subsect. 5.2) lan-
guage that may seem similar at first glance to Functional Reactive Programming
(FRP) (Subsect. 5.3), it is implemented in a functional language (Subsect. 5.4)
and due to the execution semantics, multithreading is automatically supported
(Subsect. 5.5).

5.1 Interpretation

There are a myriad of interpreted programming languages available for some of
the bigger devices. For example, for the popular ESP8266 chip there are ports
of MicroPython, LUA, Basic, JavaScript and Lisp. All of these languages except
the Lisp dialect uLisp (see Subsect. 5.4) are imperative and do not support
multithreading out of the box. They lay pretty hefty constraints on the memory
and as a result do not work on smaller MCUs. A interpretation solution for the
tiniest devices is Firmata, a protocol for remotely controlling the MCU and using
a server as the interpreter host [44]. Grebe et al. wrapped this in a remote monad
for integration with Haskell that allowed imperative code to be interpreted on
the MCUs [18]. Later this system was extended to support multithreading as
well, stepping away from Firmata as the basis and using their own RTS [19].
It differs from our approach because continuation points need to be defined by
hand there is no automatic safe data communication.

5.2 Task Oriented Programming

TOP as a paradigm with has been proven to be effective for implementing dis-
tributed, multi-user applications in many domains. Examples are conference

Writing Internet of Things Applications with Task Oriented Programming 35

management [36], coastal protection [27], Command & Control (C2) [8], inci-
dent coordination [28], crisis management [24] and telemedicine [48]. In general,
TOP results in a higher maintainability, a high separation of concerns and more
effective handling of interruptions of workflow. IoT applications contain a dis-
tributed and multi-user component, but the software on the device is mostly
follows multiple loosely dependent workflows A TOP language µTasks devel-
oped by Piers is specialized for embedded systems. It is a non-distributed TOP
EDSL hosted in Haskell designed for embedded systems such as payment ter-
minals [35]. They showed that applications tend to be able to cope well with
interruptions and be more maintainable. However, the hardware requirements
for running the standard Haskell system are high.

5.3 Functional Reactive Programming

The TOP paradigm is often compared to FRP and while they appear to be
similar—they both process events—, in fact they are very different. FRP was
introduced by Elliot and Hudak [15]. The paradigm strives to make modelling
systems safer, more efficient, composable [5]. The core concepts are behaviours
and events. A behaviour is a value that varies over time. Events are happenings
in the real world and can trigger behaviours. Events and behaviours may be
combined using combinators. Stutterheim et al. showed that FRP concepts such
as events, behaviours and signal transformers can be expressed in TOP using
tasks and SDSs as well [45].

The way FRP, and for that matter TOP, systems are programmed stays close
to the design when the domain matches suits the paradigm. The IoT domain
seems to suit this style of programming very well in just the device layer6 but
also for entire IoT systems.

For example, Potato is an FRP language for building entire IoT systems
using powerful devices such as the Raspberry Pi leveraging the Erlang Virtual
Machine (VM) [47]. It requires client devices to be able to run the Erlang VM
which makes it unsuitable for low memory environments. The authors state
that it should be possible to create lesser demanding node software using other
languages such as C or Java but this is future work.

The emfrp language compiles a FRP specification for a microcontroller to C
code [41]. The Input/Output (IO) part, the bodies of some functions, still need
to be implemented. These IO functions can then be used as signals and combined
as in any FRP language. Due to the compilation to C it is possible to run emfrp
programs on tiny computers. However, the tasks are not interpreted and there
is no communication with a server.

Juniper [21] and arduino-copilot [22] are FRP language for creating Arduino
programs by compiling the specification to C++. The languages do not contain
built-in interaction with the server nor do they support interpretation.

6 While a bit out of scope, it deserves mention that for SN, FRP and stream based
approaches are popular as well [46].

36 M. Lubbers et al.

5.4 Functional Programming

Haenisch showed that there are major benefits to using functional languages
for IoT applications. They showed that using function languages increased the
security and maintainability of the applications [20]. Traditional implementa-
tions of general purpose functional languages have high memory requirements
rendering them unusable for tiny computers. There have been many efforts to
create a general purpose functional language that does fit in small memory envi-
ronments, albeit with some concessions. For example, there has been a history
of creating tiny Scheme implementations for specific microcontrollers. It started
with BIT [14] that only required 64KiB of memory, followed by PICBIT [16] and
PICOBIT [43] that lowered the memory requirements even more. More recently,
Suchocki et al. created Microscheme, a functional language targeting Arduino
compatible microcontrollers. The *BIT languages all compile to assembly while
Microscheme compiles to C++, heavily supported by C++ lambdas available
even on Arduino AVR targets. An interpreted Lisp implementation called uLisp
also exists that runs on microcontrollers with as small as the Arduino UNO [25].

5.5 Multitasking

Applications for tiny computers are often parallel in nature. Tasks like reading
sensors, watching input devices, operating actuators and maintaining communi-
cation are often loosly dependent on each other and are preferably executed in
parallel. MCUs often do not benefit from an OS due to memory and processing
constraints. Therefore, writing multitasking applications in an imperative lan-
guage is possible but the tasks have to be interleaved by hand [17]. This results
in hard to maintain, error prone and unscalable spaghetti code.

There are many solutions to overcome this problem in imperative languages.
If the host language is a functional language (e.g. the aforementioned Scheme

variants) multitasking can be achieved without this burden relatively easy using
continuation style multiprocessing [49]. Writing in this style is complicated and
converting an existing program in this Continuation Passing Style (CPS) results
in relatively large programs. Furthermore, there is no built-in thread-safe com-
munication possible between the tasks. A TOP or FRP based language benefits
even more because the programmer is not required to explicitly define continu-
ation points.

Regular preemptive multithreading is too memory intensive for smaller
microcontrollers and therefore not suitable. Manual interleaving of imperative
code can be automated to certain extents. Solutions often require an Real-Time
Operating System (RTOS), have a high memory requirement, do not support
local variables, no thread-safe shared memory, no composition or no events as
described in Table 1 adapted from Santanna et al. [40, p. 12]. The table compares
the solutions in the relevant categories with mTask.

Writing Internet of Things Applications with Task Oriented Programming 37

Table 1. An overview of imperative multithreading solutions for tiny computers with
their relevant characteristics. The characteristics are: sequential execution, local vari-
able support, parallel composition, deterministic execution, bounded execution and
safe shared memory (Adapted from Santanna et al. [40, p. 12]).

Language Complexity Safety

Name Year Seq. ex. Loc. var. Par. comp. Det. ex. Bound. ex. Safe. mem.

Preemptive many ✓ ✓ rt

nesC 2003 ✓ async

OSM 2005 ✓ ✓

Protothreads 2006 ✓ ✓

TinyThreads 2006 ✓ ✓ ✓

Sol 2007 ✓ ✓ ✓ ✓

FlowTask 2011 ✓ ✓

Ocram 2013 ✓ ✓ ✓

Céu 2013 ✓ ✓ ✓ ✓ ✓ ✓

mTask 2018 ✓ ✓ ✓ ✓ ✓*a ✓b

a Only for tasks, not for expressions.
b Using SDSs.

5.6 mTask history

A first throw at a class-based shallowly EDSL for MCUs was made by Pieter
Koopman and Rinus Plasmijer in 2016 [38]. The language was called Arduino
Domain Specific Language (ARDSL) and offered a type safe interface to Arduino
C++ dialect. A C++ code generation backend was available together with an
iTask simulation backend. There was no support for tasks or even functions.
Some time later an unpublished extended version was created that allowed the
creation of imperative tasks, SDSs and the usage of functions. The name then
changed from ARDSL to mTask.

Mart Lubbers extended this in his Master’s Thesis by adding integration
with iTask and a bytecode compiler to the language [31]. SDS in mTask could
be accessed on the iTask server. In this way, entire IoT systems could be pro-
grammed from a single source. However, this version used a simplified version of
mTask without functions. This was later improved upon by creating a simplified
interface where SDSs from iTask could be used in mTask and the other way
around [32]. It was shown by Matheus Amazonas Cabral de Andrade that it was
possible to build real-life IoT systems with this integration [4].

The mTask language as it is now was introduced in 2018 [26]. This paper
updated the language to support functions, tasks and SDSs but still compiled
to C++ Arduino code. Later the bytecode compiler and iTask integration was
added to the language [33]. Moreover, it was shown that it is very intuitive to
write MCU applications in a TOP language [30]. One reason for this is that a
lot of design patterns that are difficult using standard means are for free in TOP
(e.g. multithreading). Furthermore, Erin van der Veen has been working on a
green computer analysis and is working on support for bounded data types.

38 M. Lubbers et al.

6 Discussion

These lecture notes give a complete introduction to the design and use of the
mTask system. Furthermore it provides a hands-on tutorial for writing IoT appli-
cations with it.

The number of IoT devices is increasing evermore but programming them is
as difficult and error-prone as it ever was. Most programs written for IoT devices
are collections of loosely dependent parallel tasks which makes programming the
devices using TOP very natural. The mTask language is a multi-backend device-
agnostic TOP language specialized for IoT tasks. It contains a backend that will
compile the program to bytecode that is then sent to the device. The backend
is fully integrated in iTask which means that tasks that are sent to the device
act as regular iTask tasks, i.e. their task value can be observed and they can
interact with SDSs on the server. There is no impedance problem in the mTask
ecosystem since all code is written in a single language, albeit in two EDSLs.
The bytecode generation backend of mTask—and iTask for that matter—make
heavy use of generic programming techniques to relieve the programmer of the
burden to hand-craft specifics such as the user interface, the communication pro-
tocol or serialization. The execution semantics of the tasks makes them similar
to lightweight threads—for which there is typically no support on microcomput-
ers due to the lack of an OS. This allows programmers to create multitasking
applications just by using parallel combinators. Reasonably complex IoT appli-
cations spanning all layers of IoT can be written in a concise and safe way using
the mTask system.

Future work may be practical topics such as extending the number of sup-
ported platforms or extending the language with more features. For example,
adding lenses and combinators to SDSs may improve the expressiveness of the
language. Also, type errors in the DSL are presented to the programmer as type
errors in the host language. As a result of class based shallow embedding, the
type errors are quite complicated. It would be interesting to see whether tech-
niques for mitigating this problem can be applied to mTask as well [42]. The
execution model of the mTask system lets the server send arbitrary code to the
device to be executed. This may pose a problem if the server, the communication
technique is not to be trusted or can be snooped on. At the time of writing a
student is working on analysing this problem in his thesis. Finally it would be
interesting to allow the user instead of the programmer to write mTask tasks
from scratch. This can be achieved by creating a type-safe editor in iTask that
constructs tasks.

Acknowledgements. This paper constitutes the adapted lecture notes for the hands-
on course presented at the Central European Functional Programming School (CEFP)
in Budapest between 17 and 21 June 2019. This research is partly funded by the Royal
Netherlands Navy. Furthermore, we would like to thank the reviewers for their valuable
comments.

Writing Internet of Things Applications with Task Oriented Programming 39

A Embedded Domain Specific Language Techniques

An EDSL is a language embedded in a host language created for a specific
domain [23]. EDSLs can have one or more backends or views. Commonly used
views are pretty printing, compiling, simulating, verifying and proving the pro-
gram. There are several techniques available for creating EDSLs. They all have
their own advantages and disadvantages in terms of extendability, type safety
and view support. In the following subsections each of the main techniques are
briefly explained. An example expression DSL is used as a running example.

A.1 Deep Embedding

A deeply EDSL is a language represented as data in the host language. Views
are functions that transform something to the datatype or the other way around.
Definition 20 shows an example implementation for the expression DSL.

:: Expr

= LitI Int

| LitB Bool

| Var String

| Plus Expr Expr

| Eq Expr Expr

Definition 20. A deeply embedded expression DSL.

Deep embedding has the advantage that it is easy to build and views are
easy to add. On the downside, the expressions created with this language are not
necessarily type-safe. In the given language it is possible to create an expression
such as Plus (LitI 4)(LitB True) that adds a boolean to an integer. Extending
the Algebraic Datatype (ADT) is easy and convenient but extending the views
accordingly is tedious since it has to be done individually for all views.

The first downside of this type of EDSL can be overcome by using General-
ized ADTs (GADTs) [11]. Example 21 shows the same language, but type-safe
with a GADT. GADTs are not supported in the current version of Clean and
therefore the syntax is hypothetical. However, it has been shown that GADTs
can be simulated using bimaps or projection pairs [11]. Unfortunately the lack
of extendability remains a problem. If a language construct is added, no compile
time guarantee can be given that all views support it.

:: Expr a

= Lit a � Expr a

|∃e: Var String � Expr e

| Plus (Expr Int) (Expr Int) � Expr Int

|∃e: Eq (Expr e) (Expr e) � Expr Bool & == e

Definition 21. A deeply embedded expression DSL using GADTs.

40 M. Lubbers et al.

A.2 Shallow Embedding

In a shallowly EDSL all language constructs are expressed as functions in the host
language. An evaluator view for the example language then can be implemented
as the code shown in Definition 22. Note that much of the internals of the
language can be hidden using monads.

:: Env = ... // Some environment
:: DSL a :== (Env � a)

Lit :: a � DSL a

Lit x = λe�x

Var :: String � DSL Int

Var i = λe�retrEnv e i

Plus :: (DSL Int) (DSL Int) � DSL Int

Plus x y = λe�x e + y e

Eq :: (DSL a) (DSL a) � DSL Bool | == a

Eq x y = λe�x e == y e

Definition 22. A minimal shallow EDSL.

The advantage of shallowly embedding a language in a host language is its
extendability. It is very easy to add functionality because the compile time checks
of the host language guarantee whether or not the functionality is available when
used. Moreover, the language is type safe as it is directly typed in the host
language, i.e. Lit True +. Lit 4 is rejected.

The downside of this method is extending the language with views. It is
nearly impossible to add views to a shallowly embedded language. The only way
of achieving this is by reimplementing all functions so that they run all backends
at the same time. This will mean that every component will have to implement
all views rendering it slow for multiple views and complex to implement.

B iTask reference

This appendix gives a brief overview of iTask. It is by far extensive but should
cover all iTask constructions required for the exercises. Some examples from [45]
can be found in Sect. B.6.

B.1 Types

The class collection iTask is used throughout the library to make sure the types
used have all the required machinery for iTask. This class collection contains
only generic functions that can automatically be derived for any first order user
defined type. Example 23 shows how to derive this class.

Writing Internet of Things Applications with Task Oriented Programming 41

:: MyName =

{ firstName :: String

, lastName :: String

}

derive class iTask MyName

Example 23. Derive the iTask class for a user defined type.

B.2 Editors

The most common basic tasks are editors for entering, viewing or update infor-
mation. For the three basic editors there are three corresponding functions to
create tasks as seen in Definition 23.

enterInformation :: d [EnterOption m] � Task m | iTask m & toPrompt d

updateInformation :: d [UpdateOption m m] m � Task m | iTask m & toPrompt d

viewInformation :: d [ViewOption m] m � Task m | iTask m & toPrompt d

Definition 23. The definitions of editors in iTask.

The first argument of the function is something implementing toPrompt.
There are toPrompt instances for at least String—for a description, (String,

String)—for a title and a description and ()—for no description.
The second argument is a list of options for modifying the editor behaviour.

This list is either empty or contains exactly one item. The types for the options
are shown in Definition 24. Simple lenses are created using the *As constructor.
If an entirely different editor must be used, the *Using constructors can be used.

:: ViewOption a

=∃v: ViewAs (a � v) & iTask v

|∃v: ViewUsing (a � v) (Editor v) & iTask v

:: EnterOption a

=∃v: EnterAs (v � a) & iTask v

|∃v: EnterUsing (v � a) (Editor v) & iTask v

:: UpdateOption a b

=∃v: UpdateAs (a � v) (a v � b) & iTask v

|∃v: UpdateUsing (a � v) (a v � b) (Editor v) & iTask v

Definition 24. The definitions of editors in iTask.

Example 24 shows an example of such an editor using a lens. The user enters
a temperature in degrees Celsius and the editor automatically converts the result
to a temperature in Fahrenheit which is in turn the observed task value.

tempFahrenheit :: Task Real

tempFahrenheit = enterInformation ”Enter the temperature in degrees Celsius”
[EnterUsing λc�c*(9.0/5.0) + 32]

Example 24. An example of an editor that converts the entered value to a different
unit in iTask.

42 M. Lubbers et al.

B.3 Task Combinators

There are two flavours of task combinators, namely parallel and sequential that
are all specializations of their Swiss-army knife combinator step and parallel

respectively.

Parallel Combinators. The two main parallel combinators are the conjunction
and disjunction combinators shown in Definition 25.

The -&&- has semantics similar to the mTask .&&. combinator. The -||- has
the same semantics as the mTask .||. combinator. The -|| and ||- executes
both tasks in parallel but only looks at the value of the left task or the right
task respectively.

(-&&-) infixr 4 :: (Task a) (Task b) � Task (a,b) | iTask a & iTask b

(-||) infixl 3 :: (Task a) (Task b) � Task a | iTask a & iTask b

(||-) infixr 3 :: (Task a) (Task b) � Task b | iTask a & iTask b

(-||-) infixr 3 :: (Task a) (Task a) � Task a | iTask a

Definition 25. The definitions of parallel combinators in iTask.

Example 25 shows an example of a task that, using the disjunction combi-
nator, asks the user for a temperature either in degrees Celsius or Fahrenheit
using the task from Example 24. Whichever editor the user edits last, will be
the observable task value.

askTemp :: Task Real

askTemp = enterInformation ”Temperature in Fahrenheit” []

-||- tempFahrenheit

Example 25. An example of parallel task combinators in iTask.

Sequential Combinators. All sequential combinators are derived from the >>*

combinator as shown in Definition 26. With this combinator, the task value of
the left-hand side can be observed and execution continues with the right-hand
side if one of the continuations yields a Just (Task b). The listing also shows
many utility functions for defining task steps.

(>>*) infixl 1 :: (Task a) [TaskCont a (Task b)] � Task b | iTask a & ...

:: TaskCont a b

= OnValue ((TaskValue a) � Maybe b)

| OnAction Action ((TaskValue a) � Maybe b)

:: Action = Action String //button

always :: b (TaskValue a) � Maybe b

never :: b (TaskValue a) � Maybe b

hasValue :: (a � b) (TaskValue a) � Maybe b

ifStable :: (a � b) (TaskValue a) � Maybe b

ifUnstable :: (a � b) (TaskValue a) � Maybe b

Writing Internet of Things Applications with Task Oriented Programming 43

ifValue :: (a � Bool) (a � b) (TaskValue a) � Maybe b

ifCond :: Bool b (TaskValue a) � Maybe b

withoutValue :: (Maybe b) (TaskValue a) � Maybe b

withValue :: (a � Maybe b) (TaskValue a) � Maybe b

withStable :: (a � Maybe b) (TaskValue a) � Maybe b

withUnstable :: (a � Maybe b) (TaskValue a) � Maybe b

Definition 26. The definitions of sequential combinators in iTask.

Example 26 shows an example of the step combinator that forces the user
to enter a number between 0 and 10. If the user enters a different value, the
continue button will remain disabled.

numberBetween0and10 :: Task Int

numberBetween0and10 = enterInformation ”Enter a number between 0 and 10” []

>>* [OnAction (Action ”Continue”) $ ifValue (λi�i <= 10 && i >= 0) $ λi�return i]

Example 26. An example of parallel task combinators in iTask.

Derived from the >>* combinator are all other sequential combinators such
as the ones listed in Definition 27 with their respective documentation.

// Combines two tasks sequentially. The first task is executed first.
// When it has a value the user may continue to the second task, which is
// executed with the result of the first task as parameter.
// If the first task becomes stable, the second task is started automatically.
(>>=) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two tasks sequentially but explicitly waits for user input to
// confirm the completion of
(>>!) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two tasks sequentially but continues only when the first task has a
// stable value.
(>>-) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two tasks sequentially but continues only when the first task has a
// stable value.
(>-|) infixl 1

(>-|) x y :== x >>- λ_ � y

// Combines two tasks sequentially but continues only when the first task has a
// value.
(>>~) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two tasks sequentially just as >>=, but the result of the second
// task is disregarded.
(>>)̂ infixl 1 :: (Task a) (Task b) � Task a| iTask a & iTask b

// Execute the list of tasks one after a¬her.
sequence :: [Task a] � Task [a] | iTask a

Definition 27. The definitions of derived sequential combinators in iTask.

44 M. Lubbers et al.

B.4 Shared Data Sources

Data can be observer via task values but for unrelated tasks to share data,
SDSs are used. There is an publish subscribe system powering the SDS system
that makes sure tasks are only rewritten when activity has taken place in the
SDS. There are many types of SDSs such as lenses, sources and combinators. As
long as they implement the RWShared class collection, you can use them as an
SDS. Definition 28 shows two methods for creating an SDS, they both yield a
SimpleSDSLens but they can be used by any task using an SDS.

sharedStore :: String a � SimpleSDSLens a | iTask a

withShared :: b ((SimpleSDSLens b) � Task a) � Task a | iTask a & iTask b

Definition 28. The definitions for SDSs in iTask.

With the sharedStore function, a named SDS can be created that acts as a
well-typed global variable. withShared is used to create an anonymous local SDS.

There are four major operations that can be done on SDSs that are all atomic
(see Definition 29). get fetches the value from the SDS and yields it as a stable
value. set writes the given value to the SDS and yields it as a stable value. upd
applies an update function to the SDS and returns the written value as a stable
value. watch continuously emits the value of the SDS as an unstable task value.
The implementation uses a publish subscribe system to evaluate the watch task
only when the value of the SDS changes.

get :: (sds () r w) � Task r | iTask r & iTask w & RWShared sds

set :: w (sds () r w) � Task w | iTask r & iTask w & RWShared sds

upd :: (r � w) (sds () r w) � Task w | iTask r & iTask w & RWShared sds

watch :: (sds () r w) � Task r | iTask r & iTask w & RWShared sds

Definition 29. The definitions for SDS access tasks in iTask.

For all editors, there are shared variants available as shown in Definition 27.
This allows a user to interact with the SDS.

updateSharedInformation :: d [UpdateOption r w] (sds () r w) � Task r | ...

viewSharedInformation :: d [ViewOption r] (sds () r w) � Task r | ...

Definition 30. The definitions for SDS editor tasks in iTask.

sharedUpdate :: Task Int

sharedUpdate = withShared 42 λsharedInt�
updateSharedInformation ”Left” [] sharedInt

-||- updateSharedInformation ”Right” [] sharedInt

Example 27. An example of multiple tasks interacting with the same SDS in iTask.

B.5 Extra Task Combinators

Not all workflow patterns can be described using only the derived combinators.
Therefore, some other task combinators have been invented that are not truly
sequential nor truly parallel. Definition 31 shows some combinators that might
be useful in the exercises.

Writing Internet of Things Applications with Task Oriented Programming 45

//Feed the result of one task as read−only shared to a¬her
(>&>) infixl 1 :: (Task a) ((SDSLens () (Maybe a) ()) � Task b) � Task b | ...

// Sidestep combinator. This combinator has a similar signature as the >>∗
// combinator, but instead of moving forward to a next step, the selected step is
// executed in parallel with the first task. When the chosen task step becomes
// stable, it is removed and the actions are enabled again.
(>^*) infixl 1 :: (Task a) [TaskCont a (Task b)] � Task a | iTask a & iTask b

// Apply a function on the task value while retaining stability
(@) infixl 1 :: (Task a) (a � b) � Task b

// Map the task value to a constant value while retaining stability
(@) infixl 1 :: (Task a) b � Task b

// Repeats a task indefinitely
forever :: (Task a) � Task a | iTasks a

Definition 31. The definitions for hybrid combinators in iTask.

B.6 Examples

Some workflow task patterns can easily be created using the builtin combinator
as shown in Examples 28.

maybeCancel :: String (Task a) � Task (Maybe a) | iTask a

maybeCancel panic t = t >>*

[OnValue (ifStable (return o Just))

, OnAction (Action panic) (always (return Nothing))

]

:: Date //type from iTasks.Extensions.DateTime
currentDate :: SDSLens () Date () // Builtin SDS

waitForDate :: Date � Task Date

waitForDate d = viewSharedInformation (”Wait until” +++ toString d) [] currentDate

>>* [OnValue (ifValue (λnow � date < now) return)]

deadlineWith :: Date a (Task a) � Task a | iTask a

deadlineWith d a t = t -||- (waitForDate d >>| return a)

reminder :: Date String � Task ()

reminder d m = waitForDate d >>| viewInformation (”Reminder: please ” +++ m) [] ()

Example 28. Some workflow task patterns.

C How to Install

This section will give detailed instructions on how to install mTask on your
system. The distribution used also includes the example skeletons.

46 M. Lubbers et al.

C.1 Fetch the CEFP distribution

Download the CEFP version of mTask distribution for your operating system as
given in Table 2 and decompress the archive. The archives is all you need since
it contains a complete clean distribution. The windows version contains an IDE
and Clean Project Manager (cpm). Mac and Linux only have a project manager
called cpm.

Table 2. Download links for the CEFP builds of mTask.

OS Arch URL

Linux x64 https://ftp.cs.ru.nl/Clean/CEFP19/mtask-linux-x64.tar.gz

Requires GCC

Windows x64 https://ftp.cs.ru.nl/Clean/CEFP19/mtask-windows-x64.zip

MacOS x64 https://ftp.cs.ru.nl/Clean/CEFP19/mtask-macos-x64.tar.gz

Requires XCode

C.2 Setup

Linux. Assuming you uncompressed the archive in ~/mTask, run the following
commands in a terminal.

#Add the bin directory of the clean distribution to $PATH
echo ’export PATH=̃ /mTask/clean/bin:$PATH’ >> ~/.bashrc

#Correctly set CLEANHOME
echo ’export CLEANHOME=̃ /mTask/clean ’ >> ~/.bashrc

#Source it for your current session
source ~/.bashrc

Windows. You do not need to setup anything on windows. However, if you want
to use cpm as well, you need to add the ;C:\Users\frobnicator\mTask\clean
to your %PATH%7.

MacOS. Assuming you uncompressed the archive in ~/mTask, run the following
commands in a terminal.

#Add the bin directory of the clean distribution to $PATH
echo ’export PATH=̃ /mTask/clean/bin:$PATH’ >> ~/.bash_profile

#Correctly set CLEANHOME
echo ’export CLEANHOME=̃ /mTask/clean ’ >> ~/.bash_profile

#Source it for your current session
source ~/.bashrc

7 Instructions from https://hmgaudecker.github.io/econ-python-environment/paths.
html.

https://ftp.cs.ru.nl/Clean/CEFP19/mtask-linux-x64.tar.gz
https://ftp.cs.ru.nl/Clean/CEFP19/mtask-windows-x64.zip
https://ftp.cs.ru.nl/Clean/CEFP19/mtask-macos-x64.tar.gz
https://hmgaudecker.github.io/econ-python-environment/paths.html
https://hmgaudecker.github.io/econ-python-environment/paths.html

Writing Internet of Things Applications with Task Oriented Programming 47

C.3 Compile the Test Program

Note that the first time compiling everything can take a while and will consume
quite some memory.

Windows. Assuming you uncompressed the archive in
C:\Users\frobnicator\mTask. Connect a device or start the local TCP client
by executing C:\Users\frobnicator\mTask\client.exe

IDE

– Open the IDE by starting C:\Users\frobnicator\mTask\clean\CleanIDE.
exe.

– Click on File Open or press Ctrl + O ond open C:\Users\frobnicator\
mTask\mTask\cefp19\blink.prj.

– Click on Project Update and Run or press Ctrl + R .

cpm Enter the following commands in a command prompt or PowerShell session:

cd C:\Users\frobnicator\mTask\mTask\cefp19

cpm blink.prj

blink.exe

Linux & MacOS. Assuming you uncompressed the archive in ~/mTask. Con-
nect a device or start the local TCP client by executing ~/mTask/client. In a
terminal enter the following commands:

cd ~/mTask/cefp19

cpm blink.prj

./blink

C.4 Setup the Microcontroller Unit

For setting up the RTS for the MCU, the reader is kindly referred to here8.

D Solutions

main :: Task Bool

main = enterDevice

>>= λspec�enterInformation ”Enter the intervals (ms)”
>>= λ(i1, i2)�withDevice spec

λdev�liftmTask (blink i1 i2) dev -|| viewDevice dev

where

8 https://gitlab.science.ru.nl/mlubbers/mTask/blob/cefp19/DEVICES.md.

https://gitlab.science.ru.nl/mlubbers/mTask/blob/cefp19/DEVICES.md

48 M. Lubbers et al.

blink :: Int Int � Main (MTask v Bool) | mtask v

blink x y

= fun λblink = (λ(p, x, y)�

delay y

>>|. writeD p x

>>=. λx�blink (p, Not x, y))

In {main = blink (d4, true, lit x)

.||. blink (d4, true, lit y)}

Solution 3. Blink the builtin LED with two patterns

main :: Task Bool

main = enterDevice >>= λspec�withDevice spec

λdev�withShared True λblinkOk�
liftmTask (blink blinkOk) dev

-|| updateSharedInformation ”Blink Enabled” [] blinkOk

where
blink :: (Shared s Bool) � Main (MTask v Bool) | mtask, liftsds v & RWShared s

blink blinkShare = liftsds λblinkOk=blinkShare
In fun λblink = (λx�

writeD d2 x

>>|. delay (lit 500)

>>|. getSds blinkOk

>>*. [IfValue (λx�x) (λ_�blink (Not x))])

In {main = blink (lit True)}

Solution 4. Blink the builtin LED on demand

temp :: (Shared s Int) � Main (MTask v ()) | mtask, dht, liftsds v & RWShared s

temp tempShare =

DHT D4 DHT22 λdht�
liftsds λsTemp = tempShare

In fun λmonitor = (λx�temperature dht

>>*. [IfValue ((!=.)x) (setSds sTemp)]

>>=. monitor)

In {main = monitor (lit 0)}

Solution 5. Show the temperature via an SDS

temp :: (Shared s1 Int) (Shared s2 Int) � Main (MTask v ())

| mtask, dht, liftsds v & RWShared s1 & RWShared s2

temp targetShare tempShare =

DHT D4 DHT22 λdht�
liftsds λsTemp = tempShare

In liftsds λsTarget = targetShare

In fun λmonitor = (λx�temperature dht

>>*. [IfValue ((!=.)x) (setSds sTemp)]

>>=. monitor)

In fun λheater = (λst�getSds sTemp .&&. getSds sTarget

>>*. [IfValue (tupopen λ(temp, target)�temp <. target &. Not st)

Writing Internet of Things Applications with Task Oriented Programming 49

λ_�writeD d4 (lit True)

,IfValue (tupopen λ(temp, target)�temp >. target &. st)

λ_�writeD d4 (lit False)]

>>=. heater)

In {main = monitor (lit 0) .||. heater (lit True)}

Solution 6. Simple thermostat

iTask42 :: MTDevice � Task ()

iTask42 dev = liftmTask clear dev

>-| sequence [liftmTask (toggle {x=x,y=y,status=True}) dev\\(x,y)�fourtytwo] @! ()

//Four
fourtytwo = [(0, 5), (0, 4), (0, 3), (0, 2) ,(1, 2), (2, 2), (2, 3) ,(2, 1), (2, 0)

//Two
,(4, 5), (5, 5), (6, 4), (6, 3), (5, 2), (4, 1), (4, 0), (5, 0), (6, 0)]

Solution 7. LED Matrix 42 using iTask

mTask42 :: Main (MTask v ()) | mtask, LEDMatrix v

mTask42 = ledmatrix D5 D7 λlm�{main = LMClear lm >>|.

foldr (>>|.) (LMDisplay lm) [dot lm {x=x, y=y, status=True} \\ (x,y) � fourtytwo]}

Solution 8. LED Matrix 42 using mTask

temp :: (Shared s1 (Int, Int)) (Shared s2 Int) (Shared s3 Int) (Shared s4 Int)

� Main (MTask v ()) | ...

temp limitsShare delayShare tempShare alarmShare =

DHT D4 DHT22 λdht�
ledmatrix D5 D7 λlm�

liftsds λsLimits = limitsShare

In liftsds λsDelay = delayShare

In liftsds λsTemp = tempShare

In liftsds λsAlarm = alarmShare

In fun λprint = (λ(targety, currentx, currenty)�

If (currenty ==. lit 8)

(LMDisplay lm)

(LMDot lm currentx currenty (targety ==. currenty)

>>|. print (targety, currentx, currenty +. lit 1)))

In fun λmin = (λ(x, y)�If (x <. y) x y)

In fun λcalcy = (λ(up, down, val)�

min (down, (val -. down) /. ((up -. down) /. lit 7)))

In fun λplot = (λx�
getSds sLimits

>>~. tupopen λ(gmin, gmax)�temperature dht

>>~. λy�print (min (lit 7, calcy (gmin, gmax, y)), x, lit 0)

>>|. setSds sTemp y

>>|. getSds sDelay

>>~. delay

>>|. plot (If (x ==. lit 7) (lit 0) (x +. lit 1))

)

50 M. Lubbers et al.

In {main = plot (lit 0)

.||. rpeat (readD BUILTIN_LED >>*. [IfValue Not (writeD ABUTTON o Not)])

.||. rpeat (getSds sAlarm .&&. getSds sTemp

>>*. [IfValue (tupopen λ(a, t)�t >. a) λ_�writeD ABUTTON (lit False)]

)}

Solution 9. Temperature plotter

References

1. Achten, P.: Clean for Haskell98 Programmers (2007)
2. Adams, D.: The Hitchhiker’s Guide to the Galaxy Omnibus: A Trilogy in Four

Parts, vol. 6. Pan Macmillan (2017)
3. Alimarine, A.: Generic Functional Programming. Ph.D., Radboud University,

Nijmegen (2005)
4. Amazonas Cabral De Andrade, M.: Developing real life, task oriented applications

for the internet of things. Master’s thesis, Radboud University, Nijmegen (2018)
5. Amsden, E.: A survey of functional reactive programming. Technical report (2011)
6. Baccelli, E., et al.: Reprogramming low-end IoT devices from the cloud. In: 2018

3rd Cloudification of the Internet of Things (CIoT), pp. 1–6. IEEE (2018)
7. Baccelli, E., Doerr, J., Kikuchi, S., Padilla, F., Schleiser, K., Thomas, I.: Scripting

over-the-air: towards containers on low-end devices in the internet of things. In:
IEEE PerCom 2018 (2018)

8. Bolderheij, F., Jansen, J.M., Kool, A.A., Stutterheim, J.: A mission-driven C2
framework for enabling heterogeneous collaboration. In: Monsuur, H., Jansen, J.M.,
Marchal, F.J. (eds.) NL ARMS Netherlands Annual Review of Military Studies
2018. NA, pp. 107–130. T.M.C. Asser Press, The Hague (2018). https://doi.org/
10.1007/978-94-6265-246-0 6

9. Brus, T.H., van Eekelen, M.C.J.D., van Leer, M.O., Plasmeijer, M.J.: Clean — a
language for functional graph rewriting. In: Kahn, G. (ed.) FPCA 1987. LNCS,
vol. 274, pp. 364–384. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
18317-5 20

10. Carette, J., Kiselyov, O., Shan, C.C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(05), 509
(2009). https://doi.org/10.1017/S0956796809007205

11. Cheney, J., Hinze, R.: First-class phantom types. Technical report, Cornell Uni-
versity (2003)

12. Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans.
Ind. Inform. 10(4), 2233–2243 (2014)

13. Domoszlai, L., Lijnse, B., Plasmeijer, R.: Parametric lenses: change notification for
bidirectional lenses. In: Proceedings of the 26nd 2014 International Symposium on
Implementation and Application of Functional Languages, p. 9. ACM (2014)

14. Dubé, D.: BIT: a very compact Scheme system for embedded applications. In:
Proceedings of the Fourth Workshop on Scheme and Functional Programming
(2000)

15. Elliott, C., Hudak, P.: Functional reactive animation. In: ACM SIGPLAN Notices,
vol. 32, pp. 263–273. ACM (1997)

16. Feeley, M., Dubé, D.: PICBIT: a scheme system for the PIC microcontroller. In:
Proceedings of the Fourth Workshop on Scheme and Functional Programming, pp.
7–15. Citeseer (2003)

https://doi.org/10.1007/978-94-6265-246-0_6
https://doi.org/10.1007/978-94-6265-246-0_6
https://doi.org/10.1007/3-540-18317-5_20
https://doi.org/10.1007/3-540-18317-5_20
https://doi.org/10.1017/S0956796809007205

Writing Internet of Things Applications with Task Oriented Programming 51

17. Feijs, L.: Multi-tasking and Arduino: why and how? In: Chen, L.L., et al. (eds.)
Design and Semantics of form and Movement. 8th International Conference on
Design and Semantics of Form and Movement (DeSForM 2013), Wuxi, China, pp.
119–127 (2013)

18. Grebe, M., Gill, A.: Haskino: a remote monad for programming the arduino. In:
Gavanelli, M., Reppy, J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 153–168. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-28228-2 10

19. Grebe, M., Gill, A.: Threading the Arduino with Haskell. In: Van Horn, D., Hughes,
J. (eds.) TFP 2016. LNCS, vol. 10447, pp. 135–154. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-14805-8 8

20. Haenisch, T.: A case study on using functional programming for internet of things
applications. Athens J. Technol. Eng. 3(1), 29–38 (2016)

21. Helbling, C., Guyer, S.Z.: Juniper: a functional reactive programming language for
the Arduino. In: Proceedings of the 4th International Workshop on Functional Art,
Music, Modelling, and Design, pp. 8–16. ACM (2016)

22. Hess, J.: Arduino-copilot: arduino programming in haskell using the Copilot stream
DSL (2020). http://hackage.haskell.org/package/arduino-copilot

23. Hickey, P.C., Pike, L., Elliott, T., Bielman, J., Launchbury, J.: Building embedded
systems with embedded DSLs. In: ACM SIGPLAN Notices, vol. 49, pp. 3–9. ACM
Press (2014). https://doi.org/10.1145/2628136.2628146

24. Jansen, J.M., Lijnse, B., Plasmeijer, R.: Towards dynamic workflows for crisis
management (2010)

25. Johnson-Davies, D.: Lisp for microcontrollers (2020). https://ulisp.com
26. Koopman, P., Lubbers, M., Plasmeijer, R.: A task-based DSL for microcomputers.

In: Proceedings of the Real World Domain Specific Languages Workshop 2018 on
- RWDSL 2018, Vienna, Austria, pp. 1–11. ACM Press (2018). https://doi.org/10.
1145/3183895.3183902

27. Lijnse, B., Jansen, J.M., Nanne, R., Plasmeijer, R.: Capturing the netherlands
coast guard’s sar workflow with itasks (2011)

28. Lijnse, B., Jansen, J.M., Plasmeijer, R., others: Incidone: a task-oriented incident
coordination tool. In: Proceedings of the 9th International Conference on Informa-
tion Systems for Crisis Response and Management, ISCRAM, vol. 12 (2012)

29. Lijnse, B., Plasmeijer, R.: iTasks 2: iTasks for end-users. In: Morazán, M.T., Scholz,
S.-B. (eds.) IFL 2009. LNCS, vol. 6041, pp. 36–54. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16478-1 3

30. Lubbers, M., Koopman, P., Plasmeijer, R.: Multitasking on microcontrollers using
task oriented programming. In: 2019 42nd International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, pp. 1587–1592 (2019). https://doi.org/10.23919/MIPRO.2019.
8756711

31. Lubbers, M.: Task oriented programming and the internet of things. Master’s the-
sis, Radboud University, Nijmegen (2017)

32. Lubbers, M., Koopman, P., Plasmeijer, R.: Task oriented programming and the
internet of things. In: Proceedings of the 30th Symposium on the Implementation
and Application of Functional Programming Languages, Lowell, MA, p. 12. ACM
(2018). https://doi.org/10.1145/3310232.3310239

33. Lubbers, M., Koopman, P., Plasmeijer, R.: Interpreting task oriented programs on
tiny computers. In: Proceedings of the 31st Symposium on Implementation and
Application of Functional Languages, IFL 2019, Singapore, Singapore. Association
for Computing Machinery, New York (2019). https://doi.org/10.1145/3412932.
3412936

https://doi.org/10.1007/978-3-319-28228-2_10
https://doi.org/10.1007/978-3-030-14805-8_8
http://hackage.haskell.org/package/arduino-copilot
https://doi.org/10.1145/2628136.2628146
https://ulisp.com
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1007/978-3-642-16478-1_3
https://doi.org/10.23919/MIPRO.2019.8756711
https://doi.org/10.23919/MIPRO.2019.8756711
https://doi.org/10.1145/3310232.3310239
https://doi.org/10.1145/3412932.3412936
https://doi.org/10.1145/3412932.3412936

52 M. Lubbers et al.

34. Michels, S., Plasmeijer, R.: Uniform data sources in a functional language, p. 16.
Unpublished manuscript (2012)

35. Piers, J.: Task-oriented programming for developing non-distributed interruptible
embedded systems. Master’s thesis, Radboud University, Nijmegen (2016)

36. Plasmeijer, R., Achten, P.: A conference management system based on the iData
Toolkit. In: Horváth, Z., Zsók, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol.
4449, pp. 108–125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74130-5 7

37. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: executable specifications of inter-
active work flow systems for the web. ACM SIGPLAN Not. 42(9), 141–152 (2007)

38. Koopman, P., Plasmeijer, R.: A shallow embedded type safe extendable DSL for
the Arduino. In: Serrano, M., Hage, J. (eds.) TFP 2015. LNCS, vol. 9547, pp.
104–123. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39110-6 6

39. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-oriented
programming in a pure functional language. In: Proceedings of the 14th Symposium
on Principles and Practice of Declarative Programming, pp. 195–206. ACM (2012)

40. Sant’Anna, F., Rodriguez, N., Ierusalimschy, R., Landsiedel, O., Tsigas, P.: Safe
system-level concurrency on resource-constrained nodes. In: Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems, p. 11. ACM
(2013)

41. Sawada, K., Watanabe, T.: Emfrp: a functional reactive programming language
for small-scale embedded systems. In: Companion Proceedings of the 15th Inter-
national Conference on Modularity, pp. 36–44. ACM (2016)

42. Serrano, A.: Type error customization for embedded domain-specific languages.
Ph.D. thesis, Utrecht University (2018)

43. St-Amour, V., Feeley, M.: PICOBIT: a compact scheme system for microcon-
trollers. In: Morazán, M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS, vol. 6041, pp.
1–17. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16478-1 1

44. Steiner, H.C.: Firmata: towards making microcontrollers act like extensions of the
computer. In: NIME, pp. 125–130 (2009)

45. Stutterheim, J., Achten, P., Plasmeijer, R.: Maintaining separation of concerns
through task oriented software development. In: Wang, M., Owens, S. (eds.) TFP
2017. LNCS, vol. 10788, pp. 19–38. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89719-6 2

46. Sugihara, R., Gupta, R.K.: Programming models for sensor networks: a survey.
ACM Trans. Sensor Netw. 4(2), 1–29 (2008). https://doi.org/10.1145/1340771.
1340774

47. Troyer, de, C., Nicolay, J., Meuter, de, W.: Building IoT systems using distributed
first-class reactive programming. In: 2018 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 185–192 (2018). https://doi.
org/10.1109/CloudCom2018.2018.00045

48. van der Heijden, M., Lijnse, B., Lucas, P.J.F., Heijdra, Y.F., Schermer, T.R.J.:
Managing COPD exacerbations with telemedicine. In: Peleg, M., Lavrač, N.,
Combi, C. (eds.) AIME 2011. LNCS (LNAI), vol. 6747, pp. 169–178. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22218-4 21

49. Wand, M.: Continuation-based multiprocessing. In: Proceedings of the 1980 ACM
Conference on LISP and Functional Programming - LFP 1980, Stanford University,
California, United States, pp. 19–28. ACM Press (1980). https://doi.org/10.1145/
800087.802786

https://doi.org/10.1007/978-3-540-74130-5_7
https://doi.org/10.1007/978-3-540-74130-5_7
https://doi.org/10.1007/978-3-319-39110-6_6
https://doi.org/10.1007/978-3-642-16478-1_1
https://doi.org/10.1007/978-3-319-89719-6_2
https://doi.org/10.1007/978-3-319-89719-6_2
https://doi.org/10.1145/1340771.1340774
https://doi.org/10.1145/1340771.1340774
https://doi.org/10.1109/CloudCom2018.2018.00045
https://doi.org/10.1109/CloudCom2018.2018.00045
https://doi.org/10.1007/978-3-642-22218-4_21
https://doi.org/10.1145/800087.802786
https://doi.org/10.1145/800087.802786

Paint Your Programs Green: On
the Energy Efficiency of Data Structures

Rui Pereira1,2,3,4, Marco Couto3,4, Jácome Cunha3,5, Gilberto Melfe2,
João Saraiva3,4, and João Paulo Fernandes5,6(B)

1 C4 — Centro de Competências em Cloud Computing (C4-UBI), Covilhã, Portugal
2 Universidade da Beira Interior, Covilhã, Portugal

3 HASLab/INESC Tec, Porto, Portugal
marco.l.couto@inesctec.pt

4 Universidade do Minho, Braga, Portugal
{ruipereira,saraiva}@di.uminho.pt

5 Universidade do Porto, Porto, Portugal
{jacome,jpaulo}@fe.up.pt

6 Laboratório de Inteligência Artificial e Ciência de Computadores (LIACC), Porto,
Portugal

Abstract. This tutorial aims to provide knowledge on a different facet
of efficiency in data structures: energy efficiency. As many recent stud-
ies have shown, the main roadblock in regards to energy efficient soft-
ware development are the misconceptions and heavy lack of support and
knowledge, for energy-aware development, that programmers have. Thus,
this tutorial aims at helping provide programmers more knowledge per-
taining to the energy efficiency of data structures.

We conducted two in-depth studies to analyze the performance and
energy efficiency of various data structures from popular programming
languages: Haskell and Java. The results show that within the Haskell
programming language, the correlation between performance and energy
consumption is statistically almost identical, while there are cases with
more variation within the Java language. We have presented which data
structures are more efficient for common operations, such as inserting
and removing elements or iterating over the data structure.

The results from our studies can help support developers in better
understanding such differences within data structures, allowing them
to carefully choose the most adequate implementation based on their
requirements and goals. We believe that such results will help further
close the gap when discussing the lack of knowledge in energy efficient
software development.

Keywords: Green Software · Data Structures · Energy Efficient
Programming

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 53–76, 2023.
https://doi.org/10.1007/978-3-031-42833-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-42833-3_2

54 R. Pereira et al.

1 Introduction

In his 1976 book [1], Niklaus Wirth coined one the most famous Computer
Science equations that today still persists:

Algorithms + Data Structures = Programs

The elegance and sharpness of the equation provides decisive support for the
argument that mastering programming can not be achieved without the com-
bined knowledge of both algorithms and data structures. A recurring example
is taught early to computer science students: if you know you have a sorted list,
you can use that knowledge to more efficiently search for an element in that list.
Indeed, you may use binary search instead of performing search sequentially.

While both terms in Wirth’s addition are equally relevant, in this tutorial we
focus on the Data Structures portion. In a message shared through Git’s mailing
list [2], Linus Torvalds further argues that:

“.. the difference between a bad programmer and a good one is whether he
considers his code or his data structures more important. Bad programmers

worry about the code. Good programmers worry about data structures and their
relationships”.

Our goal is to provide a detailed comparison of a large set of data structure
implementations. We expect the information we provide to be useful both to
computer science students who pedagogically seek to extend their knowledge on
data structures as well as professional programmers who seek to use the most
efficient structures in their products.

Our (methodological) approach is to take as case studies two well-know, pub-
licly available and widely used data structure libraries, in two different program-
ming languages, Haskell and Java. This approach is well aligned with the fact
that most, if not all, modern programming languages come with such supporting
libraries that programmers are free to explore and use. In fact, providing such
libraries is often seen as decisive for the language to succeed [3]. As Kernighan
and Pike mention:

“Every program depends on algorithms and data structures, but few programs
depend on the invention of brand new ones” [4].

With our work, we aim to provide even more knowledge about data struc-
tures, and namely on their efficiency. In fact, we analyze the efficiency of a data
structure under two lenses: based on i) its runtime performance, and on ii) its
energy efficiency. While the former has historically received the most attention,
the fact is that the energy consumption is becoming a significant concern for
programmers [5–8], where studies argue that this is due to the lack of knowl-
edge and the lack of tools. Actually, the energy efficiency of data structures has
recently concerned a significant number of researchers [9–16].

A general question whose answer we seek to provide with our research is:

Paint Your Programs Green 55

RQ How do different data structure implementations compare, both in terms of
runtime and energy efficiency?

To answer this research question we conducted two in-depth studies to ana-
lyze the performance and energy efficiency of various data structures from pop-
ular programming languages: Haskell and Java.

For Haskell, we considered the well-known Edison library of purely functional
data structures, and for Java, we used the Java Collections Framework (JCF)
standard data structure library. Both libraries provide many different implemen-
tations for the same group of data structures, such as Sets, Lists, and Associative
Collections/Maps. For each of these groups, we study the energy consumption
of their different implementations for common data strctures operations, such
as inserting, iterating, removing, etc., elements. Our results show that within
the Haskell programming language, the correlation between execution time and
energy consumption is statistically almost identical, indicating that program’s
runtime and energy consumption are related. For the Java language, however,
there are cases where more efficient (i.e. faster) implementations of data struc-
tures also consume more energy, and vice-versa.

The remaining sections in this tutorial are organized as follows: Sect. 2
presents a brief overview of the three different types of data structures we have
studied, and describes the different implementations that exist in the Haskell
and Java programming languages; Sect. 3 describes our experimental setup for
both programming languages, detailing what operations we considered and how
we measured their energy consumption; Sect. 4 presents the results of our exper-
iment, with a discussion of the observations we have found; Sect. 5 looks at an
overview of related research work; Finally, Sect. 6 concludes our tutorial and
presents our final thoughts.

2 Data Structures Libraries

Data structures are one of the most important building blocks for computa-
tion [17]. While we use algorithms to define a solution to solve a problem, we
use data structures to store and organize our data in very specific ways so that
it can be searched and managed very efficiently [18,19].

While there are countless amounts of different data structures within all
the various existing programming languages, they mostly follow one of the
well defined high-level structure abstractions which exist. In this tutorial, and
throughout our experiments, we will focus on three types: Ordered Sequences,
Non-repeating unique sets, and Key-Value Pairs. In Haskell, abstractions of these
types can be found in Sequences, Collections, and Associative Collections, and
in Java in the Lists, Sets, and Maps abstractions.

Ordered Sequences represent a countable number of ordered values or objects,
where that same value or object can be repeated more than once. Non-repeating
unique sets store unique values or objects, without any particular order.

56 R. Pereira et al.

Finally, Key-Value Pairs stores data in a pair that is known as (key, value),
where for each stored unique key there is a value or object associated to it. Each
entry contains exactly one unique key and its corresponding value.

In the following sections, we will go into some more detail as to what data
structures we analyzed for respectively, and give a simple description of each
data structure as to further understand their differences.

2.1 Haskell Data Structures

Our analysis on the Haskell data structures relies on Edison, a mature and well
documented library of purely functional data structures [20,21]. Edison provides
different functional data structures for implementing three types of abstractions:
Sequences, Collections, and Associative Collections.

While these implementations are available in other programming languages,
e.g., in ML [21], here we focus on their Haskell version. While this version already
incorporates an extensive unit test suite to guarantee functional correctness,
it can admittedly benefit from the type of performance analysis we consider
here [22].

Presented in Table 1, are the implementations that are available for each
of the abstractions considered by Edison. These implementations can also be
consulted in the EdisonCore [23] and EdisonAPI [24] packages. Some of the listed
implementations are actually adaptors. This is the case, e.g., of SizedSeq that
adds a size parameter to any implementation of Sequences. Besides SizedSeq,
also RevSeq, for Sequences, and MinHeap for Collections are adaptors for other
implementations. Finally, we split the Collections abstraction between Sets and
Heaps, as to avoid confusion between Haskell Collections and Java Collections.

Table 1. Abstractions and Implementations available in Edison.

Sets & Heaps Associative Collections Sequences

BankersQueue

EnumSet SimpleQueue

StandardSet BinaryRandList

UnbalancedSet AssocList JoinList

LazyPairingHeap PatriciaLoMap RandList

LeftistHeap StandardMap BraunSeq

MinHeap TernaryTrie FingerSeq

SkewHeap ListSeq

SplayHeap RevSeq

SizedSeq

MyersStack

Paint Your Programs Green 57

Sets and Heaps. The first set implementation, EnumSet, is based on bit-wise
operations. But in order to use this implementation, there must not contain more
distinct elements than the number of bits in the Word type. The StandardSet
is based on size balanced binary trees, and is an overlay over a set instance
provided by the Data.Set module. Finally, the UnbalancedSet is based on un-
balanced binary search trees.

The LazyPairingHeap is a heap implementation with a heap-ordered tree, the
shape of which is governed by the odd or even number of children. Another heap-
ordered (binary) tree is the LeftistHeap, which is maintained conformant with a
“leftist property”. MinHeap is an adaptor for other heap implementations, which
keeps the minimum element separately. Somewhat similar to the LeftishHeap is
the SkewHeap, which is a self-adjusting implementation. Finally, SplayHeap is
based on a Splay Tree (akin to a balanced binary search tree, but not maintaining
explicit balance information).

Associative Collections. An AssocList is a simple list of associations (key-
value pairs). The PatriciaLoMap is an associative collection based on little-
endian Patricia Trees. Finally, the StandardMap is an associative collection based
on size balanced trees, while TernaryTrie models finite maps as ternary search
trees.

Sequences. The ListSeq is the standard list implementation available in
Haskell’s Prelude ([a]). Based on two (front/rear of the sequence) of these stan-
dard lists is the BankersQueue implementation, which abides by the invariant
that: the front shall be at least as long as the rear. Also the sizes of the lists
are tracked explicitly. The BinaryRandList implementation uses a linear data
structure, maybe empty, or with two distinct substructures modeling a list that
has an even, or odd, number of elements.

By using a balanced binary tree as an underlying implementation, the Braun-
Seq maintains the invariant that the left subtree’s size is equal or at most one
element larger than the right subtree’s size. The FingerSeq implementation is
based of a FingerTree, a general-purpose data structure. The JoinList is based on
a leaf-tree data-structure, while the MyersStack uses a binary tree and permits
accesses to the nth element.

The RandList relies on a data structure that is a list of complete binary trees
(maintained in non-decreasing order of the trees sizes). It provides efficient access
to random elements contained in it, and primitive list operations that run as
fast as the ones defined for the Haskell’s standard list data structure. Somewhat
similar to the BankersQueue is the SimpleQueue, which is also based on two
standard Haskell lists (front/rear of the sequence). The rear list is maintained
in reverse order, so that its first element is the last element of the sequence, and
abides by the invariant that: the front shall be empty only if the rear is also
empty.

Finally, a SizedSeq is an adaptor for other sequence implementations, which
keeps track of the sequence’s size explicitly, and a RevSeq is to keep the sequence
in the opposite order (useful if we have a sequence implementation that offers

58 R. Pereira et al.

fast/slow access to the front/rear respectively, and we need the opposite behav-
ior).

2.2 Java Data Structures

The Java programing language includes a standard data structure library known
as the Java Collections Framework (JCF)1. In JCF the different data structures
are organized in three groups which implement the interfaces List2, Set3, or Map4,
respectively. These are very similar to the three types of Haskell data structure
implementations we chose previously. We evaluated the following implementa-
tions shown in Table 2.

Table 2. Java data structures available in the JCF library.

Lists Sets Maps

ConcurrentHashMap

ArrayList ConcurrentSkipListMap

AttributeList HashMap

CopyOnWriteArrayList ConcurrentSkipListSet HashTable

LinkedList CopyOnWriteArraySet LinkedHashMap

RoleList HashSet Properties

RoleUnresolvedList LinkedHashSet SimpleBindings

Stack TreeSet TreeMap

Vector UIDefaults

WeakHashMap

From the considered data structures, we should point out that, as with the
Haskell data structures, Java data structures are also very different from each
other, even within the same group. Each particular implementation has distinct
properties, and will be further described.

Lists. According to the documentation, for the List abstraction, the ArrayList
collection is the underlying structure of 4 collections: CopyOnWriteArrayList,
AttributeList, RoleList, and RoleUnresolvedList. The first, CopyOnWriteAr-
rayList, is a fully thread-safe List implementation, while highly costly since every
mutable operation results in a fresh copy of the underlying array. As for the other
3, they all represent a collection intended to store a specific type of objects; for
1 Java Collections Framework: https://docs.oracle.com/javase/7/docs/technotes/

guides/collections/index.html.
2 JCF List Interface: https://docs.oracle.com/javase/7/docs/api/java/util/List.html.
3 JCF Set Interface: https://docs.oracle.com/javase/7/docs/api/java/util/Set.html.
4 JCF Map Interface: https://docs.oracle.com/javase/7/docs/api/java/util/Map.

html.

https://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html
https://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html
https://docs.oracle.com/javase/7/docs/api/java/util/List.html
https://docs.oracle.com/javase/7/docs/api/java/util/Set.html
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html

Paint Your Programs Green 59

compatibility reasons, it also supports the storage of other objects, although it
makes the collections lose their initial purpose.

The Vector collection is roughly equivalent to ArrayList, except that it is
synchronized. However, a Vector has a different reallocation strategy: by default,
when the number of inserted elements is the same as the actual capacity, it dou-
bles the underlying array’s capacity, whereas the ArrayList increases the capacity
by 50%. The Stack collection extends Vector, and in addition to inheriting all
its properties, it extends it with the standard stack operations: push, pop, peek,
isEmpty, and search.

Finally, the LinkedList collection appears as the only List implementation
that does not use an internal array to store data, but a sequence of doubly-
linked items, each with 3 components: the stored element, and the pointers
to the previous and next elements. This makes the standard element insertion
operation (which is at the end of the list) rather inefficient, since it involves
adding the element, and update 3 pointers. On the other hand, in a scenario
where elements are forced to be inserted at the head of the list, it only needs
to add the element and update the pointer to the next element, making this
collection more efficient than any other List for this specific scenario, as the
others would need to shift all elements one position, add the new element, and
finally update the indices.

Sets. As with all set implementations, the following implementations contain
unique elements only. The ConcurrentSkipListSet is a naturally ordered list of
non-repeated values, useful for concurrently executing insertion, removal, and
access operations by multiple threads. The CopyOnWriteArraySet internally
uses the CopyOnWriteArrayList, thus it is a set where every mutable operation
results in a fresh copy of the underlying array.

The HashSet is a set implementation which makes use of a hash table (actu-
ally a HashMap instance) to store elements. The insertion does not generally
maintain the same iteration order, and this implementation offers constant
time performance for basic operations if the hash function equally disperses
the elements. While HashSet internally uses a HashMap, the LinkedHashSet
uses a LinkedHashMap (which takes advantage of LinkedList). The LinkedHash-
Set maintains the order of elements inserted, contrary to the normal HashSet.
Finally, TreeSet internally uses a TreeMap, allows self-defined ordering of ele-
ments (or natural ascending order if none is defined) and is known to scale
very well as with all tree structures, allowing for good performances (guaranteed
O(n log n)) of insertion, removal, and retrieval operations.

Maps. The HashMap and HashTable are roughly the same, as they use the same
underlying structure (a hash table with pre-defined buckets upon initialization),
and therefore operational methodology. The only difference lies in the fact that
the former is unsynchronized and allows null values as both key and value.

LinkedHashMap and TreeMap are the remaining Map implementations which
offer standard mapping structures and operations. The difference between them
and the previous referred implementations is the internal structure used. Linked-
HashMap is essentially a hash table which handles collisions using the chain-

60 R. Pereira et al.

ing mechanism (i.e., using linked lists instead of buckets). On the other hand,
TreeMap uses a Red-Black tree to store its elements, making update/list opera-
tions more costly but any search/access operation much more efficient. Both of
these implementations guarantee a predictable order of its elements.

From the remaining considered Map implementations, the Concurren-
tHashMap and ConcurrentSkipListMap both offer a concurrent-supported ver-
sion of a hash table. The former uses a HashMap as internal structure, while the
latter supports mechanisms to maintain the order of its elements. The remaining
5 collections are all special implementations of either HashMap or HashTable.
For instance, the WeakHashMap is an HashMap which can have its elements
discarded by the garbage collector when they are no longer in ordinary use,
and SimpleBindings only supports String values as keys. As for the last two
HashTable based implementations, the Properties collection is a hash table with
built-in support for persistence, while UIDefaults typically represents a table of
defaults for Java Swing components, but can be instantiated with other objects.

3 Experimental Setup

One of our goals is to compare the energy consumption of different data struc-
ture implementations within the same abstract data structures categories (lists,
maps, etc.). For this, we designed two independent studies which simulate the
different ways to use such structures and their operations within two popular
programming languages: Haskell and Java.

In this section we present the design of our study. Due the nature of Haskell
and Java being very different languages, the designs slightly varied for each lan-
guage to reflect the possibilities and limitations present. Thus, whenever devia-
tions occur in the design, we detail each language separately.

3.1 Haskell Operations

Our benchmark implementation is inspired by a publicly available micro-bench-
mark [25] which evaluates the runtime performance of different implementations
of Java’s JCF API, and has been used in previous studies to obtain energy
measurements [9,13,15]. Here we considered the benchmark operations and their
corresponding Edison functions presented in Table 3.

Most operations in the underlying benchmark have straightforward corre-
spondences in the implementation functions provided by Edison. This is the
case, for example, of the operation add, which can naturally be interpreted by
functions insert, for Heaps, Sets and Associative Collections. For Sequences, the
underlying ordering notion allows two possible interpretations for adding an ele-
ment to a sequence: in its beginning or in its end. In this case, we defined add
as follows, to alternately use both interpretations:

With the previous definition, add s n m inserts the n aditional {n+m-1,
n+m-2, n+m-3, ..., m} to s.

Paint Your Programs Green 61

Table 3. Edison functions used to implement the benchmark operations.

Operation Sequences Sets Heaps Associative Collections

add lcons, rcons insert insert insert

addAll append union union union

clear null, ltail difference minView, delete difference

contains null, filter member member member

containsAll foldr, map subset null, member, minView submap

iterator map foldr fold map

remove null, ltail deleteMin deleteMin null, deleteMin

removeAll filter difference minView, delete difference

retainAll filter intersection filter, member intersectionWith

toArray toList foldr fold foldrWithKey

add :: Seq Int -> Int -> Int -> Seq Int

add seq 0 _ = seq

add seq n m = add (x ‘cons‘ seq) (n-1) m

where

x = m + n - 1

cons = if even n then rcons else lcons

The operations we consider are listed in Table 4, and they all can be
abstracted by the format:

iterations ∗ operation(base, aditional)

This format reads as: iterate operation a given number of times (iterations)
over a data structure with a base number of elements. If operation requires an
additional data structure, the number of elements in it is given by aditional. All
the operations are suggested to be executed over a base structure with 100K
elements. For instance, for the addAll operation, the second entry in the table
suggests adding 1000 times all the elements of a container with 1000 elements
to the base structure (of size 100K).

In a few cases, however, we needed to simplify concrete operations for specific
abstractions. This simplification was performed whenever a concrete operation
failed to terminate within a 3 h bound for a given implementation. In such cases,
we repeatedly halved the size of the base data structure, starting at 100000,
50000 and so on. When the data structure size of 3125 was reached without the
bound being met, we started halving the number of iterations. With this principle
in mind, no change was necessary for Heaps and Sets. For Associative Collections
and Sequences, however, this was not the case. Table 5 lists the operations whose
inputs or numbers of iterations were adjusted. The elements in boldface of this
table are the ones that differ from the original benchmark.

For different reasons, we excluded some implementations from our experi-
mental setting. This was the case of RevSeq and SizedSeq, for Sequences, and
MinHeap for Heaps, since they are adaptors of other implementations for the cor-
responding abstractions. EnumSet, for Sets, was not considered because it can

62 R. Pereira et al.

Table 4. Benchmark Operations.

iterations operation base aditional

1 add 100K 100K

1000 addAll 100K 1000

1 clear 100K n.a.

1000 contains 100K 1

5000 containsAll 100K 1000

1 iterator 100K n.a.

10000 remove 100K 1

10 removeAll 100K 1000

10 retainAll 100K 1000

5000 toArray 100K n.a.

Table 5. Modified Haskell Benchmark Operations.

abstraction iterations operation base aditional

Associative Collections 1 clear 50000 n.a.

2500 remove 3125 1

10 retainAll 25000 1000

2500 toArray 3125 n.a.

Sequences 1 add 3125 50000

625 containsAll 3125 1000

Paint Your Programs Green 63

only hold a limited number of elements, which makes it not compatible with
the considered benchmark. As said before, PatriciaLoMap and TernaryTrie are
not totally compatible with the Associative Collections API, so they could not be
used in our uniform benchmark. Finally, MyersStack, for Sequences was discarded
since its underlying data structure has redundant information in such a way that
fully evaluating its instances has exponential behavior. Thus, the remainder of
the structures shown in Table 1 were considered.

3.2 Java Operations

For our Java operations, we replicated the same 10 operations shown in Table 3
by either directly using the generic JCF API list for each corresponding interface,
or using several methods of the API. Shown in Table 6 are the JCF methods
used to implement the benchmark operations. Each of these mirror directly the
operations performed in the previous section, for example alternatively adding
a new element to a list in the beginning and the end.

Table 6. JCF methods used to implement the benchmark operations.

Operation Lists Sets Maps

add add, add(Index) add put

addAll addAll addAll putAll

clear clear, ltail clear clear

contains contains, filter contains containsKey

containsAll containsAll, map containsAll keySet, containsAll

iterator iterator, hasNext, next iterator, hasNext, next iterator, hasNext, next, getKey, getValue

remove remove remove remove

removeAll removeAll removeAll keySet, removeAll

retainAll retainAll retainAll keySet, retainAll

toArray toArray toArray entrySet, toArray

To evaluate the different implementations of each of the described meth-
ods, we followed the same approach considered in the previous section, and
populated the data structures in each implementation with the same base size
as presented in Table 4, while also following the same number of iterations
(iterations) per benchmark operation. Additionally, when a second data struc-
ture is required, that is, for operations addAll, containsAll, removeAll and retainAll,
we have adopted yet again the same aditional size shown in Table 4, but con-
taining half existing values from the original structure and half new values, all
shuffled with a seed. We use both existing and new values to balance the effort
that is being imposed on the operations. Finally, the modifications which were
applied in Table 5 were also applied in our study on Java data structures as to
maintain consistency. These modifications are shown in Table 7.

Several data structures were not evaluated as they are quite particular and
non-comparable in their usage. In particular, JobStateReasons (Set) only accepts
JobStateReason objects, IdentityHashMap (Map) accepts strings but compares

64 R. Pereira et al.

Table 7. Modified Java Benchmark Operations.

abstraction iterations operation base aditional

Maps 1 clear 50000 n.a.

2500 remove 3125 1

10 retainAll 25000 1000

2500 toArray 3125 n.a.

Lists 1 add 3125 50000

625 containsAll 3125 1000

its elements with the identity function, and not with the equals method. The
remainder of the data structures, shown in Table 2 all follow the same expected
outputs and allow the insertion of more generic objects and thus were considered.

3.3 Measuring Energy Consumption

To precisely measure the energy consumption of the data structures within our
tests, we used Intel’s Running Average Power Limit [26] (RAPL). RAPL is an
interface provided by modern Intel processors to allow setting custom power
limits to the processor packages. Using this interface one can access energy and
power readings via a model-specific register (MSR). RAPL uses a software power
model to estimate the energy consumption based on various hardware perfor-
mance counters, temperature, leakage models and I/O models [27].

The precision and reliability of RAPL have been extensively studied [28–30],
showing that, although there is in general an offset between RAPL estimations
and the corresponding physically measured values, the general behavior over time
is consistent between the two observations. And, for server machines, which are
the ones we target, this offset is actually insignificant.

RAPL interfaces operate at the granularity of a processor socket (package).
There are MSRs to access 4 domains:

– PKG: total energy consumed by an entire socket
– PP0: energy consumed by all cores and caches
– PP1: energy consumed by the on-chip GPU
– DRAM: energy consumed by all DIMMs

The client platforms have access to {PKG, PP0, PP1} while the server plat-
forms have access to {PKG, PP0, DRAM}.

Criterion. For our Haskell data structure study, we have extended Criterion
to be able to measure the amount of energy consumed during the execution
of a benchmark. Criterion [31] is a micro-benchmarking library that is used to
measure the performance of Haskell code. It provides a framework for both the
execution of the benchmarks and the analysis of their results, and is robust

Paint Your Programs Green 65

enough to filter out noise coming, e.g., from the clock resolution, the operating
system’s scheduling or garbage collection.

In our extended version of Criterion, energy consumption is measured in the
same execution of the benchmarks which is used to measure runtime perfor-
mance. This benchmark environment can be found at the corresponding Github
page5.

jRAPL. For our Java data structure study, we used jRAPL [32] which is a
framework for profiling Java programs using RAPL. jRAPL allows us to obtain
energy measurements on a method level, proving a fine grained measurements.
The benchmark environment which was used to measure Java data structures
with jRAPL can be found at the corresponding Github page6.

Execution Environment. In our Haskell study, we ran the experiment on a
machine with 2 × 10-core Intel Xeon E5-2660 v2 processors (Ivy Bridge micro-
architecture, 2-node NUMA) and 256GB of DDR3 1600MHz memory. This
machine runs the Ubuntu Server 14.04.3 LTS (kernel 3.19.0-25) OS. The com-
piler was GHC 7.10.2, using Edison 1.3, and a modified Criterion library. Also,
all experiments were performed with no other load on the OS.

In our Java study, we ran the experiment on a: Linux 3.13.0-74-generic oper-
ating system, 8GB of RAM, and Intel(R) Core(TM) i3-3240 CPU @ 3.40 GHz.
This system has no other software installed or running other than necessary to
run this study, and the operating system daemons. Both the Java compiler and
interpreter were versions 1.8.0 66.

Additionally, prior to executing a test, we ran an initial “warm-up” where we
instantiated, populated (with the designated base size), and performed simple
actions on the data structures. This “warm-up” was to avoid unstable measure-
ments during the virtual-machine’s Just-In-Time compilation and “warm-up”
phase [33]. Each test was executed 25 times [34], and the median values for both
the time and energetic consumption were extracted (of the specific test, and
not the initial “warm-up” as to only measure the tested methods). This was
not necessary for the Haskell study, as Criterion automatically executed initial
‘warm-ups” and executed the study as many times as was necessary until it
converged into a final value.

4 Comparing Data Structure Energy Consumption

This section presents the results we gathered from the two studies previously
defined in Sect. 3. We highly recommend and assume the images containing the
results are being viewed in color. The following subsections will present our
findings, observations, and discussions for the Haskell and Java programming
language, respectively.

5 Haskell Data Structures Benchmark: http://green-haskell.github.io/.
6 Java Data Structures Benchmark: https://github.com/greensoftwarelab/

Collections-Energy-Benchmark/tree/master/PaintYourPrograms.

http://green-haskell.github.io/
https://github.com/greensoftwarelab/Collections-Energy-Benchmark/tree/master/PaintYourPrograms
https://github.com/greensoftwarelab/Collections-Energy-Benchmark/tree/master/PaintYourPrograms

66 R. Pereira et al.

4.1 Haskell Data Structures

We split our observations between the 4 data structure types of Sets, Heaps,
Associative Collections, and Sequences, respectively. Additionally, we only present
the graphical results which are discussed in our observations, but all results for
all operations on all abstractions are available at the companion website7.

Additionally, we have confirmed that our analyses in the remainder of this
section are statistically valid, by calculating correlation coefficients given by
Spearman’s non parametric measure. Indeed, we studied the correlation between
execution time and energy consumption within each of the 4 abstractions that
we considered. For this, we calculated 4 correlation coefficients, considering in
each two data series: i) the execution time and ii) the energy consumption, for all
the operations within the respective abstraction. We found that these variables
are strongly correlated, which is indicated by the correlation coefficients and
respective p-values given in Table 8.

Table 8. Correlation between time and energy consumption for the analyzed abstrac-
tions.

Abstraction Spearman Correlation p-value

Sets 1 2.2e−16

Heaps 0.9993902 <2.2e−16

Associative Collections 1 <5.976e−06

Sequences 0.9999531 <2.2e−16

Sets. We have observed that for each combination of implementation and bench-
mark operation, taking longer to execute also implies more energy consumption.
The UnbalancedSet implementation is less efficient (both in terms of runtime
and energy footprint) than StandardSet for all benchmark operations except
contains.

The results on the comparison between both implementations for the clear
operation of the benchmark are presented in Fig. 1. In Figs. 1(a) and (b) we
compare the absolute values obtained for the runtime execution and energy
consumption, respectively. In Fig. 1(c) we compare the proportions of time and
energy consumption: the StandardSet implementation consumes 29.4% of the
time and 27.9% of the energy spent by UnbalancedSet.

For Sets, for all operations of the benchmark, the differences between the
proportions of either time or energy consumption are always lower than 1.49%.

Heaps. As we have observed for Sets, our experiments suggest that energy con-
sumption is proportional to execution time. Concrete evidence of this is shown
in Figs. 2(a) and 2(b), with the comparison between proportions of runtime and

7 Companion website with the experiment’s results: http://green-haskell.github.io/.

http://green-haskell.github.io/

Paint Your Programs Green 67

(a) (b) (c)

Fig. 1. Results of the clear operation for Haskell Sets

energy consumption for add and toArray, respectively, for each of the considered
implementation.

Overall, the LazyPairingHeap implementation was observed to be the most
efficient in all benchmark operations except for add. SkewHeap and SplayHeap
implementations were the least efficient in 5 operations each. The proportions
of runtime and energy consumption differ in at most 2.16% for any operation in
any implementation of Heaps.

)b()a(

Fig. 2. Results of the add (a) and toArray (b) operations for Heaps

Associative Collections. Energy consumption was again proportional to exe-
cution time. The AssocList was observed to be less efficient for all but the add

68 R. Pereira et al.

(a) (b) (c)

Fig. 3. Results of addAll (a), add (b), and iterator (c) for Associative Collections

Fig. 4. Results of the remove operation for Sequences

and iterator operations. In the cases where AssocList was less efficient than Stan-
dardMap, the difference ranged from 9%, for addAll (depicted in Fig. 3(a)), to
99.999% for retainAll. For the add and iterator operations, illustrated in Figs. 3(b)
and (c), StandardMap took approximately 40% and 85% more time and energy
than AssocList. The proportion of consumed energy was (marginally, by 1%)
higher than the proportion of execution time only for the add operation.

Sequences. The results obtained for Sequences also show that execution time
strongly influences energy consumption. This is illustrated in Fig. 4 for the
remove operation. The observed proportions across all operations and imple-
mentations differ at most in 1.9%, for the add operation.

Paint Your Programs Green 69

4.2 Java Data Structures

Our observations in this section are split between the 3 data structure types
of Sets, Maps, and Lists, respectively. Additionally, we only present the graph-
ical results which are discussed in our observations, but all data results for all
operations on all abstractions are available at the GitHub website8.

As in the previous section, we have confirmed that our analyses in the remain-
der of this section are statistically valid, by calculating correlation coefficients
given by Spearman’s non parametric measure.

Indeed, we studied the correlation between execution time and energy con-
sumption within each of the 3 abstractions that we considered. We calculated
the 3 correlation coefficients, considering in each two data series: i) the execution
time and ii) the energy consumption, for all the operations within the respec-
tive abstraction. We found that these variables are strongly correlated, which is
indicated by the correlation coefficients and respective p-values given in Table 9,
more so for the Maps and Lists, and slightly less so for the Sets.

This result is expected, as execution time is a variable in the energy equation.
Although statistically its is shown that the more time the Java benchmarks took,
the more it also consumed, the proportions differ much more than in the previous
Haskell study. Additionally, there are several cases where a faster operation is not
the more energy efficient one, and vice-versa. We will touch on some examples
in the following paragraphs.

Table 9. Correlation between time and energy consumption for the analyzed Java
abstractions.

Abstraction Spearman Correlation p-value

Sets 0.811208 4.1e−258

Maps 0.958147 <0.0

Lists 0.956052 <0.0

Sets. Of the three abstractions, the Set implementations were the ones with the
lowest Spearman Correlation of 81%. Based on the observations here, the TreeSet
implementation is clearly the one which tends to consume the least amount of
energy in 8 of 10 cases, and is the fastest in 6 of 10 cases.

The results on the comparison between the 4 implementations for the addAll,
containsAll, and toArray operations of the benchmark are presented in Fig. 5a),
b) and c), respectively. These values are the proportion of energy and time com-
pared to the slowest and most energy consumption one, ConcurrentSkipListSet.

While for our Haskell Sets the differences between the proportions of time
and energy are always lower than 1.49%, we see a larger variation for the Java

8 Companion website with the experiment’s results: https://github.com/
greensoftwarelab/Collections-Energy-Benchmark/tree/master/PaintYourPrograms.

https://github.com/greensoftwarelab/Collections-Energy-Benchmark/tree/master/PaintYourPrograms
https://github.com/greensoftwarelab/Collections-Energy-Benchmark/tree/master/PaintYourPrograms

70 R. Pereira et al.

Fig. 5. Results of the addAll, containsAll, and toArray operations operation for Java
Sets

Sets. Such an example can be seen in Fig. 5 with the proportions varying between
23%-40%.

Maps. Energy consumption was again proportional to execution time. For the
Map implementations, the TreeMap and ConcurrentHashMap were the most
efficient in 3 of 10 cases each. On the other hand, TreeMap and UIDefaults were
the fastest implementations in 3 of 10 cases each.

Figure 6a), b), and c) show the results on the comparison between several of
the Map implementations for the add, contains, and remove operations, respec-
tively. Once again, the bars represent the proportion of energy and time com-
pared to the slowest and most energy consuming one. In Fig. 6a), the worst
implementation was the ConcurrentSkipListMap, in b) it was SimpleBinding
and HashMap for energy and time respectively, and in c) it was UIDefaults and
TreeMap for energy and time respectively.

Again, the results show us that the differences, within a given implemen-
tation, between the proportions of time and energy have a much larger varia-

Paint Your Programs Green 71

Fig. 6. Results of the add, contains, and remove operations for Maps

tion than which were seen in the Haskell Associative Collections, with differences
between 0.1%-38%.

Lists. Yet again, there was a strong correlation between energy consumption and
execution time. For the List implementations, almost all were the most energy
efficient in at least one operation, with RoleList as the most energy efficient in
3 of 10 cases. For execution time, RoleList was the fastest in 4 of 10 cases with
LinkedList, RoleUnresolvedList, and ArrayList having the fastest times in 2 of
10 cases each.

Figure 7a), b), and c) show the results on the comparison between several of
the List implementations for the add, addAll, and remove operations, respectively.
In Fig. 7a), the worst implementation was the CopyOnWriteArrayList, in b) it
was LinkedList and CopyOnWriteArrayList for energy and time respectively,
and in c) it was CopyOnWriteArrayList.

The differences between the proportions of time and energy for the Java Lists
are, yet again, larger than those seen in Haskell Sequences varying between
0.1%–50%. In Fig. 7b), we even see an example where a data structure is more
energy efficient than it is performance efficient, in the case of LinkedList.

72 R. Pereira et al.

Fig. 7. Results of the add, addAll, and remove operations for Lists

5 Related Work

Data structures are a fundamental, unavoidable part of software development. As
we have previously seen, each different data structure implementation has their
own benefits, drawbacks, and performance. In recent years however, the analysis
of the energy efficiency of such implementations has drawn the attention of many
researchers.

Manotas et al. [13] developed the SEEDS framework, which was the first
automated support for optimizing the energy usage of applications by making
source code-level changes. They implemented a very specific instance of this
framework to improve the energy consumption of projects using Java’s Collec-
tions API, producing good results. SEEDS dynamically follows a trial and error
method, testing each possible alternative, until the most energy efficient one is
found.

A study by Pinto et al. [9] studied the energy efficiency specifically on Java’s
thread-safe collections, based on traversal, insertion, and removal operations.
They were able to improve up to 17% energy savings by switching out collections,
showing how such simple changes can reduce the energy consumption consider-

Paint Your Programs Green 73

ably. Such similar findings were shown by Hasan et al. [12], where they looked at
the Java Collections Framework (8 collections), Apache Commons Collections (5
collections), and Trove (4). They measured the energy costs of iterations, inser-
tions (beginning, middle, and end for Lists), and random access/query. A study
they performed showed how switching out one List for a worse one can decrease
energy consumption by 300%, or improve the energy consumption by 36%.

Another study, more focused on map data structures within Android, ana-
lyzed the CPU time, memory usage, and energy consumption in HashMap,
ArrayMap, and SpareArray variants [10]. The latter two implementations were
developed to be more performance efficient than HashMap. They found that
ArrayMap was less energy efficient, and SpareArray was more energy efficient,
when compared to HashMap.

Oliveira et al. developed a tool called CT+ [16], based on results and work
from a previous study of theirs [35], which applies a static analysis on a pro-
gram and recommends energy-efficient Java collections, while accounting for the
impact of loops and differentiates thread-safe and thread-unsafe collections. This
tool is similar to the one presented by Pereira et al. [14], called jStanley, where it
uses results from a previous study [15] to recommend energy efficient collections
based on method usage per collection, across varying population sizes. jStanley is
simpler in nature in regards to the static analysis, where it does not differentiate
loops and thread-safe or thread-unsafe collections.

The studies conducted by Lima et al. [11,36] analyzed the energy behavior
of various Haskell sequential and concurrent data structures. They too were able
to show how making changes on which data structures are used can have large
impacts, saving up to 60% of energy in one of their settings. The latter study
further explored Haskell’s thread-management constructs, and showed that the
replacement of forkIO by forkOn lowered the energy consumption.

Finally, the study and results for the Haskell and Java experiments we pre-
sented in this tutorial were based off the work from [11,36], and an adaptation
of the benchmarking framework used in [15], respectively.

6 Conclusions

As energy efficiency continues to be a big concern for software developers, due to
climatic or economic costs, we must properly understand the energy footprint our
choices in software development have. With this work, we analyzed a key part in
software development: data structures. We looked at common operations on data
structures within the Haskell and Java programming language, and measured
the energy consumed while performing such tasks in different implementation
scenarios.

Through performing our experiment and presenting their results, we have
answered our RQ How do different data structure implementations compare, both
in terms of runtime and energy efficiency? We found that for Haskell programs,
execution time is more closely tied with energy consumption. While for Java pro-
grams this correlation still existed, it was not as strict. We found data structures
which were more energy efficient than performance efficient, and vice-versa. In

74 R. Pereira et al.

both cases, we have provided results on what data structure implementation
should be used in a given operation scenario. Thus, the programmer can have
more information present when choosing the most adequate implementation.

With our work, we aim to provide even more knowledge pertaining to the
efficiency of data structures, based on their runtime performance, and on their
energy efficiency. While the former has historically received the most attention,
the fact is that the energy consumption is becoming a significant concern for
programmers [5–8], where studies argue that this is due to the lack of knowl-
edge and the lack of tools. We believe that with this work, we have contributed
to further close the gap when discussing the lack of knowledge in energy effi-
cient software development, a concern which has also brought the attention of a
significant number of researchers [9–16].

References

1. Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall PTR (1976)
2. Torvalds, L.: Message to Git mailing list: Re: Licensing and the library version of

git (2006)
3. Aho, A.V., Hopcroft, J.E., Ullman, J.: Data Structures and Algorithms, 1st edn.

Addison-Wesley Longman Publishing Co., Inc. (1983)
4. Kernighan, B.W., Pike, R.: The Practice of Programming. Addison-Wesley Pro-

fessional (1999)
5. Manotas, I., et al.: An empirical study of practitioners’ perspectives on green soft-

ware engineering. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pp. 237–248. IEEE (2016)

6. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about
software energy consumption? IEEE Softw. 33(3), 83–89 (2016)

7. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy con-
sumption. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, pp. 22–31. ACM (2014)

8. Pinto, G., Castor, F.: Energy efficiency: a new concern for application software
developers. Commun. ACM 60(12), 68–75 (2017)

9. Pinto, G., Liu, K., Castor, F., Liu, Y.D.: A comprehensive study on the energy
efficiency of Java’s thread-safe collections. In: 2016 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, 2–7
October 2016, pp. 20–31 (2016)

10. Saborido, R., Morales, R., Khomh, F., Guéhéneuc, Y.-G., Antoniol, G.: Getting the
most from map data structures in Android. Empir. Softw. Eng. 23(5), 2829–2864
(2018). https://doi.org/10.1007/s10664-018-9607-8

11. Lima, L.G., Melfe, G., Soares-Neto, F., Lieuthier, P., Fernandes, J.P., Castor, F.:
Haskell in green land: analyzing the energy behavior of a purely functional lan-
guage. In: Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2016), pp. 517–528. IEEE (2016)

12. Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., Hindle, A.: Energy profiles
of Java collections classes. In: Proceedings of the 38th International Conference on
Software Engineering, pp. 225–236. ACM (2016)

13. Manotas, I., Pollock, L., Clause, J.: SEEDS: a software engineer’s energy-
optimization decision support framework. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 503–514. ACM (2014)

https://doi.org/10.1007/s10664-018-9607-8

Paint Your Programs Green 75

14. Pereira, R., Simão, P., Cunha, J., Saraiva, J.: jStanley: placing a green thumb on
Java collections. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, pp. 856–859. ACM, New York
(2018)

15. Pereira, R., Couto, M., Saraiva, J., Cunha, J., Fernandes, J.P.: The influence of the
Java collection framework on overall energy consumption. In: Proceedings of the
5th International Workshop on Green and Sustainable Software, GREENS 2016,
pp. 15–21. ACM (2016)

16. de Oliveira Júnior, W., dos Santos, R.O., de Lima Filho, F.J.C., de Araújo
Neto, B.F., Pinto, G.H.L.: Recommending energy-efficient Java collections. In:
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pp. 160–170. IEEE (2019)

17. Aho, A.V., Ullman, J.D.: Foundations of Computer Science. Computer Science
Press Inc. (1992)

18. Bell, C.G., Newell, A.: Computer structures: readings and examples. Technical
report, Carnegie-Mellon University, Department of Computer Science, Pittsburgh,
PA (1971)

19. Shaffer, C.A.: A Practical Introduction to Data Structures and Algorithm Analysis.
Prentice-Hall Inc. (1997)

20. Okasaki, C.: An overview of Edison. Electron. Notes Theor. Comput. Sci. 41(1),
60–73 (2001)

21. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-
bridge (1999)

22. Dockins, R.: Edison, Haskell communities and activities report 2009. https://www.
haskell.org/communities/05-2009/html/report.html

23. Dockins, R.: EdisonCore package. http://hackage.haskell.org/package/
EdisonCore-1.3

24. Dockins, R.: EdisonAPI package. http://hackage.haskell.org/package/EdisonAPI-
1.3

25. Lewis, L.: Java Collection Performance (2011). http://dzone.com/articles/java-
collection-performance

26. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: memory
power estimation and capping. In: 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pp. 189–194. IEEE (2010)

27. Weaver, V.M., et al.: Measuring energy and power with PAPI. In: 2012 41st Inter-
national Conference on Parallel Processing Workshops, pp. 262–268. IEEE (2012)

28. Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., Rajwan, D.: Power-
management architecture of the Intel microarchitecture code-named sandy bridge.
IEEE Micro 32(2), 20–27 (2012)

29. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17
(2012)

30. Desrochers, S., Paradis, C., Weaver, V.M.: A validation of DRAM RAPL power
measurements. In: Proceedings of the Second International Symposium on Memory
Systems, MEMSYS 2016, pp. 455–470. ACM (2016)

31. O’Sullivan, B.: Criterion: robust, reliable performance measurement and analysis
(2009). http://www.serpentine.com/criterion/

32. Liu, K., Pinto, G., Liu, Y.D.: Data-oriented characterization of application-level
energy optimization. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol.
9033, pp. 316–331. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46675-9 21

https://www.haskell.org/communities/05-2009/html/report.html
https://www.haskell.org/communities/05-2009/html/report.html
http://hackage.haskell.org/package/EdisonCore-1.3
http://hackage.haskell.org/package/EdisonCore-1.3
http://hackage.haskell.org/package/EdisonAPI-1.3
http://hackage.haskell.org/package/EdisonAPI-1.3
http://dzone.com/articles/java-collection-performance
http://dzone.com/articles/java-collection-performance
http://www.serpentine.com/criterion/
https://doi.org/10.1007/978-3-662-46675-9_21
https://doi.org/10.1007/978-3-662-46675-9_21

76 R. Pereira et al.

33. Barrett, E., Bolz-Tereick, C.F., Killick, R., Mount, S., Tratt, L.: Virtual machine
warmup blows hot and cold. Proc. ACM Program. Lang. 1(OOPSLA), 52 (2017)

34. Hogg, R.V., Tanis, E.A.: Probability and Statistical Inference, vol. 993. Macmillan,
New York (1977)

35. Fernandes, B., Pinto, G., Castor, F.: Assisting non-specialist developers to build
energy-efficient software. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pp. 158–160. IEEE (2017)

36. Lima, L.G., Soares-Neto, F., Lieuthier, P., Castor, F., Melfe, G., Fernandes, J.P.:
On Haskell and energy efficiency. J. Syst. Softw. 149, 554–580 (2019)

Energy Efficient Software
in an Engineering Course

João Saraiva(B) and Rui Pereira

Department of Informatics, University of Minho HASLab/INESC TEC,
Braga, Portugal

{saraiva,rui.pereira}@di.uminho.pt

Abstract. Sustainable development has become an increasingly impor-
tant theme not only in the world politics, but also an increasingly central
theme for the engineering professions around the world. Software engi-
neers are no exception as shown in various recent research studies. Despite
the intensive research on green software, today’s undergraduate comput-
ing education often fails to address our environmental responsibility.

In this paper, we present a module on energy efficient software that we
introduced as part of an advanced course on software analysis and test-
ing. In this module students study techniques and tools to analyze and
optimize energy consumption of software systems. Preliminary results
of the first four instances of this course show that students are able to
optimize the energy consumption of software systems.

Keywords: Sustainable Software Development · Energy Efficient
Software

1 Introduction

The world is increasingly aware of and concerned about sustainability and the
green movement. Computers and their software play a pivotal role in our world,
thus it has a special responsibility for social development and the welfare of our
planet. In this century, the situation is becoming critical since software is every-
where! The widespread use of computer devices, from regular desktop computers,
to laptops, to powerful mobile phones, to consumer electronics, and to large data
centers is changing the way software engineers develop software. Indeed, in our
internet of things age there are new concerns which developers have to consider
when constructing software systems. While in the previous century both com-
puter manufacturers and software developers were mainly focused in producing
very fast computer systems, in this century energy consumption is becoming the
main bottleneck when developing such systems [1].

