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Abstract. In Machine Learning, data embedding is a fundamental
aspect of creating nonlinear models. However, they often lack inter-
pretability due to the limited access to the embedding space, also called
latent space. As a result, it is highly desirable to represent, in the input
space, elements from the embedding space. Nevertheless, obtaining the
inverse embedding is a challenging task, and it involves solving the hard
pre-image problem. This task becomes even more challenging when deal-
ing with structured data like graphs, which are complex and discrete by
nature. This article presents a novel approach for graph regression using
Normalizing Flows (NFs), in order to avoid the pre-image problem. By
creating a latent representation space using a NF, the method overcomes
the difficulty of finding an inverse transformation. The approach aims at
supervising the space generation process in order to create a space suit-
able for the specific regression task. Furthermore, any result obtained
in the generated space can be translated into the input space through
the application of the inverse transformation learned by the model. The
effectiveness of our approach is demonstrated by using a NF model on
different regression problems. We validate the ability of the method to
efficiently handle both the pre-image generation and the regression task.

Keywords: Graph Normalizing Flows · Pre-image problem ·
Regression · Interpretability · Nonlinear embedding

1 Introduction

Graph machine learning generally operates by embedding graph data to a mean-
ingful space known as the latent (or feature) space. This embedding can either
be implicit, as in the case of kernel machines, or explicit through the use of
nonlinear operations in deep neural networks or more classic graph embedding
approaches [3,11]. While providing accurate prediction models for classification
or regression tasks, such methods lack interpretability, and it may be interesting
to invert the embedding and map the results back to the graph space to analyze
the behavior of the model. This process is referred to as the pre-image problem.
Several solutions for the pre-image problem have been proposed in the general
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case [1,9]. Moreover, some solutions have been proposed to solve the pre-image
problem on graph data [2,10].

In this work, we propose to design an interpretable prediction model using
a graph regression method that addresses the issue of the pre-image. The key
idea is to define a nonlinear-embedding function that is invertible by design. The
learned embedding space is designed to linearly organize the samples, leading to
good regression performances by the application of any standard linear regression
method in this space. Additionally, pre-images can be conveniently generated by
applying the inverse mapping on any sample of interest from the latent space.

Our approach producing a reversible nonlinear-embedding function takes
inspiration from recent advances in graph generative models [5–7], including
Normalizing Flows (NFs) for graphs and molecular data [20]. By defining an
invertible transformation from the complex distribution of input data to a simple
distribution easy to manipulate, NFs can learn a latent space while guaranteeing
the invertibility of the model. Our experimental results showcase the efficacy of
our proposed methodology through the use of the MoFlow architecture [20], a
graph normalizing flow (GraphNF) using coupling-layers to operate on graphs
represented by a combination of a feature matrix and adjacency tensor. We con-
ducted experiments on well-known molecular datasets to demonstrate the appli-
cability of our approach in addressing graph regression tasks while producing a
high-quality representation space free of the pre-image problem.

The paper is organized as follows: Sect. 2 gives an overview of NFs and Graph-
NFs. Our contributions are presented in Sect. 3, which is divided into three
parts. We first revisit the NF to address a regression task, and then detail the
regression model. Lastly, we introduce the pre-image generation operations. The
experiments and conclusion follow in Sects. 4 and 5, respectively.

2 Normalizing Flow Preliminaries

Normalizing Flows (NFs) are generative models that learn an invertible trans-
formation function Φ between two probability distributions: a complex data dis-
tribution PX and another distribution PZ , often chosen as a simple Gaussian
distribution represented in a latent space. This allows fast and efficient data gen-
eration by sampling from the Gaussian distribution in the latent space and using
the inverse function Φ−1 to generate data in the input space X . The relation-
ship between the two probability densities in NFs is defined using the change of
variable formula. Therefore, considering the input samples x1, x2, . . . , xN ∈ X ,
the training is performed by maximizing the log-likelihood function

log PX (X) =
N∑

i=1

log PZ(Φ(xi)) + log
∣∣∣∣det

(
∂Φ(xi)
∂ xi

)∣∣∣∣ , (1)

where the determinant of the Jacobian of the function Φ, evaluated at xi, indi-
cates the degree of deformation between the two distributions. This expression
represents the exact relationship between the distributions, which differs from
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Fig. 1. NF adapted to a regression task, colors correspond to y values.

