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Abstract. Most dynamic ensemble selection (DES) techniques rely
solely on local information to single out the most competent classifiers.
However, data sparsity and class overlap may hinder the region defini-
tion step, yielding an unreliable local context for performing the selection
task. Thus, we propose in this work a DES technique that uses both the
local information and classifiers’ interactions to learn the ensemble com-
bination rule. To that end, we encode the local information into a graph
structure and the classifiers’ information into multiple meta-labels, and
learn the DES technique end-to-end using a multi-label graph neural net-
work (GNN). Experimental results over 35 high-dimensional problems
show the proposed method outperforms most evaluated DES techniques
as well as the static baseline, suggesting its suitability for dealing with
sparse overlapped data.

Keywords: Dynamic ensemble selection · Graph neural networks ·
Meta-learning · Data sparsity

1 Introduction

Dynamic ensemble selection (DES) techniques assume the classifiers in an ensem-
ble make distinct mistakes in different areas of the feature space. Thus, they
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buco).

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-42795-4 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 59–69, 2023.
https://doi.org/10.1007/978-3-031-42795-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_6
https://doi.org/10.1007/978-3-031-42795-4_6


60 M. de Araujo Souza et al.

attempt to choose a subset of the models according to their perceived compe-
tence for classifying each sample in particular, often resulting in superior perfor-
mances compared to static selection schemes, which label all test instances with
the same set of classifiers [5]. Most DES techniques rely on the locality assump-
tion to solve the dynamic selection task, in the sense that similar samples should
be correctly labeled by a similar set of classifiers. These techniques require delim-
iting a region called the Region of Competence (RoC), via clustering [22], nearest
neighbors rule [2,12,23], distance-based potential function [29], recursive parti-
tioning [25], and/or fuzzy hyperboxes [6], in which the classifiers competences
are estimated according to some criteria, such as local accuracy [12], classifier
behavior [2], ensemble diversity [22], and meta-learning [3], among others.

The local region can thus have a large impact on the performance of these
techniques [5], and so several methods attempt to directly improve its distri-
bution. Filtering out the samples from the RoC is done in [17,18,24] based on
the Item Response Theory (IRT) discrimination index, class distribution, and
instance characterization, respectively. The RoC is characterized in [14] using a
must link and a cannot link graph that are then used together with the classi-
fiers’ local accuracy to estimate their competence in the region. These techniques
attempt to characterize and improve the local distribution for the classifier esti-
mation step but they still rely solely on the locality assumption to compute a
handcrafted competence estimation rule over an already defined region. While
these approaches work generally well over a vast array of problems, such as
class imbalanced distributions [17,24], local methods are known to struggle over
high dimensionality and class ambiguity [26,31] and can present a strong sen-
sitivity to overlap and data sparsity [21], with the latter being often associated
with an increased class boundary complexity [10,15]. Such challenging scenar-
ios may affect the local region definition and weaken the locality assumption,
which in turn may limit the application of the dynamic selection techniques over
real-world problems that present these characteristics, such as medical imaging
data [7] and DNA microarray data [15] used for disease detection.

We also find in the literature a few dynamic selection techniques that do not
rely on the locality assumption to perform the dynamic selection task [16,19].
Instead, they define the task as a multi-label meta-problem and learn the selec-
tion rule based on the classifiers’ inter-dependencies, thus the meta-learner yields
the ensemble combination rule for each input query instance without defining the
RoC or explicitly estimating the classifiers’ competences. While this approach
could be interesting over the scenarios where the local context does not favor
the dynamic classifier selection task, these techniques completely disregard the
local context and can perform poorly against simple local accuracy-based tech-
niques [19]. Both techniques also present a high computational cost due to the
use of a meta-learner ensemble [19] and Monte Carlo sampling [16].

Thus, we propose in this work a dynamic selection technique that learns from
the instances’ relationships and classifiers’ interactions jointly to better deal with
high dimensional overlapped data. To that end, we model the data into a graph
structure that can represent the samples’ local and class inter-relations. We
also model the classifiers’ interactions as the multi-labels of the dynamic selec-
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tion meta-problem. We then train a multi-label graph neural network (GNN) to
yield the dynamic classifier combination rule in an end-to-end manner, without
resorting to handcrafted meta-features or explicit RoC definition.