Non wired/mobile devices are our everyday computers and not only do they
need energy efficient hardware, but also need energy efficient software. While the
computer hardware manufacturers have for several decades already, done a con-
siderable amount of research/work on developing energy efficient computers, only

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 77–97, 2023.
https://doi.org/10.1007/978-3-031-42833-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-42833-3_3

78 J. Saraiva and R. Pereira

recently have the programming language and software engineering communities
started conducting research on developing energy efficient software, the so-called
green software. Indeed, green software is nowadays a very active research area,
as shown by the organization of specific research events on this area (for exam-
ple, the ICT4S1 and IGSCC2 conferences, and the GREENS3, RE4SuSy4, and
SUSTAIN-SE5 workshops), the many research papers being published in top con-
ferences on, for example, green data structures [2–5],green software libraries [6,7],
green rankings of software languages [8], energy greedy programming practices/-
patterns [9–13], and green repositories [14], etc.

While research in green software is rapidly increasing, several recent studies
with software engineers show that they still miss techniques and tools to develop
greener software [1,15–17]. For example, in [17] a large survey on green software
is presented with the following conclusions:

“A survey revealed that programmers had limited knowledge of energy effi-
ciency, lacked knowledge of the best practices to reduce software energy
consumption, and were unsure about how software consumes energy. These
results highlight the need for training on energy consumption.”

In fact, all those recent studies show that academia should not only define new
advanced techniques and tools for green software developing, but it should also
educate software engineers towards greener software development. Obviously,
this education should be provided from the very beginning of a software engineer
career. Unfortunately, today’s undergraduate computing education often fails to
address our social and environmental responsibility [18]. Indeed, energy efficiency
and sustainability should be part of an undergraduate curriculum in software
engineering.

This document presents a module on green software as part of a disci-
pline on software engineering that is given in the MSc program on “Engenharia
Informática” at University of Minho, Portugal. The course introduces green soft-
ware as a new nonfunctional requirement in software engineering: minimizing
software energy consumption is a key concern. Techniques to monitor, instru-
ment and measure energy consumption by software systems are introduced. To
understand the impact of how programmers develop software on energy con-
sumption, we focus our energy analysis and optimization on the software’s source
code. Thus, a catalog of energy greedy programming practices is presented to
students- that we call red smells - together with corresponding source code opti-
mizations that reduce such possibly abnormal consumption, named green refac-
torings. Using this catalog, students have to build in a lab environment a suc-
cessful experiment for software energy consumption. This paper briefly presents

1 https://conf.researchr.org/series/ict4s.
2 https://www.igscc.org/.
3 https://greens.cs.vu.nl/.
4 http://birgit.penzenstadler.de/re4susy/.
5 https://sites.google.com/view/sustainablese-workshop/home.

https://conf.researchr.org/series/ict4s
https://www.igscc.org/
https://greens.cs.vu.nl/
http://birgit.penzenstadler.de/re4susy/
https://sites.google.com/view/sustainablese-workshop/home

Energy Efficient Software in an Engineering Course 79

our catalog of smells/refactorings, developed in the context of the Green Soft-
ware Laboratory (GSL) project6. Then, we present the first preliminary results
where students used this catalog to optimize the energy consumption of a given
software system. The results show that students do understand the impact of
software over energy consumption, are able to locate red smells in its source
code and to apply appropriate refactorings to optimize the software as to reduce
energy consumption.

2 Energy Efficient Software in Higher Education

2.1 Sustainable Development and Its Dimentions

Over the past decade, interest in topics related to sustainability has grown
steadily. In fact, sustainability is studied from various angles, for example, eco-
nomic, political, institutional, cultural or ethical ones, and thus it is difficult to
arrive at a common definition that covers nearly all of its aspects. The broader
socio-political concept of sustainability, as presented by the World Commission
on Environment and Development in their 1987 report [19], addresses the well-
known conflicts between environment and development goals by formulating sus-
tainability “as the ability to make development sustainable to ensure that it meets
the needs of the present without compromising the ability of future generations
to meet their own needs.”.

In the extensive discussion and use of this concept, it is commonly agreed
that the central component of sustainable development is best described by
considering the following three dimensions of sustainability [20]:

– Economic: An economically sustainable system must be able to produce goods
and services, and to avoid extreme sectoral imbalances which damage agri-
cultural or industrial production.

– Environmental: An environmentally sustainable system must maintain a sta-
ble resource base, avoiding over-exploitation of renewable resources, and
depleting non-renewable resources only to the extent that investment is made
in adequate substitutes.

– Social: A socially sustainable system must achieve distributional equity, ade-
quate provision of social services health and education, gender equity, and
political accountability and participation.

2.2 Sustainable Development in Higher Education

There are several works studying how to integrate the concept of sustainable
development into higher education in meaningful ways and to address the three
main dimensions of sustainability and their different combinations [21–23]. For
example, at the university institutional level, [22] presents a procedure at the
University of Gävle in Sweden, designed to stimulate integration of the concept

6 http://greenlab.di.uminho.pt/.

http://greenlab.di.uminho.pt/

80 J. Saraiva and R. Pereira

of sustainable development into courses and research projects. In that study,
faculty members were asked to classify their courses and research funding appli-
cations regarding their contributions to sustainable development. The method
of classifying courses provides a framework to approach sustainable development
from common definitions, but still allows for individual approaches to integrating
it in courses and research. The study shows that it is possible to integrate the
concept of sustainable development into higher education. However, the system
needs further development in order to show instructors and researchers that the
integration of sustainability is seen as important to the university administration
so that it stimulates faculty members to integrate sustainable development in
their courses.

At the national level, the paper [21] describes the process of promoting the
disciplinary exploration of sustainable development in the curricula of Dutch
Universities and the lessons learned with that process. The Finnish Government
included the promotion of sustainable development in its development plan for
education and research in 2003. This development plan is a key steering tool for
the Finish ministry of education [24]. In 2010, eight public universities in Hong
Kong signed the Hong Kong Declaration to recognize the vital role of the higher
education sector in the efforts to deal with the challenges caused by climate
change and to include the collective voices from Hong Kong public universities
in the global sustainability community. In [25] a study reviewed what the eight
public universities in Hong Kong have accomplished in promoting sustainability.

Sustainable development is also a concern for worldwide institutions, like for
example ACM: the world’s largest association of computing professionals. As
advocated in [26] information systems can be a driving force for sustainability
improvements and, as a consequence, ACM members could and should play a
critical role in creating and implementing an information strategy. In fact, ACM
promotes sustainability and in 2017, SIGPLAN7 formed the climate committee
to study the climate impact of conferences and possible steps that SIGPLAN
might take in response. ACM hosts a number of annual scientific meetings at
various locations throughout the world. While such meetings are important for
furthering important research, the air travel required for participate in such
meetings is a significant source of greenhouse gas emissions, which in turn is
a significant contributor to environmental change. In their preliminary report
on Engaging with Climate Change: Possible Steps for SIGPLAN, the climate
committee (among other things) presents a number of alternative models such a
physical/virtual hybrids, multi-hub conferences, and regional conferences, with
the goal to reducing carbon footprints. To make its members aware of the con-
ference participation impact on climate, ACM also provides a CO2 footprint
calculator for conferences: https://co2calculator.acm.org/.

Sustainability in the ACM Computer Science Curricula. While technical
issues are central to the computing curriculum, they do not constitute a complete
educational program in the field. Students must also be exposed to the larger
7 The ACM Special Interest Group on Programming Languages.

https://co2calculator.acm.org/

Energy Efficient Software in an Engineering Course 81

societal context of computing to develop an understanding of the relevant social,
ethical, legal and professional issues.

Sustainability was first introduced in the ACM Computer Science 2008 cur-
ricular guidelines, and in that same year [27] presented a policy on computing
education for sustainability for adoption by ACM SIGCSE8. In the Computer
Science Curricula 2013, ACM further recognized the enormous impact that com-
puting has had on society at large emphasizing a sustainable future and placing
added responsibilities on computing professionals.

The outcome of this was the definition of core topics on sustainability which
include the identification of ways to be a sustainable practitioner by taking into
consideration cultural and environmental impacts of implementation decisions
(e.g. organizational policies, economic viability, and resource consumption). The
exploration of global social and environmental impacts of computer use and dis-
posal (e-waste). And, the assessment the environmental impacts of design choices
in specific areas such as algorithms, operating systems, networks, databases, or
human-computer interaction.

2.3 Energy Efficient Software in Higher Education

In recent years, sustainable and energy efficient (green) software became a
very active software engineering research field. However, there are several stud-
ies showing that software engineers still lack knowledge of how to reason and
improve energy consumption of their software systems.

In [16] a detailed study on energy-related questions on StackOverflow - a ques-
tion and answer site for (non) professional software developers9 - showed that
software developers are aware of the energy consumption problems but the many
questions they asked rarely got appropriate answers. They also suggested eight
strategies to reduce energy consumption through software modification. A large
empirical study of how developers think about energy when they write require-
ments, design, construct, test, and maintain their software is presented in [15].
After surveying 464 developers (from ABB, Google, IBM, and Microsoft) and 18
in-depth interviews with Microsoft employees the study overall conclusions are:
“green software engineering practitioners care and think about energy when they
build applications; however, they are not as successful as they could be because
they lack the necessary information and support infrastructure.”. In [17] it is
shown that programmers know little about energy consumption: “The program-
mers in our study lacked knowledge and awareness of software energy- related
issues. More than 80 percent of them didn’t take energy consumption into account
when developing software.”. And, authors suggest that the strategies discussed
in [16] “should be part of programmers’ education. In addition, development tools
can be created to identify unnecessary energy consumption and suggest how to
reduce it. Educators could develop slides, videos, projects, and assignments as
part of an undergraduate curriculum for energy efficiency and sustainability.”.

8 The ACM Special Interest Group on Computer Science Education.
9 http://stackoverflow.com.

http://stackoverflow.com

82 J. Saraiva and R. Pereira

A recent article at CACM [1] discusses energy efficiency as a new concern for
software developers, showing that: developers currently do not know how to
write, maintain and evolve green software. They lack the knowledge on how to
measure, profile and optimize energy consumption, and they lack tools to help
them in these tasks.

Despite the intensive research on green software and all these recent studies
showing the lack of knowledge and language/tool support software engineers
are currently facing, there is little undergraduate computing education in green
software engineering. Misconception among developers and researchers persist,
rooted in a lack of coherent understanding of sustainability, and how it relates to
software systems research and practice, also makes it difficult [28]. [28] presents a
cross-disciplinary initiative to create a common ground and a point of reference
for the global community of research and practice in software and sustainability,
to be used for effectively communicating key issues, goals, values and principles
of sustainability design for software-intensive systems.

Nevertheless, there is some work advocating the introduction of sustainability
in undergraduate education. In [29] a first study of what is the current state
of teaching sustainability in the software engineering community is presented.
The paper reports the findings from a targeted survey of 33 academics on the
presence of green and sustainable software engineering in higher education. The
major findings suggest that sustainability is under-represented in the curricula
and the main reasons are:

– lack of awareness,
– lack of teaching material,
– high effort required,
– lack of technology and tool support.

A list a group of barriers for sustainability integration into computing edu-
cation is also discussed in [18]. Two strategies to sustainability integration in
computing are presented: the developing of a new course or the development of
modules easily plugged into existing courses. This short paper gives a very gen-
eral view of the organization of such a course. However, it does not include any
discussion on the course objectives and whether they were achieved by students
or not.

A systematic approach for teaching software engineering for sustainability
and its qualitative evaluation is presented in [30]. The proposed course blueprint
articulated a candidate set of modules. This is an intensive week-long course,
given at a summer school where participants had different backgrounds. In [31] a
course on learning and teaching computing sustainability is also briefly described.
They are adapting an existing course on professionalism in computing to incorpo-
rate more of these sustainability modules, such as: green mobile cloud computing
systems; integration of green clouds and the Internet of things; energy saving
solutions and trade-offs; sensors and monitoring software tools for evaluating
energy use, among other topics. [32] presents an experiment with integrating
issues of sustainability with information technology in both introductory and

Energy Efficient Software in an Engineering Course 83

upper-level computer science courses. The course discusses several case studies
that illustrate the many creative ways that IT is being used to address sustain-
ability: transportation and logistics, supply chain management, etc. In [23] it
is described the design of the course Software Engineering Sustainability that
introduces the sustainable concept into educational programs for software engi-
neers. The course has been being delivered at the National Aerospace University
“Kharkiv Aviation Institute” in Ukraine.

A survey on green software education with 21 well-known researchers and
educators in the green software/computing field is presented in [33]. This survey
confirms the lack of courses and educational material for teaching green software
in current higher education It also highlights three key pedagogical challenges in
teaching green software, and provide existing solutions and guidelines to address
these challenges.

At the Texas State University in USA, Ziliang Zong offers a full course on
Advanced Green Computing10 which covers hardware and software techniques to
improve the energy-efficiency of computing systems. Topics include best practices
in building energy-efficient data centers and mobile devices, current trends in
reducing the energy consumption of processors and storage components, energy-
aware resource management, software optimizations, and hands-on experience
on power-measurable systems. The objectives of this course is that students will
be able to:

– Analyze research papers and evaluate existing research ideas.
– Compare experimental results from different algorithms.
– Evaluate the strengths and weaknesses of different approaches.
– Design experiments and collect experimental results on power measurable

systems

Patricia Lago and Ivano Malavolta coordinate the Master track in Software
Engineering and Green IT at the Master’s in Computer Science11 offered at
Vrije Universiteit Amsterdam, The Netherlands. The combination of Software
Engineering and Green IT in one track provides the students with the instru-
ments necessary to gain a holistic understanding of large-scale and complex
software systems, to manage their evolution, assess their quality and environ-
mental impact, quantify their value and sustainability potential, and organize
their development in different local and distributed contexts. Students graduat-
ing in this track are experts of:

– Architecture design of software-intensive systems
– the role of software for sustainability (including energy efficiency, socio-

technical, ecologic and economic impact)
– software engineering techniques for critical analysis and decision-making
– benefits and challenges of developing and maintaining sustainable software
– the pervasive role of software-intensive systems in the digital society
– data-driven measurement and assessment of software quality

10 CS 7333 - Advanced Green Computing, https://cs.txstate.edu/academics/course det
ail/CS/7333/.

11 https://vuweb.vu.nl/en/education/master/computer-science.

https://cs.txstate.edu/academics/course_detail/CS/7333/
https://cs.txstate.edu/academics/course_detail/CS/7333/
https://vuweb.vu.nl/en/education/master/computer-science

84 J. Saraiva and R. Pereira

3 Software Analysis and Testing with a Green Flavor

In this section we discuss in detail the module on green software we offer as
part of a non mandatory discipline on software engineering, more precisely on
software analysis and testing, that is given in the fourth year of our five year
MSc program.

As mentioned in several papers advocating the inclusion of sustainability and
green software in computing education [28–30,34–37], we present green software
as a module of an already existing course. Moreover, we focus this module in
making future software engineers aware of the impact of programming practices
on software energy consumption.

3.1 Green Software: A Multidisciplinary Module

The green software module requires a multidisciplinary course combining several
software engineering techniques and principles, namely:

Source Code Analysis and Transformation: In order to analyze and transform
software systems we introduce two powerful source code manipulation tech-
niques: Strategic and Aspect Oriented Programming. Strategic programming is
a generic tree traversal techniques that allows for expressing powerful abstract
syntax tree analysis and transformations [38,39]. Aspect oriented programming
is introduced to allow developers to instrument the base source code without
adding the energy monitoring intrusive code, but keeping it in one aspect that
is later weaved to the base program [40].

Green Aspect: In order to monitor the energy consumption, students need to
traverse and instrument the source code with calls to APIs providing energy
measurements at runtime. In our course we consider two types of measurements:
energy estimation provided by manufacturers of the CPUs, namely the RAPL
framework developed by Intel [41,42], or using hardware with energy sensors,
like for example the ODroid hardware board12.

Source Code Smells and Metrics: Code smells represent symptoms of poor imple-
mentation choices when developing software. Code smells are not faults, they
make program understanding difficult, and possibly indicate a deeper problem
in the software. Software metrics are usually used to detect source code smells,
for example, a too long method smell.

Green Aspect: In our module on green software we present a catalog of energy
greedy programming practices [13]. This catalog can also be seen as a energy
smell catalog, where software metrics can be used to detect such smells in the
source code.

12 http://www.odroid.com.

http://www.odroid.com

Energy Efficient Software in an Engineering Course 85

Program Refactoring: refactoring is a controlled source-to-source transforma-
tion technique for improving the design of an existing (source code) software
system [43,44]. Its essence is applying a series of small semantic-preserving trans-
formations. Refactorings are usually associated with code smells: for each smell
there is a refactoring that eliminates it.

Green Aspect: We associate refactorings to the catalog of energy smells so that
students can use a green refactoring to eliminate red smells. Because the main
focus of refactoring is to improve comprehensibility, several refactorings may
negatively affect energy consumption. Students also analyze how refactorings
available from Java IDEs affect energy consumption. The catalog of green refac-
torings for Java data structures is supported by the jStanley tool [2].

Technical Debt: Technical debt describes the gap between the current state and
the ideal state of a software system [45]. The key idea of technical debt is that
software systems may include hard to understand/maintain/evolve artefacts,
causing higher costs in the future development and maintenance activities. These
extra costs can be seen as a type of debt that developers owe the software system.

Green Aspect: In our module we introduce the concept of Energy Debt [46] as
the amount of unnecessary energy that a software system uses over time, due to
maintaining energy code smells for sustained periods.

Software Testing and Benchmarking Infrastructures: Software testing aims at
ensuring that a software system is defect free. We present the usual levels of
testing: unit, integration, system, regression and beta testing. Automated test
case generation and property based testing is also studied in this course. Code
coverage and mutation-based testing is used to assess the quality of the test
suite. Moreover, we use testing framework and benchmarks infrastructures, like
Google’s Caliper13 in order to execute programs.

Green Aspect: To measure energy consumption, the source code needs to be
executed with proper inputs. We use system testing, where the automated test
case generation techniques produces real inputs of the program under testing.

Fault Localization: When a software systems fails running the defined/generated
test suite, programmers need to locate the fault and fix it. Fault localization
techniques locate software faults in the program’s source code [47]. Spectrum-
based Fault Localization (SFL) relies on test cases to run the program and it
uses statistical methods to assign probabilities of being faulty to source code
components (methods, classes, statements, etc.) [48].

Green Aspect: Abnormal energy consumption can be seen as a software fault.
In our course we defined a variant of SFL to locate energy leaks in the source
code: Spectrum-based Energy Leak Localization (SPELL) [49,50], and students
can use it to locate such energy hot-spots in their software.

13 http://code.google.com/p/caliper/.

http://code.google.com/p/caliper/

86 J. Saraiva and R. Pereira

Automated Program Repair: The goal of automated program repair is to take a
faulty program and a test suite, and automatically produce a patch that fixes
the program [51]. The test suite provides the correctness criterion in this case,
guiding the repair towards a valid patch.

Green Aspect: SPELL adapts fault localization to the green software realm, while
green refactorings eliminate red smells aiming at improving energy efficiency of
programs. We combine these two techniques in order to automate the energy-
aware repair of energy inefficient software systems [52,53].

3.2 Green Software: Module Objectives

The objectives of the green software module are:

– Be able to instrument, monitor and measure the energy consumption of soft-
ware systems.

– Become aware of the impact of programming practices on energy consump-
tion.

– Become familiar with the research problems in the field of green software
engineering.

Course Duration, Organization and Evaluation: The module of green software is
part of the software analysis and testing course. It is a one semester long course
with 5 ECTS. It is a non mandatory course included in the second semester of the
fourth year of the master program on software engineering at Minho University.

The students have 3 h per week in the classroom: one hour in a seminar room,
where all theories and techniques are presented. The remaining two weekly hours
are laboratory classes where students have the chance to experiment the intro-
duced techniques for software energy consumption. The evaluation consists of
two components: an individual written exam, and a group project on analyzing
and optimizing the energy consumption of a given software system. The consid-
ered software system is the students project developed in the introductory course
to object oriented programming the semester before (by second year students).
The idea is to provide students in the course with a simple, non fully optimized
system.

In order to analyze and optimize the energy consumption of Java based soft-
ware systems, we present the students a catalog of energy-greedy Java program-
ming practices. The main goal is to make students aware of some features of
Java’s source code that may indicate an abnormal energy consumption of the
software. The students are also presented with a possible solution by performing
a refactoring of the source code into a more energy efficient one. Moreover, soft-
ware tools that locate such features and (semi) automatically optimize the code
are also presented. In laboratory sessions the students are able to experiment
with smell detection and optimization. Then, outside of class, students have to
work in group (three students per group) and apply the catalog/tools in order
to optimize the energy consumption of a real software project.

Energy Efficient Software in an Engineering Course 87

3.3 Green Software: Module Supporting Tools

In the context of the Green Software Laboratory project [54] we have developed
several tools that support the laboratory classes, namely:

– SPELL [50]- A toolkit to measure the energy consumption of a Java based
program and detect potential energy hot spots through an adapted Spectrum-
based Fault Localization technique.

– jStanley [2] - An Eclipse plugin that automatically refactors Java collections
to more energy efficient ones.

– Chimera [13]: An energy-greedy Android pattern testing framework for
Android.

– E-Debitum [55] - A SonarQube extension to manage the Energy Debt of
Java/Android-based software systems.

– GreenSource and AnaDroid [14] - A repository of android source code appli-
cations tailored for green software analysis and a tool to static analyze and
dynamically monitor the energy consumption of such applications.

4 Energy Efficent Software: Students Assessment

We introduced this module on green software as part of the software analysis
and testing course in the scholar year of 2017/2018. In the 2020/2021 scholar
year we offered the fourth instance of the course, totaling 141 students enrolled
across all four instances.

In the first four instances of this module students were quite positive in their
reception of the material and the way it was incorporated in the course. In fact
across all editions, 59% of students obtained at least a B for the module project,
with the average module grade (written exam and project) being a C.

As shown in Fig. 1, most students received a positive evaluation on the group
project where they have to analyze and optimize the energy consumption of
a given software system. With the green software background acquired in the
course, students were not only able to measure energy consumption of a software
system, but also to optimize its energy consumption. Indeed, the catalog of
energy smells and corresponding green refactorings, introduced in the theoretical
classes, provided insights how energy may be abnormally consumed by software
and pointed to the exact locations of where to improve/refactor the source code.

In order to assess the green software learning outcomes of individual students,
the written exam includes questions on green software, as well. In the second
instance of the course, offered in the 2018–2019 scholar year, we defined a specific
question regarding green software. This one question has been repeated in the
following two instances so that we have a larger set of answers.

In this exam question on green software, students are asked to identify energy
smells in the source code of a given Java class (approx. 100 lines long), and
to refactor each of the identified smells by hand. The given Java source code
contains six of the smells included in the red smells catalog we present in the
theoretical classes. The following subsection presents a brief description of the
red smells catalog, and in Sect. 4.2 we analyze the students’ answers in detail.

88 J. Saraiva and R. Pereira

Fig. 1. Project grade distribution across all four editions.

4.1 A Catalog of Energy Smells and Refactorings

In the theoretical classes we present a catalog of Java-based energy smells and
associated refactorings reported in the green software literature [5,56,57]. The
following lists the subset of smells that occur in the given Java source code for
the exam question.

Data Structures: Most languages offer mechanisms to manipulate data struc-
tures. Java is no exception with the Java Collections Framework (JCF). There
are several research papers analyzing the energy behavior of such Java struc-
tures [2,3,5,58] showing very different energy efficiencies.

String Manipulation: Strings are widely used when developing software, with
modern languages providing special syntax/operators to manipulate them. Java
uses the String class and includes the “+” operator to concatenate them. How-
ever, the StringBuilder class in the Java library exploits buffering, and is more
energy efficient. Thus, every occurrence of the string concatenation “+” in the
source code is an energy smell and it should be refactored to a StringBuilder.

Lambda Expressions: Java 8 adopted lambda expressions as a mechanism to
manipulate its collections. However, the execution of Java streams has several
efficiency problems, either by doing more traversals than necessary, or creating
intermediate data structures. In fact, Java 8 streams are still an order of magni-
tude slower than hand-written loops [56,59,60]. Thus, the use of Java streams is
an energy smell and the refactoring considers a for-loop instead. IntelliJ IDEA14

refactoring source code system provides such a detection and refactoring.

14 https://www.jetbrains.com/idea/.

https://www.jetbrains.com/idea/

Energy Efficient Software in an Engineering Course 89

Accessing Object Fields: The object oriented paradigm encourages encapsula-
tion, in order to make sure that “sensitive” data is hidden from users. Thus,
every class should provide public getters and setters. However, the overhead
caused by often calling getters and setters can increase both the execution time
and energy consumption. Thus, the use of a get/set method is an energy smell
and can be refactored to direct access of the attribute [57].

Java Exceptions: Exceptions are used to manage any unexpected event in the
code, while ensuring code readability. When an object is in a condition it can-
not handle, it raises an exception to be captured by another object. The JVM
searches backward through the call stack to find methods that do can handle the
exception. Exception handling is expensive and involves object creation, thus it
should be avoided by, for example, the methods returning error codes [57].

4.2 Students Grades

Figure 2 shows the individual grades that students received on the specific ques-
tion regarding energy smell detection and refactoring the given Java class aiming
at improving its energy consumption.

Fig. 2. Green Software Question: Distribution of grades in the last three editions.
(Color figure online)

As shown in Fig. 2, a quarter of the students received a very good (19.63%)
or excellent (4.67%) grade. On the other end, 16.82% of the students failed in
answering this question. Most of these students (60%) also performed poorly in

90 J. Saraiva and R. Pereira

the other questions and did fail in the overall exam (as we can see in Figs. 4, 5,
and 6).

The source code of the Java class included in the question contains five energy
smells from the (larger) catalog we introduce in the green software module.
Figure 3 shows the percentage of students who identified each of the occurring
energy smells, in each instance of the course.

Fig. 3. Percentage of students discovering each red smell (Color figure online)

As we can observe, when we consider the three instances of the exam, the
String Manipulation smell was identified by roughly 80% of the students, while
the Accessing Object Fields smell (shown as Gets/Sets) was detected by less than
30%, only. Such a large difference in smell detection has two possible answers:
since the very first Java OO programming course, students are taught to avoid
the inefficient pre-defined Java string concatenation, thus they are familiar with
identifying it and eliminating it. On the other end, the OO paradigm teaches/-
motivates encapsulation, and thus the use of gets and sets to access the (private)
state of an object. As a consequence, students do not find such a refactoring nat-
ural. Similarly, replacing the elegant Java exceptions mechanism by the use of an
(C-like) error code also goes against the OO paradigm. These students, however,
do have a strong background in imperative programming (with the C language)
and, thus, are used to this basic style of handling exceptions.

Streams offer an advanced functional style of programming in Java. Although
students have a good background in functional programming (in Haskell), most
students find it hard to understand the concept of higher-order functions and to
adopt it. As a result, only half of the students were able to understand, detect
and refactor this Java energy smell. Although the transformation from a stream

Energy Efficient Software in an Engineering Course 91

to a for-loop is simple15, students are not able to fully understand the functional
code and to hand-write such refactoring themselves.

The students also performed poorly in detecting and refactoring Java energy
greedy collections: in the three instances less than 40% correctly answer this
question. Moreover, in the last instance the grades dropped to approximately
15%. While many of the other energy greed smells taught within the course are
relatively straightforward rules (i.e. replacing string concatenation with String-
Builders), choosing the most energy efficient data structure is inherently more
difficult. This is due to having a wide array of choices between the different
collections, which also depends on the needed methods and operations. Adding
another requirement, in this case energy efficiency, further raises the complexity.
While during the practical lab sessions students had tools and/or lecture slides
at their disposal, many chose to not take the lecture material to the exam.

Figures 4, 5 and 6 show the comparison between the overall grade students
obtained in the individual exam (represented as bars with the left-axis) and on
the green software question (represented as lines with the right-axis), in the three
instances completed.

Fig. 4. Comparison between exam grade and red smell detection grade for academic
year 2018/2019 (Color figure online)

We can see that only 8 out of 27 obtained a failing score in the 2018/2019
instances. The average score of the full exam is 68.6%, while the average of the
green software question is 58.6%. We can also observe in Fig. 4 that students
who performed well in the full exam, also received a good make in the green
software question. Additionally, during this first instance, two students obtained
a perfect score for this question (100% grade).

15 Actually, modern Java IDEs, such as IntelliJ, offer this transformation as a predefined
refactoring.

92 J. Saraiva and R. Pereira

Fig. 5. Comparison between exam grade and red smell detection grade for academic
year 2019/2020 (Color figure online)

In the 2019/2020 instance of the course, 11 out of 46 failed answering the
exact same green software question. When we compare the scores to the previ-
ous instance, we observe that both the average of the exam and the question
decreased: 57.6% and 55.7%, respectively. However, we observe the same pattern
in the results: students who performed well in the full exam, also performed well
in the question. This is also the case for the 2020/2021 edition.

Fig. 6. Comparison between exam grade and red smell detection grade for academic
year 2020/2021 (Color figure online)

In the latest instance of the course, 7 out of 33 failed in the green software
question. The average scores went up and are similar to the results of the first

Energy Efficient Software in an Engineering Course 93

instance: the exam score is 64.7%, that is also similar to the average of the green
software questions 60.1%.

The second instance registered the most number of students in this non-
mandatory course, having 70% more students than the first edition, and 40%
more than the most recent edition. It is in this second instance that students
received the lowest average scores, both in terms of the full exam and the green
software question. Since this is a non-mandatory course, the increase in numbers
not only influences (negatively) the quality of students, but also makes it harder
to teach an advanced course to a larger group of students. We are convinced
that this is the main reason for the worsened performance of the students in that
instance. In fact, if we consider the results of the 30 best students of 2018/2019,
a number similar to the previous/following instance, then the average scores
are 66.9% (exam) and 65.4% (question), which in terms of the green software
question would the be the best average result to date.

5 Conclusions

This paper presented the module on green software that we introduced as part
of the course on software analysis and testing: an advanced course on software
engineering. We described in detail the green flavor we incorporated in this well
established multi-disciplinary course. Furthermore, we have assessed students in
green decision making when developing/optimizing energy efficient software. Our
first preliminary results are positive: students acquired the necessary engineering
skills to measure and optimize energy consumption of software systems.

Aknowlegments. This work is financed by the ERDF European Regional Develop-
ment Fund through the Operational Programme for Competitiveness and Internation-
alisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961,
by National Funds through the Portuguese funding agency, FCT - Fundação para
a Ciência e a Tecnologia within project POCI-01-0145-FEDER-016718 and UID/EEA/

50014/2013, and by the Erasmus+ Key Action 2 project “SusTrainable - Promoting
Sustainability as a Fundamental Driver in Software Development Training and Educa-
tion”, project No. 2020-1-PT01-KA203-078646.

References

1. Pinto, G., Castor, F.: Energy efficiency: a new concern for application software
developers. Commun. ACM 60(12), 68–75 (2017)

2. Pereira, R., Simão, P., Cunha, J., Saraiva, J.: jStanley: placing a green thumb
on java collections. In: Proceedings of the 33rd ACM/IEEE Int. Conference on
Automated Software Engineering, ASE 2018, ACM, New York, NY, USA, pp.
856–859 (2018). http://doi.acm.org/10.1145/3238147.3240473

3. Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., Hindle, A.: Energy pro-
files of Java collections classes. In: Proceedings of the 38th International Confer-
ence on Software Engineering, pp. 225–236. ACM (2016). https://doi.org/10.1145/
2884781.2884869

http://doi.acm.org/10.1145/3238147.3240473
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1145/2884781.2884869

94 J. Saraiva and R. Pereira

4. Oliveira, W., Oliveira, R., Castor, F., Fernandes, B., Pinto, G.: Recommending
energy-efficient Java collections. In: Proceedings of the 16th International Confer-
ence on Mining Software Repositories, MSR 2019, pp. 160–170. IEEE Press (2019).
https://doi.org/10.1109/MSR.2019.00033

5. Pereira, R., Couto, M., Saraiva, J., Cunha, J., Fernandes, J.P.: The influence of the
Java collection framework on overall energy consumption. In: Proceedings of the
5th International Workshop on Green and Sustainable Software, GREENS 2016,
pp. 15–21. ACM (2016). https://doi.org/10.1145/2896967.2896968

6. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R. Di Penta,
M., Poshyvanyk, D.: Mining energy-greedy API usage patterns in android apps:
an empirical study. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, pp. 2–11. ACM (2014). https://doi.org/10.1145/2597073.
2597085

7. Anwar, H., Demirer, B., Pfahl, D., Srirama, S.: Should energy consumption influ-
ence the choice of android third-party http libraries? In: Proceedings of the
IEEE/ACM 7th International Conference on Mobile Software Engineering and
Systems, MOBILESoft 2020, New York, NY, USA, pp. 87–97. Association for Com-
puting Machinery (2020). https://doi.org/10.1145/3387905.3392095

8. Pereira, R., et al.: Energy efficiency across programming languages: how do energy,
time, and memory relate? In: Proceedings of the 10th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, SLE 2017, New York, NY,
USA, pp. 256–267. ACM (2017). http://doi.acm.org/10.1145/3136014.3136031

9. Cruz, L., Abreu, R.: Performance-based guidelines for energy efficient mobile appli-
cations. In: Proceedings of the 4th International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2017, Piscataway, NJ, USA, 2017, pp. 46–
57. IEEE Press (2017). https://doi.org/10.1109/MOBILESoft.2017.19

10. Cruz, L., Abreu, R.: Catalog of energy patterns for mobile applications. Empirical
Softw. Engg. 24(4), 2209–2235 (2019). https://doi.org/10.1007/s10664-019-09682-
0

11. Li, D., Halfond, W.G.J.: An investigation into energy-saving programming prac-
tices for android smartphone app development. In: Proceedings of the 3rd Interna-
tional Workshop on Green and Sustainable Software, GREENS 2014, New York,
NY, USA, pp. 46–53. ACM (2014). http://doi.acm.org/10.1145/2593743.2593750

12. Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G.: EARMO: an
energy-aware refactoring approach for mobile apps. IEEE Trans. Software Eng.
44(12), 1176–1206 (2018). https://doi.org/10.1145/3180155.3182524

13. Couto, M., Saraiva, J., Fernandes, J.P.: Energy refactorings for android in the large
and in the wild. In: 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 217–228. IEEE (2020). https://doi.
org/10.1109/SANER48275.2020.9054858

14. Rua, R., Couto, M., Saraiva, J.: GreenSource: a large-scale collection of android
code, tests and energy metrics. In: 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pp. 176–180. IEEE Press (2019). https://
doi.org/10.1109/MSR.2019.00035

15. Manotas, I., et al.: An empirical study of practitioners’ perspectives on green soft-
ware engineering. In: Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, New York, NY, USA, pp. 237–248. Association for Com-
puting Machinery (2016). https://doi.org/10.1145/2884781.2884810

16. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy con-
sumption. In: Proceedings of the 11th Working Conference on Mining Software
Repositories, pp. 22–31. ACM (2014). https://doi.org/10.1145/2597073.2597110

https://doi.org/10.1109/MSR.2019.00033
https://doi.org/10.1145/2896967.2896968
https://doi.org/10.1145/2597073.2597085
https://doi.org/10.1145/2597073.2597085
https://doi.org/10.1145/3387905.3392095
http://doi.acm.org/10.1145/3136014.3136031
https://doi.org/10.1109/MOBILESoft.2017.19
https://doi.org/10.1007/s10664-019-09682-0
https://doi.org/10.1007/s10664-019-09682-0
http://doi.acm.org/10.1145/2593743.2593750
https://doi.org/10.1145/3180155.3182524
https://doi.org/10.1109/SANER48275.2020.9054858
https://doi.org/10.1109/SANER48275.2020.9054858
https://doi.org/10.1109/MSR.2019.00035
https://doi.org/10.1109/MSR.2019.00035
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2597073.2597110

Energy Efficient Software in an Engineering Course 95

17. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about
software energy consumption? IEEE Softw. 33(3), 83–89 (2016). https://doi.org/
10.1109/MS.2015.83

18. Cai, Y.: Integrating sustainability into undergraduate computing education. In:
Proceedings of the 41st ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE 2010, New York, NY, USA, pp. 524–528. ACM (2010). https://doi.
org/10.1145/1734263.1734439

19. Brundtland, G.H.: Our common future, from one earth to one world - an overview
by the world commission on environment and development (1987). https://
sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf

20. Harris, J.: Basic principles of sustainable development. In: Bawa, S.K., Seidler, R.
(eds.) Dimensions of Sustainable Development, vol. 1, Encyclopedia of Life Support
Systems - EOLSS, Oxford, United Kingdom, Ch. 2, pp. 21–40 (2009)

21. Appel, G., Dankelman, I., Kuipers, K.: Disciplinary explorations of sustainable
development in higher education. In: Corcoran, P.B., Wals, A.E.J. (eds.) Higher
Education and the Challenge of Sustainability, pp. 213–222. Springer, Dordrecht
(2004). https://doi.org/10.1007/0-306-48515-X 16

22. Sammalisto, K., Lindhqvist, T.: Integration of sustainability in higher education:
a study with international perspectives. Innov. High. Educ. 32, 221–233 (2008).
https://doi.org/10.1007/s10755-007-9052-x

23. Turkin, I., Vykhodets, Y.: Software engineering master’s program and green IT:
the design of the software engineering sustainability course. In: 2018 IEEE 9th
International Conference on Dependable Systems, Services and Technologies, pp.
662–666 (2018)

24. Kaivola, T., Rohweder, L. (eds.): Towards sustainable development in higher edu-
cation - reflections, no. 2007:6 in Opetusministeriön julkaisuja, Opetusministeriö,
koulutus- ja tiedepolitiikan osasto, Finland (2007)

25. Xiong, W., Mok, K.H.: Sustainability practices of higher education institutions in
Hong Kong: a case study of a sustainable campus consortium. Sustainability (2),
452 (2020). https://doi.org/10.3390/su12020452

26. Watson, R.T., Corbett, J., Boudreau, M.C., Webster, J.: An information strategy
for environmental sustainability. Commun. ACM 55(7), 28–30 (2012). https://doi.
org/10.1145/2209249.2209261

27. Mann, S., Smith, L., Muller, L.: Computing education for sustainability. SIGCSE
Bull. 40(4), 183–193 (2008). https://doi.org/10.1145/1473195.1473241

28. Becker, C., et al.: Venters, sustainability design and software: the Karlskrona mani-
festo. In: Proceedings of the 37th International Conference on Software Engineering
- Volume 2, ICSE 2015, pp. 467–476. IEEE Press (2015)

29. Torre, D., Procaccianti, G., Fucci, D., Lutovac, S., Scanniello, G.: On the presence
of green and sustainable software engineering in higher education curricula. In:
Proceedings of the 1st International Workshop on Software Engineering Curricula
for Millennials, SECM 2017, pp. 54–60. IEEE Press (2017). https://doi.org/10.
1109/SECM.2017.4

30. Penzenstadler, B., et al.: Everything is interrelated: teaching software engineer-
ing for sustainability. In: Proceedings of the 40th International Conference on
Software Engineering: Software Engineering Education and Training, ICSE-SEET
2018, New York, NY, USA, pp. 153–162. Association for Computing Machinery
(2018). https://doi.org/10.1145/3183377.3183382

https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1145/1734263.1734439
https://doi.org/10.1145/1734263.1734439
https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
https://doi.org/10.1007/0-306-48515-X_16
https://doi.org/10.1007/s10755-007-9052-x
https://doi.org/10.3390/su12020452
https://doi.org/10.1145/2209249.2209261
https://doi.org/10.1145/2209249.2209261
https://doi.org/10.1145/1473195.1473241
https://doi.org/10.1109/SECM.2017.4
https://doi.org/10.1109/SECM.2017.4
https://doi.org/10.1145/3183377.3183382

96 J. Saraiva and R. Pereira

31. Hamilton, M.: Learning and teaching computing sustainability. In: Proceedings of
the 2015 ACM Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2015, New York, NY, USA, pp. 338. ACM (2015). https://doi.
org/10.1145/2729094.2754850

32. Abernethy, K., Treu, K.: Integrating sustainability across the computer science
curriculum. J. Comput. Sci. Coll. 30(2), 220–228 (2014). https://dl.acm.org/doi/
10.1145/1734263.1734439

33. Saraiva, J., Zong, Z., Pereira, R.: Bringing green software to computer science cur-
riculum: perspectives from researchers and educators. In: Proceedings of the 26th
ACM Conference on Innovation and Technology in Computer Science Education
V. 1, ITiCSE 2021, New York, NY, USA, pp. 498–504. ACM (2021). https://doi.
org/10.1145/3430665.3456386

34. Pattinson, C.: ICT and green sustainability research and teaching. IFAC-
PapersOnLine 50 (1), 12938–12943 (2017). 20th IFAC World Congress. https://
doi.org/10.1016/j.ifacol.2017.08.1794

35. Berntsen, K.R., Olsen, M.R., Limbu, N., Tran, A.T., Colomo-Palacios, R.: Sustain-
ability in software engineering - a systematic mapping. In: CIMPS 2016. AISC, vol.
537, pp. 23–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48523-
2 3

36. Wolfram, N., Lago, P., Osborne, F.: Sustainability in software engineering. In:
Sustainable Internet and ICT for Sustainability (SustainIT) 2017, pp. 1–7 (2017)

37. Calero, C., Piattini, M.: Green in Software Engineering. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-08581-4

38. Luttik, S.P., Visser, E.: Specification of rewriting strategies. In: Proceedings of the
2nd International Conference on Theory and Practice of Algebraic Specifications,
Algebraic 1997, Swindon, GBR, p. 9. BCS Learning & Development Ltd. (1997)

39. Lämmel, R., Visser, J.: Typed combinators for generic traversal. In: Krishnamurthi,
S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, pp. 137–154. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45587-6 10

40. Kiczales, G., Hilsdale, E.: Aspect-oriented programming. SIGSOFT Softw. Eng.
Notes 26(5), 313 (2001). https://doi.org/10.1145/503271.503260

41. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: mem-
ory power estimation and capping. In: International Symposium on Low-Power
Electronics and Design (ISLPED), 2010 ACM/IEEE, pp. 189–194. IEEE (2010).
https://doi.org/10.1145/1840845.1840883

42. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17
(2012). https://doi.org/10.1145/2425248.2425252

43. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., USA (1999)

44. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.
30(2), 126–139 (2004). https://doi.org/10.1109/TSE.2004.1265817

45. Allman, E.: Managing technical debt. Commun. ACM 55(5), 50–55 (2012).
https://doi.org/10.1145/2160718.2160733

46. Couto, M., Maia, D., Saraiva, J., Pereira, R.: On energy debt: managing consump-
tion on evolving software. In: Proceedings of the 3rd International Conference on
Technical Debt, TechDebt 2020, ACM, New York, NY, USA, pp. 62–66 (2020).
https://doi.org/10.1145/3387906.3388628

47. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Software Eng. 42(8), 707–740 (2016). https://doi.org/
10.1109/TSE.2016.2521368

https://doi.org/10.1145/2729094.2754850
https://doi.org/10.1145/2729094.2754850
https://dl.acm.org/doi/10.1145/1734263.1734439
https://dl.acm.org/doi/10.1145/1734263.1734439
https://doi.org/10.1145/3430665.3456386
https://doi.org/10.1145/3430665.3456386
https://doi.org/10.1016/j.ifacol.2017.08.1794
https://doi.org/10.1016/j.ifacol.2017.08.1794
https://doi.org/10.1007/978-3-319-48523-2_3
https://doi.org/10.1007/978-3-319-48523-2_3
https://doi.org/10.1007/978-3-319-08581-4
https://doi.org/10.1007/3-540-45587-6_10
https://doi.org/10.1145/503271.503260
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1145/2160718.2160733
https://doi.org/10.1145/3387906.3388628
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368

Energy Efficient Software in an Engineering Course 97

48. Abreu, R., Zoeteweij, P., van Gemund, A.J.: On the accuracy of spectrum-based
fault localization, in: Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION, pp. 89–98 (2007)

49. Pereira, R., T. Carção, Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J.: Helping
programmers improve the energy efficiency of source code. In: Proceedings of the
39th International Conference on Software Engineering Companion, ICSE-C 2017,
Piscataway, NJ, USA, pp. 238–240. IEEE Press (2017). https://doi.org/10.1109/
ICSE-C.2017.80

50. Pereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J.P., Saraiva, J.: Spelling
out energy leaks: aiding developers locate energy inefficient code. J. Syst. Software
161 (2020). https://doi.org/10.1016/j.jss.2019.110463

51. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12), 56–65 (2019). https://doi.org/10.1145/3318162

52. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Saraiva, J.: Energyware analysis.
In: 7th Workshop on Software Quality Analysis, Monitoring, Improvement, and
Applications (SQAMIA), vol. 2217, CEUR Workshop Proceedings (2018)

53. Pereira, R.: Energyware engineering: techniques and tools for green software devel-
opment, Ph.D. thesis, Universidade do Minho (2018)

54. Saraiva, J., Abreu, R., Cunha, J., Fernandes, J.P.: GreenSoftwareLab: towards an
engineering discipline for green software, Impact 2018 (1) (2018). https://doi.org/
10.21820/23987073.2018.9

55. Maia, D., Couto, M., Saraiva, J., Pereira, R.: E-Debitum: managing software energy
debt. In: Proceedings of the 35th IEEE/ACM International Conference on Auto-
mated Software Engineering Workshops, New York, NY, USA, pp. 170–177. ACM
(2020). https://doi.org/10.1145/3417113.3422999

56. Kiselyov, O., Biboudis, A., Palladinos, N., Smaragdakis, Y.: Stream fusion, to com-
pleteness. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, New York, NY, USA, pp. 285–299. Associ-
ation for Computing Machinery (2017). https://doi.org/10.1145/3009837.3009880

57. Longo, M., Rodriguez, A., Mateos, C., Zunino, A.: Reducing energy usage in
resource-intensive Java-based scientific applications via micro-benchmark based
code refactorings. Comput. Sci. Inf. Syst. 16(2), 541–564 (2019). https://doi.org/
10.2298/CSIS180608009L

58. Melfe, G., Fonseca, A., Fernandes, J.P.: Helping developers write energy efficient
haskell through a data-structure evaluation. In: 2018 IEEE/ACM 6th International
Workshop on Green And Sustainable Software (GREENS), pp. 9–15. IEEE (2018).
https://doi.org/10.1145/3194078.3194080

59. Ribeiro, F., Saraiva, J., Pardo, A.: Java stream fusion: adapting FP mechanisms for
an OO setting. In: Proceedings of the XXIII Brazilian Symposium on Programming
Languages, SBLP 2019, New York, NY, USA, pp. 30–37. ACM (2019). https://
doi.org/10.1145/3355378.3355386

60. Mendonça, W.L., et al.: Understanding the impact of introducing lambda expres-
sions in Java programs. J. Software Eng. Res. Dev. 8(1–8), 22 (2020). https://sol.
sbc.org.br/journals/index.php/jserd/article/view/744

https://doi.org/10.1109/ICSE-C.2017.80
https://doi.org/10.1109/ICSE-C.2017.80
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1145/3318162
https://doi.org/10.21820/23987073.2018.9
https://doi.org/10.21820/23987073.2018.9
https://doi.org/10.1145/3417113.3422999
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.2298/CSIS180608009L
https://doi.org/10.2298/CSIS180608009L
https://doi.org/10.1145/3194078.3194080
https://doi.org/10.1145/3355378.3355386
https://doi.org/10.1145/3355378.3355386
https://sol.sbc.org.br/journals/index.php/jserd/article/view/744
https://sol.sbc.org.br/journals/index.php/jserd/article/view/744

Utilizing Rail Traffic Control Simulator
in Verified Software Development Courses

Štefan Korečko(B)

Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University of Košice, Košice, Slovakia

stefan.korecko@tuke.sk

Abstract. With the increasing dependency of our society on automated
systems, their correctness is of uttermost importance. Formal methods
for software development, such as the B-Method, belong to rigorous
approaches that may ensure the correctness. They offer mathematical
apparatuses to prove that the software under development meets the
corresponding requirements. But the need to comprehend such appara-
tus makes formal methods unpopular with students. They may not see
the reasons why to use them. And many formal method courses do not
include executable software development or the software developed is
not used in an appropriate environment. Both problems are addressed
by the TD/TS2JC toolset, described in this chapter. The toolset pro-
vides an appropriate virtual railway environment, where verified soft-
ware controllers can run. The controllers can be developed with any for-
mal method that offers translation to the Java programming language.
The chapter also describes two of several control interfaces the toolset
supports. It also introduces a compact, four to six hour long, course
on verified software development with the B-Method, which utilizes the
toolset.

Keywords: verified software · formal methods · B-Method · virtual
environment · course · teaching · railway

1 Introduction

One of the well-recognized approaches to the development of correct software
systems is the utilization of formal methods (FMs) for their specification and
verification. FMs are rigorous mathematically based techniques for the specifica-
tion, analysis, development and verification of software and hardware. Rigorous
means that a formal method provides a formal language with unambiguously

This chapter is a result of the implementation of the Erasmus+ Key Action 2 project
No. 2017-1-SK01-KA203-035402: “Focusing Education on Composability, Comprehen-
sibility and Correctness of Working Software”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 98–135, 2023.
https://doi.org/10.1007/978-3-031-42833-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_4&domain=pdf
http://orcid.org/0000-0003-3647-6855
https://doi.org/10.1007/978-3-031-42833-3_4

Utilizing Rail TC Simulator in Verified SW Development Courses 99

defined syntax and semantics and mathematically based means that some math-
ematical apparatus (formal logic, set theory, etc.) is used to define the language.

The B-Method [1,2,11,15] is a state based, model-oriented formal method,
intended for verified software development. It is one of the few software-related
FMs that is used commonly in industrial practice, primarily in the railway sector.
In this area, it is utilized for the safety-critical software behind automated urban
metro subway systems [5]. The strength of the B-Method lies in a well-defined
development process, which allows to specify a software system as a collection
of components, called abstract machines, and to refine such an abstract spec-
ification to a concrete, implementable one. The concrete specification can be
automatically translated to ADA, C, Java or another programming language.
An internal consistency of the abstract specification and correctness of each
refinement step are verified by proving a set of predicates, called proof obliga-
tions (PObs). The whole development process, including proving, is supported
by Atelier B [18], an industrial-strength software tool.

A significant challenge in teaching formal methods for software development,
including the B-Method, is to design a corresponding course in such a way that
students will be able to develop a working piece of software using the method.
The problem is rooted in the limitations of formal method languages. These
languages usually cover basic constructs only, such as assignments, compositions,
operations and operation calls, conditional statements and loops. The interaction
with the user is no supported at all or limited to the console level. The situation
gets even more complicated if one wishes to use appropriate examples, clearly
showing the benefits of FMs, as advocated in [12–14].

To deal with this challenge, we developed the TD/TS2JC software toolset,
which provides a virtual environment for programs, developed by students using
formal methods. The toolset consists of a modified version of the Train Direc-
tor [17] simulation game and an application, called TS2JavaConn, which allows
using separately developed software controllers with the game. The controllers
are Java programs that control switches and signals in railway scenarios, simu-
lated by the game. The interface of the control programs can be configured, so
the toolset is suitable for various formal methods. There is only one requirement
the formal method has to fulfill: the existence of a compiler from its language
to Java. And because the controllers are in Java, the toolset can be also used in
situations that don’t involve formal methods at all.

While the previous works [9,10] presented the toolset and its utilization in
B-Method courses in general, here we discuss both of these topics in more depth.
Section 2 describes the components of the TD/TS2JC toolset, their communica-
tion and usage. Section 3 presents and explains two different controller configura-
tions and corresponding Java controllers. Section 4 presents a compact B-Method
course, which utilizes the toolset. The total duration of the course is estimated
to four to six hours, so it is ideal for special events, such as summer schools. The
chapter concludes with an evaluation of a particular run of the course in Sect. 5.

100 Š. Korečko

2 TD/TS2JC Toolset

It is no surprise that rail traffic control systems, primarily those related to sig-
naling [5], are one of the most successful domains of formal methods utilization.
This can be attributed to two factors. First, the movement of trains is limited by
tracks, which makes an automated control of their operation much easier than,
for example, that of the road vehicles. Second, the railway is used to transport
large number of passengers and goods at once, so individual accidents may have
more severe consequences than those of other types of vehicles. Therefore, meth-
ods providing means to ensure the correctness of these control systems should
be used. This special position of the rail traffic control systems was the primary
reason why we decided to use virtual environments inspired by such systems
in our FMs course. The decision was reinforced by the fact that the topic of
our course is the B-Method and the B-Method played a key role in the verified
development of the railway control software [5].

In order to provide virtual rail traffic control environments, we developed
the TD/TS2JC toolset, consisting of two software applications. The first one is
a modified version of an already existing simulation game, called Train Director
(TD) [17]. The second one is TS2JavaConn, a newly developed Java application.
The virtual environments are railway scenarios, simulated in TD. Signals and
switches in these scenarios are managed by controllers (control modules) devel-
oped by students in the B-Method and translated to Java. TS2JavaConn serves
as a proxy between TD and the control module. It listens to events occurring in
the simulated scenario and executes methods of the control module accordingly.
Subsequently, it informs TD about changes that should be applied to the sce-
nario. Each control module is accompanied by a configuration file that defines
how the events are translated to the method calls.

From the beginning of the toolset development, our goal was to provide a
solution that is not limited to the B-Method. This is why we do not deal with
formal methods at all in this section. The same is true for Sect. 3, where the
control modules are presented on the Java language level only. The utilization
in a formal methods course is shown in Sect. 4. The toolset, together with a set
of examples, is available at [6].

2.1 Train Director

Train Director (TD) is a computer game, which simulates the work of the rail
centralized traffic control (CTC). A railway scenario in TD consists of a track
layout (track plan) and a train schedule. The player’s task is to manipulate
the signals and switches in the scenario in such a way that the trains arrive
and depart according to the schedule. In TD/TS2JC, which uses the version
3.7 of TD, the task is carried out by the control module. This required several
modifications of the simulator.

The first modification was a removal of those control mechanisms that should
be implemented in control modules. The removed mechanisms, for example, pre-
vented trains from colliding or entering the same section at once. As the removal

Utilizing Rail TC Simulator in Verified SW Development Courses 101

enabled train crashes, the next modification was an addition of train collision
detection. The most significant change was an update of the communication
subsystem of TD. The subsystem included in the version 3.7 of TD allowed to
control the simulation remotely by means of messages that emulate user interac-
tion. For example, when a user clicked somewhere in the simulator, a message in
the form click x y, where x and y are coordinates of the location where he or
she clicked, has been sent. Events such as a train entering the layout or waiting
for a green signal were not handled at all. The updated version communicates
with TS2JC. It sends information about the status of signals and switches and
about events triggered by train operation to TS2JC. From TS2JC, it receives
new states of signals and switches, computed by the control module. The com-
munication is described in more detail in Sect. 2.3. The last modification was an
implementation of a scanning process that creates a list of track sections of the
layout. By track sections we mean track segments between signals, switches and
entry points. The entry points are places where a train may enter or leave the
layout.

Fig. 1. Modified Train Director during simulation. Features specific to TD/TS2JC are
marked with (red) dashed rectangles and labeled by letters C, D and L. (Color figure
online)

New features have been also implemented to the GUI of the simulator (Fig. 1).
These include the indication of the connection with TS2JC (C in Fig. 1) and

102 Š. Korečko

presence of the control module (D) and the possibility to show labels (L) with
the names of switches and signals in the layout. The scenario shown in Fig. 1 is
probably the simplest one that is usable for teaching purposes. It is also utilized
in the short course, presented in Sect. 4. The layout of the scenario contains one
straight track (the thick black dashed line in Fig. 1) with two entry points (e0,
e1) and two signals (sig0, sig1). As with the real railway, the signals guard
the entrance to the track ahead of them. Here, sig0 is meant for the trains
coming from the west (from e0) and sig1 for the trains coming from the east
(from e1). In TD, the trains always obey the corresponding signals. The trains
are represented by orange train engine icons. In Fig. 1, a train named Reg001 is
passing the signal sig0, which is green. The scanning process mentioned above
detects two sections in the layout. The first one is between e0 and the signals
and the second one is between the signals and e1. If there are more signals at
the same place, the one guarding the section is used to name it. So, the sections
in Fig. 1 are (e0, sig1) and (sig0, e1).

Listing 1. Train schedule route2sec.sch.

1 #! t r d i r
2 # no dead lock − d e l a y s between t r a i n s l ong enough
3 S t a r t : 4 :10
4 Tra in : Reg001
5 Ente r : 04 : 10 , e0
6 04 : 1 2 : 3 0 , −, e1
7 .
8 Tra in : IC002
9 Ente r : 0 4 : 1 2 : 4 0 , e1

10 04 : 1 5 : 3 0 , −, e0
11 .

The trains operate according to a schedule, given in a form of a text file with
the extension sch. The scenario in Fig. 1 uses the schedule shown in Listing 1.
Line 1 is mandatory. Other lines starting with the “#” character are regarded
as comments, such as line 2 with notes about the schedule. Line 3 defines the
simulated time at the beginning of each simulation. The rest of the file contains
train schedules. The first train (lines 4–7) is named Reg001 and it enters the
layout from e0 at 4:10. It should leave the layout through e1 at 4:12:30. The
second train is IC002. It travels in the opposite direction, entering the layout at
4:12:40. Its schedule is defined on lines 8–11. The end of each schedule is marked
by a dot (lines 7 and 11).

2.2 TS2JavaConn

The second part of the toolset is a Java application called TS2JavaConn. Its
name is a shortcut for Train Simulator to Java Connector. TS2JavaConn serves
as a middleman between the modified Train Director and control modules.

Control modules are loaded directly to TS2JavaConn, which uses the Java
Reflection API to call its methods and process their return values. On the other

Utilizing Rail TC Simulator in Verified SW Development Courses 103

hand, TS2JavaConn maintains a TCP connection with the updated communica-
tion subsystem of TD. The connection is used to receive messages about events
occurring in TD during the simulation and to send commands that change the
state of track devices in TD. Each message received from TD is translated to
a call of a method from the control module. And each command sent to TD is
constructed according to the state of the control module. TS2JavaConn allows
various styles of control modules and each module has a configuration file that
defines how messages from TD are translated to method calls and how to read
the state of the control module. Concrete examples of control modules and con-
figuration files are given in Sect. 3 and interaction between the module and TD
is explained in detail in Sect. 2.3.

Fig. 2. Primary screen of TS2JavaConn (top) and description of its control panel
buttons (bottom).

The primary screen of TS2JavaConn is shown in Fig. 2, which captures the
application in the same moment as TD in Fig. 1. The screen is divided into three
parts. The first one contains the main menu and toolbar for handling control
modules, connection with the simulator and controlling the simulation remotely.
It also includes connection status indicators with the same functionality as the
ones added to TD (C and D in Fig. 1). The second part lists signals, switches,
stations and track sections of the scenario. It also shows the state of these ele-
ments in TD (the “S” column) and in the control module (the “M” column). For

104 Š. Korečko

the track sections, only the state from the control module is shown and it works
only if the control module contains corresponding methods (getters). As we can
see, the entry points are also treated as stations. The third part is a logger that
shows detailed information about the communication between the simulator and
the control module. In the case of an incorrect control module or configuration
file, it also shows corresponding error messages. All the information shown in this
part is saved to a log file, which can be opened from the toolbar. TS2JavaConn
can be used with modified versions of two different simulators – Train Direc-
tor and Open Rails [8]. When TS2JavaConn is opened, it searches for running
instances of these simulators and let the user choose the one to connect to. The
same thing happens after hitting the “Re-connect” button from the toolbar.

Fig. 3. Control module generator screen of TS2JavaConn.

TS2JavaConn also offers a secondary screen with a control module genera-
tor (Fig. 3). The screen is activated by the “Show generator tab” button. The
generator can create configuration files and template code for control modules
in Java and languages of two formal methods – the B-Method and the Perfect
Developer. The template code contains headers of all necessary methods (oper-
ations) and may also include variables representing the scenario elements. For
Java and the B-Method, two types of control modules are available: parametric
and non-parametric. Examples of both are given in Sect. 3.

2.3 Communication with Control Modules

As we will see later, in Sect. 3, each control module contains a central class with
two types of methods:

– getters, which return values of module variables that correspond to states of
track elements in the simulated scenario and

– modifiers, which are called when an event occurs in the simulated scenario.
They may change the values of the module variables.

Utilizing Rail TC Simulator in Verified SW Development Courses 105

Fig. 4. UML sequence diagram illustrating event handling in TD/TS2JC. The numbers
in brackets are numbers of steps in the description of the event handling process.

By track elements we mean entry points, signals, switches, stations and track
sections. However, it is not necessary to define getters for all of them. In total,
there are five types of events:

– A train requests to enter the scenario via an entry point.
– A train stops before a red signal and requests the signal to be cleared.
– A train departs from a station.
– A train leaves a track section.
– A train enters a track section.

TD/TS2JC handles every event in the following way (Fig. 4):

1. After an event occurs, TD composes a message about the event and sends it
to TS2JavaConn. The message contains the type of the event and data about
involved scenario elements and train.

2. TS2JavaConn reads the event message, received from TD, and identifies the
corresponding modifier method of the control module.

3. TS2JavaConn calls the modifier method. Some parts of the method name or
the values of its parameters may be composed from the data received from
TD.

4. After the call of the modifier method is completed, TS2JavaConn calls all the
getters of the control module and composes a remote control message from
the values the getters return.

5. TS2JavaConn sends the remote control message to TD.

106 Š. Korečko

6. TD reads the message from TS2JavaConn and changes the states of the sce-
nario elements accordingly.

The process of the event handling can be also observed in Fig. 1 and 2, which
capture the simulation right after the event “Train Reg001 requests sig0 to be
cleared” was handled. In the logger part of TS2JavaConn (Fig. 2), we can see
that a modifier method1 named reqGreen sig0 was called after the event. And
finally, sig0 has been changed to green in TD (Fig. 1).

Communication similar to the event handling also happens when a control
module is opened: First, the control module is initiated by creating an instance
of its central class. The constructor of the class sets the module variables to their
initial values. TS2JavaConn reads these values by calling the getters. As in the
case of the events, TS2JavaConn then composes a message from the values and
sends the message to TD. Finally, TD sets the scenario elements accordingly and
starts the simulation.

3 Control Modules and Configuration Files

When developing the TD/TS2JC toolset, one of the most important objectives
was to be able to use outputs of verified software development tools as control
modules without any or with minimal modifications. To reach this objective,
it was necessary to support various forms of the control module interface, that
is of the getters and the modifiers. The form of the interface is defined in a
configuration file, accompanying each control module. In this section we present
two distinct control modules for the scenario from Fig. 1. Both provide the same
functionality but differ significantly in the interface.

The first one is introduced in Sect. 3.1 and is an example of so-called non-
parametric module. This means that none of its getters and modifiers has input
parameters and event data from TD are part of the names of the methods. The
second one, in Sect. 3.2, is a fully parametric module, where all the event data
translate to values of parameters of corresponding methods. It is also possible
to create hybrid modules, where some of the data become parts of the method
names and other are parameters.

The description of each control module and configuration file is given in
the following way. First, the complete source code is presented as a listing. The
source codes contain comments marking corresponding parts in terms introduced
in Sect. 2.3. The comments start with “//” in the control modules and with “- -”
in the configuration files. Each listing is followed by a description giving more
details about the code, referencing the corresponding code lines.

3.1 Non-parametric Module

From a conventional programmer point of view, it may look irrational to sup-
port non-parametric modules. This is because such modules require a separate
1 The control module used in this case is the one from Listing 2 and the method is on

lines 49–51.

Utilizing Rail TC Simulator in Verified SW Development Courses 107

method for each combination of the event and used data values received from
TD. However, the support solves two problems related to the utilization of the
toolset in teaching verified software development with formal methods.

First, languages of some formal methods (FMs) may not allow to use input
parameters in specification units2 that translate to the methods of the module.
They may only allow units defining simple state transitions, without an external
influence, which is usually represented by the input parameters.

Second, even if given formal method (FM) supports input parameters, the
ability to use fully functional programs (control modules) without them may
come very handy in the teaching process. For example, in an introductory part
of a longer course. Or in a short course that teaches only the basics of the cor-
responding FM, where aspects of the method related to the utilization of input
parameters are not tackled at all. The latter is also the case of the course intro-
duced in Sect. 4, where a non-parametric one, similar to the module route2sec,
presented here, is used. The complete source code of route2sec in Java can be
found in Listing 2.

Listing 2. Non-parametric control module for the scenario from Fig. 1.

1 pub l i c c l a s s r o u t e 2 s e c {
2

3 // Se t s d e f i n i n g s t a t e s o f t r a c k e l ement s
4 // (e n t r y p o i n t s & s i g n a l s , sw i t che s , s e c t i o n s)
5 pub l i c enum ST SIG {
6 g reen (0) , r ed (1) ;
7 pub l i c f i n a l i n t i n d e x ;
8 ST SIG (i n t i n d e x) { t h i s . i n d e x = index ; }
9 }

10 pub l i c enum ST SWCH {
11 sw i t ched (0) , none (1) ;
12 pub l i c f i n a l i n t i n d e x ;
13 ST SWCH(i n t i n d e x) { t h i s . i n d e x = index ; }
14 }
15 pub l i c enum ST SEC {
16 f r e e (0) , occup (1) ;
17 pub l i c f i n a l i n t i n d e x ;
18 ST SEC(i n t i n d e x) { t h i s . i n d e x = index ; }
19 }
20

21 // V a r i a b l e s f o r e n t r y po i n t s , s i g n a l s and s e c t i o n s
22 p r i v a t e r o u t e 2 s e c . ST SIG e0 , e1 , s i g0 , s i g 1 ;
23 p r i v a t e r o u t e 2 s e c . ST SEC e0 s i g 1 , s i g 0 e 1 ;
24

25 // Con s t r u c t o r s e t t i n g the i n i t i a l s t a t e o f the e l ement s

2 We use the term “specification unit” as the corresponding parts (units) of formal
specifications are named differently in different FMs. For example, they are called
operations in the B-Method, events in the Event-B and schemas in the Perfect Devel-
oper.

108 Š. Korečko

26 pub l i c r o u t e 2 s e c () {
27 e0 = ST SIG . r ed ; e1 = ST SIG . r ed ;
28 s i g 0 = ST SIG . r ed ; s i g 1 = ST SIG . r ed ;
29 e 0 s i g 1 = ST SEC . f r e e ; s i g 0 e 1 = ST SEC . f r e e ;
30 }
31

32 // Ge t t e r s f o r e n t r y p o i n t s and s i g n a l s
33 pub l i c r o u t e 2 s e c . ST SIG ge tEn t r y e 0 () { re tu rn e0 ; }
34 pub l i c r o u t e 2 s e c . ST SIG ge tEn t r y e 1 () { re tu rn e1 ; }
35 pub l i c r o u t e 2 s e c . ST SIG g e t S i g s i g 0 () { re tu rn s i g 0 ; }
36 pub l i c r o u t e 2 s e c . ST SIG g e t S i g s i g 1 () { re tu rn s i g 1 ; }
37

38 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to e n t e r from e0
39 pub l i c vo id r eqGreen e0 () {
40 i f (s i g 1 == ST SIG . r ed && e0 s i g 1 == ST SEC . f r e e)
41 e0 = ST SIG . g reen ; }
42

43 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to e n t e r from e1
44 pub l i c vo id r eqGreen e1 () {
45 i f (s i g 0 == ST SIG . r ed && s i g 0 e 1 == ST SEC . f r e e)
46 e1 = ST SIG . g reen ; }
47

48 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to c l e a r s i g 0
49 pub l i c vo id r e qG r e e n s i g 0 () {
50 i f (e1 == ST SIG . r ed && s i g 0 e 1 == ST SEC . f r e e)
51 s i g 0 = ST SIG . g reen ; }
52

53 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to c l e a r s i g 1
54 pub l i c vo id r e qG r e e n s i g 1 () {
55 i f (e0 == ST SIG . r ed && e0 s i g 1 == ST SEC . f r e e)
56 s i g 1 = ST SIG . g reen ; }
57

58 // Mod i f i e r s c a l l e d when a t r a i n e n t e r s the c o r r e s p ond i n g
59 // s e c t i o n from the c o r r e s p ond i n g d i r e c t i o n
60 pub l i c vo id e n t e rN I e 0 s i g 1 () {
61 e 0 s i g 1 = ST SEC . occup ;
62 e0 = ST SIG . r ed ; s i g 1 = ST SIG . r ed ; }
63

64 pub l i c vo id e n t e r I N s i g 0 e 1 () {
65 s i g 0 e 1 = ST SEC . occup ;
66 s i g 0 = ST SIG . r ed ; e1 = ST SIG . r ed ; }
67

68 pub l i c vo id e n t e rN I e 1 s i g 0 () {
69 s i g 0 e 1 = ST SEC . occup ;
70 s i g 0 = ST SIG . r ed ; e1 = ST SIG . r ed ; }
71

72 pub l i c vo id e n t e r I N s i g 1 e 0 () {
73 e 0 s i g 1 = ST SEC . occup ;
74 e0 = ST SIG . r ed ; s i g 1 = ST SIG . r ed ; }
75

Utilizing Rail TC Simulator in Verified SW Development Courses 109

76 // Mod i f i e r s c a l l e d when a t r a i n l e a v e s the c o r r e s p ond i n g
77 // s e c t i o n from the c o r r e s p ond i n g d i r e c t i o n
78 pub l i c vo id l e a v eN I e 0 s i g 1 () { e 0 s i g 1 = ST SEC . f r e e ; }
79 pub l i c vo id l e a v e I N s i g 1 e 0 () { e 0 s i g 1 = ST SEC . f r e e ; }
80

81 pub l i c vo id l e a v e I N s i g 0 e 1 () { s i g 0 e 1 = ST SEC . f r e e ; }
82 pub l i c vo id l e a v eN I e 1 s i g 0 () { s i g 0 e 1 = ST SEC . f r e e ; }
83

84 }

The whole module route2sec is defined in its central class, with the same
name. It uses values from enumerated sets for the states of signals (the set
ST SIG), switches (ST SWCH) and track sections (ST SEC). The sets3 are defined
on lines 5–19 of the module. The set ST SWCH (lines 10–14) can be excluded as
the layout does not contain switches.

The instance variables, defined on lines 22–23, provide an internal represen-
tation of the state of the scenario. Here we have a separate variable for each
entry point, signal and section and the variables have the same names as the
corresponding elements in the scenario. However, such one-to-one correspon-
dence between the elements and the variables is not mandatory. A programmer
is free to choose whatever representation desired as the variables of the mod-
ule are never accessed directly when communicating with TD. The variables are
initialized in the constructor on lines 26–30.

Lines 33–36 contain the getters, returning the states of entry points and
signals. These getters are mandatory4. The module may also include getters for
the track sections, but their only purpose is to display states of the sections in
TS2JavaConn.

Lines 39–56 define modifiers called when a train wants to enter the scenario
from the corresponding entry point or clear the corresponding signal. All four
of them work in the same way: “Check whether the section to be entered is free
and closed from the other side. If yes, set the signals and entry points involved
accordingly.”

The next four modifiers (lines 60–74) respond to the “train entering a section”
events. There are four of them, while the scenario contains only two sections.
This is because there is a separate method for each direction. The direction to
which the method belongs is defined by the order of the track element names in
its header. For example, enterNI e0 sig1 is called when a train enters the section
(sig0, e1) from e0 and enterIN sig1 e0 when it enters the same section from
sig1. The letter “N” in method names means “entry point” and “I” means
“signal”. These shortcuts have been introduced to ensure unambiguity when
different types of track elements have the same names. Each of these methods
marks the corresponding section as occupied and sets the signals guarding it to
red. Similar modifiers for the “train leaving a section” events are defined on lines
78–82.

3 Technically, the enumerated sets are classes, too.
4 If a scenario contains switches, their getters are mandatory, too.

110 Š. Korečko

For TS2JavaConn to understand the control module from Listing 2, the con-
figuration file shown in Listing 3 is needed.

Listing 3. Configuration file of the non-parametric module from Listing 2.

1 mainClassName=rou t e 2 s e c . c l a s s
2

3 −− Ent ry po i n t r e p r e s e n t a t i o n and g e t t e r s
4 e n t r y S t a t e=ST SIG
5 ent ryOpenSta te=green
6 e n t r yC l o s e S t a t e=red
7 getEntryNames=ge tEn t r y %name%
8 getEntryOut=%ST SIG%
9

10 −− S i g n a l r e p r e s e n t a t i o n and g e t t e r s
11 s i g S t a t e=ST SIG
12 s i g n a l G r e e nS t a t e=green
13 s i g n a lR e dS t a t e=red
14 getS igna lNames=g e t S i g %name%
15 ge tS i gna lOu t=%ST SIG%
16

17 −− Switch r e p r e s e n t a t i o n and g e t t e r s
18 swchState=ST SWCH
19 sw i tchOpenState=sw i t ched
20 sw i t c hC l o s e S t a t e=none
21 getSwitchNames=getSwch %name%
22 getSwitchOut=%ST SWCH%
23

24 −− Se c t i o n r e p r e s e n t a t i o n
25 s e c t i o n S t a t e=ST SEC
26 s e c t i o n F r e e S t a t e=f r e e
27 s e c t i onOccupS ta t e=occup
28

29 −− Mod i f i e r s f o r t r a i n r e q u e s t s to e n t e r the s c e n a r i o ,
30 −− c l e a r a s i g n a l and depa r t a s t a t i o n
31 r e qu e s tDepa r t u r eEn t r y=reqGreen %name%
32 r eque s tG r e en=reqGre en %name%
33 r e q u e s tD ep a r t u r e S t a t i o n=%i gno r e%
34

35 −− Mod i f i e r s f o r s e c t i o n e n t e r i n g and l e a v i n g e v en t s
36 s e c t i o nE n t e r=

en t e r%sho r t c u tAc t%%sho r t cu tNx t% %nameAct% %nameNxt%
37 s e c t i o nL e a v e=

l e a v e%sho r t c u tP r e%%sho r t c u tAc t% %namePre% %nameAct%
38

39 −− Track e lement s h o r t c u t s
40 s i g n a l S h o r t c u t=I
41 sw i t c hSho r t c u t=W
42 e n t r y Sho r t c u t=N

Utilizing Rail TC Simulator in Verified SW Development Courses 111

The first line of the file in Listing 3 specifies the filename of the compiled
version of the control module central class. Lines 4–27 define how the track
elements, namely entry points, signals, switches and sections, are represented
and how the corresponding getters look.

For entry points, the representation and getters definition is given on lines
4–8. In this case, the states of the entry points are values from an enumerated
set named ST SIG (line 4). It is also possible to use the integer (value %int%)
or the boolean (value %boolean%) type for the state values. Line 5 defines the
value for an opened entry point and line 6 for a closed entry point.

The interface of the entry point getters is given on lines 7–8. The name of the
getter is specified on line 7 as a combination of a fixed part and the placeholder
%name%, which means the corresponding entry point name in the scenario. Two
additional placeholders can be used when naming the getters:

– %number% – the numerical part of the element name and
– %shortcut% – a shortcut of the corresponding track element type. The short-

cuts are defined on lines 40–42.

It is possible to combine the placeholders. For example, if line 7 in Listing 3 has
been defined as

7 getEntryNames=get%sh o r t c u t%%number%

then the getters for the entry points will be

33 pub l i c r o u t e 2 s e c . ST SIG getN0 () { re tu rn e0 ; }
34 pub l i c r o u t e 2 s e c . ST SIG getN1 () { re tu rn e1 ; }

The return type of the entry point getters is specified on line 8. If it is an
enumerated set, as in this case, its name is enclosed in the percent signs (%
ST SIG%) and only the set already defined for the corresponding state values
(line 4) can be used.

In the same way, the representation and getters are defined for signals (lines
11–15) and switches (lines 18–22). As this scenario does not contain switches,
lines 18–22 can be omitted. We included them primarily to explain the switch
state values, which may not be clear from the names of the corresponding prop-
erties. Line 19 defines the value used for a switch set to the diverging track
(value switched) and line 20 the value for the straight track. The part for sec-
tions (lines 25–27) lacks the properties getSectionNames and getSectionOut as
there are no section getters in the control module. These properties are used in
the configuration file in Listing 5.

The names of the modifiers are given on lines 30–37. The names of the meth-
ods called when a train requests to enter the scenario (line 31) or to clear a signal
(line 32) are defined in the same way as for the getters. Line 33 sets the names of
modifiers called when a train leaves a station. Our module does not contain any
stations. Therefore, we decided to use the %ignore% placeholder to indicate that
the module does not handle such events. A rather complicated interface of the
modifiers for the section entering (line 36) and section leaving (line 37) events
requires six placeholders:

112 Š. Korečko

– %shortcutAct% and %nameAct% – the shortcut and name of the scenario
element from which the train enters or leaves the track section,

– %shortcutNxt% and %nameNxt% – the shortcut and name of the element from
which the train will leave the section it is now entering and

– %shortcutPre% and %namePre% – the shortcut and name of the element from
which the train entered the section it is now leaving.

The configuration file ends with the definition of the shortcuts for signals,
switches and entry points on lines 40–42. Line 41 is for switches, so it can be
omitted.

3.2 Parametric Module

Albeit it is not so obvious in this case, parametric modules offer more com-
pact interface as there is no need for a separate method for each combination of
involved scenario elements. The parametric module route2secP (Listing 4) con-
trols the scenario in the same way as the nonparametric route2sec from Listing
2, but there are several differences in the interface and representation of the
scenario elements and their states:

– scenario elements are defined as members of the enumerated sets SIGNALS
and SECTIONS,

– states of the scenario elements are expressed as integers,
– instance variables are arrays of the scenario elements state values and
– scenario elements related to the getters and modifiers are given as their

parameters.

Listing 4. Parametric control module for the scenario from Fig. 1.

1 pub l i c c l a s s r ou t e2 secP {
2

3 // Se t s d e f i n i n g t r a c k e l ement s
4 // (e n t r y p o i n t s & s i g n a l s , s e c t i o n s)
5 pub l i c enum SIGNALS {
6 e0 (0) , e1 (1) , s i g 0 (2) , s i g 1 (3) ;
7 pub l i c f i n a l i n t i n d e x ;
8 SIGNALS(i n t i n d e x) {
9 t h i s . i n d e x = index ; }

10 }
11 pub l i c enum SECTIONS {
12 e 0 s i g 1 (0) , s i g 0 e 1 (1) ;
13 pub l i c f i n a l i n t i n d e x ;
14 SECTIONS(i n t i n d e x) {
15 t h i s . i n d e x = index ; }
16 }
17

18 // Array v a r i a b l e s f o r e n t r y p o i n t s & s i g n a l s and s e c t i o n s
19 p r i v a t e i n t [] s i g n a l s = {0 , 0 , 0 , 0} ; // en t r y p . & s i g n a l s

Utilizing Rail TC Simulator in Verified SW Development Courses 113

20 p r i v a t e i n t [] s e c t i o n s = {0 ,0} ;
21

22 // c o n s t r u c t o r (empty)
23 pub l i c r ou t e2 secP () { }
24

25 // Ge t t e r s f o r e n t r y p o i n t s & s i g n a l s and s e c t i o n s
26 pub l i c i n t g e tS i g (rou t e2 secP . SIGNALS s i g) {
27 re tu rn s i g n a l s [s i g . i nd ex] ; }
28 pub l i c i n t getSec (rou t e2 secP . SECTIONS sec) {
29 re tu rn s e c t i o n s [s e c . i nd ex] ; }
30

31 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to e n t e r from e0/e1
32 pub l i c vo id r e qEn t e r (r ou t e2 s ecP . SIGNALS s i g) {
33 switch (s i g) {
34 case e0 :
35 i f ((s i g n a l s [SIGNALS . e0 . i nd e x] == 0 &&
36 s i g n a l s [SIGNALS . s i g 1 . i nd ex] == 0 &&
37 s e c t i o n s [SECTIONS . e 0 s i g 1 . i nd ex] == 0)) {
38 s i g n a l s [SIGNALS . e0 . i nd ex] = 1 ;
39 } break ;
40 case e1 :
41 i f ((s i g n a l s [SIGNALS . e1 . i nd e x] == 0 &&
42 s i g n a l s [SIGNALS . s i g 0 . i nd ex] == 0 &&
43 s e c t i o n s [SECTIONS . s i g 0 e 1 . i nd ex] == 0)) {
44 s i g n a l s [SIGNALS . e1 . i nd ex] = 1 ;
45 } break ;
46 }
47 }
48

49 // Mod i f i e r c a l l e d when a t r a i n r e q u e s t s to c l e a r s i g 0 / s i g 1
50 pub l i c vo id r eqGreen (rou t e2 secP . SIGNALS s i g) {
51 switch (s i g) {
52 case s i g 0 :
53 i f ((s i g n a l s [SIGNALS . s i g 0 . i nd e x] == 0 &&
54 s i g n a l s [SIGNALS . e1 . i nd ex] == 0 &&
55 s e c t i o n s [SECTIONS . s i g 0 e 1 . i nd ex] == 0)) {
56 s i g n a l s [SIGNALS . s i g 0 . i nd ex] = 1 ;
57 } break ;
58 case s i g 1 :
59 i f ((s i g n a l s [SIGNALS . s i g 1 . i nd e x] == 0 &&
60 s i g n a l s [SIGNALS . e0 . i nd ex] == 0 &&
61 s e c t i o n s [SECTIONS . e 0 s i g 1 . i nd ex] == 0)) {
62 s i g n a l s [SIGNALS . s i g 1 . i nd ex] = 1 ;
63 } break ;
64 }
65 }
66

67 // Mod i f i e r c a l l e d when a t r a i n e n t e r s a s e c t i o n
68 pub l i c vo id e n t e r (r ou t e2 secP . SECTIONS sec) {
69 switch (s e c) {

114 Š. Korečko

70 case e 0 s i g 1 :
71 s e c t i o n s [SECTIONS . e 0 s i g 1 . i nd ex] = 1 ;
72 s i g n a l s [SIGNALS . e0 . i nd ex] = 0 ;
73 s i g n a l s [SIGNALS . s i g 1 . i nd ex] = 0 ;
74 break ;
75 case s i g 0 e 1 :
76 s e c t i o n s [SECTIONS . s i g 0 e 1 . i nd ex] = 1 ;
77 s i g n a l s [SIGNALS . e1 . i nd ex] = 0 ;
78 s i g n a l s [SIGNALS . s i g 0 . i nd ex] = 0 ;
79 break ;
80 }
81 }
82

83 // Mod i f i e r c a l l e d when a t r a i n l e a v e s a s e c t i o n
84 pub l i c vo id l e a v e (rou t e2 secP . SECTIONS sec) {
85 s e c t i o n s [s e c . i nd ex] = 0 ; }
86 }

As in the case of route2sec, the parametric module is defined in one class
(Listing 4). And again, the code of the class starts with enumerated sets dec-
larations (lines 5–16 in Listing 4). However, the sets SIGNALS and SECTIONS
hold scenario elements and not their states. These sets are needed because the
elements are parameters of the methods of the module. On the other hand, the
element states are integers (0 and 1) here, so no enumerated sets for them are
necessary.

Regarding the enumerated sets, there is one more difference between this
module and the non-parametric one. In Java, each member of an enumerated set
is represented by its name and index. The non-parametric route2sec uses only the
values while route2secP relies heavily on the indices. This is because the instance
variables (lines 19–20) are arrays that hold values of the scenario elements states
on the positions given by the corresponding indices in the enumerated sets (for
signals in SIGNALS and for sections in SECTIONS). The variables are initialized
when declared, so the constructor (line 23) is empty.

The getters are defined on lines 26–29 and the modifiers occupy the rest
of the module. The getter getSig returns states of the entry points and signals
and getSec of the track sections. A getter may have only one input parameter,
the element which state it returns. The modifier reqEnter is called when a train
wishes to enter the scenario via e0 or e1 and reqGreen when it requests to clear
sig0 or sig1. All section entering events are handled by the method enter and all
section leaving ones by leave. A parametric module may be defined in a different,
probably simpler, way. The form presented here has been chosen because it is
nearly identical to a parametric module when developed in the B-Method using
the template code generated by TS2JavaConn.

The configuration file of the module route2secP can be found in Listing 5
and follows the same structure as the one in Listing 3. Regarding the differences,
this file contains additional properties for method parameters and track element
representation and the unnecessary properties related to switches are excluded.

Utilizing Rail TC Simulator in Verified SW Development Courses 115

A minor difference is also the utilization of the integer type (placeholder %int%)
and the values 0 and 1 for the track element states.

Listing 5. Configuration file of the parametric module from Listing 4.

1 mainClassName=route2 secP
2

3 −− Ent ry po i n t r e p r e s e n t a t i o n and g e t t e r s
4 e n t r y S t a t e=%i n t%
5 ent ryOpenSta te=1
6 e n t r yC l o s e S t a t e=0
7 e n t r y I n d e x=SIGNALS
8 entry IndexName=%name%
9 getEntryNames=ge tS i g

10 getEntryParams=%SIGNALS%
11 getEntryOut=%i n t%
12

13 −− S i g n a l r e p r e s e n t a t i o n and g e t t e r s
14 s i g S t a t e=%i n t%
15 s i g n a l G r e e nS t a t e=1
16 s i g n a lR e dS t a t e=0
17 s i g I n d e x=SIGNALS
18 s ig IndexName=%name%
19 getS igna lNames=ge tS i g
20 ge tS igna lPa rams=%SIGNALS%
21 ge tS i gna lOu t=%i n t%
22

23 −− Se c t i o n r e p r e s e n t a t i o n and g e t t e r s
24 s e c t i o n S t a t e=%i n t%
25 s e c t i o n F r e e S t a t e=0
26 s e c t i onOccupS ta t e=1
27 s e c t i o n I n d e x=SECTIONS
28 sec t ion IndexName=%west% %ea s t%
29 getSect ionNames=getSec
30 getSec t i onParams=%SECTIONS%
31 ge tSec t i onOut=%i n t%
32

33 −− Mod i f i e r s f o r t r a i n r e q u e s t s to e n t e r the s c e n a r i o ,
34 −− c l e a r a s i g n a l and depa r t a s t a t i o n
35 r e qu e s tDepa r t u r eEn t r y=reqEn t e r
36 r eque s tDepa r tu r eEnt r yPa rams=%SIGNALS%
37 r e que s tG r e en=reqGreen
38 r eques tGreenParams=%SIGNALS%
39 r e q u e s tD ep a r t u r e S t a t i o n=%i gno r e%
40

41 −− Mod i f i e r s f o r s e c t i o n e n t e r i n g and l e a v i n g e v en t s
42 s e c t i o nE n t e r=en t e r
43 s e c t i onEn te rPa rams=%SECTIONS%
44 s e c t i o nL e a v e=l e a v e
45 s ec t i onLeaveParams=%SECTIONS%

116 Š. Korečko

The properties defining the parameters of the getters and modifiers can be
found on lines 10, 20, 30, 36, 38, 43 and 45 in Listing 5. In general, their values are
comma-separated lists of placeholders, defining the types of the parameters of the
corresponding methods. In this module, all methods have only one parameter,
so there is always just one value for each property.

As track elements are now members of enumerated sets, additional properties
are required to define them. For the entry points, these can be found on lines
7–8 in Listing 5. Line 7 specifies the name of the enumerated set and line 8
how the names of its members are constructed from the entry points in the
scenario. The property on line 8 can use the placeholders %name%, %number%
and %shortcut%, in the same way as already discussed in Sect. 3.1. The same
properties for signals are on lines 17–18 and for sections on lines 27–28. The
section names (line 28) are formed from

– the name of the track element on their west (left) end (placeholder %west%),
– the underscore and
– the name of the track element on their east (right) end (%east%).

How the section names look in the module route2secP can be seen on line 12 in
Listing 4.

4 Teaching Verified Software Development in B-Method
with TD/TS2JC Toolset

In this section, we describe a course on Software Development with the B-
Method, which utilizes the toolset. The course is intended for events such as
summer schools and its typical duration is four to six hours. The description
provided here covers both the body of knowledge to be given to the course par-
ticipants and the process of the course, including examples and tasks.

Fig. 5. Track layouts of scenarios used in the course: a straight track with two (a) and
three (b) sections.

Utilizing Rail TC Simulator in Verified SW Development Courses 117

The language and development process of the B-Method is explained on a
control module for a straight track with two sections (Fig. 5 a). The module is
equivalent to the one in Listing 2. Within the course, the participants develop a
similar control module for a straight track with three sections (Fig. 5 b). Both
modules are non-parametric and, except of the class name on line 1, they use
the same configuration file as the one in Listing 3.

The course starts with the lecturer informing the participants that the B-
Method [1,2,11,15] was originally developed by J.R. Abrial and combines his pre-
vious invention, the Z-notation [16], with a minimalistic programming language,
based on the language of Guarded commands [4] by E.W. Dijkstra. According to
the taxonomy presented in [3], the B-Method belongs to so-called heavyweight
formal methods as it involves theorem proving to verify software correctness.

4.1 Software Development Process of B-Method

The highlight of the method is the development process that fully incorporates
formal verification. First, a formal specification of a system, consisting of com-
ponents called abstract machines, is written. An abstract machine, or simply a
machine, consists of a set of variables that defines its state and a set of oper-
ations that define state transitions. The specification of each machine (which
has variables) contains a formula that defines its invariant properties. The B-
Method allows to formally prove that these properties hold in every state of
the machine. Machines are then developed to implementable components, called
implementations.

Fig. 6. Development of a specification component in B-Method: in general (a), in the
course (b), legend (c).

This development process, which is also called stepwise refinement, consists
of one or more steps. Multiple-steps process (Fig. 6 a) involves intermediate
components, called refinements. One-step process (Fig. 6 b) goes directly from a

118 Š. Korečko

machine to an implementation and it is the one chosen for this course. Refine-
ments and implementations are components similar to machines. They contain
invariant properties, too. These properties also define a relation between their
variables and the variables of components they refine. And, again, it is possi-
ble to formally prove that they hold in each state of the component. In this
way, it is possible to verify that the properties once defined at the abstract level
(machines) still hold in the executable implementation. This is the reason why
we can say that the B-Method offers a verified software development process. At
each step, the specification may consist of multiple components and the number
of components may vary. The number of refinement steps can also be different for
each component. In this short course, we develop a control module that consists
of one component, refined in one step from a machine to an implementation.
Of course, the TD/TS2JC toolset allows for modules developed from multiple
components, as it is shown in [9].

4.2 B-Language

The course continues with an explanation of the B-language, a specification
language in which the components are written. The B-language can be divided
to two parts:

– A mathematical notation to write expressions and predicates on data in terms
of the Zermelo-Fraenkel set theory.

