
A Practical Algorithm for Max-Norm
Optimal Binary Labeling of Graphs

Filip Malmberg1(B) and Alexandre X. Falcão2

1 Centre for Image Analysis, Department of Information Technology,
Uppsala University, Uppsala, Sweden

filip.malmberg@it.uu.se
2 Institute of Computing, University of Campinas, Campinas, Brazil

afalcao@ic.unicamp.br

Abstract. This paper concerns the efficient implementation of a method
for optimal binary labeling of graph vertices, originally proposed by
Malmberg and Ciesielski (2020). This method finds, in quadratic time
with respect to graph size, a labeling that globally minimizes an objective
function based on the L∞-norm. The method enables global optimiza-
tion for a novel class of optimization problems, with high relevance in
application areas such as image processing and computer vision. In the
original formulation, the Malmberg-Ciesielski algorithm is unfortunately
very computationally expensive, limiting its utility in practical applica-
tions. Here, we present a modified version of the algorithm that exploits
redundancies in the original method to reduce computation time. While
our proposed method has the same theoretical asymptotic time com-
plexity, we demonstrate that is substantially more efficient in practice.
Even for small problems, we observe a speedup of 4–5 orders of magni-
tude. This reduction in computation time makes the Malmberg-Ciesielski
method a viable option for many practical applications.

Keywords: Graph labeling · Combinatorial optimization ·
Lexicographic Max-Ordering

1 Introduction

Many problems in computer science and pattern recognition can be as finding
vertex labeling of a graph, such that the labeling optimizes some application-
motivated objective function. In their recent work, Malmberg and Ciesielski [9]
proposed a quadratic time algorithm for assigning binary labels to the vertices
of a graph, such that the resulting labeling is optimal according to an objec-
tive function based on the max-norm, or L∞ norm. Here, we consider the effi-
cient implementation of the algorithm proposed by Malmberg and Ciesielski.
We present a version of their algorithm that, while having the same quadratic
asymptotic time complexity, is orders of magnitude faster in practice.

A key part of the Malmberg-Ciesielski algorithm is to solve a sequence of
Boolean 2-satisfiability (2-SAT) problems. Malmberg and Ciesielski observe that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 35–45, 2023.
https://doi.org/10.1007/978-3-031-42795-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_4

36 F. Malmberg and A. X. Falcão

each such 2-SAT problem can be solved in linear time using, e.g., Aspvall’s
algorithm [1]. They also observe, however, that there is a high degree of similarity
between each consecutive 2-SAT problem in the sequence and that solving each
2-SAT problem in isolation thus appears inefficient. Here, we show that this
redundancy between subsequent 2-SAT problems can indeed be exploited to
formulate a substantially more efficient version of the algorithm.

2 Background and Motivation

We consider the problem of assigning a binary label (0 or 1) to a set of variables
identified by indices 1, . . . , n. A canonical problem is to find a binary labeling
� : [1, n] → {0, 1} that minimizes an objective function of the form

Ep(�) :=
∑

i

φp
i (�(i)) +

∑

(i,j)∈N
φp
ij(�(i), �(j)), (1)

where �(i) ∈ {0, 1} denotes the label of variable i and N is a set of pairs of
variables that are considered adjacent.

The functions φi(·) are referred to as unary terms. Each unary term depends
only on the value of a single binary variable, and they are used to indicate the
preference of an individual variable to be assigned each particular label.

The functions φij(·, ·) are referred to as pairwise terms. Each pairwise term
depends on the labels assigned to two variables simultaneously, and thus intro-
duces a dependency between the labels assigned to the variables. Typically, this
dependency between variables is used to express that the desired solution should
have some degree of smoothness, or regularity.

In applications, rules for assigning these unary and pairwise terms might
be hand-crafted, based on the users knowledge about the problem at hand.
Alternatively, the preferences might be learned from available annotated data
using machine learning techniques [10,11].