Graph neural networks operate directly on graph-structured data and are
able to produce high-level representations of nodes and graphs [30]. The first
GNNs were proposed for transductive learning and were unable to yield embed-
dings for unseen nodes, such as the Graph Convolutional Network (GCN) [11]
which first generalized the convolution operation to the vertex domain. However,
several models have been since proposed that work in inductive scenarios. The
GraphSAGE model [9], seen as an extension of the GCN for inductive learn-
ing, learns a set of functions that aggregate the features from sampled neigh-
boring nodes to produce the node embeddings. The Graph Attention Network
(GAT) [28], which also works for inductive problems, presents a self-attention
mechanism that allows the assignment of different weights to the neighbors in
order to increase the model’s capacity and to naturally deal with graphs that
present variable node degrees.

Thus, by using a multi-label GNN as our meta-classifier, we leverage both the
classifiers’ inter-dependencies, represented in the meta-labels, and the samples’
local interactions, represented in the graph, so that internally the network may
learn an embedded space where the locality assumption for the dynamic selection
task is stronger. We then contribute to the dynamic ensemble selection research
area by (a) proposing an end-to-end technique that combines the information
from the local data and the classifiers’ interactions to better deal with sparse
and overlapped data, and (b) evaluating the proposed method and ten other
techniques over 35 high dimensional small sample sized (HDSSS) problems to
assess whether learning from the two sources of information help overcome the
limitations the current dynamic selection techniques present.

This work is organized as follows. The proposed method is introduced in
Sect. 2. The experiments are reported in Sect. 3. Lastly, we summarize our con-
clusions in Sect. 4.

2 Graph Neural Network Dynamic Ensemble Selection
Technique

We propose in this work the Graph Neural Network Dynamic Ensemble Selection
(GNN-DES) technique, which attempts to better deal with locally complex sce-
narios in sparse overlapped data by combining the information from the samples’
local context and the classifiers’ interactions. To that end, we model the former
using a graph structure, which is capable of representing the samples’ local and
class relationships, and model the latter by learning the dynamic selection task
as a multi-label meta-problem.

Figure 1 describes the general steps of the GNN-DES technique. In memo-
rization, the training set T and the pool of classifiers C are used to assign the
samples’ meta-labels U and construct the known graph GT , which are both then
used to train the multi-label meta-learner GNN . In generalization, the query



62 M. de Araujo Souza et al.

Meta-label 

assignment

Graph construction

Meta-learner 

training

C

GNN

G

G  = (V , E 
x

)

U

Memorization

Generalization

Graph expansion
Ensemble 

combination

C

GNN

xq

Gq ŷq

Fig. 1. Description of the GNN-DES technique. T = {(x1, y1), (x2, y2), ..., (xN , yN )}
is the training set and U = {u1,u2, ...,uN} their corresponding meta-labels, C =
{c1, c2, ..., c|C|} is the ensemble of classifiers. GT is the known graph, composed of the
set of training vertexes (VT ) and edges (ET ×T ), Gq is the evaluation graph, composed
of the GT in addition to the query vertex (vq) and its edges (Eq×T ), and xq and ŷq

are the query instance and its predicted label, respectively.

instance xq is added to the known graph to produce the evaluation graph Gq,
which is input to the meta-learner and used to produce the dynamic ensemble
combination and then the output prediction ŷq.

Meta-label Assignment. In the meta-label assignment step, we characterize the
competences of the classifiers by assigning to the samples meta-labels associated
with their correct classification. This allows the meta-classifier to exploit the
diverse behavior of the classifiers through learning the inter-dependecies between
the meta-labels. Thus, to obtain the meta-labels, we evaluate the training set
over the ensemble and we assign to each sample (xi, yi) ∈ T a meta-label vector
ui of size |C| so that ui,k = 1 if the classifier ck correctly labels xi, otherwise,
ui,k = 0.

Graph Construction. In the graph construction step, we aim to characterize in
the known graph GT the local context of the data that may be useful for the
dynamic selection task. More specifically, we wish to embed the information of
how reliable a sample is to indicate a good set of competent classifiers for another
sample according to the locality assumption and the class relations. Thus, we
link the samples that have a similar output response from the classifiers, as
that may indicate they share a subset of competent classifiers. However, if the
two samples belong to the same class we build a strong link, where the closer
the samples the larger the edge weight as we expect the locality assumption to
be stronger. Samples from different classes, on the other hand, are assigned a
weak link, where the closer the samples the smaller the edge weight as the class
ambiguity may indicate a weaker locality assumption.