variational auto-encoders that rely on lower bounds. To define this relationship,
the NF model should have an easy-to-invert structure with an easy-to-compute
determinant. In order to enhance the model’s expressiveness, the transformation
Φ combines � bijective functions, i.e., Φ = Φ� ◦ Φ�−1 ◦ · · · ◦ Φ1. This results in
computing the Jacobian determinant of Φ as the product of the determinants of
all Φi. Various NF architectures have been proposed in the literature to satisfy
these constraints by defining a triangular Jacobian matrix whose determinant
computation is very efficient [14].

Graph Normalizing Flows (GraphNFs) apply the concept of NFs to graph-
structured data. While some GraphNFs generate graphs sequentially, such as
GraphAF [19] based on a flow-based autoregressive model, a large number of
GraphNFs generate graphs in a one-shot manner [8,15,16,20]. In the latter,
the first attempt to design a graph neural network using NF structures was
GNF [15] where the node features are updated using reversible message passing
transformation based on coupling layers. GraphNVP [16] and MoFlow [20] are
GraphNFs working in a one-shot manner and representing molecular graphs
as a pair of node feature matrix and adjacency tensor. They are based on the
use of affine-coupling layers to both the node feature matrix and the adjacency
tensor. Specifically, MoFlow involves a modified version of Glow [13] – which
is a convolutional NF for image data – to model the bonds and a new graph
conditional flow to model the atoms given the bonds using Relational Graph
Convolutional Network models. Moreover, to ensure the validity of the generated
molecules, MoFlow applies a post-hoc correction step.

3 Proposed Approach

This article presents a graph regression approach based on the NF formalism,
where the NF generated latent space Z is both relevant to the regression task at
hand and, by design, does not suffer from the pre-image problem. The underlying
idea, illustrated in Fig. 1, involves the three steps. First, we propose to supervise
the learning of the NF function Φ : G → Z to generate a distribution that
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follows multiple Gaussian distributions linearly organized in Z. Second, using
the learned latent space Z, we can perform straightforward operations (e.g.,
ridge regression) or more sophisticated algorithms to predict a quantitative value
given a data. Finally, as our model is invertible, both the transformation Φ and
its inverse Φ−1 are produced by our training algorithm. Therefore, it is possible
to compute the pre-image of any point from the latent space Z.

3.1 Regression-Based NF

Traditional NF models embed data in such a way that the distribution in the
latent space follows a target probability density, typically a Gaussian distribu-
tion. However, this configuration does not permit data to be organized based
on their quantitative values. In this section, we propose an adaptation of the
NF objective function to embed data based on their quantitative values, thus,
suitable for linear regression.

Consider a dataset D = {(G1, y1), (G2, y2) . . . (GN , yN )} composed of input
graph data denoted by Gi ∈ G and their corresponding quantitative labels
denoted by yi ∈ Y ⊂ R. Specifically, we consider the case where every graph
is partitioned into its corresponding feature matrix and adjacency tensor, i.e.,
G = (X,A) ∈ R

n×d × R
n×n×e where each graph is represented by n nodes of

d dimensions and a set of edges characterized by e dimensions. Thus, the total
dimension number is D = n2 × e + n × d. In this paper, we consider using NF
models to represent data, where each data point is represented by a two-part
latent representation that corresponds to the features matrix and adjacency ten-
sor. In particular, we concatenate the flattened representations of these two parts
to obtain the representation of data in the latent space Z ⊂ R

D.
We constitute our latent space using Gaussian distributions, each parame-

terised by a mean μ and a covariance matrix Σ, namely

PZ(z,μ,Σ) =
1√

(2π)D det(Σ)
e− 1

2 (z − μ)�Σ−1(z − μ)).