As established by Kolmogorov and Zabih [7], the labeling problem described
above can be solved to global optimality under the condition that all pairwise
terms are submodular, which in the form presented here means that they must
satisfy the inequality

φp
ij(0, 0) + φp

ij(1, 1) ≤ φp
ij(0, 1) + φp

ij(1, 0). (2)

If the problem contains non-submodular binary terms, finding a globally
optimal labeling is known to be NP-hard in the general case [7]. Practitioners
looking to solve such optimization problems must therefore first verify that their
local cost functional satisfies the appropriate submodularity conditions. If this
is not the case, they must resort to approximate optimization methods that
may or may not produce satisfactory results for a given problem instance [6].
Recently, however, Malmberg and Ciesielski [9] showed that in the limit case,
as p approaches to infinity, the requirement for submodularity disappears! To

A Practical Algorithm for Max-Norm Optimization 37

characterize the labelings that minimize 1 as p goes to infinity, we first observe
that as p goes to infinity the objective function Ep itself converges to

E∞(�) := max
{
max

i
φi(�(i)), max

(i,j)∈N
φij(�(i), �(j))

}
. (3)

i.e., the objective function becomes the max-norm of the vector containing all
unary and pairwise terms. A more refined way of characterizing the solution is
the framework of lexicographic max-ordering (Lex-MO) [3–5]. The same concept
was also studied by Levi and Zorin, who used the term strict minimizers [8]. In
this framework, two solutions are compared by ordering all elements (in our case,
the values of all unary and pairwise terms for a given solution) non-increasingly
and then performing their lexicographical comparison. This avoids the potential
drawback of the E∞ objective function, that it does not distinguish between
solutions with high or low errors below the maximum error. The Malmberg-
Ciesielski algorithm [9] computes, in polynomial time, a labeling that globally
minimizes E∞, even in the presence of non-submodular pairwise terms. Under
certain conditions, the same algorithm is also guaranteed to produce a solution
that is optimal in the Lex-MO sense. As shown by Ehrgott [4], Lex-MO optimal
solutions have the following favorable properties:

– They are Pareto optimal, i.e., it is not possible to change the solution to
improve one criterion (unary- or pairwise term) without worsening another
one.

– They minimize E∞, i.e., that minimize the largest value of any criterion
(unary- or pairwise term).

– All Lex-MO solutions are equivalent in the sense that the corresponding vec-
tor of sorted criteria are the same.

3 Preliminaries

In this section, we recall briefly the Malmberg-Ciesielski algorithm, along with
some concepts needed for exposition of our proposed efficient implementation of
this algorithm in Sect. 4.

3.1 Boolean 2-Satisfiability

We start by recalling the Boolean 2-satisfiability (2-SAT) problem. Given a set
of Boolean variables {x1, . . . , xn}, xi ∈ {0, 1} and a set of logical constraints
on pairs of these variables, the 2-SAT problem consists of determining whether
it is possible to assign values to the variables so that all the constraints are
satisfied (and to find such an assignment, if it exists). To formally define the 2-
SAT problem, we say that a literal is either a Boolean variable x or its negation
¬x. A 2-SAT problem can then be defined in terms of a Boolean expression that
is a conjunction of clauses, where each clause is a disjunction of two literals.
Expressions on this form are known as 2-CNF formulas, where CNF stands for

38 F. Malmberg and A. X. Falcão

conjunctive normal form. The 2-SAT problem consists of determining if there
exists a truth assignment to the variables involved in a given 2-CNF formula
that makes the whole formula true. If such an assignment exists, the 2-SAT
problem is said to be satisfiable, otherwise it is unsatisfiable. As an example, the
following expression is a 2-CNF formula involving three variables x1, x2, x3, and
two clauses:

(x1 ∨ x2) ∧ (x2 ∨ ¬x3) (4)

This example formula evaluates to true if we, e.g., assign all three variables the
value 1 (or true). Thus the 2-SAT problem represented by this 2-CNF formula
is satisfiable.

For any 2-CNF formula, the 2-SAT problem is solvable in linear time w.r.t
to the number of clauses1 using, e.g., Aspvall’s algorithm [1].

We now introduce some further notions related to 2-SAT problems needed
for our exposition, using the convention that xi and ¬xi denote literals, while
vi denotes a literal whose truth value is unknown and v̄i is its complementing
literal.