Thus, to build the known graph GT , we project the training samples into
the decision space, in which the axes represent the responses of each classifier
in the pool. Then, we link each sample so that it has at least one strong link,
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to its nearest neighbor from the same class, and calculate its maximum margin
for connection as a function of this link. Then, all samples within an instance’s
maximum margin are connected and their weights are set according to Eq. (1),
where di,j is the normalized L1 distance between the samples (xi, yi), (xj , yj) ∈
T projected into the decision space, dmax

i is the maximum margin for connection
of (xi, yi), and τ is a preset threshold.

ei,j =

⎧
⎪⎨

⎪⎩

1 − di,j , if (di,j ≤ dmax
i ∨ di,j ≤ dmax

j ) ∧ yi = yj ,

d2i,j , if (di,j ≤ dmax
i ∨ di,j ≤ dmax

j ) ∧ yi �= yj ,

0, otherwise,

dmax
i = min(di,k,∀xk ∈ T |yk = yi) + τ

(1)

Meta-learner Training. Using the known graph GT and the meta-labels U we fit
the meta-learner in a supervised manner in the final step of the proposed method
in memorization. We use a graph neural network core to learn and produce the
node embeddings and a dense layer of size |C| with sigmoid activation as the
output layer of the network so that each output node of the network represents
a classifiers’ weight in the dynamic ensemble combination rule. We use a GNN
core that is capable of inductive learning, and we fit the model using the binary
cross-entropy loss, weighted so that the harder to classify the sample, the higher
its weight, so as to encourage the model to focus on the more difficult samples.
We measure the instance hardness as the number of classifiers in the pool that
can label it correctly.

Graph Expansion. In generalization, we first expand the known graph to include
the query instance in the data structure as to provide the meta-learner with its
local context to obtain its ensemble combination rule. Thus, we project the query
xq into the decision space using the ensemble C and connect it to its nearest
neighbor. Based on that, its maximum margin for connection is calculated and
the edge weights between the query and the instances that fall within the margin
are calculated as shown in (2), where dq,j is the normalized L1 distance between
the samples xq and (xj , yj) ∈ T projected into the decision space, dmax

q is the
query’s maximum margin for connection, and τ is the preset threshold used in
the graph construction step. The evaluation graph Gq is then built as the union
between the known graph GT , the query vertex vq, and the set of all its edges
Eq = {eq,j ,∀xj ∈ T }.

eq,j =

{
1 − dq,j , if dq,j ≤ dmax

q ,

0, otherwise,

dmax
q = min(dq,k,∀xk ∈ T ) + τ

(2)

Ensemble Combination. We then induce the meta-learner GNN with the eval-
uation graph Gq to produce the network’s outputs {oq,k,∀k ∈ |C|}, which rep-
resent the weighted support of each classifier when aggregating their responses.
The class with the largest support is output as the query’s predicted label ŷq.
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3 Experiments

We evaluate in the experiments how well the DES techniques perform against a
static selection baseline, and whether the proposed method is able to outperform
them over the HDSSS problems. We describe the experimental protocol and
present the results next.

Ensemble Methods. We use as our baseline an AdaBoost (ADA) [8] ensemble
composed of 100 Decision Stumps, and we also evaluate 10 dynamic ensemble
methods, namely: the K-Nearest Oracles Union (KNU) [12], the K-Nearest Ora-
cles Eliminate (KNE) [12], the Dynamic Ensemble Selection-KNN (DKNN) [22],
the K-Nearest Output Profiles (KNOP) [2], the META-DES [3], the Randomized
Reference Classifier (RRC) [29], the Chained Dynamic Ensemble (CHADE) [19],
the Online Local Pool technique (OLP) [23], the OLP++ [25] and the Forest
of Local Trees (FLT) [1]. Except for CHADE, all of them are local-based tech-
niques, though they may define the RoC using distinct methods or in different
spaces, and the OLP, OLP++ and FLT are not evaluated using the AdaBoost
ensemble as they produce their own pool. We also include the performance of
the Oracle [13], an abstract model that always selects the correct classifier if it
exists, to provide an upper limit to the performance of the DES techniques.