– The Generalized Substitution Language (GSL), a minimalistic programming
language with the formal semantics defined by the weakest pre-condition cal-
culus [4].

Table 1. Selected operators of the mathematical notation of B-language.

Operator Meaning

& and (logical conjunction)

not not (logical negation)

=> then (logical implication)

<=> logical equivalence

= equals

{ start of a set

} end of a set

: belongs to (a member to a set)

The mathematical notation is quite complex, fortunately we need just a small
portion of it here. This portion is given in Table 1.

The commands of GSL are called generalized substitutions (GS) and those
relevant to the course are listed in Table 2. The symbols introduced in Table 2
have the following meaning:

Utilizing Rail TC Simulator in Verified SW Development Courses 119

Table 2. Selected commands of GSL and their informal meaning.

Command Meaning

skip Do nothing

x := e Assignment of values of expressions e to variables x

S1 ; S2 Sequential composition: do S1, then S2

S1 || S2 Parallel composition: do S1 and S2 at once

PRE E THEN S1 END If E holds, do S1. Otherwise, do anything

SELECT E THEN S1 END If E holds, do S1. Otherwise, do not execute

CHOICE S1 OR S2 END Bounded choice: do S1 or S2

IF E THEN S1 ELSE S2 END If E holds, do S1. Otherwise, do S2

– x is a comma-separated list of variables,
– e is a comma-separated list of expressions over variables, with the same length

as x,
– S1 and S2 are GS (GSL commands) and
– P and E are predicates.

In the case that the ELSE branch is omitted in the IF command, S2 is con-
sidered equal to skip. There are two significant omissions in Table 2. The first
one is so-called unbounded non-determinism, which is like the bounded choice,
but allows to introduce local variables. The second one is a do-while loop, which
includes a loop invariant. Both of them, together with other, derived, GSL com-
mands, and the mathematical notation are described in [1,11,15].

The formal semantics of GS is defined in the weakest pre-condition calculus
of E.W. Dijkstra [4]. The weakest pre-condition of a GS S1 with respect to a
post-condition P is the predicate (1),

[S1]P (1)

which is satisfied in exactly all states from which an execution of S1 is guaranteed
to terminate in a state satisfying P.

The weakest pre-conditions of the commands from Table 2 can be found in
Table 3. The operators are from the mathematical notation and are listed in
Table 1. The notation (2)

P[x := e] (2)

is the predicate P with all free occurrences of variables from x replaced by the
corresponding expressions from e.

There are two interesting things one may notice in Table 3. First, the IF
command is just a combination of the commands CHOICE and SELECT and it
can be written in the form (3).

CHOICESELECT E THEN S1 END OR
SELECT not(E) THEN S2 END END

(3)

120 Š. Korečko

Table 3. Formal semantics of GSL commands from Table 2.

Command Weakest pre-condition

[skip]P P

[x := e]P P[x := e]

[S1 ; S2]P [S1]([S2]P)

[PRE E THEN S1 END]P E & [S1]P

[SELECT E THEN S1 END]P E =>[S1]P

[CHOICE S1 OR S2 END]P [S1]P & [S2]P

[IF E THEN S1 ELSE S2 END]P (E =>[S1]P) & (not(E) =>[S2]P)

Second, the semantics of the parallel composition is not defined here. This is
because the simplest case (4) of the parallel composition can be written in the
form (5).

x1 := e1 || x2 := e2 (4)
x1,x2 := e1,e2 (5)

The B-Method also offers rules to transform more complicated cases of multi-
ple GS to the case (4). These rules are not needed in the course, but an interested
reader can find them in [1,11].

Within the course, the comprehension of this theory can be fortified by Exer-
cise 1.

Exercise 1. Generalized Substitution Syntax and Semantics.
Task
Compute the weakest pre-condition (6).

[IF sig1=red & e0 sig1=free
THEN e0:=green ‖ e0 sig1:=occup END] (e0=green)

(6)

Solution
First, we use the semantics of IF from Table 3 and the form (5) of (4) to rewrite
(6) to (7).

((sig1=red & e0 sig1=free) => [e0,e0 sig1:=green,occup](e0=green))
& (not(sig1=red & e0 sig1=free) => [skip](e0=green)) (7)

Applying the semantics of skip and := from Table 3 to (7), we get (8).

((sig1=red & e0 sig1=free) => (green=green))
& (not(sig1=red & e0 sig1=free) => (e0=green)) (8)

The form (8) is equivalent to (9).

((sig1=red & e0 sig1=free) => true)
& (not(sig1=red & e0 sig1=free) => (e0=green)) (9)

Utilizing Rail TC Simulator in Verified SW Development Courses 121

According to the definition of the logical conjunction and implication, (9) can
be further reduced to (10), and, finally, to (11), which is the final form of (6).

true & (not(sig1=red & e0 sig1=free) => (e0=green)) (10)
not(sig1=red & e0 sig1=free) => (e0=green) (11)

(End of Exercise 1)
�

4.3 Abstract Specification

A development of a software system in the B-Method starts with a formal
abstract specification, consisting of (abstract) machines. A typical machine
resembles an object in the object oriented programming as it encapsulates a
set of variables, defining its state, with a set of operations, defining state tran-
sitions.

A machine is defined in a textual form consisting of several clauses. Only
one of them, the MACHINE clause, which defines its name and may also list its
formal parameters, is mandatory. To cover all purposes a machine can serve and
corresponding combinations of clauses is out of the scope of this short course.
Therefore, we will limit ourselves to the clauses we need for the control modules
to be developed. And we explain them on a particular example of a machine
representing a control module for the scenario from Fig. 5 a). But before that, in
Exercise 2, we use the Train Director part of the TD/TS2JC toolset to emulate
a process of customer requirements analysis, which should result in the invariant
properties of the machine.

Exercise 2. From requirements to invariant properties.

Task

1. Launch the version of Train Director that is a part of the TD/TS2JC toolset
and open the railway scenario route2sec.trk, with the track layout as in
Fig. 5 a), in it.

2. Imagine that your task is to develop a control module for this scenario. The
control module

– represents entry points and signals by variables e0, e1 and sig0, sig1 with
values green and red,

– represents track sections by variables e0 sig1, sig0 e1 with values free and
occup (occupied),

– reacts to a request from a train to enter a section by setting the corre-
sponding signal or entry point and

– assumes that all trains obey the values it sets for the entry points and
signals (i.e. a train enters a section only when the corresponding signal
(entry point) is green).

3. Specify invariant properties that ensure safety of the trains in the scenario

122 Š. Korečko

– informally, in English and
– formally, using the mathematical notation of the B-language and the vari-

ables defined above.

Use simulation of the scenario in the Train Director to explore possible situations.
You can clear the signals manually by clicking on them and change the train
schedule by editing the text file route2sec.sch.

Solution
Informally, the invariant properties can be specified as follows:

1. Only one of the signals (entry points) guarding a section can be green.
2. If any of the signals (entry points) guarding a section is green, the section

itself must be free.

These statements can be formally expressed in several ways. One of them is
given in Listing 6 on lines 12–13 (the first statement) and lines 14–16 (the second
statement).

(End of Exercise 2)
�

The machine specifying a non-parametric controller for the scenario from
Fig. 5 a) can be found in Listing 6. The interface and functionality of the con-
troller is identical to the Java version from Listing 2 and its final, executable,
version will use the same configuration file (Listing 3).

Listing 6. Machine route2sec of a non-parametric module for the two section track
from Fig. 5 a).

1 MACHINE r o u t e 2 s e c
2 SETS
3 ST SIG={green , r ed } ;
4 ST SWCH={sw i tched , none } ;
5 ST SEC={ f r e e , occup}
6

7 CONCRETE VARIABLES e0 , e1 , s i g0 , s i g1 , e 0 s i g 1 , s i g 0 e 1
8

9 INVARIANT
10 e0 : ST SIG & e1 : ST SIG & s i g 0 : ST SIG & s i g 1 : ST SIG &
11 e 0 s i g 1 : ST SEC & s i g 0 e 1 : ST SEC &
12 (e0=green => s i g 1=red) & (s i g 1=green => e0=red) &
13 (e1=green => s i g 0=red) & (s i g 0=green => e1=red) &
14 (e0=green => e 0 s i g 1=f r e e) & (s i g 1=green => e 0 s i g 1=f r e e)
15 &
16 (e1=green => s i g 0 e 1=f r e e) & (s i g 0=green => s i g 0 e 1=f r e e)
17

18 INITIALISATION
19 e0 := red | | e1 := red | | s i g 0 := red | | s i g 1 := red | |
20 e 0 s i g 1 := f r e e | | s i g 0 e 1 := f r e e

Utilizing Rail TC Simulator in Verified SW Development Courses 123

21

22 OPERATIONS
23 s s <−− ge tS i g s i g0 = BEGIN s s := s i g 0 END;
24 s s <−− ge tS i g s i g1 = BEGIN s s := s i g 1 END;
25 s s <−− getEntry e0 = BEGIN s s :=e0 END;
26 s s <−− getEntry e1 = BEGIN s s :=e1 END;
27

28 reqGreen e0 =
29 IF s i g 1=red & e 0 s i g 1=f r e e THEN e0 := green END;
30 reqGreen e1 =
31 IF s i g 0=red & s i g 0 e 1=f r e e THEN e1 := green END;
32 reqGreen s ig0 =
33 IF e1=red & s i g 0 e 1=f r e e THEN s i g 0 := green END;
34 reqGreen s ig1 =
35 IF e0=red & e 0 s i g 1=f r e e THEN s i g 1 := green END;
36

37 ente rNI e0 s ig1 =
38 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
39 ente r IN s ig0 e1 =
40 BEGIN s i g 0 e 1 :=occup | | s i g 0 := red | | e1 := red END;
41 ente rNI e1 s ig0 =
42 BEGIN s i g 0 e 1 :=occup | | s i g 0 := red | | e1 := red END;
43 ente r IN s ig1 e0 =
44 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
45

46 l e aveNI e0 s ig1 = BEGIN e 0 s i g 1 := f r e e END;
47 l e ave IN s ig0 e1 = BEGIN s i g 0 e 1 := f r e e END;
48 l e aveNI e1 s ig0 = BEGIN s i g 0 e 1 := f r e e END;
49 l e ave IN s ig1 e0 = BEGIN e 0 s i g 1 := f r e e END
50

51 END

The MACHINE clause with the machine name (route2sec, on line 1 in Listing
6) is followed by the SETS clause on lines 2 to 5. This clause defines three enu-
merated sets with their members in curly brackets. They are considered types in
the B-language. Line 4 can be omitted as the scenario does not contain switches.

The CONCRETE VARIABLES clause names state variables of the machine.
A machine may have two types of state variables. The first one is concrete
variables, as in this case. Such variables remain the same in each subsequent
refinement or implementation of the component. Therefore, there are certain
restrictions on them as they must be implementable, that is automatically trans-
latable to a common programming language. For the second type, we have the
ABSTRACT VARIABLES clause and these variables can be of any type definable
in the B-language.

The invariant properties of the machine are specified as a predicate in the
INVARIANT clause (lines 9–16). It is divided into the typing invariant (lines 10–
11), defining the types of the state variables, and safety properties (lines 12–16)
that are those formulated in Exercise 2.

124 Š. Korečko

The next clause is INITIALISATION (lines 18–20) with a command in GSL,
which assigns initial values to all state variables. It regards all sections as empty
and sets all signals and entry points to red.

GSL is also used in the OPERATIONS clause (lines 22–51) with all the oper-
ations of the component. The operations are separated by semicolons and their
interface and functionality is the same as that of the methods in the Java module
in Listing 2. In the B-language, a general form of an operation is (12),

y <-- op(x) =
PRE P THEN S END

(12)

where y is a comma-separated list of its output parameters, op its name and x
a comma-separated list of its input parameters. The predicate P, called the pre-
condition of the operation, defines conditions under which it should be called.
In operations with input parameters, it also defines their properties, including
types. S is a command (a GS) that forms the body of the operation. For machines,
it is required that operations are atomic state transitions without intermediate
states. Because of this, they cannot contain the sequential compositions or loops.

If P is true and there are no input parameters, the form (12) is reduced
to (13). This is the case of getters in our machine (lines 23–26). Remaining
operations do not even have output parameters so they are written in the form
(14). If S contains only compositions and assignments, it is common to place it
between the keywords BEGIN and END. All operations in Listing 6, except of
those in lines 28–35, use these keywords.

y <-- op = S (13)
op = S (14)

Verification of Machine. To verify the correctness of a formal specification
written in the B-language, one must prove a set of formulas, called proof obli-
gations (PObs), for each machine of the specification. To explain this topic in
a concise way, we restrict ourselves to machines like the one in Listing 6. In
general, such a machine can be written as in Listing 7.

Listing 7. General form of a machine with clauses as in Listing 6.

1 MACHINE M
2 SETS St
3 CONCRETE VARIABLES v
4 INVARIANT I
5 INITIALISATION T
6 OPERATIONS
7 y <−− op (x) =
8 PRE P THEN S END
9 END

Utilizing Rail TC Simulator in Verified SW Development Courses 125

The PObs for the machine are (15) and (16). The POb (16) must be proved
for every operation of the machine.

[T]I (15)
P & I => [S]I (16)

I => [S]I (17)

The POb (15) means that the initialisation must establish the invariant and (16)
that each operation must preserve it. If P is true, (16) is reduced to (17).

Exercise 3. Proving the proof obligations.
Task
For the machine route2sec from Listing 6, prove (17) for the operation req-
Green e0.

Solution
The POb has the form (18). The letter I represents the invariant of route2sec,
that is lines 10–16 from Listing 6.

I => [IF sig1=red & e0 sig1=free THEN e0:=green END]I (18)

After applying the GS semantics (Table 3) to (18), we get (19).

I => (((sig1=red & e0 sig1=free) =>[e0:=green]I) &
(not(sig1=red & e0 sig1=free) =>I)))

(19)

In the rest of the exercise, we use the tautologies (20)–(22) of the propositional
logic.

(a =>(b & c)) <=> ((a =>b) & (a =>c)) (20)
(a =>(b=>c)) <=> ((a & b) =>c) (21)

(a & b) => b (22)

Utilizing (20), we can split (19) to (23) and (24).

I =>((sig1=red & e0 sig1=free) => [e0:=green]I) (23)
I =>(not(sig1=red & e0 sig1=free) => I) (24)

Considering (21), the formulas (23) and (24) can be rewritten to (25) and (26).

(I & (sig1=red & e0 sig1=free)) => [e0:=green]I (25)
(I & not(sig1=red & e0 sig1=free)) => I (26)

According to (22), (26) is true. What remains is to resolve (25). This requires to
“dive into” the invariant I of route2sec, which is quite a long formula, consisting
of 14 conjuncts. Therefore, in the rest of this solution and starting with (27),

126 Š. Korečko

we omit those conjuncts that repeat in the same form on both sides of the
implication and are not important for the proof.

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
[e0:=green] (e0:ST SIG & (e0=green => sig1=red) &

(sig1=green => e0=red) &
(e0=green => e0 sig1=free))

(27)

First, we use the semantics of assignment (Table 3) to transform (27) to (28).

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
(green:ST SIG & (green=green => sig1=red) &
(sig1=green => green=red) &
(green=green => e0 sig1=free))

(28)

Some of the expressions in (28) can be reduced to true or false, resulting in (29).

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
(true & (true => sig1=red) &
(sig1=green => false) &
(true => e0 sig1=free))

(29)

Considering the definition of logical implication and conjunction, (29) can be
further reduced to (30).

(sig1:ST SIG & sig1=red & e0 sig1=free) =>
(sig1=red &
not(sig1=green) &
e0 sig1=free)

(30)

According to (20), (30) can be split into 3 separate formulas, (31)–(33), to prove.

(sig1:ST SIG & sig1=red & e0 sig1=free) => sig1=red (31)
(sig1:ST SIG & sig1=red & e0 sig1=free) => not(sig1=green) (32)
(sig1:ST SIG & sig1=red & e0 sig1=free) => e0 sig1=free (33)

Utilizing (22), (31) and (33) can be reduced to true directly as the right-hand
side of the implication is one of the conjuncts on the left-hand side in both cases.
And because the set ST SIG consists of only two members, red and green, the
right-hand side of (32) follows from the first two conjuncts on the left-hand side.

(End of Exercise 3)
�

B-Method in Atelier B. After getting familiar with the B-language and
abstract machines and trying the formal verification in a pen-and-paper way,
it is time to get some experience with Atelier B, the development environment

Utilizing Rail TC Simulator in Verified SW Development Courses 127

and prover for the B-Method. In Exercise 4, we create a new project in Atelier
B with the machine from Listing 6, which we type check and prove. This and
the following exercises use the archive [7] of support materials and assume that
the archive is unpacked into the folder C:/VSD. If one chooses another folder, he
or she has to alter the steps accordingly.

Exercise 4. Machine specification and proof in Atelier B.
Instructions

1. Unpack the course package [7] to C:/VSD.
2. If not yet installed, download Atelier B from [18], install and run it. The

primary window of Atelier B appears. The following steps are carried out in
Atelier B.

3. Create a new workspace
– workspace name: bcourse.
– workspace database directory: C:/VSD/bdb.

4. Set the “Default project directory” to C:/VSD/Bprojects.
5. Create a new project called route2sec.
6. In the left panel (“Workspaces”), right click on the name of the project and

choose “Add Components”.
7. In the dialog “Select one or more files to add”, locate and open the file

C:/VSD/Bprojects/route2sec/route2sec.mch. It contains the machine
from Listing 6.

8. In the main part of the primary window, which is located right to the
“Workspaces” panel, choose “Classical view” from the dropdown menu (if
not already chosen). A list of project components appears in the main part.
The list contains route2sec.mch only.

9. Double click on the route2sec.mch in the list. This opens the editor window
of Atelier B.

10. Explore the possibilities of the editor window and close it without saving
changes in the file.

11. Right click on the route2sec.mch in the main part of the primary window
and choose “Type check”. This will check the syntax of the component.
Provided that you didn’t change anything in the file, this task should finish
with success.

12. In the same way as in the previous step, choose “Generate PObs”. This will
generate the proof obligations of the component. There should be eight of
them.

13. In the same way as in the previous step, choose “Proof” and then “Automatic
(Force 0)”. This will launch the automatic prover of Atelier B, which tries
to prove the generated PObs of the component. The prover can be launched
with different amount of resources (memory and time) allocated. There are
four options in the menu - from the least amount (“Force 0”) to the greatest
amount (“Force 3”). As the PObs of route2sec.mch are simple, Force 0 is
sufficient.

128 Š. Korečko

14. Choose the “Proof” option, as in the previous step, and then “Interactive
Proof”. This opens the interactive prover window of Atelier B. The inter-
active prover is used for human-assisted proving when the automatic prover
fails.

15. In the part “Situation” of the interactive prover window, double click on
route2sec and then on PO0. The formula of the corresponding POb appears
in the main part of the prover window. Notice the similarity between this
formula and the ones we had in Exercise 3.

16. Close the interactive prover window and return to the primary window.
17. Notice that the type checking, POb generation and some of the proof options

are also available from the toolbar.
18. If time allows, explore the functionality of Atelier B further. Corresponding

documentation can be found in the main menu (“Help” and then “Manuals”).

(End of Exercise 4)
�

4.4 Refinement to Implementation

The B-Method allows for a sophisticated development (refinement) process, with
multiple steps and changes in both data representation and functionality of oper-
ations. Considering the limited duration of the course, we opted for a minimal-
istic form of refinement. This consists of only one step, directly from a machine
to an implementation. And this step is only necessary because of certain limita-
tions of different types of components in the B-Method. As we mentioned earlier,
machine operations must be atomic state transitions, so sequential composition
and loops are prohibited. In implementations, only commands compatible with
those of sequential imperative programming languages are allowed. This rules
out parallel composition and PRE, SELECT and CHOICE in their pure form (IF
is allowed). Abstract (unimplementable) variables and constants are forbidden,
too. On the other hand, sequential composition and loops can be used. Refine-
ments, as intermediate components, are a mixed bag. They can use both the
abstract and concrete data and all commands, except of the loops, are allowed
in them. All refinements and the implementation of a machine must have the
same interface as the machine. By the interface we mean the list of component
parameters and headers of its operations. No operation can be added or removed
during the refinement process.

A straightforward implementation of the machine route2sec is the component
route2sec i in Listing 8.

Listing 8. Implementation component, refined from the abstract machine in Listing
6.

1 IMPLEMENTATION r o u t e 2 s e c i
2 REFINES r o u t e 2 s e c
3

4 INITIALISATION
5 e0 := red ; e1 := red ; s i g 0 := red ; s i g 1 := red ;

Utilizing Rail TC Simulator in Verified SW Development Courses 129

6 e 0 s i g 1 := f r e e ; s i g 0 e 1 := f r e e
7

8 OPERATIONS
9 s s <−− ge tS i g s i g0 = BEGIN s s := s i g 0 END;

10 s s <−− ge tS i g s i g1 = BEGIN s s := s i g 1 END;
11 s s <−− getEntry e0 = BEGIN s s :=e0 END;
12 s s <−− getEntry e1 = BEGIN s s :=e1 END;
13

14 reqGreen e0 =
15 IF s i g 1=red & e 0 s i g 1=f r e e THEN e0 := green END;
16 reqGreen e1 =
17 IF s i g 0=red & s i g 0 e 1=f r e e THEN e1 := green END;
18 reqGreen s ig0 =
19 IF e1=red & s i g 0 e 1=f r e e THEN s i g 0 := green END;
20 reqGreen s ig1 =
21 IF e0=red & e 0 s i g 1=f r e e THEN s i g 1 := green END;
22

23 ente rNI e0 s ig1 =
24 BEGIN e 0 s i g 1 :=occup ; e0 := red ; s i g 1 := red END;
25 ente r IN s ig0 e1 =
26 BEGIN s i g 0 e 1 :=occup ; s i g 0 := red ; e1 := red END;
27 ente rNI e1 s ig0 =
28 BEGIN s i g 0 e 1 :=occup ; s i g 0 := red ; e1 := red END;
29 ente r IN s ig1 e0 =
30 BEGIN e 0 s i g 1 :=occup ; e0 := red ; s i g 1 := red END;
31

32 l e aveNI e0 s ig1 = BEGIN e 0 s i g 1 := f r e e END;
33 l e ave IN s ig0 e1 = BEGIN s i g 0 e 1 := f r e e END;
34 l e aveNI e1 s ig0 = BEGIN s i g 0 e 1 := f r e e END;
35 l e ave IN s ig1 e0 = BEGIN e 0 s i g 1 := f r e e END
36

37 END

There are several differences between the components route2sec and route2sec i:

– The keyword MACHINE is replaced by IMLEMENTATION (line 1 in Listing
8).

– The clauses SETS and CONCRETE VARIABLES are not present as the ones
already defined in the machine are sufficient.

– The clause INVARIANT is omitted as no new variables are introduced and
there is no need to define new properties over the concrete variables from the
machine.

– All parallel compositions are replaced by sequential compositions in the INI-
TIALISATION and OPERATIONS clauses.

Verification of Implementation. Refinements and implementations are veri-
fied against themselves and components they refine. Again, we will not deal with
the most general case but only with a simplified one, as given in Listing 9.

130 Š. Korečko

Listing 9. General form of an implementation with clauses as in Listing 8 and INVARI-
ANT.

1 IMPLEMENTATION M i
2 REFINES M
3 INVARIANT J
4 INITIALISATION T1
5 OPERATIONS
6 y <−− op (x) =
7 BEGIN S1 END
8 END

The PObs for the implementation are (34) and (35) and (35) must be proved
for every operation of the implementation. The PObs of the refinement compo-
nents have the same form.

[T1](not([T] not(J))) (34)
P & I & J => [S1’](not([S] not(J & y’=y))) (35)

While these PObs look rather complicated, their resolution is trivial in the
case of route2sec i. This is because

– the implementation route2sec i does not contain invariant, so J is true and
– the weakest preconditions of the operation bodies of the machine (S) and the

implementation machine (S1) are the same, because the right-hand sides of
the assignments do not contain any state variables (that occur on the left-
hand sides).

When looking on the general form of machine operation (12), and POb (35),
one may wonder why we did not use PRE instead of IF in the machine route2sec
(Listing 6). It is true that if we replace all IF keywords with PRE in Listing 6,
then such machine can be refined to the implementation from Listing 8 and the
verification will go without problems. But, it can also be refined to an imple-
mentation that differs from the one in Listing 8 in additional ELSE parts of the
IF commands. And it will verify perfectly fine, regardless on what is inside the
ELSE parts. In the case that these operations are called from another compo-
nent in the same specification, it is OK. Because, in such a case it will not be
possible to prove any component that calls them outside of their pre-conditions.
But the operations of our verified control module will be called from outside of
the verified part, where no one cares whether any conditions are met.

Implementation in Atelier B and BKPI Compiler. What remains is to
finish the development of our control module in Atelier B and translate it to
an executable form that can be run with the TD/TS2JC toolset. This is done
in Exercise 5. The exercise requires both Java Runtime Environment and Java
Development Kit installed. Similarly to Exercise 4, it assumes that the archive
[7] is unpacked to C:/VSD.

Utilizing Rail TC Simulator in Verified SW Development Courses 131

Exercise 5. Implementation to executable code in Atelier B and BKPI compiler.
Instructions

1. In Atelier B, open the project route2sec, created in Exercise 4.
2. In the left panel (“Workspaces”), right click on the name of the project and

choose “Add Components”.
3. In the dialog “Select one or more files to add”, locate and open the file

C:/VSD/Bprojects/route2sec/route2sec_i.imp. It contains the imple-
mentation from Listing 8.

4. Type check, generate and prove PObs of route2sec_i.imp in the same way
as for route2sec.mch in Exercise 4.

5. Close Atelier B.
6. Run the BKPI compiler.

It is the file C:/VSD/BKPICompiler/BKPIcompiler.jar and we will use it
to translate route2sec_i.imp to Java.

7. In the the BKPI compiler, right click on route2sec and choose “Generate
Java code”.

8. In a file manager (e.g. Explorer), navigate to the folder
C:/VSD/Bprojects/route2sec/java.

9. Delete MainClass.java and compile route2sec.java. To compile, just run
compile.bat.

10. Run Train Director and open the file C:/VSD/scenarios/route2sec.trk in
it.

11. Run TS2JavaConn and load (open) the module
C:/VSD/Bprojects/route2sec/java/route2sec.class in it.

12. Start the simulation, in Train Director or TS2JavaConn.

(End of Exercise 5)
�

4.5 Three Sections Control Module Development Project

Finally, the course participants may try the verified development process on a
control module for the three track sections scenario from Fig. 5 b).

Exercise 6. Development of a control module for the three sections scenario.
Task
Develop a verified control module for the three track sections scenario from Fig. 5
b). The invariant of the machine of the module has to contain safety conditions
that prevent collision of trains in the scenario. Use the control module template
generator of TS2JavaConn to create an initial form of the module machine in
the B-language. Alternatively, you can start with the machine from Listing 10.
Follow the TODO comments to modify the machine.

Listing 10. Initial form of the abstract machine route3sec.

1 MACHINE r o u t e 3 s e c
2 SETS

132 Š. Korečko

3 ST SIG={green , r ed } ;
4 ST SWCH={sw i tched , none } ;
5 ST SEC={ f r e e , occup}
6

7 CONCRETE VARIABLES
8 e0 , e1 , s i g0 , s i g1 , s i g2 , s i g3 ,
9 e0 s i g 1 , s i g 0 s i g 3 , s i g 2 e 1

10

11 INVARIANT
12 e0 : ST SIG & e1 : ST SIG &
13 s i g 0 : ST SIG & s i g 1 : ST SIG & s i g 2 : ST SIG & s i g 3 : ST SIG &
14 e 0 s i g 1 : ST SEC & s i g 0 s i g 3 : ST SEC & s i g 2 e 1 : ST SEC &
15 (e0=green => s i g 1=red) & (s i g 1=green => e0=red)
16 /∗TODO: f i n i s h s a f e t y c o n d i t i o n s f o r the r e l a t i o n s
17 between s i g n a l s (e n t r y p o i n t s) ∗/
18 &
19 (e0=green => e 0 s i g 1=f r e e) &
20 (s i g 1=green => e 0 s i g 1=f r e e)
21 /∗TODO: f i n i s h s a f e t y c o n d i t i o n s f o r the r e l a t i o n s
22 between s i g n a l s (e n t r y p o i n t s) and s e c t i o n s ∗/
23

24 INITIALISATION
25 e0 := red | | e1 := red | |
26 s i g 0 := red | | s i g 1 := red | | s i g 2 := red | | s i g 3 := red | |
27 e 0 s i g 1 := f r e e | | s i g 0 s i g 3 := f r e e | | s i g 2 e 1 := f r e e
28

29 OPERATIONS
30 s s <−− ge tS i g s i g0 = BEGIN s s := s i g 0 END;
31 s s <−− ge tS i g s i g1 = BEGIN s s := s i g 1 END;
32 s s <−− ge tS i g s i g2 = BEGIN s s := s i g 2 END;
33 s s <−− ge tS i g s i g3 = BEGIN s s := s i g 3 END;
34 s s <−− getEntry e0 = BEGIN s s :=e0 END;
35 s s <−− getEntry e1 = BEGIN s s :=e1 END;
36

37 reqGreen e0 =
38 IF s i g 1=red & e 0 s i g 1=f r e e THEN e0 := green END;
39 reqGreen e1 = sk i p ;
40 reqGreen s ig0 = sk i p ;
41 reqGreen s ig1 = sk i p ;
42 reqGreen s ig2 = sk i p ;
43 reqGreen s ig3 = sk i p ;
44 /∗TODO: r e p l a c e s k i p i n the p r e v i o u s o p e r a t i o n
45 with a p p r o p r i a t e commands∗/
46

47 ente rNI e0 s ig1 =
48 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
49 e n t e r I I s i g 0 s i g 3 =
50 BEGIN s i g 0 s i g 3 :=occup | | s i g 0 := red | | s i g 3 := red END;
51 ente r IN s ig2 e1 =
52 BEGIN s i g 2 e 1 :=occup | | s i g 2 := red | | e1 := red END;

Utilizing Rail TC Simulator in Verified SW Development Courses 133

53

54 ente rNI e1 s ig2 =
55 BEGIN s i g 2 e 1 :=occup | | s i g 2 := red | | e1 := red END;
56 e n t e r I I s i g 3 s i g 0 =
57 BEGIN s i g 0 s i g 3 :=occup | | s i g 0 := red | | s i g 3 := red END;
58 ente r IN s ig1 e0 =
59 BEGIN e 0 s i g 1 :=occup | | e0 := red | | s i g 1 := red END;
60

61 l e aveNI e0 s ig1 = BEGIN e 0 s i g 1 := f r e e END;
62 l e a v e I I s i g 0 s i g 3 = BEGIN s i g 0 s i g 3 := f r e e END;
63 l e ave IN s ig2 e1 = BEGIN s i g 2 e 1 := f r e e END;
64 l e aveNI e1 s ig2 = BEGIN s i g 2 e 1 := f r e e END;
65 l e a v e I I s i g 3 s i g 0 = BEGIN s i g 0 s i g 3 := f r e e END;
66 l e ave IN s ig1 e0 = BEGIN e 0 s i g 1 := f r e e END
67

68 END

Solution
In essence, the process of the control module development is the same as in
Exercise 4 and Exercise 5. The parts that must be changed in the machine from
Listing 10 can be found in Listing 11. The differences between the machine
and its implementation are the same as between the ones in the aforementioned
exercises.

Listing 11. Invariant and selected operations of the final form of the machine route3sec
from Listing 10.

1 INVARIANT
2 e0 : ST SIG & e1 : ST SIG &
3 s i g 0 : ST SIG & s i g 1 : ST SIG & s i g 2 : ST SIG & s i g 3 : ST SIG &
4 e 0 s i g 1 : ST SEC & s i g 0 s i g 3 : ST SEC & s i g 2 e 1 : ST SEC &
5 (e0=green => s i g 1=red) & (s i g 1=green => e0=red) &
6 (s i g 0=green => s i g 3=red) & (s i g 3=green => s i g 0=red) &
7 (e1=green => s i g 2=red) & (s i g 2=green => e1=red) &
8 (e0=green => e 0 s i g 1=f r e e) &
9 (s i g 1=green => e 0 s i g 1=f r e e) &

10 (s i g 0=green => s i g 0 s i g 3=f r e e) &
11 (s i g 3=green => s i g 0 s i g 3=f r e e) &
12 (e1=green => s i g 2 e 1=f r e e) &
13 (s i g 2=green => s i g 2 e 1=f r e e)
14

15 OPERATIONS
16 reqGreen e1 =
17 IF s i g 2=red & s i g 2 e 1=f r e e THEN e1 := green END;
18 reqGreen s ig0 =
19 IF s i g 3=red & s i g 0 s i g 3=f r e e THEN s i g 0 := green END;
20 reqGreen s ig1 =
21 IF e0=red & e 0 s i g 1=f r e e THEN s i g 1 := green END;
22 reqGreen s ig2 =

134 Š. Korečko

23 IF e1=red & s i g 2 e 1=f r e e THEN s i g 2 := green END;
24 reqGreen s ig3 =
25 IF s i g 0=red & s i g 0 s i g 3=f r e e THEN s i g 3 := green END;

(End of Exercise 6)
�

5 Conclusion

This chapter presented a compact four-to-six-hour long course on formal veri-
fied software development in the B-Method. We do hope that, with additional
materials [6] and [7], the chapter provides enough information for an interested
reader to go through the course by him or herself. The B-Method was chosen
because of the tool support, provided by the freely available Atelier B integrated
development environment and prover, and an impressive track record of indus-
trial utilization. This course has been carried out during the Central European
Functional Programming (CEFP) summer school in June 2019, in Budapest. A
special feature of the course is the utilization of the TD/TS2JC toolset. The cen-
terpiece of the toolset is a modified railway traffic control game, Train Director.
It provides a virtual environment for the software developed during the course by
its participants, that is for railway controllers. The participants use the toolset
at least at the beginning and at the end of the development; at the beginning
to examine the scenario for which the controller will be developed and after the
development to run the controller with the scenario. A questionnaire given to
the participants after the course at the CEFP summer school confirmed the pos-
itive impact of the tool set. From 15 participants, 66.7% agreed that the toolset
helped them to understand the importance of formal methods and for 99.3%
it mattered that they had been able to see their formally developed software
running.

The TD/TS2JC toolset had been developed with universality in mind and can
be used with any formal method that provides translation to the Java program-
ming language and, also, directly with Java. The chapter tried to demonstrate
this universality by describing different types of control modules and correspond-
ing configuration files.

The course presented here includes some pen-and-paper exercises dealing
with formal semantics of the B-Method and formal proof. To remind concise,
these exercises do not use the formal system behind the B-Method, but try
to explain the topic in a way understandable for a common programmer. The
course focuses on formulation of the abstract specification and understanding
the importance and process of formal verification by mathematical proof. The
development to implementation is, deliberately, trivial. A more complex sce-
nario with the specification consisting of multiple components and a nontrivial
refinement can be found in [9].

Utilizing Rail TC Simulator in Verified SW Development Courses 135

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New Yor (2010)

3. Almeida, J.B., Frade, M.J., Pinto, J.S., De Sousa, S.M.: Rigorous Software Develop-
ment: An Introduction to Program Verification. Springer, London (2011). https://
doi.org/10.1007/978-0-85729-018-2

4. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

5. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05032-4 13

6. Korečko, Š.: TD/TS2JavaConn toolset package. https://hron.fei.tuke.sk/korecko/
FMInGamesExp/resources/allInOneTDTS2J.zip (2019)

7. Korečko, Š.: Verified software development in B-Method short course package
(2019). https://hron.fei.tuke.sk/korecko/cefp19/cefp19BmethodPack.zip

8. Korečko, Š, Sobota, B.: Computer games as virtual environments for safety-critical
software validation. J. Inf. Organ. Sci. 41(2), 197–212 (2017)

9. Korečko, Š., Sorád, J.: Using simulation games in teaching formal methods for
software development. In: Queirós, R. (ed.) Innovative Teaching Strategies and
New Learning Paradigms in Computer Programming, pp. 106–130. IGI Global
(2015)

10. Korečko, Š, Sorád, J., Dudláková, Z., Sobota, B.: A toolset for support of teaching
formal software development. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 278–283. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10431-7 21

11. Lano, K.: The B Language and Method: A Guide to Practical Formal Development,
1st edn. Springer, New York (1996). https://doi.org/10.1007/978-1-4471-1494-9

12. Larsen, P., Fitzgerald, J., Riddle, S.: Practice-oriented courses in formal methods
using vdm++. Formal Aspects Comput. 21(3), 245–257 (2009). https://doi.org/
10.1007/s00165-008-0068-5

13. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. SIGCSE Bull. 41(2), 17–23 (2009). https://
doi.org/10.1145/1595453.1595457

14. Reed, J.N., Sinclair, J.E.: Motivating study of formal methods in the classroom. In:
Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 32–46. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 3

15. Schneider, S.: The B-Method: An Introduction. Cornerstones of Computing, Pal-
grave (2001)

16. Spivey, J.M., Abrial, J.: The Z Notation. Prentice Hall Hemel Hempstead, Engle-
wood Cliffs (1992)

17. Train director homepage (2020). https://www.backerstreet.com/traindir/en/
trdireng.php

18. Atelier B homepage (2021). https://www.atelierb.eu/en/

https://doi.org/10.1007/978-0-85729-018-2
https://doi.org/10.1007/978-0-85729-018-2
https://doi.org/10.1007/978-3-319-05032-4_13
https://hron.fei.tuke.sk/korecko/FMInGamesExp/resources/allInOneTDTS2J.zip
https://hron.fei.tuke.sk/korecko/FMInGamesExp/resources/allInOneTDTS2J.zip
https://hron.fei.tuke.sk/korecko/cefp19/cefp19BmethodPack.zip
https://doi.org/10.1007/978-3-319-10431-7_21
https://doi.org/10.1007/978-3-319-10431-7_21
https://doi.org/10.1007/978-1-4471-1494-9
https://doi.org/10.1007/s00165-008-0068-5
https://doi.org/10.1007/s00165-008-0068-5
https://doi.org/10.1145/1595453.1595457
https://doi.org/10.1145/1595453.1595457
https://doi.org/10.1007/978-3-540-30472-2_3
https://www.backerstreet.com/traindir/en/trdireng.php
https://www.backerstreet.com/traindir/en/trdireng.php
https://www.atelierb.eu/en/

The Role of Functional Programming
in Management and Orchestration
of Virtualized Network Resources

Part II. Network Evolution and Design Principles

Tihana Galinac Grbac1(B) and Nikola Domazet2

1 Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
tihana.galinac@unipu.hr

2 Ericsson Nikola Tesla, Krapinska 45, 10000 Zagreb, Croatia
nikola.domazet@ericsson.com

Abstract. This is part II of the follow-up lecture notes of the lectures
given by the authors at the Three “CO” (Composability, Comprehensi-
bility, Correctness) Winter School held in Košice, Slovakia, in January
2018, and Summer School held in Budapest, Hungary, in June 2019. In
this part we explain the recent network evolution and the concept of
virtualization, focusing on the management and orchestration of virtu-
alized network resources. Network Functions Virtualization (NFV) is a
new paradigm for changing the way networks are built and operated.
Decoupling software implementation from network resources through a
virtualization layer introduces a need for developing sets of NFV man-
agement and orchestration (MANO) functions. We discuss how this new
point of view is highly inspired by the functional programming concepts.
We provide examples and exercises on Open Stack virtual technology,
and also discuss the challenges and problems inspired by the telecommu-
nication industry. Focus is on the Reliable operation of Management and
Orchestration functions of Virtualized resources. These notes provide an
introduction to the subject, with the goal of explaining the necessity for
new knowledge and skills in the area of network programming. We intro-
duce students to the main problems and the network design principles,
methods, and techniques used for their solution. The worked examples
and exercises serve students as the teaching material, from which they
can learn how to use functional programming to effectively and efficiently
coordinate management and orchestration functions in distributed com-
plex systems using NFV.

Keywords: Network Function Virtualization · Management and
orchestration · Complex software systems · OpenStack platform

1 Introduction

This lecture part II belongs to lecture series on the role of functional program-
ming in the management and orchestration of virtualized network resources. In
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 136–164, 2023.
https://doi.org/10.1007/978-3-031-42833-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_5&domain=pdf
http://orcid.org/0000-0002-4351-4082
https://doi.org/10.1007/978-3-031-42833-3_5

Management and Orchestration of Virtualized Network Resources 137

the previous lectures part I of the follow-up lecture notes of the lectures given by
the authors at the Three “CO” (Composability, Comprehensibility, Correctness)
Winter School held in Košice, Slovakia, in January 2018, we discuss the sys-
tem structure for complex systems and design principles. We provided
an introduction to the theory of complex software systems reflecting on exam-
ples from telecommunication networks and carefully positioning the considered
problems imposed by network evolution and continuous complexity increase.
Furthermore, we discussed the main system design principles proposed to cope
with complexity such as modularity, abstraction, layering, and hierarchy. Since
these are very generic recommendations on how to design such complex sys-
tems we further explain in detail the main paradigms such as service orientation
and virtualization forcing implementation of such principles. Virtualization is a
paradigm frequently used in the management of complex software systems. It
implies the introduction of a new abstract layer, a virtual edition of the system
layer and its functions, which avoids introducing dependency between system
layers.

Here, in this lecture, we go one step further where we discuss network evo-
lution and design principles for autonomic network management. We
introduce new concepts that are cornerstones for future network evolution and
are based on virtualization and service orientation. These are Network Func-
tions Virtualization (NFV) and Software Defined Networking (SDN). Network
Functions Virtualization (NFV) decouples network function from physical net-
work resources through a new virtualization layer [8] thus avoiding dependencies
among them. However, it introduces a need for developing sets of NFV manage-
ment and orchestration functions (MANO). Further in this lecture, we describe
new challenges arising from the implementation point of view and show students
how to use the programming techniques for coordination of management and
orchestration functions of virtualized network resources operating in distributed
environments.

The problems and challenges of coordination of management and orchestra-
tion functions are addressed using the OpenStack platform [12]. It is an open
source cloud operating system that integrates a collection of software modules
that are necessary to provide a cloud computing layered model. Such technology
is necessary for dealing with problems arising from the virtualization paradigm
in current networks, and the students’ understanding solutions in OpenStack
will be able to transfer their knowledge to other existing technologies with the
same or similar purpose.

These notes provide an introduction to the subject, with the goal of explain-
ing the problems and the principles, methods and techniques used for their solu-
tion. The worked examples and exercises serve students as the teaching material,
from which they can learn how the use of functional programming may result in
effective and efficient coordination management and orchestration functions in
distributed complex systems using NFV.

The methods and techniques explained in these lecture notes and applied to
the problems of management and orchestration of network virtualization, are

138 T. Galinac Grbac and N. Domazet

already existing and we claim no originality in that sense. The purpose of these
notes is to serve as a teaching material for these methods.

The challenges arising from the new network paradigms, as well as their
solutions, are illustrated through practical examples using OpenStack virtual
technology and inspired by the problems from the telecommunication industry.

The course is divided into the following main parts:

– Background with reflection to key learnings from previous lectures on a defini-
tion of complex systems and challenging aspects of their management, system
design principles, and technologies enforcing design principles, Sect. 2.

– New network technologies which drive network evolution such as Cloud Com-
puting, Network Function Virtualisation, and Software Defined Network,
Sect. 3.

– Management and orchestration of virtualized resources and network design
principles, Sect. 4.

– Introduction to Open stack platform and the main services, Sect. 5.
– Reflections on practical examples on using OpenStack services for developing

management and orchestration scripts, Sect. 6.
– Reflections on use cases from the industry, Sect. 7.
– Discussion, Sect. 8.
– Conclusion, Sect. 9.

The key learning outcomes of this course lecture are to introduce virtual-
ization as one of the design principles for building modern complex systems,
to explain the need for automated management and orchestration functions
(MANO) in virtualized environments, to understand the challenges of unreli-
able MANO functions in virtualized environments, and finally to understand
how well-formalized virtualization can help improve reliable operation in net-
work environments.

2 Background

Nowadays, all software systems, or more precisely, everything, are interconnected
via the Internet-based telecommunication network. This network is distributed
and connects various peripheral systems at the edge of the network, intercon-
necting a variety of application domains. Many edge systems and their applica-
tions are increasingly growing thus forcing the current core network to increase
its capacities. Today’s networks are already becoming very complex and their
management is becoming extremely expensive and inefficient. Therefore, inno-
vations are needed to simplify network management and use. System reliability
and safety are paramount for the growing number of applications and services.
Note that in a telecommunications network, services are provided to users by
distributed and complex systems in coordination. Reliability is defined as conti-
nuity of system functionality and service. Safety is defined as a non–occurrence
of catastrophic consequences for the environment due to unreliable system oper-
ation.

Management and Orchestration of Virtualized Network Resources 139

The main problem in current research and practice is that we do not have
adequate mathematical models that provide a better understanding of the under-
lying causes of such complex system behavior and that can model global system
properties that produce reliable and secure behavior of modern software systems
with increasingly growing complexity [7]. The principles of network and systems
engineering must be redesigned to accommodate these innovations. The current
knowledge base of software and systems engineering needs to be revised in light of
the new challenges [5,10]. In addition, leading software companies (e.g., Google)
have recognized these properties as an important specialization of software and
systems engineering research focused on the reliability and maintainability of
large complex software systems and networks [4,15]. This knowledge is seen as
important for the next generation of software and systems engineers specializ-
ing in network programming. Therefore, these lectures are in complex systems
theory, particularly as it relates to complex software systems and their role in
telecommunications networks.

To build a complex system, there are numerous possibilities for how to struc-
ture the complex system. The way how the system is built is limiting or enables
its further evolution and system maintenance. Moreover, when building large–
scale complex systems that provide complex functionalities, the functional sys-
tem composition is enforced as a logical solution. This is especially the case
with complex software systems present in the telecommunication network which
are constantly evolving and introducing more and more complex system func-
tionalities, and whose entire development follows precise standards and recom-
mendations described and regulated by numerous standardization bodies. All
these standards and recommendations define system functionalities, which are
achieved by implementing many system functions. Thus, the functional system
is already driven by numerous standard bodies.

We have already given an introduction to this topic in the first part of this
lecture notes Part I. System structure for complex systems and design principles,
which we have published as a follow-up to the authors’ lectures on the Three”CO”
(Composability, Comprehensibility, Correctness) Winter School held in Košice,
Slovakia, in January 2018 and the Summer School held in Budapest, Hungary,
in June 2019. Therefore, in the following we will only briefly recap the main
learning and basic understanding necessary to easily follow and understand the
more advanced topics in this lecture.

In the previous lecture, we first started with a relevant definition of a com-
plex system from complex systems theory, [3], and applied this definition to
a complex software system. The complex software system is a system in
which there are a number of levels of abstraction and in which it is impossible to
derive simple rules from local system properties describing the behavior of com-
ponents to global properties of a system (such as reliability and security). This
behavior of software systems can be observed in large systems, such as mission-
critical systems that have been developed in an evolutionary manner and are
usually very sensitive to reliability and security requirements. These systems
are typically developed in a sequence of projects and releases involving several

140 T. Galinac Grbac and N. Domazet

hundred or even thousands of software and systems engineers spread across the
globe. The developed product involves more than several thousand lines of code
while serving millions of users in collaboration with similar complex systems in
a distributed network environment. There are many network nodes within the
telecommunication network that share this challenges. In previous lecture we
focus and interpret these challenges on mobile switching node that is central
node for switching mobile subscribes within telecommunication core network.

Here, the main problem arises from the fact that humans develop these sys-
tems, and as these systems grow, the inability of humans to deal with such
complexity is recognized as one of the major obstacles to their further evolu-
tion. The main tool for managing such software systems is the system structure,
which can be used to logically decompose a complex system into a set of system
components required to perform the system functions. Such a system structure
is used to reason and manage system implementation while providing a link
between local and global system properties. Efficient systems use a functional
system decomposition that can serve a variety of system functionalities. In such
a system, we must control the side effects of changing system functions when
implementing new system functions and upgrading existing system functions.
The propagation of effects of implementation errors in a large number of sys-
tem functions can become very costly and time-consuming. In this context, the
functional programming paradigm is attracting more and more attention. The
main idea behind it is to treat program execution during the operation of sys-
tem functions as an evaluation of mathematical functions, without affecting the
global system state and keeping mutable data across system functions. However,
this idea is not easy to realize in such systems.

There are numerous possible candidate structures for building such systems,
and the global system behavior and system quality can be seriously influenced
by the selected solution. To succeed as much as possible, we have introduced
the four main system design principles. These are modularity, abstraction,
layering, and hierarchy. Modularity means building systems as a set of smaller
system components that are independent of each other. Abstraction is a term
that refers to the design of system interfaces and communications in between
system components. The main idea is to develop standard interfaces between
components that are clearly separated from the internal implementation details
of the components. Components are further organized into hierarchical lay-
ered structure where components with similar functionality are grouped within
the system layer and communication follows strict hierarchical rules and only
adjacent layers are allowed to communicate with each other. In the previous
lecture, we provided an overview of the standard Open Systems Interconnection
Model (OSI model), which defines a hierarchical layering of system functions
that are present in communication with other systems. The development of such
standards has promoted better interconnection within the equipment of different
providers and across national borders and regulations.

As the network evolves, the number of potential network users, the variety
of technologies connected to the network, and the various services offered by the

Management and Orchestration of Virtualized Network Resources 141

network continue to grow. The core telecommunication network is continuously
evolving and finding new ways to cope with new demands, such as massive
data traffic with diverse information content, variety of different users, mobile
and fixed, interconnected across geographic and application domains. The main
technological trends being implemented in modern telecommunication networks
are inspired by two main ideas, virtualization and service orientation.

These ideas have been embedded in telecommunication networks from the
very beginning. The main motivation for virtualization of physical resources
comes along with the first idea of building a common telecommunication infras-
tructure that provides its services to subscribers. This common infrastructure is
shared among subscribers. In the previous lecture, we described in detail how
the number of subscribers is multiplexed within a shared physical wire. Mul-
tiplexing subscribers was the first abstraction from physical resources to their
software representation. To implement reliable management of shared resources,
a suitable virtualization function has to be developed. The concept of service
orientation has also already been implemented in the network. Nevertheless, as
the network evolves, service orientation in the network moves from a manual pro-
cess to a software process. In a modern telecommunications network, the user
dynamically requests network services whenever she or he needs the services,
and the network meets the user’s needs by executing the user requests in a fully
service-oriented computing paradigm. Even more, the network functions provide
services to each other in a service-oriented fashion.

Both concepts bring numerous benefits, such as increased capacity that
enables rapid innovation.

3 Network Evolution

Telecommunication networks are continuously evolved in generations and imple-
ment new concepts that enable them to accomplish their main goal. The main
goal during its evolution is to allow interconnection of various technologies by
various vendors and at the same time to keep a reasonable balance between costs
and performances. Telecommunication networks are used by different classes
of users, utilizing different technologies, sometimes with very specific service
demands. In such cases, the process of network configuration and management
becomes very expensive and time and resource-consuming. Efficient scaling of
network resources, enabling innovation, and introducing new services and energy-
efficient solutions are hard to implement. The main problem network operators
are facing today is how to effectively and efficiently manage the high diversity of
numerous users and technologies but at the same time achieve capital efficiency
and flexibility for improvements. Recent work is focused on the development
of new network architectures that would allow operators to architect their net-
works more efficiently. In the sequel, we introduce the main ingredients of the
new network architecture defined for the fifth-generation (5G) network.

142 T. Galinac Grbac and N. Domazet

3.1 Cloud Computing Platforms

There is a growing need and interest in consuming computing and storage
resources from third-party vendors as a service principle. For software devel-
opment companies, the service orientation increases opportunities for specializa-
tion while leaving hardware management operations out of its business. On the
other side, vendor companies can specialize in the hardware management busi-
ness. Therefore, there is a business-driven need for open and well-standardized
Application Platform Interfaces (APIs) over which hardware vendors may offer
their services to application service providers, see Fig. 1.

Fig. 1. Open stack virtualisation of network resources

The new paradigm of abstracting resource plane requires huge efforts in the
standardization of cloud platforms. An operating system has to be developed
for the management of distributed hardware and related software resources and
offering them as services over the well-standardized set of interfaces APIs. Note
that this is a key difference between the distributed system and the cloud system.
Users may approach Cloud resources from a single interface point (e.g. using a
command-line interface or Graphical user interface) and use its resources on
demand via well standardized APIs. In traditional distributed system architec-
tures all network resources were physical nodes with installed communication
software for use on that single physical hardware. However, this paradigm has
been changed and now communication software is independent of physical hard-
ware and can be installed on any network node by using a standard set of APIs.
This is the main reason why telecommunication systems are progressively mov-
ing into virtualized Cloud environments.

Management and Orchestration of Virtualized Network Resources 143

With aim of speeding up this standardization process of cloud platforms,
there are established numerous initiatives. OpenStack is one such project estab-
lished jointly by NASA and Rackspace intended to provide an open source cloud
platform alternative that would be compatible with Amazon Elastic Compute
Cloud (EC2). Furthermore, it should provide run time, reliability, and massive
scalability of resources with simple design. Therefore, the project contributed to
numerous experts around the globe from various industries. Today, OpenStack
becomes widely accepted as an innovation platform for Cloud platform industry
[9,13]. Here, in this lecture, all our examples will be provided on OpenStack to
provide examples of management functions and their operation in virtual envi-
ronments. We selected an open-source computing platform OpenStack aiming to
simplify exercises execution to a wide community, and especially targeting the
audience of graduate students at University Master level of Computing curricula.

3.2 Network Function Virtalisation and Software Defined Network

Network functions virtualisation (NFV) term is referred to abstracting
physical networking equipment and related behaviour by creating software rep-
resentations (including memory and storage resources) of network elements and
network operations. In other words, the NFV provides a network service that
is decoupled from the physical hardware and offers feature set identical to and
consistent to its hardware counterpart. Thus, network functions (hardware and
software) are redesigned and offered as a service and following on demand prin-
ciple and independently of the physical hardware. Network Functions Virtuali-
sation (NFV) is aiming to define virtual network technologies that would allow
operators to implement different technologies within its network offerings, for a
which a dedicated and specialized device was needed by using common industry
standard information technologies (IT), such as servers, switches and storage.

The general framework around the implementation of the NFV concept is
defined in [6] consists of the following main layers:

– Network functions virtualization infrastructure (NFVI) is the layer hosting
generic COTS-based hardware components like storage, compute, network
hardware, etc.

– Virtualized network functions (VNFs) is the layer with functions implemented
solely within software reusing benefits of software products like are easy scal-
ing process, simple and fast deploying over multiple hardware, or even com-
bining virtual instances on the same hardware, automation of these processes
with licensing.

– Management and orchestration functions (MANO) that need to be developed
for managing virtual instances and implementing its autonomous operation
as we will discuss further within this lecture. For this purpose, a special
working group is defined within the European Telecommunications Standards
Institute (ETSI).

144 T. Galinac Grbac and N. Domazet

Software Defined Networking (SDN) is a new networking paradigm
that introduces additional abstractions in networks by separating data and a
control plane of network devices. It assumes the control plane to be able to use
standardized vertical interfaces to dynamically reconfigure the data plane flows,
based on a global network policy. Therefore, many network functions can easily
be virtualized using common servers and simple data plane networking devices.

The invention of Software Defined Network (SDN) architecture is motivated
by the fact that traditional networking technologies are inadequate to scale to the
levels required by today’s telecommunication networks. These limits are mainly
caused by the complexity of network control and management functions and their
distributed implementation logic. Distributed logic works well in medium-sized
networks but in today’s large and fast-expanding network scenarios it becomes
inefficient and too complex to manage and coordinate their scale and growth [15].
Therefore, a centralized network solution is needed. The main characteristics that
should be provided by the solution are:

– Network management should be driven by general network objectives and
low-level device performance issues should be separated and considered at a
lower level of abstraction.

– A global network view should be built and maintained for a comprehensive
understanding of network complexity at a higher abstraction level, such as
its topology, traffic, and events.

– Devices at the lower level should be controllable through a standardized inter-
face, such that they can be programmed and their behavior changed on the
fly, based on actual network demands and governed from the global network
view.

The fundamentals of Software Defined Network are the separation of Control
and Data planes, simplified SDN devices (forwarding devices without complex
distributed management protocols but managed from the control plane), cen-
tralized control (all network management is centralized at the control plane that
is managing data plane SDN devices with help of an open standard), network
automation and virtualization and network openness. Open Networking Foun-
dation (ONF) [11] was established in 2011 by major network operators to pro-
mote the adoption of SDN through open standards development. Open standards
under consideration are Open Flow and Open Flow Configuration and Manage-
ment Protocol, both used to communicate control decisions from the control
to the data plane. The main idea behind SDN is to provide a programmable
network. The main challenges in SDN-based networks are latency, scale, high
availability, and security. Latency may be affected by the introduction of a cen-
tral processing function. It may introduce delays because of numerous requests
it has to process. Since the number of users and devices connected to a network
is continuously growing the question of scale in this centralized paradigm may
be limited with the processing power of the central function. Also, the central
function has to be very reliable and highly available not to represent a single
point of failure for the whole network. Therefore, a mechanism of high redun-

Management and Orchestration of Virtualized Network Resources 145

dancy in processing and data storage may be required. And finally, the central
point of control may be a serious issue for security attacks.

4 Management and Orchestration of Virtualized Network
Resources

As is already stated in Sect. 2 systems are getting more and more complex.
The same situation is happening with telecommunication networks. Networks
are transforming from a classical distributed set of interworking nodes to mod-
ern distributed interworking functions and services. The management of such a
complex system becomes very expensive, asking for higher expertise and higher-
skilled personnel in network management and consequences of actions performed
are unpredictable. Note that in modern networked complex systems the func-
tions are implemented in different functional blocks, as part of different complex
systems, and that we need new knowledge to accomplish reliable operation for
management and orchestration functions operating in these distributed environ-
ments. Therefore, one of the recognized strategies in evolving telecommunication
networks is the way towards its autonomy and self–management. Recent research
efforts are devoted to innovation in this field. There is a need for effective mech-
anisms to automate networks so they may automatically adapt their configura-
tions to new traffic demands and introduce network flexibility and autonomously
adapt to new technologies and new vendor equipment. These research efforts are
driven by the idea of autonomic computing [16], and further involve research
on autonomic communication, autonomic networks, autonomic network man-
agement, and self–managed networks. The final level of system autonomy is the
level at which the humans only specify business policies and objectives to govern
the systems while self–management following these policies is left to the system.
Self–management mainly means:

– self–configuration
– self–healing
– self–optimisation
– self–protection

In such new networks, the concept of programming software localized within
one node, industry closed standard, and solution for network functions is moved
to the concept of programming software for open network functions. The neces-
sity for the new profession of network developer is evident. In that new world
of network programming, we start to develop network design principles. In the
next section, we open a discussion on that topic.

4.1 Design Principles for Implementing Autonomic Behavior

Autonomic behavior has been developed in many other fields and some general
design principles have been recognized across all fields. Concerning network het-
erogeneity, scalability and distribution the same principles may be valid also for

146 T. Galinac Grbac and N. Domazet

networks. Here we shortly introduce these principles from [1] to motivate stu-
dents to think about their implementation within examples provided in Sect. 6
of this lecture.

– Living systems inspired design
– Policy based design
– Context awareness design
– Self–similarity
– Adaptive design
– Knowledge based design

Living system inspired design is perspective to system design where inspi-
ration is taken from the functioning of living systems. There is much self–
management mechanisms in the functioning of living systems and their inter-
action with the environment and those ideas are taken as motivators for auton-
omy design. These concepts are mostly driven by survival instinct and collective
behavior. Survival instinct is related to system tension to come back to the orig-
inal equilibrium state. Collective behavior refers to some spontaneous system
reactions that may be derived from collective movement. Note that there is a
huge knowledge base derived from observing the individual in respect to collec-
tive behavior (like for example in Twitter, Facebook applications) and sometimes
it happens that individual information moves collective behavior in some par-
ticular state.

Policy based design is a predefined rule that governs the behavior of the
system. This design principle has already been implemented widely across the
network. However, it does not eliminate human interaction with the system.

Context awareness design is related to the ability of the system to charac-
terize a situation or environment and based on historic behavior decide how to
adapt to new conditions. This principle has already been implemented within the
computing and networking field. One example is numerous sensing environment
case studies.

Self–similarity design principle is related to the characteristic that system
organization persists as the system scales and thus guarantees its global proper-
ties. This characteristic is also reflected in global system properties that emerge
solely from low-level interactions, so low-level interactions do not interfere with
global.

Adaptive design is related to the ability of the system to adapt its inner
behavior as a reaction to various environmental conditions. Such a system can
learn from its experience in operation and react accordingly by adapting its
actions based on collected information and knowledge gained.

Knowledge–based design is related to finding the best design of the knowl-
edge gathering process. Since systems are complex, there are numerous possibil-
ities in selecting the appropriate set of properties to measure, designing appro-
priate data collection procedures, and using appropriate artificial intelligence
models to build the appropriate knowledge base. This design is linked to the
building of appropriate business goals.

Management and Orchestration of Virtualized Network Resources 147

4.2 Current State

Networks are already highly developed and the introduction of automation (by
excluding humans) into network management is not an easy and one-step pro-
cess. The first step in automation is to virtualize its complex infrastructure
and provide virtualized network resources. Furthermore, real-time management
and orchestration functions have to be developed that operate on these virtual
network resources. As already mentioned, currently telecommunication network
functions are progressively redesigned (to get virtual) so they can be offered
over Cloud. In this process, every network resource gets its virtual image so
it may be reinstalled, activated, or deactivated as is needed in network recon-
figuration or scaling demands. To automate these installation processes of this
complex infrastructure scripts are written which are then called for execution
whenever needed during dynamic network management activities. These scripts
are written in classical programming languages like is for example Python. Note
here that real-time management and orchestration of network functions should
secure avoiding the overlapping of management and orchestration processes over
the same physical network resource pool. Again, the functional programming-
like approach here is of ultimate importance to secure reliable and safe network
management and orchestration operations.

5 OpenStack

OpenStack is a software platform that implements the main functionality of pro-
viding distributed resources and infrastructure using the ‘As a service’ paradigm
to its users. Furthermore, OpenStack is a modular platform meaning that is
designed as a set of standardized units each designed to serve a specific pur-
pose, and these units may be used as needed or may be optional to OpenStack
deployment. These units provide services to OpenStack users or other Open-
Stack units using standardized Application Platform Interfaces (APIs). Table 1
provides a list of services, names of projects, and a short description of its main
function. The OpenStack was designed around three logical tiers: Network, Con-
trol, and Compute, [13]. The Compute tier is taking over all the logic needed as
a hypervisor of virtual resources. For example, it implements agents and services
to handle virtual machines. All communication among OpenStack services and
with OpenStack users is provided through Application Platform Interface (API)
services, web interface, database, and message bus. Numerous services have been
implemented so far and a detailed list of services can be found on OpenStack offi-
cial web page and documentation [12]. In the aforementioned Table 1, we listed
just a group of services specialized for the specific purpose that we will also use
in the examples in Sect. 6 where we present how they operate together within a
running Openstack environment. Furthermore, OpenStack offers communication
through a web interface called Horizon or dashboard. The Openstack conceptual
architecture is presented in Fig. 2 available from [12] where is depicted interac-
tion among OpenStack services mentioned in Table 1. For communication may

148 T. Galinac Grbac and N. Domazet

be used MySQL, MariaDB, and PostgreSQL databases and RabbitMQ, Opid,
and ActiveMQ message buses.

Table 1. OpenStack services and projects

Projects Services Short description

Horizon Dashboard Web interface for using OpenStack services
and manipulating with virtual resources

Keystone Identity service Authentification and authorisation functions

Glance Image service Image Management services

Neutron Networking service Provides services for networking of
OpenStack resources to external network

Nova Compute service Lifecycle management of virtual resources

Cinder Block storage service Provides persistent storage functionality t
virtual resources

Swift Object storage service Data management over RESTful and HTTP
based API’s implementing fault tolerant
mechanisms for data replication and scaling

Ceilometer Telemetry services Collecting measurements and monitoring of
resources

Heat Orchestration service Coordination of multiple virtual resources
within one service provided to user

5.1 Graphical User Interface for Manipulating Virtual Resources

Horizon is a project defined within an Openstack environment for managing
virtual resources over a graphical user web interface. A screenshot of Horison
GUI called dashboard is presented in Fig. 3. The dashboard is an Openstack
component that implements a set of OpenStack services over the user interface.
The OpenStack users are given the possibility to manipulate virtual resources
over the visual commands provided on the web interface. In the background
on the graphical user interface are implemented service calls to the APIs of all
officially supported services included within OpenStack. Note that OpenStack
also provides programmable access to its services over the APIs that we describe
in a sequel. In the exercises, we will more focus on programmable access.

5.2 Authentification and Authorisation Functions

Authentication and authorization of user access to cloud computing resources in
OpenStack are managed through Keystone service. Objects that may be subject
to keystone management operations are users, tenants, roles, instances (from the
catalog of services), and networks (endpoints of the virtual resources running in
the OpenStack environment).

Management and Orchestration of Virtualized Network Resources 149

Fig. 2. Open stack conceptual architecture. Source www.openstack.org

Fig. 3. Horison graphical user interface

www.openstack.org

150 T. Galinac Grbac and N. Domazet

All objects must be assigned to tenants. Name tenant is used in the command
line while within the dashboard the tenant is referred to the project. A role has
to be defined for each object assigned to a tenant and its purpose is to restrict
actions each object can perform. Even an administrator has to define their role
and have to be assigned to the tenant. Actions enabled for roles may be specified
within special policy documents, /etc/PROJECT/policy.json files.

Keystone maintains a service register or service catalog for the services offered
by the components within the OpenStack. When a component is implemented
within the OpenStack cluster it should be registered in this service catalog.
The service catalog contains a list of service names and related endpoints. The
service endpoint is the URL granted to this component within the OpenStack
cluster. The main benefit of this service catalog is that the user only needs to
know the keystone address and the name of the service which she or he wants to
access. Then the keystone service is responsible to verify the authentification of
users and based on its role verifying if it is authorized to access the service. Users
never access Openstack services directly, it does always over the keystone service.
Another important aspect of maintaining the service catalog is in managing
independency between users and local OpenStack implementation so the changes
in endpoints are not propagated to all its users. I.e. this means that when a
service changes its implementation and is deployed on another endpoint, the
end-user does not be informed about that action. Service users will get the
correct service endpoint address by asking the keystone service just in time the
service is needed.

5.3 Management of Disk Images

Glance is a component within Openstack with the main function to manage
disk images. For quick and fast deployment of virtual resources, a pre-installed
disk image may be used to boot from. Glance maintains the register of these
disk images which are cached to compute node during instantiation of virtual
resources and then copied to the ephemeral virtual resource disk location. These
images had installed operating system but have removed secure identity elements
such as Secure Shell host key (SSH) and network device MAC address that make
these images generic and easily transferable to the number of virtual machines
without risk of interleaving the processes among them. This host-specific infor-
mation is transferred at system boot within a cloud-init script.

Disk images may be also made for specific purposes. For example, if there is
a multiple need for a specific web service, then the pre-installed disk image may
contain also web service preinstallation so the deployment process may be fully
automated and faster for the number of instances. There are available numerous
tools for the creation of such disk images with the separated cloud-init script,
like for example appliance-creator, Oz, and many others.

Management and Orchestration of Virtualized Network Resources 151

5.4 Network Management Functions

The main function of the Neutron component is network management and offers
to its users a Networking as A Service (NaaS) functionality. This function is
needed for configuring virtual resources to operate within the virtual network
environment. OpenStack uses the Open vSwitch plugin to allow software-defined
networking of networking infrastructure and it provides several APIs and related
services for its management. These include the connection of virtual instances
to virtual isolated networks, virtual routers, interconnection of virtual networks
via virtual routers, and external networks via external gateways connected to
virtual routers. Thus, users may configure their own virtual networks appliances
which are interconnected to the external network. Neutron can manage multiple
network appliances.

Each instance may be associated with a private or public network and is
assigned a private and public IP address range. A private or fixed IP address
is assigned to an instance during its creation and is active during the instance
lifetime. On the other hand, a public IP address or floating IP address is not
dependent on instance lifetime and it may be associated with an instance when
the instance is made available for the public and disassociated when an instance
is removed from the public. Network Address Translation (NAT) transverse
between public and private address spaces during communication flow between
these two networks.

5.5 Management of Virtual Instances

Nova is a component responsible for instance management. This includes manag-
ing flavors, key pairs, instances, floating IPs, and security groups. Flavors define
the number of resources that are allocated to an instance. Before an instance can
be launched, the authentification of users should be performed. An authenticated
user uses key pair (SSH pair) and a security group to create its virtual instances.
It can use its SSH or the SSH generated by the system. The SSH key pairs are
not new in the OpenStack environment but it is reused principle from Linux.
When a virtual instance is deployed a public key is placed in authorizedkeys file
and the running instance can be accessed using an SSH connection without a
password. The security group is a firewall at the cloud infrastructure layer that
should be opened to allow connection to the virtual instance. By default, virtual
instances belonging to the same security group may communicate to each other,
while the rules should be specified for the Internet Control Message Protocol,
SSH, and other connections outside of the security group.

5.6 Management of Persistent Memory

Cinder is a component for the management of block storage. It is used whenever
a persistent memory space is needed, not dependent on instance lifetime. Note
that disk space associated with an instance at its creation is destroyed at its ter-
mination. This is not the case for block storage. Block storage may be requested

152 T. Galinac Grbac and N. Domazet

by users on-demand and may be presented to running instances. It is also used
for storing the snapshots of block volumes or of instances that are needed for
instance boot.

5.7 Management of Object Storage

Swift is an object storage management component. Files and containers are
stored as objects without any metadata and are transferred from a virtual
instance to an object store by using client-server communication with minimal
overhead to the operating system.

5.8 Performance Measurement Functions

A component within Openstack that is responsible for monitoring Openstack
resources and collecting resource measurements is called Ceilometer. Originally
it was designed for billing purposes but later it receives much generic purpose to
take care of all telemetry within the OpenStack. These include also observation
of instance behavior, its availability and performances, and for alarm setting. A
very important application of the ceilometer measurement system is the alarm
is for autoscaling of OpenStack resources at runtime.

5.9 Orchestration Functions

Openstack has a component responsible for the orchestration of its resources.
When multiple resources are intended to be used for the specific purpose and
the same user these resources have to be interconnected and tied together so all
operations that are available for regular Openstack instances may be also per-
formed on this’orchestrated’ instance. For this purpose within a heat component
of Openstack, a template file may be used to specify resources that need to be
orchestrated, to specify their order and their mutual dependencies, required data
that needs to be transferred among them. Heat is also compatible with Amazon
Web Service (AWS) Cloud Formation template language.

6 Examples

In this section, we present the examples implementing the design principles
presented in Sect. 4 for the management and orchestration of virtual network
resources. The key learning objective is to explain to students the need for imple-
menting autonomic behavior in the management and orchestration of virtual-
ized network resources and to understand the role of functional programming
for future network evolution. Our examples are based on the use of the Open-
Stack platform, Sect. 5, which is an open-source platform for the management
of virtual resources.

Here, in the examples that follow, the focus is on writing Heat scripts that
are used to automate management and orchestration of cloud resources and

Management and Orchestration of Virtualized Network Resources 153

to order the results on the composite resources. The resources may be virtual
instances, floating IP addresses, volumes, security groups, users, or even some
advanced functionalities such as high availability, instance autoscaling. Heat sup-
ports various template formats and the format we will be using in this tutorial
is the HOT (Heat Orchestration Template) format written as YAML files that
are declarative template format that implements REST APIs calls to Openstack
native services described in Sect. 5. In a declarative sense, the template is used to
order what to manage or orchestrate and not how to manage and orchestrate. It
belongs to the group of domain-specific languages containing the configuration
of instructions with API system calls while keeping the API itself minimalistic.
Thus, the HOT scripts are executed with runtime Openstack services calls by
the Heat service1. The HOT files are readable and writable by humans and can
be managed by version control systems. A resource or group of resources created
during a HOT deployment is referred to as a stack. We will use the following
examples to describe the particulars of writing a HOT template and to show
how ORCHESTRATION can be used.

These exercises were developed for the Software Engineering Management
course within the Computer Science master study program available at the link2.
The source files for the examples that follow are available at GitHub3.

6.1 Example 1

This is a starting Example 1 that presents a simple HOT template. Here we
explain the minimum required information for writing a functional HOT tem-
plate. In the sequel, the specific parts of the HOT script are explained along
with their purpose.

Example 1.
heat_template_version: 2013-05-23

description: Simple template to deploy a single compute instance

resources:
my_instance:

type: OS::Nova::Server
properties:

image: ubuntu_cloud14
flavor: m1.small
key_name: my_key1
networks:

- network: my_net1

1 https://wiki.openstack.org/wiki/Heat/DSL.
2 https://github.com/nikoladom91/ARIKS2016/.
3 https://github.com/nikoladom91/ARIKS2016/tree/master/Skripte/Heat.

https://wiki.openstack.org/wiki/Heat/DSL
https://github.com/nikoladom91/ARIKS2016/
https://github.com/nikoladom91/ARIKS2016/tree/master/Skripte/Heat

154 T. Galinac Grbac and N. Domazet

The heat template version key is a required field in every HOT template
and describes details about the version of the HOT template. The description
section is optional and is usually used to describe the purpose and function of
the template.

The resources section introduces all the resources that will be part of the
resource management strategy described by the HOT template. The resources
that can be managed are specific OpenStack resources such as a virtual machine,
nova-network, security group, etc. These resources will be subject to creation
and configuration during the deployment and resource lifetime. It is required
to have at least one resource per template. Each resource must have a type
specified. The list of available resource types for OpenStack version Mitaka can
be found on the web-page https://docs.openstack.org/heat/mitaka/template
guide/openstack.html. The available resources somewhat differ between Open-
Stack versions so the correct one must be referenced when looking for them.

Services might require properties that contain the information required for
their successful deployment. Some properties under the properties section are
mandatory while others are optional. The properties of a resource are described
under its type. Example 1 deploys a stack containing a single VM with hard-
coded property values. The resource is identified as “my instance” and is of type
“OS::Nova::Server”. Its properties describe what image and flavor will be used
in the VM deployment, what security key will be provided to the OS, and to
what neutron network the vNIC of the VM will be connected. All the input
resources used as properties need to be defined beforehand or the deployment
of the stack will not be successful. Example 1 is not meant to be deployed,
although it would deploy successfully. We will go over deploying a template
after introducing Example 2.

6.2 Example 2

Example 2 deploys a stack similar to Example 1 but, unlike Example 1, it can
be passed different values for its deployment. If no new values are given, the
specified default values will be used and the stacks from Example 1 and Exam-
ple 2 will functionally be the same. They will still be separate entities as dif-
ferent UUIDs (Universally Unique Identifier) will be generated for the created
resources. Providing different input parameters, VMs with, among other things,
different images can be created with functionally different resources.

In this example, we introduce parameters. This section is optional and enables
the use of multiple stacks within the same script. Optional parameters are used
to allow passing the input values that are needed for stack deployment. Spe-
cific parameters are named, similar to specific resources, and are described by
attributes. In this example, specific parameters are flavor, key, image. The type
attribute is the only mandatory attribute and it defines the type of the value
that the parameter represents. The label and description attributes are human-
readable parameter names and description and the default attribute describes
the value that the parameter takes if no other value is given. There are more
optional attributes that are not covered in this example.

https://docs.openstack.org/heat/mitaka/template_guide/openstack.html
https://docs.openstack.org/heat/mitaka/template_guide/openstack.html

Management and Orchestration of Virtualized Network Resources 155

Example 2.
heat_template_version: 2013-05-23

description: Simple template to deploy a single compute instance

parameters:

image:

type: string

label: Image name or ID

description: Image to be used for compute instance

default: ubuntu_cloud14

flavor:

type: string

label: Flavor

description: Type of instance (flavor) to be used

default: m1.small

key:

type: string

label: Key name

description: Name of key-pair to be used for compute instance

default: my_key1

private_network:

type: string

label: Private network name or ID

description: Network to attach instance to.

default: my_net1

resources:

my_instance:

type: OS::Nova::Server

properties:

image: { get_param: image }

flavor: { get_param: flavor }

key_name: { get_param: key }

networks:

- network: { get_param: private_network }

outputs:

instance_ip:

description: IP address of the instance

value: { get_attr: [my_instance, first_address] }

The resource property uses an input parameter with the syntax

"<property name>: { get param: <parameter name> }".

Upon deployment, the resource property will assume the value of the specified
parameter. This allows the user to deploy HOT multiple times with different
input parameters and create unique stacks. The stacks may share the same
blueprint but are separate entities with potentially different functionalities. The
outputs section allows for specifying output parameters available to the users
once the template has been deployed. We will see its use in later examples. Here
we use it to output the IP of the VM we created as the parameter instance ip.
The resource attribute value is retrieved with the following syntax:

"{ get pattr: [<resource name>, <attribute name>] }" .

156 T. Galinac Grbac and N. Domazet

This is used to retrieve resource attributes generated during deployment that
can be used as outputs of the stack or as inputs for other resources.

6.3 Example 3

In example 3, we illustrate the automation process of instancing and deploying
a VM with an initial working state. This example deploys an instance of VM
that generates a Hello Word string message.

Example 3.

...

resources:
rng:

type: OS::Heat::RandomString
properties:

length: 4
sequence: digits

inst simple:
type: OS::Nova::Server
properties:

...

user data format: RAW
user data: |

#!/bin/sh
echo "Hello, World!" >> hello.txt

inst advanced:
type: OS::Nova::Server
properties:

...

user data format: RAW
user data:

str replace:
params:

name : { get param: name }
rnum : get attr: [rng, value]

template: |
#!/bin/sh

Management and Orchestration of Virtualized Network Resources 157

echo "Hello, my name is name . Here is a random
number: rnum ."
>> hello.txt

To automate certain procedures, users can pass blobs of data that the VM can
access through the metadata service or config drive. VMs that employ services
like cloud-init can use the data in various ways. The blob of data is defined
in the resource property “user data”. If given without additional attributes, the
value of user data will be passed. If given the params and template attributes, the
targeted text string defined under params is, within the text under the template,
replaced with the defined value. Example 3 replaces the “ name ” string with
the parameter name while and “ rnum ” replaces it with a randomly generated
number.

Here we can see the implementation of the get attr method where a value of
a different resource is used within another resource. In this case, a resource that
when deployed represents a randomly generated number is created. The value of
that resource is then used as an input for the data blob passed to the VM.

Example 3 HOT when deployed will generate a random number and instan-
tiate two VMs. If the image used to instantiate a VM has the cloud-init service,
that VM will execute the shell commands given in the user data as the root user.
The inst simple VM will generate a hello.txt file in the/directory containing the
“Hello, World!” string. The inst advanced VM creates the same file with the
difference that the string within it contains the parameter name given as a HOT
input and a randomly generated number.

6.4 Example 4

Example 4 depicts a HOT which deploys two interdependent VMs. The first VM
is a MySQL server. It is automatically configured during its initialization and
when deployed is fully functional. The second VM is a WordPress server that
uses the MySQL database as its backend. As the WordPress server requires for
the MySQL database to be accessible during its initialization, the MySQL server
employs the waiting service. The WordPress VM initialization is therefore not
started before the MySQL resource is deployed, as it requires some of its output
attributes as its input parameters. Each VM is started within a standalone HOT
file which is both used as nested templates within the Example 4 script.

HOT allows for the usage of nested code. This is done by defining the resource
type as a batch to a different HOT file. It can be given as the path on the local
environment from where the heat command is issued or as an http/https link
to a .yaml page accessible online containing the relevant HOT. When a nested
HOT resource is defined, the input parameters are passed to that HOT through
the resource properties. The output parameters of the nested HOT are accessible
as the resource attributes in the parent HOT.

When executing more complicated deployments with custom codes given
as user data, Heat cannot natively know if the given code has been executed
correctly. The VM is deployed and Heat continues deploying other resources.

158 T. Galinac Grbac and N. Domazet

Whether or not the code in the user data was successfully executed or how long
it took is not taken into account. If other resources depend on the successful
execution of the user data code, it is needed to implement a waiting mechanic.

Heat provides two resources for the waiting mechanic. These resorces
are the OS::Heat::WaitCondition and the OS::Heat::WaitConditionHandle type
resources. The OS::Heat::WaitCondition resource defines the waiting conditions.
In the timeout property, it defines how long the execution will wait for the
HOT to complete before it is declared as a failed execution. The count prop-
erty defines how many times a confirmation signal is expected before the exe-
cution is considered as successful. The handle property needs a link to the
OS::Heat::WaitConditionHandle resource. That link is given by the get resource
method.

The OS::Heat::WaitConditionHandle type resource is used to register the
confirmation signal sent from the execution. It does this by defining an address
that when curled with the appropriate information registers a confirmation
signal. This curl command is inserted into the user data code at the point
where we want the confirmation signal to be sent, there can be multiple sig-
nals sent, each of which goes towards satisfying the count condition in the
OS::Heat::WaitConditionHandle type resource.

7 Use Cases from Industry and Reflection on Design
Principles

In this section, we firstly discuss the benefits and drawbacks of virtualizing net-
work functions and explain the relation with design principles provided in Sect. 4.
Then in the second use case, we explain how the examples provided in Sect. 6
may be used to implement design principles in management and orchestration
of network resources.

7.1 Virtualisation of Mobile Switching Centre

There are huge industry efforts to virtualize network functions that were devel-
oped in a closed industry product fashion. Some of the network products are
older than forty years and are still active nodes within the current telecommu-
nication network. One example is the Ericsson Mobile Switching Centre node
that was used as an example in Part I of this lecture series [2]. In this use case,
we elaborate the efforts done by leading telecom industries to implement self–
management design principles explained in Sect. 4 and thus increase the level
of automation of their products. In this use case, we present an example of
automating the Mobile Switching Centre function standardized by the 3GPP
body as part of the core network.

Mobile Switching Center implements communications switching functions,
such as call set-up, release, and routing. It also performs other duties, includ-
ing routing SMS messages, conference calls, fax, and service billing as well as
interfacing with other networks, such as the public switched telephone network

Management and Orchestration of Virtualized Network Resources 159

(PSTN). This network function was actively been developed during 2G/3G gen-
eration networks. More information about this switching function can be found
at the 3GPP standards website (www.3gpp.org).

This product has a large installed base and is still progressively used in many
operator networks. Therefore, it is estimated that operators will use 2G/3G
networks as fallbacks for a long time to come, so it was decided to virtualize
MSC to make it more compatible with modern environments.

There are identified numerous benefits of virtualizing this function. For
instance, the virtual appliance of MSC function may be faster deployed and rede-
ployed and thus it can be sold more quickly as only SW is needed for deployment.
Both the product and the environment are scalable. The capacity increase is very
simple; the capacity of the product is increased by allocating more resources to
the VMs or deploying additional VMs, and the capacity increase of the infras-
tructure itself would require adding more servers to the data center. From here
it may be concluded that virtualization enables multiple products to run on the
same data center and thus allowing operators more freedom in resource manage-
ment. On the other hand side, the same data center could be used for multiple
products, network functions, and other virtualized instances thus eliminating
the need for hardware dedicated to every application domain.

Despite numerous benefits that virtualization of MSC network function may
imply there are also numerous potential problems that may arise on the way. In
the case of Ericsson MSC, the product is developed in an evolutionary fashion
for more than forty years and as such it grows in complexity. The product has
numerous functions that enable its long-living but these functions were imple-
mented highly relying on hardware aiming to satisfy very high reliability and
safety requirements. To implement such hardware-independent behavior product
has to be redesigned. Since the product is very complex because of the number of
functions implemented this act would require a lot of expertise and cost. Another
very important aspect to understand is that mobile switching function that serves
in real-time services such as telephone call has very high-reliability requirements
and is usually higher than is the case with standard resources that are get-
ting virtualized. Securing reliable operation of such virtualized MSC requires an
additional layer that would secure this requirement. Therefore, Ericsson started
developing a new project, its own proprietary network function virtualization
infrastructure called Ericsson Cloud Execution Environment CEE. The prod-
uct is developed by taking OpenStack as a base where proprietary solutions are
incorporated to increase service reliability of virtualized products run on it. In
Ericsson MSC not only software switching function was hardware related but
also this special-purpose hardware is implemented with the special requirement
to be reliable. The reliability of this special-purpose hardware is also much higher
than is the case with standard equipment. Therefore, an additional solution is
to create a specific data center for virtual network function purposes with high
demands on performances. There are other open-source ongoing initiatives to
produce High Available OpenStack solutions such as for example OPNFV Doc-
tor, OpenStack Freezer, and OpenStack Masakari. All these solutions work on

www.3gpp.org

160 T. Galinac Grbac and N. Domazet

the monitor, detect and correct solutions. However, the implementation solution
for the above-stated design principles has to be invented and deployed within
these solutions.

7.2 Management Functions for Reliable and Stable Operation

Despite efforts to virtualize network functions there are also numerous efforts
devoted to development of reliability and management functions that would
enable delivery of better quality products to the Cloud users.

It was recognized by leading industries that there exists some stability pat-
terns and anti-patterns that may have serious consequences for the system in
operation and these common sources may lead to more then one failure in the
system, [14]. These antipatterns and patterns should be considered while making
automation scripts. In Sect. 4 we provide design principles that are motivated
from biological systems and there are plenty of cases which may be reused imple-
menting network autonomy and to address the system stability issues. Here we
will not elaborate them in detail but will just reflect on some interesting cases
to consider while automating the system management and orchestration. Note
that scripts provided in the Sect. 6 are actually implementing the cases listed
bellow.

One case is that when your product is longer time in production and serving
a number of users sometimes it would be recommended to restart this product.
This is the case with all technical products because some bugs are not resulting
with system failure immediately but are accumulating into wrong state. In such
a cases for some products we may have automation scripts that would initiate
deployment of new identical machine as the existing one and delete the existing
machine. This idea is reused from living system principle and survival instinct
and the system tension to come back to initial equilibrium state. The script
provided as Example 2 in Sect. 6 may be useful for implementing in this case.

Another example is that the existence of automation script allows changing
of the resource (product offered in virtual network environment) and needs just
update of the automation script in the way to change the product name and
start automatic build process of a new machine. The machine with old product
could be simply deleted for which you can have automation script as well. In
some cases this change should be governed and comply to strict policies that
may easily be incorporated into automation script. This would mean the system
is policy based and has predefined rules that governs the system behaviour.

Furthermore, there may be number of security threats from the environment
that when detected may be solved by using automation scripts explained in the
previous Sect. 6. Here we implement into the system context awareness design
principles which impose that system is able to adapt to its environment condi-
tions.

There is also a separate auto-scaling OpenStack function that may be used
in automation scripts in cases of large traffic periods to duplicate the instance
or when traffic demand decreases to delete one of the instances. This solution
would realize the self–similarity and adaptive design principles which state that

Management and Orchestration of Virtualized Network Resources 161

the system organization and global properties persists as systems scales and
thus adapt to environmental conditions. For implementing full autonomy of such
principle the adequate metric system (e.g. performance measurement functions
as explained in Sect. 4) should be incorporated into the automation script so the
system may follow the knowledge–based principle and may build also appropriate
knowledge base.

8 Discussion

From the very beginning, the telecommunication network has been built with
the main aim to divide the management of network cables and switches into
separate businesses which would provide connection services to its users. At its
core, the switching board and network cables have implemented the multiplexing
idea. With the help of the switching board, the same user can be involved in a
number of connections (i.e., calls from the subscriber’s perspective or processes
from the processor’s perspective) in the time-sharing principle. This main multi-
plexing principle has been widely applied in every resource which is consumed in
the network. During the network evolution, calls/processes are multiplexed over
each network cable, over the processors in switching nodes, over the memory
in shared memory devices, etc. In the ongoing evolution step, the processes are
multiplexed over the shared network resources (not node resources) and even
network functions are considered as network resources that users share in the
time-sharing principle.

The above-mentioned multiplexing or time-sharing of common resources and
providing them as a service is implemented by adding new abstraction layers and
new virtualization layers that introduce the need for new management functions
securing safe and reliable switching of users on these common resources.

This specialty of switching or multiplexing functions introduces high demands
on safe and reliable management. Since common resources are shared among
its users in the time-sharing principle, every lost time slot is directly causing
inefficiency and money loss. On the other hand, the services provided for each
user must be safe and reliable, so that the user does not sense other users using
the same shared resource and users do not overlap on the same shared resource
at the same time.

Because of this specific characteristic of sharing resources, specific switching
programming languages were developed based on the functional programming
paradigm. The essence of functional programming is the ability to have func-
tions that would for the given input always generate the same output. Thus,
these functions can be easily formally verified by using mathematical logic. This
is especially important in complex systems that require high safety and reli-
able operation. Although in complex time-sharing systems it may be difficult
to achieve pure functional programs, any good programmer should strive to get
these programs as functional as possible. Here it is clear that functions that
may generate different outputs for the same input are useless and introduce
complexity into the system.

162 T. Galinac Grbac and N. Domazet

In the telecom world, there are plenty of programming languages present in
the switching domain. During history, these languages evolved, so that functional
programming languages, such as Erlang, have also taken dominance in this area.
From the system verification point of view, the testers are used to working on a
sequence of execution statements to easily follow the program execution. How-
ever, in a purely functional world, the failures would be minimized by proper
formal methods. Hence, in the fault mining process traveling across huge state
machines would be avoided. Therefore, in principle, the more functional our code
is, the fewer verification efforts would be needed.

As we have seen, complex software tends to become even more complex. Many
software products started without a functional programming paradigm and have
become so complex that it would be too expensive and almost impossible to
redesign them in a functional programming fashion. However, new developments,
especially those in which new abstractions are added and old source code is easily
separated from the new code, should aim to move as much as possible to the
functional paradigm. As we can see, evolution is just adding new abstractions
and new management functions responsible for managing these virtual resources
and implementation of these abstractions would be easier with purely functional
code.

Introducing automation of management and orchestration of network func-
tions means that we introduced an additional abstract layer for the purpose of
network control. Here we allow the use of programming instructions for call-
ing the installation, orchestration deployment operations performed by other
tools, packages, even vendors. Although the list of instructions that should be
performed may seem simple it is always a problem in overlaps and gaps in their
execution. Also, not all combinations work properly together, and still, there is a
need for a lot of network engineering work before the automation becomes work-
ing and stable. Here in this lecture we presented automation scripts that work
with HEAT service and are written in a declarative language. Unfortunately, cur-
rently, automation with help of declarative language is limited in possibilities to
combine elements these scripts manage and a lot of network engineering work is
needed. If all elements were following the pure functional programming paradigm
the evolution of the network towards autonomy and self–management would be
simpler and the use of declarative programming would enable the opening of
complex software systems with help of virtualization to the end-users.