From this, we define the log-probability to belong to a Gaussian as

log PZ(z,μ,Σ) = − 1
2

(
D log(2π) + (z−μ)�Σ−1(z−μ)

) − log(det(Σ)). (2)

While common NFs rely on isotropic multivariate Gaussian distributions,
thus using a parameterization of zero-valued μ for all dimensions and the iden-
tity matrix as the covariance matrix Σ, our approach aims at solving regression
problems by the use of Gaussian distribution interpolations in Z. The principle
is to learn a distribution that spreads along a main axis by interpolating between
two Gaussians, which are associated with the extreme quantitative values. There-
fore, two Gaussian distributions are defined and parameterized by (μ1, Σ1) and
(μ2, Σ2), which are respectively associated with the minimum and maximum
values of Y. For the sake of simplicity, we use isotropic Gaussians, namely with
covariance matrices Σ1 = Σ2 = σ2

ID, where ID is the D × D identity matrix
and σ2 ∈ R represents the distribution variance.
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To carry out the interpolation process, a belonging coefficient τyi
is assigned

to each sample (Gi, yi) based on its quantitative value computed with

τyi
=

yi − min(Y )
max(Y ) − min(Y )

. (3)

The interpolated Gaussian mean μyi
is computed using

μyi
= τyi

μ1 +(1 − τyi
)μ2 . (4)

For the interpolation method to be useful, the 2 extreme Gaussian locations
in Z represented by their means (μ1,μ2) should be distinct and sufficiently sepa-
rated. Thus, we propose to learn their means within the NF training. To achieve
this, we incorporate an additional objective function into the NF objective func-
tion, aimed at maximizing the separability of the Gaussians.

Thus, the proposed NF loss function is composed of two terms. The first one
applies the change of variable formula (1) to describe the change in density of a
single sample. Specifically, for each sample Gi, the corresponding loss is

Lnf(Gi,μyi
) = − log PZ(Φ(Gi),μyi

,Σyi
) − log

∣∣∣∣det
(

∂Φ(Gi)
∂Gi

)∣∣∣∣ .

Here, log PZ(Φ(Gi),μyi
,Σyi

) refers to (2), which uses the interpolated Gaussian
parameters (μyi

,Σyi
). The mean μyi

is computed using (4), while the covariance
matrix Σyi

is defined in the same way as the other Gaussian distributions,
namely Σyi

= σ2
ID. The second term promotes the separation between the

two extreme Gaussians with Lμ = − log
(
1 + ‖μ1 −μ2 ‖22

)
. Thus, the final loss

function is
L(Gi, yi) = Lnf(Gi,μyi

) + βLμ, (5)

with β corresponding to the tradeoff coefficient between the two terms.
Let Θ denotes the set of parameters of Φ, and let ω the set of optimizable

parameters, i.e., ω = {Θ,μ1,μ2}. To estimate the parameters in ω, we employ a
stochastic gradient descent algorithm that minimizes the loss function (5) over
a randomly selected batch I of the training dataset at each iteration, namely

ω ← ω − η
∑

k∈I

∇ωL(Gk, yk), (6)

where η is the learning rate.

3.2 Operating in Z
Our approach allows a customized generation of a latent space Z where data
are linearly organized. Therefore, a simple and efficient predictive model can
be defined in Z. We denote g : Z → R a linear predictive model. Since Φ is a
nonlinear function, defining the linear predictive model g in Z is equivalent to
defining a nonlinear predictive model f : G → R, described as f(G) = g(Φ(G)).
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Let g(z) = z� ϕ* be the predictive linear model g : Z → R, where ϕ* ∈ Z are
the optimal parameters to be estimated. Without losing generality, we consider
a ridge regression in the latent space. This involves finding the best parameters
by minimizing the regularized mean square error given by

min
ϕ

1
N

N∑

i=1

(
yi − Φ(Gi)�ϕ

)2

+ λ ‖ϕ‖22, (7)

where the importance of the regularization term is weighted by λ. The opti-
mal solution vector ϕ* for this regularized optimization problem is obtained by
nullifying its gradient, resulting in

ϕ* = (Z� Z+λID)−1 Z� y . (8)

where

Z =
(
Φ(G1) · · · Φ(GN )

)�

y =
(
y1 · · · yN

)�
.