Every clause (vi ∨ vj) in a 2-CNF formula is logically equivalent to an impli-
cation from one of its variables to the other:

(vi ∨ vj) ≡ (v̄i ⇒ vj) ≡ (v̄j ⇒ vi) . (5)

As established by Aspvall et al. [1], this means that every 2-SAT problem F
can be associated with an implication graph GF = (V,E), a directed graph with
vertices V and edges E constructed as follows:

1. For each variable xi, we add two vertices named xi and ¬xi to GF . The
vertices xi and ¬xi are said to be complementing.

2. For each clause (vi ∨ vj) of F , we add edges (v̄i, vj) and (v̄i, vj) to GF .

Each vertex in the implication graph can thus be uniquely identified with a
literal, and each edge identified with an implication from one literal to another.
We will therefore sometimes interchangeably refer to a vertex in the implication
graph by its corresponding literal vi. For a given truth assignment, we say that a
vertex in the implication graph agrees with the assignment if the corresponding
literal evaluates to true in the assignment. The implication graph GF is skew
symmetric in the sense that if (vi, vj) is an edge in GF , then (v̄i, v̄j) is also an
edge in GF . We observe that it follows that for every path π = (v1, v2, . . . , vk)
in GF , the path π̄ = (v̄k, v̄k−1, . . . , v̄1) is also a path in GF .

In proving the correctness of our proposed algorithm, we will rely on the
following property which is due to Aspvall et al. [1]:

Property 1. A given truth assignment satisfies a formula F if and only if there
is no vertex in GF for which the corresponding literal agrees with the assignment,
with an outgoing edge to a vertex not agreeing with the assignment.
1 This is in contrast to the general Boolean satisfiability problem, where clauses are

allowed to contain more than two literals. Already the 3SAT problem, where each
clause can have at most three literals, is NP-hard.

A Practical Algorithm for Max-Norm Optimization 39

3.2 The Malmberg-Ciesielski Algorithm

For a complete description of the Malmberg-Ciesieleski algorithm, we refer the
reader to the original publication ([9], Algorithm 1). We focus here on a key
aspect of the algorithm, which is to solve a sequence of 2-SAT problems. In this
step, we identify the variables to be labeled with the Boolean variables involved
in a 2-SAT problem. A truth assignment T for the Boolean variables naturally
translates to a labeling �. For this step of the algorithm, we are given an ordered
sequence C of clauses, ordered by a priority derived from the unary and pairwise
terms in Eq. 3. Informally, the algorithm operates as follows:

– Initialize F to be an empty 2-CNF formula, containing no clauses.
– For each clause c in C, in order:

• If F ∧ c is satisfiable, then set F ← F ∧ c.

At all steps of the above algorithm, the formula F remains satisfiable. At the
termination of the algorithm, the formula F defines a unique truth assignment
T and therefore also a labeling �. For the specific sequence C of clauses defined
by Malmberg and Ciesieleski, the resulting labeling is guaranteed to globally
minimize the objective function in Eq. 3.

In each iteration, we need to determine if F ∧ c is satisfiable, i.e., solve the
2-SAT problem associated with the formula F ∧ c. Malmberg and Ciesieleski
suggest to use Aspvall’s algorithm for this purpose, with an asymptotic time
complexity of O(|F |) ≤ O(|C|). Let N = n + |N | denote the total number of
unary and pairwise terms in Eq. 3. By its design, the number of clauses in the
sequence C is O(N), leading to the asymptotic time complexity of O(N2) for
the Malmberg-Ciesieleski algorithm implemented using Aspvall’s algorithm.

4 Proposed Algorithm

As observed in the previous section, the Malmberg-Ciesieleski algorithm itera-
tively builds a formula F that remains satisfiable at each step of the algorithm.
Our approach for improving the efficiency of the computations is to maintain, at
each step of the algorithm, a truth assignment that satisfies the current formula
F . When trying to determine whether the next clause c in the sequence C can
be appended to F without rendering the formula unsatisfiable, we show that this
previous truth assignment can be utilized to reduce the computation time. We
represent a truth assignment T to the Boolean variables of a 2-SAT problem as
a function T : [1, n] → {0, 1}, so that T (i) is the value assigned to variable xi.
Trivially, if T satisfies c then is also satisfies F ∧ c, so we focus on the case where
T does not satisfy the next clause c.