9 Conclusion

In these Part II lectures, as well as in Part I [2], we went through the network
evolution from the design principles and technology perspective. In Part I, we
introduced the main definition of a complex system, discussed the challenges of
their management. We introduced generic design principles for structuring soft-
ware systems, such as modularity, abstraction, layering, and hierarchy, in order
to achieve easier management. Furthermore, we introduced service orientation
and virtualization technologies that are used as a tool for implementing these

Management and Orchestration of Virtualized Network Resources 163

principles. At the end of Part I, we discussed the example of the case study
reporting experiences in redesigning existing complex software products with
these design principles.

In this Part II, as a continuation of the previous lecture, we introduced new
evolutionary changes that are currently implemented within the networks. These
are Network Function Virtualisation and Software Defined Networks. The two
new concepts could be viewed just as adding new virtualization layers on network
resources (hardware and software functions) and introducing more service orien-
tation and computation for each above-mentioned network resource. Therefore,
in addition to design principles stated in the previous Part I lectures that are
related to the structuring of complex software, we introduced now in Part II the
design principles for implementing network autonomic behavior. For the purpose
of introducing the students to new technological changes, we provide examples
by introducing students to HEAT declarative language for writing automation
scripts in the OpenStack platform for managing and orchestrating resources con-
trolled by OpenStack-based Cloud. For that purpose, we provided four examples
and explain a set of instructions used for the scripts in the example. Further-
more, we discuss two use cases of virtualization and elaborate management and
orchestration benefits and problems that may arise in such an act. Finally, we
discuss the use of the examples for implementing management design principles
and provide reflections on the importance of functional programming for future
network evolution.

Acknowledgements. This work is supported by the ERASMUS+ project “Focusing
Education on Composability, Comprehensibility and Correctness of Working Software”,
no. 2017-1-SK01-KA203-035402 and the research project “Reliability and Safety in
Complex Software Systems: From Empirical Principles towards Theoretical Models in
View of Industrial Applications (RELYSOFT)” no. HRZZ-IP-2019-04-4216 funded by
the Croatian Science Foundation.

References

1. Agoulmine, N.: Autonomic Network Management Principles: From Concepts to
Applications, 1st edn. Academic Press Inc., USA (2016)

2. Tihana Galinac Grbac: The Role of Functional Programming in Management and
Orchestration of Virtualized Network Resources Part I. System structure for Com-
plex Systems and Design Principles. CoRR abs/2107.12136 (2021)

3. Barabási, A.L.: Network Science. Cambridge University Press, 1st edn. (2016)
4. Beyer, B., Jones, C., Petoff, J., Murphy, N.R.: Site Reliability Engineering: How

Google Runs Production Systems, 1st edn. O’Reilly Media Inc. (2016)
5. Denning, P.J.: Software quality. Commun. ACM 59(9), 23–25 (2016)
6. ETSI Industry Specification Group (ISG) NFV: ETSI GS NFV-MAN 001

v1.1.1: Network Functions Virtualisation (NFV); Management and Orchestration.
European Telecommunications Standards Institute (ETSI) (2014). https://
www.etsi.org/deliver/etsi gs/NFV-MAN/001 099/001/01.01.01 60/gs NFV-
MAN001v010101p.pdf. Accessed 1 July 2018

https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

164 T. Galinac Grbac and N. Domazet

7. Ganchev, I., van der Mei, R.D., van den Berg, H. (eds.): State of the Art and
Research Challenges in the Area of Autonomous Control for a Reliable Internet of
Services, pp. 1–22. Springer, Cham (2018)

8. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: chal-
lenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)

9. Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing (2012)
10. Mangey Ram, J.P.D. (ed.): Tools and Techniques in Software Reliability Modeling,

pp. 281–295. Academic Press (2019)
11. Open Networking Foundation. Open Networking Foundation (2018). https://

opennetworking.org/. Accessed 1 July 2018
12. OpenStack Cloud Software. OpenStack Foundation (2018). https://www.

openstack.org. Accessed 1 July 2018
13. Radez, D.: OpenStack Essentials. Packt Publishing (2015)
14. Michael, T.: Nygard: Release It! Pragmatic Programmers, LLC (2018)
15. Sloss, B.T., Nukala, S., Rau, V.: Metrics that matter. Commun. ACM 62(4), 88

(2019)
16. Sterritt, R., Bustard, D.: Autonomic computing - a means of achieving depend-

ability? In: Proceedings 10th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, pp. 247–251 (2003)

https://opennetworking.org/
https://opennetworking.org/
https://www.openstack.org
https://www.openstack.org

Towards Better Tool Support for Code
Comprehension

Tibor Brunner , Máté Cserép , Anett Fekete , Mónika Mészáros ,
and Zoltán Porkoláb(B)

Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary
{bruntib,gsd}@caesar.elte.hu, {mcserep,afekete,bonnie}@inf.elte.hu

Abstract. In software development, bug fixing and feature develop-
ment requires a thorough understanding of all details and consequences
of the planned changes. For long-existing large software systems, the
code-base has been developed and maintained for decades by fluctuating
teams, thus original intentions are lost, the documentation is untrust-
worthy or missing. Most times, the only reliable information is the code
itself. Source code comprehension of such large software is an essential,
but usually very challenging task. The comprehension process and app-
roach of existing systems is fundamentally different from writing new
software, and the usual development tools provide poor support in this
area. Throughout the years, different tools have been developed with
various complexity and feature set for code comprehension but none
of them fulfilled all specific requirements yet. In this paper we discuss
the most accepted models for code comprehension, the required fea-
ture set for tools supporting the comprehension process and the various
approaches of existing solutions. We present CodeCompass – an open
source LLVM/Clang based tool to help understanding large legacy soft-
ware systems – in detail to analyse the required interface, possible design
choices and implementation considerations. Based on the LLVM/Clang
compiler infrastructure, CodeCompass gives exact information on com-
plex C/C++ language elements such as inheritance, overloading, variable
usage, possible function pointer and virtual function calls etc. These are
all features for which various existing tools provide only partial support.
Although CodeCompass supports mainly the C and C++ programming
languages, it has a restricted support for Java and Python languages as
well, therefore our investigation is language-independent.

Keywords: static analysis · code comprehension · Clang

1 Introduction

The maintenance of large, long-existing legacy systems is troublesome. During
the extended lifetime of a system the code quality is continuously eroding, the
original intentions are lost due to the fluctuation among the developers, and
the documentation is getting unreliable. Especially in the telecom industry, high
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 165–201, 2023.
https://doi.org/10.1007/978-3-031-42833-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_6&domain=pdf
http://orcid.org/0000-0002-0834-0996
http://orcid.org/0000-0002-3168-7736
http://orcid.org/0000-0001-8466-7096
http://orcid.org/0000-0002-6581-8263
http://orcid.org/0000-0001-6819-0224
https://doi.org/10.1007/978-3-031-42833-3_6

166 T. Brunner et al.

reliability software products, such as IMS signaling servers [1] are typically in
use for 20–30 years [2,3]. The development landscape has the following peculiar
characteristics: i) the software needs to comply with large, complex and evolving
standards ii) has a multiple-decade long development and maintenance life-cycle
iii) is developed in large (100+ heads) development organization iv) which is
distributed in multiple countries and v) transfers of development responsibility
from one side to the other occasionally.

However, this software development landscape is not unique to the telecom
industry and our observations can be applied at other industries, such as finance,
IT platforms, or large-scale internet applications, etc.; all areas where large and
complex software is developed and maintained for a long time.

It was observed, that in such a design environment, development and main-
tenance become more and more expensive. Prior to any maintenance activity
– new feature development, bug fixing, etc. – programmers first have to locate
the place in the system where the change applies, have to understand the actual
code to see what should be extended or modified to execute the task, and have to
explore the connections to other parts of the software to decide how to interact
in order to avoid regression. All these activities require an adequate understand-
ing of the code in question and its certain environment. Although, ideally the
executor of the activity has full knowledge about the system, in practice this
is rarely the case. In fact, programmers many times have only a vague under-
standing of the program they’re about to modify. A major cost factor of legacy
systems is the extra effort of comprehension. Fixing new bugs introduced due to
incomplete knowledge about the system is also very expensive, both in terms of
development cost and time.

Therefore, code comprehension is a key factor of modern software develop-
ment, exhaustively researched by both the industry and the academy. Various
scientific and industrial papers published on the topic in conferences, e.g. in
the series of International Conference of Program Comprehension, and in the
Intellectual outputs No. O1 and O2 of the Erasmus+ Key Action 2 (Strate-
gic partnership for higher education) project No.2017-1-SK01-KA203-035402:
“Focusing Education on Composability, Comprehensibility and Correctness of
Working Software” [4,5] among others.

As the documentation is unreliable, and the original design intentions are
lost during the years and due to the fluctuation among the developers, the only
reliable source of comprehension is the existing codebase.

Development tools are not performing well in the code comprehension process
as they are optimized for writing new code, not for effectively browsing existing
ones. When writing new code, the programmer spends a longer time working on
the same abstraction level: e.g. defining class interfaces, and later implementing
these classes with relationships to other classes. When one is going to understand
existing code it is necessary to jump between abstraction levels frequently: e.g.
starting from a method call into a different class we have to understand the role
of that class with its complete interface, where and how that class is used, then
we must dig down into the implementation details of another specific method.

Towards Better Tool Support 167

Accordingly, when writing new code, a few files are open in parallel in the devel-
opment tool, while understanding requires precise navigation through a large
number of files.

Based on differences, there are specific tools targeting comprehension. These
tools offer fast search options, precise code navigation and visualizations on
various abstraction levels. We evaluated the major archetypes in Sect. 4, but
neither of them was sufficient to apply to our specific requirements.

In this paper, we introduce CodeCompass [6] – an LLVM/Clang based open
source tool developed by Ericsson and the Eötvös Loránd University, Budapest,
to help the code comprehension process of large legacy systems. The tool has
been designed to be extremely scalable, seamlessly working with many million
lines of code. Fast search options help locate the requested feature by text search,
definition or even by emitted log message. Once the feature has been located,
precise information on language elements like read and write access for vari-
ables, inheritance and aggregation relations of types, and call points of functions
(including possible calls on function pointers and virtual functions) are provided
by the LLVM/Clang infrastructure. Easy navigation possibilities and a wide
range of visualizations extend far more than the usual class and function call
diagrams help the user a more complete comprehension.

Code comprehension may not be restricted to existing code-bases. Important
architectural information can be gained from the build system, like relations
between libraries, binaries and source files. To make the comprehension more
extensive, CodeCompass also utilizes version control information, if available;
Git commits and branching history, blame view are also visualized. Clang-based
static analysis results are also integrated into the tool as well as some quality
analytics based on software metrics.

For the sake of easy access for hundreds of developers, CodeCompass has a
web-based architecture. The users can use the tool in a standard browser, how-
ever, an experimental Eclipse plugin has been also created using the open Thrift
interface of CodeCompass. CodeCompass currently supports systems written in
C, C++, Java, and Python, but its pluginable infrastructure makes it extensible
for new languages, visualizations or interfaces. Having this web-based, plugin-
able, extensible architecture, the CodeCompass framework is intended to be an
open platform for further code comprehension, static analysis and software met-
rics efforts.

Our paper is organized as follows. We give an overview on software com-
prehension models in Sect. 2 to review the theoretical background. In Sect. 3,
we describe the specific problems which arise as a consequence of long-term,
large-scale software development. We make suggestions on how these problems
could be addressed from a program comprehension perspective. In Sect. 4, we
review the state of the art comprehension tools for large scale software, show-
ing their highlights and pitfalls. We present our tool called CodeCompass in
detail in Sect. 5. Typical design and maintenance workflows used in large projects
are discussed along with their CodeCompass support in Sect. 6. Our experience
regarding the introduction of CodeCompass to the daily work, and the general

168 T. Brunner et al.

acceptance of the framework is explained in Sect. 7, supported by usage statistics.
Our paper concludes in Sect. 8 including some of our future plans.

2 Model of Code Comprehension

Since software comprehension is an inevitable part of software development,
every developer, regardless of the quantity of experience, frequently engages in
this activity during the development process, usually not only at the beginning
of work but continuously throughout development. Each programmer has their
own, occasionally unconscious method of understanding code, often not only one
certain process but multiple various techniques that they utilize according to the
current situation. There are various models of software comprehension. Multiple
excellent papers have collected and classified comprehension models in the past,
such as von Mayrhauser in [7], Storey in [8] and O’Brien in [9].

As von Mayrhauser et al. describe [7], there are several common elements in
comprehension models, including knowledge related to and independent of the
software, mental models with static elements such as plans, chunks, hypothe-
ses etc. and dynamic elements like strategies or cross-referencing. There are also
several elements intended to facilitate program comprehension, e.g. beacons, cod-
ing conventions, programming plans, algorithm implementations etc. Multiple of
these elements can be discovered in every comprehension model.

The most widely known comprehension models revolve around two main
approaches: the top-down and the bottom-up model.

2.1 Top-Down Models

In general, the top-down model covers understanding of the software starting
from the “surface”: the developer obtains a system-level overview from running
the software thus recognizing the functionalities of the program. Then they might
look into the system documentation and search for the main parts of the code,
like functions responsible for controlling the program or main classes.

Brooks [10] builds up his top-down model by focusing on domain knowl-
edge and hypotheses about the program. He says that the developer utilizes
domain knowledge to construct the initial hypothesis about the software and this
hypothesis induces other refined follow-up hypotheses which are then proved or
contradicted by beacons.

Soloway, Adelson and Ehrlich [11] present another approach to the top-down
model in their paper. Their model consists of hierarchical goals in understanding,
starting from a general vision of comprehending the software. The knowledge is
iteratively built up from matching the external representation of the code to var-
ious programming plans according to predetermined expectations, moving from
top-level to low-level goals that include more and more details about the code.
They also say that the top-down model is to be applied when the programmer
faces familiar software code and structure.

Towards Better Tool Support 169

2.2 Bottom-Up Models

The bottom-up model consists of studying smaller pieces of code first, and grad-
ually moving towards understanding bigger sections of the code.

Pennington [12] separates two mental models in her comprehension model,
namely the program model and the situation model. The former one is a pre-
conception about the control flow of the software which is built from the bottom
up, grasping the key code fragments. The program model development is done
by studying text structure and programming plans. The situation model blends
knowledge about the program goals and the data flow abstractions. It is also
built from the bottom up but it uses the program domain knowledge that is
hierarchically organized. While creating the situation model, the learned new
knowledge (high-level plans) may induce changes in the program model or its
input.

Shneiderman and Mayer [13] determine a flow of comprehension of the soft-
ware. By processing the program code and the preexisting high-level concepts,
the acquired knowledge travels from the short-term memory to the working
memory to the long-term memory. The model also differentiates syntactic and
semantic knowledge. Syntactic knowledge covers the understanding of the actual
programming language, while semantic knowledge consists of different levels
of program abstractions, from high-level (purpose of the software) to low-level
(practical details of the code) concepts which altogether build up the program
domain.

Levy remarks [14] that the top-down approach is usually applied when the
purpose is to understand system architecture or system modules, while the
bottom-up approach is mainly used when comprehending smaller pieces of code
that build up a certain functionality. These two methods can also be combined
during code comprehension, by gradually understanding one subcomponent of
a system in a bottom-up fashion and mixing it with top-down elements when
trying to incorporate the acquired knowledge into the known information about
the software system.

2.3 Other Approaches

Von Mayrhauser et al. [7] constructed their own comprehension model, called
integrated metamodel. It is based on the models of Letovsky [15], Pennington
[12] and Soloway, Adelson and Ehrlich. They name three major components in
the model that is connected to the comprehension process, all of which have
already been mentioned in previous models:

– The program model from Pennington’s bottom-up model.
– The situation model also derives from Pennington’s model.
– Top-down structures (programming plans) described by Soloway, Adelson and

Ehrlich.

These constitute the fourth major component, the knowledge base, which bears
similar characteristics to Letovsky’s knowledge-based model [15]. It contains the

170 T. Brunner et al.

knowledge collected by the programmer which is necessary to build the other
three models.

2.4 The Role of Concept Location

Concept location [16] is the process of discovering the definition of functionalities
and possible changes in the code. According to Rajlich [17], there are two cate-
gories of concepts: implicit concepts are not direct implementations of a feature
but rather assumptions and abstractions that can be deduced from the actual
code; explicit concepts on the other hand cover direct implementation of classes,
functions, variables etc.

Although concept location is not tightly related to any specific comprehension
model, it is fundamental for any comprehension process. The notion of concept
location is based on the pre-existing domain knowledge of the developer that
helps locate the known functionalities in the codebase. Usually at the beginning
of the comprehension process, the programmer is only aware of some features of
the software and is completely new to the code itself.

3 Nature of the Problems

In this section, we overview the challenges of large-software maintenance we
experienced at the development process of large software projects and collect
the main requirements for a good comprehension tool.

3.1 Growing Complexity

Telecom standards, such as the 3rd Generation Partnership Project (3GPP) IP
Multimedia Subsystem (IMS) [18] are large (more than 1000 pages) and com-
plex and continuously evolving, so is the software that implements them. Dur-
ing a twenty years-long development lifespan, the size of the codebase easily
grows above ten million lines. With the influx of new features, software bugs
are inevitably introduced, that need continuous maintenance. This is typical
for other large-scale projects, too. As the size and complexity of the software
increases, the amortized cost of bug fixing or adding new features also raises.
This cost factor is due to the increased number of software components and
dependencies. When a patch is introduced, the programmer needs to be cautious
to avoid regressions which is much harder when explicit and invisible, implicit
dependencies flood the system.

The business environment often requires an in-service, non-disruptive
upgrade, therefore in many cases, software components need to preserve back-
ward compatibility, which also requires extra effort and has a negative impact
on the system size.

The prime requirement towards a comprehension tool based on the above
is that it should be scalable with regards to parsing and seamlessly work even
more than 10 million lines of source code. It should be responsive, i.e. answering
within 1 sec even on such a large codebase, since any longer interruption diverts
the attention of the programmer.

Towards Better Tool Support 171

3.2 Knowledge Erosion

The extended time of development causes serious fluctuation among the develop-
ment teams’ members. Knowledgeable developers who understand product use-
cases, dataflow between components, and component dependencies are replaced
by newcomers who suffer from the long learning curve to catch up and be near
as efficient. In a multinational environment transfer of the development activity
from one site to another happens multiple times. At such occasions, the knowl-
edge loss could be dramatic.

A program comprehension tool shall bolster novices in their learning pro-
cess. The top-down method of knowledge transfer and information catch up is
supported by high-level architectural views such as graphical representation of
source code structure, packaging structure and organized representation of doc-
umentation.

3.3 Multiple Views of the Software Based on Various Information
Sources

Different design tasks, such as bug fixing, feature planning, or quality analysis
require different views of the same software system. These views could not be cre-
ated from the source code alone, they are synthesized from several other sources
as well, such as build processes, revision control information, documentations,
and bug reports.

While source code view is excellent for searching in the code and navigating
the implementation, diagrams are more suitable for analyzing different types of
static dependencies between language elements (such as call hierarchies, inheri-
tance, interface usage patterns). Visualizing dependencies between source files,
object files and executable libraries can help planning an upgrade procedure of
a change.

Also, the history of the project can tell a lot about the evolution of the system.
Files regularly coming up together in commits may imply deeper connections.
Recent changes in the code may point to the source of freshly reported bugs. If
static analysis results are available on the system, they can give hints about the
possible issues related to the source under investigation.

The tool should support comprehension from the micro to the macro level.
On the micro-level, navigation between symbols, on the macro level, component
dependency analysis or visualization of metrics is to be integrated in a single
workflow.

3.4 Communication Barriers

The possibility of communication inefficiency between teams located at differ-
ent offices is quite high in a distributed development environment. When an
incoming bug report arrives, a slow negotiation process starts between compo-
nent development teams, sometimes blaming each other for the reason behind
the fault. This inefficient process is partly due to the fact that they do not have

172 T. Brunner et al.

a precise understanding about the actual, and the intended behavior of each
others’ components, and they cannot reason about that behavior efficiently via
email or other communication channels.

The comprehension tool shall support knowledge sharing and teamwork, for
example designers should be able to share program comprehension flow (e.g.
currently examined file, position or diagram) with each other.

3.5 Multiple Programming Languages

Large software systems are rarely implemented in a single programming lan-
guage. Core functionality, where efficiency is at utmost importance, may be
implemented in C or C++. User interface may be written in Java (or even in
JavaScript). There are usually service scripts around written in Perl, Python,
Bash or other script languages. Third-party open source components are also
implemented, increasing the number of different programming languages being
used.

Naturally, the comprehension tool should support various languages within
the same framework. The interface should be similar, but at the same time
language-specific features should also be reflected. This allows an increased level
of usability with the user-friendly approach of an established tool in the teams’
workflow. It is even better, if the tool supports the connections between modules
written in different languages. For these reasons, the software comprehension tool
should support multiple programming languages and should be extensible with
new languages with limited effort.

3.6 Hard to Deploy New Tools

According to our experience, it is difficult to convince developers to use new
tools. Especially if the tool requires clumsy configuration or does not have an
intuitive and responsive interface, engineers tend to see it as a barrier to their
work and give up its usage very soon.

The comprehension tool should have an intuitive and responsive user interface
and should be easy to install and use.

3.7 Requirement of Open Extensibility

When a software product is planned for long-term development, domain-specific
languages are considered to describe the domain knowledge in a simple and com-
pact manner [19]. DELOS language of the TelORB real-time operating system
[20] is one of the DSLs widely used in the telecom industry. The comprehension
tool should be easily extensible to parse such DSLs or proprietary languages in
a pluginable manner even by third-party developers.

Moreover, it should reveal how artifacts in one language are mapped into
other languages. CORBA interface definition language (IDL) [21], for example,
is mapped into a client and a server function in the generated (C/C++/Java)
code. We were looking for a comprehension tool that can seamlessly follow these
mappings from DSL to host or generated code.

Towards Better Tool Support 173

3.8 API Usage

Queries, which may not fit in the concept of web GUI can be initiated by exter-
nal tools via an open-access interface implemented in Apache Thrift [22]. For
example, suppose that one would like to refactor a program so the related func-
tions get organized to a separate module. In order to accomplish this, we need
to find the functions which are reachable through function calls from a given
function. In other words, we would like to find the transitive closure of functions
on function call relationship. As you may see, this is not a task strongly related
to code comprehension, but can be solved based on the Language API.

1 def c ompu t e t r an s i t i v e c l o s u r e (a s t node i d) :
2 r e f t y p e = c l i e n t . getReferenceTypes (a s t node i d)
3 r e f t y p e = r e f t y p e [’ This c a l l s ’]
4

5 r e s u l t = set ()
6

7 proce s s = set ()
8 proce s s . add (a s t node i d)
9

10 while proce s s :
11 node = proce s s . pop ()
12 r e s u l t . add (node)
13

14 r e f s = c l i e n t . g e tRe f e r ence s (node , r e f t ype , None)
15 for r e f in r e f s :
16 i f r e f . id not in r e s u l t :
17 proce s s . add (r e f . id)
18

19 return r e s u l t

Listing 1.1. Python client script for querying transitive closure on function call rela-
tionship.

The code fragment in Python above demonstrates how to collect the function
IDs that are reachable from the one given as a parameter. In the 2nd line, we
get the possible reference types available on the given AST node ID. If that
ID belongs to a function symbol then we can find ‘‘This calls’’ among the
resulted types. Note that CodeCompass is also capable to return virtual function
calls and calls via function pointers by the corresponding reference types. These
are dynamic information, that is concretized in run-time, but if we include them
in the algorithm, then an upper bound of all the possible calls can be gathered.

4 State of the Art

On the software market there are several tools that aim some kind of source
code comprehension. Some of them use static analysis, others examine also the
dynamic behavior of the parsed program. These tools can be divided into dif-
ferent archetypes based on their architectures and their main principles. On the

174 T. Brunner et al.

one hand, tools have server-client architecture. Generally, these tools parse the
project and store all necessary information in a database. The (usually web-
based) clients are served from the database. These tools can be integrated into
the workflow as nightly CI runs. This way the developers can always browse and
analyze the whole, large, legacy code-base. Also, there are client-heavy applica-
tions where a smaller part of the code-base is parsed. This is the use case for IDE
editors where the frequent modification of the source requires the quick update
of the database about analyzed results. In this section, we present some tools
used in industrial environment from each category.

Woboq Code Browser [23] is a web-based code browser for C and C++.
This tool has extensive features which aim for fast browsing of a software project.
The user can quickly find the files and named entities by a search field which
provides code completion for easy usability. The navigation in the code-base
is enabled through a web page consisting of static HTML files. These files are
generated during a parsing process. The advantage of this approach is that the
web client will be fast since no “on-the-fly” computation is needed on the server-
side while browsing.

Hovering the mouse on a specific function, class, variable, macro, etc. can
show the properties of that element. For example, in case of functions one can
see its signature, place of its definition and place of usages. For classes, one
can check the size of its objects, the class layout and offset of its members and
the inheritance diagram. For variables, one can inspect their type and locations
where they are written or read.

A frequent problem for software written in C or C++ is that its compila-
tion consists of several steps. The first step is preprocessing which does textual
changes in the source code before the compilation phase. Macro expansions result
in a valid C/C++ code fragment, but their final value can only be determined
after the preprocessing inasmuch they may depend on compiler arguments. In
Woboq, the final value of macro expansions can also be inspected.

A very handy feature of the tool is semantic highlighting. By this feature, the
different language elements can easily be distinguished: the formatting of local,
global or member variables, virtual functions, types, typedefs, classes, macros,
etc. are all different.

Woboq can provide the aforementioned features because the information
needed is collected in a real compilation phase. The examined project first has
to be compiled and parsed by Woboq. The parsing is done by LLVM/Clang
infrastructure which makes the whole abstract syntax tree available. This way
all pieces of semantic information can be extracted with the same semantics
the final program is to have. This also gives a disadvantage of the tool, namely
Woboq can only be used for browsing C and C++ projects.

OpenGrok [24] is a fast source code search and cross-reference engine. Con-
trary to Woboq, this tool doesn’t perform deep language analysis, therefore it is
not able to provide semantic information about the particular entities. Instead,
it uses Ctags [25] for parsing the source code only textually, and to determine the
type of the specific elements. Simple syntactic analysis enables the distinguishing

Towards Better Tool Support 175

of function, variable or class names, etc. The search among these is highly opti-
mized, and therefore very fast even on large code-bases. The search can be
accomplished via compound expressions (e.g. defs:target), containing even
wild cards, furthermore, results can be restricted to subdirectories. In addition
to text search, there is an opportunity to find symbols or definitions separately.
The lack of semantic analysis allows Ctags to support several (41) programming
languages. Also, an advantage of this approach is that it is possible to incremen-
tally update the index database. OpenGrok also gives the opportunity to gather
information from version control systems like Mercurial, SVN, CSV, etc.

Understand [26] is not only a code browsing tool, but also a complete IDE.
Its great advantage is that the source code can be edited and the changes of the
analysis can be seen immediately.

Besides code browsing functions already mentioned for previous tools, Under-
stand provides a lot of metrics and reports. Some of these are the lines of code
(total/average/maximum globally or per class), number of coupled/base/derived
classes, lack of cohesion [27], McCabe complexity [28] and many others. Treemap
is a common representation method for all metrics. It is a nested rectangular
view where nesting represents the hierarchy of elements, and the color and size
dimensions represent the metric chosen by the user.

For large code-bases, the inspection of the architecture is necessary. Visual
representation is one of the most helpful ways of displaying such structures.
Understand can show dependency diagrams based on various relations such as
function call hierarchy, class inheritance, file dependency, file inclusion/import.
The users can also create their custom diagram type via the API provided by
the tool.

In programming, the core concepts are common across languages, but there
are some concepts which are interpreted differently in a particular language.
Understand can handle ∼ 15 languages and can provide language-specific infor-
mation about the code e.g. function pointer analysis in C/C++ or package hier-
archy diagrams in Ada.

Understand builds a database from the code-base. All information can be
gathered via a programmable API. This way the user can query all the necessary
information which are not included in the user interface.

CodeSurfer [29] is similar to Understand in the sense that it is also a thick
client, static analysis application. Its target is understanding C/C++ or x86
machine code projects. CodeSurfer accomplishes deep language analysis which
provides detailed information about the software behavior. For example, it imple-
ments pointer analysis to check which pointers may point to a given variable,
lists the statements which depend on a selected statement by impact analysis,
and uses dataflow analysis to pinpoint where a variable was assigned its value,
etc.

The aforementioned tools are mainly designed for code comprehension.
Another application area of static analysis is writing the code itself. This is
a very different way of working in many aspects, which requires another toolset.
Maybe the most widespread IDEs are IntelliJ, NetBeans and Eclipse primarily

176 T. Brunner et al.

for Java projects, and QtCreator or CodeBlocks mainly for C++ projects. The
recent open-source tools tend to be pluginable so their functions can easily be
extended according to special needs and domain-specific tasks. The greatest ben-
efit of these tools is the ability of incremental parsing, which means the real-time
re-analysis of small deviations in the source code.

5 The CodeCompass Architecture

In this section, we present the high-level architecture of CodeCompass as well
as some important use-cases. This tool provides a read-only, searchable and
navigable snapshot of the source code, rendered in both textual and graphical
formats.

The overall architecture of CodeCompass is shown in Fig. 1. This image
can also be considered the diagram of a pipeline from the input data to the
clients. There are 5 steps of this pieline: i) The inputs of CodeCompass parser
are the source code and the compilation database containing build instructions
as described in Sect. 5.1. ii) The parsers gather the data and store them into iii)
the database so iv) the service layer can provide these to the webserver towards
v) the clients. Besides this vertical architecture there is an orthogonal view, since
due to the heavily modular architecture or CodeCompass, each of these layers are

Fig. 1. CodeCompass architecture

Towards Better Tool Support 177

extensible with additional plug-ins. The plug-ins provide a specific functionality
of CodeCompass. This can be either a programming language, metric, version
control data or other source code related operation.

5.1 Layers of the Architecture

Input Compilation Database. Since C and C++ are the most supported lan-
guages, we follow the stages of parsing a C++ project, however, other languages
require similar introductory steps.

The build process of a C++ program consists of 3 main stages which are
also relevant from CodeCompass point of view: preprocessing, compilation and
linking. Each compilation action produces binary code from a translation unit
(TU). A translation unit is made up of a source file and the included header files
by #include directive. Some chunks of the source code may vary based on exter-
nally defined macro tokens. Conditional compilation is a technique that enables
the developers to provide different definitions for certain functions, classes or
other constructions. The main benefit of this is that the program can behave
differently on specific target architectures or operating systems in order to take
the advantage of low-level implementation possibilities of the language.

Suppose that myprogram.cpp contains the following lines:

1 #include <mylib . h>
2 void opera t i on () {
3 #ifndef X86 64
4 do th i s () ;
5 #else
6 do that () ;
7 #endif
8 }

Listing 1.2. Conditional compilation in C.

The compilation is accomplished by the following command:

g++ myprogram.cpp -DX86_64 -I/path/to/my/lib/include ...

Depending on the presence of -DX86 64 flag the operation() calls do this()
or do that(). The definition of these functions may be located in mylib.h header
file of which the path is given after the flag -I. There are numerous compiler
flags which modulate the AST or affect the content of a TU in other ways, such
as the ones in the example above. For example -include can force the inclusion
of a header file as the content of the given TU. This means that the program
not only depends on the source text but on external parameters too.

For the precise analysis of a C++ program, all this information is necessary as
the previous example illustrates. If the user intends to find all function calls inside
the body of operation() then we need every compiler flags which influence the
build process.

A software project consisting of multiple source files is built traditionally
with make or another build system. Our goal is to capture all compiler actions

178 T. Brunner et al.

with all their build parameters emitted by the build system. We should find
a way to catch all compiler invocations during the build process. Under Unix
systems the LD PRELOAD environment variable is available for this purpose.

This variable can be set a shared object file which may contain function
symbols. When starting an arbitrary process, the content of this object file is
searched every time a function symbol is used by the process. The functions
defined in the shared object under LD PRELOAD have priority over the ones under
LD LIBRARY PATH. If non of them contains the given symbol then the process falls
back to the system-level directories. This trick helps us to mock the exec...()
system call family as we provide them under LD PRELOAD. This way we are able
to capture all process invocations including its command-line arguments. By pat-
tern matching on the known compiler names, like g++/gcc/clang/clang++/cc,
we can log the full compilation to a file and call the original compiler as well.

The output is a JSON file, named the compilation database [30]. This file is
a list of JSON objects with the following keys:

file The path of the compiled source file. The build action may contain multiple
source files, but the action belongs to only one of them which is indicated by
this attribute.

directory The current working directory of the build action to which all paths
are relative in the compilation arguments.

action The entire build command, including the compiler’s name and all its
command-line arguments.

Some build systems like CMake can emit the compilation database by adding
an extra argument at configuration:

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON <source_directory> ...

The CodeCompass logger based on the LD PRELOAD technique is also available
by the following command in case our project uses a build system other than
CMake and gathering build information is not possible otherwise:

CodeCompass_logger \
-b "<build command>" \
-o compilation_database.json

Parser. CodeCompass parser is a collection of language analyzers, text
indexers, version control systems, metric counters, etc. These tools can be
installed in the parser infrastructure as shared objects which provide the
functions getOptions() to inform the users about the parser-specific com-
mand line options and make() to produce a parser object. These objects
have to implement the AbstractParser interface with the functions parse(),
markModifiedFiles() and cleanupDatabase().

The parsing phase is a time-consuming process. This procedure may contain
text indexing, deep language parsing, static analysis, version history iteration,
slicing algorithms, pointer analysis, etc. However, the development team might

Towards Better Tool Support 179

require to see the most up-to-date version of the software. It is obvious to see that
the full parsing of a project may be unnecessary if only a few files are modified
on a given day. Even if the few hours long parsing phase could be accomplished
overnight in the CI system, it doesn’t make sense to book the resources in this
long period of time.

Fig. 2. Incremental parse workflow of CodeCompass

Therefore parsing is consisted of two sub-phases itself: i) cleanup and ii)
update. In the cleanup sub-phase first the function markModifiedFiles() com-
pares the workspace database and the project folder to deduce the either directly
or indirectly modified (and deleted) files. Source code files usually include (or,
depending on the language, import, use, etc.) other files and they might also
include others transitively, thus forming dependency chains. Language-specific
plugins can define their own semantic analysis to determine which files are
connected this way. If a file was changed, every file depending on its content
through direct or transitive includes has to be marked as a modified file. Then
the cleanupDatabase() function wipes all outdated content from the workspace
database. In the second update sub-phase the parse() function can reparse only
the new and changed content, the differences between the old and new versions

180 T. Brunner et al.

of the source code. This technique is called incremental parsing [31] and the
workflow of the process is detailed in Fig. 2.

CodeCompass supports several programming languages.
C++ parser uses LLVM/Clang infrastructure which is a C/C++/Objective-

C compiler. This is an open-source project that gives control over the entire
compilation process. This means that one has the possibility to access the inter-
mediate data structures used by the consecutive phases of the build process.
The most substantial one is the Abstract Syntax Tree (AST). Besides the syn-
tactic structure of the program, it also encapsulates some lexical and semantic
elements. The root of this tree belongs to a translation unit. The descendant
nodes represent statements and declarations. These entities are organized in two
inheritance hierarchies where the topmost types are Stmt and Decl, respectively.
For example a function is described with an object of type FunctionDecl that to
which the following inheritance chain leads: Decl <: NamedDecl <: ValueDecl
<: DeclaratorDecl <: FunctionDecl. Under this class, there are also methods
which can be constructors, destructors or conversion operators. There are ele-
ments in the AST that are less important from a code comprehension point of
view, like MaterializeTemporaryExpr that indicates the creation of a tempo-
rary object.

The C/C++ parser is in essence a visitor of the AST. According to our expe-
riences, it is not feasible to store all nodes and their corresponding information
in a database. When users are browsing the source code then most activities
belong to named entities. They are searching for variables, type usages, macro
expansions, enumeration values, etc. The different visualizations are also pre-
sentable using these named symbols: function call diagram, UML class diagram,
CodeBites, symbol search, etc. The vast majority of the features can be covered
with the collection of named entities. There are, however, some techniques that
require a wider set of information. For instance, slicing algorithms work with
statements. The goal of this approach is to determine a valid subset of the code
that fulfills some criteria. One may use it for impact analysis: what is the set of
statements which impacts the value of a given variable (backward slicing)? Or to
the other direction: what further statements are impacted by the modification of
the current variable or expression (forward slicing)? To answer these questions
not only the symbols but the enclosing control structures are also required, since
the expressions’ values may depend on logical conditions.

Java is similar to C++ in many aspects from a code comprehension point
of view. Both of these languages are multipurpose, object-oriented, static typed,
imperative languages. There are many common elements like classes, functions
(methods), variables, enumerations, modules (inclusion directive), generics (tem-
plates), etc. Of course, there are some language-specific features as well, like
interfaces in Java.

Python has a dynamic type system. This causes a lot of difficulties in many
CodeCompass functionalities. Even in the most simple operation, the definition
search of a symbol. The variables are considered references to a value in Python.
This way after an assignment the variable may refer to another object even with

Towards Better Tool Support 181

a different type. When choosing a variable in CodeCompass it is questionable
which assignment is considered the definition of it. Lacking any better solution
CodeCompass jumps to the last assignment that gave value to the variable if it
is determinable at all.

Database. A parser has exclusive competence to determine what kind of infor-
mation is necessary in order to accomplish its service. It implies that there is no
common data structure that would be suitable for all modules. Every module
is allowed to choose its database system to use. For example, the text indexer
which provides fast text-search abilities is using Apache Lucene engine’s stor-
age. The Git version control system has its own database which stores the full
history of the project. This is traditionally under .git directory. Furthermore,
CodeCompass gives access to a relational SQL database. The parsers are allowed
to connect here and create their own tables according to their needs. The mod-
ules can use Object Relational Mapping (ORM) tools to facilitate its usage. This
makes it possible to persist user objects directly by method invocations instead
of assembling complex SQL queries.

The drawback of the wide scale of repositories is that it decreases the porta-
bility of the system. This is not a negligible circumstance. In a team, there may
be build servers that contain a full development environment. In the environ-
ment there are compilers, standard and third-party libraries, shared modules
and the source code itself. So it is inevitable to run CodeCompass parser in
this environment. In ideal cases there will be another environment that runs the
CodeCompass service towards the clients. This has to be an accessible environ-
ment from outside, i.e. the web ports have to be open for the users for browsing in
CodeCompass. The databases have to be transferred to this environment. Fortu-
nately, more advanced SQL databases are also using client-server architecture,
thus the parsers can access it on remote machines. However other file-based
databases have to be sent to a remote machine either through a network file
system or simply by compressing and uploading them.

The C/C++ parser uses ODB which is an ORM tool, in order to persist the
collected language elements. Figure 3 displays the main tables of the C/C++
plug-in. The two main tables are CppAstNode and CppEntity.

CppAstNode represents an occurrence of an entity in the program. For exam-
ple in case of a function there is a row in the table for its definition, declarations
and all function calls. Moreover, all references of the symbol are also stored, like
an assignment to a function pointer, or passing it to a higher-order function.
Besides some other minor data this table stores the location (file, line, column),
the (mangled) name, and the textual representation of the node.

CppEntity stores the entities with all their details. In the ORM this table
is represented by a class which is the base of the concrete types, like functions,
variables, classes, etc.

Service. The job of service the layer is to provide information to the clients
from the database. This is implemented by Apache Thrift which enables the

182 T. Brunner et al.

Fig. 3. Simplified database model of CodeCompass

client-side to fetch the data through Remote Procedure Call (RPC) mechanism.
This means that there is a descriptor language which defines the data structures
and methods for communication. These are translated to a stub on a given
programming language. Currently, the main server-side stub is written in C++
and the main consumers are web browsers via JavaScript.

There are some common APIs. One is for accessing source files. This is the
project API that queries source files, directories, file system tree, statistics,
build action information, etc.

The other one is Language API. Once a new programming language is sup-
ported by CodeCompass then its service layer should provide this interface.
This way the web-based client can automatically provide the available function-
alities to the users, such as symbol information, diagrams (function call diagram,
UML class diagram, collaboration diagram, CodeBites, interface diagram among
source files and binaries, etc.), symbol references or definition search, Doxygen
documentation, syntax highlight.

Towards Better Tool Support 183

The additional plug-ins have to deliver their own interfaces to give access
for the clients towards their databases. Since there is nothing common in an
independent plug-in, all layers are deployed accordingly.

Apache Thrift is a cross-language framework to implement RPC mechanism
between the server and the clients. CodeCompass comes with a web GUI written
in JavaScript where the users may browse the source code. However, the pub-
lic CodeCompass API allows the developers to create their own clients in any
language in order to query some information that is not necessarily obtainable
from the web UI.

Among others, there is a LanguageAPI. This provides access to the elements
of a parsed source code. As soon as a language plugin provides this API, the web
GUI automatically handles all the language-related functionalities (diagrams,
Info Tree, CodeBites, etc.). The web interface was originally designed for aiding
code comprehension. However, there may be queries that are not related to
browsing the source code, but to answer questions on different levels from the
high-level architecture to low-level implementation details.

The following procedures are available:

getAstNodeInfo() Returns the most important information about an AST
node like its (mangled) name, symbol type, file location, textual representa-
tion and tags.

getAstNodeInfoByPosition() This procedure helps to find a node based on
its location (file name, line, column). This is a convenient for a GUI to find
nodes by clicking on the symbol.

getSourceText() The original source text of the AST node. Depending on the
actual context this can be a complete definition of a symbol.

getDocumentation() CodeCompass can process the Doxygen documentation
of a symbol. It is useful to store these, since one of the most helpful descriptor
information is recoverable from the actual documentations.

getDiagram() Depending on the type of the selected AST node and the
selected diagram type, this function returns a visual diagram about the node.
This can be either a simple function call diagram or a UML class diagram,
etc. The diagram is returned as an SVG image.

getReferences() This function returns the related AST nodes to the selected
symbol. It is parameterized with the type of this relationship (definition, call,
inheritance, alias, etc.).

getSyntaxHighlight() Sometimes the source code editor library on client side
is not that advanced to provide proper syntax highlight. Since on server side
we have full knowledge about the symbols, it is possible to provide adequate
and different style for distinct language elements: functions, classes, variables,
enumerations, etc. can be different. The parser gives precise information to
determine their kinds.

Client. Technically it is possible to connect any client to the service layer as
long as it can read the REST API provided by the server. Since the interface is
specified in the Thrift interface definition language, additional client applications

184 T. Brunner et al.

(such as a command-line client or an IDE plugin) can be easily written in more
than 15 languages supported by Thrift (including C/C++, Java, Python etc.).
Currently, the main CodeCompass client is a web application. The powerful capa-
bilities of a browser make it possible to create various graphical representations
and visualizations on the parsed software.

The web client’s layout is similar to an IDE tool. At the top of the page
there is an input field for textual search. In the left panel there are several
information sections. There is a Project Tree for file browsing, an Info Tree
for the presentation of symbol details, a Query result list for the search results, a
Similarity Tree for detecting copy-paste codes, a Revision Control Navigator
to browse the Git history, and a Project Information panel for the generic
project information, metrics, symbol catalogs, etc. And lastly the center view
presents the source code, the diagrams, and the visualizations that require big
space.

It is also possible to use CodeCompass functionality in IDE tools. The draw-
back of this approach is that CodeCompass was designed to observe a static
snapshot of a project. In contrast, the IDE tools are targeting the development
of a software which entails the continuous alteration of the code. If the user
intends to see the latest version of the source code, then it has to be reparsed
after each time it has been edited.

5.2 Web User Interface

In this section, we will give an overview of the features available through the
standard GUI. When describing language-specific features, such as listing callers
of a method, we will always assume the project’s language to be C++ as that has
the most advanced support in CodeCompass, but similar features are available
for Java and Python.

The web-based UI is organized into a static top area, extensible accordion
modules on the left and also extensible center modules on middle-right – see
Fig. 5.

The source code and different visualizations are shown in the center, while
navigation trees and lists, such as file tree, search results, list of static analysis
(CodeChecker) bugs [32], browsing history, code metrics and version control
navigation is shown on the left. New center modules and accordion panels can
be added by developers.

The top area shows the search toolbar, the currently opened file, the
workspace selector, simple navigation history (breadcrumbs) and a generic menu
for user guides.

Search. When meeting the code-base for the first time, it is hard for the user
to orient himself among the huge amount of files. It is not even trivial to catch
which module has to be inspected first in order to fix a bug or to add a new
feature. Suppose that a developer has to fix a bug, but the location of the
erroneous module to amend is unknown. Many times the only landmark is a

Towards Better Tool Support 185

log message of the analyzed software which was emitted in run-time. Lacking
any further information we just try finding keywords that might be specific to
the module. For a code browser tool like CodeCompass it is crucial to have fast
search functionality.

The tool provides 4 different types of search possibilities: full text search,
definition search, filename search and log search.

The most basic search method is the simple test search. This helps the user
to find any string not only in the source code, string literals and comments,
but also in the associated files like documentations, generated files, etc. In full
text search mode the search phrase is a group of words such as “returns an
astnode*”. A query phrase matches a text block, if the searched words are next
to each other in the source code in that particular order. Wildcards, such as *,
or ? can be used, matching any multiple or single character. Logical operators
such as AND, OR, NOT can be used to join multiple query phrases at the same
time.

CodeCompass is equipped with a more sophisticated search functionality
that enables the user to find symbols. This narrows the results on the named
entities of the source file. CTags is a fast search indexer which supports a wide
range of programming languages. Its goal is to distinguish functions, variables,
type names, macros, etc. in various languages without needing a deep parsing
or actual compilation. Definition search has the same syntax as full text search,
but it only queries among symbol definitions. Symbol definitions are recognized
for the following languages: Java, C/C++, Perl, JavaScript, Python. Symbol
definitions can be further restricted to functions, constants, types, fields, labels
or macros.

CodeCompass also provides the so called Log Search. Suppose that a run-time
log message appears on the screen:

(17:32) [ERROR] - Error code (#53) in file hello.cpp
at line 42.

The programmer wishes to find the command in the source code that prints
this message. Note that this log message contains several dynamically generated
parts, such as a timestamp, log level, error code, file name and line number. This
message is printed in different ways in different languages:

1 p r i n t f (”(%d:%d) [%s] − Error code (#%d) in f i l e %s at l i n e %d . ” ,

2 hour , minute , logLeve l , errorCode , f i leName , l ineNo) ;

Listing 1.3. Log message in C.

1 std : : cout
2 << ’ (’ << hour << ’ : ’ << minute << ’) ’
3 << ’ [’ << l o gLeve l << ’] ’
4 << ” − Error code (#” << errorCode << ’) ’
5 << ” in f i l e ” << f i leName
6 << ” at l i n e ” << l ineNo << ’ . ’ ;

Listing 1.4. Log message in C++.

186 T. Brunner et al.

1 print (” ({} :{}) [{ }] − Error code (#{}) in f i l e {} at l i n e {} . ”
2 . format (hour , minute , l o g l e v e l , e r ro r code , f i l e name , l i n e n o))

Listing 1.5. Log message in Python.

Since there is only a few constant fragments in the message, it is not worth
searching only these. However, in CodeCompass it is possible to copy the entire
log message in the search bar and use Log Search. This is a fuzzy-search possi-
bility that finds the locations in the source code where the message was most
probably assembled.

Information About Language Symbols. In the source code view, the
user can click on any symbol and get additional information about it or
generate a diagram about its usage. The Info tree gives the most con-
cise information about a symbol. For an example see the info tree of the
void DeekTimerHandler::tick() function in Fig. 4. You can read that the
function is called in the DeekTimer.cc file from the dispatcher() func-
tion. DeekTimerHandler::tick() is also assigned to a function pointer in
CoecuBoardSupport.cc, in line 304.

For C/C++ variables, the tool lists location of reads, writes, and aliases of
the variable (references and pointers pointing to the same memory location).
For classes, one can query the definition, base classes, derived classes, methods,
members, and how the class is used: in a declaration of a local, global, member
variable, function parameter, or as return type. Regarding macros, all expansion
locations and values can be listed.

Fig. 4. Info tree of C++ function DeekTimer::tick()

Towards Better Tool Support 187

Symbol Level Diagrams. Sometimes a diagram representation of a symbol
and its environment can be very helpful for comprehension. CodeCompass pro-
vides the interactive CodeBites diagram for understanding large call chains (for
an example see Fig. 5) and type hierarchies. Function call diagram shows all
callers and callees of a function in a graph. UML class inheritance diagram
shows the full inheritance chain up until the root base class and recursively for
all derived classes. Class collaboration diagram shows base inheritance chain and
recursively shows all member classes as nodes. Pointer aliases diagram shows
all references and pointers (as nodes) that refers to the same memory location
as the queried variable.

Fig. 5. User interface running in a browser

Architectural Diagrams. Sometimes it is required to observe the high-level
overview of a software. For example, in case of a legacy project some refactoring
activities are necessary to make the code more concise and thus more maintain-
able. Suppose that we would like to find the modules which use a certain symbol
even indirectly. After collecting these modules we can pinpoint the ones that are
located in a distinct region of the code where they are not supposed to be found.
Such a situation can be the result of a serial rewriting or negligent architecture
organizing. If we manage to determine well-defined boundaries of modules then
we may achieve loose coupling principles.

CodeCompass is able to handle source code on file level. Besides symbol
information we are storing the source files and their relationships. In case of
C++ the code is organized to two file types: source and header. the translation
units are compiled to object files that are linked together to executables. We may
distinguish several relationships between these file types.

188 T. Brunner et al.

include Sources and headers may include other headers. In this case the
included header file becomes the part of the given translation unit.

use The file source.cpp uses header.h if there is a symbol declaration in header.h
that is used in source.cpp.

provide Sources and headers can be considered as implementation and interface
respectively. We say that an implementation provides an interface if there is
a symbol declaration in the header which is defined in the source.

contain During the build process translation units are compiled to an object
file and object files are linked together to other objects or executables. In this
case we say that an object contains the source file or the executable contains
the object file.

In order to collect the users of a source file we have to find the headers that
are provided by this source file. Then we collect the files that use this header as an
interface even transitively. Lastly, the contain relationship returns the object and
executable files that incorporate these users. This sequence of relations defines
a graph structure that is a visual representation of the architecture on file level.

Version Control Visualizations. Visualization of version control information
is an important aid to understand software evolution. Git blame view shows line-
by-line the changes (commits) to a given file. Changes that happened recently are
colored lighter green, while older changes are darker red. This view is excellent
to review why certain lines were added to a source file. CodeCompass can also
show Git commits in a filterable list ordered by the time of commit. This search
facility can be used to list changes made by a person or to filter commits by
relevant words in the commit message.

Metrics. Software metrics are presenting the characteristics of the source code.
There are several well-known metrics that measure the size or the complexity of
a program. The simplest one is Lines Of Code (LOC) which informs about the
size of the software. It can be more precise if we omit the blank lines from the
computation. We can also measure the properties of blocked entities, like the
average number of statements in a function, or the average number of members
in a class. The McCabe complexity is one of the most popular software metrics
that indicates the complexity of a program. This is also known as Cyclomatic
complexity which provides the number of branch and loop statements in a file.

Due to the plug-in architecture of CodeCompass it can easily be extended
by other static analyzer tools. Clang comes with a bug finder module that aims
to catch typical programming errors in compile time. By storing this kind of
information we can present metrics on the software quality.

CodeCompass stores these numbers by file granularity. This gives an oppor-
tunity to visualize the metrics and to find the complex regions which may need
some refactoring. Treemap can be an appropriate way of this presentation. This
is a rectangular diagram with two dimensions: size and color. These dimensions
are assigned to the selected metrics. For example one may setup the diagram

Towards Better Tool Support 189

so its size indicates the lines of code and the color indicate the number of bugs.
The whole rectangle belongs to the selected directory. The inner rectangles rep-
resent the subdirectories and files under this folder. The bigger a rectangle is,
the more source lines it contains. And the more green the rectangle is, the more
programming bugs it has.

CodeChecker Results. Static analysis is the analysis of a program without
executing it, usually carried out by an automated tool. Analyzing the Abstract
Syntax Tree (AST) and Symbolic execution are the two most powerful static
analysis techniques used both in program verification and in bug detection soft-
ware. CodeChecker is an open-source tool [32] to collect analysis reports from
Clang Tidy and Clang Static Analyzer [33] and stores them to the CodeChecker
server. However, all static analyzers can produce false positives – reporting cor-
rect code as error – which have to be detected and filtered out by human experts.
This usually requires exploring the code environment of the report, which is espe-
cially challenging when the bug path crosses file boundaries [34]. CodeCompass
can visualize the bugs identified the Clang Static Analyzer and Clang Tidy by
connecting it to a CodeChecker server [32], showing the bug position, and the
symbolic execution path that lead to a fault.

AST-Dump. The parser collects only predefined language elements. Data miss-
ing from the database have to be collected afterward. Since the compilation
commands and the source code itself is stored in the database, there is a pos-
sibility to run the parser as a service. This reparse functionality is currently
implemented in the service layer of the C/C++ plug-in. This enables the visual-
ization even of the entire AST. This is not a so frequent action that would make
its persistence necessary, but this functionality helps to understand some weird
run-time behavior of the program. For example, the AST contains implicit type
conversion nodes or compiler-generated methods [35].

As an example, see how ASt-dump can help to understand CodeChecker
reports. In CodeChecker there are hundreds of checker rules of which the viola-
tion results in a warning or notification by the compiler. Memory overlap checker
verifies such a rule. memcpy() function copies raw bytes between specific mem-
ory buffers. The from and to buffer intervals must be disjoint, otherwise the
result is unspecified. The memory overlap checker emits a report when it expe-
riences a memcpy() function call where the source and target regions overlap.
The following code fragment resulted in such a report:

1 struct S { int t [1 0] ; } ;
2 int main () {
3 S s ;
4 s = s ;
5 }
Listing 1.6. Invisible memcpy() call in a compiler-generated assignment operator.

190 T. Brunner et al.

It is not easy to see why Static Analyzer gives a report on this example.
The explanation is that in case a structure has an array member, the compiler-
generated assignment operator uses std::memcpy() to copy this array. To be
precise, a built-in version (builtin memcpy()) is used. Since main() function
contains a self-assignment, the memory buffers overlap completely. Fortunately
the compiler-generated operator prevents this situation, so technically this report
is a false positive. Anyway, CodeCompass was a great help in finding why this
code fragment results a report on an invisible memset() function call, because
CodeCompass is able to present the AST to the users. Instead of storing the full
AST, the service layer can build it up on-demand. This contains the compiler-
generated methods and their bodies, i.e. the assignment operator in question at
this example.

Figure 6 shows a screenshot of the AST dump of the previous code fragment.
It is visible that the AST also contains the compiler-generated methods like the
copy and move constructors and assignment operators. One may also discover
the aforementioned builtin memcpy() call at the middle of the page.

Fig. 6. AST dump of a struct with its implicit methods.

Browsing History. De Alwis and Murphy studied why programmers experi-
ence disorientation when using the Eclipse Java integrated development envi-
ronment (IDE) [36]. They use visual momentum [37] technique to identify three
factors that may lead to disorientation: i) the absence of connecting naviga-
tion context during program exploration, ii) thrashing between displays to view
necessary pieces of code, and iii) the pursuit of sometimes unrelated subtasks.

The first factor means that the programmer, during investigating a problem
visits several files as follows a call chain, or explores usage of a variable. At the
end of a long exploration session, it is hard to remember why the investigation
ended up in a specific file. The second reason for disorientation is the frequent
change of different views in Eclipse. The third contributor to the problem is that

Towards Better Tool Support 191

a developer, when solving a program change task, evaluates several hypotheses,
which are all individual comprehension subtasks. Programmers tend to suspend a
subtask (before finishing it) and switch to another. For example, the programmer
investigates how a return value of a function is used, but then changes to a
subtask understanding the implementation of the function itself. It was observed
that, for a developer, it is hard to remind themselves about a suspended subtask
[38].

CodeCompass implements a browsing history view which records (in a tree
form) the path of navigation in the source code. A new subtask is represented
by a new branch of the tree, while the nodes are navigation jumps in the code
labeled by the connecting context (such as jump to the definition of init). So
problem i) and ii) is addressed, by the labeled nodes in the browsing history,
while problem iii) is handled by the branches assigned to subtasks.

Namespace and Type Catalogue. CodeCompass processes Doxygen docu-
mentation and stores them for the function, type, variable definitions. It also
provides a type catalogue view that lists types declared in the workspace orga-
nized by a hierarchical tree view of namespaces.

5.3 Language Server Protocol

The Language Server Protocol (LSP) is a joint project of Microsoft and others to
standardize the communication between language tooling and code editors. With
LSP defining a new layer between IDEs and language tooling, it enables LSP
compliant tooling services and IDEs to communicate in a standard way, thus
making them independent of each other. As an advantage of this decoupling the
language tooling services can be implemented in any language making it possible
to adapt to special needs of these utilities or to optimize the performance. At the
same time, since code editors are also independent of the tooling environment,
language tooling can be assigned to multiple IDEs and also an IDE can make
use of several LSP compliant language tooling utility at the same time [39].

LSP Integration into CodeCompass. As mentioned in the Services subsec-
tion of Sect. 5.1, the runtime code comprehension functionalities in CodeCom-
pass are organized into services, e.g. CppService. Their public API is served
by the webserver component through Thrift protocol. Since LSP requests are
cross-compliant with lower-level functions in CodeCompass, we defined a wrap-
per service named LspService which combines the existing functionalities for
LSP [40]. As an example requesting the definition location for a symbol is a
single call in LSP, parameterized with the appropriate position consisting of the
file path and symbol location (line and column number). Then the position of
the definition is returned if found. With the lower-level API of CodeCompass,
first the AST node identifier has to be queried for the position and the position
of the definition can only be requested afterward, resulting in two calls overall.

192 T. Brunner et al.

Thrift and LSP use different constructions for their requests, therefore a new
request handler module named LspHandler was also introduced to manage the
transformation between LSP messages in JSON format and the strongly-typed
inner representation of the program, as shown in Fig. 7.

Fig. 7. Class diagram of the LSP integration into CodeCompass

LSP Integration into vs Code. According to the Extension Guide [41] the
language tooling in VS Code consists of two components.

– Language Client is a normal VS Code extension written in TypeScript.
– Language Server is a language analysis tool running in a separate process.

The Language Client provides the user interface inside VS Code and listens
for events that require action. When the CodeCompass web service needs to be
queried to gather the requested code comprehension information, the Language
Client instructs the Language Server to communicate with the CodeCompass
server on a separate, background job. CodeCompass can either be executed on
the same local machine or on a remote server and in our solution we used this
Language Server as a proxy towards it.

As a demonstration, the sequence diagram depicted in Fig. 8 shows the inter-
action between the language server and client components of VS Code and the
LSP components in CodeCompass. First, a component diagram produced by
CodeCompass is displayed inside VS Code upon the request of the user, then
a real-time incremental parsing in the CodeCompass backend is carried out on
the event of saving a modified file inside the code editor.

Towards Better Tool Support 193

Fig. 8. Interactivity between VS Code and CodeCompass components

1. The request for the diagram is issued by the actor through e.g. a context
menu.

2. The Language Server constructs the corresponding LSP request towards the
CodeCompass web server.

3. The web server component in CodeCompass processes the request and collects
the required data is pulled from the underlying model layer (and ultimately
from the workspace database) to build the diagram.

4. The result diagram is returned wrapped in an LSP response message.
5. The SVG diagram is extracted from the response.
6. The requested diagram is displayed to the user.
7. The program code is edited inside VS Code by the user.
8. The changed files are saved and the Language Client triggers a handler on

this event. Ultimately the new content of changed files is transferred to the
CodeCompass web server.

9. The web server component instructs the parser component of CodeCompass
to perform an incremental parsing on the changeset.

10. The workspace database is updated.
11. The user is notified by VS Code (e.g. through an icon) that the source code

is in a fully parsed state again.

5.4 Performance

CodeCompass scales well regarding the size of the analyzed code in parsing time,
size of the data stored and response times of the webserver.

We demonstrate the results on four different C/C++ applications. Results
are summarized in Table 1.

194 T. Brunner et al.

Table 1. Performance of CodeCompass v4 release

TinyXML
2.6.2

Xerces
3.1.3

CodeCompass
v4

Internal
Ericsson
product

Source code size [MiB] 1.16 67.28 182 3 344

Search database size [MiB] 0.88 37.93 139 7 168

PostgreSQL db size [MiB] 15 190 2 144 7 729

Original build time [s] 2.73 361.77 2 024 —

Parse time [s] 21.98 517.23 6 409 —

Text/definition search [s] 0.4 0.3 0.43 2

Get usage of a type (for
C++) [s]

1.4 2 2.3 3.1

The parsing time is proportional to the compilation time – one can expect
the parsing time to be approximately 160% of the original build time.

The disk space needed to store a parsed snapshot is proportional to the
number of symbol declarations and references. According to our measurements,
the size of a workspace (including search database and the relation database) is
approximately 5 − 10 times the size of source code.

It can be read from Table 1 that the response times of search and C++
symbol usage query remains low even in case of large (3.2 GiB) source code size.

6 Important Design Workflows

In this section, we show the most common design tasks which emerge during the
maintenance and evolution of large programs, and highlight how static program
comprehension techniques and specifically CodeCompass helps to solve them.

In [42] the authors collected and categorized typical questions programmers
ask during a change task. They identify 4 categories: i) Finding focus points:
finding locations in the program code implementing a behavior; ii) Expanding
focus points: exploring relations of interesting types, functions, variables; iii)
Understanding a sub graph: “How a set of types or functions collaborate in run-
time?”; iv) Questions over groups of sub graphs: “How parts of the program
relate to each other?” We will use these categories to identify the intent of the
programmer during the analyzed tasks.

6.1 Bug Investigation

The ultimate goal of the developer is to understand the minimum amount of
code to change that is necessary to solve the bug, but enough not to introduce
additional bugs. This task typically starts by identifying a program location
where the problematic behavior was observed [43], then gradually restoring the

Towards Better Tool Support 195

actual program state and call path leading to the fault. Finally planning code
changes, considering how the rewritten program text affects other, non-faulty
use-cases. This means that the designer needs to verify how the changed function
was called, how a changed type or variable is used in other parts of the system.

A bug investigation process starts based on a trouble report, which is a writ-
ten description of the unwanted behavior of the program. This textual descrip-
tion can be accompanied by the following additional artifacts: i) In case of a
program crash, a full core dump. A core dump contains the full content of the
stack and the heap. Thus the full call chain and the values of the variables are
known at the point of the crash. ii) In live systems, full core dumps are usually
disabled, as it eats up disc space and takes extensive amounts of time to create.
A log of the stack state may still be available, which contains the function call
chain up to the crash, but not the values of the variables. iii) If none of the above
is present, a log may be available which is a sequence of arbitrary printouts from
the time period around when the problem occurred.

The developer first identifies the program point when the problematic behav-
ior was observed. If the exact function is known (from the stack trace of core
dump), function definition search (Sect. 5.2) can be used to locate the function.
If only logs are available log search can be used to look up the program point
where the logs were created (Sect. 5.2).

After locating “focus points”, the developer identifies the actual execution
flow and values of the variables that lead to the error. To understand complex
call chains, CodeBites visualization of CodeCompass can be very helpful (see
Fig. 5). Function callers (and callees) can be recursively listed, using the call
chain explorer in the info tree (see Sect. 5.2). Analyzing call chains is really dif-
ficult using a traditional IDE. Similarly, when one would like to discover the
write locations of a variable, and the variable is written through a pointer or
a reference, usual IDEs are of little help. It can be really time-consuming for
a programmer to discover these non-trivial connections manually, so a compre-
hension tool can save a considerable amount of time. CodeCompass can detect
variable aliasing and also caller identification through virtual functions and func-
tion pointers (see Sect. 5.2). Pointer aliasing diagram shows variable aliasing
in a graph form (Sect. 5.2). To understand how the involved types are used,
CodeCompass can show the types are referred to at various program locations
(Sect. 5.2). When navigating among function calls, disorientation is often a prob-
lem [36]. CodeCompass organizes browsing track record in a browsing history
tree view (Sect. 5.2).

When investigating the reason behind a bug, it is often useful to check ver-
sion control history, since according to [44] it is likely that the investigated
issue is introduced by another, earlier bug fix. Using the blame view (described
in Sect. 5.2), the programmer can visualize the recent code modifications, that
affected the file where the bug occurred.

CodeCompass can show faulty programming constructs (memory leaks, null
pointer dereferences, etc.) that Clang Static Analyzer and Clang Tidy detected
(see Sect. 5.2) in the current file or in the whole analyzed source code. These are

196 T. Brunner et al.

worth checking as the investigated fault may be related to a well known faulty
programming pattern.

When planning changes, it is vital to understand the wider context of the
change, how the altered parts interact in different usage scenarios. To understand
the mapping of domain concepts to implementation, the Doxygen [45] or Javadoc
documentation can be of great help (Sect. 5.2). Interactions of classes can be
explored on the collaboration diagrams (Sect. 5.2). This visualization is available
for a single class, a single header file containing multiple classes, or a directory
containing header files. To get wider usage context, directory-level dependency
diagrams visualize how C/C++ header files in a directory are implemented or
used by files in other directories.

There are some additional static analysis techniques that are useful for a
program change task, but currently lack support in CodeCompass. A (backward)
slicing feature could help to understand which statements have an effect on the
examined program value. A dataflow analysis could show, how a given variable
gets its value assigned.

6.2 Feature Development Planning and Estimation

When planning new features, the designer first locates those files, where related
features are implemented. CodeCompass provides text search (see Sect. 5.2) for
this purpose. In the next step, files are identified, which may be affected by the
change. Clustering techniques, such as the mapping metaphor, implemented by
CodeSurveyor [46] helps to identify the group of files that are closely related.
CodeCompass does not support software maps, but it shows the relationship
between files and directories (based on C/C++ symbol usage information) in
the internal architecture diagram and interface diagrams.

Binary dependency views can be used to estimate which binaries will be
affected by the changes and thus can help in planning an upgrade procedure.

6.3 Refactoring

There are several reasons to refactor an implementation: too complex imple-
mentation, circular compilation dependencies, copy-pasted code blocks or per-
formance problems.

There are metrics, such as complexity metrics which indicate that refactoring
may be necessary. One, well-known metric is the McCabe Complexity, which
can be directly shown by CodeCompass (Sect. 5.2) on file, and aggregated on
directory level.

Circular dependencies between files can be shown by analyzing dependen-
cies on the file-level, while architectural compliance violation can be detected
from dependencies on the directory level. There is no direct support for these
analysis methods in CodeCompass, but could be added, as symbol and file level
dependencies are stored in the database.

Towards Better Tool Support 197

To estimate the effect of refactoring changes on the overall system, the same
features can be used that were described in Sect. 6.1.

6.4 Knowledge Transfer and Newcomers’ Catch-Up

When a new engineer joins the team or at knowledge transfer, someone, who is
completely new to the code and the domain, needs to acquire knowledge. Domain
concepts are best understood from textbooks or articles. However, it is crucial
to understand how the domain concepts map down to a particular software’s
implementation. Design documentation is a useful apparatus for describing this
mapping.

According to our experience, there are three important rules that need to be
kept to have an up-to-date design documentation for large systems:

– store design documents in the same version control system as the source code
– split design documents in the same modularization as the source code
– use text-based documentation system instead of binary formatting

Design documents that are not stored in the same version control system
as the source code tend to get out of sync of the real implementation. Symbol
names and file names referred to in these documents change as the code evolves
and programmers tend to neglect to patch these in the documentation. Binary
formats, such as Microsoft Word documents should be avoided, as it is more
convenient for a programmer to apply the same text editors and diff tools for
documentation they use for coding.

According to our experience, Doxygen [45] is a versatile tool for document-
ing source code on function, type, and file level. If the source code is organized
into source code level components such as suggested in [47] and in [48] compo-
nent level documentation can also be written. In CodeCompass we implemented
the rendering of symbols, file and component level documentation for Ericsson
internal products (see Sect. 5.2).

7 User Acceptance in Real Production

Six months after CodeCompass had been deployed for use with seven products
at Ericsson, we conducted a questionnaire poll regarding its usage. We observed
that at the products which are above 2 million lines of code, 40% of the developers
use CodeCompass at least two times a month and about 15% use it on a day-
to-day basis.

OpenGrok was the de-facto comprehension tool used by the teams before
CodeCompass was introduced to them.

Figure 9 shows the distribution of the tools used by the respondents to solve
specific tasks. In the question, we conducted the investigation of:

– Function definitions and calls: this basically means reference-based navigation
in the code

198 T. Brunner et al.

Fig. 9. CodeCompass usage distribution per task

– Variable binding and references: like the above, but in the case of variables
– Class or object relationships: information clearly visible in higher-level models
– Code change, responsibility : version control information
– Higher-level models of software: component diagrams, domain-specific archi-

tecture views, etc.

As the diagram shows, CodeCompass is mostly used to uncover and follow
function and variable references, as well as to inspect class relationships; most
probably users apply CodeCompass to these tasks because of its thorough static
analysis that other tools (e.g. low-level search and OpenGrok) cannot perform.
The proportions of “browsing the code” and “asking colleagues” are also worth
noting; many employees try to solve complex problems by struggling on the code
or by bothering others, rather than taking the right comprehension tool.

8 Conclusion and Future Work

We presented CodeCompass [6], a static analysis tool for comprehension of
large-scale software. Having a web-based, pluginable, extensible architecture,
the CodeCompass framework can be an open platform to further code compre-
hension, static analysis and software metrics efforts.

Initial user feedback and usage statistics suggests that the tool is useful for
developers in comprehension activities and it is used besides traditional IDEs
and other cross-reference tools.

We would like to further investigate the efficiency of the CodeCompass in
software change tasks, based on industrial user group experiment. It is also
among our plans to implement efficient data-flow analysis, slicing, and further
component visualization techniques for C and C++ languages.

Acknowledgement. This work was supported by the European Union, co-financed
by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002)

Towards Better Tool Support 199

References

1. Ferraro-Esparza, V., Gudmandsen, M., Olsson, K.: Ericsson telecom server plat-
form 4. Ericsson Rev. 3, 104–113 (2002)

2. Enderin, M., LeCorney, D., Lindberg, M., Lundqvist, T.: Axe 810-the evolution
continues. Ericsson Rev. 4, 10–23 (2001)

3. Karlsson, E.-A., Taxen, L.: Incremental development for AXE 10. In: Jazayeri, M.,
Schauer, H. (eds.) ESEC/SIGSOFT FSE -1997. LNCS, vol. 1301, pp. 519–520.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63531-9 34

4. Brunner, T.: CodeCompass: an extensible code comprehension framework. Eötvös
Loránd University, Faculty of Informatics, Budapest, Tech. Rep. IK-TR1 (2018)

5. Szabó, C.: Programme of the winter school of project no.2017-1-sk01-ka203-
035402: “focusing education on composability, comprehensibility and correctness
of working software”. TUKE Kosice (2018) . Accessed 02 July 2019. https://
kpi.fei.tuke.sk/sites/www2.kpi.fei.tuke.sk/files/personal/programme of the first
intensive programme for higher education learners in the frame of the project.
pdf

6. CodeCompass. https://github.com/Ericsson/CodeCompass
7. Von Mayrhauser, A., Vans, A.M.: Program comprehension during software main-

tenance and evolution. Computer 28(8), 44–55 (1995)
8. Storey, M.-A.: Theories, methods and tools in program comprehension: past,

present and future. In: 13th International Workshop on Program Comprehension
(IWPC2005), pp. 181–191. IEEE (2005)

9. O’brien, M.P.: Software comprehension-a review & research direction. Department
of Computer Science & Information Systems University of Limerick, Ireland, Tech-
nical Report (2003)

10. Brooks, R.: Towards a theory of the cognitive processes in computer programming.
Int. J. Man Mach. Stud. 9(6), 737–751 (1977)

11. Soloway, E., Adelson, B., Ehrlich, K.: Knowledge and processes in the comprehen-
sion of computer programs. The Nature of Expertise, pp. 129–152 (1988)

12. Pennington, N.: Comprehension strategies in programming. In: Empirical Studies
of Programmers: Second Workshop, pp. 100–113. Ablex Publishing Corp. (1987)

13. Shneiderman, B., Mayer, R.: Syntactic/semantic interactions in programmer
behavior: a model and experimental results. Int. J. Comput. Inf. Sci. 8(3), 219–238
(1979)

14. Levy, O., Feitelson, D.G.: Understanding large-scale software: a hierarchical view.
In: Proceedings of the 27th International Conference on Program Comprehension,
pp. 283–293. IEEE Press (2019)

15. Letovsky, S.: Cognitive processes in program comprehension. J. Syst. Softw. 7(4),
325–339 (1987)

16. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.I.: An information retrieval app-
roach to concept location in source code. In: 11th Working Conference on Reverse
Engineering, pp. 214–223. IEEE (2004)

17. Rajlich, V., Wilde, N.: The role of concepts in program comprehension. In: Pro-
ceedings 10th International Workshop on Program Comprehension, pp. 271–278.
IEEE (2002)

18. 3GPP technical specifications. https://www.3gpp.org/specifications/79-
specification-numbering

19. Krzysztof, C., Eisenecker, U.W.: Generative Programming: Methods. Addison-
Wesley, Tools and Applications (2000)

https://doi.org/10.1007/3-540-63531-9_34
https://kpi.fei.tuke.sk/sites/www2.kpi.fei.tuke.sk/files/personal/programme_of_the_first_intensive_programme_for_higher_education_learners_in_the_frame_of_the_project.pdf
https://kpi.fei.tuke.sk/sites/www2.kpi.fei.tuke.sk/files/personal/programme_of_the_first_intensive_programme_for_higher_education_learners_in_the_frame_of_the_project.pdf
https://kpi.fei.tuke.sk/sites/www2.kpi.fei.tuke.sk/files/personal/programme_of_the_first_intensive_programme_for_higher_education_learners_in_the_frame_of_the_project.pdf
https://kpi.fei.tuke.sk/sites/www2.kpi.fei.tuke.sk/files/personal/programme_of_the_first_intensive_programme_for_higher_education_learners_in_the_frame_of_the_project.pdf
https://github.com/Ericsson/CodeCompass
https://www.3gpp.org/specifications/79-specification-numbering
https://www.3gpp.org/specifications/79-specification-numbering

200 T. Brunner et al.

20. Hennert, L., Larruy, A.: TelORB- the distributed communications operating sys-
tem. Ericsson Rev.(Engl. Ed.) 76(3), 156–167 (1999)

21. xxx
22. Apache thrift. https://Thrift.apache.org/
23. Woboq. https://woboq.com/codebrowser.html
24. Opengrok. https://opengrok.github.io/OpenGrok
25. Doxygen. https://ctags.sourceforge.net
26. Ctags. https://www.stack.nl/∼dimitri/doxygen/
27. Henderson-Sellers, B.: Object-oriented metrics: measures of complexity. Prentice-

Hall Inc. (1995)
28. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 4, 308–320

(1976)
29. CodeSurfer. https://www.grammatech.com/products/codesurfer
30. The clang JSON compilation database format specification. https://clang.llvm.

org/docs/JSONCompilationDatabase.html
31. Fekete, A., Cserép, M.: Incremental parsing of large legacy C/C++ software.

In: 21st International Multiconference on Information Society (IS), Collaboration,
Software and Services in Information Society (CSS), vol. G, pp. 51–54 (2018)

32. Krupp, D., Orban, G., Horvath, G., Babati, B.: Industrial experiences with the
clang static analysis toolset (2015)

33. Horváth, G., Pataki, N.: Clang matchers for verified usage of the c++ standard
template library. Ann. Math. Inform. 44, 99–109 (2015)

34. Horváth, G., Szécsi, P., Gera, Z., Krupp, D., Pataki, N.: [Engineering Paper] Chal-
lenges of implementing cross translation unit analysis in clang static analyzer. In:
2018 IEEE 18th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pp. 171–176. IEEE (2018)

35. Szalay, R., Porkoláb, Z.: Visualising compiler-generated special member functions
of C++ types (2018)

36. De Alwis, B., Murphy, G.C.: Using visual momentum to explain disorienta-
tion in the eclipse IDE. In: Visual Languages and Human-Centric Computing
(VL/HCC2006), pp. 51–54. IEEE (2006)

37. Woods, D.D.: Visual momentum: a concept to improve the cognitive coupling of
person and computer. Int. J. Man Mach. Stud. 21(3), 229–244 (1984)

38. Herrmann, D., Brubaker, B., Yoder, C., Sheets, V., Tio, A.: Devices that remind
(1999)

39. Microsoft Corporation: Language Server Protocol Specification. Tech. Rep. 3.14.0
(2018). https://microsoft.github.io/language-server-protocol/specification

40. Mészáros, M., Cserép, M., Fekete, A.: Delivering comprehension features into
source code editors through LSP. In: 2019 42nd International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO), pp. 1581–1586. IEEE (2019)

41. Microsoft Corporation. Language Server Extension Guide. https://code.
visualstudio.com/api/language-extensions/language-server-extension-guide

42. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a
programming change task. IEEE Trans. Software Eng. 34(4), 434–451 (2008)

43. Sillito, J., De Voider, K., Fisher, B., Murphy, G.: Managing software change tasks:
an exploratory study. In: 2005 International Symposium on Empirical Software
Engineering (2005), p. 10. IEEE (2005)

44. Kim, S., Zimmermann, T., Pan, K., James, E., et al.: Automatic identification of
bug-introducing changes. In: 21st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE2006), pp. 81–90. IEEE (2006)

https://Thrift.apache.org/
https://woboq.com/codebrowser.html
https://opengrok.github.io/OpenGrok
https://ctags.sourceforge.net
https://www.stack.nl/~dimitri/doxygen/
https://www.grammatech.com/products/codesurfer
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://microsoft.github.io/language-server-protocol/specification
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

Towards Better Tool Support 201

45. Doxygen. https://www.stack.nl/∼dimitri/doxygen/
46. Hawes, N., Marshall, S., Anslow, C.: Codesurveyor: mapping large-scale software

to aid in code comprehension. In: 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT), pp. 96–105. IEEE (2015)

47. Darvas, A., Konnerth, R.: System architecture recovery based on software structure
model. In: 2016 13th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pp. 109–114. IEEE (2016)

48. de Jonge, M.: Build-level components. IEEE Trans. Software Eng. 31(7), 588–600
(2005)

https://www.stack.nl/~dimitri/doxygen/

Balanced Distributed Computation
Patterns

Jianhao Li, Yuri Kim, and Viktória Zsók(B)

Department of Programming Languages and Compilers, Faculty of Informatics,
Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary

zsv@inf.elte.hu

Abstract. The state-of-the-art concurrent software development exten-
sively uses various methodologies and approaches to obtain high-speed
up. However, parallelism remains one of the most challenging topics,
especially in the case of pattern-based programming approaches. The
primary purpose of the paper is to explore parallel computation schemes
in a new environment by illustrating the appropriateness and applicabil-
ity in novel distributed computation setups.

The used programming language Go compiles the program into
machine code; hence, it does not need extra run-time like virtual
machines or interpreters. Additionally, it has powerful built-in concur-
rency constructs like goroutines and channels. RabbitMQ is a tradi-
tional message broker developed for over ten years and well-known for
its reliability. Therefore, Go and RabbitMQ were chosen to implement
our computation patterns. This paper is a tutorial on concurrent and
on distributed programming. The Go introduction and the explanation
of concurrent examples provide the reader with necessary background
knowledge to understand the distributed programming explorations. The
main focus of this paper is the implementation of practical distributed
examples that follow existing patterns using Go and RabbitMQ. The
patterns are the experience collection of skilled software engineers. By
practicing the distributed examples, the readers can gain significant expe-
rience in designing and implementing distributed systems.

Keywords: Go · RabbitMQ · Patterns · Concurrent Programming ·
Distributed Systems

1 Introduction

Nowadays, programs tend to be concurrent and usually need distributed coor-
dination. This paper introduces distributed communication examples following
different patterns usually needed in modern distributed systems. The examples
are implemented using Go and RabbitMQ. The initial version of the Rab-

This work was supported by the European Union.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 202–321, 2023.
https://doi.org/10.1007/978-3-031-42833-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-42833-3_7

Balanced Distributed Computation Patterns 203

bitMQ was released in 2007 and since then it has been adopted by many big
companies and organizations like NASA (for Nebula SaaS platform) and New
York Times.

The readers are provided with background knowledge of Go programming
language essentials and message broker basics via relevant examples, which
enables to follow easily the distributed programming patterns. The tutorial offers
solutions to problems in several versions following a step-by-step refinement of
improvements on concurrency and distribution. Thus, studying the proposed
exercises can be done easily. After following the practical aspects of the exam-
ples of this paper, the readers gain practical experiences of dealing with parallel
communication in a distributed system. The code of all the examples is uploaded
to Github [14].

The distributed examples implement existing patterns. The term pattern is
defined in several software design books, out of which the following was chosen
from [3], implemented earlier in [23], and applied also here in examples:

“A pattern for software architecture describes a particular recurring design
problem that arises in specific design contexts, and presents a well-proven generic
scheme for its solution. The solution scheme is specified by describing its con-
stituent components, their responsibilities and relationships, and the ways in
which they collaborate.” (p8.)

There are already some practical tutorials of Go and RabbitMQ. In com-
parison with the courses of the online learning platform [20], this tutorial not
only focuses on the Go language essentials and concurrency, but also on practi-
cal examples of the distributed computation based on the AMQP. The distributed
examples leverage RabbitMQ’s built-in mechanisms: the balanced queue mech-
anism and the exchange routing mechanism. Compared to the tutorials of the
RabbitMQ official website [17], which are more focused on the introduction
of the basic mechanisms, this tutorial provides more complete and meaningful
practical examples of distributed computation.

The process figures of the example in this tutorial follow the Communication
Diagrams specification declared in the Unified Modeling Language UML
2.0. The rectangle represents an individual participant in the interaction. The
small arrow with the sequence number and the message name represents the
messages. “The sequence-expression is a dot-separated list of sequence-terms
followed by a colon (‘:’). Each term represents a level of procedural nesting
within the overall interaction. The integer represents the sequential order of the
message within the next higher level of procedural calling. Messages that differ
in one integer term are sequentially related at that level of nesting. Example:
Message 3.1.4 follows Message 3.1.3 within activation 3.1” [21].

The code listings contain only source code parts to make it easier to under-
stand and to create a more compact tutorial. Therefore, the error handling and
the repeated package import parts are eliminated.

In the following, first we introduce the main Go language elements and differ-
ent versions of concurrent job processing examples. Next, we present the main
concepts of Advanced Message Queueing Protocol (AMQP). Afterward,
we discuss RabbitMQ basic code and distributed examples following different
patterns. Finally, we provide testings, related works, and conclusions.

204 J. Li et al.

2 GO Essentials

The programming language Go is an open-source project to make programmers
more productive, as stated on the website of the language [19]. Go is expressive,
concise, clean, and efficient. Its concurrency mechanisms make it easy to write
programs that get the most benefits of the multicore and networked machines.
At the same time, its novel type system enables flexible and modular program
construction.

Go also compiles quickly to machine code, and yet it has the convenience
of garbage collection and the power of run-time reflection. It is a fast, statically
typed, compiled language that feels like a dynamically typed, interpreted lan-
guage. Famous open-source projects of Go are Docker, Consul, Lantern, Kuber-
netes, Prometheus, and InfluxDB.

For the installation you can follow the Go download and install instruc-
tions [8]. By default, the installation process deals with the system environment
variable of the command go. Check if you installed Go successfully by using
command go version in a system command prompt.

2.1 Syntax of Basic Language Elements

Let us start with the classical first example of every programming language: the
hello world program. Inside a folder, create a file named hello.go. Type in the
code of Listing 1.1. Use the command go run hello.go to run the program.
Only the package named main can be executed by the command go run. Inside
the package main, there must be also a function named main as the entry point
of the program.

1package main
2import "fmt"
3func main() {
4fmt.Println("Hello�World")
5}

Listing 1.1. Hello World

After we use the command go run to run this program, it prints Hello World.

1go run helloWorld.go
2Hello World

The whitespaces do not matter in Go; the compiler ignores all of them. There-
fore, no worries about the indentation, unlike in Python. Furthermore, the com-
piler automatically adds a semicolon for you after each statement–accordingly,
no concerns about semicolons, unlike in Java.

Next, the description of the Go basic elements used in this tutorial is pre-
sented; each one is introduced briefly, followed by a practical example using it.

Imports. The keyword import is used for importing packages. It is recom-
mended to use a single keyword import and parentheses for multiple packages
as shown in Listing 1.3.

Balanced Distributed Computation Patterns 205

1import "fmt"
2import "strconv"

Listing 1.2. Import ver.1

1import (
2"fmt"
3"strconv"
4)

Listing 1.3. Import ver.2

Constants. Constants can be declared with const keyword and = operator
inside or outside of a function. Its value can be a character, string, Boolean,
or numerical value. After the constant has been initialized with a value, the
attempts to modify the value cause errors when compiling the program.

1const JohnID = 1754

Listing 1.4. Constant declaration

Variables. A variable statement declares variables with types either at the
package or at function level. The keyword var initiates a variable declaration.
The variable declaration can be done in the format of the keyword var then a
variable name and the type of the variable. The basic types of Go are: bool,
string, int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, uintptr,
byte, rune, float32, float64, complex64, and complex128.

1package main
2import "fmt"
3var x, y, z bool // package level variable
4func main() {
5var i int // function level variable
6fmt.Println(i, x, y, z)
7}

Listing 1.5. Variables

Output:
10 false false false

Initializers can be also used during the variable declaration. One initial value
is given to each variable to be declared. If an initializer is used, the type can be
omitted since the type of the initializer is taken as the type of the variable.

1package main
2import "fmt"
3var i = 1
4var j int = 2
5func main() {
6var x, y = true , "hello"
7fmt.Println(i, j, x, y)
8}

Listing 1.6. Variables with initializers

206 J. Li et al.

Output:

11 2 true hello

It can be made even shorter by using a short assignment, which eliminates
the keyword var and uses the operator :=. The short assignment can be used
inside a function. It is not legal to use it to declare a package level variable.

1package main
2import "fmt"
3func main() {
4var i = 1
5j := 2 // short assignment
6fmt.Println(i, j)
7}

Listing 1.7. Short variable declarations

Output:

11 2

Functions. A function takes parameters and returns results. The number of
parameters and results can be zero or more. The parameters and arguments are
different. When you define a function, the input variables are the parameters
usually used inside the function block. When you call a function, the variables
passed to the function are arguments.

The function multiplicate of Listing 1.8 takes two int parameters (x and y)
and returns one int (the product of them). The function multipAndAdd takes
two int parameters (x and y) and returns two int results (the product and
sum).

1package main
2import "fmt"
3func main() {
4fmt.Println(multiplicate(3, 4))
5fmt.Println(multipAndAdd(3, 4))
6}
7func multiplicate(x, y int) int {
8return x * y
9}
10func multipAndAdd(x, y int) (int , int) {
11return x * y, x + y
12}

Listing 1.8. Function

Output:

112
212 7

Named Return Values. When defining a function, the return values can be
also named beside the return types. Values can be assigned to the named return
values in the function body because they are treated as variables. After assigning

Balanced Distributed Computation Patterns 207

all the named return values, a return statement without arguments can be used
to return the named return values.

In Listing 1.9, the function f takes one int parameter x and returns three
named return values: a of type int, b of type int, s of type string. In the
function body, we assign values for the named return variables and use a return
statement without arguments to return them.

1package main
2import "fmt"
3func f(x int) (a int , b int , s string) {
4a = 4
5b = x
6s = "apple"
7return
8}
9func main() {
10fmt.Println(f(5))
11}

Listing 1.9. Named return values

Output:

14 5 apple

Variadic Functions. The variadic function has a particular parameter type:
... used to show that it may have many parameters of this type. For example,
the parameter nums of function product in Listing 1.10 is of type ...int, which
means it matches any number of integers. The nums can be accessed in the
function block as a slice of integers (Go slices are introduced in Sect. 2.1). When
calling the product function, a different number of integers can be passed.

1package main
2import "fmt"
3func main (){
4result1 := product (2,3)
5fmt.Println(result1)
6result2 := product (2,3,4)
7fmt.Println(result2)
8}
9func product(nums ...int) int {
10result := 1
11for _, num := range nums {
12result *= num
13}
14return result
15}

Listing 1.10. Variadic function

Output:

16
224

208 J. Li et al.

Defer. The defer statement schedules a function call to be run immediately
before the function is executing the return statement. The syntax is: defer
<function call>. In Listing 1.11, the defer statement is placed in the function
main. We call the Println with the argument "Last1", "Last2", and "Last3". If
there is only one defer statement, the defer ensures that the related function call
runs as the last statement before the function main return. If there are multiple
defer statements, the first defer statement will be the last statement the function
runs. The usage of defer statement can also be found in Subsect. 5.1.

1package main
2import "fmt"
3func main (){
4fmt.Println("First")
5defer fmt.Println("Last1")
6defer fmt.Println("Last2")
7defer fmt.Println("Last3")
8fmt.Println("Second")
9}

Listing 1.11. Defer

Output:

1First
2Second
3Last3
4Last2
5Last1

Recursion. Go supports recursion, i.e. a function can call itself. As in any other
programming language, first we must take care of the terminal condition, then
we have to figure out what should be done in each recursive step. In Listing 1.12,
we define the multiplication in a recursive way.

1package main
2import "fmt"
3func main (){
4fmt.Println(multiplicateR (3 ,4))
5}
6func multiplicateR (a int , b int) int{
7if a== 0{
8return 0
9}
10return b + multiplicateR(a-1, b)
11}

Listing 1.12. Recursion

Output:

112

Exported Names. Outside of the imported packages, we can only access the
exported names in the imported packages. Exported names must start with a
capital letter. In Listing 1.13, we accessed the IntSize constant and the Itoa
method of the strconv package.

Balanced Distributed Computation Patterns 209

1package main
2import (
3"fmt"
4"strconv"
5)
6func main() {
7fmt.Println(strconv.IntSize)
8fmt.Println(strconv.Itoa (3))
9}

Listing 1.13. Exported names

Output:
164
23

Here is another example that includes some commonly used functions of the
strconv and strings packages. The function Itoa converts an integer to string.
The function Atoi converts a string to an integer. The function ToLower converts
all the characters of a string to lower case. The function ToUpper converts all the
characters of a string to upper case. The function Contains checks if a string is
inside another string. The function Count counts how many times a string that
is non-overlapping appears in another string. The function Split splits a string
according to a separator.