Hyperparameters. The techniques’ hyperparameters were set as recommended
in their papers if no implementation is available in the DESLib [4] library, or
to their default value otherwise. The GNN-DES threshold was set to τ = 0.05,
and the meta-learner contained two GraphSAGE [9] layers of size 512 units, as
in [20], and one dense output layer, as in [9]. We use the attentional aggregation
function from [28] in the convolutional layers as the local samples may have
distinct importances for the DES task. To cope with the small sample-sized
problems, we sampled only 5 samples in each convolutional layer and applied L2

regularization with λ = 0.01, which was empirically observed to help the training
according to the validation loss curves. Moreover, 20% of the training set was
used for validation/early stopping, and the validation nodes were connected to
the known graph GT as if unknown samples (2). The GNN was trained over
150 epochs, with a patience of 30 epochs, a batch size of 300, and the adaptive
learning rate is initially set to 0.005, as in [28]. We also performed a sweep on
the drop-out rate in the set {0.0, 0.2, 0.5} as in [20], and the model with the best
micro-averaged multi-label precision in validation was chosen.

Datasets and Evaluation. We use the datasets shown in Table 1, which are the
same set of problems used in [25] with the exception of four datasets over which
the ensemble method generated fewer than the set amount of classifiers in the
pool. The testbed contains two-class HDSSS datasets (with at least 100 features)
taken from the OpenML repository [27]. The columns N , F , and IR indicate
the problems’ number of instances, number of features and imbalance ratio,
respectively, while the ratio F/N conveys the problems’ sparsity and is associated
with a higher data complexity [10,15].
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We evaluate the datasets using a 10-fold cross-validation procedure using
the folds available at the repository for reproducibility, and as in [25] we use the
training set as the dynamic selection set (DSEL), a labeled dataset used for RoC
definition [5], due to the limited number of instances in several datasets. Also
due to the varying imbalance ratios in the testbed, we use the macro-averaged
recall, or balanced accuracy rate, as the performance measure, to account for
the class disproportion without focusing on one of the classes.

Table 1. Characteristics of the datasets used in the experiments.

Dataset N F IR F/N Dataset N F IR F/N

tumors C 60 7129 1.86 118.82 OVA Endometrium 1545 10935 24.33 7.08

leukemia 72 7129 1.88 99.01 OVA Uterus 1545 10935 11.46 7.08

AP Endometrium Lung 187 10935 2.07 58.48 OVA Ovary 1545 10935 6.80 7.08

AP Omentum Uterus 201 10935 1.61 54.40 OVA Breast 1545 10935 3.49 7.08

AP Omentum Lung 203 10935 1.64 53.87 fri c4 100 100 100 100 1.13 1.00

AP Lung Uterus 250 10935 1.02 43.74 tecator 240 124 1.35 0.52

AP Omentum Ovary 275 10935 2.57 39.76 fri c4 250 100 250 100 1.27 0.40

AP Ovary Uterus 322 10935 1.60 33.96 gina agnostic 3468 970 1.03 0.28

AP Omentum Kidney 337 10935 3.38 32.45 gina prior 3468 784 1.03 0.23

AP Colon Prostate 355 10935 4.14 30.80 fri c4 500 100 500 100 1.30 0.20

AP Colon Omentum 363 10935 3.71 30.12 spectrometer 531 101 8.65 0.19

AP Uterus Kidney 384 10935 2.10 28.48 scene 2407 299 4.58 0.12

AP Endometrium Breast 405 10935 5.64 27.00 mfeat-pixel 2000 240 9.00 0.12

AP Breast Prostate 413 10935 4.99 26.48 mfeat-factors 2000 216 9.00 0.11

AP Breast Omentum 421 10935 4.47 25.97 fri c4 1000 100 1000 100 1.29 0.10

AP Colon Ovary 484 10935 1.44 22.59 yeast ml8 2417 116 70.09 0.05

AP Colon Kidney 546 10935 1.10 20.03 sylva prior 14395 108 15.25 0.01

AP Breast Kidney 604 10935 1.32 18.10

Results. Table 2 summarizes the performances of the Oracle, the static selec-
tion baseline (ADA) and the other 10 dynamic ensemble methods besides the
proposed GNN-DES. The average performances per dataset are available in the
supplementary material. We can see that the GNN-DES yielded the highest
average balanced accuracy rate and the highest average rank among all tech-
niques. Moreover, the GNN-DES obtained a higher average performance over at
least half of the datasets compared to all techniques except for the META-DES,
another local-based meta-learning technique.