We will consider 2-SAT-solving under assumptions [2], i.e., given a satisfiable
formula, we ask if the same formula still satisfiable if we assume given values
for a subset of the variables? Such assumptions will be represented by a set of
vertices in the implication graph – since each vertex corresponds to a literal, the
set of vertices corresponds to a set of literals that are all assumed to evaluate to

40 F. Malmberg and A. X. Falcão

true. We assume that vertex sets used in this context are internally conflict-free,
i.e., they do not contain both a vertex and its complement.

Below we will present an efficient algorithm for solving a 2-SAT problem
under a set of assumptions A, given a truth assignment T that satisfies the
formula without the assumptions. To see how such a procedure helps us in effi-
ciently implementing the Malmberg-Ciesielski algorithm, we observe that by De
Morgan’s laws a clause (vi ∨ vj) can be rewritten as ¬(v̄i ∧ v̄j). In this form, it
is easier to see that in order to satisfy this clause, the truth assignment T must
satisfy exactly one of the expressions (vi∧vj), (vi∧ v̄j), or (v̄i∧vj). Each of these
expressions represent a set of assumptions, and therefore F ∧ (vi ∨ vj) is satisfi-
able if and only if F is satisfiable under one of the following sets of assumptions
A: {vi, vj}, {vi, v̄j}, or {v̄i, vj}. We note also that in the special case that i = j,
the above argument can be simplified further. In this case, the formula reduces
to F ∧ (vi) which is equivalent to solving F under the assumption A = {vi}.

The procedure listed in Algorithm 1 utilizes this result to perform the inner
loop of the Malmberg-Ciesieleski algorithm: It determines whether a given clause
can be added to a satisfiable formula without making it unsatisfiable. If so,
it updates an implication graph representing the formula to include the new
clause. Algorithm 1 utilizes a procedure SolveWithAssumptions, which we will
now describe.

Let F be a formula with corresponding implication graph GF = (V,E), let
T be a truth assignment for the variables associated with F , and let A be a set
of assumptions. We define RA,T ⊆ V as the set of vertices that are reachable
in GF from any vertex in A without traversing an edge that is outgoing from a
vertex that agrees with T . The main theoretical result that enables our proposed
algorithm is summarized in the following theorem:

Theorem 1. Assume that F is satisfiable. Let T be a truth assignment that
satisfies F , and let A be a set of assumptions. Then F is satisfiable under the
assumptions A if and only if the subgraph RA,T does not contain a pair of com-
plementing vertices.

Proof. For the first part of the proof, assume that RA,T does contain a pair of
complementing vertices vi and v̄i. Then the assumptions A directly imply that
both vi and v̄i are simultaneously satisfied, which is clearly a contradiction, and
so F is not satisfiable under the assumptions A.

For the second part of the proof, assume that RA,T does not contain any
pair of complementing vertices. We may then construct a well-defined truth
assignment T ′ from the given truth assignment T by setting, for every vertex
in RA,T , the corresponding variable to the corresponding truth value. For any
vertex vi /∈ RA,T , we have T (i) = T ′(i). Furthermore, the truth assignment T ′

agrees with all assumptions in A.
Next assume, with the intent of constructing a proof by contradiction, that

the truth assignment T ′ constructed above does not satisfy F . Then by Prop-
erty 1 there exists at least one vertex vi agreeing with T ′ that has an outgoing
edge to a vertex vj not agreeing with T ′. We now consider all four possibilities

A Practical Algorithm for Max-Norm Optimization 41

Algorithm 1: CheckSolvable(G,C,T)
Input: An implication graph G representing a 2-SAT problem. A clause

c = (vi) ∨ (vj). A truth assignment T that satisfies the formula F
encoded by G.

Result: A truth value indicating if F ∧ c is satisfiable. If it is, then T is a
truth assignment satisfying F ∧ c and G encodes F ∧ c. Otherwise, T
and G are unmodified.