1package main
2import (
3"fmt"
4"strconv"
5"strings"
6)
7func main() {
8fmt.Println("strconv -------")
9s := strconv.Itoa (1)
10fmt.Println(s)
11i, err := strconv.Atoi("2")
12if err != nil {
13panic(err)
14}
15fmt.Println(i)
16fmt.Println("strings -------")
17fmt.Println("ToLower:�"+strings.ToLower("APPLE"))
18fmt.Println("ToUpper:�"+strings.ToUpper("apple"))
19fmt.Println(strings.Contains("apple","pp"))
20fmt.Println(strings.Count("apple","p"))
21fmt.Println(strings.Split("a,p,p,l,e",","))
22}

Listing 1.14. Commonly used functions of the strconv and strings packages

Output:
1strconv -------
21
32
4strings -------
5ToLower: apple
6ToUpper: APPLE
7true
82
9[a p p l e]

210 J. Li et al.

Type Inference. When declaring a variable without a specified type, the type
for the variable is determined by the type of the right-hand side value.

1var i int
2j := i // j is an int

Listing 1.15. Type inference without an explicit type

1i := 42 // int
2f := 3.142 // float64
3g := 0.867 + 0.5i // complex128

Listing 1.16. Type inference with constants

Type Conversions. A type value can be converted by putting it into the
parenthesis of a new type: T(v), where T is the new type name to convert
into and v is the original value. Go, unlike most other programming languages,
requires explicit type conversions.

1var i int = 42
2var f float64 = float64(i)
3var u uint = uint(f)

Listing 1.17. Type conversions

For Statement. The syntax of a for loop is without parenthesis: between the
for keyword and the braces, we declare an initialization, a condition, and a final
expression.

1package main
2import "fmt"
3func main() {
4product := 1
5for i := 1; i < 5; i++ {
6product *= i
7}
8fmt.Println(product)
9}

Listing 1.18. For loop

Output:
124

A while loop is expressed with a for loop where only a condition is declared.
1package main
2import "fmt"
3func main() {
4i := 1
5for i < 5 {
6fmt.Println(i)
7i++
8}
9}

Listing 1.19. While loop

Balanced Distributed Computation Patterns 211

Output:

11
22
33
44

An infinite loop can be created by omitting the loop condition.

1for {
2}

Listing 1.20. Infinite loop

If Statement. Similar to the for loop, there are no parentheses between the
if keyword and the braces.

1package main
2import "fmt"
3func main() {
4x := 2
5if x < 0 {
6fmt.Println (0)
7}else{
8fmt.Println(x)
9}
10}

Listing 1.21. Example of if statement

Output:

12

One short statement can be placed inside of an if statement, which is valid until
the end of if, and it acts like a local declaration of if.

1package main
2import "fmt"
3func main() {
4if x := -2; x<0 {
5fmt.Println(x)
6}
7}

Listing 1.22. Example of if statement with short statement

Output:

1-2

Switch Statement. When using a switch statement in Go, break is automat-
ically provided for each cases. Switch cases do not need to be constants. The
evaluation proceeds from top to bottom and it stops when the case matches. A
switch without a case is considered as a true match.

212 J. Li et al.

1package main
2import "fmt"
3func main() {
4lunch:= "apple"
5switch lunch {
6case "banana":
7fmt.Println("My�lunch�was�a�banana.")
8case "apple":
9fmt.Println("My�lunch�was�an�apple.")
10case "pear":
11fmt.Println("My�lunch�was�a�pear.")
12case "tomato":
13fmt.Println("My�lunch�was�a�tomato.")
14default:
15fmt.Printf("I�did�not�have�lunch.")
16}
17}

Listing 1.23. Example of switch statement

Output:

1My lunch was an apple.

Slice. A slice is an array of elements of the same type with dynamic size. It is
similar to a list in Haskell or to an ArrayList in Java. The syntax of slice is:
<SliceName> := []<Type>{ <Elements> }.

In Listing 1.24, the slice animals is created with four initial elements. The
built-in function append returns a new slice value that contains the new elements.
append is a variadic function; therefore, more new elements can be appended in
one line. A for range loop can be used to iterate over the slice, as shown from
line 12 to 14. An unneeded index is replaceable by an underscore, as shown in
line 15. A declared but not used variable generates compilation error.

The index of a slice starts from zero. We can access the slice elements by
putting indexes in the square brackets, as shown from line 18 to 21, [3] means
the fourth element, [:3] means elements from beginning till the fourth element
(not included). The [3:] means elements from the fourth element (included) till
the end and [2:4] means elements from the third element (included) till the
fifth element (not included). The usage of slice can also be found in Sect. 5.5.

1package main
2import "fmt"
3func main() {
4animals := [] string{
5"dog",
6"cat",
7"bird",
8"lion",
9}
10animals = append(animals , "panda")
11animals = append(animals , "tiger", "wolf")
12for index , animal := range animals {
13fmt.Println(index , animal)
14}
15for _, animal := range animals {
16fmt.Println(animal)
17}

Balanced Distributed Computation Patterns 213

18fmt.Println(animals [3])
19fmt.Println(animals [:3])
20fmt.Println(animals [3:])
21fmt.Println(animals [2:4])
22animals [3] = "SSS"
23fmt.Println(animals)
24}

Listing 1.24. Slice

Output:

10 dog
21 cat
32 bird
43 lion
54 panda
65 tiger
76 wolf
8dog
9cat
10bird
11lion
12panda
13tiger
14wolf
15lion
16[dog cat bird]
17[lion panda tiger wolf]
18[bird lion]
19[dog cat bird SSS panda tiger wolf]

Map. In Listing 1.25, a map named neptunMap is created and three elements are
inserted (line 5 to 7). Using the built-in function len, we can get the length of
the map. The insertion and the modification of a map share the same syntax.

The built-in function delete can be used to delete an element from the map
according to the element’s key. When you try to get the mapped value of a key
in a map, you get two returned values, as shown in line 14 and 16. The first is
the value, the second is a Boolean, which shows if this key exists in the map or
not. If the key does not exist, this Boolean is false, and the value is the default
value of that type value. Additionally, we can iterate over the map with for
range loop. The syntax is similar to the for range loop on a slice.
The usage of map can also be found in Sect. 5.5.

1package main
2import "fmt"
3func main() {
4neptunMap := make(map[string]string)
5neptunMap["AABBCC"] = "Adam"
6neptunMap["CCBBAA"] = "Ben"
7neptunMap["BBAACC"] = "Ada"
8fmt.Println(neptunMap)
9fmt.Println(len(neptunMap))
10neptunMap["BBAACC"] = "CCC"
11fmt.Println(neptunMap)
12delete(neptunMap , "BBAACC")
13fmt.Println(neptunMap)
14v1, ok1 := neptunMap["CCBBAA"]
15fmt.Println(v1, ok1)
16v2, ok2 := neptunMap["AAAAAA"]

214 J. Li et al.

17fmt.Println(v2, ok2)
18for k,v := range neptunMap {
19fmt.Println(k,v)
20}
21}

Listing 1.25. Map

Output:

1map[AABBCC:Adam BBAACC:Ada CCBBAA:Ben]
23
3map[AABBCC:Adam BBAACC:CCC CCBBAA:Ben]
4map[AABBCC:Adam CCBBAA:Ben]
5Ben true
6false
7AABBCC Adam
8CCBBAA Ben

Struct. The struct is a data structure with collection of fields. The relation
between the struct and its typed value is like the relation between the class
and the object in Java.

In Listing 1.26, student is the name of the struct and adam is its typed
value. We can use dot operator to access a field of a struct when we want to
get or modify the field. The struct can be defined inside or outside the function:
the student is defined outside the main function, the teacher is defined inside.
The struct is also a type that we define. The type of a field in a struct can be
another struct: the field named c is of type contact, which is another struct.

1package main
2import "fmt"
3type student struct {
4name string
5id id
6c contact
7}
8type id string
9type contact struct {
10email string
11mobile string
12}
13func main() {
14cont:= contact{"adam@gmail.com","0000"}
15adam := student{"Adam", "abcdef",cont}
16fmt.Println(adam)
17adam.id = "nnnnn"
18fmt.Println(adam)
19fmt.Println(adam.name)
20type teacherId string
21type teacher struct{
22n string
23id teacherId
24c contact
25}
26v:= teacher {"v","a",contact{"v@gmail.com", "1111"}}
27fmt.Println(v)
28}

Listing 1.26. Struct

Balanced Distributed Computation Patterns 215

Output:

1{Adam abcdef {adam@gmail.com 0000}}
2{Adam nnnnn {adam@gmail.com 0000}}
3Adam
4{v a {v@gmail.com 1111}}

Receiver. A receiver sets up methods on the types we created. A method is a
function with a receiver. The receiver is like a parameter in a special location. The
syntax is: func (Receiver) functionName (Parameter) returnType {}.

In Listing 1.27, the two versions of the getName function perform the same
task, but in different forms. The getNameR function passes the student as a
receiver, the getNameA function passes the student as a parameter.

1package main
2import "fmt"
3type student struct {
4name string
5id string
6}
7func main() {
8adam := student{"Adam", "abcdef"}
9fmt.Println(adam.getNameR ())
10fmt.Println(getNameA(adam))
11}
12func (s student) getNameR () string {
13return s.name
14}
15func getNameA(s student) string {
16return s.name
17}

Listing 1.27. Receiver

Output:

1Adam
2Adam

Pointer. Go is a pass-by-value language. When we call the function and pass
the arguments, copies of the arguments are created and then passed to the
function. The struct follows the default pattern; however, the slice is of reference
type, which implies that the references of the slice arguments are passed to the
function. If we want to modify the arguments’ value instead of just using the
copied values, we need to use pointers. The copied value of the slice already
contains the pointer, so that we do not need to do the pointer operation to
modify the original value.

The operator * has different meanings in different places. As shown in line
22, in the function body, it means dereference a pointer, and it gets the current
value the pointer points to. As shown in line 21, when used to declare the type
of the parameter, it means the parameter is a pointer. It converts the normal
type to the pointer type. The operator & creates a pointer (line 15).

216 J. Li et al.

1package main
2import "fmt"
3type student struct {
4name string
5id string
6}
7func main() {
8animals := [] string{
9"dog",
10"lion",
11"panda",
12}
13adam := student{"Adam", "abcdef"}
14fmt.Println(adam)
15modifyStudentName(&adam , "Levi")
16fmt.Println(adam)
17fmt.Println(animals)
18modifyFirstItem(animals , "cat")
19fmt.Println(animals)
20}
21func modifyStudentName(pointerToStudent *student , newName string) {
22(* pointerToStudent). name = newName
23}
24func modifyFirstItem(animals []string , newFirstItem string) {
25animals [0] = newFirstItem
26}

Listing 1.28. Pointer

Output:

1{Adam abcdef}
2{Levi abcdef}
3[dog lion panda]
4[cat lion panda]

Interface. The interface is used for two purposes. The first purpose is to make a
more general function with an interface as its parameter, so that all the struct
implementing this interface can be passed as an argument when the function
is called. Therefore, this general function is reused instead of writing similar
functions for each specific struct. The second purpose is to use the interface
to limit the usage of the methods of a struct in a function. One struct can
implement more interfaces, and it may have more methods than the interfaces
need. If a function takes the interface as a parameter instead of a struct, then
in the function body only the methods included in the interface can be used.

Listing 1.29 is an example of Go interface. The animal interface contains
the move and the breath methods. The readThinker interface contains the
read and the think methods, meaning the readThinker function only cares
about those two methods. In addition to methods, an interface can also contain
other interfaces. The people interface contains the animal and the readThinker
interfaces. Therefore, in order to implement the people interface, we need to
implement all the methods in the animal and the readThinker interfaces.

The student struct implements the people interface. The student struct
can also have other methods that are not related to the people interface, like
the study method. The dog struct implements the animal interface.

Balanced Distributed Computation Patterns 217

The moveAndBreath function takes the animal interface as parameter. We
can pass the people or the dog struct as argument when calling this function.
This is how to make a general function for multiple structs that have imple-
mented the same interfaces (it contains the same set of related methods).

The readAndThink function takes the readThinker interface as parameter.
We cannot pass the dog struct as argument when calling it because the dog struct
does not implement the readThinker interface (does not have the readAndThink
method). The people struct can be passed as argument for this function, but in
this function, only the methods related to the readThinker interface can be used.
For example, we cannot use the move method when we pass the people struct
when calling the function readAndThink, even though the people struct has
implemented the move method. When dealing with a struct which implements
more interfaces or other methods, we can use the interface to limit the group of
methods that can be used by a function. If we want to use the method move and
think in a function, we should pass the “bigger” people interface instead of the
readThinker or animal interfaces, as the function moveAndThink shows.

1package main
2import "fmt"
3type animal interface{
4move() error
5breath() error
6}
7type readThinker interface{
8read() error
9think() error
10}
11type people interface{
12animal
13readThinker
14}
15type student struct{
16name string
17}
18func (s student) move() error{
19fmt.Println(s.name+"�move")
20return nil
21}
22func (s student) breath() error{
23fmt.Println(s.name+"�breath")
24return nil
25}
26func (s student) read() error{
27fmt.Println(s.name+"�read")
28return nil
29}
30func (s student) think() error{
31fmt.Println(s.name+"�think")
32return nil
33}
34func (s student) study() error{
35fmt.Println(s.name+"�study")
36return nil
37}
38type dog struct{
39name string
40}
41func (d dog) move() error{
42fmt.Println(d.name+"�move")
43return nil
44}

218 J. Li et al.

45func (d dog) breath() error{
46fmt.Println(d.name+"�breath")
47return nil
48}
49func moveAndBreath(a animal) {
50_ = a.move()
51_ = a.breath()
52}
53func readAndThink(r readThinker){
54_ = r.read()
55_ = r.think()
56}
57func moveAndThink(p people){
58_ = p.move()
59_ = p.think()
60}
61func main (){
62ol := student{"Olivia"}
63pug := dog{"Bella"}
64moveAndBreath(ol)
65moveAndBreath(pug)
66readAndThink(ol)
67moveAndThink(ol)
68}

Listing 1.29. Interface

Output:

1Olivia move
2Olivia breath
3Bella move
4Bella breath
5Olivia read
6Olivia think
7Olivia move
8Olivia think

After introducing the basics of Go, next the concurrent constructs are presented
and studied via examples.

3 Concurrent Programming

This section introduces several Go language elements related to concurrent pro-
gramming: goroutine, WaitGroup, mutual exclusion operations, channel, and
select. Additionally, the concurrency principles of Go are explained. In the end,
a concurrent job processing example is provided with different versions.

3.1 Goroutine

The goroutines are similar to threads in Java; however, they are more
lightweight, and neither id nor names are assigned to them. The keyword go
is used before a function call to generate a goroutine. The function can be a
named function or an anonymous function. The syntax of creating a goroutine
with a named function is: go < FunctionName >(Arguments).

In Listing 1.30, line 7 uses go statement to generate a separate goroutine that
runs the print() function. The goroutine does not care about the return values

Balanced Distributed Computation Patterns 219

of this function; it only cares about what should be executed. Usually, goroutine
functions have no return type. In this example, the printR function has a return
type, while the print has not. However, they behave in the same way when they
run as goroutines. There are ways to let the goroutine impact the outside world
or bring out information. For example, you can mutually exclusively modify a
variable outside or use a channel to communicate with other goroutines, see
in Subsect. 3.4. When you run a program, the main function also runs as a
goroutine, which is a special goroutine. Hence, there are three goroutines in
the example: the main and two goroutines created by the main, the printR
and the print(). When the function main terminates, all the goroutines it has
created are stopped as well. In the example, if we do not let the function main to
sleep for a while after it started the two goroutines, or the sleeping time is not
enough, then it may terminate before the two goroutines finish. In that case, the
two goroutines may not have finished their jobs. The sleep prevents the main
goroutine from terminating other goroutines before they finish.

1package main
2import (
3"fmt"
4"time"
5)
6func main (){
7go printR("Hi�1")
8go print("Hi�2")
9time.Sleep(1 * time.Second)
10}
11func print(s string) {
12fmt.Println(s)
13}
14func printR(s string) string {
15fmt.Println(s)
16return s
17}

Listing 1.30. Goroutine creation with named function

Output:

1Hi 1
2Hi 2

The syntax of creating a goroutine with anonymous function is:
go func (< Parameters and their types >) { } (Arguments)
where, after the braces, the brackets and the arguments inside them mean that
we call anonymous function rather than just defining it (so do not forget these
brackets). In Listing 1.31, there are no parameters in the first anonymous func-
tion; therefore, the brackets at line 9 are empty. The second anonymous function
has a parameter of string type. Accordingly, inside the brackets at the end, we
need to put a string as an argument.

1package main
2import (
3"fmt"
4"time"
5)
6func main (){

220 J. Li et al.

7go func () {
8fmt.Println("Hi�1")
9}()
10go func (s string) {
11fmt.Println(s)
12}("Hi�2")
13time.Sleep(1 * time.Second)
14}

Listing 1.31. Goroutine creation with anonymous function

Output:

1Hi 1
2Hi 2

3.2 WaitGroup

In the previous example, the sleeping time estimation used in goroutines is hard
to decide; 1 second for Sleep might be too much for all the goroutines to finish
their job. You may know the join method of Java, which lets a thread to wait
until the children threads have finished. Go has a similar construct: WaitGroup.
Here is how to use it when applied to wait until the created goroutines finished:

1. import "sync" – import the package sync.
2. var < TypedV alueName > sync.WaitGroup – create first a typed value

of sync.WaitGroup type (this value can be used later). There is no need to
initialize it, the default value is good enough.

3. < TypedV alueName >.Add(1) – before you start a goroutine, use the Add
method of the WaitGroup with argument 1. It means a goroutine is added,
for which the WaitGroup needs to wait.

4. defer < TypedValueName >.Done() – use this method of the WaitGroup at
the beginning of a goroutine function body. It means before the goroutine
terminates, it signals to the WaitGroup that its job has finished.

5. < TypedV alueName >.Wait() – put this method of the WaitGroup at a
place where all the goroutines are awaited.

1package main
2import (
3"fmt"
4"sync"
5)
6func main (){
7var wg sync.WaitGroup
8for i := 0; i < 5; i++ {
9wg.Add(1)
10go func (a int) {
11defer wg.Done()
12fmt.Println("Hi",a)
13}(i)
14}
15wg.Wait()
16}

Listing 1.32. WaitGroup

Balanced Distributed Computation Patterns 221

Output:

1Hi 4
2Hi 1
3Hi 0
4Hi 2
5Hi 3

It is normal to have different printing order when executing the code. If the call
of Wait is deleted at line 15, the output is empty because the main function
does not wait, it terminates; therefore, all the created goroutines are stopped
before they can print the results. If instead of a the argument i is passed to the
Println function, then the output is:

1Hi 5
2Hi 5
3Hi 5
4Hi 5
5Hi 5

The previous output is wrong: we do not want the program to print only 5
because i is changing at each iteration. Suppose the value of i is 3 when we
use the go keyword to create a goroutine (let us call it goroutine A). After this
iteration is over, the for loop goes on, i is changing and more goroutines are
created. At the same time, the created goroutine A is still running. When the
goroutine A uses the value of i for printing, the value of it is not 3 anymore.

As mentioned before, Go creates a copy of the arguments when calling a
function. This copy stores the current value. Therefore, when we deal with a
loop (or we need the value at some point, not the currently updated value), we
must pass this value as an argument.

3.3 Mutual Exclusion

Mutex. If the goroutines do not access a shared variable mutually exclusive,
the race condition occurs. The sync.Mutex can be called to create code blocks
to be executed with mutual exclusion. Listing 1.33 shows how to use the Mutex:

1. import "sync" – import the package sync.
2. var < TypedV alueName > sync.Mutex – create sync.Mutex type value.
3. < TypedV alueName >.Lock() – use before accessing the shared resources.
4. < TypedV alueName >.Unlock() – use after accessing the shared resources.

1package main
2import (
3"fmt"
4"sync"
5)
6func main (){
7var mu sync.Mutex
8var wg sync.WaitGroup
9var result = 0
10for i := 0; i < 1000; i++ {
11wg.Add(1)
12go func (a int) {

222 J. Li et al.

13defer wg.Done()
14mu.Lock()
15result += a
16mu.Unlock()
17}(i)
18}
19wg.Wait()
20fmt.Println(result)
21}

Listing 1.33. Mutex

The output is the sum of integers from 0 to 999:
1499500

AddUint. The range of int type is platform-dependent. It is 32 bits on a 32-bit
system and 64-bits on a 64-bit system. int64 has larger range than int32. The
uint means unsigned integer. Usually, we use the unsigned integer to count.
By ignoring the negative numbers, we can double the size. Therefore, in this
example we used the AddUint64 function instead of the AddInt32 one.

If a shared variable is an unsigned integer, we use the function AddUint32 or
AddUint64 for a mutually exclusive addition operation. In this way, no need to
handle ourselves the lock and unlock operations, as Listing 1.34 shows:

1. import "sync/atomic" – import the package.
2. var < TypedV alueName > uint64 – declare an uint64 type variable.
3. atomic.AddUint64(&< TypedValueName >, Value) – use in a goroutine to

add a value to the shared uint64. The first argument is the pointer to the
uint64 variable, while the second is the value to be added, which is of type
uint64.

1package main
2import (
3"fmt"
4"sync"
5"sync/atomic"
6)
7func main (){
8var result uint64
9var wg sync.WaitGroup
10for i := 0; i < 1000; i++ {
11wg.Add(1)
12go func (a int) {
13defer wg.Done()
14u:= uint64(a)
15atomic.AddUint64 (&result , u)
16}(i)
17}
18wg.Wait()
19fmt.Println(result)
20}

Listing 1.34. AddUint64

The output shows that we can use the AddUint64 in different goroutines to
access the shared variable mutually exclusive:

Balanced Distributed Computation Patterns 223

1499500

3.4 Channels

Running goroutines can use channels to send and receive messages to each other
without worrying about the mutual exclusion problem. A channel “by default,
sends and receives block until the other side is ready. This mechanism allows
goroutines to synchronize without explicit locks or condition variables” [2].

Here is the syntax of make when creating a channel:

< ChannelName > := make (chan < Type >)
< ChannelName > := make (chan < Type >, < BufferSize >).

There is an initialization process of the channel in Listing 1.36 line 8, where an
unbuffered channel of strings is created. The chan string means only strings
can be sent and received on this channel. If a positive integer is added as second
parameter, then it is a buffered channel of that size. The sender can close a
channel to indicate that no more values are sent, as shown in Listing 1.35 line
17. Here is the syntax: close (< ChannelName >).

For the syntax of send and receive, we always use the arrow to the left
operator <- (or less minus operator). If the channel is on the left-hand side, it
is the send operation. If the channel is on the right-hand side, it is the receive
operation. The syntax for send is: < ChannelName > <- < Message > and
for receive is: < Message > := <- < ChannelName >.

As shown in Listing 1.35, a for range loop can be used to iterate over a
channel: it receives values from the channel until the channel is closed. The
syntax is: for < iterator > := range < ChannelName > { }.

Next, the difference between the two kinds of channels are given. First, we
introduce the buffered channel. As Fig. 1 shows, we have 4 slots for int, which
is declared in Listing 1.35 line 9 make(chan int,4). At this point the channel
is empty. If any goroutine wants to receive, for example, a string from this
channel, then it is blocked. If any goroutine wants to send a string to the channel,
the string is stored in the buffer. The first, second, third, and fourth sending
(insertion) are all successful, but the fifth sending is blocked until some other
goroutine is trying to receive (extract) from it.

Fig. 1. Buffered channel of size 4

In Listing 1.35, we start two goroutines. The first goroutine tries to send ten
integers to the channel c. The second goroutine sleeps 5 seconds before it starts

224 J. Li et al.

to receive integers from the channel c. When the second goroutine does not start
to receive, the first goroutine can only send four integers (because the buffer size
is 4); that is why there are only four lines in the output at the beginning.

1package main
2import (
3"fmt"
4"sync"
5"time"
6)
7func main() {
8var wg sync.WaitGroup
9c := make(chan int ,4)
10wg.Add(1)
11go func() {
12defer wg.Done()
13for i:=0;i<10;i++{
14c<-i
15fmt.Println("g1�sent�",i)
16}
17close(c)
18}()
19wg.Add(1)
20go func() {
21defer wg.Done()
22time.Sleep (5* time.Second)
23for r := range c {
24fmt.Println("g2�received�", r)
25}
26}()
27wg.Wait()
28}

Listing 1.35. Channel with buffer

In the output, g1 is the first and g2 is the second goroutine. At the beginning
g1 sends four messages. After a few seconds, g2 starts to receive, and then g1
sends the rest of the messages:

1g1 sent 0
2g1 sent 1
3g1 sent 2
4g1 sent 3
5(After a few seconds)
6g2 received 0
7g2 received 1
8g2 received 2
9g2 received 3
10g2 received 4
11g1 sent 4
12g1 sent 5
13g1 sent 6
14g1 sent 7
15g1 sent 8
16g1 sent 9
17g2 received 5
18g2 received 6
19g2 received 7
20g2 received 8
21g2 received 9

Second, we introduce the channel without buffer. The unbuffered channel
has the second parameter as 0; there is no buffer for the data, as Fig. 2 shows.
Without a sending operation to this channel, the receiving operation is blocked.

Balanced Distributed Computation Patterns 225

Likewise, the sending operation is blocked without a receiving operation. The
communication is successful once different goroutine sending and the goroutine
receiving. The unbuffered channel leads to the notion of synchronization.

Fig. 2. Channel without buffer.

In Listing 1.36, c is a channel of string without buffer. The first goroutine
sends a “Hello” to channel c, the second goroutine receives a string from it.

1package main
2import (
3"fmt"
4"sync"
5)
6func main() {
7var wg sync.WaitGroup
8c := make(chan string)
9wg.Add(1)
10go func() {
11defer wg.Done()
12s := "Hello"
13c <- s
14fmt.Println("g1�sent�",s)
15}()
16wg.Add(1)
17go func() {
18defer wg.Done()
19r := <- c
20fmt.Println("g2�received�", r)
21}()
22wg.Wait()
23}

Listing 1.36. Channel without buffer

Output:

1g1 sent Hello
2g2 received Hello

3.5 Select

The select statement enables you to deal with multiple channel operations,
channel operations with a timeout, and non-blocking channel operations.

There are a few cases and a possible default inside the select block. There
is a channel operating after each keyword case. The select statement checks
if those operations are executable (which are not blocked). If there is more than
one executable case, select chooses one executable case randomly to execute; If
there is no executable case, and there is a default case, then select executes the
default case. If there is no executable case, and there is no default case, select
blocks and waits until there is at least one executable case.

226 J. Li et al.

The function After of the package time returns a channel. The argument
is a duration value. After this duration elapses, the function After sends the
current time as a message to the returned channel.

Listing 1.37 shows an example of select dealing with channel operation
with timeout. This example is not executable when select checks the first case
because the created goroutine is still sleeping. The second case is also not exe-
cutable because the function After only sends a message to the returned channel
after 3 s. There is no default case, then select blocks and waits. The first case
needs 4 s to become executable. The second case only needs 3 s to become exe-
cutable. After 3 s, the After function sends a message to the returned channel,
the second case becomes executable, which is the only executable case at that
moment. Therefore, the second case is executed.

1package main
2import (
3"fmt"
4"time"
5)
6func main() {
7c := make(chan int)
8go func() {
9time.Sleep(4 * time.Second)
10c <- 1
11fmt.Println("g1�sent�1")
12}()
13select {
14case msg := <-c:
15fmt.Println("Main�received�", msg)
16case <- time.After(3 * time.Second):
17fmt.Println("Timeout ,�Quit")
18break
19}
20}

Listing 1.37. Select with timeout

Output:

1Timeout , Quit

Listing 1.38 shows an example of select dealing with continuous multiple chan-
nel operations. There are two channels of integers. The first created goroutine
sends 5 integers to channel c1 with a 500 ms interval. The second sends integers
to channel c2. The main function keeps receiving messages from both channels.
For every 500 ms, the first two cases become executable nearly simultaneously,
so main function randomly chooses one of them to execute. After 3 s of main
receiving all the messages, the timeout case is executed.

1package main
2import (
3"fmt"
4"time"
5)
6func main() {
7c1 := make(chan int)
8c2 := make(chan int)
9go func() {
10for i := 0; i < 5; i++ {

Balanced Distributed Computation Patterns 227

11time.Sleep (500 * time.Millisecond)
12c1 <- i
13fmt.Println("g1�sent�", i)
14} }()
15go func() {
16for i := 0; i < 5; i++ {
17time.Sleep (500 * time.Millisecond)
18c2 <- i
19fmt.Println("g2�sent�", i)
20} }()
21L: for {
22select {
23case msg := <-c1:
24fmt.Println("Main�received�", msg , "�from�g1")
25case msg := <-c2:
26fmt.Println("Main�received�", msg , "�from�g2")
27case <- time.After(3 * time.Second):
28fmt.Println("Timeout ,�Quit")
29break L
30}
31}
32}

Listing 1.38. Select multiple channel operations

Output:

1Main received 0 from g1
2Main received 0 from g2
3g1 sent 0
4g2 sent 0
5g1 sent 1
6Main received 1 from g1
7Main received 1 from g2
8g2 sent 1
9g1 sent 2
10Main received 2 from g1
11Main received 2 from g2
12g2 sent 2
13g1 sent 3
14Main received 3 from g1
15Main received 3 from g2
16g2 sent 3
17g2 sent 4
18Main received 4 from g2
19Main received 4 from g1
20g1 sent 4
21Timeout , Quit

The select with default case is also known as the non-blocking channel opera-
tion. Listing 1.39 shows an example of select dealing with non-blocking channel
operation. The created goroutine sleeps two seconds, then tries to send 1 to chan-
nel c. When running the program for the first four iterations, the first case is
not executable because the created goroutine is sleeping. The select executes
the default case. At the fifth iteration, the first case becomes executable.

1package main
2import (
3"fmt"
4"time"
5)
6func main() {
7c := make(chan int)
8go func() {
9time.Sleep (2000 * time.Millisecond)

228 J. Li et al.

10c <- 1
11fmt.Println("g1�sent�1") }()
12L: for {
13select {
14case msg := <-c:
15fmt.Println("Main�received�", msg)
16break L
17default:
18time.Sleep (500 * time.Millisecond)
19fmt.Println("Default")
20}
21}
22}

Listing 1.39. Select default

Output:

1Default
2Default
3Default
4Default
5Main received 1

3.6 Concurrency Principles

The Go language follows the principle of “do not communicate by sharing mem-
ory; instead, share memory by communicating” [9].

Communication by Sharing Memory. Sharing memory involves multiple
threads accessing or modifying the data simultaneously. To guarantee the secu-
rity and visibility of the data, we need synchronization mechanisms, like lock or
semaphore. However, this increases the code complexity. Even more, if multiple
locks are used, then deadlocks may occur.

Share Memory by Communicating. “Instead of explicitly using locks to
mediate access to shared data, Go encourages the use of channels to pass refer-
ences to data between goroutines” [9]. Go uses channels to synchronize and com-
municate mutually exclusive. The reference to data is sent as messages through
channels. We can consider that we are passing the ownership of the data. The
sharing between goroutines is therefore achieved.

3.7 Parallelism

Let us discuss the differences between concurrency and parallelism.
“In programming, concurrency is the composition of independently executing

processes, while parallelism is the simultaneous execution of (possibly related)
computations. Concurrency is about dealing with lots of things at once. Paral-
lelism is about doing lots of things at once” [5].

Balanced Distributed Computation Patterns 229

In Go, concurrency means we can create lots of independent goroutines deal-
ing with different or similar tasks (see Fig. 3). However, those goroutines may
not be running in parallel. Parallelism means the created goroutines share more
CPUs (see Fig. 4).

Listing 1.40 shows how we can configure the number of CPUs that can be used
by the Go program. NumCPU shows how many CPUs are available, GOMAXPROCS
method sets the maximum number of CPUs that the program can use according
to the argument. The code also uses the functions of the time package to get
the duration of the execution. The function Now is used to get the current local
time, Since returns the time elapsed since the argument, between them is the
code that you might want to test for duration execution.

Fig. 3. Concurrency. Go programs only use one CPU by default. The Go scheduler
decides which goroutine is running to leverage the core. Concurrency means all the
created goroutines are independent. However, they might share only one CPU.

Fig. 4. Parallelism. Parallelism means more goroutines run at the same time. In
other words, more than one CPU is scheduled between the running goroutines.

230 J. Li et al.

1package main
2import (
3"fmt"
4"sync"
5"time"
6"runtime"
7)
8func main (){
9fmt.Println(runtime.NumCPU ())
10_ = runtime.GOMAXPROCS (8)
11start := time.Now()
12var mu sync.Mutex
13var wg sync.WaitGroup
14var result = 0
15for i := 0; i < 10000; i++ {
16wg.Add(1)
17go func (a int) {
18defer wg.Done()
19mu.Lock()
20result += a
21mu.Unlock()
22}(i)
23}
24wg.Wait()
25fmt.Println(result)
26duration := time.Since(start)
27fmt.Println("Time:�", duration)
28}

Listing 1.40. CPU

The following outputs show the efficiency difference when setting various CPU
numbers. In case of = runtime.GOMAXPROCS(8) the output is:

116
249995000
3Time: 3.1419ms

In case of = runtime.GOMAXPROCS(1) the output is:

116
249995000
3Time: 16.5745 ms

3.8 Concurrent Job Processing

This example is inspired by a blog of Castilho [4]. The scenario for this exam-
ple is handling massive requests sent to servers. Moreover, a request does not
need to know the result immediately. This example practices the Go concurrent
constructs studied before. There are four versions: Version 1 does not limit the
number of goroutines, while Version 2, 3, and 4 show three ways to limit it.

Concurrent Job Processing Without Goroutine Number Limit (Ver-
sion 1). In this version, we use a buffered channel jobQueue as the job queue
(see Fig. 5). The goroutine linkSender and the goroutine workerCreator com-
municate through the jobQueue. After the linkSender finishes all the sendings,
it closes the jobQueue to indicate that there is no more sending. The linkSender

Balanced Distributed Computation Patterns 231

goroutine sends jobs to the job queue and does not need responses. The slice
links contains all the links that are sent to the workers. The workerCreator
goroutine receives jobs from the jobQueue until it is closed. For each received job,
the workerCreator generates a worker to process the job. Once the jobQueue
is full, the sending operations to the jobQueue that are done by the linkSender
are blocked. Once the jobQueue is empty, the receiving operations from the
jobQueue that are done by the workerCreator are blocked.

The main goroutine waits until all the goroutines finish using the WaitGroup
of the sync package and prints out the maximum number of existing goroutines
and the running duration. The goroutineCounter goroutine gets the number
of goroutines that currently exist for every 50 ms. If the current value is greater
than the original maximum value, the goroutineCounter updates the maxi-
mum number of goroutines maxGo using the function StoreUint64. The worker
goroutine checks the link using the function linkTest. Since the usage of the
functions in the package net/http causes the generation of more goroutines, the
linkTest only sleeps 500 ms and randomly returns a check result.

Fig. 5. Concurrent job processing without goroutine number limit. The
linkSender goroutine sends jobs to the jobQueue sequentially in 1:job1, 2:job2,

3:job3 order. The workerCreator goroutine generates a worker for each job received
from the jobQueue channel (the receiving order is 1.1:job1, 2.1:job2, 3.1:job3.
The workerCreator sequentially distributes jobs to workers in the order of 1.2:job1,

2.2:job2, 3.2:job3 and the workers process them concurrently.

If we use a list here as the job queue, we need to handle sharing memory
among threads. Instead, the channel automatically handles the mutual exclusion
problem of multiple accesses from different threads. If the processing speed is
higher than the request sending speed, the buffered channel does not have the
sending job blocking problem. When the processing speed reduces, the requests
are stored in the buffer, and the request sending is not blocked until the buffer
is full. When the processing speed recovers, it clears the requests in the buffer.
Since the job sending operations are not blocked, the client does not notice that
the processing speed is reduced until the buffer is full. If the processing speed
reduces and does not recover, the buffer finally runs out of place, and the client’s
job sending operation is blocked.

232 J. Li et al.

1package main

2import (

3"fmt"

4"math/rand"

5"runtime"

6"sync"

7"sync/atomic"

8"time"

9)

10var jobQueue = make(chan string , 100)

11var maxGo uint64

12var wg sync.WaitGroup

13func main() {

14go goroutineCounter ()

15start := time.Now()

16wg.Add (1)

17go linkSender ()

18wg.Add (1)

19go workerCreator()

20wg.Wait()

21fmt.Println("Max�goroutine�number:�", atomic.LoadUint64 (& maxGo))

22duration := time.Since(start)

23fmt.Println("Time:�", duration)

24}

25func goroutineCounter () {

26for {

27n := runtime.NumGoroutine ()

28u := uint64(n)

29if u > maxGo {

30atomic.StoreUint64 (&maxGo , u)

31}

32time.Sleep (50 * time.Millisecond)

33}

34}

35func linkSender () {

36defer wg.Done()

37links := [] string {}

38var numOfLink = 1000

39for i := 0; i < numOfLink; i++ {

40fakeLink := fmt.Sprintf("http ://web%d.com", i)

41links = append(links , fakeLink)

42}

43for _, link := range links {

44jobQueue <- link

45}

46close(jobQueue)

47}

48func workerCreator() {

49defer wg.Done()

50for link := range jobQueue {

51wg.Add(1)

52go worker(link)

53}

54}

55func worker(l string) {

56defer wg.Done()

57fmt.Println(linkTest(l))

58}

59func linkTest(link string) string {

60time.Sleep (500 * time.Millisecond)

61if rand.Intn (2) == 1 {

62return link + ":�Good"

63} else {

64return link + ":�Bad"

65}

66}

Listing 1.41. Concurrent job processing without goroutine number limit

Balanced Distributed Computation Patterns 233

Output:

1...
2http:// web978.com: Good
3http://web25.com: Good
4http:// web173.com: Good
5http://web4.com: Good
6http://web41.com: Bad
7http://web27.com: Bad
8http://web6.com: Bad
9http://web9.com: Bad
10http://web43.com: Bad
11http://web42.com: Bad
12http://web0.com: Bad
13http:// web780.com: Bad
14Max goroutine number: 1002
15Time: 949.4977 ms

There is no goroutine number limit in this version. Therefore, if we have cre-
ated too many goroutines for processing the job at the same time, this program
may crash because of running out of memory.

Concurrent Job Processing with Goroutine Number Limit (Version 2).
To prevent this program from crashing, we need to limit the worker goroutines
generated for processing the requests (see Fig. 6). We create one more buffered
channel workerPool to simulate the worker pool. Its size defines the maximum
number of goroutines for processing requests that can run simultaneously.

Fig. 6. Concurrent job processing with goroutine number limit. The
workerPool channel is used to constrain the number of concurrently running
goroutines. An integer 1 is inserted into the workerPool and then a new worker

goroutine is created. This integer 1 is removed from the workerPool before the worker

goroutine finishes the job.

Before generating a child goroutine, we send 1 to it (any integer can be
inserted as a placeholder, 1 is used in this example). After the processing job is
done, 1 is removed from it.

234 J. Li et al.

If the workerPool is full, we cannot send messages to it; therefore, we
cannot create new goroutines. For each job received from the jobQueue, the
workerCreator first tries sending 1 to the worker pool, and then it creates a
worker to process the received job.

The defer statement of Go schedules a function call to be run immediately
before the function returns. After the worker has done the checking work but
before terminates, it removes 1 from the worker pool using the defer statement.

1package main
2import (
3"fmt"
4"math/rand"
5"runtime"
6"sync"
7"sync/atomic"
8"time"
9)
10var workerPool = make(chan int , 50)
11var jobQueue = make(chan string , 100)
12var maxGo uint64
13var wg sync.WaitGroup
14func main() { ... }
15func goroutineCounter () { ... }
16func linkSender () { ... }
17func workerCreator () {
18defer wg.Done()
19for link := range jobQueue {
20workerPool <- 1
21wg.Add(1)
22go worker(link)
23}
24}
25func worker(link string) {
26defer wg.Done()
27defer func() { <-workerPool }()
28fmt.Println(linkTest(link))
29}
30func linkTest(link string) string { ... }

Listing 1.42. Job and Worker concurrent with goroutine number limit

Output:
1...
2http:// web989.com: Bad
3http:// web976.com: Bad
4http:// web991.com: Bad
5http:// web999.com: Good
6http:// web997.com: Bad
7http:// web955.com: Bad
8http:// web956.com: Bad
9Max goroutine number: 54
10Time: 10.043942287s

Concurrent Job Processing by Long-Life Workers (Version 3). In ver-
sion 2, the workerCreator keeps receiving a job from the job queue, and it also
keeps creating worker goroutines to perform the job.

The worker goroutine terminates after the job is done. It only constrains the
number of goroutines that run concurrently rather than the number of goroutines
that we create.

Balanced Distributed Computation Patterns 235

In version 3, we constrain the number of goroutines we create. Instead of
letting the worker terminate after doing the job (short life worker) like in the
previous versions for new jobs, we keep several workers alive and continuously
work on the jobs (long life worker), as Fig. 7 shows. Additionally, we implement
the distribution of the tasks to the workers in a load-balanced way.

In this version, the worker is a struct containing the fields id, jobChannel,
quitChannel. The Start method of the worker creates a goroutine that
keeps receiving links from its own jobChannel until it receives a q from the
quitChannel.

In the workerCreator goroutine, first, the long-life worker goroutines are
created according to the constant MaxWorker; next, for each received link from
the jobQueue, a worker is selected in a balanced way to check the link; finally,
after the jobQueue is closed, q is sent to all the worker goroutines’ quitChannel.

The roundRobin and randomSelect functions can be used to select a worker
in a balanced way. Once a worker is selected to check the link, the received link
is sent to its jobChannel.

Listing 1.43 uses randomSelect, instead, roundRobin can be also applied by
commenting the code in line 35 and uncommenting the lines 26 and 34.

Fig. 7. Concurrent job processing by long-life workers. An unbuffered
jobChannel is created for each worker goroutine to receive a job from the
workerCreator goroutine. The workerCreator goroutine receives jobs from the
jobQueue channel and sends them to the jobChannels of the workers in a balanced
round robin manner (or random select manner). The worker goroutines process the
jobs concurrently. After the jobQueue channel is closed, the workerCreator goroutine
sends a q through the quitChannels to all the worker goroutines. The worker

goroutine quits after it has received a q from the quitChannel.

1package main
2import (
3"fmt"
4"math/rand"
5"runtime"

236 J. Li et al.

6"strconv"
7"sync"
8"sync/atomic"
9"time"
10)
11const MaxWorker = 50
12var jobQueue = make(chan string , 100)
13var maxGo uint64
14var wg sync.WaitGroup
15func main() {
16...
17}
18func goroutineCounter () {
19...
20}
21func linkSender () {
22...
23}
24func workerCreator () {
25defer wg.Done()
26//index := 0
27workers := [] worker{}
28for i := 0; i < MaxWorker; i++ {
29worker := worker{i, make(chan string), make(chan string)}
30worker.Start()
31workers = append(workers , worker)
32}
33for link := range jobQueue {
34// selectedWorker := roundRobin(workers , &index)
35selectedWorker := randomSelect(workers)
36selectedWorker.jobChannel <- link
37}
38for _, w := range workers {
39w.quitChannel <- "q"
40}
41}
42func roundRobin(l []worker , currentIndex *int) worker {
43selected := l[(* currentIndex)]
44if (* currentIndex) >= len(l)-1 {
45(* currentIndex) = 0
46} else {
47(* currentIndex)++
48}
49return selected
50}
51func randomSelect(l [] worker) worker {
52lens := len(l)
53index := rand.Intn(lens)
54selected := l[index]
55return selected
56}
57type worker struct {
58id int
59jobChannel chan string
60quitChannel chan string
61}
62func (w worker) Start() {
63wg.Add(1)
64go func() {
65defer wg.Done()
66L:
67for {
68select {
69case link := <-w.jobChannel:
70fmt.Println("Worker�",
71strconv.Itoa(w.id), ":�",
72linkTest(link))
73case <-w.quitChannel:

Balanced Distributed Computation Patterns 237

74fmt.Println("Worker�",
75strconv.Itoa(w.id), "Quit")
76break L
77}
78}
79}()
80}
81func linkTest(link string) string {
82...
83}

Listing 1.43. Concurrent job processing by long-life workers

Output:

1...
2Worker 49 : http:// web996.com: Bad
3Worker 26 : http:// web992.com: Good
4Worker 11 : http:// web997.com: Bad
5Worker 7 : http:// web998.com: Good
6Worker 7 Quit
7Worker 17 : http:// web988.com: Good
8...
9Worker 27 Quit
10Worker 33 Quit
11Worker 21 Quit
12Worker 18 Quit
13Worker 13 Quit
14Max goroutine number: 54
15Time: 54.164746183s

Concurrent Job Processing Using Goroutine Pool (Version 4). The
previous versions implement mechanisms where we limit ourselves the number
of goroutines. In this version, the number of goroutines are limited by using the
existing goroutine pool library Tunny [10].

The size of the goroutine pool is the total number of goroutines in the pool.
The goroutine pool creates goroutines on demand until it reaches the size.

Listing 1.44 line 15 declares a global goroutine pool. Line 18 to line 28 cre-
ates a goroutine pool with the name pool using the NewFunc function. The first
parameter is the size of the goroutine pool (here the limit of the number of gor-
outines is 20). The second parameter is the behaviour function of each goroutine
of the pool which uses the Done method of the WaitGroup. The workerCreator
goroutine adds 1 to the WaitGroup wg for each link received from the jobQueue
channel. Using the Process method a new worker is created to process the link
and to print the result.

1package main
2import (
3"fmt"
4"math/rand"
5"runtime"
6"sync"
7"sync/atomic"
8"log"
9"time"
10"github.com/Jeffail/tunny"
11)
12var jobQueue = make(chan string , 100)
13var maxGo uint64
14var wg sync.WaitGroup

238 J. Li et al.

15var pool *tunny.Pool
16func main() {
17go goroutineCounter ()
18pool = tunny.NewFunc (20,
19func(payload interface {}) interface {} {
20var result string
21s, ok := payload .(string)
22if(!ok){
23log.Fatalln("type�assertion�fail")
24}
25result = linkTest(s)
26defer wg.Done()
27return result
28})
29defer pool.Close()
30start := time.Now()
31wg.Add(1)
32go linkSender ()
33wg.Add(1)
34go workerCreator ()
35wg.Wait()
36fmt.Println("Max�goroutine�number:�",
37atomic.LoadUint64 (&maxGo))
38duration := time.Since(start)
39fmt.Println("Time:�", duration)
40}
41func goroutineCounter () {
42for {
43n := runtime.NumGoroutine ()
44u := uint64(n)
45if u > maxGo {
46atomic.StoreUint64 (&maxGo , u)
47}
48time.Sleep (50 * time.Millisecond)
49}
50}
51func linkSender () {
52defer wg.Done()
53links := [] string{}
54var numOfLink = 100
55for i := 0; i < numOfLink; i++ {
56fakeLink := fmt.Sprintf("http ://web%d.com", i)
57links = append(links , fakeLink)
58}
59for _, link := range links {
60jobQueue <- link
61}
62close(jobQueue)
63}
64func workerCreator () {
65defer wg.Done()
66for link := range jobQueue {
67wg.Add(1)
68result := pool.Process(link)
69fmt.Println(result)
70}
71}
72func linkTest(link string) string {
73time.Sleep (50 * time.Millisecond)
74if rand.Intn (2) == 1 {
75return link + ":�Good"
76} else {
77return link + ":�Bad"
78}
79}

Listing 1.44. Concurrent job processing using goroutine pool

Balanced Distributed Computation Patterns 239

Output:

1...
2http://web90.com: Bad
3http://web91.com: Bad
4http://web92.com: Bad
5http://web93.com: Good
6http://web94.com: Bad
7http://web95.com: Good
8http://web96.com: Bad
9http://web97.com: Good
10http://web98.com: Good
11http://web99.com: Bad
12Max goroutine number: 23
13Time: 6.184s

In this section, four versions of the concurrent job processing example were
described. When a smaller task is implemented or when running out of memory
does not occur, version 1 may be enough; otherwise, versions 2, 3, or 4 can be used
to limit the number of goroutines. The workers of version 2 and 4 are short-life
workers, the ones of version 3 are long-life. Version 4 needs extra dependency,
while version 3 can customize the way of achieving load balance. Any of the
proposed patterns can be chosen based on the needs of the to be implemented
problem’s scenario.

4 Advanced Message Queueing Protocol (AMQP)

Integrating queues into distributed systems is crucial when dealing with large
volumes of continuously generated data traffic. Queueing systems offer parallel
execution by allowing multiple workers to process tasks in parallel. In the follow-
ing sections we introduce RabbitMQ, one of the standard queueing systems.

RabbitMQ mainly specializes in messaging, offering features such as mes-
sage routing, load distribution, retries, and so on.

Before we dive into the distributed examples, first we introduce AMQP
(Advanced Message Queuing Protocol) [1] used by RabbitMQ [22]. AMQP offers
messaging and communication, dealing with publishers and consumers.

In the OSI (Open Systems Interconnection) model, which partitions a
communication system into seven layers, there is an application layer where
IMAP (Internet Message Access Protocol), FTP (File Transfer Protocol), DNS
(Domain Name System), SSH (Secure Shell) and IRC (Internet Relay Chat)
operate. AMQP is also an application layer protocol.

There are many message broker implementations available for AMQP since it
is an open standard, and RabbitMQ is one of such. AMQP offers interoperability
between consumers and brokers, which is a crucial feature. AMQP provides solu-
tions for destroying the barriers of communication between different applications
designed by different programming languages. Since AMQP is fast, it is a matter
of interest to areas where time is valuable, like banks, card companies, real-time
programs, and so on. The general structure of the AMQP can be seen in Fig. 8.

240 J. Li et al.

Fig. 8. AMQP Structure. The Publisher sends messages to the Exchange. The
Exchange routes messages to Queues. The Queue forwards messages to the Consumer.

4.1 AMQP Components

Producer (Publisher). The producer is an application that writes messages
to queues through the exchanges. In general, it is long-lived and it aims to
publish multiple messages while alive. The example of producer can be found
in Listing 1.46.

Message Broker (Queue Manager). The message broker is a repository for
several one-way channels, typically containing multiple queue nodes. Publishing
or consuming messages from a queue is done over a channel, which is a vir-
tual connection that receives messages from publishers then routes them to the
specific consumers.

The message broker accepts connections from consumers for message routing
and queuing. It either transfers messages to queues that consumers subscribed to,
or fetches/pulls messages from queues on demand. The broker gets a notification
from a consumer when a message is delivered; then, it removes the message from
the queue.

The message brokers can be connected to each other, which is highly common
in the case of an overlay network. They are typically built upon a MOM (Mes-
sage Oriented Middleware), an architecture for a distributed system with lots
of internal communication and information or data sharing components. Thus,
message brokers are building blocks of MOM.

RabbitMQ is a message broker that also uses MOM implementation, i.e. is a
set of routing and queuing patterns, where routing means messages are forwarded
to one or more peers, and queuing means messages are held in memory or disk
until they can be delivered or acknowledged. AMQP is used to specify broker
patterns so that an application could rely on uniform behaviour of any AMQP-
compatible broker.

Consumer (Client). A consumer (or client) processes messages from queues
delivered by an exchange. The example of consumer can be found in Listing 1.45.

Balanced Distributed Computation Patterns 241

It receives messages from queues, where the queue contains messages pub-
lished by a producer. As soon as a new consumer arrives, the delivery is started
when a first message enqueues to the queue. If they try to consume messages
from a queue that does not exist, it raises a channel-level exception.

Obviously, it is desirable to register a consumer to consume multiple mes-
sages, not just a single message. Generally, consumers are long-lived, living
throughout a connection or even during the application runs. A consumer may
lose its connection to RabbitMQ, which causes stopping the message delivery.
Consumers can usually be removed after their connection is lost. They can also
publish messages, which means they can be publishers as well.

Queue. In general, a queue is a sequence of the same type of elements that
adds new elements at the rear and removes existing elements from the top. This
kind of behaviour is called FIFO (First-In First-Out). A queue can store and
retrieve one element at a time. Therefore, it is useful when the order of elements
is important.

A message queue (MQ) in RabbitMQ is a collection of messages sorted
by FIFO, used for receiving and delivering messages. MQ is a mechanism that
shares information between processes, threads, or systems. A queue needs to be
declared before usage and can be named or automatic name can be given by a
broker.

Depending on the durability of a queue, it is categorized as persistent queue
and transient queue. Persistent queues are durable queues, which can survive
restarts by brokers. Persistent messages are recovered when the broker is backed
up, and a queue is re-declared after being taken down. Transient queues are
the opposite; they are not durable. Sometimes, we want this type of queues to
be short-lived. Consumers can delete queues; however, this is not convenient.
Therefore, we suggest automatic queue deletion when the last consumer leaves.
This can be done by setting the parameter autoDelete to true when declaring
the queue.

Exchange. Unlike in most brokers, clients in AMQP publish messages to
exchanges, not directly to queues. Therefore, in RabbitMQ, producers send
messages to exchanges not directly to queues, which means producers tend to
be unaware if the message is delivered to the queue or not.

If producers send messages to an exchange, then the messages are pushed to
queues using header attributes, bindings, and routing keys. To route messages,
exchanges use rules that are called bindings. Thus, the binding is a relationship
between an exchange and a queue. It can be interpreted as the queue showing
interest in the exchange.

Binding may contain routing keys, which are used to pick up certain messages
published to an exchange acting as a filter; therefore, they can be routed to
the bound queues. When a message fails to be routed to any queue, then it is
dropped or returned to the publisher. Whether it is dropped or returned can
be determined based on the attributes that the publisher sets. It is possible to

242 J. Li et al.

have multiple queue bindings with the same binding key. Based on the type
of an exchange, it behaves differently. We have four types of exchanges: Direct
exchange, Fanout exchange, Topic exchange and Headers exchange. In Fig. 9
a message with routing key log B is sent to the queue B since it has exactly
matching binding key as routing key.

Fig. 9. Direct exchange example. There are two queues: A and B. The binding key
between the direct exchange and A is log A and the binding key between the direct
exchange and B is log B. When a message is sent to this direct exchange with routing
key log B, then the message is sent to the queue B. In the case of A, since the routing
key does not match the binding, the message is discarded.

Direct exchange: uses routing keys having the same name as the queue name,
and sends messages to only one consumer. It is the default exchange. One of the
routing keys is given to the message and the queue has the binding key. These
keys are used to identify the queue to exchange. If the routing and the binding
keys match (they should completely match), the message can be forwarded to
the queue, eventually arriving to the consumer.

The highlight of this exchange is that the messages are load-balanced between
consumers, not between queues. Queues can have several possible binding keys
and several routing keys. Multiple binding occurs when multiple queues share
one binding key. When the exchanges replicate the messages, then each of them
are forwarded to multiple consumers. An example of the Direct exchange can be
seen in Fig. 9 and the code example can be found in Sect. 5.2.
Topic exchange: uses routing and binding keys, but they do not have to match
completely. It applies the pattern matching method, i.e. when the routing pattern
matches the routing key then messages are delivered to one or more queues.

The routing key consists of word lists delimited by a period (.). The routing
pattern as well is delimited by a period, but instead of a specific word, it may

Balanced Distributed Computation Patterns 243

contain an asterisk (*) or a pound (#), where asterisk means any word for that
specific position and pound means zero or more words. An example of the Topic
exchange can be seen in Fig. 10.

Fig. 10. Topic exchange example. A message with routing key log B is sent to both
queues A and B. In case of A, it has a binding key log #, where a pound (#) can match
with any single character, so it matches with the routing key. In case of B, it has a
binding * B, where an asterisk (*) matches with any string. Therefore, both accept
the message.

Fanout exchange: does not care about routing keys.

Fig. 11. Fanout exchange example. When a message is published to a fanout
exchange, then the message is copied and sent to all the queues (A, B and C). A, B

and C can be bound to the exchange with any routing key, since the fanout exchange
ignores the key. The fanout exchange simply broadcasts to all the queues bound to it.

244 J. Li et al.

It copies incoming messages and sends them to all the queues like a broad-
casting. Therefore, we cannot expect flexibility in this case.

The Fanout exchange is different from the Direct exchange or the Topic
exchange as they use routing keys or pattern matching for bindings. An example
of the Fanout exchange can be seen in Fig. 11 and the code example can be found
in Sect. 5.2.

4.2 Connection and Channel

Connection. When we publish and consume messages using RabbitMQ, we
need a connection to the RabbitMQ. A TCP connection is the linkage between
a client and a broker that can have multiplex over a single TCP connection. AMQP
0-9-1 [1] uses TCP connections between brokers and applications, which is shut
down when an application is not in need of them anymore.

RabbitMQ supports the logging of all entering connections that show activ-
ity having at least one byte of data sending. We can prevent flooding the logs by
not logging connections that do not show any activities. The opening and clos-
ing connections rates should be monitored since it is important for the system.
Problems can be detected without closing the connections. Unfortunately, this
condition makes CPU and RAM nodes heavily used.

High connection churn has a high rate of new connections and closed con-
nections, which means the channels are not long-lived as they were meant to be.
Since connections consume a large amount of memory on the client, it is not
desirable having too much of them. Therefore, it is recommended to use a single
connection for long term rather than opening and closing them frequently.

This is why having one TCP connection with multiple channels is endorsed.
Connections may have errors or protocol exceptions, making connections fail or
unable to carry consumer’s operation. Connection errors are considered ‘hard
errors’, unlike channel errors, which means they can hardly be recovered.

Channel. A virtual connection inside of a TCP connection where the messages
travel is called channel. When we need multiple connections, we use channels
for a single TCP connection instead of multiple TCP connections. Having many
TCP connections has shortcuts such as consuming resources and firewall config-
uration difficulties. Brokers and consumers use an ID for each channel to identify
the channel for applying methods to it. Each channel’s communication is inde-
pendent of the other ones. When a connection dies, all the channels living on it
die as well.

Messages can be sent or received over channels. To create a channel, we should
establish a connection first. After finishing the channel usage, obviously it needs
closing. Once a channel is closed, it can no longer be used. If you try to use a
closed channel, it raises an exception signaling that the channel is closed. We can
close channels by our needs, while it can also be closed by an exception. When
it happens, we can often recover it by opening another channel. We can set the
number of channels we want to open for a connection. As well as connections, the
channel should be carefully monitored to detect some problems such as channel
leaking or high channel churn.

Balanced Distributed Computation Patterns 245

Differences Between Channels and Connections. A connection is an
actual TCP connection to the message broker. It can have multiple sessions,
whereas a channel is a virtual connection inside that. You can have several
channels avoiding overloading the broker with TCP connections. Channels have
various lifetimes, while connections are considered relatively stable.

When using a channel, AMQP commands can be sent to the broker, but the
channel and the queue do not have one-to-one relation. Of course, it is possible
to use only one channel for everything, but it is desirable to have a separate
channel for each thread when there are multiple threads.

4.3 Safe Message Delivery in GO

We are interested in safe delivery, that is taking care of situations when message
delivery fails for some reason. For safe message delivery, if there is a problem
during message delivery, we use acknowledgements, either with Basic.Get (see
Fig. 12) or with Basic.Consume (see Fig. 13). We let brokers remove messages
when they get acknowledgements. Generally, AMQP offers two options:

1. Removing message from a queue after the broker sends a message to an
application (automatic acknowledgement).

2. Removing a message from a queue after getting acknowledgement from a
consumer (explicit acknowledgement).

The first one is sending acknowledgement right after a broker is sending
messages to a consumer by using Basic.Deliver or Basic.GetOk. The second
one is making consumers send acknowledgements when they receive messages by
using Basic.Ack.

Fig. 12. Acknowledgements with Basic.Get. The consumer sends a new request each
time it wants to receive a message with Basic.Get, even if there are multiple messages
in the queue. If the queue has a message pending when issuing a Basic.Get, RabbitMQ
responds with a Basic.GetOk and sends the message. If no messages are pending in the
queue, it replies with Basic.GetEmpty, indicating that there are no more messages.

246 J. Li et al.

Fig. 13. Acknowledgements with Basic.Consume. When a consumer issues a
Basic.Consume, RabbitMQ sends messages to it as they become available until the
consumer issues a Basic.Cancel.

In the case of explicit acknowledgement, we can decide when do we want to
send the acknowledgement, which does not have to be necessarily right after
receiving messages. Even though a message has reached the consumer, it may
not be successfully processed. In that case, the consumer can reject the message
and then ask the broker to remove or requeue it. This rejection is called neg-
ative acknowledgement. If you use Basic.Reject method, you can reject only
one message. However, RabbitMQ allows multiple messages rejection by NACK
(negative acknowledgement). A message is rejected by notifying the broker that
the message processing was not successful. A consumer signals to the broker to
abandon or requeue the message in case it is rejected.

4.4 Prefetch

Prefetch is the maximum number of unacknowledged messages per consumer.
When there is more than one consumer for a queue, the number of messages
that can be sent to the consumers at each time before an acknowledgement is
specified by the prefetch.

It is an extension of the channel prefetch mechanism. It is possible to limit
the number of unacknowledged messages on a channel when consuming using
the Basic.Qos method. This is the so-called prefetch count. In the case of Rab-
bitMQ, it supports only channel-level prefetch count.

Load balancing can be done using this kind of technique. When the number
of unacknowledged messages reaches the prefetch, RabbitMQ stops delivering
messages on that channel until the consumer sends ACKs or NACKs. This means
the consumers on that channel no longer can get messages.

We can decide the prefetch count by considering the consumer types. For
example, if we have only one fast consumer, then we might set the value high
since we might want all the messages to be prefetched, though not too high, so
it does not restrict the ability to peeking messages.

Balanced Distributed Computation Patterns 247

In the case of slow consumers, we may set the prefetch count as one and
let the RabbitMQ do the job of load balancing. On the other hand, when we
have multiple fast consumers, it is recommended to set the value not too low nor
too high, like around 20 to 30. If we set the value too low, it can paralyze the
consumers since they need to wait. In contrast, it might harm the load balancing
if we set it too high.

4.5 AMQP at Network Failures

When network connection failure happens, the message can be lost somewhere
in the transit between client and server, or at either side of it, maybe in TCP
stack buffer or in the wire. In those cases, messages are not delivered; therefore,
we need to transfer them again. Using acknowledgments, we can determine when
we need to re-transfer messages.

There are two ways of sending acknowledgments: consumer acknowledgment
and publisher confirm. Consumer acknowledgment occurs when the consumer
sends acknowledgements to a server, and publisher confirm happens when the
broker confirms the messages that the consumer published (meaning it is dealt
with on the server-side). After any operation that needs to be done with the
message has finished, the consumer or the publisher sends acknowledgements.

By using acknowledgements, we guarantee safe message delivery. When fail-
ure happens, the acknowledgement is not delivered, then we re-deliver messages
by re-queuing them either by RabbitMQ or by consumers. RabbitMQ sets
the redelivered flag on the failed message; then the consumer can identify if
the message is the one that has seen before or not using the flag. In case of
consumers are not capable of taking care of the message, the consumer rejects
it by Basic.Reject or Basic.Nack, and it may ask the server to requeue it.

4.6 AMQP Management

After a connection is made, the publisher sends messages to the named exchange.
The exchange routes the messages to bound queues according to the routing key
and the type of the exchange. Then the consumer takes messages from a queue,
or the queue pushes messages to the consumer. Here, named exchange is used so
that the publishers and the consumers can recognize each other. You may wonder
how a consumer gets the message (which the publisher sends to the exchange)
from a queue.

This queue is attached to the exchange, and in most cases, the consumer
generates queues then attaches them. The exchange determines which queue the
message belongs to by binding. Binding can be seen as a rule that is used to
distribute messages from exchanges to queues. Generally, AMQP works like: the
publisher sends messages to the consumer, but if the consumer wants to send a
reply to the publisher, we can use another queue called callback. A message
broker ensures that messages from a publisher to a consumer are delivered using
exchanges and queues. It means AMQP hides the publisher and the consumer from
each other.

248 J. Li et al.

Therefore, it allows pervasive decoupling, which means the action between
systems does not have to be on the same machine, and it can transact without
being connected having flexible infrastructure.

To summarize, the essential feature of AMQP is to deal with the communication
between the application and queuing. AMQP grants an application setting up a
connection to a queue manager. For bi-directional communication, we can use
sessions that are logical grouping of two channels.

4.7 AMQP Advantages

The major benefit of AMQP is that you can readily switch your broker imple-
mentation by sending and independently receiving messages to the broker. In
addition, adding more servers to handle procedures is easy because of the bro-
ker’s characteristics.

It also operates trustfully at a distance or poor networks like network loss,
bad network connection, network congestion and such. Let us compare AMQP with
RPC (Remote Procedure Call) and HTTP (Hypertext Transfer Protocol) with REST
(Representational State Transfer) so that AMQP’s benefits can be clearly seen.

RPC is a way of building distributed and client-server-based applications
extending local procedure calls, which allows the called procedure to be in a
different address space as the calling process. REST is an interface that uses
HTTP requests to manipulate data with GET, PUT, POST, and DELETE. AMQP and
HTTP both run in a heterogeneous and distributed environment. HTTP’s nature
is synchronous, whereas AMQP is asynchronous, which means publishers and con-
sumers do not have to be active at the same time.

AMQP can make numerous message transactions, all at once, allowing messages
to be stored in a queue. It handles a high volume of streams and deals with
low-latency data exchange. When AMQP is used, the consumer does not have to
process and confirm to the publisher immediately. Instead, consumers gather the
messages from the queue when the storage capacity is available. In the meantime,
the publisher can work on further tasks. It cannot be stated which one is better
than the other, since all have their own advantages. AMQP is really fast, so very
cost-effective, and also flexible.

4.8 AMQP Usage

We have been discussing what AMQP offers, how it works and what are the main
characteristics. Now, we all can agree AMQP is attractive enough to look at and
work with. So, when should we use this exactly? If you want to deliver messages
with high-quality and safety between applications, then AMQP is the solution for
it. You can assure reliable, fast, ensured message delivery through AMQP.

These features make AMQP valuable in some situations, especially, for example,
when you want to distribute a message to multiple consumers or to enable offline
consumers to fetch data later, and so on. When there are plenty of requests that
should not be lost and needed being processed, it is good to use queues to bridge
the sending request and receiving parts.

Balanced Distributed Computation Patterns 249

AMQP focuses on message deliveries to consumers along with broker tracking
consumer states. It allows to be ready for new requests and not being locked up
by a previous one. Imagine you have a web service that receives order requests
simultaneously from customers. It causes problems if the server cannot handle
that huge amount of incoming requests. To prevent that kind of situation, we can
use RabbitMQ as a solution since it can deal with high throughput situations.

AMQP also shines when connecting different languages since it behaves like
a glue between two disconnected components. AMQP creates a common ground
allowing interoperability. You may use it when you want to make one compo-
nent to be changed by a different component, globally sharing the updates. It
can also enable the system to fetch data for offline clients, introducing entirely
asynchronous functionality for systems.

4.9 AMQP 0.9.1 Model

AMQP 0-9-1 is a network protocol model that is used by RabbitMQ. Version
0-9-1 uses producer, consumer, and broker for each connection, and they do not
necessarily have to be on the same machine.

Producers send messages to message brokers; then, they forward the messages
to consumers. The brokers handle exchanges and queues to deliver messages from
the publisher to consumers.

Exchanges receive messages from publishers, then distribute copies based on
bindings to queues. Each exchange has its own rules based on its types (see
Sect. 4.1). Therefore, based on those rules, exchanges route messages to queues.

Brokers often use the meta-data of a message specified by publishers, but
most attributes are used by the consumers. For example, consumers use acknowl-
edgements to notify brokers when the message is arrived to ensure delivery, just
in case the network is poor. We can ensure safe message delivery by allowing
brokers to remove a message from a queue when the message acknowledgement
is done.

4.10 GO RABBITMQ Client Library

There are several clients of RabbitMQ, and the Go RabbitMQ Client
Library [11] is one of them. As seen in previous sections, an AMQP client pub-
lishes messages to exchanges, not to queues, routing via bindings. In this library,
replies for each message are received in an RPC manner, which means it is
intended to be synchronous. Just like most other client libraries, it copies the
actions defined in the AMQP specification, hiding the complexity of the interac-
tion. It allows you to not think of how things work when writing an application.
Here are the basic functions of this library; some of their usages can be checked
in Subsect. 5.1.

∗ func Dial(url string) (*Connection, error): connects a RabbitMQ
server by getting the url string then returning a new TCP connection.

∗ func (c *Connection) Channel() (*Channel, error): creates the one
and only concurrent server channel that processes AMQP messages.

250 J. Li et al.

∗ func (ch *Channel) QueueDeclare (name string, durable, autoDelete,
exclusive, noWait bool, args Table) (Queue, error): a queue is created
if it does not exist already, or it is made sure that the existing queue matches
parameters. If the queue name field is empty, the server creates unique name
for it.

∗ func (ch *Channel) Publish (exchange, key string, mandatory,
immediate bool, msg Publishing) error: sends the Publishing message
to the Exchange. Publishings are asynchronous, so when failed to be deliv-
ered, they get back to the server. There are two possible scenarios when a
message is not deliverable.
1. mandatory field is set as true and no queue is matching the routing key.
2. immediate field is set as true and no consumer of the queue is waiting for

the delivery.
∗ func (ch *Channel) Consume (queue, consumer string, autoAck,
exclusive, noLocal, noWait bool, args Table) (<-chan Delivery,
error): delivers queued messages until one of the Connection.
Close, Channel.Cancel or AMQP exception occurs. The delivery starts
immediately and each message needs to be acknowledged. All the unacknowl-
edged messages are requeued to the same queue.

∗ func (ch *Channel) ExchangeDeclare (name, kind string, durable,
autoDelete, internal, noWait bool, args Table) error: creates an
Exchange on the server, if it does not exist.

∗ func (ch *Channel) QueueBind (name, key, exchange string, noWait
bool, args Table) error: compares the routing key of the Publishing and
the Binding, then binds an Exchange to a queue.

∗ func (ch *Channel) Qos (prefetchCount, prefetchSize int,
global bool) error: since it is impossible to keep infinitely many messages
on the server, it manages the quantity of messages that the server keeps on
the network.

∗ func (d Delivery) Ack (multiple bool) error: consumers call this to
acknowledge delivered messages if messages are received successfully.

∗ func (d Delivery) Nack (multiple, requeue bool) error: negatively
acknowledges the delivered messages. In this case, we need to decide whether
the message is requeued or not.

∗ func (d Delivery) Reject (requeue bool) error: behaves similarly to the
Delivery.Nack, but this is done through the Acknowledger interface.

After studying the RabbitMQ model and its client library, in the next section
we practice them with distributed examples implemented in several versions.

5 Distributed Programming

In the previous practical examples, the programs run on the same computer
using one or more CPUs. In this section, we discuss how to implement a dis-
tributed system in which different computers cooperate to handle the jobs. Go
and RabbitMQ are used when implementing our examples.

Balanced Distributed Computation Patterns 251

First, basic examples of the RabbitMQ are presented. Additionally, we intro-
duce three distributed examples implementing existing patterns: distributed job
processing (Client-Dispatcher-Server pattern), distributed pipeline (Pipes and
Filters pattern), and distributed divide and conquer (Master-Slave pattern).
Each example includes several versions from simple to more complex. Instead
of focusing only on RabbitMQ essential elements’ usage, like the tutorials of
the RabbitMQ website [17], our approach emphasizes practical aspects of dis-
tributed application implementations.

5.1 RABBITMQ Hello World

This section discusses how to enable programs to communicate in distributed
way using RabbitMQ. Here are the installation instructions for a machine with
a Windows 10 system:

1. Install Git: https://git-scm.com/downloads/
2. Install Erlang: https://www.erlang.org/downloads

RabbitMQ is an open-source message-broker software written in Erlang.
3. Install RabbitMQ Server: use rabbitmq-server-3.8.14.exe from

https://www.rabbitmq.com/install-windows.html
4. Start the RabbitMQ service: click on the RabbitMQ service start in the

Windows Start menu.
5. Create a folder, copy publisher.go and consumer.go into it.
6. Open the command line window in the created folder. Initialize the Go mod-

ule by running the command go mod init < NameOfModule >. Starting
from Go 1.13, a Go program imports packages of other modules and manages
the dependencies only through its own module. Thus, create a module for the
program in the project folder to import Go RabbitMQ Client Library.

7. Get the Go RabbitMQ Client Library, in the created folder run:
go get github.com/streadway/amqp.

8. First run the consumer.go, wait until it prints "Waiting for msgs".
9. Run the publisher.go.

The programs are using the methods of the RabbitMQ client library when
connecting and communicating to the RabbitMQ server (first install [13] then
run it). Before sending (or publishing) and receiving (or consuming), the sender
and the receiver both need to connect themselves to the RabbitMQ server.
Next, they open an AMQP (not Go) channel based on the connection. Then,
they declare the exchanges used during the communication, as in Listing 1.45
(from line 17 to 26) and in Listing 1.46 (from line 17 to 26). In Listing 1.45, the
receiver declares a queue jobQueue and binds it to the jobExchange exchange
with routing key jobkey (as shown from line 39 to line 55). In Listing 1.46, the
sender publishes a string as message body to the jobExchange exchange with
jobkey routing key (as shown from line 28 to 39). Afterwards, the receiver uses
the Consume method to get a Go channel of delivery, as shown from line 45 to
54. The receiver creates a goroutine that keeps receiving messages from the Go

https://git-scm.com/downloads/
https://www.erlang.org/downloads
https://www.rabbitmq.com/install-windows.html

252 J. Li et al.

channel, as in line 55 to 61. The main goroutine of the receiver waits forever.
The receiver has to run first as if no queue is bound to the exchange, the message
sent to the exchange is lost.

The introduction of defer statement can be found in Sect. 2.1 and the general
description of the producer and consumer problem can be found in Sect. 4.1.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8// Connection
9conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
10printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
11defer conn.Close()
12// Channel
13ch, err := conn.Channel ()
14printErrorAndExit(err , "Failed�to�open�a�channel")
15defer ch.Close()
16// Exchange
17err = ch.ExchangeDeclare(
18"jobExchange", // name
19"direct", // type
20false , // durable
21true , // auto -deleted
22false , // internal
23false , // no-wait
24nil , // arguments
25)
26printErrorAndExit(err , "Failed�to�declare�an�exchange")
27// Declare and bind queue
28q, err := ch.QueueDeclare(
29"jobQueue", // name ,,empty string let server generate id
30false , // durable
31true , // delete when unused
32false , // exclusive
33false , // no-wait
34nil , // arguments
35)
36printErrorAndExit(err , "Failed�to�declare�a�queue")
37err = ch.QueueBind(
38q.Name , // queue name
39"jobkey", // routing key
40"jobExchange", // exchange
41false ,
42nil)
43printErrorAndExit(err , "Failed�to�bind�a�queue")
44// Consume
45msgs , err := ch.Consume(
46q.Name , // queue
47"", // consumer ,empty string let server generate id
48false , // auto -ack
49false , // exclusive
50false , // no-local
51false , // no-wait
52nil , // args
53)
54printErrorAndExit(err , "Failed�to�register�a�consumer")
55go func() {
56for d := range msgs {
57bodyString := string(d.Body)
58fmt.Println("Received:", bodyString)
59d.Ack(false)
60}

Balanced Distributed Computation Patterns 253

61}()
62fmt.Println("Waiting�for�msgs")
63forever := make(chan bool)
64<-forever
65}
66func printErrorAndExit(err error , msg string) {
67if err != nil {
68log.Fatalln(msg , ":", err)
69}
70}

Listing 1.45. Consumer

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8// Connection
9conn , err := amqp.Dial("amqp :// guest: guest@localhost :5672/")
10printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
11defer conn.Close()
12// Channel
13ch, err := conn.Channel ()
14printErrorAndExit(err , "Failed�to�open�a�channel")
15defer ch.Close()
16// Exchange
17err = ch.ExchangeDeclare(
18"jobExchange", // name
19"direct", // type
20false , // durable
21true , // auto -deleted
22false , // internal
23false , // no-wait
24nil , // arguments
25)
26printErrorAndExit(err , "Failed�to�declare�an�exchange")
27//Send Message
28body := "Hello ,�World!"
29err = ch.Publish(
30"jobExchange", // exchange
31"jobkey", // routing key
32false , // mandatory
33false , // immediate
34amqp.Publishing{
35ContentType: "text/plain",
36Body: []byte(body),
37})
38printErrorAndExit(err , "Failed�to�publish�a�message")
39fmt.Println("Sent:�", body)
40}
41func printErrorAndExit(err error , msg string) {
42if err != nil {
43log.Fatalln(msg , ":", err)
44}
45}

Listing 1.46. Publisher

We should first run the consumer, which declares and binds the queue. We
run the publisher once the consumer is ready to receive.

254 J. Li et al.

Otherwise, when the publisher starts first and publishes a message to the
exchange, this message will be ignored. Since the exchange can not find a queue
bound to this exchange with a matching routing key with the message.
Here is the output after we run the consumer.go:

1go run consumer.go
2Waiting for msgs
3Received: Hello , World!

Here is the output after we run the publisher.go:
1go run publisher.go
2Sent: Hello , World!

5.2 RABBITMQ Exchange

The exchange is a basic distributed construct maintained at the RabbitMQ
server, and it is responsible for routing the messages to queues. “The server
MUST implement these standard exchange types: fanout, direct.” [1], this
section introduces examples of them.

Fanout Exchange Example. All the messages published through a fanout
exchange are delivered to all the queues bound to it (see Fig. 11). There are two
queues and two consumers in this example (see Fig. 14).

Fig. 14. Fanout exchange example. The publisher sends a message to a fanout

exchange. After that, the message is routed to the queues bound to this exchange
in the Consumer1 and Consumer2.

As it does not consider the routing key, the publish routing key can be any
string, as in Listing 1.47 line 17. Also the bounding routing key can be any string,
as in Listing 1.48 line 19 and Listing 1.49 line 6. The queue declaration is in List-
ing 1.48 line 17 and Listing 1.49 line 4. The first argument of the QueueDeclare
method is the name of the queue, if it as an empty string, the RabbitMQ server
generates a unique name for the queue. The fourth argument of QueueDeclare
is the Boolean value exclusive. The exclusive queues are only accessible by the
connection that declares them. Other connections cannot declare, bind, consume
or delete a queue with the same name. We set exclusive to true for Consumer1
and Consumer2, thus they have their private queues.

Balanced Distributed Computation Patterns 255

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8conn , err := amqp.Dial("amqp :// guest: guest@localhost :5672/")
9printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
10defer conn.Close()
11ch, err := conn.Channel ()
12printErrorAndExit(err , "Failed�to�open�a�channel")
13defer ch.Close()
14err = ch.ExchangeDeclare("fanoutExchange", "fanout",
15false , true , false , false , nil)
16printErrorAndExit(err , "Failed�to�declare�an�exchange")
17publishMsg(ch, "fanoutExchange", "anykey1", "msg")
18}
19func printErrorAndExit(err error , msg string) {
20if err != nil {
21log.Fatalln(msg , ":", err)
22} }
23func publishMsg(c *amqp.Channel , ex string , key string , msg string) {
24body := msg
25err := (*c). Publish(ex, key , false , false ,
26amqp.Publishing{
27ContentType: "text/plain",
28Body: []byte(body),
29})
30printErrorAndExit(err , "Failed�to�publish�a�message")
31fmt.Println("Sent:�", body)
32}

Listing 1.47. Fanout exchange example, Publisher

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8conn , err := amqp.Dial("amqp :// guest: guest@localhost :5672/")
9printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
10defer conn.Close()
11ch, err := conn.Channel ()
12printErrorAndExit(err , "Failed�to�open�a�channel")
13defer ch.Close()
14err = ch.ExchangeDeclare("fanoutExchange", "fanout",
15false , true , false , false , nil)
16printErrorAndExit(err , "Failed�to�declare�an�exchange")
17q, err := ch.QueueDeclare("", false , true , true , false , nil)
18printErrorAndExit(err , "Failed�to�declare�a�queue")
19err = ch.QueueBind(q.Name , "anykey2", "fanoutExchange", false , nil)
20printErrorAndExit(err , "Failed�to�bind�a�queue")
21msgs , err := ch.Consume(q.Name , "", false , false , false , false , nil)
22printErrorAndExit(err , "Failed�to�register�a�consumer")
23go func() {
24for d := range msgs {
25bodyString := string(d.Body)
26fmt.Println("Received:", bodyString)
27d.Ack(false)
28}
29}()
30fmt.Println("Waiting�for�msgs")
31forever := make(chan bool)

256 J. Li et al.

32<-forever
33}
34func printErrorAndExit(err error , msg string) {
35if err != nil {
36log.Fatalln(msg , ":", err)
37}
38}

Listing 1.48. Fanout exchange example, Consumer1

1...
2func main() {
3...
4q, err := ch.QueueDeclare("", false , true , true , false , nil)
5printErrorAndExit(err , "Failed�to�declare�a�queue")
6err = ch.QueueBind(q.Name , "anykey3", "fanoutExchange", false , nil)
7printErrorAndExit(err , "Failed�to�bind�a�queue")
8msgs , err := ch.Consume(q.Name , "", false , false , false , false , nil)
9printErrorAndExit(err , "Failed�to�register�a�consumer")
10go func() {
11for d := range msgs {
12bodyString := string(d.Body)
13fmt.Println("Received:", bodyString)
14d.Ack(false)
15}
16}()
17fmt.Println("Waiting�for�msgs")
18forever := make(chan bool)
19<-forever
20}
21...

Listing 1.49. Fanout exchange example, Consumer2

Output of the Consumer1:
1Waiting for msgs
2Received: msg

Output of the Consumer2:
1Waiting for msgs
2Received: msg

Output of the Publisher:
1Sent: msg

Direct Exchange Example. If a message with a publishing routing key is
published to a direct exchange, all the queues bound to this exchange with
the same bounding routing key get this message (see Fig. 9). There are three
queues and three consumers in this example (see Fig. 15).

Balanced Distributed Computation Patterns 257

Fig. 15. Direct exchange example. Queue 1 and Queue 2 are bound to Direct

Exchange with key “one”, msg1 is sent with key “one”, it is routed to Queue 1 and
Queue 2. Queue 3 is bound to Direct Exchange with key “two”, msg2 is sent with
key “two”. So Queue 3 gets msg2. If Publisher sends msg3 with the key “three”, it is
ignored because there is no queue bound to this exchange with key “three”.

We can also broadcast with the direct exchange by binding all the queues to
it with the same bounding routing key. However, the fanout exchange is faster
because it does not compare the keys before routing the messages to queues.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8conn , err := amqp.Dial("amqp :// guest: guest@localhost :5672/")
9printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
10defer conn.Close()
11ch, err := conn.Channel ()
12printErrorAndExit(err , "Failed�to�open�a�channel")
13defer ch.Close()
14err = ch.ExchangeDeclare("directExchange", "direct",
15false , true , false , false , nil)
16printErrorAndExit(err , "Failed�to�declare�an�exchange")
17publishMsg(ch, "directExchange", "one", "msg1")
18publishMsg(ch, "directExchange", "two", "msg2")
19}
20func printErrorAndExit(err error , msg string) {
21if err != nil {
22log.Fatalln(msg , ":", err)
23}
24}
25func publishMsg(c *amqp.Channel , ex string , key string , msg string) {
26body := msg
27err := (*c). Publish(ex, key , false , false ,
28amqp.Publishing{
29ContentType: "text/plain",
30Body: []byte(body),
31})
32printErrorAndExit(err , "Failed�to�publish�a�message")
33fmt.Println("Sent:�", body)
34}

Listing 1.50. Direct exchange example, Publisher

258 J. Li et al.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
9printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
10defer conn.Close()
11ch, err := conn.Channel ()
12printErrorAndExit(err , "Failed�to�open�a�channel")
13defer ch.Close()
14err = ch.ExchangeDeclare("directExchange", "direct",
15false , true , false , false , nil)
16printErrorAndExit(err , "Failed�to�declare�an�exchange")
17q, err := ch.QueueDeclare("", false , true , true , false , nil)
18printErrorAndExit(err , "Failed�to�declare�a�queue")
19err = ch.QueueBind(q.Name , "one", "directExchange", false , nil)
20printErrorAndExit(err , "Failed�to�bind�a�queue")
21msgs , err := ch.Consume(q.Name , "", false , false , false , false , nil)
22printErrorAndExit(err , "Failed�to�register�a�consumer")
23go func() {
24for d := range msgs {
25bodyString := string(d.Body)
26fmt.Println("Received:", bodyString)
27d.Ack(false)
28}
29}()
30fmt.Println("Waiting�for�msgs")
31forever := make(chan bool)
32<-forever
33}
34func printErrorAndExit(err error , msg string) {
35if err != nil {
36log.Fatalln(msg , ":", err)
37}
38}

Listing 1.51. Direct exchange example, Consumer1

1...
2func main() {
3...
4q, err := ch.QueueDeclare("", false , true , true , false , nil)
5printErrorAndExit(err , "Failed�to�declare�a�queue")
6err = ch.QueueBind(q.Name , "one", "directExchange", false , nil)
7printErrorAndExit(err , "Failed�to�bind�a�queue")
8msgs , err := ch.Consume(q.Name , "", false , false , false , false , nil)
9printErrorAndExit(err , "Failed�to�register�a�consumer")
10go func() {
11for d := range msgs {
12bodyString := string(d.Body)
13fmt.Println("Received:", bodyString)
14d.Ack(false)
15}
16}()
17fmt.Println("Waiting�for�msgs")
18forever := make(chan bool)
19<-forever
20}
21...

Listing 1.52. Direct exchange example, Consumer2

Balanced Distributed Computation Patterns 259

1...
2func main() {
3...
4q, err := ch.QueueDeclare("", false , true , true , false , nil)
5printErrorAndExit(err , "Failed�to�declare�a�queue")
6err = ch.QueueBind(q.Name , "two", "directExchange", false , nil)
7printErrorAndExit(err , "Failed�to�bind�a�queue")
8msgs , err := ch.Consume(q.Name , "", false , false , false , false , nil)
9printErrorAndExit(err , "Failed�to�register�a�consumer")
10go func() {
11for d := range msgs {
12bodyString := string(d.Body)
13fmt.Println("Received:", bodyString)
14d.Ack(false)
15}
16}()
17fmt.Println("Waiting�for�msgs")
18forever := make(chan bool)
19<-forever
20}
21...

Listing 1.53. Direct exchange example, Consumer3

Output of the Consumer1:

1Waiting for msgs
2Received: msg1

Output of the Consumer2:

1Waiting for msgs
2Received: msg1

Output of the Consumer3:

1Waiting for msgs
2Received: msg2

Output of the Publisher:

1Sent: msg1
2Sent: msg2

5.3 RABBITMQ Shared Queue

If more consumers share a queue, the server fairly distributes the deliveries across
multiple consumers. “By default, RabbitMQ will send each message to the next
consumer, in sequence. On average every consumer will get the same number of
messages. This way of distributing messages is called round-robin.” [18] There
are one queues and two consumers in this example (see Fig. 16).

260 J. Li et al.

Fig. 16. Shared queue example. The queue is shared by Consumer1 and Consumer2.
They consume the messages in the queue in a balanced round-robin manner.

As shown in Listing 1.55 line 17 and Listing 1.56 line 5, the queue is declared
with the SharedQueue name, which is known by all the consumers. The fourth
argument exclusive is false so that the consumers can share the queue.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
9printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
10defer conn.Close()
11ch, err := conn.Channel ()
12printErrorAndExit(err , "Failed�to�open�a�channel")
13defer ch.Close()
14err = ch.ExchangeDeclare("sharedQExchange", "direct",
15false , true , false , false , nil)
16printErrorAndExit(err , "Failed�to�declare�an�exchange")
17publishMsg(ch, "sharedQExchange", "one", "msg1")
18publishMsg(ch, "sharedQExchange", "one", "msg2")
19publishMsg(ch, "sharedQExchange", "one", "msg3")
20}
21func printErrorAndExit(err error , msg string) {
22if err != nil {
23log.Fatalln(msg , ":", err)
24}
25}
26func publishMsg(c *amqp.Channel , ex string , key string , msg string) {
27body := msg
28err := (*c). Publish(ex, key , false , false ,
29amqp.Publishing{
30ContentType: "text/plain",
31Body: []byte(body), })
32printErrorAndExit(err , "Failed�to�publish�a�message")
33fmt.Println("Sent:�", body)
34}

Listing 1.54. Shared queue example, Publisher

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")

Balanced Distributed Computation Patterns 261

9printErrorAndExit(err , "Failed�to�connect�to�RabbitMQ")
10defer conn.Close()
11ch, err := conn.Channel ()
12printErrorAndExit(err , "Failed�to�open�a�channel")
13defer ch.Close()
14err = ch.ExchangeDeclare("sharedQExchange", "direct",
15false , true , false , false , nil)
16printErrorAndExit(err , "Failed�to�declare�an�exchange")
17q, err := ch.QueueDeclare("SharedQueue",
18false , true , false , false , nil)
19printErrorAndExit(err , "Failed�to�declare�a�queue")
20err = ch.QueueBind(q.Name , "one", "sharedQExchange", false , nil)
21printErrorAndExit(err , "Failed�to�bind�a�queue")
22msgs , err := ch.Consume(q.Name , "", false , false , false , false , nil)
23printErrorAndExit(err , "Failed�to�register�a�consumer")
24go func() {
25for d := range msgs {
26bodyString := string(d.Body)
27fmt.Println("Received:", bodyString)
28d.Ack(false)
29}
30}()
31fmt.Println("Waiting�for�msgs")
32forever := make(chan bool)
33<-forever
34}
35func printErrorAndExit(err error , msg string) {
36if err != nil {
37log.Fatalln(msg , ":", err)
38}
39}

Listing 1.55. Shared queue example, Consumer1

1package main
2...
3func main() {
4...
5q, err := ch.QueueDeclare("SharedQueue",
6false , true , false , false , nil)
7printErrorAndExit(err , "Failed�to�declare�a�queue")
8err = ch.QueueBind(q.Name , "one", "sharedQExchange", false , nil)
9printErrorAndExit(err , "Failed�to�bind�a�queue")
10msgs , err := ch.Consume(q.Name , "", false , false , false , false , nil)
11printErrorAndExit(err , "Failed�to�register�a�consumer")
12go func() {
13for d := range msgs {
14bodyString := string(d.Body)
15fmt.Println("Received:", bodyString)
16d.Ack(false)
17}
18}()
19fmt.Println("Waiting�for�msgs")
20forever := make(chan bool)
21<-forever
22}
23...

Listing 1.56. Shared queue example, Consumer2

Output of the Consumer1:

1Waiting for msgs
2Received: msg1
3Received: msg3

262 J. Li et al.

Output of the Consumer2:

1Waiting for msgs
2Received: msg2

Output of the Publisher:

1Sent: msg1
2Sent: msg2
3Sent: msg3

5.4 Parallel Receive

This section introduces how to receive messages from a channel in a parallel way.
The sequential receive example is also given for comparison. The code listings
of the sequential and parallel receive examples are in Subsect. A.1.