Performing the non-parametric Wilcoxon signed-rank test over the pairs of
techniques, we obtain the p-values shown in Table 3. First, we observe that
the GNN-DES statistically outperformed with significance α = 0.05 all eval-
uated techniques except the KNOP and the META-DES. As these three best-
performing and statistically similar techniques are the only ones to rely on the
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local information in the decision space (in addition to the feature space, in the
case of the META-DES), the results suggest that this approach may be better
indicated for dynamic classifier selection on HDSSS problems.

We can also observe in Table 3 that the GNN-DES was the only dynamic
ensemble method to statistically outperform the static selection baseline (ADA)
with α = 0.05 over the HDSSS datasets. This suggests that not only do the DES
techniques generally struggle over these sparse datasets, as could be reasonably
expected, but also that GNN-DES might behave somewhat differently from the
classical local-based approaches, possibly due to the inclusion of the other source
of information relative to the classifiers’ interactions. However, how exactly the
learned embedded space may affect the behavior of the GNN-DES and in which
situations this information is valuable are questions to be analyzed in the future.
All in all, we believe these promising results over the HDSSS problems warrant
further investigation into the proposed approach.

Table 2. Mean balanced accuracy rate and rank, averaged over all datasets. The Win-
tie-loss row refers to the number of datasets the GNN-DES obtained a higher, equal,
or lower average performance to the column-wise technique.

Oracle ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

Mean 99.97 88.14 87.12 84.08 84.73 88.88 88.90 85.30 83.93 84.88 81.35 86.22 89.03

Mean rank n/a 5.31 5.36 8.39 8.01 4.90 4.29 6.33 7.69 5.90 10.59 7.11 4.13

Win-tie-loss n/a 23-0-12 21-3-11 31-0-4 32-0-3 18-1-16 15-0-20 21-3-11 28-0-7 22-1-12 33-0-2 27-1-7 n/a

Table 3. Resulting p-values of the Wilcoxon signed-rank test between average balanced
accuracy rates of all pairs of techniques, rounded to the second decimal point. Values
below α = 0.05 are in bold, rounded values below 0.01 are underlined, and the symbols
± indicate whether the column-wise technique statistically outperformed or not the
row-wise technique.

ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

ADA n/a 0.38 0.01(−) 0.01(−) 0.10 0.10 0.22 0.01(−) 0.51 0.01(−) 0.01(−) 0.04(+)

KNU n/a 0.01(−) 0.01(−) 0.11 0.08 0.06 0.01(−) 0.86 0.01(−) 0.37 0.03(+)

KNE n/a 0.26 0.01(+) 0.01(+) 0.24 0.66 0.15 0.01(−) 0.15 0.01(+)

DKNN n/a 0.01(+) 0.01(+) 0.42 0.95 0.30 0.01(−) 0.21 0.01(+)

KNOP n/a 0.12 0.06 0.01(−) 0.65 0.01(−) 0.01(−) 0.62

META-DES n/a 0.02(−) 0.01(−) 0.27 0.01(−) 0.01(−) 0.59

RRC n/a 0.12 0.67 0.01(−) 0.85 0.01(+)

CHADE n/a 0.35 0.09 0.25 0.01(+)

FLT n/a 0.01(−) 0.47 0.13

OLP n/a 0.01(+) 0.01(+)

OLP++ n/a 0.01(+)

GNN-DES n/a
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4 Conclusion

We proposed in this work the GNN-DES technique, which learns the dynamic
classifier combination rule from the instances’ relationships and classifiers’ inter-
actions to deal with sparse overlapped data. We encode the local and class rela-
tions between the samples into a graph structure and the ensemble competence
information into multiple meta-labels, and then fit our meta-learner, a multi-
label GNN model, to perform the DES task in an end-to-end manner.

Experiments over 35 HDSSS datasets showed that the DES techniques in
the literature had difficulty in surpassing the static selection baseline, especially
the techniques based solely on similarities in the feature space for RoC def-
inition. The locality assumption in the decision space was shown to perform
better over the sparse data, and the three techniques that use this approach
performed similarly and the best. Moreover, the GNN-DES was the only tech-
nique to statistically outperform the baseline in addition to 8 of the 10 evaluated
DES techniques, suggesting its suitability for dealing with sparse and overlapped
data.

Future work in this line of research may involve evaluating the impact of using
different ensemble methods and hyperparameters to analyze the relationship
between the graph characteristics and the technique’s performance. Furthermore,
we may analyze the behavior of the technique in different local contexts and its
relation to the learned embedded space to investigate in which scenarios the
meta-learner improves the locality assumption for the DES task.
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