Then using (8) leads to the optimal predictive parameters in Z and we can
therefore specify the nonlinear predictive model f : G → R by combining the
transformation function Φ and the linear regression model g. Using this method,
the quantitative value prediction for any graph G ∈ G is achieved by

f(G) = Φ(G)�(Z� Z+λID)−1 Z� y .

3.3 Pre-imaging

The availability of Φ−1 allows the pre-image of any point of interest from the
latent space to be computed, thus eliminating the pre-image problem. We pro-
pose a pre-image generation method to obtain new data given a quantitative
label y. Indeed, our regression approach creates a linear relation between quan-
titative labels and positions in Z. As the Gaussian distribution characterized
by (μ1,Σ1) is intentionally associated with the minimum quantitative label in
Y , and the one defined by (μ2,Σ2) is associated to the maximum quantitative
label in Y , we can determine the position of the mean μy that corresponds
to a quantitative label y by employing (4). Then, from the Gaussian distribu-
tion parameterized by (μy,Σy), it is possible to sample a point z ∈ Z with
z ∼ N (μy, σ2

ID) where σ2 represents the variance of the Gaussian distributions
chosen during the training of the model and obtain its pre-image in G, namely

Ĝ = Φ−1(z).
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4 Experiments

We evaluated our approach1 in order to answer two separate questions:

Q1 Can the latent space produced by our regression method for graph data
be considered effective, and are the representations generated suitable for
regression-based objectives?

Q2 Does our model preserve its ability to efficiently generate pre-images ?

The analysis was conducted on three molecular regression datasets. In these
datasets, the nodes encode the atoms of the molecule and are labeled by the
chemical element of each atom. The edges encode the chemical bonds between
atoms. The QM7 dataset is a quantum chemistry dataset composed of 7, 165
small organic molecules with up to 7 significant atoms. Its regression task con-
sist in predicting the atomization energy of each molecule. The ESOL dataset is
composed of 1, 128 molecular compounds, with a maximum of 55 nodes. As the
used graph representation is sensitive to the size of the graphs, molecules with
more than 22 atoms were filter out, thus reducing the dataset to 1, 015 differ-
ent graphs. The prediction task consists of predicting the solubility measurement
associated with each molecule. Finally, the FREESOLV dataset provides exper-
imental and calculated information on the hydration free energies of 643 small
molecules in water, with a maximum of 24 nodes. Similarly to the ESOL dataset,
the dataset was reduced to 632 distinct graphs with a maximum size of 22 nodes.

We implemented our approach using MoFlow [20] and compared it to stan-
dard graph kernels, such as Weisfeiler-Lehman (WL) [18], Shortest-Path
(SP) [4] and Hadamard Code (Hadcode) [12]. In addition, as our approach
consists in applying ridge regression on the concatenation of the flattened repre-
sentations of the graph in Z, we also compared to simpler kernels working on the
concatenation of the flattened representations of the graph in G. We considered
standard vector-based kernels: linear, RBF, Polynomial and a sigmoid [17]. Each
predictive model was trained by minimizing the cost function described in (7).
Finally, the capability of generating pre-images was compared with the approach
outlined in [1], employed on previously mentioned kernel methods.

Each dataset was split to 90% for training and the remaining 10% for evalu-
ation. To ensure a fair comparison, the kernels were fine-tuned and their param-
eters determined by cross-validation with a grid search where 10 values of λ
ranging from 10−5 to 102 were selected for sampling. In addition, for the simpler
kernels, a logarithmic scale was used to sample 5 weighting values applied to
the similarity measure used in the kernel ranging from 10−5 to 103. The power
of the Polynomial kernel was varied over a set of candidate values: 1, 2, 3, 4. For
regression evaluations, the performance is measured by the R2 score.