Listing 1.63 shows the sequential way of receiving messages from the Go
channel, which is returned by the method Consume. The RabbitMQ channel
chi is used to declare and bind a queue and consume. The queue is declared
with generated name. It is bound to the pExchange with "key" bounding routing
key. The Consume method creates a consumer of this queue. The msgs is the
Go channel returned by the Consume method. It is the place where you can
get the messages. After the queue is bound to the pExchange, you can start
publishing messages related to pExchange with "key" publishing routing key.
Here we publish 100 fake links, after that, it sends a message "END". After
publishing all the messages, the timer starts. Then, a goroutine is also started to
receive messages from the returned Go channel. If the received message is the
"END", we use the Cancel method to close the Go channel gracefully. Otherwise,
the goroutine tests the link, and prints the result. The duration is printed out
after this goroutine is finished.
Before Cancel actually closes the channel, it waits until all messages received
on the network are delivered to the channel. Note that the same RabbitMQ
channel must be used as for Consume (here chi channel is used when calling both
Consume and Cancel). The first argument of Cancel is the consumer name. In
the sequential receive example, we get the consumer name by accessing the
ConsumerTag of the received d.
In the parallel receive example, multiple goroutines receive and handle messages
from the Go channel. Similar to the previous example, the publisher sends a
message "END" after sending all the links and uses the Cancel method to close
the Go. After that, all the for range loops of the different goroutines terminate.
In the sequential receive example, the consumer name is generated by the Rab-
bitMQ server because we passed empty string as the argument consumer. While
in the parallel receive example, the method Consume is called with a specific con-
sumer name "linkConsumer". Thus, Cancel is also called with consumer name
"linkConsumer". The output shows that the parallel receive example is faster
than the sequential one.
Output of the sequential receive:

Balanced Distributed Computation Patterns 263

1...
2goroutine http://web94.com:Bad
3goroutine http://web95.com:Good
4goroutine http://web96.com:Bad
5goroutine http://web97.com:Good
6goroutine http://web98.com:Good
7goroutine http://web99.com:Bad
8Time: 10.2949749s

Output of the parallel receive:

1...
2goroutine 15 http://web95.com:Good
3goroutine 3 http://web93.com:Bad
4goroutine 1 http://web94.com:Good
5goroutine 6 http://web97.com:Bad
6goroutine 11 http://web98.com:Good
7goroutine 8 http://web96.com:Good
8goroutine 12 http://web99.com:Bad
9Time: 741.4254 ms

5.5 Distributed Job Processing

The distributed job processing example follows the general idea of the Client-
Dispatcher-Server pattern. The context of the pattern is described as: “A soft-
ware system integrating a set of distributed servers, with the servers running
locally or distributed over a network” [3].

In this example, the job-sender is the client, the worker is the server, the
RabbitMQ server is the intermediate layer between clients and servers.

The job-senders send independent tasks to the workers, and from version 2,
they also receive results from different workers. The workers receive jobs from
job-senders and send back the results.

Distributed Job Processing Without Response From Workers (Ver-
sion 1). The worker does not respond to the jobSender, it only receives tasks
from it and prints the result (see Fig. 17). The jobSender and the worker both
have declarations of connection, channel and exchange (as in the example of
Subsect. 5.1).

Fig. 17. Distributed job processing without response from workers. The
jobQueue is RabbitMQ queue instead of Go queue. The jobSender sends jobs to the
jobQueue through the jobExchange sequentially. The workers consume jobs from the
jobQueue in a balanced round-robin way.

264 J. Li et al.

In Listing 1.58, the string slice links contains all the links that the jobSender
sends to the RabbitMQ server. In Listing 1.57, we declare the queue jobQueue
and bind it to the jobExchange with the routing key jobkey. Afterwards, the
worker consumes the links from the jobQueue and checks all the received links
using the function linkTest.

First the workers have to run. If no worker binds a queue to the
jobExchange, the messages sent to the jobExchange by the jobSender are lost.
Several workers can run, as they share the same queue, they consume and check
all the links in a round-robin way. The introduction of slice can be found in
Sect. 2.1.

1package main

2import (

3"fmt"

4"github.com/streadway/amqp"

5"log"

6"net/http"

7"time"

8)

9func main() {

10conn , err := amqp.Dial("amqp :// guest: guest@localhost :5672/")

11failOnError(err , "Failed�to�connect�to�RabbitMQ")

12defer conn.Close()

13chi , err := conn.Channel ()

14failOnError(err , "Failed�to�open�a�channel")

15defer chi.Close()

16err = chi.ExchangeDeclare("jobExchange", "direct",

17false , true , false , false , nil)

18failOnError(err , "Failed�to�declare�an�exchange")

19queueIn , err := chi.QueueDeclare("jobQueue",

20false , true , false , false , nil)

21failOnError(err , "Failed�to�declare�a�queue")

22err = chi.QueueBind(queueIn.Name , "jobkey", "jobExchange", false , nil)

23failOnError(err , "Failed�to�bind�a�queue")

24inputMsgs , err := chi.Consume(queueIn.Name , "",

25false , false , false , false , nil)

26failOnError(err , "Failed�to�register�a�consumer")

27go func() {

28for d := range inputMsgs {

29fmt.Println(linkTest(string(d.Body)))

30d.Ack(false)

31}

32}()

33fmt.Println("Waiting�for�jobs")

34forever := make(chan bool)

35<-forever

36}

37func linkTest(link string) string {

38client := http.Client{

39Timeout: 3 * time.Second ,

40}

41_, err := client.Get(link)

42if err != nil {

43resultString := link + "�status:�might�down"

44return resultString

45}

46resultString := link + "�status:�up.�"

47return resultString

48}

49func failOnError(err error , msg string) {

50if err != nil {

51log.Fatalf("%s:�%s", msg , err)

52}

53}

Listing 1.57. Distributed job and worker example version 1, worker

Balanced Distributed Computation Patterns 265

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8links := [] string{
9"http :// google.com",
10"http :// facebook.com",
11"http :// stackoverflow.com",
12"http :// golang.org",
13"http :// amazon.com",
14}
15var numOfLink = 10
16for i := 0; i < numOfLink; i++ {
17fakeLink := fmt.Sprintf("http ://web%d.com", i)
18links = append(links , fakeLink)
19}
20conn , err := amqp.Dial("amqp :// guest: guest@localhost :5672/")
21failOnError(err , "Failed�to�connect�to�RabbitMQ")
22defer conn.Close()
23cho , err := conn.Channel ()
24failOnError(err , "Failed�to�open�a�channel")
25defer cho.Close()
26err = cho.ExchangeDeclare("jobExchange", "direct",
27false , true , false , false , nil)
28failOnError(err , "Failed�to�declare�an�exchange")
29for _, link := range links {
30err := cho.Publish("jobExchange", "jobkey", false , false ,
31amqp.Publishing{
32ContentType: "text/plain",
33Body: []byte(link),
34})
35failOnError(err , "Failed�to�publish�a�message")
36fmt.Println("Published�" + link)
37}
38}
39func failOnError(err error , msg string) {
40if err != nil {
41log.Fatalf("%s:�%s", msg , err)
42}
43}

Listing 1.58. Distributed job and worker example version 1, jobSender

Run the first worker, the output is:

1go run worker.go
2Waiting for jobs
3http:// google.com status: up.
4http:// stackoverflow.com status: up.
5http:// amazon.com status: up.
6http://web1.com status: might down
7http://web3.com status: might down
8http://web5.com status: up.
9http://web7.com status: up.
10http://web9.com status: might down

266 J. Li et al.

Run the second worker, the output is:

1go run worker.go
2Waiting for jobs
3http:// facebook.com status: up.
4http:// golang.org status: up.
5http://web0.com status: up.
6http://web2.com status: up.
7http://web4.com status: might down
8http://web6.com status: up.
9http://web8.com status: might down

Run the jobSender, the output is:

1go run jobSender.go
2Published http:// google.com
3Published http:// facebook.com
4Published http:// stackoverflow.com
5Published http:// golang.org
6Published http:// amazon.com
7Published http://web0.com
8Published http://web1.com
9Published http://web2.com
10Published http://web3.com
11Published http://web4.com
12Published http://web5.com
13Published http://web6.com
14Published http://web7.com
15Published http://web8.com
16Published http://web9.com

Distributed Job Processing with Shared Response Queue (Version 2).
In the previous version, the jobSender does not care about the result of the jobs.
In this version, the jobSender sends jobs to the worker and receive responses
from it (see Fig. 18). The worker receives jobs from the jobSender and sends the
responses back to the jobSender. The jobSender and the worker use different
connections to Consume and to Publish messages, so that publishing does not
affect the ability of consuming messages.

The jobSender sends links as messages to the jobExchange exchange.
The exchange routes the message to the jobQueue queue, which is bound to
the jobExchange. Each worker receives jobs from this queue as a consumer.
There is a round-robin balanced work distribution between all the workers. The
jobSender receives response from the worker. We can have multiple jobSenders,
each of them keeps a map called jobCorr to map a unique correlation Id to a
job. Before each jobSender acknowledges by ack the response, they check if this
correlation Id is in their map, if it is not in the map, then we reject and requeue
the response, i.e. to transfer to other customers (jobSenders). Before publishing
the job, the jobSender should create a separate goroutine receiving responses,
which prevent the loss of the message. The code listings are in Subsect. A.2. The
introduction of map can be found in Sect. 2.1.

As shown in jobSender.go, Listing 1.66, the jobSender1 and jobSender2
have different contents in the linksToSend slice. We can start them by giving
different command line arguments when running the jobSender.go. They share
the same response queue responseQueue, and bind the queue with responsekey
to responseExchange (as shown from line 54 to 58). We create a string-to-string

Balanced Distributed Computation Patterns 267

map to link each task to a unique CorrelationId, as shown in line 63. As shown
from line 64 to 76, Listing 1.66, for each link, we generated a unique corrId
before publishing the message (we used a globally unique id generator as in [12]
(see from line 92 to 95).

Differently from the previous version, the message to be sent has two more
fields: CorrelationId and ReplyTo. The CorrelationId matches the link sent
by the jobSender with the response for this link sent by the worker. The value
of the CorrelationId is the unique corrId created. The ReplyTo specifies the
bounding routing key of the response queue.

As shown from line 77 to 88, Listing 1.66, we receive responses in a separate
goroutine. Once the jobSender receives a response, it checks if this response
is related to itself; if so, it acknowledges by ack the reply message; if not, it
negatively acknowledges by nack the response and requeues this response to let
another jobSender to receive it. The worker, as shown from line 29 to 42, List-
ing 1.65, for each received link, the checking is done, and then the result is
published according to the ReplyTo using the same correlationId. After the
response is published, we acknowledge by ack the received link message.

Distributed Job Processing with Private Response Queue (Version 3).
In version 2, all the workers send responses with the same routing key. Each job
sender requeues messages that are not related to them. If we have many job
senders, there are too many requeueing operations, which affects the efficiency.

Each job sender has a separate queue for the responses in this version (see
Fig. 19). As a result, the job sender does not receive irrelevant messages. There-
fore, no requeueing operation is needed. The code listings of this example are in
Subsect. A.3.

Fig. 18. Distributed job processing with shared response queue. The workers
send their responses to the responseExchange and then to the responseQueue. All the
jobSenders share one responseQueue.

268 J. Li et al.

We use different routing keys (their own generated queue name) for each job
sender to reduce the message redirection, as in Listing 1.67 from line 4 to 6.
When sending each job, it sets ReplyTo value to this queue name, as in line 14.

Fig. 19. Distributed job processing with private response queue. Instead of
sharing one responseQueue, each jobSender has its own queue to receive the responses.

Distributed Job Processing with Worker Generator (Version 4). To
test this program on more computers, each computer may need to run several
workers. The previous version needs to manually run workers many times on each
computer. In this version, workers are generated on each computer automatically
by a worker generator. The organizer sends messages to the generators to run a
worker on a specific computer. Hence no need to start and run workers manually
anymore (see Fig. 20). The code listings are in Subsect. A.4.

As shown in Listing 1.69 and Listing 1.70, the organizer publishes four mes-
sages of "1" to the RabbitMQ server, each one stands for a request to cre-
ate a worker. Each generator receives them in a round-robin way and runs the
exec.Command to start a worker.

The worker is the same as the previous version. The jobSender is different,
it does not run forever. The jobSender prints out the duration time after it has
received all the responses. By using the WaitGroup, the main goroutine waits
until the response received is goroutine finish. As in Listing 1.68, line 47 to 50,
after it has handled each response, the jobSender checks if the map jobCorr is
empty, which means all the jobs got their responses. If it is empty, we use Cancel
to clearly close the msgs Go channel, after that the for range loop is finished.
From the timing result, we can see that for the same tasks’ list, the distributed
version is faster than the sequential one.

Balanced Distributed Computation Patterns 269

Fig. 20. Worker generator. The organizer sends messages to the dispatch exchange.
Then the messages are routed to the generator Queue. Each message means one worker
needs to be created by the generator. After message1 is received, generator1 generates
a worker. At the same time, after receiving message2, generator2 generates another
worker; therefore, only two workers are generated in this figure.

5.6 Distributed Pipeline

In this section, we implement a distributed pipeline example. The distributed
pipeline is an implementation of the Pipes and Filters pattern. This pattern
is described as: “It provides a structure for systems that process a stream of
data. Each processing step is encapsulated in a filter component. Data is passed
through pipes between adjacent filters. Recombining filters allows you to build
families of related systems” [3].

In this example, the workers are the Filters, the Pipes are the connections
between the workers, which are achieved with RabbitMQ. The pipeline is valu-
able when many tasks need to go through a few, same processes. There are three
versions, a next version solves some problems occurred in the previous ones.

Distributed Pipeline Without Connection Confirmation (Version 1).
In this first version, we have only three workers in the pipeline, each one only
knows the information (the exchange name and routing key) about the next
worker (see Fig. 21).

When we run the first, the second, and the third worker in order, we find
messages that the second and third worker has not received. For example, the
second worker may not have received the 0 and 1 sent by the first worker. Like-
wise, the third worker may not have received the 4 and 6 sent by the second
worker. However, the previous worker indeed has sent it. This is because when
the previous worker publishes the first few messages, the next worker still has
not yet bound the queue to the corresponding exchange. The message is lost if
it is sent to the exchange to which there is no queue bound yet. Therefore, the
workers should run in reverse order: worker 3, 2, and 1. One second of sleeping
time is added to each task to slow down the speed.

270 J. Li et al.

Fig. 21. Distributed pipeline without connection confirmation. The first
worker produces numbers and sends them to the second worker. The second worker
receives and multiplies them by 2, then sends them to the third worker. The third
worker receives the numbers and prints them.

As shown in Listing 1.59 line 20 to 31, worker 1 publishes 10 integers to the
next worker. In Listing 1.60. line 35 to 51, worker 2 multiplies each received
integer by 2 and publishes the result to the next worker. In Listing 1.61, line 28
to 33, worker 3 receives the messages and prints them out.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6"strconv"
7"time"
8)
9func main() {
10conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
11failOnError(err , "Failed�to�connect�to�RabbitMQ")
12defer conn.Close()
13ch, err := conn.Channel ()
14failOnError(err , "Failed�to�open�a�channel")
15defer ch.Close()
16err = ch.ExchangeDeclare(" pipelineExchangeV1", "direct",
17false , true , false , false , nil)
18failOnError(err , "Failed�to�declare�an�exchange")
19go func() {
20for x := 0; x < 11; x++ {
21body := strconv.Itoa(x)
22err = ch.Publish("pipelineExchangeV1", "KeyA",
23false , false ,
24amqp.Publishing{
25ContentType: "text/plain",
26Body: []byte(body),
27})
28failOnError(err , "Failed�to�publish�a�message")
29fmt.Println("Worker�1�sent", body)
30time.Sleep (1000 * time.Millisecond)
31}
32}()
33forever := make(chan bool)
34<-forever
35}
36func failOnError(err error , msg string) {
37if err != nil {
38log.Fatalf("%s:�%s", msg , err)
39}
40}

Listing 1.59. Distributed pipeline without connection confirmation, worker 1

Balanced Distributed Computation Patterns 271

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6"strconv"
7"time"
8)
9func main() {
10conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
11failOnError(err , "Failed�to�connect�to�RabbitMQ")
12defer conn1.Close()
13conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
14failOnError(err , "Failed�to�connect�to�RabbitMQ")
15defer conn2.Close()
16cho , err := conn1.Channel ()
17failOnError(err , "Failed�to�open�a�channel")
18defer cho.Close()
19chi , err := conn2.Channel ()
20failOnError(err , "Failed�to�open�a�channel")
21defer chi.Close()
22err = chi.ExchangeDeclare(" pipelineExchangeV1", "direct",
23false , true , false , false , nil)
24failOnError(err , "Failed�to�declare�an�exchange")
25q, err := chi.QueueDeclare("Worker2Queue",
26false , true , false , false , nil)
27failOnError(err , "Failed�to�declare�a�queue")
28err = chi.QueueBind(q.Name , "KeyA", "pipelineExchangeV1",
29false , nil)
30failOnError(err , "Failed�to�bind�a�queue")
31msgs , err := chi.Consume(q.Name , "",
32false , false , false , false , nil)
33failOnError(err , "Failed�to�register�a�consumer")
34go func() {
35for d := range msgs {
36var numberString = string(d.Body)
37number , _ := strconv.Atoi(numberString)
38var doubleNumber = number * 2
39body := strconv.Itoa(doubleNumber)
40err = cho.Publish("pipelineExchangeV1", "KeyB",
41false , false ,
42amqp.Publishing{
43ContentType: "text/plain",
44Body: []byte(body),
45})
46failOnError(err , "Failed�to�publish�a�message")
47fmt.Println("Worker�2�received�", numberString ,
48"sent", body)
49time.Sleep (1000 * time.Millisecond)
50d.Ack(false)
51}
52}()
53fmt.Println("Waiting�for�jobs")
54forever := make(chan bool)
55<-forever
56}
57func failOnError(err error , msg string) {
58if err != nil {
59log.Fatalf("%s:�%s", msg , err)
60}
61}

Listing 1.60. Distributed pipeline without connection confirmation, worker 2

272 J. Li et al.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6"time"
7)
8func main() {
9conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
10failOnError(err , "Failed�to�connect�to�RabbitMQ")
11defer conn.Close()
12ch, err := conn.Channel ()
13failOnError(err , "Failed�to�open�a�channel")
14defer ch.Close()
15err = ch.ExchangeDeclare(" pipelineExchangeV1", "direct",
16false , true , false , false , nil)
17failOnError(err , "Failed�to�declare�an�exchange")
18q, err := ch.QueueDeclare("Worker3Queue",
19false , true , false , false , nil)
20failOnError(err , "Failed�to�declare�a�queue")
21err = ch.QueueBind(q.Name , "KeyB", "pipelineExchangeV1",
22false , nil)
23failOnError(err , "Failed�to�bind�a�queue")
24msgs , err := ch.Consume(q.Name , "",
25false , false , false , false , nil)
26failOnError(err , "Failed�to�register�a�consumer")
27go func() {
28for d := range msgs {
29var numberString = string(d.Body)
30fmt.Println("Worker�3�received", numberString)
31time.Sleep (1000 * time.Millisecond)
32d.Ack(false)
33}
34}()
35fmt.Println("Waiting�for�jobs")
36forever := make(chan bool)
37<-forever
38}
39func failOnError(err error , msg string) {
40if err != nil {
41log.Fatalf("%s:�%s", msg , err)
42}
43}

Listing 1.61. Distributed pipeline without connection confirmation, worker 3

Run the worker3, the output is:

1go run worker3.go
2Waiting for jobs
3Worker 3 received 0
4Worker 3 received 2
5Worker 3 received 4
6Worker 3 received 6
7Worker 3 received 8
8Worker 3 received 10
9Worker 3 received 12
10Worker 3 received 14
11Worker 3 received 16
12Worker 3 received 18
13Worker 3 received 20

Balanced Distributed Computation Patterns 273

Run the worker2, the output is:

1go run worker2.go
2Waiting for jobs
3Worker 2 received 0 sent 0
4Worker 2 received 1 sent 2
5Worker 2 received 2 sent 4
6Worker 2 received 3 sent 6
7Worker 2 received 4 sent 8
8Worker 2 received 5 sent 10
9Worker 2 received 6 sent 12
10Worker 2 received 7 sent 14
11Worker 2 received 8 sent 16
12Worker 2 received 9 sent 18
13Worker 2 received 10 sent 20

Run the worker1, the output is:

1go run worker1.go
2Worker 1 sent 0
3Worker 1 sent 1
4Worker 1 sent 2
5Worker 1 sent 3
6Worker 1 sent 4
7Worker 1 sent 5
8Worker 1 sent 6
9Worker 1 sent 7
10Worker 1 sent 8
11Worker 1 sent 9
12Worker 1 sent 10

Distributed Pipeline with Connection Confirmation (Version 2). The
previous version had loss of data problem, this version solves this issue (see
Fig. 22). There are three types of workers in this example. The Start worker’s
job is to generate and send messages to the next. The Start worker’s queue
initially contains all the tasks. Next, the Mid workers receive messages, pro-
cess them, and pass them to the next worker. Finally, the End worker receives
messages and prints them. The code listings are in Subsect. A.5.

Fig. 22. Distributed pipeline with connection confirmation. The workers send
messages only after receiving the confirmation message (which shows they are ready
to receive) from the next ones.

As shown in Listing 1.72, line 46 to 56, the Worker is an struct which contains
the methods ConnectPrevious and WaitNext. The Worker struct is embedded
in startWorker, midWorker and endWorker structs. Therefore, startWorker,
midWorker and endWorker can also call the methods ConnectPrevious and
WaitNext.

274 J. Li et al.

In Listing 1.72, line 84 to 109, in the WaitNext method, every worker has
a queue that receives confirm messages from the previous worker. After the
previous worker starts, it waits for the confirmation message from the next
worker. Then, the worker prints the bounding routing key of the confirm message
queue. In Listing 1.72, line 57 to 83, in the ConnectPrevious method, the worker
declares a queue for receiving task messages and send the bounding routing key
of this queue as a confirmation message to the previous worker.

As shown in Listing 1.72, line 9 to 11, each worker has several command line
arguments: workerType is the type of the worker; inputConfirmQueue is the
bounding routing key of the confirm message queue of the previous worker, which
is printed by the previous worker, and the next worker publishes confirmation
message using this routing key. The function is the job of the middle worker
and used it to process the received tasks.

In Listing 1.73 and in Listing 1.74, the start and middle workers only start
to do their work after receiving the confirmation message from the next worker.
Unlike the previous version, the worker does not wait forever after they do their
job. The start worker sends an "END" after sending all the tasks. The middle
worker, if has received it, sends it too to the next worker and exits. If the end
worker receives "END", it prints a string and exits.

The three workers are started in order, each one knows the information about
the previous worker by passing command line arguments. However, when they
start, they know nothing about the next ones; thus, they need to wait for the
confirmation message from the next worker.

Distributed Pipeline with Worker Generator (Version 3). In the previ-
ous version, we need to manually type in the command line arguments for each
worker on different computers to set up the pipeline. In this version, we make
this setup process automatically, as shown in Fig. 23.

Fig. 23. Distributed pipeline with worker generator. The organizer sends the
messages with command line arguments of the workers to the generator queue and
receives messages from the generated worker. The generators consume messages from
the generator queue and generate workers.

Balanced Distributed Computation Patterns 275

The code listings are in Subsect. A.6. As shown in Listing 1.78, line 33 to
45, the generator keeps receiving messages with command line arguments of a
worker. The generator for each message generates a worker on a computer in a
round-robin way.

In Listing 1.79, the organizer sends messages, including the command line
arguments for a worker to the generator. Furthermore, it waits from the gener-
ated worker for the command line arguments of the next worker. In the organizer,
we can set up the number of workers, the command line arguments for the first
worker, and the function for each mid worker. The workers include one starter
worker, one end worker, and a few middle workers. From line 55 to line 69,
the organizer publishes the command line arguments of the start worker. From
line 72 to line 101, the organizer waits for messages containing command line
arguments and creates middle workers and end worker.

As shown in Listing 1.76, instead of printing the command line arguments for
the next worker, like in previous version, here the worker sends those command
line arguments to the organizer before printing them.

As shown in Listing 1.79 line 103 to line 109, the organizer waits for an end
message before printing the elapsed time and terminates. The end worker sends
this end message to the organizer after it receives the end message from a middle
worker, as shown in Listing 1.77.

5.7 Distributed Divide and Conquer

In this section, we implement a distributed divide and conquer example, the
quick sort algorithm (see Fig. 24). The version using the merge sort algorithm
can be found in the Appendix Sect. B.

The distributed divide and conquer example is an implementation of the
Master-Slave pattern. This pattern is described as: “A master component dis-
tributes work to identical slave components and computes a final result from the
results these slaves return” [3].

In this example, the starter acts as master, the worker acts as both master
and slave. The worker receives tasks and may distribute tasks to the generated
workers. The generator generates workers after receiving command line argu-
ments for the workers. Those command line arguments come from not only the
starter but also from the workers.

The divide condition is that the length of the received list is greater than 4,
if the length is less or equal to it, this worker does not divide anymore; it does
the sorting and gives back the result to its parent.

Instead of manually running the worker, we use the generator to create the
workers on each computer. The generator receives command line arguments from
the workers to generate the new workers. The code listings are in Subsect. A.7.

The starter holds the list to be sorted, and it also declares a
queueForConfirm, which is the queue to get the confirmation message from
the child worker, as shown in Listing 1.83, line 37 to 38. The confirm message
means the child worker has already bound the queueIn to the exchange and
is ready to receive tasks from the parent worker, as shown in Listing 1.81, line

276 J. Li et al.

Fig. 24. Distributed Divide and Conquer. The starter sends the list to be sorted to
worker1. The size of the list sent from the starter reaches the threshold of the divide;
therefore, worker1 receives it and divides into two, and then it sends them to worker2

and worker3. The size of the list sent to worker2 still reaches the threshold of the
divide, so it also has to divide the tasks to worker4 and worker5. The size of the list
sent to worker3 is less than or equal to the threshold of the divide, so it sorts the
sublist and sends back the result.

37 to 41. We use this confirmation message as a routing key to send tasks to
the child. The starter declares a queueForResult, it is the queue to receive the
result of a child. The child uses the name of queueForResult as a routing key
when sending back the result to the parent worker.

Each worker has two command line arguments. One of them is the outputKey,
that is the routing key the worker uses when sending back the result to the
parent. Another one is the confirmKey, which is the routing key the worker uses
when sending the confirmation message. The confirm message is the name of the
queue that is used to receive tasks (queueIn.Name).

As shown in Listing 1.81 from line 37 to line 54, each worker first declares the
queueIn and it sends a confirm message with the confirmKey as the routing key.
In line 61 to 74, if the length of the received list is less or equal to 4, the worker
sorts the list and sends back the result with the routing key outputKey. In line
75 to 233, if the length of the received list is greater than 4, the worker divides
the received list into two sublists. Then, the worker sends two messages to the
generator to create two more children workers. After that, the worker separately
gets confirmation and the result from the child worker. In the end, the worker
gets the final result and sends it back to the parent worker.

6 Testing Performances

In this section, we picked up one concurrent example from Subsect. 3.8 and one
distributed example from Sect. 5.5 to illustrate the test of the performances.

Balanced Distributed Computation Patterns 277

Testing Concurrent Job and Worker Example. Measurements are done
for Concurrent job processing by long-life workers (version 3) code,
introduced in Subsect. 3.8 (see Fig. 25, Fig. 26, Fig. 27 and Fig. 28). For testing
purposes, the number of CPUs the program could use was 16 (for descriptions see
Subsect. 3.7). Additionally, we eliminated the print about quit. Finally, by chang-
ing the constant variable MaxWorker, the number of workers could be changed.

1...
2const MaxWorker = 4
3...
4func main() {
5fmt.Println(runtime.NumCPU ())
6_ = runtime.GOMAXPROCS (16)
7...
8//fmt.Println (" Worker ",
9// strconv.Itoa(w.id), "Quit")
10...

Listing 1.62. Test of concurrent job and worker example

The computer used in the test has the following configuration: processor,
AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz. RAM, 16G. Cores, 8.
Logical processors, 16.

The speed-up in the following figures is the ratio between the one-worker
running time and the tested running time with multiple workers.

0 100 200 300 400 500 600 700 800 900 1,000
0

50

100

150

200

250

300

350

400

Worker Number

Sp
ee
d-
up

Fig. 25. Parallel job processing by

long-life workers test, part 1/4.

As the number of workers increases
between 2 and 1000, the speed-up has
tended to increase.

0 0.2 0.4 0.6 0.8 1

·104
0

50

100

150

200

250

300

350

400

Worker Number

Sp
ee
d-
up

Fig. 26. Parallel job processing by

long-life workers test, part 2/4.

As the number of workers increases
between 1000 and 10000, the speed-up
increases.

278 J. Li et al.

0 0.2 0.4 0.6 0.8 1

·105
0

50

100

150

200

250

300

350

400

Worker Number

Sp
ee
d-
up

Fig. 27. Parallel job processing by

long-life workers test, part 3/4.

As the number of workers increases
between 10000 and 100000, the speed-up
increases until 90000.

0 0.2 0.4 0.6 0.8 1

·106
0

50

100

150

200

250

300

350

400

Worker Number

Sp
ee
d-
up

Fig. 28. Parallel job processing by

long-life workers test, part 4/4.

As the number of workers increases
between 100000 and 1000000, the
speed-up decreases.

Testing Distributed Job and Worker Example. We have done mea-
surements for the Distributed job processing with worker generator
(version 4) example introduced in Sect. 5.5 (see Fig. 29).

The server computer runs the organizer and the job sender and it has the
following configuration: processor, AMD Ryzen 7 5800H with Radeon Graphics
3.20 GHz. RAM, 16G. Cores, 8. Logical processors, 16.

The slave computers run the generator and the workers and they have the
following configuration: processor, Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz
3.00 GHz. RAM, 16G. Cores, 4. Logical processors, 4.

The speed-up in the following figure is the ratio between the sequential ver-
sion running time and the tested distributed running time.

0 2 4 8 16 32
0

5

10

15

20

Worker Number

Sp
ee
d-
up

Fig. 29. Distributed job processing with worker generator test. Each slave
computer runs a worker. The speed-up increases as the number of workers increase
from 2 till 32.

Balanced Distributed Computation Patterns 279

After testing the concurrent example on 16 available CPUs, we found that the
speed-up tends to increase until around 90000 workers (which may also be limited
by the long-life style design and the straightforward load balance algorithm of
the example).

In this example, with one worker (goroutine), the program needs 510.45 s to
process the 1000 tasks. While with 90000 workers (goroutines), the program only
needs 1.42 s, which is a significant improvement. Additionally, we found that Go
can efficiently deal with a very large number of goroutines.

After testing the distributed example on 32 computers (each computer runs
a worker), we found that the speed-up tends to increase until 32 workers. The
speed-up is 16.0 with 32 distributed workers, which is also a noteworthy improve-
ment. RabbitMQ was very stable during the testing processes.

7 Related Work

RabbitMQ is open-source message-broker software that is developed by Pivotal
Software company, and it is implemented in the Erlang language. In addition,
there is a similar software called Kafka which is highly used, similarly to the
RabbitMQ.

Dobbelaere, Ph. et al. [7] compared RabbitMQ and Kafka based on the
core functionality of publish/subscribe systems. RabbitMQ has better options
for routing messages in complex topologies, while Kafka has a simple routing
approach. For example, RabbitMQ supports message delivery based on their
priority, while Kafka always delivers messages in order. RabbitMQ is capable
of handling high throughput, especially background jobs. Kafka is a message
bus, which is used to handle high-ingress data streams and replay. RabbitMQ
is suitable for traditional messaging while Kafka is used mainly for streaming.
There are limits when Kafka is used for MQ. Therefore, we chose RabbitMQ
for the implementations of this paper.

Madhu, M. P. et al. [15] conducted research about distributing messages
using RabbitMQ with advanced message exchanges. It describes how Rab-
bitMQ integrates with systems painlessly, the usefulness of distributing mes-
sages, and the guaranteed delivery of messages using AMQP. We acknowledge the
benefits RabbitMQ brings on message delivery. RabbitMQ is primarily used
for communication and integration between applications with message queues.
It is a message broker generally used that supports reliable background jobs and
long-running tasks. Message delivery can be either synchronous or asynchronous.
RabbitMQ supports various message routing styles for returning data to a con-
sumer, and we demonstrated how they are differently implemented with detailed
examples.

NSQ [16] is another alternative message queue tool. It is implemented in
Go language; however, it is different from RabbitMQ as NSQ has no brokers.
Additionally, it supports distributed topologies without a single point of failure.

280 J. Li et al.

8 Conclusion

This tutorial explains all the concurrent and distributed constructs with practical
examples. After an introduction to the basics of Go language, we have illustrated
the Go concurrent constructs: goroutine, WaitGroup, Mutex, AddUint, channel,
select. Afterward, we presented concurrent examples showing three ways to limit
the number of goroutines. Next, we introduced several examples with differ-
ent RabbitMQ mechanisms: fanout exchange, direct exchange, shared queue,
parallel receive. Additionally, we introduced a series of distributed examples
implementing existing patterns step-by-step: distributed job processing example
(Client-Dispatcher-Server pattern), distributed pipeline example (Pipes and Fil-
ters pattern), distributed divide and conquer example (Master-Slave pattern). In
the end, to illustrate how to test the examples, we measured the speed-up per-
formances of a concurrent example and a distributed example. As it can be seen
in Sect. 6, the concurrency (with multiple CPUs) and the distribution brought
us significant speed-up.

After practicing the examples of this tutorial, the reader gets familiar with
how to use Go and RabbitMQ to implement a distributed system. Throughout
the examples of this tutorial, we can observe that Go has robust, stable, and
user-friendly concurrent constructs.

Moreover, Go can manage tons of goroutines. We can deal with communica-
tions among goroutines without worrying about the mutual exclusion problems
of the concurrent constructs. Also, RabbitMQ provides reliable and efficient
distributed mechanisms. We can use the mechanisms to organize the distributed
nodes into different distribution patterns by defining how they cooperate and
communicate.

A Code Listings and Outputs

A.1 Parallel Receive

The explanation of this example is in Subsect. 5.4.

1package main
2import (
3"fmt"
4"log"
5"math/rand"
6"sync"
7"time"
8"github.com/streadway/amqp"
9)
10func main() {
11conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
12failOnError(err , "Failed�to�connect�to�RabbitMQ")
13defer conn1.Close()
14conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
15failOnError(err , "Failed�to�connect�to�RabbitMQ")
16defer conn2.Close()
17cho , err := conn1.Channel ()
18failOnError(err , "Failed�to�open�a�channel")
19defer cho.Close()

Balanced Distributed Computation Patterns 281

20chi , err := conn2.Channel ()
21failOnError(err , "Failed�to�open�a�channel")
22defer chi.Close()
23err = cho.ExchangeDeclare("pExchange", "direct",
24false , true , false , false , nil)
25failOnError(err , "Failed�to�declare�an�exchange")
26q, err := chi.QueueDeclare("", false , true , false , false , nil)
27failOnError(err , "Failed�to�declare�a�queue")
28err = chi.QueueBind(q.Name , "key", "pExchange", false , nil)
29failOnError(err , "Failed�to�bind�a�queue")
30msgs , err := chi.Consume(q.Name , "",
31false , false , false , false , nil)
32failOnError(err , "Failed�to�register�a�consumer")
33for i := 0; i < 100; i++ {
34fakeLink := fmt.Sprintf("http ://web%d.com", i)
35err := cho.Publish("pExchange", "key", false , false ,
36amqp.Publishing{
37ContentType: "text/plain",
38Body: []byte(fakeLink),
39})
40failOnError(err , "Failed�to�publish")
41fmt.Println("Published�job:" + fakeLink)
42}
43err = cho.Publish("pExchange", "key", false , false ,
44amqp.Publishing{
45ContentType: "text/plain",
46Body: []byte("END"),
47})
48failOnError(err , "Failed�to�publish")
49fmt.Println("Published�END")
50var wg sync.WaitGroup
51start := time.Now()
52wg.Add(1)
53go func() {
54for d := range msgs {
55s := string(d.Body)
56if s == "END" {
57err = chi.Cancel(d.ConsumerTag , false)
58failOnError(err , "Failed�to�cancel�a�consumer")
59} else {
60result := linkTest(s)
61fmt.Println("goroutine", result)
62}
63d.Ack(false)
64}
65wg.Done()
66}()
67wg.Wait()
68duration := time.Since(start)
69fmt.Println("Time:�", duration)
70}
71func failOnError(err error , msg string) {
72if err != nil {
73log.Fatalf("%s:�%s", msg , err)
74}
75}
76func linkTest(link string) string {
77time.Sleep (100 * time.Millisecond)
78if rand.Intn (2) == 1 {
79return link + ":Good"
80} else {
81return link + ":Bad"
82}
83}

Listing 1.63. Sequential Receive

282 J. Li et al.

1package main
2import (
3"fmt"
4"log"
5"math/rand"
6"runtime"
7"sync"
8"time"
9"github.com/streadway/amqp"
10)
11func main() {
12conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
13failOnError(err , "Failed�to�connect�to�RabbitMQ")
14defer conn1.Close()
15conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
16failOnError(err , "Failed�to�connect�to�RabbitMQ")
17defer conn2.Close()
18cho , err := conn1.Channel ()
19failOnError(err , "Failed�to�open�a�channel")
20defer cho.Close()
21chi , err := conn2.Channel ()
22failOnError(err , "Failed�to�open�a�channel")
23defer chi.Close()
24err = cho.ExchangeDeclare("pExchange", "direct",
25false , true , false , false , nil)
26failOnError(err , "Failed�to�declare�an�exchange")
27q, err := chi.QueueDeclare("", false , true , false , false , nil)
28failOnError(err , "Failed�to�declare�a�queue")
29err = chi.QueueBind(q.Name , "key", "pExchange", false , nil)
30failOnError(err , "Failed�to�bind�a�queue")
31msgs , err := chi.Consume(q.Name , "linkConsumer",
32false , false , false , false , nil)
33failOnError(err , "Failed�to�register�a�consumer")
34for i := 0; i < 100; i++ {
35fakeLink := fmt.Sprintf("http ://web%d.com", i)
36err := cho.Publish("pExchange", "key", false , false ,
37amqp.Publishing{
38ContentType: "text/plain",
39Body: []byte(fakeLink),
40})
41failOnError(err , "Failed�to�publish")
42fmt.Println("Published�job:" + fakeLink)
43}
44err = cho.Publish("pExchange", "key", false , false ,
45amqp.Publishing{
46ContentType: "text/plain",
47Body: []byte("END"),
48})
49failOnError(err , "Failed�to�publish")
50fmt.Println("Published�END")
51var wg sync.WaitGroup
52start := time.Now()
53for i := 0; i < runtime.NumCPU (); i++ {
54wg.Add(1)
55go func(index int) {
56for d := range msgs {
57s := string(d.Body)
58if s == "END" {
59err = chi.Cancel("linkConsumer", false)
60failOnError(err , "Failed�to�cancel�a�consumer")
61} else {
62result := linkTest(s)
63fmt.Println("goroutine", index , result)
64}
65d.Ack(false)
66}
67wg.Done()

Balanced Distributed Computation Patterns 283

68}(i)
69}
70wg.Wait()
71duration := time.Since(start)
72fmt.Println("Time:�", duration)
73}
74func failOnError(err error , msg string) {
75if err != nil {
76log.Fatalf("%s:�%s", msg , err)
77}
78}
79func linkTest(link string) string {
80time.Sleep (100 * time.Millisecond)
81if rand.Intn (2) == 1 {
82return link + ":Good"
83} else {
84return link + ":Bad"
85}
86}

Listing 1.64. Parallel Receive

A.2 Distributed Job Processing with Shared Response Queue,
Version2

The explanation of this example is in Sect. 5.5.

1...
2func main() {
3conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
4failOnError(err , "Failed�to�connect�to�RabbitMQ")
5defer conn1.Close()
6conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
7failOnError(err , "Failed�to�connect�to�RabbitMQ")
8defer conn2.Close()
9cho , err := conn1.Channel ()
10failOnError(err , "Failed�to�open�a�channel")
11defer cho.Close()
12chi , err := conn2.Channel ()
13failOnError(err , "Failed�to�open�a�channel")
14defer chi.Close()
15err = cho.ExchangeDeclare("jobExchange", "direct",
16false , true , false , false , nil)
17failOnError(err , "Failed�to�declare�an�exchange")
18err = chi.ExchangeDeclare(" responseExchange", "direct",
19false , true , false , false , nil)
20failOnError(err , "Failed�to�declare�an�exchange")
21q, err := chi.QueueDeclare("jobQueue",
22false , true , false , false , nil)
23failOnError(err , "Failed�to�declare�a�queue")
24err = chi.QueueBind(q.Name , "jobkey", "jobExchange", false , nil)
25failOnError(err , "Failed�to�bind�a�queue")
26msgs , err := chi.Consume(q.Name , "",
27false , false , false , false , nil)
28failOnError(err , "Failed�to�register�a�consumer")
29go func() {
30for d := range msgs {
31var result = linkTest(string(d.Body))
32fmt.Println(result)
33var err = cho.Publish("responseExchange", d.ReplyTo ,
34false , false ,
35amqp.Publishing{
36ContentType: "text/plain",
37CorrelationId: d.CorrelationId ,

284 J. Li et al.

38Body: []byte(result),
39})
40failOnError(err , "Failed�to�publish�a�message")
41d.Ack(false)
42}
43}()
44fmt.Println("Waiting�for�jobs")
45forever := make(chan bool)
46<-forever
47}
48...

Listing 1.65. Distributed job processing with shared response queue, worker

1package main
2import (
3"fmt"
4"github.com/rs/xid"
5"github.com/streadway/amqp"
6"log"
7"os"
8)
9func main() {
10links := [] string{
11"http :// google.com",
12"http :// golang.org",
13}
14var numOfLink = 10
15for i := 0; i < numOfLink; i++ {
16fakeLink := fmt.Sprintf("http ://web%d.com", i)
17links = append(links , fakeLink)
18}
19links2 := [] string{
20"http :// facebook.com",
21http:// amazon.com",
22}
23var numOfLink2 = 20
24for i := 11; i < numOfLink2; i++ {
25fakeLink := fmt.Sprintf("http ://web%d.com", i)
26links2 = append(links2 , fakeLink)
27}
28var linksToSend [] string
29arg := os.Args [1]
30switch arg {
31case "1":
32linksToSend = links
33case "2":
34linksToSend = links2
35}
36conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
37failOnError(err , "Failed�to�connect�to�RabbitMQ")
38defer conn1.Close()
39conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
40failOnError(err , "Failed�to�connect�to�RabbitMQ")
41defer conn2.Close()
42cho , err := conn1.Channel ()
43failOnError(err , "Failed�to�open�a�channel")
44defer cho.Close()
45chi , err := conn2.Channel ()
46failOnError(err , "Failed�to�open�a�channel")
47defer chi.Close()
48err = cho.ExchangeDeclare("jobExchange", "direct",
49false , true , false , false , nil)
50failOnError(err , "Failed�to�declare�an�exchange")
51err = chi.ExchangeDeclare(" responseExchange", "direct",
52false , true , false , false , nil)
53failOnError(err , "Failed�to�declare�an�exchange")

Balanced Distributed Computation Patterns 285

54q, err := chi.QueueDeclare("responseQueue",
55false , true , false , false , nil)
56failOnError(err , "Failed�to�declare�a�queue")
57err = chi.QueueBind(q.Name , "responsekey", "responseExchange",
58false , nil)
59failOnError(err , "Failed�to�bind�a�queue")
60msgs , err := chi.Consume(q.Name , "",
61false , false , false , false , nil)
62failOnError(err , "Failed�to�register�a�consumer")
63var jobCorr = make(map[string]string)
64for _, link := range linksToSend {
65var corrId = randomString ()
66err := cho.Publish("jobExchange", "jobkey", false , false ,
67amqp.Publishing{
68ContentType: "text/plain",
69CorrelationId: corrId ,
70ReplyTo: "responsekey",
71Body: []byte(link),
72})
73failOnError(err , "Failed�to�publish�a�message")
74fmt.Println("Published�" + link)
75jobCorr[corrId] = link
76}
77go func() {
78for d := range msgs {
79if _, ok := jobCorr[d.CorrelationId]; ok {
80delete(jobCorr , d.CorrelationId)
81d.Ack(false)
82fmt.Println("Get�result:�" + string(d.Body))
83} else {
84fmt.Println("Nacked�a�response")
85d.Nack(false , true)
86}
87}
88}()
89forever := make(chan bool)
90<-forever
91}
92func randomString () string {
93guid := xid.New()
94return guid.String()
95}
96...

Listing 1.66. Distributed job processing with shared response queue, jobSender

Run the first worker, the output is:

1go run worker.go
2Waiting for jobs
3http:// google.com status: up.
4http://web0.com status: up.
5http://web2.com status: up.
6http://web4.com status: might down.
7http://web6.com status: up.
8http://web8.com status: might down.
9(after the second job sender run)
10http:// facebook.com status: up.
11http://web11.com status: up.
12http://web13.com status: might down.
13http://web15.com status: up.
14http://web17.com status: might down.
15http://web19.com status: up.

286 J. Li et al.

Run the second worker, the output is:

1go run worker.go
2Waiting for jobs
3http:// golang.org status: up.
4http://web1.com status: might down.
5http://web3.com status: might down.
6http://web5.com status: up.
7http://web7.com status: up.
8http://web9.com status: might down.
9(after the second job sender run)
10http:// amazon.com status: up.
11http://web12.com status: up.
12http://web14.com status: up.
13http://web16.com status: might down.
14http://web18.com status: might down.

Run the first job sender, the output is:

1go run jobSender.go 1
2Published http:// google.com
3Published http:// golang.org
4Published http://web0.com
5Published http://web1.com
6Published http://web2.com
7Published http://web3.com
8Published http://web4.com
9Published http://web5.com
10Published http://web6.com
11Published http://web7.com
12Published http://web8.com
13Published http://web9.com
14Get result: http:// google.com status: up.
15Get result: http://web0.com status: up.
16Get result: http://web2.com status: up.
17Get result: http:// golang.org status: up.
18Get result: http://web1.com status: might down.
19Get result: http://web3.com status: might down.
20Get result: http://web4.com status: might down.
21Get result: http://web6.com status: up.
22Get result: http://web8.com status: might down.
23Get result: http://web5.com status: up.
24Get result: http://web7.com status: up.
25Get result: http://web9.com status: might down.
26(after the second job sender run)
27Nacked a response
28Nacked a response
29Nacked a response
30Nacked a response
31Nacked a response
32Nacked a response
33Nacked a response
34Nacked a response
35Nacked a response
36Nacked a response
37Nacked a response

Run the second job sender, the output is:

1go run jobSender.go 2
2Published http:// facebook.com
3Published http:// amazon.com
4Published http://web11.com
5Published http://web12.com
6Published http://web13.com
7Published http://web14.com
8Published http://web15.com

Balanced Distributed Computation Patterns 287

9Published http://web16.com
10Published http://web17.com
11Published http://web18.com
12Published http://web19.com
13Get result: http:// facebook.com status: up.
14Get result: http://web11.com status: up.
15Get result: http://web13.com status: might down.
16Get result: http:// amazon.com status: up.
17Get result: http://web15.com status: up.
18Get result: http://web12.com status: up.
19Get result: http://web14.com status: up.
20Get result: http://web17.com status: might down.
21Get result: http://web19.com status: up.
22Get result: http://web16.com status: might down.
23Get result: http://web18.com status: might down.

A.3 Distributed Job Processing with Private Response Queue,
Version3

The explanation of this example is in Sect. 5.5.
1...
2func main() {
3...
4q, err := chi.QueueDeclare("", false , true , false , false , nil)
5...
6err = chi.QueueBind(q.Name , q.Name , "responseExchange", false , nil)
7...
8for _, link := range linksToSend {
9var corrId = randomString ()
10err := cho.Publish("jobExchange", "jobkey", false , false ,
11amqp.Publishing{
12ContentType: "text/plain",
13CorrelationId: corrId ,
14ReplyTo: q.Name ,
15Body: []byte(link),
16})
17failOnError(err , "Failed�to�publish")
18fmt.Println("Published�" + link)
19jobCorr[corrId] = link
20}
21...
22}
23...

Listing 1.67. Distributed job processing with private response queue, jobSender

Run the first worker, the output is:
1go run worker.go
2Waiting for jobs
3http:// google.com status: up.
4http://web0.com status: up.
5http://web2.com status: up.
6http://web4.com status: might down.
7http://web6.com status: up.
8http://web8.com status: might down.
9(after the second job sender run)
10http:// facebook.com status: up.
11http://web11.com status: up.
12http://web13.com status: might down.
13http://web15.com status: up.
14http://web17.com status: might down.
15http://web19.com status: up.

288 J. Li et al.

Run the second worker, the output is:
1go run worker.go
2Waiting for jobs
3http:// golang.org status: up.
4http://web1.com status: might down.
5http://web3.com status: might down.
6http://web5.com status: up.
7http://web7.com status: up.
8http://web9.com status: might down.
9(after the second job sender run)
10http:// amazon.com status: up.
11http://web12.com status: up.
12http://web14.com status: up.
13http://web16.com status: might down.
14http://web18.com status: might down.

Run the first job sender, the output is:
1go run jobSender.go 1
2Published http:// google.com
3Published http:// golang.org
4Published http://web0.com
5Published http://web1.com
6Published http://web2.com
7Published http://web3.com
8Published http://web4.com
9Published http://web5.com
10Published http://web6.com
11Published http://web7.com
12Published http://web8.com
13Published http://web9.com
14Get result: http:// google.com status: up.
15Get result: http://web0.com status: up.
16Get result: http:// golang.org status: up.
17Get result: http://web1.com status: might down.
18Get result: http://web3.com status: might down.
19Get result: http://web2.com status: up.
20Get result: http://web4.com status: might down.
21Get result: http://web6.com status: up.
22Get result: http://web8.com status: might down.
23Get result: http://web5.com status: up.
24Get result: http://web7.com status: up.
25Get result: http://web9.com status: might down.

Run the second job sender, the output is:
1go run jobSender.go 2
2Published http:// facebook.com
3Published http:// amazon.com
4Published http://web11.com
5Published http://web12.com
6Published http://web13.com
7Published http://web14.com
8Published http://web15.com
9Published http://web16.com
10Published http://web17.com
11Published http://web18.com
12Published http://web19.com
13Get result: http:// facebook.com status: up.
14Get result: http://web11.com status: up.
15Get result: http://web13.com status: might down.
16Get result: http://web15.com status: up.
17Get result: http:// amazon.com status: up.
18Get result: http://web12.com status: up.
19Get result: http://web14.com status: up.
20Get result: http://web17.com status: might down.
21Get result: http://web19.com status: up.

Balanced Distributed Computation Patterns 289

A.4 Distributed Job Processing with Worker Generator, Version4

The explanation of this example is in Sect. 5.5.

1package main
2import (
3"fmt"
4"github.com/rs/xid"
5"github.com/streadway/amqp"
6"log"
7"sync"
8"time"
9)
10func main() {
11startTime := time.Now()
12links := [] string{}
13var numOfLink = 50
14for i := 0; i < numOfLink; i++ {
15fakeLink := fmt.Sprintf("http ://web%d.com", i)
16links = append(links , fakeLink)
17}
18...
19msgs , err := chi.Consume(q.Name , "responseConsumer",
20false , false , false , false , nil)
21failOnError(err , "Failed�to�register�a�consumer")
22var jobCorr = make(map[string]string)
23for _, link := range links {
24var corrId = randomString ()
25err := cho.Publish("jobExchange", "jobkey", false , false ,
26amqp.Publishing{
27ContentType: "text/plain",
28CorrelationId: corrId ,
29ReplyTo: q.Name ,
30Body: []byte(link),
31})
32failOnError(err , "Failed�to�publish")
33fmt.Println("Published�" + link)
34jobCorr[corrId] = link
35}
36var wg sync.WaitGroup
37wg.Add(1)
38go func() {
39for d := range msgs {
40if _, ok := jobCorr[d.CorrelationId]; ok {
41delete(jobCorr , d.CorrelationId)
42fmt.Println("Get�result:�" + string(d.Body))
43} else {
44fmt.Println("Got�a�not�related�msg")
45}
46d.Ack(false)
47if len(jobCorr) == 0 {
48err = chi.Cancel("responseConsumer", false)
49failOnError(err , "Failed�to�cancel�a�consumer")
50}
51}
52wg.Done()
53}()
54wg.Wait()
55elapsed := time.Since(startTime)
56fmt.Println("Time:�" + elapsed.String ())
57}
58...

Listing 1.68. Distributed job processing with worker generator, jobSender

290 J. Li et al.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6"os/exec"
7)
8func main() {
9conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
10defer conn.Close()
11ch, err := conn.Channel ()
12err = ch.ExchangeDeclare("dispatch",
13"direct", false , true , false , false , nil)
14queueArg , err := ch.QueueDeclare("generatorQueue",
15false , true , false , false , nil)
16err = ch.QueueBind(queueArg.Name ,
17"generator", "dispatch", false , nil)
18msg , err := ch.Consume(queueArg.Name ,
19"", false , false , false , false , nil)
20go func() {
21for d := range msg {
22cmd := exec.Command("cmd", "/C", "start",
23"go", "run", "../ worker/worker.go",
24"../ worker/amqpClient.go")
25err = cmd.Run()
26fmt.Println("generated�one�worker")
27d.Ack(false)
28}
29}()
30forever := make(chan bool)
31<-forever
32}
33...

Listing 1.69. Distributed job processing with worker generator, generator

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"log"
6)
7func main() {
8numWorkers := 4
9conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
10defer conn.Close()
11cho , err := conn.Channel ()
12err = cho.ExchangeDeclare("dispatch", "direct",
13false , true , false , false , nil)
14for i := 0; i < numWorkers; i++ {
15msg := "1"
16err = cho.Publish("dispatch", "generator", false , false ,
17amqp.Publishing{
18ContentType: "text/plain",
19Body: []byte(msg),
20})
21failOnError(err , "Failed�to�publish�a�message")
22fmt.Printf("Organizer�Published�%s�\n", string(msg))
23}
24}
25...

Listing 1.70. Distributed job processing with worker generator, organizer

Balanced Distributed Computation Patterns 291

1package main
2import (
3"fmt"
4"net/http"
5"time"
6)
7func main() {
8startTime := time.Now()
9links := [] string{}
10var numOfLink = 50
11for i := 0; i < numOfLink; i++ {
12fakeLink := fmt.Sprintf("http ://web%d.com", i)
13links = append(links , fakeLink)
14}
15for _, link := range links {
16result := linkTest(link)
17fmt.Println(result)
18}
19elapsed := time.Since(startTime)
20fmt.Printf("Time:�%s�\n", elapsed)
21}
22...

Listing 1.71. Distributed job processing with worker generator, sequential

On the first computer, we run the first generator, the output is:
1go run generator.go
2Wait for messages from organizer
3generated one worker
4generated one worker

After running the organizer, the first generator generates two workers on the
first computer. The output of the first worker generated by the first generator:

1Waiting for jobs
2http://web1.com status: might down.
3http://web5.com status: up.
4http://web9.com status: might down.
5http://web13.com status: might down.
6http://web17.com status: might down.
7http://web21.com status: up.
8http://web25.com status: up.
9http://web29.com status: might down.
10http://web33.com status: up.
11http://web37.com status: might down.
12http://web41.com status: up.
13http://web45.com status: up.
14http://web49.com status: might down.

The output of the second worker generated by the first generator is:
1Waiting for jobs
2http://web0.com status: up.
3http://web4.com status: might down.
4http://web8.com status: might down.
5http://web12.com status: up.
6http://web16.com status: might down.
7http://web20.com status: might down.
8http://web24.com status: might down.
9http://web28.com status: up.
10http://web32.com status: up.
11http://web36.com status: might down.
12http://web40.com status: up.
13http://web44.com status: up.
14http://web48.com status: up.

292 J. Li et al.

On the second computer, we run the second generator, the output is:

1go run generator.go
2Wait for messages from organizer
3generated one worker
4generated one worker

After running the organizer, the first generator generates two workers on the first
computer. The output of the first worker generated by the second generator:

1Waiting for jobs
2http://web2.com status: up.
3http://web6.com status: up.
4http://web10.com status: up.
5http://web14.com status: up.
6http://web18.com status: might down.
7http://web22.com status: might down.
8http://web26.com status: up.
9http://web30.com status: up.
10http://web34.com status: up.
11http://web38.com status: might down.
12http://web42.com status: up.
13http://web46.com status: might down.

The output of the second worker generated by the second generator is:

1Waiting for jobs
2http://web3.com status: might down.
3http://web7.com status: up.
4http://web11.com status: up.
5http://web15.com status: up.
6http://web19.com status: up.
7http://web23.com status: might down.
8http://web27.com status: might down.
9http://web31.com status: up.
10http://web35.com status: might down.
11http://web39.com status: might down.
12http://web43.com status: might down.
13http://web47.com status: might down.

The output of the organizer is:

1go run organizer.go
2Organizer Published 1
3Organizer Published 1
4Organizer Published 1
5Organizer Published 1

The output of the job sender is:

1go run jobSender.go
2Published http://web0.com
3Published http://web1.com
4Published http://web2.com
5Published http://web3.com
6Published http://web4.com
7Published http://web5.com
8...
9Published http://web42.com
10Published http://web43.com
11Published http://web44.com
12Published http://web45.com
13Published http://web46.com
14Published http://web47.com
15Published http://web48.com
16Published http://web49.com

Balanced Distributed Computation Patterns 293

17Get result: http://web3.com status: might down.
18Get result: http://web1.com status: might down.
19Get result: http://web2.com status: up.
20Get result: http://web0.com status: up.
21Get result: http://web6.com status: up.
22Get result: http://web10.com status: up.
23Get result: http://web5.com status: up.
24...
25Get result: http://web39.com status: might down.
26Get result: http://web44.com status: up.
27Get result: http://web43.com status: might down.
28Get result: http://web48.com status: up.
29Get result: http://web46.com status: might down.
30Get result: http://web49.com status: might down.
31Get result: http://web47.com status: might down.
32Time: 19.5084314s

The output of the sequential version is:

1go run sequential.go
2http://web0.com status: up.
3http://web1.com status: might down
4http://web2.com status: up.
5http://web3.com status: might down
6http://web4.com status: might down
7http://web5.com status: up.
8http://web6.com status: up.
9http://web7.com status: up.
10http://web8.com status: might down
11...
12http://web45.com status: up.
13http://web46.com status: might down
14http://web47.com status: might down
15http://web48.com status: up.
16http://web49.com status: up.
17Time: 1m17 .1356748s

A.5 Distributed Pipeline with Connection Confirmation (Version 2)

The explanation of this example is in Sect. 5.6.

1package main
2import (
3"log"
4"os"
5"fmt"
6"github.com/streadway/amqp"
7)
8func main() {
9const exchangeName = "pipeExchangeV2"
10workerType := os.Args [1]
11inputConfirmQueue := os.Args [2]
12function := os.Args [3]
13conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
14failOnError(err , "Failed�to�connect�to�RabbitMQ")
15defer conn1.Close()
16conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
17failOnError(err , "Failed�to�connect�to�RabbitMQ")
18defer conn2.Close()
19conn3 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
20failOnError(err , "Failed�to�connect�to�RabbitMQ")
21defer conn3.Close()
22conn4 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
23failOnError(err , "Failed�to�connect�to�RabbitMQ")
24defer conn4.Close()

294 J. Li et al.

25if workerType == "startworker" {
26w := startWorker{Worker{conn1 , conn2 , conn3 , conn4 , nil , nil , nil ,
27exchangeName , inputConfirmQueue , function }}
28w.WaitNext ()
29w.Work()
30} else if workerType == "midworker" {
31w := midWorker{Worker{conn1 , conn2 , conn3 , conn4 , nil , nil , nil ,
32exchangeName , inputConfirmQueue , function }}
33w.ConnectPrevious ()
34w.WaitNext ()
35w.Work()
36} else {
37w := endWorker{Worker{conn1 , conn2 , conn3 , conn4 , nil , nil , nil ,
38exchangeName , inputConfirmQueue , function }}
39w.ConnectPrevious ()
40w.Work()
41}
42forever := make(chan bool)
43<-forever
44}
45type Worker struct{
46conn1 *amqp.Connection
47conn2 *amqp.Connection
48conn3 *amqp.Connection
49conn4 *amqp.Connection
50inputMsgs <-chan amqp.Delivery
51confirmMsgs <-chan amqp.Delivery
52localchos *amqp.Channel
53exchangeName string
54inputConfirmQueue string
55function string
56}
57func (w *Worker) ConnectPrevious () {
58// channel send confirm to inputExchange
59chis , err := w.conn1.Channel ()
60failOnError(err , "Failed�to�open�a�channel")
61// channel receive from inputExchange
62chir , err := w.conn2.Channel ()
63failOnError(err , "Failed�to�open�a�channel")
64// declare queue and bind to inputExchange
65queueForMsgs , err := chir. QueueDeclare("",
66false , false , true , false , nil)
67failOnError(err , "Failed�to�declare�a�queue")
68err = chir.QueueBind(queueForMsgs.Name , queueForMsgs.Name ,
69w.exchangeName , false , nil)
70failOnError(err , "Failed�to�bind�a�queue")
71w.inputMsgs , err = chir.Consume(queueForMsgs.Name , "",
72false , false , false , false , nil)
73failOnError(err , "Failed�to�register�a�consumer")
74//send confirms with routekey as inputConfirmQueue
75confirmMessage := queueForMsgs.Name
76err = chis.Publish(w.exchangeName ,
77w.inputConfirmQueue ,false , false ,
78amqp.Publishing{
79ContentType: "text/plain",
80Body: []byte(confirmMessage),
81})
82failOnError(err , "Failed�to�publish�a�message")
83}
84func (w *Worker) WaitNext () {
85// channel for receiving confirms from output channel
86chor , err := w.conn3.Channel ()
87failOnError(err , "Failed�to�open�a�channel")
88// channel for sending to output channel
89chos , err := w.conn4.Channel ()
90w.localchos = chos
91failOnError(err , "Failed�to�open�a�channel")
92err = chos.ExchangeDeclare(w.exchangeName , "direct",

Balanced Distributed Computation Patterns 295

93false , false , false , false , nil)
94failOnError(err , "Failed�to�declare�an�exchange")
95// declare confirm queue
96queueForConfirm , err := chor.QueueDeclare("",
97false , false , true , false , nil)
98failOnError(err , "Failed�to�declare�a�queue")
99err = chor.QueueBind(queueForConfirm.Name , queueForConfirm.Name ,
100w.exchangeName , false , nil)
101failOnError(err , "Failed�to�bind�a�queue")
102w.confirmMsgs , err = chor.Consume(queueForConfirm.Name , "",
103false , true , false , false , nil)
104failOnError(err , "Failed�to�register�a�consumer")
105//print out the confirm queue for next worker
106fmt.Println(
107"The�input�confirm�queue�(2nd�cmd�line�arg�for�the�next�worker):",
108queueForConfirm.Name)
109}
110func failOnError(err error , msg string) {
111if err != nil {
112log.Fatalf("%s:�%s", msg , err)
113}
114}

Listing 1.72. Distributed pipeline with connection confirmation, worker

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"strconv"
6"time"
7)
8type startWorker struct {
9Worker
10}
11func (w *startWorker) Work() {
12//block when waiting confirms
13nextWorkerQueue := <-w.confirmMsgs
14nextWorkerQueueName := string(nextWorkerQueue.Body)
15go func() {
16for x := 0; x < 10; x++ {
17msg := strconv.Itoa(x)
18err := w.localchos.Publish(w.exchangeName ,
19nextWorkerQueueName ,false , false ,
20amqp.Publishing{
21ContentType: "text/plain",
22Body: []byte(msg),
23})
24failOnError(err , "Failed�to�publish�a�message")
25fmt.Println("Start�worker�published", msg)
26time.Sleep (1000 * time.Millisecond)
27}
28msg := "END"
29err := w.localchos.Publish(w.exchangeName ,
30nextWorkerQueueName ,false , false ,
31amqp.Publishing{
32ContentType: "text/plain",
33Body: []byte(msg),
34})
35failOnError(err , "Failed�to�publish�a�message")
36fmt.Println("Start�worker�published", msg)
37fmt.Println("Start�worker�finished")
38}()
39}

Listing 1.73. Distributed pipeline with connection confirmation, startWorker

296 J. Li et al.

1package main
2import (
3"fmt"
4"github.com/streadway/amqp"
5"strconv"
6"time"
7)
8type midWorker struct {
9Worker
10}
11func (w *midWorker) Work() {
12//block when waiting confirms
13nextWorkerQueue := <-w.confirmMsgs
14nextWorkerQueueName := string(nextWorkerQueue.Body)
15go func() {
16for d := range w.inputMsgs {
17var numberString = string(d.Body)
18if numberString == "END" {
19msg := "END"
20err := w.localchos.Publish(w.exchangeName ,
21nextWorkerQueueName ,false , false ,
22amqp.Publishing{
23ContentType: "text/plain",
24Body: []byte(msg),
25})
26failOnError(err , "Failed�to�publish�a�message")
27fmt.Println("Mid�worker�received", numberString ,
28"Published", msg)
29fmt.Println("Mid�worker�finished")
30break
31}
32number , _ := strconv.Atoi(numberString)
33var changedNumber int
34switch w.function {
35case "+2":
36changedNumber = number + 2
37case "*2":
38changedNumber = number * 2
39}
40msg := strconv.Itoa(changedNumber)
41err := w.localchos.Publish(w.exchangeName ,
42nextWorkerQueueName ,false , false ,
43amqp.Publishing{
44ContentType: "text/plain",
45Body: []byte(msg),
46})
47failOnError(err , "Failed�to�publish�a�message")
48fmt.Println("Mid�worker�received", numberString ,
49"Published", msg)
50time.Sleep (1000 * time.Millisecond)
51d.Ack(false)
52}
53}()
54}

Listing 1.74. Distributed pipeline with connection confirmation, midWorker

1package main
2import (
3"fmt"
4"time"
5)
6type endWorker struct {
7Worker
8}
9func (w *endWorker) Work() {

Balanced Distributed Computation Patterns 297

10go func() {
11for d := range w.inputMsgs {
12var numberString = string(d.Body)
13fmt.Println("End�worker�received", numberString)
14if numberString == "END" {
15fmt.Println("End�worker�finished")
16break
17}
18time.Sleep (1000 * time.Millisecond)
19d.Ack(false)
20}
21}()
22}

Listing 1.75. Distributed pipeline with connection confirmation, endWorker

Here is the command to build the worker (it generates the worker.exe):

1go build worker.go startWorker.go endWorker.go midWorker.go

Run the Start worker with the startworker, null, and null parameters.

1worker.exe startworker null null
2The input confirm queue (2nd cmd line arg for the next worker):
3amq.gen -8 tyPS4Olout44SH8 -AXAFg
4Start worker published 0
5Start worker published 1
6Start worker published 2
7Start worker published 3
8Start worker published 4
9Start worker published 5
10Start worker published 6
11Start worker published 7
12Start worker published 8
13Start worker published 9
14Start worker published END
15Start worker finished

Run the Mid worker with the following parameters:
midworker amq.gen-8tyPS4Olout44SH8-AXAFg +2. The output is:

1worker.exe midworker amq.gen -8 tyPS4Olout44SH8 -AXAFg +2
2The input confirm queue (2nd cmd line arg for the next worker):
3amq.gen -so-TcH3UqBM0Xy9vtP02eQ
4Mid worker received 0 Published 2
5Mid worker received 1 Published 3
6Mid worker received 2 Published 4
7Mid worker received 3 Published 5
8Mid worker received 4 Published 6
9Mid worker received 5 Published 7
10Mid worker received 6 Published 8
11Mid worker received 7 Published 9
12Mid worker received 8 Published 10
13Mid worker received 9 Published 11
14Mid worker received END Published END
15Mid worker finished

Run the End worker with the following parameters:
endworker amq.gen-so-TcH3UqBM0Xy9vtP02eQ null. The output is:

1worker.exe endworker amq.gen -so-TcH3UqBM0Xy9vtP02eQ null
2End worker received 2
3End worker received 3
4End worker received 4
5End worker received 5

298 J. Li et al.

6End worker received 6
7End worker received 7
8End worker received 8
9End worker received 9
10End worker received 10
11End worker received 11
12End worker received END
13End worker finished

A.6 Distributed Pipeline with Worker Generator (Version 3)

The explanation of this example is in Sect. 5.6.

1...
2func (w *Worker) WaitNext () {
3...
4//send and print out the confirm queue for next worker
5err = chos.Publish("dispatch", "resp",
6false , false ,
7amqp.Publishing{
8ContentType: "text/plain",
9Body: []byte(queueForConfirm.Name),
10})
11failOnError(err , "Failed�to�publish�a�message")
12fmt.Println("Worker�published�input�confirm�queue",
13queueForConfirm.Name)
14}

Listing 1.76. Distributed pipeline with worker generator, worker

1...
2func (w *endWorker) Work() {
3go func() {
4for d := range w.inputMsgs {
5var numberString = string(d.Body)
6fmt.Println("End�worker�received", numberString)
7if numberString == "END" {
8c, err := w.conn3.Channel ()
9failOnError(err , "Failed�to�create�a�channel")
10msg := "END"
11err = c.Publish("dispatch", "end",
12false , false ,
13amqp.Publishing{
14ContentType: "text/plain",
15Body: []byte(msg),
16})
17failOnError(err , "Failed�to�publish�a�message")
18fmt.Println("End�worker�Published�to�dispather:", msg)
19fmt.Println("End�worker�finished")
20break
21}
22time.Sleep (1000 * time.Millisecond)
23d.Ack(false)
24}
25}()
26}

Listing 1.77. Distributed pipeline with worker generator, endWorker

1package main
2import (
3"encoding/json"
4"fmt"

Balanced Distributed Computation Patterns 299

5"log"
6"os/exec"
7

8"github.com/streadway/amqp"
9)
10type workerArg struct {
11WorkerType string
12InputConfirmQueue string
13Function string
14}
15func main() {
16conn , err := amqp.Dial("amqp :// guest: guest@localhost :5672/")
17failOnError(err , "Failed�to�connect�to�RabbitMQ")
18defer conn.Close()
19ch, err := conn.Channel ()
20failOnError(err , "Failed�to�open�a�channel")
21err = ch.ExchangeDeclare("dispatch", "direct",
22false , true , false , false , nil)
23failOnError(err , "Failed�to�declare�an�exchange")
24queueArg , err := ch.QueueDeclare("generatorQueue",
25false , true , false , false , nil)
26failOnError(err , "Failed�to�declare�a�queue")
27err = ch.QueueBind(queueArg.Name , "generator", "dispatch",
28false , nil)
29failOnError(err , "Failed�to�bind�a�queue")
30argMsgs , err := ch.Consume(queueArg.Name , "",
31false , false , false , false , nil)
32failOnError(err , "Failed�to�register�a�consumer")
33go func() {
34for d := range argMsgs {
35arg := workerArg {}
36json.Unmarshal(d.Body , &arg)
37fmt.Println(arg)
38cmd := exec.Command("cmd", "/C", "start", "../ worker.exe",
39arg.WorkerType , arg.InputConfirmQueue , arg.Function)
40err = cmd.Run()
41failOnError(err , "Failed�to�generate�worker")
42fmt.Println("generated�one�worker")
43d.Ack(false)
44}
45}()
46forever := make(chan bool)
47<-forever
48}
49func failOnError(err error , msg string) {
50if err != nil {
51log.Fatalf("%s:�%s", msg , err)
52}
53}

Listing 1.78. Distributed pipeline with worker generator, generator

1package main
2import (
3"fmt"
4"log"
5"time"
6"encoding/json"
7"github.com/streadway/amqp"
8)
9type workerArg struct {
10WorkerType string
11InputConfirmQueue string
12Function string
13}
14func main() {
15startTime := time.Now()

300 J. Li et al.

16conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
17failOnError(err , "Failed�to�connect�to�RabbitMQ")
18defer conn1.Close()
19conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
20failOnError(err , "Failed�to�connect�to�RabbitMQ")
21defer conn2.Close()
22conn3 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
23failOnError(err , "Failed�to�connect�to�RabbitMQ")
24defer conn3.Close()
25cho , err := conn1.Channel ()
26failOnError(err , "Failed�to�open�a�channel")
27chi1 , err := conn2.Channel ()
28failOnError(err , "Failed�to�open�a�channel")
29chi2 , err := conn3.Channel ()
30failOnError(err , "Failed�to�open�a�channel")
31err = cho.ExchangeDeclare("dispatch", "direct",
32false , true , false , false , nil)
33failOnError(err , "Failed�to�declare�an�exchange")
34//resp
35queueResp , err := chi1.QueueDeclare("", false , true , true , false , nil)
36failOnError(err , "Failed�to�declare�a�queue")
37err = chi1.QueueBind(queueResp.Name , "resp", "dispatch", false , nil)
38failOnError(err , "Failed�to�bind�a�queue")
39respMsgs , err := chi1.Consume(queueResp.Name , "",
40false , true , false , false , nil)
41failOnError(err , "Failed�to�register�a�consumer")
42//end
43queueEnd , err := chi2.QueueDeclare("", false , true , true , false , nil)
44failOnError(err , "Failed�to�declare�a�queue")
45err = chi2.QueueBind(queueEnd.Name , "end", "dispatch", false , nil)
46failOnError(err , "Failed�to�bind�a�queue")
47endMsgs , err := chi2.Consume(queueEnd.Name , "",
48false , true , false , false , nil)
49failOnError(err , "Failed�to�register�a�consumer")
50////send args
51//start worker index 1
52numWorkers := 10
53indexWorker := 1
54//start worker
55startArgP := &workerArg{
56WorkerType: "startworker",
57InputConfirmQueue: "null",
58Function: "null",
59}
60startArgB , err := json.Marshal(startArgP)
61failOnError(err , "Failed�to�encode")
62err = cho.Publish("dispatch", "generator", false , false ,
63amqp.Publishing{
64ContentType: "text/plain",
65Body: startArgB ,
66})
67failOnError(err , "Failed�to�publish�a�message")
68fmt.Println("Organizer�Published:")
69fmt.Println(string(startArgB))
70//block consume from queueResp
71//mid and end workers
72for d := range respMsgs {
73indexWorker ++
74//2~ numWorkers
75workerType := "midworker"
76function := "+2"
77if indexWorker == numWorkers {
78workerType = "endworker"
79function = "null"
80}
81// publish args for mid worker
82midArgP := &workerArg{
83WorkerType: workerType ,

Balanced Distributed Computation Patterns 301

84InputConfirmQueue: string(d.Body),
85Function: function ,
86}
87midArgB , _ := json.Marshal(midArgP)
88err = cho.Publish("dispatch", "generator", false , false ,
89amqp.Publishing{
90ContentType: "text/plain",
91Body: midArgB ,
92})
93failOnError(err , "Failed�to�publish�a�message")
94fmt.Println("Organizer�Published:")
95fmt.Println(string(midArgB))
96d.Ack(false)
97//limit number
98if indexWorker == numWorkers {
99break
100}
101}
102//wait for the end message
103for d := range endMsgs {
104d.Ack(false)
105break
106}
107//print the time
108elapsed := time.Since(startTime)
109fmt.Println("Time:", elapsed)
110}
111func failOnError(err error , msg string) {
112if err != nil {
113log.Fatalf("%s:�%s", msg , err)
114}
115}

Listing 1.79. Distributed pipeline with worker generator, organizer

1package main
2import (
3"fmt"
4"strconv"
5"time"
6)
7func main() {
8startTime := time.Now()
9for x := 0; x < 10; x++ {
10num := x
11time.Sleep (1000 * time.Millisecond)
12for i := 0; i < 8; i++ {
13num = num + 2
14time.Sleep (1000 * time.Millisecond)
15}
16fmt.Println("number�is:", strconv.Itoa(num))
17time.Sleep (1000 * time.Millisecond)
18}
19elapsed := time.Since(startTime)
20fmt.Println("Time:", elapsed)
21}

Listing 1.80. Distributed pipeline with worker generator, sequential

Here is the command to build the worker (it generates the worker.exe):

1go build worker.go startWorker.go midWorker.go endWorker.go

302 J. Li et al.

Run the first generator, the output is:

1go run generator.go
2{startworker null null}
3generated one worker
4{midworker amq.gen -86 pYPjSd2QSY5efSJjquZw +2}
5generated one worker
6{midworker amq.gen -9 kxyU5n_V2FLKoiqwJb6ew +2}
7generated one worker
8{midworker amq.gen -p_sRRJky_SE4sPqxodY5MQ +2}
9generated one worker
10{midworker amq.gen -aNnfj8wPheEcI__lD_uqUA +2}
11generated one worker

Run the second generator, the output is:

1go run generator.go
2{midworker amq.gen -rY0LDr7IWIfFee9I8v_Euw +2}
3generated one worker
4{midworker amq.gen -ZJrwqf9I2RVb8J9EmFKprw +2}
5generated one worker
6{midworker amq.gen -fzbT18IpiwuM8NW28o6GEQ +2}
7generated one worker
8{midworker amq.gen -z3iFrZH5cNp2FLceJxwbOg +2}
9generated one worker
10{endworker amq.gen -_bYXpjzTT5Y1PULzNHq9Hg null}
11generated one worker

Run the organizer, the output is:

1go run organizer.go
2Organizer Published:
3{"WorkerType":"startworker","InputConfirmQueue":"null","Function":"null"}
4Organizer Published:
5{"WorkerType":"midworker","InputConfirmQueue":
6"amq.gen -rY0LDr7IWIfFee9I8v_Euw","Function":"+2"}
7Organizer Published:
8{"WorkerType":"midworker","InputConfirmQueue":
9"amq.gen -86 pYPjSd2QSY5efSJjquZw ","Function":"+2"}
10Organizer Published:
11{"WorkerType":"midworker","InputConfirmQueue":
12"amq.gen -ZJrwqf9I2RVb8J9EmFKprw","Function":"+2"}
13Organizer Published:
14{"WorkerType":"midworker","InputConfirmQueue":
15"amq.gen -9 kxyU5n_V2FLKoiqwJb6ew","Function":"+2"}
16Organizer Published:
17{"WorkerType":"midworker","InputConfirmQueue":
18"amq.gen -fzbT18IpiwuM8NW28o6GEQ","Function":"+2"}
19Organizer Published:
20{"WorkerType":"midworker","InputConfirmQueue":
21"amq.gen -p_sRRJky_SE4sPqxodY5MQ","Function":"+2"}
22Organizer Published:
23{"WorkerType":"midworker","InputConfirmQueue":
24"amq.gen -z3iFrZH5cNp2FLceJxwbOg","Function":"+2"}
25Organizer Published:
26{"WorkerType":"midworker","InputConfirmQueue":
27"amq.gen -aNnfj8wPheEcI__lD_uqUA","Function":"+2"}
28Organizer Published:
29{"WorkerType":"endworker","InputConfirmQueue":
30"amq.gen -_bYXpjzTT5Y1PULzNHq9Hg","Function":"null"}
31Time: 11.5553831s

The output of the generated startWorker:

1Worker published input confirm queue amq.gen - rY0LDr7IWIfFee9I8v_Euw
2Start worker published 0
3Start worker published 1
4Start worker published 2

Balanced Distributed Computation Patterns 303

5Start worker published 3
6Start worker published 4
7Start worker published 5
8Start worker published 6
9Start worker published 7
10Start worker published 8
11Start worker published 9
12Start worker published END
13Start worker finished

The output of the first generated midWorker:

1Worker published input confirm queue amq.gen -86 pYPjSd2QSY5efSJjquZw
2Mid worker received 0 Published 2
3Mid worker received 1 Published 3
4Mid worker received 2 Published 4
5Mid worker received 3 Published 5
6Mid worker received 4 Published 6
7Mid worker received 5 Published 7
8Mid worker received 6 Published 8
9Mid worker received 7 Published 9
10Mid worker received 8 Published 10
11Mid worker received 9 Published 11
12Mid worker received END Published END
13Mid worker finished

The output of the second generated midWorker:

1Worker published input confirm queue amq.gen - ZJrwqf9I2RVb8J9EmFKprw
2Mid worker received 2 Published 4
3Mid worker received 3 Published 5
4Mid worker received 4 Published 6
5Mid worker received 5 Published 7
6Mid worker received 6 Published 8
7Mid worker received 7 Published 9
8Mid worker received 8 Published 10
9Mid worker received 9 Published 11
10Mid worker received 10 Published 12
11Mid worker received 11 Published 13
12Mid worker received END Published END
13Mid worker finished

The output of the third generated midWorker:

1Worker published input confirm queue amq.gen -9 kxyU5n_V2FLKoiqwJb6ew
2Mid worker received 4 Published 6
3Mid worker received 5 Published 7
4Mid worker received 6 Published 8
5Mid worker received 7 Published 9
6Mid worker received 8 Published 10
7Mid worker received 9 Published 11
8Mid worker received 10 Published 12
9Mid worker received 11 Published 13
10Mid worker received 12 Published 14
11Mid worker received 13 Published 15
12Mid worker received END Published END
13Mid worker finished

The output of the fourth generated midWorker:

1Worker published input confirm queue amq.gen - fzbT18IpiwuM8NW28o6GEQ
2Mid worker received 6 Published 8
3Mid worker received 7 Published 9
4Mid worker received 8 Published 10
5Mid worker received 9 Published 11
6Mid worker received 10 Published 12
7Mid worker received 11 Published 13

304 J. Li et al.

8Mid worker received 12 Published 14
9Mid worker received 13 Published 15
10Mid worker received 14 Published 16
11Mid worker received 15 Published 17
12Mid worker received END Published END
13Mid worker finished

The output of the fifth generated midWorker:

1Worker published input confirm queue amq.gen - p_sRRJky_SE4sPqxodY5MQ
2Mid worker received 8 Published 10
3Mid worker received 9 Published 11
4Mid worker received 10 Published 12
5Mid worker received 11 Published 13
6Mid worker received 12 Published 14
7Mid worker received 13 Published 15
8Mid worker received 14 Published 16
9Mid worker received 15 Published 17
10Mid worker received 16 Published 18
11Mid worker received 17 Published 19
12Mid worker received END Published END
13Mid worker finished

The output of the sixth generated midWorker:

1Worker published input confirm queue amq.gen - z3iFrZH5cNp2FLceJxwbOg
2Mid worker received 10 Published 12
3Mid worker received 11 Published 13
4Mid worker received 12 Published 14
5Mid worker received 13 Published 15
6Mid worker received 14 Published 16
7Mid worker received 15 Published 17
8Mid worker received 16 Published 18
9Mid worker received 17 Published 19
10Mid worker received 18 Published 20
11Mid worker received 19 Published 21
12Mid worker received END Published END
13Mid worker finished

The output of the seventh generated midWorker:

1Worker published input confirm queue amq.gen - aNnfj8wPheEcI__lD_uqUA
2Mid worker received 12 Published 14
3Mid worker received 13 Published 15
4Mid worker received 14 Published 16
5Mid worker received 15 Published 17
6Mid worker received 16 Published 18
7Mid worker received 17 Published 19
8Mid worker received 18 Published 20
9Mid worker received 19 Published 21
10Mid worker received 20 Published 22
11Mid worker received 21 Published 23
12Mid worker received END Published END
13Mid worker finished

The output of the eighth generated midWorker:

1Worker published input confirm queue amq.gen - _bYXpjzTT5Y1PULzNHq9Hg
2Mid worker received 14 Published 16
3Mid worker received 15 Published 17
4Mid worker received 16 Published 18
5Mid worker received 17 Published 19
6Mid worker received 18 Published 20
7Mid worker received 19 Published 21
8Mid worker received 20 Published 22
9Mid worker received 21 Published 23
10Mid worker received 22 Published 24

Balanced Distributed Computation Patterns 305

11Mid worker received 23 Published 25
12Mid worker received END Published END
13Mid worker finished

The output of the generated endWorker:

1End worker received 16
2End worker received 17
3End worker received 18
4End worker received 19
5End worker received 20
6End worker received 21
7End worker received 22
8End worker received 23
9End worker received 24
10End worker received 25
11End worker received END
12End worker Published to dispather: END
13End worker finished

The output of the sequential version of the program:

1go run sequential.go
2number is: 16
3number is: 17
4number is: 18
5number is: 19
6number is: 20
7number is: 21
8number is: 22
9number is: 23
10number is: 24
11number is: 25
12Time: 1m40 .9130261s

A.7 Distributed Divide and Conquer

The explanation of this example is in Subsect. 5.7.

1package main
2import (
3"encoding/json"
4"fmt"
5"log"
6"os"
7"sort"
8"github.com/streadway/amqp"
9)
10type workerArg struct {
11OutputKey string
12ConfirmKey string
13}
14func main() {
15// command line args
16outputKey := os.Args [1]
17confirmKey := os.Args [2]
18conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
19failOnError(err , "Failed�to�connect�to�RabbitMQ")
20defer conn1.Close()
21conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
22failOnError(err , "Failed�to�connect�to�RabbitMQ")
23defer conn2.Close()
24conn3 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
25failOnError(err , "Failed�to�connect�to�RabbitMQ")

306 J. Li et al.

26defer conn3.Close()
27choc , err := conn1.Channel ()
28failOnError(err , "Failed�to�open�a�channel")
29chor , err := conn2.Channel ()
30failOnError(err , "Failed�to�open�a�channel")
31chi , err := conn3.Channel ()
32failOnError(err , "Failed�to�open�a�channel")
33exchangeName := "conquer"
34err = chi.ExchangeDeclare(exchangeName ,"direct",
35false ,true ,false ,false ,nil)
36failOnError(err , "Failed�to�declare�an�exchange")
37queueIn , err := chi.QueueDeclare("",false ,true ,true ,false ,nil)
38failOnError(err , "Failed�to�declare�a�queue")
39err = chi.QueueBind(queueIn.Name ,queueIn.Name ,
40exchangeName ,false ,nil)
41failOnError(err , "Failed�to�bind�a�queue")
42inputMsgs , err := chi.Consume(queueIn.Name ,"",
43false ,false ,false ,false ,nil)
44failOnError(err , "Failed�to�register�a�consumer")
45//send confirm
46msg := queueIn.Name
47err = choc.Publish(exchangeName ,confirmKey ,
48false ,false ,
49amqp.Publishing{
50ContentType: "text/plain",
51Body: []byte(msg),
52})
53failOnError(err , "Failed�to�publish�a�message")
54fmt.Println("Published�confirm:", msg)
55// receive tasks
56task := <-inputMsgs
57list := []int{}
58json.Unmarshal(task.Body , &list)
59task.Ack(false)
60fmt.Println("Received:", list)
61if length := len(list); length <= 4 {
62//do the sort
63sort.Ints(list)
64// publish with outputKey
65listB , err := json.Marshal(list)
66failOnError(err , "Failed�to�encode")
67err = chor.Publish(exchangeName ,outputKey ,
68false ,false ,
69amqp.Publishing{
70ContentType: "text/plain",
71Body: listB ,
72})
73failOnError(err , "Failed�to�publish�a�message")
74fmt.Println("Published:", list)
75} else {
76// devide
77first := list [0]
78res := list [1:]
79leftList := Filter(res ,
80func(i int) bool { return i < first })
81rightList := Filter(res ,
82func(i int) bool { return i >= first })
83//new connections and channels
84conn4 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
85failOnError(err , "Failed�to�connect�to�RabbitMQ")
86defer conn4.Close()
87conn5 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
88failOnError(err , "Failed�to�connect�to�RabbitMQ")
89defer conn5.Close()
90conn6 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
91failOnError(err , "Failed�to�connect�to�RabbitMQ")
92defer conn6.Close()
93conn7 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")

Balanced Distributed Computation Patterns 307

94failOnError(err , "Failed�to�connect�to�RabbitMQ")
95defer conn7.Close()
96conn8 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
97failOnError(err , "Failed�to�connect�to�RabbitMQ")
98defer conn8.Close()
99conn9 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
100failOnError(err , "Failed�to�connect�to�RabbitMQ")
101defer conn9.Close()
102chilc , err := conn4.Channel ()
103failOnError(err , "Failed�to�open�a�channel")
104chilr , err := conn5.Channel ()
105failOnError(err , "Failed�to�open�a�channel")
106chol , err := conn6.Channel ()
107failOnError(err , "Failed�to�open�a�channel")
108chirc , err := conn7.Channel ()
109failOnError(err , "Failed�to�open�a�channel")
110chirr , err := conn8.Channel ()
111failOnError(err , "Failed�to�open�a�channel")
112chor , err := conn9.Channel ()
113failOnError(err , "Failed�to�open�a�channel")
114////bind queue and send args
115//left
116queueLeftConfirm , err := chilc.QueueDeclare("",
117false ,true ,true ,false ,nil)
118failOnError(err , "Failed�to�declare�a�queue")
119err = chilc.QueueBind(queueLeftConfirm.Name ,
120queueLeftConfirm.Name , exchangeName ,false ,nil)
121failOnError(err , "Failed�to�bind�a�queue")
122leftConfirmMsgs , err := chilc.Consume(queueLeftConfirm.Name ,
123"",false ,true ,false ,false ,nil)
124failOnError(err , "Failed�to�register�a�consumer")
125queueLeftResult , err := chilr.QueueDeclare("",
126false ,true ,true ,false ,nil)
127failOnError(err , "Failed�to�declare�a�queue")
128err = chilr.QueueBind(queueLeftResult.Name ,
129queueLeftResult.Name ,exchangeName , false ,nil)
130failOnError(err , "Failed�to�bind�a�queue")
131leftResultMsgs , err := chilr.Consume(queueLeftResult.Name ,
132"",false ,false ,false ,false ,nil)
133failOnError(err , "Failed�to�register�a�consumer")
134//right
135queueRightConfirm , err := chirc.QueueDeclare("",
136false ,true ,true ,false , nil)
137failOnError(err , "Failed�to�declare�a�queue")
138err = chirc.QueueBind(queueRightConfirm.Name ,
139queueRightConfirm.Name ,exchangeName ,false ,nil)
140failOnError(err , "Failed�to�bind�a�queue")
141rightConfirmMsgs , err := chirc.Consume(
142queueRightConfirm.Name ,"",false ,true ,false ,false ,nil)
143failOnError(err , "Failed�to�register�a�consumer")
144queueRightResult , err := chirr.QueueDeclare("",
145false ,true ,true ,false ,nil)
146failOnError(err , "Failed�to�declare�a�queue")
147err = chirr.QueueBind(queueRightResult.Name ,
148queueRightResult.Name ,exchangeName ,false ,nil)
149failOnError(err , "Failed�to�bind�a�queue")
150rightResultMsgs , err := chirr.Consume(
151queueRightResult.Name ,"",false ,false ,false ,false ,nil)
152failOnError(err , "Failed�to�register�a�consumer")
153//send args
154argsLeftP := &workerArg{
155OutputKey: queueLeftResult.Name ,
156ConfirmKey: queueLeftConfirm.Name ,
157}
158argsLeftB , err := json.Marshal(argsLeftP)
159failOnError(err , "Failed�to�encode")
160err = chol.Publish(exchangeName ,"generator",
161false , false ,

308 J. Li et al.

162amqp.Publishing{
163ContentType: "text/plain",
164Body: argsLeftB ,
165})
166failOnError(err , "Failed�to�publish�a�message")
167fmt.Println("Published", string(argsLeftB))
168argsRightP := &workerArg{
169OutputKey: queueRightResult.Name ,
170ConfirmKey: queueRightConfirm.Name ,
171}
172argsRightB , err := json.Marshal(argsRightP)
173failOnError(err , "Failed�to�encode")
174err = chor.Publish(exchangeName ,"generator",
175false ,false ,
176amqp.Publishing{
177ContentType: "text/plain",
178Body: argsRightB ,
179})
180failOnError(err , "Failed�to�publish�a�message")
181fmt.Println("Published", string(argsRightB))
182// receive confirm and send task
183leftConfirm := <-leftConfirmMsgs
184leftTargetKey := string(leftConfirm.Body)
185leftConfirm.Ack(false)
186rightConfirm := <-rightConfirmMsgs
187rightTargetKey := string(rightConfirm.Body)
188rightConfirm.Ack(false)
189leftListB , err := json.Marshal(leftList)
190failOnError(err , "Failed�to�encode")
191err = chol.Publish(exchangeName ,leftTargetKey ,
192false ,false ,
193amqp.Publishing{
194ContentType: "text/plain",
195Body: leftListB ,
196})
197failOnError(err , "Failed�to�publish�a�message")
198fmt.Println("Published:", leftList)
199rightListB , err := json.Marshal(rightList)
200failOnError(err , "Failed�to�encode")
201err = chor.Publish(exchangeName ,rightTargetKey ,
202false ,false ,
203amqp.Publishing{
204ContentType: "text/plain",
205Body: rightListB ,
206})
207failOnError(err , "Failed�to�publish�a�message")
208fmt.Println("Published:", rightList)
209// receive left and right result and publish final result
210leftResultMsg := <-leftResultMsgs
211listLeftResult := []int{}
212json.Unmarshal(leftResultMsg.Body , &listLeftResult)
213leftResultMsg.Ack(false)
214fmt.Println("Left�result:", listLeftResult)
215rightResultMsg := <-rightResultMsgs
216listRightResult := []int{}
217json.Unmarshal(rightResultMsg.Body , &listRightResult)
218rightResultMsg.Ack(false)
219fmt.Println("Right�result:", listRightResult)
220//final result
221finalResult := append(listLeftResult , first)
222finalResult = append(finalResult , listRightResult ...)
223finalResultB , err := json.Marshal(finalResult)
224failOnError(err , "Failed�to�encode")
225err = chor.Publish(exchangeName ,outputKey ,
226false ,false ,
227amqp.Publishing{
228ContentType: "text/plain",
229Body: finalResultB ,

Balanced Distributed Computation Patterns 309

230})
231failOnError(err , "Failed�to�publish�a�message")
232fmt.Println("Published:",finalResult)
233}
234forever := make(chan bool)
235<-forever
236}
237func Filter(s []int , fn func(int) bool) []int {
238var p []int // == nil
239for _, i := range s {
240if fn(i) {
241p = append(p, i)
242}
243}
244return p
245}
246func failOnError(err error , msg string) {
247if err != nil {
248log.Fatalf("%s:�%s", msg , err)
249}
250}

Listing 1.81. Distributed Divide and Conquer example version 1, worker

1package main
2import (
3"encoding/json"
4"fmt"
5"log"
6"os/exec"
7"github.com/streadway/amqp"
8)
9type workerArg struct {
10OutputKey string
11ConfirmKey string
12}
13func main() {
14conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
15failOnError(err , "Failed�to�connect�to�RabbitMQ")
16defer conn.Close()
17ch, err := conn.Channel ()
18failOnError(err , "Failed�to�open�a�channel")
19err = ch.ExchangeDeclare("conquer", "direct",
20false ,true ,false ,false ,nil)
21failOnError(err , "Failed�to�declare�an�exchange")
22queueArg , err := ch.QueueDeclare("generator",
23false ,true ,false ,false ,nil)
24failOnError(err , "Failed�to�declare�a�queue")
25err = ch.QueueBind(queueArg.Name ,"generator","conquer",
26false ,nil)
27failOnError(err , "Failed�to�bind�a�queue")
28argMsgs , err := ch.Consume(queueArg.Name ,"",
29false ,false ,false ,false ,nil)
30failOnError(err , "Failed�to�register�a�consumer")
31go func() {
32for d := range argMsgs {
33arg := workerArg {}
34json.Unmarshal(d.Body , &arg)
35fmt.Println(arg)
36cmd := exec.Command("cmd", "/C", "start", "go", "run",
37"../ worker.go", arg.OutputKey ,arg.ConfirmKey)
38err = cmd.Run()
39failOnError(err , "Failed�to�generate�worker")
40fmt.Println("Generated�one�worker")
41d.Ack(false)
42}
43}()

310 J. Li et al.

44forever := make(chan bool)
45<-forever
46}
47func failOnError(err error , msg string) {
48if err != nil {
49log.Fatalf("%s:�%s", msg , err)
50}
51}

Listing 1.82. Distributed Divide and Conquer example version 1, generator

1package main
2import (
3"encoding/json"
4"fmt"
5"log"
6"time"
7"github.com/streadway/amqp"
8)
9type workerArg struct {
10OutputKey string
11ConfirmKey string
12}
13func main() {
14startTime := time.Now()
15//list := []int{3, 4, 7, 2, 5, 7, 8, 4, 6, 8, 6, 3, 66, 432,
16//63, 6, 7, 8, 4, 65, 34, 4, 36}
17list := []int{5,7,3,4,1,9,6,2,8}
18conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
19failOnError(err , "Failed�to�connect�to�RabbitMQ")
20defer conn1.Close()
21conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
22failOnError(err , "Failed�to�connect�to�RabbitMQ")
23defer conn2.Close()
24conn3 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
25failOnError(err , "Failed�to�connect�to�RabbitMQ")
26defer conn3.Close()
27cho , err := conn1.Channel ()
28failOnError(err , "Failed�to�open�a�channel")
29chic , err := conn2.Channel ()
30failOnError(err , "Failed�to�open�a�channel")
31chir , err := conn3.Channel ()
32failOnError(err , "Failed�to�open�a�channel")
33exchangeName := "conquer"
34err = cho.ExchangeDeclare(exchangeName ,"direct",
35false ,true ,false ,false ,nil)
36failOnError(err , "Failed�to�declare�an�exchange")
37queueForConfirm , err := chic.QueueDeclare("",
38false ,true ,true ,false ,nil)
39failOnError(err , "Failed�to�declare�a�queue")
40err = chic.QueueBind(queueForConfirm.Name ,
41queueForConfirm.Name ,exchangeName ,false ,nil)
42failOnError(err , "Failed�to�bind�a�queue")
43confirmMsgs , err := chic.Consume(queueForConfirm.Name ,
44"",false ,true ,false ,false ,nil)
45failOnError(err , "Failed�to�register�a�consumer")
46queueForResult , err := chir.QueueDeclare("",
47false ,true ,true ,false ,nil)
48failOnError(err , "Failed�to�declare�a�queue")
49err = chir.QueueBind(queueForResult.Name ,
50queueForResult.Name ,exchangeName ,false ,nil)
51failOnError(err , "Failed�to�bind�a�queue")
52resultMsgs , err := chir.Consume(queueForResult.Name ,"",
53false ,false ,false ,false ,nil)
54failOnError(err , "Failed�to�register�a�consumer")
55//send args to generate worker
56argsP := &workerArg{

Balanced Distributed Computation Patterns 311

57OutputKey: queueForResult.Name ,
58ConfirmKey: queueForConfirm.Name ,
59}
60argsB , err := json.Marshal(argsP)
61failOnError(err , "Failed�to�encode")
62err = cho.Publish(exchangeName ,"generator",
63false ,false ,
64amqp.Publishing{
65ContentType: "text/plain",
66Body: argsB ,
67})
68failOnError(err , "Failed�to�publish�a�message")
69fmt.Println("starter�Published", string(argsB))
70confirm := <-confirmMsgs
71targetKey := string(confirm.Body)
72confirm.Ack(false)
73listB , err := json.Marshal(list)
74failOnError(err , "Failed�to�encode")
75msg := listB
76err = cho.Publish(exchangeName ,targetKey ,
77false ,false ,
78amqp.Publishing{
79ContentType: "text/plain",
80Body: msg ,
81})
82failOnError(err , "Failed�to�publish�a�message")
83fmt.Println("Published:", list)
84result := []int{}
85resultMsg := <-resultMsgs
86json.Unmarshal(resultMsg.Body , &result)
87fmt.Println("result:", result)
88resultMsg.Ack(false)
89elapsed := time.Since(startTime)
90fmt.Println("Time:�", elapsed)
91}
92func failOnError(err error , msg string) {
93if err != nil {
94log.Fatalf("%s:�%s", msg , err)
95}
96}

Listing 1.83. Distributed Divide and Conquer example version 1, starter

Run the first generator, the output is:

1go run generator.go
2{amq.gen -2 OoKBjk7phtISs9KxE_baw amq.gen -qKGRCL_OfaQXdxhHqKbHPg}
3Generated one worker
4{amq.gen -pJ -11 vjYRdM_Iir3Mx_TUA amq.gen -AdkocSeFGiFlF3YT0Cxm6g}
5Generated one worker

Run the second generator, the output is:

1go run generator.go
2{amq.gen -9- L6aMbuVLGkvZxEPRA6iw amq.gen -vl_37LPycPXJy -91 rQSevg}
3Generated one worker

Run the Starter, the output is:

1go run starter.go
2starter Published
3{"OutputKey":"amq.gen -2 OoKBjk7phtISs9KxE_baw",
4"ConfirmKey":"amq.gen -qKGRCL_OfaQXdxhHqKbHPg"}
5Published: [5 7 3 4 1 9 6 2 8]
6result: [1 2 3 4 5 6 7 8 9]
7Time: 1.3748538s

312 J. Li et al.

The output of the first generated worker:

1Published confirm: amq.gen -bym_OiYfBIwttUy763zNbQ
2Received: [5 7 3 4 1 9 6 2 8]
3Published
4{"OutputKey":"amq.gen -9- L6aMbuVLGkvZxEPRA6iw",
5"ConfirmKey":"amq.gen -vl_37LPycPXJy -91 rQSevg"}
6Published
7{"OutputKey":"amq.gen -pJ -11 vjYRdM_Iir3Mx_TUA",
8"ConfirmKey":"amq.gen -AdkocSeFGiFlF3YT0Cxm6g"}
9Published: [3 4 1 2]
10Published: [7 9 6 8]
11Left result: [1 2 3 4]
12Right result: [6 7 8 9]
13Result: [1 2 3 4 5 6 7 8 9]

The output of the second generated worker:

1Published confirm: amq.gen -d-hdAsiGHNJEs --rTagf1Q
2Received: [3 4 1 2]
3Published: [1 2 3 4]

The output of the third generated worker:

1Published confirm: amq.gen -g0QmBFcBWYGVnlm3HEDlng
2Received: [7 9 6 8]
3Published: [6 7 8 9]

B Task for Readers

Implement the merge sort version of the divide and conquer problem presented
in the Subsect. 5.7.

Solution. As shown in Listing 1.84 from line 75 to line 78, the worker divides
the list in a different manner from the quick sort version. As shown from line
207 to line 229, the way to get the final result from the results of the children
workers is different. We used the merge method defined from line 234 to line
255.

1package main
2import (
3"encoding/json"
4"fmt"
5"log"
6"os"
7"sort"
8"github.com/streadway/amqp"
9)
10type workerArg struct {
11OutputKey string
12ConfirmKey string
13}
14func main() {
15outputKey := os.Args [1]
16confirmKey := os.Args [2]
17conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
18failOnError(err , "Failed�to�connect�to�RabbitMQ")
19defer conn1.Close()
20conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")

Balanced Distributed Computation Patterns 313

21failOnError(err , "Failed�to�connect�to�RabbitMQ")
22defer conn2.Close()
23conn3 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
24failOnError(err , "Failed�to�connect�to�RabbitMQ")
25defer conn3.Close()
26choc , err := conn1.Channel ()
27failOnError(err , "Failed�to�open�a�channel")
28chor , err := conn2.Channel ()
29failOnError(err , "Failed�to�open�a�channel")
30chi , err := conn3.Channel ()
31failOnError(err , "Failed�to�open�a�channel")
32exchangeName := "conquer"
33err = chi.ExchangeDeclare(exchangeName ,"direct",
34false ,true ,false ,false ,nil)
35failOnError(err , "Failed�to�declare�an�exchange")
36queueIn , err := chi.QueueDeclare("",false ,true ,true ,false ,nil)
37failOnError(err , "Failed�to�declare�a�queue")
38err = chi.QueueBind(queueIn.Name ,
39queueIn.Name ,exchangeName ,false ,nil)
40failOnError(err , "Failed�to�bind�a�queue")
41inputMsgs , err := chi.Consume(queueIn.Name ,"",
42false ,false ,false ,false ,nil)
43failOnError(err , "Failed�to�register�a�consumer")
44//send confirm
45msg := queueIn.Name
46err = choc.Publish(exchangeName ,confirmKey ,
47false ,false ,
48amqp.Publishing{
49ContentType: "text/plain",
50Body: []byte(msg),
51})
52failOnError(err , "Failed�to�publish�a�message")
53fmt.Println("Published�confirm:�", msg)
54// receive tasks
55task := <-inputMsgs
56list := []int{}
57json.Unmarshal(task.Body , &list)
58task.Ack(false)
59fmt.Println("Received:", list)
60if length := len(list); length <= 4 {
61//do the sort
62sort.Ints(list)
63// publish with outputKey
64listB , err := json.Marshal(list)
65failOnError(err , "Failed�to�encode")
66err = chor.Publish(exchangeName ,outputKey ,
67false ,false ,
68amqp.Publishing{
69ContentType: "text/plain",
70Body: listB ,
71})
72failOnError(err , "Failed�to�publish�a�message")
73fmt.Println("Published:", list)
74} else {
75// devide
76middle := int(len(list) / 2)
77leftList := list [0: middle]
78rightList := list[middle:]
79//new channels
80conn4 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
81failOnError(err , "Failed�to�connect�to�RabbitMQ")
82defer conn4.Close()
83conn5 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
84failOnError(err , "Failed�to�connect�to�RabbitMQ")
85defer conn5.Close()
86conn6 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
87failOnError(err , "Failed�to�connect�to�RabbitMQ")
88defer conn6.Close()

314 J. Li et al.

89conn7 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
90failOnError(err , "Failed�to�connect�to�RabbitMQ")
91defer conn7.Close()
92conn8 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
93failOnError(err , "Failed�to�connect�to�RabbitMQ")
94defer conn8.Close()
95conn9 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
96failOnError(err , "Failed�to�connect�to�RabbitMQ")
97defer conn9.Close()
98chilc , err := conn4.Channel ()
99failOnError(err , "Failed�to�open�a�channel")
100chilr , err := conn5.Channel ()
101failOnError(err , "Failed�to�open�a�channel")
102chol , err := conn6.Channel ()
103failOnError(err , "Failed�to�open�a�channel")
104chirc , err := conn7.Channel ()
105failOnError(err , "Failed�to�open�a�channel")
106chirr , err := conn8.Channel ()
107failOnError(err , "Failed�to�open�a�channel")
108chor , err := conn9.Channel ()
109failOnError(err , "Failed�to�open�a�channel")
110////bind queue and send args
111//left
112queueLeftConfirm , err := chilc.QueueDeclare("",
113false ,true ,true ,false ,nil)
114failOnError(err , "Failed�to�declare�a�queue")
115err = chilc.QueueBind(queueLeftConfirm.Name ,
116queueLeftConfirm.Name ,exchangeName ,false ,nil)
117failOnError(err , "Failed�to�bind�a�queue")
118leftConfirmMsgs , err := chilc.Consume(
119queueLeftConfirm.Name ,"",false ,true ,false ,false ,nil)
120failOnError(err , "Failed�to�register�a�consumer")
121queueLeftResult , err := chilr.QueueDeclare("",
122false ,true ,true ,false ,nil)
123failOnError(err , "Failed�to�declare�a�queue")
124err = chilr.QueueBind(queueLeftResult.Name ,
125queueLeftResult.Name ,exchangeName ,false ,nil)
126failOnError(err , "Failed�to�bind�a�queue")
127leftResultMsgs , err := chilr.Consume(queueLeftResult.Name ,
128"",false ,false ,false ,false ,nil)
129failOnError(err , "Failed�to�register�a�consumer")
130//right
131queueRightConfirm , err := chirc.QueueDeclare("",
132false ,true ,true ,false ,nil)
133failOnError(err , "Failed�to�declare�a�queue")
134err = chirc.QueueBind(queueRightConfirm.Name ,
135queueRightConfirm.Name ,exchangeName ,false ,nil)
136failOnError(err , "Failed�to�bind�a�queue")
137rightConfirmMsgs , err := chirc.Consume(queueRightConfirm.Name ,
138"",false ,true ,false ,false ,nil)
139failOnError(err , "Failed�to�register�a�consumer")
140queueRightResult , err := chirr.QueueDeclare("",
141false ,true ,true ,false , nil)
142failOnError(err , "Failed�to�declare�a�queue")
143err = chirr.QueueBind(queueRightResult.Name ,
144queueRightResult.Name ,exchangeName ,false ,nil)
145failOnError(err , "Failed�to�bind�a�queue")
146rightResultMsgs , err := chirr.Consume(queueRightResult.Name ,
147"",false ,false ,false ,false ,nil)
148failOnError(err , "Failed�to�register�a�consumer")
149//send args
150argsLeftP := &workerArg{
151OutputKey: queueLeftResult.Name ,
152ConfirmKey: queueLeftConfirm.Name ,
153}
154argsLeftB , err := json.Marshal(argsLeftP)
155failOnError(err , "Failed�to�encode")
156err = chol.Publish(exchangeName ,"generator",

Balanced Distributed Computation Patterns 315

157false ,false ,
158amqp.Publishing{
159ContentType: "text/plain",
160Body: argsLeftB ,
161})
162failOnError(err , "Failed�to�publish�a�message")
163fmt.Println("Published:", string(argsLeftB))
164argsRightP := &workerArg{
165OutputKey: queueRightResult.Name ,
166ConfirmKey: queueRightConfirm.Name ,
167}
168argsRightB , err := json.Marshal(argsRightP)
169failOnError(err , "Failed�to�encode")
170err = chor.Publish(exchangeName ,"generator",
171false ,false ,
172amqp.Publishing{
173ContentType: "text/plain",
174Body: argsRightB ,
175})
176failOnError(err , "Failed�to�publish�a�message")
177fmt.Println("Published:", string(argsRightB))
178

179// receive confirm and send task
180leftConfirm := <-leftConfirmMsgs
181leftTargetKey := string(leftConfirm.Body)
182leftConfirm.Ack(false)
183rightConfirm := <-rightConfirmMsgs
184rightTargetKey := string(rightConfirm.Body)
185rightConfirm.Ack(false)
186

187leftListB , err := json.Marshal(leftList)
188failOnError(err , "Failed�to�encode")
189err = chol.Publish(exchangeName ,leftTargetKey ,
190false ,false ,
191amqp.Publishing{
192ContentType: "text/plain",
193Body: leftListB ,
194})
195failOnError(err , "Failed�to�publish�a�message")
196fmt.Println("Published:", leftList)
197rightListB , err := json.Marshal(rightList)
198failOnError(err , "Failed�to�encode")
199err = chor.Publish(exchangeName ,rightTargetKey ,
200false ,false ,
201amqp.Publishing{
202ContentType: "text/plain",
203Body: rightListB ,
204})
205failOnError(err , "Failed�to�publish�a�message")
206fmt.Println("Published:", rightList)
207// receive left and right result and publish final result
208leftResultMsg := <-leftResultMsgs
209listLeftResult := []int{}
210json.Unmarshal(leftResultMsg.Body , &listLeftResult)
211leftResultMsg.Ack(false)
212fmt.Println("Left�result:", listLeftResult)
213rightResultMsg := <-rightResultMsgs
214listRightResult := []int{}
215json.Unmarshal(rightResultMsg.Body , &listRightResult)
216rightResultMsg.Ack(false)
217fmt.Println("Right�result:", listRightResult)
218//final result
219finalResult := Merge(listLeftResult , listRightResult)
220finalResultB , err := json.Marshal(finalResult)
221failOnError(err , "Failed�to�encode")
222err = chor.Publish(exchangeName ,outputKey ,
223false ,false ,
224amqp.Publishing{

316 J. Li et al.

225ContentType: "text/plain",
226Body: finalResultB ,
227})
228failOnError(err , "Failed�to�publish�a�message")
229fmt.Println("Result:", finalResult)
230}
231forever := make(chan bool)
232<-forever
233}
234func Merge(left , right []int) (result []int) {
235result = make ([]int , len(left)+len(right))
236i := 0
237for len(left) > 0 && len(right) > 0 {
238if left [0] < right [0] {
239result[i] = left [0]
240left = left [1:]
241} else {
242result[i] = right [0]
243right = right [1:]
244}
245i++
246}
247for j := 0; j < len(left); j++ {
248result[i] = left[j]
249i++
250}
251for j := 0; j < len(right); j++ {
252result[i] = right[j]
253i++
254}
255return
256}
257func failOnError(err error , msg string) {
258if err != nil {
259log.Fatalf("%s:�%s", msg , err)
260}
261}

Listing 1.84. Task 2 solution, worker

1package main
2import (
3"encoding/json"
4"fmt"
5"log"
6"os/exec"
7"github.com/streadway/amqp"
8)
9type workerArg struct {
10OutputKey string
11ConfirmKey string
12}
13func main() {
14conn , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
15failOnError(err , "Failed�to�connect�to�RabbitMQ")
16defer conn.Close()
17ch, err := conn.Channel ()
18failOnError(err , "Failed�to�open�a�channel")
19err = ch.ExchangeDeclare("conquer","direct",
20false ,true ,false ,false ,nil)
21failOnError(err , "Failed�to�declare�an�exchange")
22queueArg , err := ch.QueueDeclare("generator",
23false ,true ,false ,false ,nil)
24failOnError(err , "Failed�to�declare�a�queue")
25err = ch.QueueBind(queueArg.Name ,"generator","conquer",
26false ,nil)
27failOnError(err , "Failed�to�bind�a�queue")

Balanced Distributed Computation Patterns 317

28argMsgs , err := ch.Consume(queueArg.Name ,"",
29false ,false ,false ,false ,nil)
30failOnError(err , "Failed�to�register�a�consumer")
31go func() {
32for d := range argMsgs {
33arg := workerArg {}
34json.Unmarshal(d.Body , &arg)
35fmt.Println(arg)
36cmd := exec.Command("cmd", "/C", "start", "go", "run",
37"../ worker.go", arg.OutputKey ,arg.ConfirmKey)
38err = cmd.Run()
39failOnError(err , "Failed�to�generate�worker")
40fmt.Println("generated�one�worker")
41d.Ack(false)
42}
43}()
44forever := make(chan bool)
45<-forever
46}
47func failOnError(err error , msg string) {
48if err != nil {
49log.Fatalf("%s:�%s", msg , err)
50}
51}

Listing 1.85. Task 2 solution, generator

1package main
2import (
3"encoding/json"
4"fmt"
5"log"
6"time"
7"github.com/streadway/amqp"
8)
9type workerArg struct {
10OutputKey string
11ConfirmKey string
12}
13func main() {
14startTime := time.Now()
15//list := []int{3, 4, 7, 2, 5, 7, 8, 4, 6, 8, 6, 3,
16//66, 432, 63, 6, 7, 8, 4, 65, 34, 4, 36}
17list := []int{5,7,3,4,1,9,6,2,8}
18conn1 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
19failOnError(err , "Failed�to�connect�to�RabbitMQ")
20defer conn1.Close()
21conn2 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
22failOnError(err , "Failed�to�connect�to�RabbitMQ")
23defer conn2.Close()
24conn3 , err := amqp.Dial("amqp :// guest:guest@localhost :5672/")
25failOnError(err , "Failed�to�connect�to�RabbitMQ")
26defer conn3.Close()
27cho , err := conn1.Channel ()
28failOnError(err , "Failed�to�open�a�channel")
29chic , err := conn2.Channel ()
30failOnError(err , "Failed�to�open�a�channel")
31chir , err := conn3.Channel ()
32failOnError(err , "Failed�to�open�a�channel")
33exchangeName := "conquer"
34err = cho.ExchangeDeclare(exchangeName ,"direct",
35false ,true ,false ,false ,nil)
36failOnError(err , "Failed�to�declare�an�exchange")
37queueForConfirm , err := chic.QueueDeclare("",
38false ,true ,true ,false ,nil)
39failOnError(err , "Failed�to�declare�a�queue")
40err = chic.QueueBind(queueForConfirm.Name ,queueForConfirm.Name ,

318 J. Li et al.

41exchangeName ,false ,nil)
42failOnError(err , "Failed�to�bind�a�queue")
43confirmMsgs , err := chic.Consume(queueForConfirm.Name ,"",
44false ,true ,false ,false ,nil)
45failOnError(err , "Failed�to�register�a�consumer")
46queueForResult , err := chir.QueueDeclare("",
47false ,true ,true ,false ,nil)
48failOnError(err , "Failed�to�declare�a�queue")
49err = chir.QueueBind(queueForResult.Name ,queueForResult.Name ,
50exchangeName ,false ,nil)
51failOnError(err , "Failed�to�bind�a�queue")
52resultMsgs , err := chir.Consume(queueForResult.Name ,"",
53false ,false ,false ,false ,nil)
54failOnError(err , "Failed�to�register�a�consumer")
55//send args to generate worker
56argsP := &workerArg{
57OutputKey: queueForResult.Name ,
58ConfirmKey: queueForConfirm.Name ,
59}
60argsB , err := json.Marshal(argsP)
61failOnError(err , "Failed�to�encode")
62err = cho.Publish(exchangeName ,"generator",false ,false ,
63amqp.Publishing{
64ContentType: "text/plain",
65Body: argsB ,
66})
67failOnError(err , "Failed�to�publish�a�message")
68fmt.Println("Starter�Published", string(argsB))
69confirm := <-confirmMsgs
70targetKey := string(confirm.Body)
71confirm.Ack(false)
72listB , err := json.Marshal(list)
73failOnError(err , "Failed�to�encode")
74msg := listB
75err = cho.Publish(exchangeName ,targetKey ,false ,false ,
76amqp.Publishing{
77ContentType: "text/plain",
78Body: msg ,
79})
80failOnError(err , "Failed�to�publish�a�message")
81fmt.Println("Published:", list)
82result := []int{}
83resultMsg := <-resultMsgs
84json.Unmarshal(resultMsg.Body , &result)
85fmt.Println("Result:", result)
86resultMsg.Ack(false)
87elapsed := time.Since(startTime)
88fmt.Println("Time:�", elapsed)
89}
90func failOnError(err error , msg string) {
91if err != nil {
92log.Fatalf("%s:�%s", msg , err)
93}
94}

Listing 1.86. Task 2 solution, starter

Balanced Distributed Computation Patterns 319

Run the first generator, the output is:

1go run generator.go
2{amq.gen -lj1uJpS5Nxl72aiOUSRM3A amq.gen -6 fEhTrnu0zcBA4vDyABRsA}
3generated one worker
4{amq.gen -T9HLttt7ZXKOEMTuHw3zuA amq.gen -Ym0X_a0XqvTngM4dtzfzag}
5generated one worker
6{amq.gen -lEdvmRNFI1ipow21S -c1eA amq.gen -0 Viyg08vuJrNWBD9vGU5vQ}
7generated one worker

Run the second generator, the output is:

1go run generator.go
2{amq.gen -IiY1K5NlW4HEtukHQv4o0Q amq.gen -ff9nWiuRGpxHINXTV6DcQg}
3generated one worker
4{amq.gen -wXucitzkqNlB7t -DKHNNzw amq.gen -5 koOgULSZk5qBEk5EuhaoQ}
5generated one worker

Run the starter, the output is:

1go run starter.go
2Starter Published
3{"OutputKey":"amq.gen -lj1uJpS5Nxl72aiOUSRM3A",
4"ConfirmKey":"amq.gen -6 fEhTrnu0zcBA4vDyABRsA"}
5Published: [5 7 3 4 1 9 6 2 8]
6Result: [1 2 3 4 5 6 7 8 9]
7Time: 1.879547s

The output of the first generated worker:

1Published confirm: amq.gen -BwsKlxuZyJjIKG -QbiBbww
2Received: [5 7 3 4 1 9 6 2 8]
3Published:
4{"OutputKey":"amq.gen -IiY1K5NlW4HEtukHQv4o0Q",
5"ConfirmKey":"amq.gen -ff9nWiuRGpxHINXTV6DcQg"}
6Published:
7{"OutputKey":"amq.gen -T9HLttt7ZXKOEMTuHw3zuA",
8"ConfirmKey":"amq.gen -Ym0X_a0XqvTngM4dtzfzag"}
9Published: [5 7 3 4]
10Published: [1 9 6 2 8]
11Left result: [3 4 5 7]
12Right result: [1 2 6 8 9]
13Result: [1 2 3 4 5 6 7 8 9]

The output of the second generated worker:

1Published confirm: amq.gen -jnANB0Cyh2Ampgnf_DKjsQ
2Received: [1 9 6 2 8]
3Published:
4{"OutputKey":"amq.gen -wXucitzkqNlB7t -DKHNNzw",
5"ConfirmKey":"amq.gen -5 koOgULSZk5qBEk5EuhaoQ"}
6Published:
7{"OutputKey":"amq.gen -lEdvmRNFI1ipow21S -c1eA",
8"ConfirmKey":"amq.gen -0 Viyg08vuJrNWBD9vGU5vQ"}
9Published: [1 9]
10Published: [6 2 8]
11Left result: [1 9]
12Right result: [2 6 8]
13Result: [1 2 6 8 9]

The output of the third generated worker:

1Published confirm: amq.gen -E7s_E7TEh1Jl1JLELSYjbQ
2Received: [5 7 3 4]
3Published: [3 4 5 7]

320 J. Li et al.

The output of the fourth generated worker:

1Published confirm: amq.gen -Oy-rhLgARyYyza7qhn6irQ
2Received: [6 2 8]
3Published: [2 6 8]

The output of the fifth generated worker:

1Published confirm: amq.gen -GpG1uOsYnQU69LLrfFQT6g
2Received: [1 9]
3Published: [1 9]

References

1. AMQP 0-9-1 complete reference guide. RabbitMQ. https://www.rabbitmq.com/
amqp-0-9-1-reference.html. Accessed 13 Jan 2020

2. A Tour of Go. https://tour.golang.org/concurrency/2. Accessed 13 Jan 2020
3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture - A System of Patterns. Wiley (1996)
4. Castilho, M.: Handling 1 million requests per minute with Go. http://marcio.io/

2015/07/handling-1-million-requests-per-minute-with-golang/. Accessed 13 Jan
2020

5. Concurrency is not parallelism. https://go.dev/blog/waza-talk. Accessed 23 Jan
2020

6. Consumer acknowledgements and publisher confirms. https://www.rabbitmq.com/
confirms.html. Accessed 23 Jan 2020

7. Dobbelaere, Ph., Esmaili, K. Sh.: Kafka versus RabbitMQ: a comparative study
of two industry reference publish/subscribe implementations: industry paper. In:
Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems, DEBS 2017, June 2017, pp. 227–238 (2017)

8. Download and install - The Go programming language. https://golang.org/doc/
install. Accessed 13 Jan 2020

9. Gerrand, A.: Share memory by communicating. https://blog.golang.org/share-
memory-by-communicating. Accessed 13 Jan 2020

10. GitHub - Jeffail/tunny: A Goroutine Pool for Go. https://github.com/Jeffail/
tunny. Accessed 08 Sept 2021

11. GitHub - streadway/amqp: Go client for AMQP 0.9.1. https://github.com/
streadway/amqp. Accessed 08 Sept 2021

12. Globally unique ID generator. https://github.com/rs/xid. Accessed 21 Jan 2020
13. Install RabbitMQ server on Windows. https://www.rabbitmq.com/install-

windows.html. Accessed 1 Sept 2020
14. Li J., Kim Y., Zsók V.: Balanced distributed computation patterns (2022). https://

github.com/lijianhao288/Balanced-Distributed-Computation-Patterns
15. Madhu, M.P., Dixit, S.: Distributing messages using RabbitMQ with advanced

message exchanges. Int. J. Res. Stud. Comput. Sci. Eng. 6(2), 24–28 (2019)
16. NSQ: A Realtime Distributed Messaging Platform. https://nsq.io/. Accessed 1

Sept 2020
17. RabbitMQ Tutorials. https://www.rabbitmq.com/getstarted.html. Accessed 1

Sept 2020
18. RabbitMQ tutorial - Work Queues - RabbitMQ. https://www.rabbitmq.com/

tutorials/tutorial-two-go.html. Accessed 1 Sept 2020

https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://tour.golang.org/concurrency/2
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang/
https://go.dev/blog/waza-talk
https://www.rabbitmq.com/confirms.html
https://www.rabbitmq.com/confirms.html
https://golang.org/doc/install
https://golang.org/doc/install
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://github.com/Jeffail/tunny
https://github.com/Jeffail/tunny
https://github.com/streadway/amqp
https://github.com/streadway/amqp
https://github.com/rs/xid
https://www.rabbitmq.com/install-windows.html
https://www.rabbitmq.com/install-windows.html
https://github.com/lijianhao288/Balanced-Distributed-Computation-Patterns
https://github.com/lijianhao288/Balanced-Distributed-Computation-Patterns
https://nsq.io/
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/tutorials/tutorial-two-go.html
https://www.rabbitmq.com/tutorials/tutorial-two-go.html

Balanced Distributed Computation Patterns 321

19. The Go Programming Language. https://golang.org/. Accessed 13 Jan 2020
20. Udemy. https://www.udemy.com/. Accessed 1 Sept 2020
21. UML. https://www.omg.org/spec/UML/2.0/Superstructure/PDF. Accessed 1 Sep

2020
22. Videla, A., Williams, J.J.W.: RabbitMQ in Action: Distributed Messaging for

Everyone. Manning Publisher, NY, US (2012)
23. Zsók, Viktória, Hernyák, Zoltán, Horváth, Zoltán: Designing distributed compu-

tational skeletons in D-clean and D-box. In: Horváth, Zoltán (ed.) CEFP 2005.
LNCS, vol. 4164, pp. 223–256. Springer, Heidelberg (2006). https://doi.org/10.
1007/11894100 8

https://golang.org/
https://www.udemy.com/
https://www.omg.org/spec/UML/2.0/Superstructure/PDF
https://doi.org/10.1007/11894100_8
https://doi.org/10.1007/11894100_8

PhD Workshop

Tunnel Parsing

Nikolay Handzhiyski1,2(B) and Elena Somova2

1 ExperaSoft UG (haftungsbeschränkt), Goldasse 10 St., 77652 Offenburg, Germany
nikolay.handzhiyski@experasoft.com

2 University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen St.,
4000 Plovdiv, Bulgaria
eledel@uni-plovdiv.bg

https://www.experasoft.com/, https://www.uni-plovdiv.bg/

Abstract. This article describes an effective algorithm for parsing and
building of concrete syntax trees for languages defined by context-free
grammars without left recursion nor rules that recognize empty words.
The different states in which the parsing machine can be are pre-
computed into a control layer of objects together with all possible sets
of steps (tunnels), that can be executed during the parsing to enable
the parsing machine to progress from one state to another. When imple-
mented, all pre-computed data is read-only and can be used by more
than one parsing machine at a time. The algorithm (called tunnel pars-
ing) uses the grammars directly without a prior refactoring, and can
linearly parse some ambiguous grammars.

Keywords: Parsing · Syntax Analysis · Parser Generator · Statically
Typed Concrete Syntax Tree

1 Introduction

The electronic systems often use stored data or receive data from other systems.
The data itself is structured according to the formal language chosen for the
specific purpose, which will be called hereafter only a language. The grammar
of the language can be conveniently described by a widely known metasyntax
such as Augmented Backus-Naur form (ABNF [5]), which is used to describe
grammars in this article.

In order to understand the meaning of a given data for a given language, a
recognition process must be performed - parsing [3]. The different languages
can be divided according to the grammars that describe them, and the most
commonly used in practice are the regular grammars, with them the data
recognition is performed by a finite automaton (deterministic or not), and
the context-free grammars [22] where the recognition is performed by a push-
down automaton (also deterministic or not, depending on the grammar).

The parsing has two main goals: first, to check if a string of characters [3]
(for short string) belongs to a given language, and second, to build a syntax
tree - a data structure that contains syntactic information about the string.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 325–343, 2023.
https://doi.org/10.1007/978-3-031-42833-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_8&domain=pdf
http://orcid.org/0000-0003-0681-6871
http://orcid.org/0000-0003-3393-1058
https://doi.org/10.1007/978-3-031-42833-3_8

326 N. Handzhiyski and E. Somova

There are two types of syntax trees - abstract and concrete. An abstract
syntax tree may not contain all grammar rules (for short rules) that are used
during the parsing, and it may not contain some of the recognized characters that
are implied from the context (for example, the parentheses around mathematical
expressions can be omitted, if the expression between the parentheses has its own
subtree [1]). In contrast, a concrete syntax tree contains all of the used rules
and recognized characters during the parsing and it is the type of tree addressed
in this article.

An empty string [3] (a sequence of zero characters) is defined as ε, and a
rule that recognizes ε, will be called ε-rule. This article describes an effective
algorithm for parsing of strings and building concrete syntax trees, by the use
of context-free grammars without left recursion nor ε-rules. The tunnel pars-
ing algorithm is mainly applicable for parsing domain-specific languages, such
as programming languages and structured data. Tunnel Grammar Studio [24]
generates parser that operate with the tunnel parsing algorithm.

Section 2 provides an overview of the parsing process and describes some
common approaches to realize it. Section 3 introduces basic concepts and parsing
issues that are relevant to the article. Section 4 describes the tunnel parsing
algorithm. Section 5 contains an example parsing with various changes to the
internal state of the parser as part of the parsing machine (PM) - an object
that performs all recognition steps of the string, such as lexing, parsing, and the
eventual build of a syntax tree. The section also contains information for the
runtime speed performance of the presented algorithm. Section 6 describes the
future development of the algorithm and some of its other features that are not
covered by the article.

2 Parsing Overview

The process of finding the meaning of data is as follows:

1. If the input data is encoded, it must be decoded to a string. Common char-
acter encoding standards are ASCII, UTF-8 and UTF-16;

2. Optionally, the characters of the string can be grouped into lexemes and then
into tokens by the use of a lexical grammar from a lexer. To each token rec-
ognized by the lexer is given a name - an abstract symbol [3] that is later
used by the parser. The lexical grammar describes the syntax of tokens as
formed by characters. The end of this step is a list of tokens. Often the lexical
analysis is based on a regular grammar, that is used by a non-deterministic
finite automaton directly for the recognition of each token’s lexeme, or to be
converted to a deterministic finite automaton [18] and then be used. This
conversion is often done in practice [20] by the use of the Brzozowski algo-
rithm [6] to create minimal deterministic final automata. During the lexemes
recognition from the automaton, the longest possible match is often taken
for each character group that is converted to a lexeme. If no lexical analysis
is performed, or no lexeme is recognized from the lexer, then each character
becomes a token [24] with a name - the character itself;

Tunnel Parsing 327

3. With the use of a parser grammar and a list of tokens, the parsing process
is performed. The parser grammar describes the syntax of the language as
formed by symbols or directly from tokens [24]. The grammars used in this
article are presented in terms of the ABNF metasyntax, and hereafter each
ABNF terminal value [5] will constitute a symbol;

4. If a syntax tree is required, it is generated as a part of the result;
5. The process completes successfully or with an error - a string that does not

belong to the language.

When it is necessary only to check, whether a given string belongs to a given
language (i.e. a syntax tree is not required, because no further analysis is per-
formed), the language grammar can changed without restriction. For example,
to remove ε-rules or left recursion during refactoring [17] in order to make the
grammar recognition possible by certain algorithms, to reduce the memory usage
or the recognition time, provided that the new grammar must describe exactly
the same language. If it is necessary to build a syntax tree (to translate one
language to another, compile, decompile, or perform a specific analysis of the
input data), then any change in the grammar, from the parsing algorithm, in
order to obtain certain properties, affects the tree. To enable the developer to
predict the final syntax tree easily, the parsing algorithm must not change the
grammar.

There are different syntax tree building algorithms, as the most common
two are:

– top-down - the left-most derivation is used first [8]. In practice, the first
created tree node is the tree root, then the left sub-node will be created in-
depth, and the right-most sub-node will be created last. The tunnel parsing
algorithm belongs to this category of algorithms;

– bottom-up - from the leaves to the root, as the right-most derivation is used
first. In practice, the leaves are first created in a list. Then the right-most are
grouped in their parent node. The process is repeated until the last created
node is the root.

If we consider a general step-by-step PM that during its progress, it tran-
sitions from one step to another, based on its internal state [18] plus a certain
number of input symbols, then the necessary symbols for making the decision
to move the PM from one step to another will be called look-ahead symbols.
When the parsing is done on the basis of a deterministic context-free grammar,
at most one look-ahead symbol is required from the PM to progress. For some
context-free grammars, the number of look-ahead symbols might be greater than
one.

As a combination of the parsing direction, from left to right (L), and the
syntax tree building direction (L or R), the two common parsing strategies are:

– LL - Left to right, Left-most derivation. These types of parsers can
be developed manually and automatically [24], often by making each gram-
mar rule directly implemented as a function [4] in the target programming

328 N. Handzhiyski and E. Somova

language, and the thread-dedicated stack to be used to recurse into the
rules. That is an intuitive way to run a parser as a standard software pro-
gram [15,19]. The LL parsing makes it easy to add events directly to the
grammar (for example, functions to be called when the PM passes through
some specific places) that makes it a more appropriate parsing strategy to
use. The class of grammars that can be recognized by an LL parser with a
maximum of k number of look-ahead symbols are called LL(k) grammars.
The tunnel parsing is a left to right parsing algorithm;

– LR - Left to right, Right-most derivation. These types of parsers are
difficult to be manually developed, and they are usually generated automat-
ically [13]. During parsing by this type of parsers, a list of syntax tree nodes
is usually maintained. The main two operations are: a) move the right-most
nodes from the list as sub-nodes to a new node that takes their place in the
list of nodes. That operation may reduce the length of the list of nodes, and is
called a reduce operation; and b) a new symbol is shifted from the input string
to a new single node in the right side of the list of nodes. This is effectively
reducing the input with one symbol, and is called a shift operation [2].

There are different parsing algorithms that can be classified by the type of
grammars they can use. Of practical interest are the context-free grammars and
mostly the deterministic context-free grammars, because different programming
languages and structured data are represented with them [10,23,25].

A context-free grammar can be a base for parsing by a non-deterministic
pushdown automaton. During parsing, these parsers use a link to a current
automaton state that is changed at the parsing steps depending on the symbols
in the input string and the transitions from the current to the next automaton
states. When in the current automaton a reference to another automaton is
reached, the current link to an automaton state is added to a stack, then the
parsing continues from the start of the referenced automaton with a new linked
current state, which is the beginning of the new automaton. When the new
automaton is completed, then the previous automaton state is popped from
the stack, and the parsing continues after it. This way of parsing also works
for deterministic context-free grammars. The used stack will be called a depth
stack.

It is essential for the user to know how the PM will perform its operations,
and more specifically, how much memory will be used and how long it will run.
There are many linear algorithms for parsing of different grammar classes [11,21],
and with a polynomial time [12].

3 Problem

The purpose of this article is to present an efficient and iterative parsing algo-
rithm, called tunnel parsing. The algorithm checks whether a given string belongs
to a given language and builds a statically typed concrete syntax tree mirroring
the context-free grammar structure without losing grammar information. The
algorithm can also easily be adapted to build abstract syntax trees, when simply

Tunnel Parsing 329

some of the available concrete information is not used. The grammars accepted
by the algorithm, as defined in the article, are without left recursion nor ε-rules.
The built statically typed syntax tree can be processed quickly without dynamic
checks of the data types stored in the tree and are self-sufficient - the tree con-
tains all of the information in itself, without references to other external data
structures. To achieve this purpose, it is necessary:

1. To present the grammar appropriately and preserve all of the available infor-
mation (such as rule enter/exit, alternative enter/exit, element repetitions
and omissions, etc.), so that the parsing runs fast and requires little dynamic
memory at runtime. This is the memory that is allocated by the PM at run-
time for its own calculations;

2. To make the generator accessible, by not using its own custom grammar
syntax to describe a language, but a standardized syntax like ABNF [5];

3. To calculate in advance much data that can be used at runtime by more than
one PM;

4. To use a representation of the algorithm in a way that allows it to be intu-
itively upgraded to enable the generation of PMs from grammars that have
ε-rules or left recursion;

5. To generate a concrete syntax tree as a part of the result of the parsing that
can be used for a direct translation from one language to another.

A context-free grammar is defined by a tuple (N , Σ, R, S), where set N
contains all non-terminal symbols [8], set Σ contains all terminal symbols, N ∩
Σ = ∅ (empty set), set R contains all rules and S is the start symbol of the
grammar, S ∈ N . The subsequent grammars will be described with the ABNF
metasyntax, where the definitions have the following meanings (only those used
in the article are listed):

– "1" - defines a terminal value in ABNF, but for the purpose of this article
defines a terminal symbol (an element of Σ), that will match a token having
the same symbol as a name;

– r - defines a non-terminal symbol (r ∈ N): a grammar rule (for short a
“rule”), when it is on the left side of the sign = or a grammar reference (for
short a “reference”) to a rule when it is on the right side;

– x y - concatenated grammar elements (for short “elements”);
– (z w) - defines a grammar group (for short a “group”) of elements;
– a / b - defines an alternative (logical or for the elements);
– n*m A - defines the repetitions of A, where n ∈ N is the minimum number of

repetitions (if omitted it is considered zero), m ∈ N is the maximum number
of repetitions (if omitted is considered infinity), and n <= m. In this article,
only the cases where n ∈ (0, 1) and m ∈ (1,∞) (as m = ∞ is only applying
to references) will be considered, even though the algorithm supports the full
range of values for n and m for any grammar element.

The groups in an ABNF grammar can be seen as rules with a single implicit
reference to them at the point of the definition, and therefore below, everything

330 N. Handzhiyski and E. Somova

written about the rules will apply to the groups as well. Under a “reference”,
will be understood the defined reference to a rule in the ABNF syntax, as well
as the implicit reference to a group when it is seen as a rule.

All terminal symbols that can be recognized from the beginning of a rule
directly or by recursively entering into the referenced rules will be called reach-
able [14]. Reachable terminal symbols after an element are those that can be
recognized after it, without the use of the possible depth stacks to the rule
where the element is located. For example, in Fig. 1 that has two linked rules,
from the beginning of rule alpha, the reachable terminal symbols are "1", "9"
and "4".

Fig. 1. Linked grammar rules

During the tunnel parsing, a concrete syntax tree can be built from top to
bottom, because all the information for its building is available. Data recognition
by this algorithm could also be implemented with recursive function calls, like
a traditional deep recursive LL parser, but such an implementation has the
following disadvantages: a) a stack overflow is likely to occur; b) at each entry in
a function that recognizes a rule the input symbol must be compared and some
sub-function be called in turn. The selected sub-function will re-check the same
input symbol, and so on. Although for each finite, non left recursive grammar,
the maximum number of the depth entries is a grammar dependent constant,
the search in-depth takes time; and c) the depth stack is not explicitly available,
and thus cannot be easily saved and restored. To avoid problem a), the tunnel
parsing is defined to be an iterative recognition process. To solve problem b)
all grammar places where in-depth token search will occur, are calculated in
advance, with a runtime search performed only once for each reachable terminal
symbol, and to solve problem c) the depth stack is not the thread-dedicated
stack, but a separate stack that is explicitly maintained.

4 Tunnel Parsing Algorithm

The tunnel parsing algorithm represents the information extracted from the
grammar in a specific way that allows fast parsing and an execution stack
(stack that contains information for the progress of the PM) with a size pro-
portional to the number of look-ahead symbols. Later on, a tunnel will be a
list of operations, for a change in the internal state of the PM, and the rele-
vant syntax tree building commands. To enable a non-deterministic grammars
recognition, for each forward tunnel1, there must be a backward tunnel2.
For deterministic grammars, the use of backward tunnels is not necessary.
1 A tunnel that advances the PM to a successful final state.
2 A tunnel that restores the PM, as it was before the use of a forward tunnel.

Tunnel Parsing 331

To create a PM that is based on the tunnel parsing algorithm, the following
steps should be performed:

1. Designing of automata - an automaton is created for each rule in the
grammar (as in Fig. 2), whose states will be called automaton states or only
states. Some of these states will be located at the end of a transition that
recognizes a terminal symbol, and they will be called terminal states. The
remaining transitions which do not recognize a terminal symbol, will recognize
ε (i.e. no check for a terminal symbol is required to pass through them), and
the transition label may indicate a certain operation on the internal state of
the PM. Hereafter the “entering” and “exiting” of a rule or an alternative
will mean the use of the respective transitions in the automaton build for the
rule. In Fig. 2 the labels are: a - enter in rule alpha; b, e and h - enter in
first, second and third alternatives; c, f and i - next element; d, g and j - exit
from the first, second and third alternatives with a success; k - exit from rule
alpha with a success; u - enter in rule beta; v - enter in the first alternative
of rule beta; w - exit from the first alternative of rule beta; x - exit from rule
beta with a success;

Fig. 2. Automata generated from the grammar in Fig. 1

2. Extraction of tunnels - for each rule start state, each state after a reference
and each terminal state of each automaton, all transitions to the next reach-
able terminal states are collected into tunnels in a depth-first search manner.
On Fig. 3 the dashed line shows the process of searching for and recording of
the tunnels for a terminal symbol "1";

3. Construction of routers - all reachable terminal states for all key positions
in the automata are collected: at the beginning of each rule, for the automaton
states that are after each reference, and for each terminal state. In Fig. 3, the
darker automaton states are the reachable terminal states from the beginning
of rule alpha. In a proper implementation, this information (the reachable
terminal states from a given key position in the automata) is stored sorted
in a static read-only memory to speed up the search for a next state of the
PM at runtime. The sorting of the terminal states is done by the value of the
transition’s terminal symbol that led to each terminal state. The object that

332 N. Handzhiyski and E. Somova

Fig. 3. The search space for reachable terminal states

contains the sorted terminal states reachable from a given key position in the
automata will be called a router and each of its elements a path. Thus, by
having the tunnels and the routers before the start of the parsing, there is
enough information on how the PM will progress fast from one automaton
state to another. The routers for the grammar in Fig. 1 are described below;

4. Creation of a control layer - to control the execution of the PM, a set
of objects is created, which are using the tunnels and the routers to form a
control layer, with functionality described below;

5. Parsing - a direct parsing is performed (in TGS there is a visual debugger
that performs the parsing and builds a syntax tree directly, in forward and
backward steps, for a given grammar and an input), or a parser is generated
to a source code for a target programming language that can be embedded
in other software tools [4,15,24].

4.1 Tunnels

The set of all transitions in automata is defined as E, and the set of the operations
that change the depth stack of the PM as O. The set T contains all tunnels τ ∈ T.
A tunnel is defined as τ = [e | o], where the transitions that a tunnel uses are
e = {e1, e2, ...}, ei ∈ E, i ∈ N, and the operations that change the depth stack
are o = {o1, o2, ...}, oj ∈ O, j ∈ N. When o = ∅, the tunnel will be written as
[e]. The reverse of x is defined as ¬x, where x ∈ (E ∪ O), ↓ r defines an enter
in r and ↑ r an exit from r after its successful recognition, r ∈ N , ↓ r ∈ O, and
↑ r ∈ O. The tunnels for the grammar in Fig. 1 with automata in Fig. 2 are:

– τ0 = [a, b | ↓ alpha] - for an input symbol "1" from the beginning of rule
alpha;

– τ1 = [¬b, e, u, v | ↓ beta] - if after τ0 the parsing is unsuccessful, the PM,
by using this tunnel, will recognize "1" in the beginning of rule beta whose
terminal symbol is also reachable from the beginning of rule alpha;

– τ2 = [¬v,¬u,¬e,¬a | ¬ ↓ beta,¬ ↓ alpha] - in case of an unsuccessful recog-
nition after the second reachable terminal symbol "1" from the beginning of
rule alpha, this tunnel will be used by the PM to change its internal state to
the one before the execution of τ0 and τ1 tunnels;

Tunnel Parsing 333

– τ3 = [a, h, i | ↓ alpha] - a tunnel used from the beginning of rule alpha when
the current input symbol is "4";

– τ4 = [¬i,¬h,¬a | ¬ ↓ alpha] - in case of an unsuccessful recognition after the
use of τ3, the PM will use this tunnel to restore its internal state to the one
before the use of τ3;

– τ5 = [a, h | ↓ alpha] - a tunnel used for an input symbol "9" from the
beginning of rule alpha;

– τ6 = [¬h,¬a | ¬ ↓ alpha] - a tunnel that reverses the effect of τ5;
– τ7 = [u, v | ↓ beta] - a tunnel used after a recognized "1" from the beginning

of rule beta;
– τ8 = [¬v,¬u | ¬ ↓ beta] - a tunnel that reverses the effect of τ7;
– τ9 = [c], τ10 = [¬c], τ11 = [f], τ12 = [¬f], τ13 = [i] and τ14 = [¬i] - forward

tunnels after elements and backward tunnels in reverse;
– τ15 = [d, k | ↑ alpha], τ16 = [g, k | ↑ alpha], τ17 = [j, k | ↑ alpha] and

τ18 = [w, x | ↑ beta] - tunnels that are used in case of a successful recognition
of rule alpha, from its three alternatives, and a tunnel with a successful
recognition of rule beta from its single alternative;

– τ19 = [¬k,¬d | ¬ ↑ alpha], τ20 = [¬k,¬g | ¬ ↑ alpha], τ21 = [¬k,¬j | ¬ ↑
alpha] and τ22 = [¬x,¬w | ¬ ↑ beta] - tunnels used to move the PM inter-
nal state back into the three alternatives of rule alpha or into the single
alternative of rule beta.

4.2 Routers

The set of routers in a PM is defined as U , terminal symbol as s ∈ Σ, the set
of all control states as C, and a control state as c ∈ C. The set of all paths in
a router is defined as P , and a path in a router as p like a pair of a terminal
symbol and a control state: s → c. A router is defined then as r = 〈P | cε〉,
where r ∈ U, cε ∈ C. Here cε signifies a control state that will be used when a
searched terminal symbol in a router is not found in P . A router defined in this
way, makes the parsing with a higher priority for a terminal symbol recognition
and moving forward in the input. Then, in case of subsequent failure, the last
attempt will be the cε path. For the grammar in Fig. 1 with automata in Fig. 2
the routers are:

– ua = 〈"1" → c7, "4" → c1, "9" → c2 | 〉 - with the reachable terminal states
from the beginning of rule alpha;

– ub = 〈"1" → c3 | 〉 - with the reachable terminal states from the beginning
of rule beta;

– ur = 〈"8" → c5 | 〉 - with the reachable terminal states after the reference
to rule beta in rule alpha;

– u0 = 〈"7" → c4 | 〉 - with the reachable terminal states after the recognition
of terminal symbol "1" in rule alpha;

– u1 = 〈 | c11 〉 - without reachable terminal symbols, but only a path to exit
the rule, after the recognition of "1" in rule beta;

– u2 = 〈 | c10 〉 - only a path to exit the rule, after "4" in rule alpha;

334 N. Handzhiyski and E. Somova

– u3 = 〈 | c9 〉 - only a path to exit the rule, after "7" in rule alpha;
– u4 = 〈 | c8 〉 - only a path to exit the rule, after "8" in rule alpha;
– u5 = 〈"4" → c6 | 〉 - a router with the reachable terminal states after terminal

symbol "9" in rule alpha.

4.3 Segments

A segment is an object that exists for each rule reference and has a link to
a router with the reachable terminal states after the corresponding reference.
The depth stack in the tunnel parsing algorithm consists of segments. For the
grammar in Fig. 1 there is one segment that uses router ur. One additional stack
exists, to enable the PM to progress backwards to its previous states that is used
to archive a portion of the depth stack and will be called a depth stack archive.
When a PM exits a rule, after its successful recognition, the removed element
from the depth stack is not deleted but moved to the archive. To control the
backwards progress distance, there is a counter in each element of the execution
stack to count how many elements from the depth stack are moved to the archive,
so when there is a progress backwards, the PM will restore the depth stack from
its archive with as many items as the value of that counter.

4.4 Control Layer

Several types of control objects are distinguished in the control layer. Each object
can be in one of several control states (their number depends on the object type),
used one after another depending on the input symbols. Each execution stack
element uses one control state per an input symbol, and at any given time no
more than the maximum look-ahead symbols plus one of elements are needed
for the algorithm to operate i.e. for each grammar LL(k) the PM will store at
most k + 1 elements into the execution stack at runtime. The PM performs the
operations required based only on the top of the execution stack. After each
execution of the operations defined by a control state the PM may pause, as in
practice this is one iterative step. The control objects signify the information to
“where” in the automata the PM has reached, and the control states - “which”
operations must be performed. In this article, the following control objects and
their states are presented:

– c-origin - for each rule one control object of this type is created. It contains
a link to a router with all reachable terminal symbols from the beginning of
the respective rule. The object has only one state: “use”. In Table 1, there
are two objects of type c-origin, one for each rule alpha and beta. At the
beginning of the parsing, the PM searches for the first input symbol in the
router of the c-origin control object for the initial rule S. The path found is
then used to progress the PM forward. If a path is not found, the PM will
terminate its execution with an error;

– c-terminal - a control object if this type is created for each terminal state,
and has one control state: “use”. The function of this c-object is to perform

Tunnel Parsing 335

a search in a router which contains all reachable terminal symbols from the
respective terminal state. When a match is found, a c-token (described below)
control object will replace the top of the execution stack, and in the absence
of a match, the top of the execution stack is removed. In Table 1 there are
six c-terminal control objects for the terminal symbols "1" (two times), "4",
"7", "8" and "9";

– c-token - the control object exists for each terminal symbol that can be found
by a router search. The function of this object is to change the internal state of
the PM with one input token forward, and in case of a subsequent unsuccessful
recognition, with one token backward. There are two control states: a) “use”
- the PM in this state moves with one input symbol forward, replaces the
top of the execution stack with the next c-state of this c-object and adds
the corresponding c-terminal with its “use” state at the top of the execution
stack; and b) “used” - after a subsequently unsuccessful recognition attempt
the PM in this c-state performs operations to restore its internal state to the
one before the “use” c-state. Additionally the top of the execution stack is
replaced with the first control state of the next control object. The control
objects for the grammar in Fig. 1 and their relations are shown in Table 1;

– c-epsilon - the object is used when there is no reachable terminal symbol for a
router, but there is a path to the end of the rule. In the presence of more than
one path, the path with the fewer transitions in the automata is used. This
makes tunnel parsing an algorithm for a linear and a deterministic recognition
of some ambiguous [14] grammars, because from all possible (may be infinite)
syntax tree nodes that could be created for the multiple paths leading to the
same state, the shortest one is chosen. One c-state is available: “use”. The
calculations for the shortest path and the ε-rules will not be addressed in this
article;

– c-back - the control object is used after the recognition of one or more iden-
tical terminal symbols in a router and has one state “use”. If the router that
contains this c-object has a c-epsilon path, then after the using of c-back, the
c-epsilon will be put on the top of the execution stack, and subsequently used
to continue the parsing towards the end of the rule;

– c-unwind - a global control object for the entire PM with one state - “use”
that is placed on top of the execution stack after the use of c-epsilon. The
PM in this c-state removes one element from the depth stack and adds it to
the archive depth stack as well as increases by one the exit counter;

– c-restore - a global control object for the entire PM with one state - “use”,
that restores one or more depth stack elements from the depth stack archive
and decreases with one the exit counter. The object remains on top of the
execution stack until the exit counter reaches zero.

5 Results

The use of tunnels speeds up parsing because all necessary changes to the internal
state of the PM are executed at once for each reachable terminal symbol (by the

336 N. Handzhiyski and E. Somova

Table 1. Control objects for the grammar in Fig. 1

Type c-origin

Router

19 ua

20 ub

Type c-terminal

Router

21 u1

22 u2

23 u5

24 u1

25 u3

26 u4

27 u2

28 u0

Type c-token

Next c-terminal Tunnel

0 c12 c21 τ1

1 c13 c22 τ3

2 c14 c23 τ5

3 c15 c24 τ7

4 c16 c25 τ9

5 c17 c26 τ11

6 c18 c27 τ13

7 c0 c28 τ0

Global c-objects

Type

29 c-unwind

30 c-restore

Type c-epsilon

Forward Backward

8 τ16 τ19

9 τ15 τ20

10 τ17 τ21

11 τ18 τ22

Type c-back

Tunnel

12 τ2

13 τ4

14 τ6

15 τ8

16 τ10

17 τ12

18 τ14

use of a tunnel) without in-depth search in the automata by using the thread-
dedicated stack. If there is no need to create a syntax tree, then there is no need
to store its build information into the tunnels. This further reduces the amount
of the generated code and speeds up the parsing.

In tunnel parsing, the number of operations that the PM performs at each
iterative step is independent of the number of input symbols. This enables the
PM to pause and resume its execution almost instantly. If this is not necessary,
a good optimization of the algorithm is to perform several iterative steps in a
sequence, before returning the control to the user of the PM. This gives good
results described below because less code is executed to control the iteration.

An example of a tunnel parsing algorithm runtime execution, for the grammar
in Fig. 1 with automata in Fig. 2, start symbol S = alpha, and two characters
for an input ("18") is presented in Table 2. The table contains step-by-step
changes on the internal state of the PM in each row. The content of the cells
in column “Task” signifies the operation performed by the PM to move from
the current row, to the next. An alternative execution of the example is to
recognize the first character "1" through the reference to rule beta. That is
an alternation in a different order of the reachable terminal symbols in the
grammar. The alternation can be in any order, when there are many duplicate
reachable terminal symbols in a router. This is correct from the point of view
of the defined grammar but is not completely intuitive to the user. If this is
ignored, it is possible by profiling the parsing of a large amount of data, to
determine which reachable terminal symbols have led to a successful recognition
more often. Then the order of the duplicate terminal symbols in the routers can
be changed to speed up the parsing of profile-like inputs.

Tunnel Parsing 337

Table 2. Execution of a PM for the grammar in Fig. 1

Input Execution Stack Depth Stack Task

1 →18 c19|use ∅ search in ua and found c7

2 →18 c7|use ∅ use of τ0

3 →18 c7|use ∅ rule enter

4 →18 c7|use alpha next token

5 1→8 c7|use alpha control state change

6 1→8 c7|used alpha control state addition

7 1→8 c7|used, c28|use alpha search in u0 and not found

8 1→8 c7|used, c28|use alpha control state remove

9 1→8 c7|used alpha next control state

10 1→8 c0|use alpha use of τ1

11 1→8 c0|use alpha rule enter

12 1→8 c0|use alpha,beta control state change

13 1→8 c0|used alpha,beta control state addition

14 1→8 c0|used, c21|use alpha,beta search in u1 and found c11

15 1→8 c0|used, c11|use alpha,beta use of τ18

16 1→8 c0|used, c11|use alpha,beta control object change

17 1→8 c0|used, c29|use alpha,beta rule exit

18 1→8 c0|used, c29|use alpha search in ur and found c5

19 1→8 c0|used, c5|use alpha use of τ11

20 1→8 c0|used, c5|use alpha next token

21 18→ c0|used, c5|use alpha control state change

22 18→ c0|used, c5|used alpha control state addition

23 18→ c0|used, c5|used, c26|use alpha search in u4 and found c8

24 18→ c0|used, c5|used, c8|use alpha use of τ16

25 18→ c0|used, c5|used, c8|use alpha control state change

26 18→ c0|used, c5|used, c29|use alpha rule exit

27 18→ c0|used, c5|used, c29|use ∅ success

An experiment was made with different JavaScript Object Notation (JSON)
Data Interchange Format [23] parsers. The grammar has ABNF [5] syntax. The
purpose of the experiment is to compare the speed of different PMs with a
real world grammar, when they are searching in-depth and are choosing their
next internal state from a large number of possible terminal symbols. There is
a notable difference between the parser generators that participate in the experi-
ment. Namely, TGS [24] support character matching ranges inside the lexer gram-
mar as well as token matching ranges inside the parser grammar, where ANTLR
[4] and JavaCC [9,15] support only character ranges inside the lexer grammar. For
this reason two grammars are used in the test: a) the original JSON [23] grammar

338 N. Handzhiyski and E. Somova

(only usable by TGS), and b) heavily modified original grammar split in two - lexer
and parser grammars, that is translated in the syntax accepted by each parser gen-
erator (by one version for TGS, ANTLR, and JavaCC). For the both grammars
the presented ambiguity in the original grammar is removed, to make the parsing
possible with one token of look-ahead, because the test is not intended to measure
the backtracking capabilities of the tools.

All PMs participating in the experiment are compiled by Microsoft®Visual
Studio® 2015 Update 3, in C++ for a 64 bit processor, optimized for speed in
release, executed in Microsoft®Windows® 10 (64 bit) operation system. The
used hardware is Intel®Core™ i7-4790k @4GHz. The measured time values are
from the wall clock time, and are made with the high performance profiling
[16] API available in Microsoft®Windows®. The experimental input data3,4 is
the same for each PM. Each value in the table is the average of 20 consecutive
executions of the executable (containing the compiled PM), which resembles a
real work process, when an external program starts a compiler or an interpreter
(which have the PM) for many inputs in a row. Before each group of 20 consecu-
tive executions of each PM, there are 2 executions for which no measurement is
recorded. The input data is preloaded into the operative memory for each test.

Test case 1 (each diagram’s left half)

Test case 2 (each diagram’s right half)

ANTLR without token ranges

JavaCC without token ranges

TGS without token ranges

TGS with token ranges

(a) Color and pattern coding

A ANTLR v4.8
J JavaCC v7.0
T TGS v1.53
r Recursive
i Iterative
d Dynamically typed

s Statically typed

n Token ranges

(b) Letter coding

Fig. 4. Figures legend for the experiment

Figures 5, 6, 7, 8, and 9 are displaying the final measurements from the exper-
iment and have a common legend in Fig. 4.

Milliseconds

A
r

186

Jr

30

T
i

16

T
in

12

A
r

393

Jr

65

T
i

33

T
in

26

(a) Lexing and parsing

Milliseconds

A
r

9

Jr

9

T
i

0

T
in

0

A
r

19

Jr

19

T
i

0

T
in

0

(b) Memory release

Fig. 5. Recognizing without tree generation

3 https://api.nobelprize.org/v1/prize.json - 216670 bytes.
4 https://api.nobelprize.org/v1/laureate.json - 464980 bytes.

https://api.nobelprize.org/v1/prize.json
https://api.nobelprize.org/v1/laureate.json

Tunnel Parsing 339

In Fig. 5 are displayed the recognition (lexing and parsing) times of the two
inputs as well as the memory release times. The recursive parsers generated
by ANTLR and JavaCC require more time to recognize the inputs then the
iterative parsers generated by TGS. The best performance is made by the parser
with parser grammar ranges (Tin), because each input character becomes a
token by itself and then it is quickly processed by the tunnel parsing algorithm.
The TGS parsing machine with two grammars (Ti) is without token ranges
and it is slightly slower at runtime compared to the one with parser grammar
ranges, because the lexical analysis creates some overhead. Note that ANTLR
and JavaCC (with a combination with JJTree [15] for the generation of the
syntax tree) allocate memory proportionally to the input length regardless that
the used grammar is deterministic and only one token of look-ahead is enough
to recognized it. For larger inputs (hundreds of megabytes) this is not practical.
In contrast, TGS releases the unused tokens when they are no longer needed and
in this way is practically “streaming” the input. For this reason there is no large
memory blocks to be released after the recognition (see Fig. 5b).

Milliseconds

A
r

226

Jr

72

T
id

52

T
id
n

80

T
is

83

T
isn

110

A
r

482

Jr

154

T
id

111

T
id
n

132

T
is

177

T
isn

192

(a) Lexing, parsing and tree building

Milliseconds

A
r

23

Jr

23

T
rd

17

T
rd
n

27

T
rs

35

T
rs
n

40

T
id

23

T
id
n

35

T
is

39

T
isn

55

A
r

50

Jr

49

T
rd

37

T
rd
n

57

T
rs

76

T
rs
n

90

T
id

48

T
id
n

75

T
is

83

T
isn

119

(b) Memory release

Fig. 6. Recognizing with tree generation

In Fig. 6 are the results for the PMs runtime when performing lexing, parsing
and tree building as well as the memory release times. The fastest tree to be
completed is by an iterative tunnel parsing machine and it is a dynamically typed
concrete syntax tree (Tid). The statically typed concrete syntax trees (Tis and
Tisn) are slower then the dynamically typed because of the more detailed tree
representation. These trees are also the slower to release iteratively, but the
developer can use them without dynamic casts and without the worries of a
stack overflow occurrence during the release of the tree.

340 N. Handzhiyski and E. Somova

In Fig. 7 are displayed the tree traversal times and in Fig. 8 the times for the
conversion of the different trees back to a string.

Milliseconds

T
d

7

T
dn

11

T
s

6

T
sn

7

T
d

14

T
dn

24

T
s

13

T
sn

15

(a) Recursive

Milliseconds

A

49

T
d

8

T
dn

13

T
s

11

T
sn

14

A

105

T
d

17

T
dn

29

T
s

23

T
sn

32

(b) Iterative

Fig. 7. Tree traversing

Milliseconds

T
d

8

T
dn

13

T
s

8

T
sn

9

T
d

18

T
dn

28

T
s

16

T
sn

19

(a) Recursive

Milliseconds

T
d

9

T
dn

14

T
s

12

T
sn

15

T
d

20

T
dn

31

T
s

26

T
sn

34

(b) Iterative

Fig. 8. Syntax tree to string conversion

Milliseconds

T
id

24

T
id
n

20

T
is

27

T
isn

24

T
id

51

T
id
n

44

T
is

58

T
isn

52

(a) Parsing with events

Megabytes

A

45

J

41

T
d

23

T
dn

37

T
s

37

T
sn

40

A

94

J

87

T
d

49

T
dn

79

T
s

80

T
sn

86

(b) Used memory

Fig. 9. Other data

In Fig. 9a are displayed the times for the recognition (lexing and parsing)
of the inputs when the PM emits only events for the syntax tree building. In
TGS the syntax trees builders are using this events to build the relevant trees,
but if the input is intended to be processed only one time then the use of this
events directly is the best option, because there will be no tree traverse and
release after the parsing is complete, but the developer will still receive the tree
structure information. The used operative memory from the PMs to perform the
lexing, the parsing, and the tree building (all together) is displayed in Fig. 9b.

Tunnel Parsing 341

6 Conclusion

This article presented an algorithm for parsing of data. The data language is
defined by a context-free grammar without left recursion nor ε-rules. The gram-
mar, for convenience, is described with the ABNF [5] metasyntax and is used
directly without a prior refactoring. A part of the parsing result is a statically
typed concrete syntax tree that accurately reflects the grammar. In the tunnel
parsing algorithm, all processes are iterative to avoid an eventual overflowing of
the thread-dedicated stack: the lexing, the parsing, the building of the syntax
tree, the tree traversing, the conversion of the syntax tree into a string and the
release of the dynamic memory occupied by the tree. A possible future exten-
sion is an automatic synchronization [27] of the previously generated trees and
reflective printing [26].

A PM based on the algorithm, is using the control objects, their states, the
tunnels and the routers to switch from one internal state to another. No in-depth
search is performed for the reachable terminal states in the automata. As defined
in the article, the algorithm has a linear execution time (relative to the number
of input symbols) when operating on the basis of a deterministic context-free
grammar, the most commonly used in practice, and with an exponential time at
worse for some non-deterministic context-free grammar. The algorithm can also
parse certain ambiguous grammars with linear execution time.

The multi-threaded linear parsing [24] (using a separate thread for each pars-
ing module - lexer, parser and builder) could be beneficial when the different PM
modules are having heavier tasks to perform. For example, the lexical grammar is
more complex or the parser grammar is non-deterministic and the parser module
needs more time to process the tokens. These are some of the possible scenarios,
but additional study is required to properly show the benefits.

The tunnel parsing algorithm is implemented in TGS [24] that is a parser
generator from ABNF [5,7] grammars to a program source code. The generated
parsers parse and build a statically or a dynamically typed concrete syntax tree
for a given input as instances of object-oriented classes. TGS can also generated
parsers that build dynamically typed abstract syntax trees with different levels
of abstraction. The software product has a built-in parser for ABNF that is
generated by TGS itself.

A subsequent natural development of the current work is the extension of
the presented algorithm with the ability to recognize context-free grammars
that have ε-rules or left recursion.
Author contributions. Nikolay Handzhiyski developed the theory by the supervi-
sion and encouragement of Elena Somova, based on his previously existing software
implementation in Tunnel Grammar Studio [24]. Nikolay Handzhiyski performed the
tests and (along with Elena Somova) verified the results. The authors discussed the
theory and the results and contributed to the final article.

342 N. Handzhiyski and E. Somova

References

1. Abstract syntax tree metamodel. https://www.omg.org/spec/ASTM/. Accessed
30 Nov 2019

2. Aho, A.V., Johnson, S.C.: LR parsing. ACM Comput. Surv. 6, 26 (1974)
3. Aho, A.V.: Compilers: principles, techniques, & tools. Pearson/Addison Wesley

(2007)
4. Another tool for language recognition (antlr). https://www.antlr.org/. Accessed

12 Apr 2020
5. Augmented BNF for syntax specifications: ABNF. https://tools.ietf.org/html/

rfc5234. Accessed 30 Nov 2019
6. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-

inite events (1962)
7. Case-sensitive string support in ABNF. https://tools.ietf.org/html/rfc7405.

Accessed 30 Nov 2019
8. Chomsky, N.: On certain formal properties of grammars. Inf. Control 2, 137–167

(1959)
9. Copeland, T.: Generating Parsers with JavaCC: an easy-to-use guide tor develop-

ers. Centennial Books, 2nd ed. (2007)
10. Extensible markup language (xml). https://www.w3.org/TR/xml/. Accessed 01

Sept 2019
11. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.

SIGPLAN Not. (2004)
12. Frost, R.A., Hafiz, R.: A new top-down parsing algorithm to accommodate ambi-

guity and left recursion in polynomial time. SIGPLAN Not. (2006)
13. Grune, D., Jacobs, C.J.H.: Parsing techniques: a practical guide. Ellis Horwood

(1990)
14. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and

computation. Addison-Wesley Publishing Company (1979)
15. Java Compiler Compiler (JavaCC). https://javacc.org/. Accessed 12 Apr 2020
16. Microsoft windows API: profileapi.h header. https://docs.microsoft.com/en-us/

windows/win32/api/profileapi/. Accessed 05 Sept 2020
17. Moore, R.C.: Removing left recursion from context-free grammars. In: Proceed-

ings of the 1st North American Chapter of the Association for Computational
Linguistics Conference (2000)

18. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

19. Parr, T.: Language implementation patterns: create your own domain-specific and
general programming languages (pragmatic programmers). Pragmatic Bookshelf
(2010)

20. Saraiva, J.: HaLeX: a Haskell library to model, manipulate and animate regular
languages. In: Proceedings of the ACM Workshop on Functional and Declarative
Programming in Education, University of Kiel Technical Report 0210 (2002)

21. Scott, E., Johnstone, A.: GLL parsing. Electron. Notes Theoret. Comput. Sci. 253,
177–189 (2010)

22. Sipser, M.: Introduction to the theory of computation. Course Technology, 2nd ed.
(2006)

23. The javascript object notation (json) data interchange format. https://tools.ietf.
org/html/rfc8259. Accessed 01 Sept 2019

https://www.omg.org/spec/ASTM/
https://www.antlr.org/
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc7405
https://www.w3.org/TR/xml/
https://javacc.org/
https://docs.microsoft.com/en-us/windows/win32/api/profileapi/
https://docs.microsoft.com/en-us/windows/win32/api/profileapi/
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259

Tunnel Parsing 343

24. Tunnel grammar studio. https://www.experasoft.com/products/tgs/. Accessed 14
Apr 2020

25. Uniform resource identifier (uri): Generic syntax. https://tools.ietf.org/html/
rfc3986. Accessed 01 Sept 2019

26. Zhu, Z., Zhang, Y., Ko, H.-S., Martins, P., Saraiva, J., Hu, Z.: Parsing and reflective
printing, bidirectionally. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering. ACM (2016)

27. Zhu, Z., Ko, H.-S., Zhang, Y., Martins, P., Saraiva, J., Hu, Z.: Unifying parsing and
reflective printing for fully disambiguated grammars. New Generation Computing
(2020)

https://www.experasoft.com/products/tgs/
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

Finding Code Clone Refactoring
Techniques by Mapping Clone Context

Simon Baars(B) and Ana Oprescu

University of Amsterdam, Amsterdam, Netherlands
simon.j.baars@gmail.com, A.M.Oprescu@uva.nl

Abstract. Reducing clones in source code is one of the techniques to
improve the maintainability of a software system. Which refactoring tech-
nique to use depends on where a clone is found and what the relation
between clone instances in a clone class is. We define three influencing
factors on how a clone should be refactored: relation, location, and con-
tents. The relation describes the inheritance relation among the clone
instances in a clone class. The location describes where a clone instance
is found in the source code. The contents describe what a clone instance
spans.

Based on experiments on a corpus of open-source Java projects we
find that most clones (77%) are in the body of methods or constructors
and thus the “Extract Method” refactoring technique applies. What fur-
ther techniques are required for the refactoring depends on the relation
among the clone instances of a clone. We define four relations that require
different further refactoring techniques: Common Class, Common Hier-
archy, Common Interface, and Unrelated. The closer classes are related,
the more favorable refactoring clones by such relations becomes. 37% of
clones are in the same class, 24% share an inheritance hierarchy, 24% are
unrelated and 15% have a common interface.

Keywords: Code Clones · Mining Software Repositories · Clone
Relation · Inheritance · Object-Oriented Programming

1 Introduction

Duplicate code fragments are often considered as bad design [1]. They increase
maintenance efforts or cause bugs in evolving software [2]. Changing one occur-
rence of a duplicated fragment may require changes in other occurrences [3].
Furthermore, duplicated code was shown to account for up to 25% of total sys-
tem volume [4], entailing more code to be maintained.

Several refactoring techniques can be used to reduce duplication in source
code [1]. Which refactoring technique to apply depends on where a clone is
located and what the relation is between similar code fragments [5]. Subsequent
studies have performed statistical measurements on how many clones fall into
these location and relation categories [6,7].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 344–357, 2023.
https://doi.org/10.1007/978-3-031-42833-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_9&domain=pdf
http://orcid.org/0000-0001-7905-1027
http://orcid.org/0000-0001-6376-0750
https://doi.org/10.1007/978-3-031-42833-3_9

Finding Code Clone Refactoring Techniques by Mapping Clone Context 345

We extend the state-of-the-art [7] by defining location, relation and contents
categories for clones to determine how they should be refactored. The extra
categories we provide help to propose a refactoring opportunity that can auto-
matically be applied, rather than merely suggesting the technique that has to
be used [7].

We study a large corpus of open-source software systems to determine which
relation, location and contents category has the most clones. We find that a
significant portion of clones is found in the bodies of constructors and methods,
which indicate clones that can be refactored by applying the “Extract Method”
refactoring technique. What further techniques apply when refactoring such a
clone depends on the relation among its clone instances.

If clone instances share a common class, no further refactoring techniques are
required. If they are in the same inheritance hierarchy, the “Pull-Up Method”
can be used till the extracted method is in a location accessible by all instances.
If the instances share a common interface, some languages allow to move the
extracted method there. Otherwise, if the clone instances are not related, we
either have to create a superclass/interface abstraction or create a utility class
to put the common functionality.

2 Background and Related Work

We use two definitions to argue about code clones [8]:

– Clone instance: A single code fragment of which a similar/identical copy
exists elsewhere in the codebase.

– Clone class: A set of similar/identical clone instances.

To argue about the similarity relation between clone instances in a clone
class, several clone type definitions have been proposed [8]:

– Type 1: Identical code fragments except for variations in whitespace (may
also be variations in layout) and comments.

– Type 2: Structurally/syntactically identical fragments except for variations
in identifiers, literals, types, layout and comments.

– Type 3: Copied fragments with further modifications. Statements can be
changed, added or removed in addition to variations in identifiers, literals,
types, layout, and comments.

A higher type of clone means that it is harder to detect. It also makes the
clone harder to refactor, as more transformations would be required. Higher clone
types also become more disputable whether they actually indicate a harmful
anti-pattern as not every clone is harmful [9,10].

Next, we outline relevant research to clone refactoring. A significant aspect
is the context of clones.

346 S. Baars and A. Oprescu

2.1 Clone Context Analysis

Golomingi [5] explores mapping the relation between clone instances to refactor-
ing methods. The author analyses the refactoring methods described by Martin
Fowler [11] and analyzes what refactoring methods can be used to refactor clones
with what inheritance relations. The identified clone relations are: Ancestor,
Common Hierarchy, First Cousin, Same Method, Sibling, Single Class, Super-
class and Unrelated. We extend this list with several more fine-grained relations,
suitable for automatic refactoring.

Fontana et al. [6,7] combine the research by Golomingi [5] with clone types 1
and 3 [8]. They use a large corpus [12] on which they perform statistical analysis
of clone relations together with clone types. We repeat this research with a
different setup, namely we elaborate further in the categories analysed, and thus
get results with a finer granularity, and we use a larger dataset, namely the
GitHub set of repositories [13].

2.2 Clone Refactoring

Krishnan et al. [14] approach clone refactoring as an optimization problem:
how variability between cloned fragments influences the refactoring techniques
required and their implications on system design. The main focus of this study
is to find out which clones can be refactored. We extend this work by looking
into which clones should be refactored. We propose definitions for refactorable
clones together with thresholds to be able to limit their negative impact on sys-
tem design. We measure which clones improve maintainability when refactored.
This results in a set of thresholds that can be used to detect and refactor clones
that should be refactored.

For refactoring clones, we took naming the extracted method outside of the
scope of the study. To have this not influence the results, the metrics that deter-
mine the maintainability of an applied refactoring do not measure the quality of
the name of the extracted method.

3 Context Analysis of Clones

The context of a clone determines how it should be refactored [1]. Based on
current literature [6,7], we define the following aspects of a clone as its context:

– Relation: The relation of clone instances in a clone class through inheritance.
– Location: Where a clone instance occurs in the code.
– Contents: The statements/declarations of a clone instance.

Finding Code Clone Refactoring Techniques by Mapping Clone Context 347

3.1 Relation

When merging code clones in object-oriented languages, it is important to con-
sider the relation between clone instances. This relation has a big impact on how
a clone should be refactored.

Fontana et al. [7] describe measurements on 50 open source projects on the
relation between clone instances in a clone class. To do this, they first define
several categories to argue about such relations. These categories are as follows:

– Same Method: All instances of the clone class are in the same method.
– Same Class: All instances of the clone class are in the same class.
– Superclass: All instances of the clone class are in a class that are child or

parent of each other.
– Sibling Class: All instances of the clone class have the same parent class.
– Ancestor Class: All instances of the clone class are superclasses except for

the direct superclass.
– First Cousin Class: All instances of the clone class have the same grand-

parent class.
– Same Hierarchy Class: All instances of the clone class belong to the same

inheritance hierarchy, but do not belong to any of the other categories.
– Same External Superclass: All instances of the clone class have the same

superclass, but this superclass is not included in the project but part of a
library.

– Unrelated class: There is at least one instance of the clone class that is not
in the same hierarchy.

We added the following categories, to gain more information about clones
and be able to suggest a more fine-grained refactoring opportunity:

– Same Direct Interface: All instances of the clone class are in a class or
interface implement the same interface.

– Same Indirect Interface: All instances of the clone class are in a class or
interface that have a common interface anywhere in their inheritance hierar-
chy.

– No Direct Superclass: All instances of the clone class are in a class that
does not have any superclass.

– No Indirect Superclass: All instances of the clone class are in a class that
does not have any external classes in its inheritance hierarchy.

– External Ancestor: All instances of the clone class are in a class that does
not have any external classes in its inheritance hierarchy.

We separate these relations into the following categories, because of their
related refactoring opportunities:

– Common Class: Same Method, Same Class
– Common Hierarchy: Superclass, Sibling Class, Ancestor Class, First
Cousin, Same Hierarchy

– Common Interface: Same Direct Interface, Same Indirect Interface

348 S. Baars and A. Oprescu

Fig. 1. Abstract figure displaying some relations of clone classes. Arrows represent
superclass relations.

– Unrelated: No Direct Superclass, No Indirect Superclass, External Super-
class, External Ancestor

Every clone class only has a single relation, which is the first relation from
the above list that the clone class applies to. For instance: all “Superclass” clones
also apply to “Same Hierarchy”, but because “Superclass” is earlier in the above
list they will get the “Superclass” relation. This is because the items earlier in
the above list denote a more favorable refactoring.

Common Class. The Same method and Same class relations share a common
refactoring opportunity. Clones of both these categories, when extracted to a
new method, can be placed in the same class. Both of these relations are most
favorable for refactoring, as they require a minimal design tradeoff. Furthermore,
global variables that are used in the class can be used without having to create
method parameters.

Common Hierarchy. Clones that are in a common hierarchy can be refac-
tored by using the “Extract Method” refactoring method followed by “Pull Up
Method” until the method reaches a location that is accessible by all clone
instances. However, the more often “Pull Up Method” has to be used, the more
detrimental the effect is on system design. This is because putting a lot of func-
tionality in classes higher up in an inheritance structure can result in the “God
Object” anti-pattern. A god object is an object that knows too much or does
too much [1].

Common Interface. Many object-oriented languages know the concept of
“interfaces”, which are used to specify a behavior that classes must implement.
As code clones describe functionality and interfaces originally did not allow for

Finding Code Clone Refactoring Techniques by Mapping Clone Context 349

functionality, interfaces did not open up refactoring opportunities for duplicated
code. However, many programming languages nowadays support default imple-
mentations in interfaces. Since Java 7 and C# 8, these programming languages
allow for functionality to be defined in interfaces. Many other object-oriented
languages like Python allow this by nature, as they do not have a true notion of
interfaces.

The greatest downside on system design of putting functionality in interfaces
is that interfaces are per definition part of a classes’ public contract. That is, all
functionality that is shared between classes via an interface cannot be hidden by
stricter visibility. Because of that, we favor all “Common Hierarchy” refactoring
opportunities over “Common Interface”.

Unrelated. Clones are unrelated if they share no common class or interface
in their inheritance structure. These clones are least favorable for refactoring,
because their refactoring will almost always have a major impact on system
design. We formulated four categories of unrelated clones to look into their refac-
toring opportunities.

Cloned classes with a No Direct Superclass relation mark the opportunity for
creating a superclass abstraction and placing the extracted method there. For
clone classes with a No Indirect Superclass relation, it is possible to create such
an abstraction for the ancestor that does not have a parent. Clone classes with
an External Superclass or External Ancestor relation obstruct the possibility
of creating a superclass abstraction. In such a case, it is possible to create an
interface abstraction to make their relation explicit.

3.2 Location

A paper by Lozano et al. [15] discusses the harmfulness of cloning. The authors
argue that 98% are produced at method-level. However, this claim is based on a
small dataset and based on human copy-paste behavior rather than static code
analysis. We decided to measure the locations of clones through static analysis
in our dataset. We chose the following categories:

– Method/Constructor Level: A clone instance that does not exceed the
boundaries of a single method or constructor (optionally including the decla-
ration of the method or constructor itself).

– Class Level: A clone instance in a class, that exceeds the boundaries of a
single method or contains something else in the class (like field declarations,
other methods, etc.).

– Interface/Enumeration Level: A clone that is (a part of) an interface or
enumeration.

We check the location of each clone instance for each of its nodes. If any node
reports a different location from the others, we choose the location that is lowest

350 S. Baars and A. Oprescu

in the above list. So for instance, if a clone instance has 15 nodes that denote a
Method Level location but 3 nodes are Class Level, the clone instance becomes
Class Level.

Method/Constructor Level Clones. Method/Constructor Level clones
denote clones that are found in either a method or constructor. A constructor
is a special method that is called when an object is instantiated. Most modern
clone refactoring studies only focus on clones at method level [16,17]. This is
because most clones reside at those places [7,15] and most of those clones can
be refactored with a relatively simple set of refactoring techniques [7,18].

Class/Interface/Enumeration Level Clones. Class/Interface/Enumeration
Level clone instances are found inside the body of one of these declarations and
optionally include the declaration itself. It can also be a clone instance that
exceeds the boundaries of a single method. These clone instances can contain
fields, (abstract) methods, inner classes, enumeration fields, etc. These types of
clones require various refactoring techniques to refactor. For instance, we might
have to move fields in an inheritance hierarchy. Or, we might have to perform
refactoring on an architectural level, if a large set of methods is cloned.

3.3 Contents

Finally, we looked at what nodes individual clone instances span. We selected a
set of categories based on empirical evaluation of a set of clones in our dataset.
We selected the following categories to be relevant for refactoring:

– Full Method/Constructor/Class/Interface/Enumeration: A clone
that spans a full class, method, constructor, interface or enumeration, includ-
ing its declaration.

– Partial Method/Constructor: A clone that spans (a part of) the body of
a method/constructor. The declaration itself is not included.

– Several Methods: A clone that spans over two or more methods, either
fully or partially, but does not span anything but methods (so not fields or
anything in between).

– Only Fields: A clone that spans only global variables.
– Other: Anything that does not match with above-stated categories.

Full Method/Constructor/Class/Interface/Enumeration. These cate-
gories denote that a full declaration, including its body, is cloned with another
declaration. These categories often denote redundancy and are often easy to
refactor: one of both declarations is redundant and should be removed. All usages
of the removed declaration should be redirected to the clone instance that was
not removed. Sometimes, the declaration should be moved to a location that is
accessible by all usages.