As described in previous sections, we converted the graph data into a combi-
nation of a node feature matrix and an adjacency tensor, namely G = (X,A) ∈ G
with X ∈ R

n×d and A ∈ R
n×n×e. The conducted experiments used labeled edges

1 For sake of reproducibility, all experiments can be reproduced from the available
GitHub repository https://github.com/clement-g28/nf-kernel.
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Table 1. R2 score (± std) on graph regression datasets

Method Datasets

QM7 ESOL FREESOLV

Standard Kernels

Linear 0.681 ± 0.001 0.555 ± 0.032 0.254 ± 0.114

RBF 0.680 ± 0.002 0.558 ± 0.032 0.262 ± 0.113

Polynomial 0.681 ± 0.001 0.566 ± 0.034 0.264 ± 0.102

Sigmoid 0.673 ± 0.002 0.563 ± 0.037 0.255 ± 0.074

Graph Kernels

WL 0.490 ± 0.0 0.602 ± 0.0 0.895 ± 0.0

SP 0.721 ± 0.0 0.531 ± 0.0 0.543 ± 0.0

Hadcode 0.491 ± 0.0 0.573 ± 0.0 0.901 ± 0.0

(Ours) MoFlow 0.730 ± 0.008 0.685 ± 0.039 0.754 ± 0.042

in each dataset, leading to the definition of e as the number of edge labels plus
one label for the non-existent edge. The value of d was determined by the num-
ber of node labels along with one label for the non-existent node. In addition,
since a graph composed of n nodes can be represented in n! distinct ways using
such a representation method, we trained our models by implementing a ran-
dom permutation transformation of the input graph data. Additionally, to assess
the permutation variability of our technique, all experiments were evaluated 10
times by employing random permutations. Consequently, the performance are
reported as the mean performance and its standard deviation.

To answer Q1, Table 1 displays the average performance and standard devi-
ation (std) on the regression datasets. These results show the good predictive
performance of our method when employing linear ridge regression within the
latent space Z for most datasets. However, best results on the FREESOLV
dataset are achieved by the Weisfeiler-Lehman and Hadamard Code kernels. To
understand this point, it is noteworthy that this dataset comprises a smaller
number of distinct graphs, which are relatively larger in size when compared to
other datasets like QM7. Moreover, the quantitative values in the FREESOLV
dataset are non-uniformly distributed, ranging between −5.48 and 1.79, with
a significant proportion (more than 97%) falling within the range of −2.57 to
1.79. As a result, the linear interpolation-based approach used in this study may
not be the most suitable method for such datasets. However, our approach has
the advantage over graph kernels that once the model has been learned, pre-
dictions can be made directly and simply while graph kernel methods can be
computationally more expensive. Moreover, we can observe in the results non-
zero standard deviation in our performances due to the nature of the used graph
representations, as opposed to the graph kernels that are designed to be permu-
tation invariant. Therefore, the question Q1 can be answered positively in most
cases, indicating that the nonlinear transformation Φ learned by our method is
able of producing a good representation space for a regression task.
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Fig. 2. The pre-images generated from 12 points in Z sampled uniformly between the
min(Y ) and max(Y ).

To answer Q2 and test the ability of our model to generate pre-images, we
generated molecules from sampling points in Z using our model trained on the
QM7 dataset. These points were sampled by interpolating 12 values of y between
min(Y ) and max(Y ) as follows: For each value, we sampled a point in Z with
z ∼ N (μy, σ2

ID). Corresponding pre-images were generated in X by applying
the inverse transformation Φ−1 to the generated z. Figure 2 shows the obtained
pre-images, as well as the sampled quantitative values y and the predicted value
f(G) using our learned prediction model. This experiment demonstrates that
our model can generate meaningful pre-images of points in Z that are not a part
of the dataset, hence answering positively to Q2.

5 Conclusion

Our paper presented a novel approach that overcomes the curse of the pre-
image using NFs for a graph regression task. Our method generates a supervised
space where linear regression can be efficiently operated, as demonstrated by the
conducted experiments. The results indicated that the obtained latent space is
efficient in solving graph regression problems using straightforward linear oper-
ations. Moreover, the method enabled interpretability by facilitating the trans-
formation from the latent space to the input space and generating pre-images of
specific points of interest.

Our approach contributes to the application of NFs in a specific task and has
the potential to be adapted for other tasks such as classification. Although our
method is sensitive to the permutation of the graph due to the used representa-
tion, it may be interesting to extend it to other types of graph representations,
making it possible to achieve permutation invariance.
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