Finding Code Clone Refactoring Techniques by Mapping Clone Context 351

Partial Method/Constructor. These categories describe clone instances
which are found in the body of a method or constructor. These clones can often
be refactored by extracting a new method out of the cloned code.

Several Methods. Several methods cloned in a single class is a strong indi-
cation of implicit dependencies between two classes. This increases the chance
that these classes are missing some form of abstraction, or their abstraction is
used inadequately.

Only Fields. This category denotes that the clone spans over only global vari-
ables/fields that are declared outside of a method. This indicates data redun-
dancy: pieces of data have an implicit dependency. In such cases, these fields may
have to be encapsulated in a new object. Or, the fields should be somewhere in
the inheritance structure where all objects containing the clone can access them.

Other. The “Other” category denotes all configurations of clone contents that
do not fall into above categories. Often, these are combinations of the above
stated concepts. For instance, a combination of constructors and methods or a
combination of fields and methods is cloned. Clones in this category, similarly to
“Several Methods”, require more architectural-level refactorings. These are often
more complicated to refactor, especially when aiming to automate this process.

4 CloneRefactor

To determine the context of clones, we use the tool CloneRefactor [19].
CloneRefactor uses JavaParser [20] to parse the Abstract Syntax Tree (AST)
of Java source code. We then find cloned nodes in the syntax tree, of which we
map the relation, location, and contents.

CloneRefactor uses this information to propose refactorings for the detected
clones. Where clone instances are located in the code has a large impact on
how it can be refactored, and what the impact on the design of the code is.
In that way, the categorizations that CloneRefactor proposes helps determine
which clones are most suitable for refactoring, as opposed to traditional clone
detection approaches that do not take clone context into account.

5 Experimental Setup

To find out in which location, relation and contents category most clones are
found, we performed measurements on a large corpus of diverse open-source
projects.

352 S. Baars and A. Oprescu

5.1 The Corpus

For our experiments we use a large corpus of open-source projects assembled by
Allamanis et al. [13]. This corpus contains a set of Java projects from GitHub,
selected by the number of forks. The projects and files in this corpus were de-
duplicated manually. This results in a variety of Java projects that reflect the
quality of average open-source Java systems and are thus relevant to study.

Because CloneRefactor requires all dependencies for the projects it analyses,
we created a set of scripts [21] to filter the corpus for all projects for which we
can obtain all dependencies using Maven.

This procedure results in 2,267 Java projects including all their dependen-
cies1. The projects vary in size and quality. The total size of all projects is
14,210,357 lines (11,315,484 when excluding whitespace) over a total of 99,586
Java files. This is an average of 6,268 lines over an average of 44 files per project,
141 lines on average per file. The largest project in the corpus is VisAD with
502,052 lines over 1,527 files.

5.2 Tool Validation

We have validated the correctness of CloneRefactor through unit tests and empir-
ical validation. First, we created a set of 57 control projects2 to verify the correct-
ness in many (edge) cases. These projects test each identified relation, location
and contents category (see Sect. 3), to see whether they are correctly identi-
fied. Next, we run the tool over the corpus and manually verify samples of the
acquired results. This way, we check the correctness of the identified clones and
their context.

6 Results

To determine the refactoring methods that can be used to refactor most clones,
we perform analysis on the context of clones.

6.1 Relation

Table 1 displays the number of clone classes found for the entire corpus for dif-
ferent relations (see Sect. 3.1).

Our results show that most clones (37%) are in a common class. 24% of clones
are in a common hierarchy. Another 24% of clones are unrelated. 15% of clones
are in an interface.

1 The full list of projects is in the SimonBaars/GitHub-Java-Corpus-Scripts GitHub
repository as filtered projects.txt.

2 Control projects for testing CloneRefactor: https://github.com/SimonBaars/
CloneRefactor/tree/master/src/test/resources.

https://github.com/SimonBaars/CloneRefactor/tree/master/src/test/resources
https://github.com/SimonBaars/CloneRefactor/tree/master/src/test/resources

Finding Code Clone Refactoring Techniques by Mapping Clone Context 353

Table 1. Number of clone classes per clone relation.

Category Relation Clone Classes % Total %

Common Class Same Class 22,893 26.8% 31,848 37.2%

Same Method 8,955 10.5%

Common Hierarchy Sibling 15,588 18.2% 20,342 23.8%

Superclass 2,616 3.1%

First Cousin 1,219 1.4%

Common Hierarchy 720 0.8%

Ancestor 199 0.2%

Unrelated No Direct Superclass 10,677 12.5% 20,314 23.7%

External Superclass 4,525 5.3%

External Ancestor 3,347 3.9%

No Indirect Superclass 1,765 2.1%

Common Interface Same Direct Interface 7,522 8.8% 13,074 15.3%

Same Indirect Interface 5,552 6.5%

6.2 Location

Table 2 displays the number of clone instances found for the entire corpus for
different location categories (see Sect. 3.2).

Table 2. Amount of clone instances with a per location category.

Category Clone instances %

Method Level 232,545 78.43%

Class Level 50,402 17.00%

Constructor Level 10,039 3.39%

Interface Level 2,693 0.91%

cre Enum Level 788 0.27%

We can see from these results that nearly 80% of clones are found at method
level. 17% of clones are found at class level, meaning they exceed the boundaries
of a single method (or do not span methods at all). Constructors account for
approximately 3% of clones. In interfaces, only 1% of clones are found.

6.3 Contents

Table 3 displays the number of clone instances found for the entire corpus for
different content categories (see Sect. 3.3).

354 S. Baars and A. Oprescu

Table 3. Number of clone instances for clone contents categories

Category Contents Clone instances % Total %

Partial Method Body 219,540 74.05% 229,521 77.42%

Constructor Body 9,981 3.37%

Other Several Methods 22,749 7.67% 53,773 18.14%

Only Fields 17,700 5.97%

Other 13,324 4.49%

Full Full Method 12,990 4.38% 13,173 4,44%

Full Interface 64 0.02%

Full Constructor 58 0.02%

Full Class 37 0.01%

Full Enum 24 0.01%

From these results, we see that 74% of clones span part of a method body
(77% if we include constructors). 8% of clones span several methods. 6% of clones
span only global variables. Only 4% of clones span a full declaration (method,
class, constructor, etc.).

7 Discussion

Regarding clone context, our results indicate that most clones (37%) are in a
common class. This is favorable for refactoring because the extracted method
does not have to be moved after extraction. 24% of clones are in a common
hierarchy. These refactorings are also often favorable. Another 24% of clones are
unrelated, which is often unfavorable because they often require more compre-
hensive refactoring. 15% of clones are in an interface.

Regarding clone contents, 74% of clones span part of a method body (77%
if we include constructors). 8% of clones span several methods, which often
require refactorings on a more architectural level. 6% of clones span only global
variables, requiring an abstraction to encapsulate these data declarations. Only
4% of clones span a full declaration (method, class, constructor, etc.).

Comparing our results for the relation categories to the similar study of
Fontana et al. [6,7], we get the percentages stated in. They use a large corpus [12]
on which they perform statistical analyses of clone relations together with clone
types. Table 4 displays the result of this analysis. We added percentages and
ordering to this table for easier comparison with the results of our work (see
Sect. 6.1). We also added the percentages of our work to this table.

Finding Code Clone Refactoring Techniques by Mapping Clone Context 355

Table 4. Clone relation analysis by Fontana et al. [6] measured over the Qualitas
Corpus [12].

Nr. of clones
(Fontana et al.)

Percentage
(Fontana et al.)

Percentage
(Our Work)

Same Class 5,645 32.1% 26.8%

Same External Superclass 4,384 25.0% 20.6%

Unrelated Class 2,758 15.7% 18.4%

Sibling Class 2,721 15.5% 18.2%

Common Hierarchy Class 970 5.5% 0.8%

Same Method 569 3.2% 10.5%

First Cousin Class 416 2.4% 1.4%

Superclass 91 0.5% 3.1%

Ancestor Class 13 0.1% 0.2%

Some of our results differ quite a lot from their results. We think this is
mostly accounted due to two differences in their setup:

– Fontana et al. use a corpus consisting of large higher-quality open-source
software systems [12] where we use a more varied corpus [13].

– Fontana et al. use clone pairs while we use clone classes.

8 Conclusion

We defined categories to argue about the contextual information of code clones.
These categories are:

– Clone Relation: The inheritance relation between clone instances in a clone
class.

– Clone Location: The location of clone instances in the codebase.
– Clone Contents: The contents of clone instances in the codebase.

For each category we propose subcategories to get more insight into the number
of transformations required for the refactoring and their impact on the main-
tainability of the software. We measure the distribution of clones over these
categories on a corpus of 2,267 open-source systems to determine in which con-
texts most clones are found.

Regarding the location of clones: 78% of clones are found at method-level
of which 77% is found in the body of a method or constructor. From this, we
conclude that the “Extract Method” refactoring technique is most suitable to
refactor most clones.

We also looked at the relation of clones. We found that 37% of clones are
found in the same class. 24% of clones are in the same inheritance hierarchy.
Another 24% of clones are unrelated. The final 15% of clones have the same

356 S. Baars and A. Oprescu

interface. This implies that most clone refactorings require more transformations
than only method extraction to ensure that the extracted method is accessible
by all clone instances.

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Second (2018)

2. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintain-
ability. In: 6th International Conference on the Quality of Information and Com-
munications Technology (QUATIC 2007), pp. 30–39. IEEE (2007)

3. Ostberg J., Wagner, S.: On automatically collectable metrics for software main-
tainability evaluation. In: 2014 Joint Conference of the International Workshop on
Software Measurement and the International Conference on Software Process and
Product Measurement, pp. 32–37 (2014). https://doi.org/10.1109/IWSM.Mensura.
2014.19

4. Bruntink, M., Van Deursen, A., Van Engelen, R., Tourwe, T.: On the use of clone
detection for identifying crosscutting concern code. IEEE Trans. Software Eng.
31(10), 804–818 (2005)

5. Koni-N’Sapu, G.G.: A scenario based approach for refactoring duplicated code in
object oriented systems, Master’s thesis, University of Bern (2001)

6. Fontana, F.A., Zanoni, M., Zanoni, F.: Duplicated code refactoring advisor
(DCRA): a tool aimed at suggesting the best refactoring techniques of java code
clones, Ph.D. dissertation, Universita degli Studi di Milano-Bicocca (2012)

7. Arcelli Fontana, F., Zanoni, M., Zanoni, F.: A duplicated code refactoring advisor.
In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212,
pp. 3–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2 1

8. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queen’s
Sch. Comput. TR 541(115), 64–68 (2007)

9. Jarzabek, S., Xue, Y. :Are clones harmful for maintenance? In: Proceedings of the
4th International Workshop on Software Clones, ser. IWSC 2010, New York, NY,
USA: ACM, pp. 73–74 (2010). ISBN: 978-1-60558-980-0. https://doi.org/10.1145/
1808901.1808911

10. Kapser, C.J., Godfrey, M.W.: “Cloning considered harmful” considered harmful:
patterns of cloning in software. Empirical Software Eng. 13(6), 645–692 (2008)

11. Fowler, M.: Refactoring: improving the Design of Existing Code. Addison- Wesley
Professional (1999)

12. Tempero, E.: The qualitas corpus: a curated collection of java code for empiri-
cal studies. In: Asia Pacific Software Engineering Conference, pp. 336–345. IEEE
(2010)

13. Allamanis, M., Sutton, C.: Mining source code repositories at massive scale using
language modeling. In: The 10th Working Conference on Mining Software Repos-
itories, pp. 207–216. IEEE (2013)

14. Krishnan, G.P., Tsantalis, N.: Refactoring clones: an optimization problem. In:
2013 IEEE International Conference on Software Maintenance, pp. 360–363. IEEE
(2013)

15. Lozano, A., Wermelinger, M., Nuseibeh, B.: Evaluating the harmfulness of cloning:
a change based experiment. In: Fourth International Workshop on Mining Software
Repositories (MSR 2007: ICSE) Workshops, pp. 18–18. IEEE (2007)

https://doi.org/10.1109/IWSM.Mensura.2014.19
https://doi.org/10.1109/IWSM.Mensura.2014.19
https://doi.org/10.1007/978-3-319-18612-2_1
https://doi.org/10.1145/1808901.1808911
https://doi.org/10.1145/1808901.1808911

Finding Code Clone Refactoring Techniques by Mapping Clone Context 357

16. Yue, R., Gao, Z., Meng, N., Xiong, Y., Wang, X., Morgenthaler, J.D.: Automatic
clone recommendation for refactoring based on the present and the past. In: 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 115–126, IEEE (2018)

17. Yongting, Y., Dongsheng, L., Liping, Z.: Detection technology and application
of clone refactoring. In: Proceedings of the 2018 2nd International Conference on
Management Engineering, Software Engineering and Service Sciences, pp. 128–133.
ACM (2018)

18. Kodhai, E., Kanmani, S.: Method-level code clone modification using refactoring
techniques for clone maintenance. Adv. Comput. 4(2), 7 (2013)

19. SimonBaars: Simonbaars/clonerefactor: a tool that automatically refactors dupli-
cate code fragments in java. https://github.com/SimonBaars/CloneRefactor

20. Smith, N., van Bruggen, D., Tomassetti, F.: Javaparser (2018)
21. SimonBaars, Simonbaars/github-java-corpus-scripts: Scripts to prepare a github

java corpus for clone analysis. https://github.com/SimonBaars/GitHub-Java-
Corpus-Scripts

https://github.com/SimonBaars/CloneRefactor
https://github.com/SimonBaars/GitHub-Java-Corpus-Scripts
https://github.com/SimonBaars/GitHub-Java-Corpus-Scripts

Code Quality Metrics for Functional
Features in Modern Object-Oriented

Languages

Bart Zuilhof1, Rinse van Hees2, and Clemens Grelck1(B)

1 University of Amsterdam, Amsterdam, The Netherlands
c.grelck@uva.nl

2 Info Support BV, Veenendaal, The Netherlands

rinse.vanhees@infosupport.com

Abstract. The evolution of main-stream object-oriented languages such
as Java and C# has introduced new code constructs that originate from
the functional programming paradigm. We hypothesise that a relation-
ship exists between the usage of these constructs and the error-proneness
of code. We define a number of measures specifically focusing on func-
tional programming constructs in the context of object-oriented lan-
guages. Based on these measures we define a metric that relates the
usage of the functional programming constructs to error-proneness of
classes. We validate our metric and confirm our hypothesis using an
established methodology for empirical validation of code metrics. Our
results presented in this paper grant new insights into the evolution of
(increasingly) multi-paradigm programming languages at the cross-roads
of the functional and the object-oriented programming paradigms.

1 Introduction

Recent advances in programming language technology have been driven by the
cross-pollination of the object-oriented paradigm (OO) and the functional para-
digm (FP). Witnesses of this development are the growing popularity of the
multi-paradigm language Scala [1] and, even more so, the continuous introduc-
tion of functional programming features into main-stream object-oriented (OO)
languages such as Java [2] and C# [3].

Taking the example of C#, functions since Version 3.0 are first-class con-
structs, including support for higher-order functions. So-called lambda-functions
introduce the concept of anonymous functions to the world of C#. Pattern
matching supports concise and rich syntax for switch-case statements. The con-
cept of lazy evaluation now comes along with a uniform C# query syntax
to retrieve data from different sources [4], named Language Integrated Query
(LINQ). Previously, lazy evaluation was only possible by using the Lazy<T>-
keyword [3]. LINQ introduced syntax for list operations such as map, filter
and sort, which are basically higher-order functions as known from functional

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z.Porkoláb and V.Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 358–374, 2023.
https://doi.org/10.1007/978-3-031-42833-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-42833-3_10

Code Quality Metrics for Functional Features 359

languages proper. The LINQ syntax allows for the concise specification of aggre-
gate list operations, as demonstrated by a small example shown in Listing 1.

1 Enumerable.Range(1, 10)

2 .Where(i => i % 2 == 0) //filter

3 .Select(i => i * 10) //map

4 .OrderBy(i => -i); //sort

5 // ["100, "80, "60, "40, "20]

Listing 1. C# code example using the FP-inspired LINQ library

The increasing integration of object-oriented and functional language features
creates new interest into systematic multi-paradigm code evaluation in software
evolution. Landkroon has shown that metrics from the OO paradigm and the FP
paradigm can be mapped to the multi-paradigm language Scala [5]. However, the
integration of OO and FP features introduces artefacts that are neither covered
by OO-inspired code metrics nor by FP-inspired code metrics. For example, the
usage of mutable class variables in lambda-functions, whose execution might be
deferred, potentially leads to issues that are unknown in the pure and side-effect-
free world of functional programming. Neither source code metrics proposed for
the OO paradigm [6–8] nor their counterparts from the FP paradigm [9–12] are
suitable to give a valuable indication of quality regarding the usage of these
combined constructs.

Code measures that indicate complexity might have an intuitive relationship
with error-proneness. However, this does not have any concrete meaning and
usefulness since one cannot substantiate a prediction just by intuition. Therefore,
evidence must be provided that a measure is useful. This can be achieved by
proving a relationship to an external attribute such as error-proneness.

We adopt the approach of Briand et al. [13], where the term measure refers to
an assessment on the size of an attribute of the code. The purpose of our research
is to explore the relationship between the usage of the FP-inspired constructs
and the error-proneness of the classes where these constructs occur. We define
measures that cover the usage of these constructs and empirically relate them
to the error-proneness of the corresponding class.

The remainder of the paper is organised as follows: In Sect. 2 we provide a
more in-depth analysis of functional language features in C# and discuss their
impact on traditional measures such as source lines of code and cyclomatic com-
plexity. In Sect. 3 we present our proposed measures on the crossroads of OO
and FP. We describe our experimental setup in Sect. 4 and the findings of our
experiments in Sect. 5. At last, we discuss potential threats to validity in Sect. 6,
sketch out related work in Sect. 7 and draw conclusions in Sect. 8.

360 B. Zuilhof et al.

2 Problem Analysis

In the following we present two code snippets with the exact same functionality,
namely to obtain a list with vehicles starting with ‘Red’. For the first imple-
mentation shown in Listing 2 we choose a traditional imperative approach. The
code has a Source Lines of Code (SLOC) count of 11 and a Cyclomatic Com-
plexity (CC) of 3 since there are two branching points. This is how the general
complexity of the snippet translates back into the values returned by the metrics.

1 List<string> vehicles = new List<string>()

2 {"Red Car", "Red Plane", "Blue Car"};

3

4 List<string> redVehicles = new List<string>();

5

6 for (int i = 0; i < vehicles.Count; i++)

7 {

8 if (vehicles[i].StartsWith("Red"))

9 {

10 redVehicles.Add(vehicles[i]);

11 }

12 }

Listing 2. C# example code snippet in traditional style

The second implementation shown in Listing 3 uses the LINQ library, which
encourages the use of lambda-expressions. The more functional code has a SLOC
count of 5 and a cyclomatic complexity of 1 since there are no branching points
at all. Even though the functionality and the logical complexity are the same
with both snippets, both cyclomatic complexity and SLOC differ drastically.

1 List<string> vehicles = new List<string>()

2 {"Red Car", "Red Plane", "Blue Car"};

3

4 List<string> redVehicles = vehicles

5 .Where(t => t.StartsWith("Red"))

6 .ToList();

Listing 3. Example of Fig. 2 using the FP-inspired LINQ syntax

Code Quality Metrics for Functional Features 361

3 Candidate Measures

In this section we propose a number of measures that are explicitly geared at
FP-inspired language features in object-oriented languages.

3.1 Number of Lambda-Functions Used in a Class (LC)

Lambda-functions in the context of OO languages offer a concise way to write
anonymous functions inline. Compared to a regular method, both the parameter
type(s) and the return type can be omitted. This might introduce constructs
which are harder to understand. An example for this scenario is given in Listing 4.
To calculate the value for this measure, we traverse the abstract syntax tree
(AST). For each AST node of type LambdaExpression, we increment the counter
for this measure by one.

1 List<int> numbers = new List<int>() { 1, 2, 3 };

2

3 IEnumerable biggerThan2 = numbers.Where(x => x > 2);

Listing 4. Example of a lambda-expression in C#

3.2 Source Lines of Lambda (SLOL)

Whereas simple lambda expressions are usually easy to comprehend, more com-
plex lambda-expression may quickly become a challenge. In Listing 5 we give
an example of a multi-line lambda-expression. As curly braces are taken into
account by the ’source lines of code’-measure [7], we also include these curly
braces when calculating the span of the lambda expression. Therefore, the snip-
pet in Listing 5 has a SLOL-count of 1 + 1 + 4 = 6.

1 IEnumerable<int> bla = Enumerable.Range(1, 10)

2 .Where(i => i % 2 == 0)

3 .Select(i => i * 10)

4 .OrderBy(i =>

5 {

6 return -i;

7 });

Listing 5. Example of a multi-line lambda-expression in C#

362 B. Zuilhof et al.

3.3 Lambda Score (LSc)

The density of the usage of lambda functions in a class can give an indication of
how functional a class is. Our hypothesis for this measure is that a relationship
exists between how functional a class is and the error-proneness of the class. We
calculate this lambda density with Eq. 1.

LSc =
SLOL

SLOC
(1)

LSc evaluates to 1 if each line of a class is spanned by a lambda-expression and
to 0 if no lambda-expression occurs whatsoever.

3.4 Number of Lambda-Functions Using Mutable Field Variables
in a Class (LMFV)

Sometimes it is hard to predict when a lambda-function is actually executed.
Thus, it becomes likewise hard to reason about what value for the mutable field
will be used. An example illustrates this scenario in Listing 6. To calculate the
value for this measure, we traverse the AST. For each variable inside a lambda
expression, we check if the variable is non-constant and field-scoped by using the
semantic data model (SDM) of the class. If this test passes, we increment the
counter for this measure.

1 class A

2 {

3 int _y = 2;

4 void F()

5 {

6 Func<int, bool> biggerThanY =

7 x => x > _y;

8 }

9 }

Listing 6. Example of a C# lambda-expression with a reference to
a mutable field variable

3.5 Number of Lambda-Functions Using Mutable Local Variables
in a Class (LMLV)

A related scenario is to reason about the concrete value of a mutable local
variable inside a lambda-function; we show an example in Listing 7. In order
to calculate the value for this measure, we traverse the AST. For each variable
inside a lambda-expression we check if the variable is non-constant and locally

Code Quality Metrics for Functional Features 363

scoped by using the semantic model of the class. If this test passes, we increase
the counter for this measure.

1 void F()

2 {

3 int y = 2;

4 Func<int, bool> greaterThanY =

5 x => x > y;

6 }

Listing 7. Example of a C# lambda-expression with a reference to
a mutable local variable

3.6 Number of Lambda-Functions with Side-Effects Used in a Class
(LSE)

We think that the combination of side-effects in lambda-functions with e.g. par-
allelisation or lazy evaluation is dangerous because it can be hard to reason about
when these side-effects effectively occur. We show an example for this scenario
in Listing 8. To calculate the value for this measure, we once more traverse the
AST of each class. For each variable inside a lambda-expression, we check if local
or field variables are being mutated.

1 static int _y = 2;

2

3 Func<int, bool> f = x =>

4 {

5 _y++;

6 return x > _y;

7 };

Listing 8. Example of a C# lambda-expression with a side-effect
to a mutable field variable

3.7 Number of Non-terminated Collection Queries in a Class
(UTQ)

By not terminating a collection query, it is hard to reason when the query will
be executed. Since these collection queries may contain functions that contain
side-effects and use outside scoped variables, the execution at different run-times

364 B. Zuilhof et al.

can yield different and unexpected results. An example for this scenario is given
in Listing 9. To calculate the value for this measure we traverse the AST and
count how many IEnumarable<T> are initiated.

1 List<int> nmbs = new List<int>()

2 { 1, 2, 3 };

3 int y = 2;

4 IEnumerable biggerThanY = numbers

5 .Where(x => x > y);

Listing 9. Example of a LINQ-query that is not evaluated/termi-
nated

4 Experimental Setup

In this section we explain the various aspects of our experimental setup.

4.1 Methodology

To empirically validate a proposed metric Briand et al. [13] describe three
assumptions that should be satisfied, namely:

1. The internal attribute A1 is related to the external attribute A2.
The hypothesised relationship between attribute A1 and A2 can be tested
if Assumption 2 and Assumption 3 are assumed, by finding a relationship
between X1 and X2.

2. Measure X1 measures the internal attribute A1. Measure X1 measures
defined attributes of the code such as mutable external variables used in
lambda-functions. This measure X1 is assumed to measure A1; A1 isthe inter-
nal attribute such as purity of the lambda usages.

3. Measure X2 measures the external attribute A2. Measure X2 measures
the error-proneness A2 of a given class. The measure X2 depends on whether
the class contains a bug or not.

4.2 Relating Functional Constructs to Error-Proneness

Investigating the relationship between code metrics and error-proneness is com-
monly done by creating a prediction model for error-proneness based on code
metrics [6,13–15]. The logistic regression classification technique [16] is often
used to create such a prediction model [5,6,14,17]. With a logistic regression
model trained with the data from our analysis framework, which processes repos-
itories, we explore the relationship between our measured constructs and error-
proneness.

Code Quality Metrics for Functional Features 365

Univariate Logistic Regression. With a univariate logistic regression model
we can evaluate, in isolation, the prediction model for error-proneness based on
the measured constructs. Using Eq. 2 we construct a prediction model.

P (faulty = 1) =
eβ0+βlXl

1 + eβ0+βlXl
(2)

Her,e βlXl is the coefficient multiplied with the value of the added measure.

Baseline. To show that our measures are useful for the prediction of error-
proneness, their inclusion must yield better results than metrics that are cur-
rently used in industry. This set of metrics will define the baseline for our study.
We use the union of a set of general code metrics with a set of object-oriented
metrics. For general code metrics we take Source Lines of Code (SLOC) [18,19],
Cyclomatic Complexity (CC) [8] and Comment Density (CD) [20].

The 00 metric suite used for this study was defined by Chidamber and
Kemerer [21]. For our baseline, we implement those metrics that showed any
significance in Chidamber and Kemerer’s study, namely Weighted Methods per
Class (WMC), Depth of Inheritance Tree (DIT), Response for a Class (RFC),
Number of Children of a Class (NOC), Coupling between Object Classes (CBO),
Lack of Cohesion of Methods (LCOM).

Multivariate Logistic Regression. Besides looking if our univariate logistic
regression model gives an indication of good performance, we can use multi-
variate logistic regression to test if we can improve the model with the in-place
OO metrics. The baseline for the evaluation of the model will be a multivariate
logistic regression model based on our baseline set of metrics. To see if we can
achieve an increased performance compared to our baseline model, we substitute
baseline dependent variables with candidate measures as l.

P (faulty = 1) =
eβ0+β1Xi+β2X2+...+βnXn+βlXl

1 + eβ0+β1Xi+β2X2+...+βnXn+βlXl
(3)

Model Validation. We choose to validate our model using cross-validation,
which is commonly used for the validation of prediction models [22,23]. We use
the holdout method for cross-validation. By default, holdout cross-validation sep-
arates the data set into a training set and a smaller test set. To compensate for
the randomness of the division, we run the model fitting with multiple different
selections of the training set, average the results and assess the standard devia-
tion. Based on a classification report created for the holdout set, we assess the
performance of the model. We use the F1-score, which calculates the harmonic
mean of the precision and recall (F1-score) to assess our model performance with
Eq. 4.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

366 B. Zuilhof et al.

Since our data set is unbalanced, as can be seen in Fig. 1, one could choose
to calculate the micro-average between the F1-scores for the ‘faulty-classes’-class
and the ‘non-faulty-classes’-class, where the support for each class is weighted.
However, since we want good prediction performance in both classes we use
the macro-average instead which calculates the harmonic mean between the two
F1-scores [24].

4.3 Measuring Functional Constructs

By using the compiler platform SDK ‘Roslyn’ which is created by the ‘.NET
Foundation’ we can derive AST’s and SDM’s from the classes of a given project.
By traversing the AST for each class using Roslyn’s implementation of the vis-
itor pattern, we visit each syntax node in depth-first order. Where needed we
can request additional data from the semantic data model (SDM) during the
traversal, such as: what is the type and the level of scope for a given variable.
Using this method we can calculate the values for all of our candidate measures.

4.4 Measuring Error-Proneness

To make an estimation on how error-prone a class is, we make the assumption
that if a class during the lifetime of a project was updated by a bug fix, the class
is error-prone. Unfortunately, the GitHub API does not provide an easy way to
identify bug-fixing commits. From a GitHub repository, we can request all the
issues that were created regarding a bug. With this information, we identify all
commits that close an issue by searching for issue closing keywords as described
in [25].

All commits that mention an issue that was identified as a bug-related issue,
are marked as bug-fix commits. We then extract the affected lines from the
metadata of the commit. Then we deduce with which classes the affected lines
intersect in the parent version of the bug-fix commit by parsing the AST of the
updated file. We use the parent version of the bug-fix commit since this is the
version where the bug existed. Each of these intersected classes will be marked
as error-prone.

4.5 Dataset

For our study we analyse the following complex software projects, all obtained
from github:

CLI The .NET Core command-line interface (CLI) is a new cross-platform tool
chain for developing .NET applications. The CLI is a foundation upon which
higher-level tools, such as Integrated Development Environments (IDEs), edi-
tors, and build orchestrators, can rest [26].

ML Machine Learning for .NET is a cross-platform open-source machine learn-
ing framework which makes machine learning accessible to .NET developers.
ML.NET allows .NET developers to develop their own models and infuse

Code Quality Metrics for Functional Features 367

custom machine learning into their applications, using .NET, even without
prior expertise in developing or tuning machine learning models [27].

AKK Akka.NET is a community-driven port of the popular Java/Scala frame-
work Akka to .NET. Akka is a toolkit for building highly concurrent, dis-
tributed, and resilient message-driven applications. Akka is the implementa-
tion of the Actor Model. [28].

ASP ASP.NET Core is an open-source and cross-platform framework for build-
ing modern cloud-based Internet-connected applications, such as web appli-
cations, internet-of-things (IoT) applications and mobile backends. ASP.NET
Core applications can run on .NET Core or on the full .NET Framework [29].

IS4 IdentityServer is a free, open source OpenID Connect and OAuth 2.0 frame-
work for ASP.NET Core [30].

JF Jellyfin is a Free Software Media System that puts you in control of managing
and streaming your media [31].

ORA OpenRA is an open source real-time strategy game engine for early West-
wood games such as Command & Conquer: Red Alert written in C# using
SDL and OpenGL [32].

DNS dnSpy is a debugger and .NET assembly editor. It can be used to edit and
debug assembly code even in the absence of source code [33].

ILS ILSpy is the open-source .NET assembly browser and decompiler [34].
HUM Humanizer meets all your .NET needs for manipulating and displaying

strings, enums, dates, times, timespans, numbers and quantities [35].
EF EF Core is an object-relational mapper (O/RM) that enables .NET devel-

opers to work with a database using .NET objects. It eliminates the need for
most of the data access code that developers usually need to write [36].

Our selection of projects covers a wide range of applications from various
domains.

5 Experimental Evaluation

In Fig. 1 we show descriptive statistics for the output of our static analysis. We
excluded the test projects since they are likely to be modified in a bug-fixing
commit to detect the bug should it occur again.

Interestingly, the relationship of bug-fixing commits and faulty classes can be
either positive or negative. This can be explained by that a set of the commits
are only updating configuration or non-C# code files. Hence, it is possible that
the number of bug fixes exceeds the number of faulty classes. Likewise possible
is the alternative scenario that one commit modifies multiple classes and, hence,
the number of bug fixes is less than the number of faulty classes. The variance
in the ratio of Classes

FaultyClasses between projects is also notable. This can be partly
attributed to the lifetime of a project. However, some projects contradict this
hypothesis, e.g. the ratio for ILSpy is not higher than that of, for instance, the
AKKA.NET project, even though the ILSpy project is more than twice as old.

368 B. Zuilhof et al.

Fig. 1. Descriptive statistics (During our research the labels in the repository of
dnSpy (DNS) were deleted, leaving us unable to derive the bug-fix count.)

To evaluate the measures in isolation, we fit and evaluate a prediction model
using univariate regression. In Fig. 2 we can see the macro-average F1-score for
each project in combination with each candidate measure.

Fig. 2. F1-score prediction model: univariate regression

In Fig. 2 we see m1, as described in Sect. 3.1, performs well on the projects
ILSpy and JellyFin. The univariate regression models created for the Entity
Framework project, perform relatively poorly compared to the other projects.
Notably, the SLOC measure performs the best as an isolated measure in the
Entity Framework project. Looking at the raw input for the project, we see
that only 1

5 of the classes use lambda-expressions, whereas for other projects,

Code Quality Metrics for Functional Features 369

e.g. AKKA.NET, this ratio is 1
3 . The infrequent usage of lambda-expressions

could influence the usability of our measures.
The Humanizer project seems to score an almost stable 0.48. When look-

ing into the raw output data from our static analysis we see only 1
9 classes in

this project uses lambda-expressions. Thus, this project might not be functional
enough for our measures to perform well.

To evaluate the value of our candidate measures compared to our baseline,
we create a multivariate regression model based on K-best features for each
of the projects. Figure 3 shows how many out of 11 K-best models include the
corresponding measure as a feature.

Fig. 3. Inclusion candidate measures K-best model

Most notable is that 9 out of 11 projects include the SLOL-measure as
described in Sect. 3.2. The one project where SLOL was excluded in the K-Best,
was the Humanizer project. As described earlier, the project does not use a lot
of the FP inspired constructs and therefore, is not suitable for our measures.
The measure LSE, counting the numbers of side-effects in lambdas, and UTQ,
counting the number of unterminated collection queries, both do not seem to
yield an interesting result. Even though these FP-inspired constructs do occur
in almost all projects, the amount of occurrences is too limited to yield good
values.

To do a comparison between our baseline model and the selection of the
K-best features model, we plot our results in Fig. 4. We observe that the worst-
performing project did not gain improvement in performance, but the first quar-
tile has a performance improvement of 0.02. The best performing project likewise
has a 0.02 improvement in performance.

6 Threats to Validity

While we are confident in the correctness of our methodology and the accuracy
of our findings, it is good practice to discuss potential threats to validity and
the corresponding limitations.

Firstly, our research is focused on the language C# and its ecosystem. The
details of the integration of functional features into object-oriented languages

370 B. Zuilhof et al.

Fig. 4. F1-score prediction model: multivariate regression

naturally differs slightly from language to language. Hence, it is plausible to
expect similar findings from Java or Scala, but we cannot provide evidence for
this.

Within the world of C# we only analysed 11 open-source projects. All
projects are non-trivial in size, make use of functional language features and
represent a wide variety of application domains. Still, we cannot necessarily
claim that they are representative for C# projects in general. Including more
projects in our analysis would obviously strengthen our findings, but this would
require substantial additional resources for research.

We must admit that our methodology for the identification of error-prone
classes is merely a best-effort approximation of reality. Unfortunately, github
and likewise other publicly available source code repositories lack support for any
more educated or direct technique. Our approach, hence, inevitably leads to both
false positives as well as false negatives. The size of relevant software projects and
the intimate knowledge of each software project required to manually identify
error-prone classes prohibits any quantitative estimate on the accuracy of our
methodology for the identification of error-prone classes.

We estimate the error-proneness of a class by looking at the number of bug-
fixes applied to it. This again is a best-effort approximation. There is no way
to guarantee that a class that was never updated by a bug-fix is bug-free. Bugs
might have not been identified yet, or maybe bugs that were never fixed by a
bug-fix commit were accidentally fixed during a refactoring.

7 Related Work

Uesbeck et al. [37] did a control experiment investigating the impact of lamb-
das in C++ on productivity, compilation errors and time to fix said errors. The
authors demonstrate that the impact of lambdas, as opposed to iterators, on the

Code Quality Metrics for Functional Features 371

number of tasks completed was significant: “The percentage of time spent on fix-
ing compilation errors was 56.37% for the lambda group while it was 44.2% for
the control group with 3.5% of the variance being explained by the group differ-
ence.”. The groups consisted of developers with different amount of programming
experience. The increased time of fixing compiler error where lambda-functions
were used, which seems likely to be the result of lambda-expressions being harder
to reason about, which supports our hypothesis.

Finifter et al. [38] show how verifiable purity can be used to verify high-level
security properties. By combining determinism with object-capabilities a new
class of languages is described that allows purity in largely imperative programs.

Sharma et al. [39] compiled a survey on software metrics from the object-
oriented domain. Ryder [9], Ryder and Thompson [10], van den Berg [11] as well
as Király and Kitlei [12] developed software metrics specifically geared at the
functional domain. Warmuth [40] investigated the validity of software measures
for the functional programming language Erlang.

Closer to our own work, Landkroon [5] investigated the suitability of existing
suites of software measures proposed in either the object-oriented or the func-
tional context to predict error-proneness of code written in the multi-paradigm
language Scala.

We are not aware of any previous work on software metrics or measures
that focuses on the introduction of quintessentially functional language features
into object-oriented languages, which only has gained popularity and traction in
recent years. This paper extends our own preliminary work informally published
before [41]. A more in-depth coverage of the subject matter and our findings is
available in [42].

8 Conclusion and Discussion

We investigated the evolution of the OO language C# and what features inspired
by the FP paradigm are added. The development and introduction of the FP-
inspired features seem to be going rapidly and there is no indication of this
development slowing down. This new declarative syntax enables more concise
code constructions and, thus, enables software engineers to achieve more func-
tionality with less code. However, these constructs are introduced without the
constraints that would be present in pure functional languages.

To cover the new type of complexity introduced by these FP-inspired con-
structs and their usage outside of purely functional contexts, we defined various
source code measures that cover the following FP-inspired constructs: closed
lambda-expressions, lambda-expressions with mutable field or local variables
and lambda-expressions with side-effects. Furthermore, we defined a measure
to report unterminated collection queries.

The candidate measure SLOL yields promising results when used in a uni-
variate prediction model for all projects under investigation that actively use
FP-inspired constructs. To assess if we can improve our baseline model, we swap
the weaker metrics from the baseline model with stronger metrics based on our

372 B. Zuilhof et al.

set of defined measures. We were able to achieve a marginal improvement (F1-
score 0.0–0.02) with respect to different projects. For some projects, we were able
to achieve a small improvement in the prediction model. On the contrary, the
projects where a low amount of FP-inspired constructs were used, the candidate
measures do not yield value.

So we did find a correlation between our measures and error-proneness, but
the correlation is too uncertain to make claims regarding causality.

As described in the introduction, main-stream OO languages adopt more
features from the FP paradigm. Our hypothesis is that the set of FP-inspired
features will become more wide-spread and receive a more FP-like syntax. The
increase of performance in our prediction models found in this research seems
marginal for now. But we hypothesise that their relevance will increase in the
future, based on the ongoing evolution of OO languages and the increasing adop-
tion of these FP-inspired features by main-stream developers.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able feedback and the Erasmus+ Strategic Partnership for Higher Education Focusing
Education on Composability, Comprehensibility and Correctness of Working Software
(FE3CWS/3COWS), project-ID 2017-1-SK01-KA203-035402, for their support.

References

1. Carbonnelle, P.: PYPL. http://pypl.github.io/PYPL.html. Accessed 11 Jan 2019
2. Oracle: Java 8 update notes. https://www.oracle.com/technetwork/java/javase/8-

whats-new-2157071.html. Accessed 11 Jan 2019
3. Microsoft: C# update notes. https://docs.microsoft.com/en-us/dotnet/csharp/

whats-new/csharp-version-history. Accessed 23 Jan 2019
4. Wagner, B.: Language Integrated Query (LINQ). https://github.com/dotnet/cli

(2017)
5. Landkroon, E.: Code quality evaluation for the multi-paradigm programming lan-

guage Scala. MSc Thesis, University of Amsterdam, Netherlands (2017)
6. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-

rics as quality indicators. IEEE Trans. Softw. Eng. 22, 751–761 (1996)
7. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintain-

ability. In: 6th International Conference on Quality of Information and Communi-
cations Technology (QUATIC 2007), pp. 30–39. IEEE (2007)

8. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2, 308–320 (1976)
9. Ryder, C.: Software Measurement for Functional Programming. PhD thesis, Uni-

versity of Kent at Canterbury, United Kingdom (2004)
10. Ryder, C., Thompson, S.J.: Software metrics: measuring Haskell. In: 6th Sympo-

sium on Trends in Functional Programming (TFP 2005), pp. 31–46 (2005)
11. van den Berg, K.: Software measurement and functional programming. PhD thesis,

University of Twente, Netherlands (1995)
12. Király, R., Kitlei, R.: Application of complexity metrics in functional languages.

In: 8th Joint Conference on Mathematics and Computer Science (MaCS 2010),
Selected Papers, pp. 267–282 (2010)

13. Briand, L., El Emam, K., Morasca, S.: Theoretical and empirical validation of soft-
ware product measures. In: International Software Engineering Research Network,
Technical Report ISERN-95-03 (1995)

http://pypl.github.io/PYPL.html
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://github.com/dotnet/cli

Code Quality Metrics for Functional Features 373

14. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Softw. Eng. 31, 897–910
(2005)

15. Briand, L.C., Melo, W.L., Wust, J.: Assessing the applicability of fault-proneness
models across object-oriented software projects. IEEE Trans. Softw. Eng. 28, 706–
720 (2002)

16. Hosmer, D.W., Jr., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression.
Wiley, Hoboken (2013)

17. Lanubile, F., Visaggio, G.: Evaluating predictive quality models derived from soft-
ware measures: lessons learned. J. Syst. Softw. 38, 225–234 (1997)

18. Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.W.: A SLOC counting standard.
In: COCOMO-II Forum, pp. 1–16 (2007)

19. Boehm, B.W., et al.: Software Cost Estimation with COCOMO-II. Prentice-Hall,
Upper Saddle River (2000)

20. SonarQube: Metric definitions (2019). https://docs.sonarqube.org/latest/user-
guide/metric-definitions/

21. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE
Trans. Softw. Eng. 20, 476–493 (1994)

22. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J.
Royal Stat. Soc. Ser. B (Methodol.) 36, 111–133 (1974)

23. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995), pp. 1137–1145. Morgan Kaufmann (1995)

24. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45, 427–437 (2009)

25. GitHub: Closing issues using keywords (2019). https://help.github.com/en/
articles/closing-issues-using-keywords

26. https://github.com/dotnet/cli. Version: bf26e7976
27. https://github.com/dotnet/machinelearning. Version: b8d1b501
28. https://github.com/akkadotnet/akka.net. Version: bc5cc65a3
29. https://github.com/aspnet/AspNetCore. Version: 5af8e170bc
30. https://github.com/IdentityServer/IdentityServer4. Version: da143532
31. https://github.com/jellyfin/jellyfin. Version: d7aaa1489
32. https://github.com/OpenRA/OpenRA. Version: 27cfa9b1f
33. https://github.com/0xd4d/dnSpy. Version: 3728fad9d
34. https://github.com/icsharpcode/ILSpy. Version: 72c7e4e8
35. https://github.com/Humanizr/Humanizer. Version: b3abca2
36. https://github.com/aspnet/EntityFrameworkCore. Version: 5df258248
37. Uesbeck, P.M., Stefik, A., Hanenberg, S., Pedersen, J., Daleiden, P.: An empiri-

cal study on the impact of C++ lambdas and programmer experience. In: 38th
International Conference on Software Engineering (ICSE 2016), pp. 760–771. ACM
(2016)

38. Finifter, M., Mettler, A., Sastry, N., Wagner, D.: Verifiable functional purity in
Java. In: 15th ACM Conference on Computer and Communications Security (CCS
2008), pp. 161–174. ACM (2008)

39. Sharma, M., Gill, N., Sikka, S.: Survey of object-oriented metrics: focusing on
validation and formal specification. ACM SIGSOFT Softw. Eng. Notes 37, 1–5
(2012)

40. Warmuth, D.: Validation of software measures for the functional programming
language Erlang. MSc Thesis, Humboldt-Universität zu Berlin, Germany (2018)

https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://help.github.com/en/articles/closing-issues-using-keywords
https://help.github.com/en/articles/closing-issues-using-keywords
https://github.com/dotnet/cli
https://github.com/dotnet/machinelearning
https://github.com/akkadotnet/akka.net
https://github.com/aspnet/AspNetCore
https://github.com/IdentityServer/IdentityServer4
https://github.com/jellyfin/jellyfin
https://github.com/OpenRA/OpenRA
https://github.com/0xd4d/dnSpy
https://github.com/icsharpcode/ILSpy
https://github.com/Humanizr/Humanizer
https://github.com/aspnet/EntityFrameworkCore

374 B. Zuilhof et al.

41. Zuilhof, B., van Hees, R., Grelck, C.: Code quality metrics for the functional side of
the object-oriented language C#. In: 12th Seminar on Advanced Techniques and
Tools for Software Evolution (SATToSE 2019), CEUR Workshop Proceedings, vol.
2510, pp. 31–46 (2019)

42. Zuilhof, B.: Code quality metrics for the functional side of the object-oriented
language C#. MSc Thesis, University of Amsterdam, Netherlands (2019)

An Empirical Study on the Energy
Efficiency of Matrix Transposition

Algorithms

Gonçalo Lopes, João Paulo Fernandes(B), and Luís Paquete

Department of Informatics Engineering, University of Coimbra, CISUC, Coimbra,
Portugal

{galopes,jpf,paquete}@dei.uc.pt

Abstract. Energy consumption is becoming a serious concern in the
context of software development. Recent works have shown that energy
consumption of an algorithm not only depends on its running-time but
also on its number of memory accesses. In this work, we empirically anal-
yse several algorithms for matrix transposition with different patterns of
low-level cache access, and compare them in terms of energy consump-
tion and running-time with respect to CPU instructions and memory
accesses. Our results suggest that different memory access patterns have
a strong influence on the energy consumption and on the cache perfor-
mance of these algorithms.

Keywords: Matrix transposition · Energy efficiency · Cache
performance

1 Introduction

The increasing popularity of electronic devices and platforms leads to questions
regarding their energy efficiency, which is relevant at several levels. It has impact
on the utility of portable devices, e.g. battery life of mobile phones [13], on
business costs, e.g. energy consumption of large data centers [4,28], as well as
on social aspects, e.g. impact of the energy consumption of electronic devices
on global warming [5]. As such, the topic of energy consumption is becoming a
growing concern in the context of software development.

In order to deal with energy consumption concerns, hardware manufacturers
have been improving lower-level layers of the hardware to reduce energy con-
sumption [10]. However, recent studies [2,15,19] indicate that better results can
be achieved by encouraging software developers to participate in the process. For
that reason, hardware manufacturers have been designing tools for developers

Supported by the ERDF - European Regional Development Fund through the Oper-
ational Programme for Competitiveness and Internationalisation - COMPETE 2020
Programme and by National Funds through the Portuguese funding agency, Fundação
para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-016718.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, pp. 375–391, 2023.
https://doi.org/10.1007/978-3-031-42833-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42833-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-42833-3_11

376 G. Lopes et al.

to understand the energy consumption of their programs. Some CPU manufac-
turers already provide some measurement tools that collect data from different
system interfaces and calculate the energy consumption of their processors, such
as PowerTOP, Intel Power Gadget and RAPL [7,8].

It is common folklore that energy consumption depends only on the running-
time [29]. This assumption suggests that a faster program is also a more energy-
efficient program. However, there are other factors that may play some role on
the energy performance of a program [22]. For instance, some works have shown
that different algorithm implementations [3,23], different cache architectures and
data management choices by the programmers [6,12,17], the choice of the pro-
gramming language [16,20] or the code practices and data structures used by
the programmers [14,18,21], may affect the energy consumption of a program.

Our aim is to understand the energy consumption patterns of certain algo-
rithmic implementations, in particular in the context of linear algebra applica-
tions. For this study, we took into consideration the energy complexity model
proposed by Roy et al. [24], which is based on the parallel memory model [27].
These authors argue that the total energy consumed of an algorithm does not
only depends on the time taken by non-I/O operations, but also on the number
of memory accesses to a row that contains the required memory word. There-
fore, this model indicates that it is possible to minimise energy consumption
by improving cache performance. Several techniques exist that optimise cache
performance using different patterns of memory accesses, such as cache-aware
algorithms [1].

This work presents an in-depth empirical analysis of two different algorithms
for matrix transposition with the aim of understanding the relation between
energy consumption of an algorithm, its running-time and cache performance
using different memory access patterns. We describe a thorough experiment with
two different algorithms for the matrix transposition operation with two distinct
ways of transversing the matrix. Our results suggest that both memory access
pattern and cache usage are factors that significantly affect energy consumption.

This article is structured as follows. In Sect. 2, we review the literature con-
cerning energy efficiency, cache efficiency and theoretical models. In Sect. 3,
we present the matrix transposition algorithms. The experimental setup and
methodology we used is described in Sect. 4. Section 5 discusses the obtained
results and, in Sect. 6, we conclude and present ideas for future work.

2 Related Work

In this section, we review some of the most representative empirical and theo-
retical studies on energy and cache efficiency. In Sect. 2.1, we review the energy
complexity model proposed by Roy et al. [24]. Section 2.2 we discuss an empirical
study on cache efficiency and, in Sect. 2.3, we discuss empirical studies on energy
efficiency.

An Empirical Study on the Energy Efficiency 377

2.1 Energy Complexity Model

Our work is based on the energy complexity model proposed by Roy et al. [24],
in which the energy consumption of an algorithm is modelled as a linear combi-
nation of the running-time and the total number of I/O accesses. Their model
captures the energy consumed by a modern server for executing an algorithm,
focusing exclusively on server power, which includes the power drawn by the
processors and the server memory.

Roy et al. model is very closely tied to the memory layout. They assume that
memory is divided into a set of P parallel banks, each of which has its own cache.
Each bank is also formed by blocks, each of which is formed by B items and B/s
strides, where s is the number of items in each stride. Each stride behaves as
a cache line, and each cache holds only one block. Therefore, an algorithm can
manipulate the items in all caches whenever required. Since an algorithm has at
its disposal P banks, the number of Input-Output (I/O) accesses made by the
algorithm is the number of parallel I/O made to the P parallel banks. However,
blocks needed in parallel are written to different banks, which is ensured by a
constraint in the algorithm design. Under these working assumptions, the authors
model the energy consumption of an algorithm for a given input as the sum of
the work that an algorithm performs on non-I/O instructions, plus the latency
times the number of accessed strides. Figure 1 illustrates the architecture of this
model for P = 4.

Fig. 1. Memory layout for P = 4 under the energy complexity model

The authors proposed algorithms that try to minimize the energy consump-
tion according to the energy consumption model above, and conducted several
experiments to validate their findings on several benchmarks [24]. They defined
an operating point with a fixed work complexity, i.e., varying the allocation of
the data across the banks in a way that an algorithm would have varying degrees

378 G. Lopes et al.

of parallelism, and a fixed number of memory accesses. The algorithms require
data to set out in memory with a certain degree of parallelism. For this reason,
they proposed a generic way to ensure memory parallelism for a given input
access pattern or vector. They reported that the energy consumption decreases
as the value of P increases and that there is a noticeable difference of energy
consumed between the values of P . However, this difference decreases as the
value of P gets larger. They also noticed that parallelizing the layout does not
lead to energy savings if the auxiliary data structures do not fit into cache.

In our work, we extend their analysis by exploring the relationship between
memory accesses and CPU instructions with energy and time and analyse the
impact of different memory access patterns and data organisation.

2.2 Empirical Studies on Cache Efficiency

Tsifakis et al. [26] focused on the analysis of the matrix transposition algo-
rithms, cache ignorant, blocked and cache-oblivious and, for each algorithm,
they measured hardware performance counters. For their experiment, they used
two machines with two different systems: the first system with a 16 KB direct-
mapped data cache and the second with a 64 KB 4-way set associative data
cache. In the first system, the presented results were similar to the expected,
except for slightly higher results for matrices of sizes 212 and 213. The second
system results showed that the use of a data cache with associativity could
achieve better results, especially in the previous mentioned matrix sizes. As a
conclusion, they observed that the performance of an algorithm may depend of
several factors, such as cache size, cache line size, cache associativity and policies.
In our work, we extend this empirical study and analyse the impact of similar
memory access patterns on energy consumption and running-time.

2.3 Empirical Studies on Energy Efficiency

Several empirical studies aim to understand the impact of software on energy
consumption from different perspectives. In this section, we review empirical
studies on energy efficiency of cache architecture, data management and algo-
rithm implementations.

Cache Architecture and Data Management. Kim et al. [12] presented
an empirical study on the way of partitioning cache resources for energy effi-
ciency. They examined ways of splitting the cache into smaller units, designated
subcaches, to reduce per-access energy costs and to improve locality behaviour.
Moreover, they proposed a subcache architecture to improve the cache perfor-
mance and memory system energy efficiency. They claimed that dynamic energy
consumption in the cache could be lowered by reducing the number of accesses
to cache. Therefore, they proposed two optimisations for cache energy reduction,
dynamic page remapping and subcache prediction. The obtained results showed

An Empirical Study on the Energy Efficiency 379

that by using subcaches configurations and by varying the size of the direct-
mapped cache, it is possible to reduce the energy consumption in the memory
system from 60% to 83% on average. In conclusion, the results showed that the
optimisation at the architecture level, such as subcache architectures, is crucial
for reducing cache energy costs.

Co et al. [6] analysed the energy efficiency of trace cache. Trace cache is a
specialised cache that stores the dynamic stream of instructions to increase the
fetch bandwidth by storing traces of instructions already fetched. The experi-
ments consisted of evaluating whether concatenating basic blocks, a straight-line
code sequence with no branches, improves energy efficiency. They compared trace
caches and instructions caches in terms of time, memory and energy. Although
trace cache achieved better results than instructions cache, it was the branch
prediction that more strongly influenced overall performance and energy. More-
over, results showed that similar performance could be achieved by applying
sequential trace caches or instruction cache-based engines.

Liu et al. [17] studied the energy impact of data management choices by
programmers, as data organisation or data access patterns, and the interaction
between hardware-level energy management and application-level management,
for Java. Five programmers choices were analysed: data access pattern, data
organisation, data representation, data precision and data I/O strategies. For
the data access patterns, they measured the energy consumption when accessing
a large array under sequential or random access, considering both read and write
operations. As expected, the random accesses consumed much more energy than
sequential. Moreover, the energy and performance achieved by read and write
instructions were not proportional, which could be explained by the overhead of
each hardware instruction.However, energy consumption remained stable at the
Dynamic Random Access Memory (DRAM) level. For the data representation
and organisation strategies, they measured the impact of using object-oriented
arrays and primitive arrays. The results showed that, although object-orientation
provides some benefits such as modularity, it does not benefit energy consump-
tion. Finally, for the data precision choices, they analysed the energy consump-
tion of the matrix multiplication operation using different primitive types. The
obtained results showed that the matrix of double data type consumed 1.45
more energy than int and 4.95 more than short. The second analysis of Liu et
al. [17] was concerned with the interaction between hardware-level energy man-
agement and application-level management. Although scaling down the CPU
frequency effectively saves power, it may increase the running-time of a program.
Therefore, they performed an analysis varying the operation supply voltage of
the CPU and the operating frequency. They concluded that downscaling the
CPU not only results in a performance loss but also in an increase of energy
consumption.

The empirical studies we described so far showed that cache architecture,
different types of structures and primitive types, and different CPU frequency
significantly affect energy consumption. However, these studies ignored other
factors, such as the correlation between the number of cache misses and the prim-

380 G. Lopes et al.

itive types, and the relation between memory accesses and energy consumption.
In our work, we analyse the relation between memory accesses, energy consump-
tion and running-time. Moreover, to understand the impact of different memory
access patterns on cache performance, we analyse the number of cache references
and misses.

Algorithm Implementations. Rashid et al. [23] conducted an experiment
to compare the impact of sorting algorithms on energy consumption. The algo-
rithms were implemented in three different programming languages: ARM assem-
bly, C and Java. For each language, algorithm and data set size, they collected
the number of instructions per cycle, percentage of cache misses, percentage
of branch misses, energy consumed and running-time. They obtained different
levels of energy consumption for both different algorithms and languages. In par-
ticular, Counting sort exhibited better performance, followed by Quicksort. The
most energy-efficient language was ARM assembly. In conclusion, a large part
of the energy consumed by the algorithm was determined by the time perfor-
mance. However, some factors were not considered, such as memory accesses. In
our work, we explore this relation between memory accesses, time and energy.

3 Algorithms for Matrix Transposition

Our main goal is to understand the relation between different memory access
patterns and energy consumption. For this reason, we considered the operation
of transposing a matrix as our case study since it involves many memory accesses
and there are multiple approaches that explore different memory access patterns.

In order to transpose a matrix, each element of the matrix must be writ-
ten and read from memory in different locations. In general, matrices can be
represented in row-major or column-major order. As opposed to column-major,
adjacent elements within each row are contiguous in memory, in row-major.
Therefore, traversing a row-major matrix along rows is much faster than along
columns. However, performing a matrix transposition for large matrix sizes can
have a tremendous impact on cache performance.

The order in which matrix elements are swapped in a matrix transposition
operation has a strong impact in performance, especially on memory, since it uses
data elements within relatively close storage locations, exploring spatial locality.
For example, when the element [1,1] of the matrix is accessed, it is fetched
to the cache line and to the lowest cache level. Therefore, accessing the others
elements in the same block of data as [1,1], such as [1,2] through [1,16], has
a reduced cost supposing that the cache line carries blocks of data containing
sixteen elements. However, each element is written into a column where adjacent
elements are separated in memory by a stride equal to the length of the matrix
row, which causes cache misses in the first cache level. Consequently, the way
the matrix transposition is performed causes the algorithm to either read from
the cache line or write new elements to the cache line.

An Empirical Study on the Energy Efficiency 381

Algorithm 1. Naïve Algorithm for Matrix Transposition
1: procedure Transpose
2: for i ← 1 to N do
3: for j ← 1 to N do
4: Out[j][i] ← In[i][j]

Algorithm 2. Cache-Aware Algorithm for Matrix Transposition
1: procedure Transpose
2: for r ← 1 to N by L do
3: for c ← 1 to N by L do
4: rlimit ← min(r + L,N)
5: climit ← min(c+ L,N)
6: for i ← r to rlimit do
7: for j ← c to climit do
8: Out[j][i] ← In[i][j]

For our experimental analysis, we consider two well-known approaches for
matrix transposition, which explore different memory access patterns. The first
is the classic algorithm for matrix transposition, named here as the Naïve algo-
rithm. Algorithm 1 describes this approach, where In is the original matrix, Out
is the transpose of matrix In and N is the number of elements per column. It is
a very inefficient algorithm in terms of running time and memory usage. Since
it traverses the matrix in row-major order and another in column-major, it gets
a cache miss in every step of the column-wise traversal for large matrices.

The second approach is the Cache-aware algorithm [1], which uses the knowl-
edge of the memory architecture to achieve a better performance in terms of
cache misses. Therefore, it uses the cache line size or other cache sizes of the
processor, L, and divides it by the size of the matrix type. Algorithm 2 presents
the pseudo-code of the Cache-Aware Algorithm. It is similar to the Naïve Algo-
rithm, but it rearranges the data in order to transfer it to the cache in blocks to
minimise the number of cache misses.

4 Methodology and Experimental Setup

The Energy Complexity model described in [24] (see Sect. 2.1) suggests that the
total energy consumed by an algorithm A can be modelled as a linear combina-
tion of the energy consumed by the Central Processing Unit (CPU) instructions
or non-memory accesses and memory accesses. Therefore, in order to model the
energy consumed by the two matrix transpositions algorithms described in the
previous section, we measured the total amount of running-time and energy
consumed by CPU instructions and memory accesses. To accomplish this, we
performed two distinct measurements. The first measured the overall energy
and time spent with both CPU instructions and memory accesses. The second,
explained in more detail in Sect. 4.3, measured the energy and time spent with

382 G. Lopes et al.

only the CPU instructions, from which energy and time consumption on memory
accesses can be derived by subtracting it from the first measurement.

In the following sections, we provide more details of the experimental method-
ology that we have followed to compare the implementations of both algorithms
described in the previous section.

4.1 Experimental Setup

Our experiments were conducted on a computer with a 6th Generation Intel Core
CPU, based on the Skylake architecture (x86-64), which has 8 virtual cores, 4
physical cores, running at 2.6GHz, and using Ubuntu 18.04.2 LTS. Moreover,
the computer was equipped with 16 GB of RAM and 3 cache levels, L1, L2 and
L3. More specifically, each physical core is split into two virtual cores, each one
with an individual L1 cache connected to a shared L2 cache per each physical
core. Moreover, each physical core L2 cache is connected to a shared L3 cache
to all of the physical cores. The L1 cache is divided into instructions and data,
L1I and L1D, each one with a size of 32KiB and an 8-way associative placement
policy. The L2 cache has a size of 256KiB with a 4-way associative placement
policy and an exclusive cache inclusion policy. Finally, the L3 cache has a size
of 6144KiB with a 12-way associative placement policy and an inclusive cache
inclusion policy. Moreover, every cache level has a write-back policy and a Least
Recently Used (LRU) replacement policy.

The CPU processor can only refer to data that is accessible in the cache
(cache reference). If the processor accesses data that is in its cache, a cache hit
occurs, otherwise, a cache miss occurs. In the latter case, the cache needs to
evict one of the existing entries and replace it by the new cache entry. Initially,
the processor writes only in the cache, but once this block has been replaced by
another cache block, it writes the data to the main memory. Each cache level
has a P -way associative placement policy where a block of RAM is mapped to
a limited number, P , of different memory cache blocks, increasing the change of
a cache hit.

Both algorithms described in the previous section were implemented in C++,
in particular, using the C++11 standard, and compiled with clang++ without
optimisation flags. The setup of the matrices and the algorithms for the trans-
position are implemented using only the C standard library. Moreover, since
clang++ has been used for intermediate code generation, this compiler was cho-
sen over G++ to maintain coherency in the generated machine code.

We chose data type int to represent each element of the matrix. As for the
matrix size, we considered square matrices of size N ×N where N starts at 210

and ends at 40960, with jumps of 210. The source code for each algorithm shares
the same main function. Moreover, the algorithms perform the transposition
from one input matrix to an output matrix. To achieve a better cache perfor-
mance, we implemented two one-dimensional arrays with N ×N elements with
an alignment of 26 bytes. This alignment value was chosen after exploring and
experimenting with multiple values, such as 212 (cache page size) and 26 (cache
line size). Note that due to the cache organisation, the best alignment values

An Empirical Study on the Energy Efficiency 383

are always multiples of the cache line size. Furthermore, for the cache-aware in
Algorithm2, we considered L = 24, 26 and 28. We have considered other values
close to 28 in preliminary experiments, but we did not see differences of perfor-
mance. Finally, we used memset operation to initialise the matrix and to fill the
cache levels, since it ensures contiguous memory initialisation.

We used perf to collect the performance metrics for each algorithm such
as time, energy and memory usage values. Moreover, we analysed the perfor-
mance of the algorithms without memory access instructions by using LLVM
and clang++ to generate a new executable and collect the performance metrics.

Each algorithm was executed 30 times for each instance to account for slight
fluctuations in memory usage performance counters, time and energy values.
Note that there are different types of cache misses, i.e. instructions and data.
However, in our experiments, we only analyse the data cache misses. To under-
stand more about the collected performance events and the derived values, i.e.
the number of cache references at the first level cache, we refer to [11]. Fur-
thermore, to maintain accuracy and reduce disturbances in the collected values,
the program executions were made on a light window manager environment (in
particular, i3) with the screen and networking connections turned off, and with
a minimal number of background processes. In order to reduce the noise and
interference of other internal processes, we isolated one physical core, two vir-
tual cores. Moreover, to prevent processes migrations between CPUs, we confined
the program execution to just one of the isolated virtual cores.

4.2 Performance Counter Measurement Tools

There are generally two ways to measure energy: using the computers internal
sensors or using hardware connected to the computer as external sensors. Exter-
nal sensors usually perform measurements at some predetermined time interval
(e.g. every second) and measure the entire energy consumed. Therefore, since the
level of granularity required for our experiments is too fine, at the instruction
level, we have opted to use internal sensors. There are a few energy consumption
internal sensors, such as PowerTOP, Intel Power Gadget and RAPL [7,8]. How-
ever, the first two only measure the instantaneous or actual energy consumption,
while RAPL can measure the energy consumed between intervals or during pro-
gram execution. Therefore, in the context of our experiments and because we
were using an Intel architecture, we decided to use RAPL.

Running Average Power Limit (RAPL) interfaces consist of non-architectural
Model-Specific Register (MSR), i.e. control registers that are used for debugging,
program execution tracing and computer performance monitoring) and it was
implemented by Intel to work in SandyBridge architectures and newer [7,8].
RAPL does not directly measure the consumed energy by each processor.
Instead, it uses a modelling approach based on 100 different micro-architectural
event counters which are after used to model the dynamic energy consumption.
Each RAPL domain supports a set of capabilities. One of them is the Energy
Status, which provides energy consumption information of two main domains:
i) Total package, which consists of components of the processors involved in

384 G. Lopes et al.

instructions execution (PP0 – Core Devices) and devices close to the CPU but
not part of the core, such as the GPU and other sub-components such as the L3
cache, the integrated memory controller, etc.(PP1 – Uncore Devices); ii) DRAM,
which is a type of RAM and the main data component of the processors. The
accuracy and validation of RAPL have been analysed in [8], where the authors
show that it is capable of providing accurate energy estimates at a fine-grained
level, reaching an average error rate of only 1.12%.

On Linux, the RAPL energy measurements can be accessed commonly in
three different ways: reading files in the inter-rapl directory, using the perf tool
or reading from the MSR. Perf is a standard profiling and performance analysing
tool for the Linux kernel that provides a framework for collecting and analysing
hardware and software performance counters data, including energy and cache
memory usage data. Moreover, it is one of the most commonly used performance
counter tools on Linux along with OProfile, it has a simpler user interface and
allows us to access the energy consumption values. Therefore, since we can collect
all the necessary data to our analysis using perf, we decided to use it as a
benchmarking tool.

To collect a given set of performance events, we used the perf stat com-
mand. Given a set of performance events and a command to execute, the stat
command presents a summary of performance events chosen and saves it into
a file. For our experiments, we wanted to collect all the available data about
energy and cache memory usage. Therefore, the available events in perf allow
us to gather the energy values for different CPU components, such as Random-
Access Memory (RAM), Graphics Processing Unit (GPU), Cores and Package
(energy consumed by the GPU and Cores), memory usage performance coun-
ters, such as the number of cache misses and stall cycles for the different levels
of the memory hierarchy, and other performance counters such as the number
of instructions and cycles (see [11]). Moreover, perf allows to specify the CPUs
to gather the event counters, with flag -a to collect from all CPUs and –cpu=C
from a specific CPU. Furthermore, to measure time, due to the fact that perf
uses the same approach as getrusage, we also decided to use perf.

4.3 Intermediate Machine Code Generation Tool

Since it is impossible to measure exclusively the time and energy consumed by
the memory accesses, we disabled memory access operations. Therefore, in the
context of our experiments and to be able to characterise the performance of the
implementation without accessing and storing on memory, we decided to anal-
yse the machine code generated by the compiler and to remove memory access
operations, namely, load and store operations, that refer to matrix transposition
instructions.

There are different tools to generate intermediate source code representa-
tion. However, due to the familiarity and experience with the library, as well as
its popularity, we decided to use the LLVM. LLVM is a collection of libraries
and a back-end compiler designed around a language-independent intermedi-
ate representation (LLVM IR). Moreover, it can be used to construct, optimise

An Empirical Study on the Energy Efficiency 385

and generate intermediate or binary machine code. To generate the intermediate
code representation, we use clang as front-end compiler, which is a well-known
compiler that is fully compliant with C++11 and uses LLVM as its back-end.

After identifying and removing the intermediate memory access instructions,
we compiled the LLVM IR file into assembly language using the llc tool from
the LLVM library. Then, to create the executable on the generated assembly
code, we use the clang linker.

Fig. 2. Average performance of naïve and the three aware implementations in terms of
energy consumption in Joules (left plot) and running-time in milliseconds (right plot).
95%-confidence intervals are also shown

5 Experimental Analysis

This section describes an in-depth experimental analysis on the energy con-
sumption of the two matrix transposition algorithms described in Sect. 3 on a
wide range of matrices sizes, following the experimental methodology that was
introduced in the previous section.

Figure 2 shows the energy consumption (left plot) and running-time (right
plot) of all implementations for the input sizes considered. We removed the
value for N = 32768 from our analysis since we obtained a very large running-
time and very low energy consumption as compared with other values of N . We
believe that this is due to the multidimensional array sequential access, which can
exhibit a poor performance due to poor cache-line utilisation, especially when
N is a power of two, leading to cache-line conflicts. Moreover, this can cause
several delays because of the distance between the memory address accessed,
discontiguous jumps of memory by N , also called cache contentions. However,
the value of N seems to be dependent of the computer architecture and the CPU
cache, and its restrictions, such as cache policies.

386 G. Lopes et al.

Fig. 3. Average performance of naïve and the three aware implementations in terms
of energy consumption in Joules and running-time in milliseconds (left) and average
percentage of energy consumption used on memory accesses (right)

For each input size, we also present the 95%-confidence interval for the mean
in terms of energy consumption and running-time. Both plots indicate that all
implementations take a linear amount of time and consume a linear amount of
energy with respect to input size and that a better performance with respect to
both energy and running-time is achieved with smaller block sizes.

Noteworthy, the ranking of the implementations with respect to energy con-
sumption and running-time is not the same. In order to improve readability, the
caption of each plot follows the ordering of the implementations with respect to
the corresponding performance indicator. The plot of Fig. 2 shows that aware
256x256 takes slightly larger running-times than naïve, but the latter consumes
a larger amount of energy. A similar observation holds with respect to aware
4x4 and aware 64x64, respectively. This suggests that the energy consumption
of an implementation is not solely determined by its running-time.

Similar conclusions can also be taken from the left plot of Fig. 3, which shows
the energy consumption and running-time taken by each of the three aware vari-
ants and by the naïve implementation. Each point corresponds to an average
value of energy consumption and running-time for the same matrix size. The plot
indicates a linear relationship between energy consumption and running-time for
all the four implementations. However, it also shows that the four implementa-
tions present different performance profiles. Moreover, it is possible to see that
naïve and aware 256x256 present similar running-times, but the latter con-
sumes less energy. A similar observation applies to aware 64x64 with the aware
4x4, respectively.

The right plot of Fig. 3 shows the average percentage of energy consumption
spent on memory accesses. This value is considerably high for naïve and for
the aware implementations with larger block sizes, although constant for all
implementations over the input size.

An Empirical Study on the Energy Efficiency 387

Fig. 4. Percentage of cache misses (left), and number of cache references and cache
misses (right) in L1 (top), L2 (middle) and L3 (bottom)

388 G. Lopes et al.

The left plots of Fig. 4 show the average percentage of cache misses in L1
(top), L2 (middle) and L3 (bottom) cache levels, respectively and the right plots
show the average number of cache references (straight lines) and cache misses
(dashed lines) in L1 (top), L2 (middle) and L3 (bottom) cache levels.

The percentage of cache misses in L1 (top-left plot) is small in general for
all implementations as compared to the values obtained on other cache levels.
However, the total number of cache references (top-right plot) is very high as
compared with the values obtained in other cache levels. The naïve implemen-
tation has the largest percentage of cache misses, reaching a cache miss in every
five L1 cache accesses. However, the total number of cache references is smaller
than those obtained with the aware implementations. The aware 4x4 imple-
mentation has the smallest percentage of cache misses and the largest number of
cache references. Both aware 64x64 and aware 256x256 present similar values
in terms of cache misses and cache references.

Different from the case of L1 cache, the percentage of cache misses in L2
cache (middle-left plot) is considerably high for all implementations, above 60%.
However, the number of cache references (middle-right plot) is smaller than those
obtained in L1 and L3 cache levels. The large percentage of cache misses can be
explained by the L2 cache policy that was used in our experiments. For example,
when a cache miss occurs at L1 and L2 caches, the data is fetched from the L3
cache or from RAM. Due to cache policies, such as cache inclusion policy, where
all the data in the higher-level cache is also present in the lower-level cache,
the majority of blocks are transferred between the L2 and L3 caches. Note that
naïve and aware 64x64 exhibit a large percentage of cache misses, which is very
close to 100%. The implementations aware 4x4 and aware 256x256 present a
lower percentage of cache misses, with the latter having an oscillating pattern.
In terms of cache references, the relation between implementations is similar to
that of cache misses.

In the case of the L3 cache level, the percentage of cache misses (bottom-
left plot) is closely related to that of L1, although slightly larger. The imple-
mentations naïve, aware 64x64 and aware 4x4 present similar performance
above 20% whereas aware 64x64 is below 10%. The number of cache references
(bottom-right plot) is relatively high but lower than those in L1 cache level
and with a different ordering of performance. Noteworthy, aware 64x64 has the
lowest number of cache references among all implementations.

The results shown in Fig. 4 indicate that aware 256x256 displays better per-
formance than naïve at all cache levels, and it is even able to show better
performance than the remaining aware implementations at L3. This may jus-
tify the fact that aware 256x256 saves more energy than naïve. However, the
former does a large number of L1 and L3 cache references, which may affect
the running-time as compared with the remaining aware implementations. The
implementations aware 4x4 and aware 64x64 present similar performance in
terms of percentage of cache misses for L1 and L3, but the former has a large
number of cache references at all cache levels.

An Empirical Study on the Energy Efficiency 389

6 Conclusion and Future Work

Our work supports the argument that the energy consumed by an algorithm
can be modelled as a linear combination of the energy consumed by the CPU
instructions and memory accesses and that different memory access patterns can
perform distinct energy consumption behaviours. Moreover, it is important that
an algorithm takes advantage of the cache to decrease the energy consumption
of the memory accesses component.

Our experiments were performed using a specific type of memory hierarchy,
considered typical nowadays among CPUs composed of one line of processors [9],
which has shown a significant impact on processors market [25]. However, since
our experiments show that memory access patterns and organisation have a sig-
nificant effect on energy consumption, it would also be relevant to perform an
in-depth analysis of memory parameters, e.g. cache replacement policies, asso-
ciative placement policies and different cache sizes. Additionally, it could be
relevant to analyse other types of cache misses, such as overall cache misses and
instructions cache misses, and consider different memory parameters. Moreover,
to accomplish a different analysis, other related linear algebra problems can be
placed as a benchmark of our experiments, such as matrix multiplication.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Aggarwal, K., Hindle, A., Stroulia, E.: Greenadvisor: a tool for analyzing the
impact of software evolution on energy consumption. In: IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2015. pp. 311–320 (2015)

3. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
4. Barroso, L.A.: The price of performance. ACM Queue 3(7), 48–53 (2005)
5. Bose, B.K.: Global energy scenario and impact of power electronics in 21st century.

IEEE Trans. Ind. Electron. 60(7), 2638–2651 (2013)
6. Co, M., Weikle, D.A.B., Skadron, K.: Evaluating trace cache energy efficiency.

ACM Trans. Archit. Code Optim. 3(4), 450–476 (2006)
7. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL: memory

power estimation and capping. In: Proceedings of the 2010 International Sympo-
sium on Low Power Electronics and Design, pp. 189–194 (2010)

8. Desrochers, S., Paradis, C., Weaver, V.M.: A validation of DRAM RAPL power
measurements. In: Proceedings of the Second International Symposium on Memory
Systems, MEMSYS, pp. 455–470 (2016)

9. Gayde, W.: How CPUs are designed and built (2020). https://www.techspot.com/
article/1821-how-cpus-are-designed-and-built/

10. Guo, Y., Narayanan, P., Bennaser, M.A., Chheda, S., Moritz, C.A.: Energy-efficient
hardware data prefetching. IEEE Trans. VLSI Systems 19(2), 250–263 (2011)

11. Intel: Intel R© 64 and ia-32 architectures - software developer’s manual
complete (2019). https://software.intel.com/en-us/download/intel-64-and-ia-32-
architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/
https://www.techspot.com/article/1821-how-cpus-are-designed-and-built/
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

390 G. Lopes et al.

12. Kim, S., Vijaykrishnan, N., Kandemir, M.T., Sivasubramaniam, A., Irwin, M.J.:
Partitioned instruction cache architecture for energy efficiency. ACM Trans.
Embedded Comput. Syst. 2(2), 163–185 (2003)

13. Kwon, Y., Tilevich, E.: Reducing the energy consumption of mobile apps. behind
the scenes. In: 2013 IEEE International Conference on Software Maintenance, pp.
170–179 (2013)

14. Li, D., Halfond, W.G.J.: An investigation into energy-saving programming prac-
tices for android smartphone app development. In: Proceedings of the 3rd Inter-
national Workshop on Green and Sustainable Software, GREENS 2014, pp. 46–53
(2014)

15. Li, D., Hao, S., Gui, J., Halfond, W.G.J.: An empirical study of the energy con-
sumption of android applications. In: 30th IEEE International Conference on Soft-
ware Maintenance and Evolution, 2014, pp. 121–130 (2014)

16. Lima, L.G., Soares-Neto, F., Lieuthier, P., Castor, F., Melfe, G., Fernandes, J.P.:
Haskell in green land: analyzing the energy behavior of a purely functional lan-
guage. In: IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2016, 2016, vol. 1, pp. 517–528 (2016)

17. Liu, K., Pinto, G., Liu, Y.D.: Data-oriented characterization of application-level
energy optimization. In: Fundamental Approaches to Software Engineering - 18th
International Conference, FASE 2015, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2015 Proceedings, pp. 316–331
(2015)

18. Melfe, G., Fonseca, A., Fernandes, J.P.: Helping developers write energy efficient
Haskell through a data-structure evaluation. In: Proceedings of the 6th Interna-
tional Workshop on Green and Sustainable Software, GREENS@ICSE 2018, pp.
9–15 (2018)

19. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about
software energy consumption? IEEE Softw. 33(3), 83–89 (2016)

20. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva, J.:
Energy efficiency across programming languages: how do energy, time, and memory
relate? In: Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2017, pp. 256–267 (2017)

21. Pereira, R., Couto, M., Saraiva, J., Cunha, J., Fernandes, J.P.: The influence of the
Java collection framework on overall energy consumption. In: Proceedings of the
5th International Workshop on Green and Sustainable Software, GREENS@ICSE,
pp. 15–21 (2016)

22. Pinto, G., Castor, F., Liu, Y.D.: Mining questions about software energy consump-
tion. In: 11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, pp. 22–31 (2014)

23. Rashid, M., Ardito, L., Torchiano, M.: Energy consumption analysis of algorithms
implementations. In: 2015 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM 2015, pp. 82–85 (2015)

24. Roy, S., Rudra, A., Verma, A.: An energy complexity model for algorithms. In:
Innovations in Theoretical Computer Science, ITCS 2013, pp. 283–304 (2013)

25. Tibken, S.: Intel’s skylake chips to power pcs as thin as tablets, with big bat-
tery boost (2015). https://www.cnet.com/news/intels-skylake-chips-will-power-
pcs-as-thin-as-tablets-compute-sticks/

26. Tsifakis, D., Rendell, A.P., Strazdins, P.E.: Cache oblivious matrix transposition:
simulation and experiment. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Don-
garra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 17–25. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24687-9_3

https://www.cnet.com/news/intels-skylake-chips-will-power-pcs-as-thin-as-tablets-compute-sticks/
https://www.cnet.com/news/intels-skylake-chips-will-power-pcs-as-thin-as-tablets-compute-sticks/
https://doi.org/10.1007/978-3-540-24687-9_3

An Empirical Study on the Energy Efficiency 391

27. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I: two-level memories.
Algorithmica 12(2/3), 110–147 (1994)

28. Will, D.: Head north for the data center gold rush (2017). https://blog.advaoptical.
com/en/head-north-for-the-data-center-gold-rush

29. Yuki, T., Rajopadhye, S.V.: Folklore confirmed: compiling for speed = compiling for
energy. In: Languages and Compilers for Parallel Computing - 26th International
Workshop, LCPC 2013. Revised Selected Papers, pp. 169–184 (2013)

https://blog.advaoptical.com/en/head-north-for-the-data-center-gold-rush
https://blog.advaoptical.com/en/head-north-for-the-data-center-gold-rush

Author Index

B
Baars, Simon 344
Brunner, Tibor 165

C
Couto, Marco 53
Cunha, Jácome 53
Cserép, Máté 165

D
Domazet, Nikola 136

F
Fekete, Anett 165
Fernandes, João Paulo 53, 375

G
Galinac Grbac, Tihana 136
Grelck, Clemens 358

H
Handzhiyski, Nikolay 325
van Hees, Rinse 358

K
Kim, Yuri 202
Koopman, Pieter 3
Korečko, Štefan 98

L
Li, Jianhao 202
Lopes, Gonçalo 375
Lubbers, Mart 3

M
Melfe, Gilberto 53
Mészáros, Mónika 165

O
Oprescu, Ana 344

P
Paquete, Luís 375
Pereira, Rui 53, 77
Plasmeijer, Rinus 3
Porkoláb, Zoltán 165

S
Saraiva, João 53, 77
Somova, Elena 325

Z
Zuilhof, Bart 358
Zsók, Viktória 202

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Z. Porkoláb and V. Zsók (Eds.): CEFP 2019, LNCS 11950, p. 393, 2023.
https://doi.org/10.1007/978-3-031-42833-3

https://doi.org/10.1007/978-3-031-42833-3

	 Preface
	 Organization
	 Contents
	Main Lectures
	Writing Internet of Things Applications with Task Oriented Programming
	1 Introduction
	1.1 Internet of Things
	1.2 Task Oriented Programming
	1.3 iTask
	1.4 TOP for the IoT
	1.5 Structure of the Paper

	2 mTask system architecture
	2.1 Blink
	2.2 Language
	2.3 Class Based Shallow Embedding
	2.4 DSL design
	2.5 Backends
	2.6 Bytecode
	2.7 Skeleton

	3 mTask language
	3.1 Expressions
	3.2 Functions
	3.3 Basic Tasks
	3.4 Parallel Task Combinators
	3.5 Threaded Blinking
	3.6 Sequential Task Combinators
	3.7 Shared Data Source
	3.8 Lifted Shared Data Sources
	3.9 Interactive Blinking
	3.10 Peripherals

	4 IoT applications with TOP
	4.1 Hardware and Client
	4.2 Temperature
	4.3 LED matrix
	4.4 Temperature Plotter

	5 Related Work
	5.1 Interpretation
	5.2 Task Oriented Programming
	5.3 Functional Reactive Programming
	5.4 Functional Programming
	5.5 Multitasking
	5.6 mTask history

	6 Discussion
	A Embedded Domain Specific Language Techniques
	A.1 Deep Embedding
	A.2 Shallow Embedding

	B iTask reference
	B.1 Types
	B.2 Editors
	B.3 Task Combinators
	B.4 Shared Data Sources
	B.5 Extra Task Combinators
	B.6 Examples

	C How to Install
	C.1 Fetch the CEFP distribution
	C.2 Setup
	C.3 Compile the Test Program
	C.4 Setup the Microcontroller Unit

	D Solutions
	References

	Paint Your Programs Green: On the Energy Efficiency of Data Structures
	1 Introduction
	2 Data Structures Libraries
	2.1 Haskell Data Structures
	2.2 Java Data Structures

	3 Experimental Setup
	3.1 Haskell Operations
	3.2 Java Operations
	3.3 Measuring Energy Consumption

	4 Comparing Data Structure Energy Consumption
	4.1 Haskell Data Structures
	4.2 Java Data Structures

	5 Related Work
	6 Conclusions
	References

	Energy Efficient Software in an Engineering Course
	1 Introduction
	2 Energy Efficient Software in Higher Education
	2.1 Sustainable Development and Its Dimentions
	2.2 Sustainable Development in Higher Education
	2.3 Energy Efficient Software in Higher Education

	3 Software Analysis and Testing with a Green Flavor
	3.1 Green Software: A Multidisciplinary Module
	3.2 Green Software: Module Objectives
	3.3 Green Software: Module Supporting Tools

	4 Energy Efficent Software: Students Assessment
	4.1 A Catalog of Energy Smells and Refactorings
	4.2 Students Grades

	5 Conclusions
	References

	Utilizing Rail Traffic Control Simulator in Verified Software Development Courses
	1 Introduction
	2 TD/TS2JC Toolset
	2.1 Train Director
	2.2 TS2JavaConn
	2.3 Communication with Control Modules

	3 Control Modules and Configuration Files
	3.1 Non-parametric Module
	3.2 Parametric Module

	4 Teaching Verified Software Development in B-Method with TD/TS2JC Toolset
	4.1 Software Development Process of B-Method
	4.2 B-Language
	4.3 Abstract Specification
	4.4 Refinement to Implementation
	4.5 Three Sections Control Module Development Project

	5 Conclusion
	References

	The Role of Functional Programming in Management and Orchestration of Virtualized Network Resources
	1 Introduction
	2 Background
	3 Network Evolution
	3.1 Cloud Computing Platforms
	3.2 Network Function Virtalisation and Software Defined Network

	4 Management and Orchestration of Virtualized Network Resources
	4.1 Design Principles for Implementing Autonomic Behavior
	4.2 Current State

	5 OpenStack
	5.1 Graphical User Interface for Manipulating Virtual Resources
	5.2 Authentification and Authorisation Functions
	5.3 Management of Disk Images
	5.4 Network Management Functions
	5.5 Management of Virtual Instances
	5.6 Management of Persistent Memory
	5.7 Management of Object Storage
	5.8 Performance Measurement Functions
	5.9 Orchestration Functions

	6 Examples
	6.1 Example 1
	6.2 Example 2
	6.3 Example 3
	6.4 Example 4

	7 Use Cases from Industry and Reflection on Design Principles
	7.1 Virtualisation of Mobile Switching Centre
	7.2 Management Functions for Reliable and Stable Operation

	8 Discussion
	9 Conclusion
	References

	Towards Better Tool Support for Code Comprehension
	1 Introduction
	2 Model of Code Comprehension
	2.1 Top-Down Models
	2.2 Bottom-Up Models
	2.3 Other Approaches
	2.4 The Role of Concept Location

	3 Nature of the Problems
	3.1 Growing Complexity
	3.2 Knowledge Erosion
	3.3 Multiple Views of the Software Based on Various Information Sources
	3.4 Communication Barriers
	3.5 Multiple Programming Languages
	3.6 Hard to Deploy New Tools
	3.7 Requirement of Open Extensibility
	3.8 API Usage

	4 State of the Art
	5 The CodeCompass Architecture
	5.1 Layers of the Architecture
	5.2 Web User Interface
	5.3 Language Server Protocol
	5.4 Performance

	6 Important Design Workflows
	6.1 Bug Investigation
	6.2 Feature Development Planning and Estimation
	6.3 Refactoring
	6.4 Knowledge Transfer and Newcomers' Catch-Up

	7 User Acceptance in Real Production
	8 Conclusion and Future Work
	References

	Balanced Distributed Computation Patterns
	1 Introduction
	2 Go Essentials
	2.1 Syntax of Basic Language Elements

	3 Concurrent Programming
	3.1 Goroutine
	3.2 WaitGroup
	3.3 Mutual Exclusion
	3.4 Channels
	3.5 Select
	3.6 Concurrency Principles
	3.7 Parallelism
	3.8 Concurrent Job Processing

	4 Advanced Message Queueing Protocol (AMQP)
	4.1 AMQP Components
	4.2 Connection and Channel
	4.3 Safe Message Delivery in Go
	4.4 Prefetch
	4.5 AMQP at Network Failures
	4.6 AMQP Management
	4.7 AMQP Advantages
	4.8 AMQP Usage
	4.9 AMQP 0.9.1 Model
	4.10 Go RabbitMQ Client Library

	5 Distributed Programming
	5.1 RabbitMQ Hello World
	5.2 RabbitMQ Exchange
	5.3 RabbitMQ Shared Queue
	5.4 Parallel Receive
	5.5 Distributed Job Processing
	5.6 Distributed Pipeline
	5.7 Distributed Divide and Conquer

	6 Testing Performances
	7 Related Work
	8 Conclusion
	A Code Listings and Outputs
	A.1 Parallel Receive
	A.2 Distributed Job Processing with Shared Response Queue, Version2
	A.3 Distributed Job Processing with Private Response Queue, Version3
	A.4 Distributed Job Processing with Worker Generator, Version4
	A.5 Distributed Pipeline with Connection Confirmation (Version 2)
	A.6 Distributed Pipeline with Worker Generator (Version 3)
	A.7 Distributed Divide and Conquer

	B Task for Readers
	References

	PhD Workshop
	Tunnel Parsing
	1 Introduction
	2 Parsing Overview
	3 Problem
	4 Tunnel Parsing Algorithm
	4.1 Tunnels
	4.2 Routers
	4.3 Segments
	4.4 Control Layer

	5 Results
	6 Conclusion
	References

	Finding Code Clone Refactoring Techniques by Mapping Clone Context
	1 Introduction
	2 Background and Related Work
	2.1 Clone Context Analysis
	2.2 Clone Refactoring

	3 Context Analysis of Clones
	3.1 Relation
	3.2 Location
	3.3 Contents

	4 CloneRefactor
	5 Experimental Setup
	5.1 The Corpus
	5.2 Tool Validation

	6 Results
	6.1 Relation
	6.2 Location
	6.3 Contents

	7 Discussion
	8 Conclusion
	References

	Code Quality Metrics for Functional Features in Modern Object-Oriented Languages
	1 Introduction
	2 Problem Analysis
	3 Candidate Measures
	3.1 Number of Lambda-Functions Used in a Class (LC)
	3.2 Source Lines of Lambda (SLOL)
	3.3 Lambda Score (LSc)
	3.4 Number of Lambda-Functions Using Mutable Field Variables in a Class (LMFV)
	3.5 Number of Lambda-Functions Using Mutable Local Variables in a Class (LMLV)
	3.6 Number of Lambda-Functions with Side-Effects Used in a Class (LSE)
	3.7 Number of Non-terminated Collection Queries in a Class (UTQ)

	4 Experimental Setup
	4.1 Methodology
	4.2 Relating Functional Constructs to Error-Proneness
	4.3 Measuring Functional Constructs
	4.4 Measuring Error-Proneness
	4.5 Dataset

	5 Experimental Evaluation
	6 Threats to Validity
	7 Related Work
	8 Conclusion and Discussion
	References

	An Empirical Study on the Energy Efficiency of Matrix Transposition Algorithms
	1 Introduction
	2 Related Work
	2.1 Energy Complexity Model
	2.2 Empirical Studies on Cache Efficiency
	2.3 Empirical Studies on Energy Efficiency

	3 Algorithms for Matrix Transposition
	4 Methodology and Experimental Setup
	4.1 Experimental Setup
	4.2 Performance Counter Measurement Tools
	4.3 Intermediate Machine Code Generation Tool

	5 Experimental Analysis
	6 Conclusion and Future Work
	References

	Author Index