1 Set satisfiable ← false
2 if T satisfies c then
3 Set satisfiable ← true

4 else
5 if vi = vj then
6 if SolveWithAssumptions(G,{vi},T) then
7 Set satisfiable ← true

8 else
/* vi �= vj */

9 if SolveWithAssumptions(G,{vi, vj},T) then
10 Set satisfiable ← true

11 else if SolveWithAssumptions(G,{v̄i, vj},T) then
12 Set satisfiable ← true

13 else if SolveWithAssumptions(G,{vi, v̄j},T) then
14 Set satisfiable ← true

15 if satisfiable then
16 Add edges (v̄i, vj) and (v̄j , vi) to G

17 Return satisfiable

for the truth assignment T with respect to the variables corresponding to vi and
vj :

1. Assume that both vi and vj agree with T . Then since vj does not agree with
T ′ we must have v̄j ∈ RA,T , i.e., there exists a path π from A to v̄j that does
not traverse an edge outgoing from a vertex that agrees with T . By the skew
symmetry of the implication graph, there is an outgoing edge from v̄j to v̄i,
and we may thus append this edge to the path π to see that v̄i is also in RA,T ,
contradicting that vi agrees with T ′. Thus, the assumption that both vi and
vj agree with T leads to a contradiction.

2. Assume that vi agrees with T but vj does not. Since vi has an outgoing edge
to vj , this contradicts that T satisfies F , and so the assumption that vi agrees
with T but vj does not agree with T leads to a contradiction.

3. Assume that vj agrees with T but vi does not. Then vi and v̄j are both
in RA,T . There is an outgoing edge from vi to vj , and vi disagrees with T ,
and thus vj is also in RA,T , contradicting the assumption that RA,T does

42 F. Malmberg and A. X. Falcão

Algorithm 2: SolveWithAssumptions(G,A,T)
Input: An implication graph G representing a 2-SAT problem. A set of

assumptions A, without internal conflicts. A truth assignment T that
satisfies the formula F encoded by G.

Result: A truth value indicating the existence of a truth assignment T ′ that
satisfies the formula F encoded by G while simultaneously satisfying
the assumptions A. If the algorithm returns true, then T is a truth
assignment satisfying this criterion. Otherwise, T is unmodified.

Auxiliary: A FIFO (or LIFO) queue Q of vertices; A set of vertices C.
1 Set C ← ∅
2 foreach v ∈ A do
3 Insert v in Q
4 Insert v in C

5 while Q is not empty do
6 Pop a vertex v from Q
7 if v disagrees with T then
8 foreach vertex w such v has an outgoing edge to w do
9 if w̄ ∈ C then

10 Return false and exit

11 else if w /∈ C then
12 Insert w in Q
13 Insert w in C

14 foreach vertex v ∈ C do
15 Set value of T for the variable corresponding to v so that it agrees with v.

16 Return true

not contain both a vertex and its complement. Thus, the assumption that vj
agrees with T but vi does not agree with T leads to a contradiction.

4. Assume that neither vi nor vj agree with T . Then since vi agrees with T ′ we
must have vi ∈ RA,T , i.e., there exists a path π from A to vi that does not
traverse an edge outgoing from a vertex that agrees with T . But since there is
an outgoing edge from vi to vj and vi does not agree with T , we may append
π with this edge to see that vj must also be in RA,T , contradicting that vj
disagrees with T ′. Thus, the assumption that neither vi nor vj agree with T
leads to a contradiction

The four cases above cover all possible configurations for the truth values of
the variables corresponding to vi and vj in the truth assignment T , and each
case leads to a contradiction. We conclude that the assumption that T ′ does not
satisfy F leads to a contradiction, and thus T ′ must satisfy F . This completes
the proof. �

Based on the theorem presented above, we can solve a 2-SAT problem under
given assumptions if we can find the set RA,T . We observe that for a given

A Practical Algorithm for Max-Norm Optimization 43

set of assumptions, the set RA,T can easily be found in O(V + E) time using,
e.g., breadth-first search. If we, during this breadth-first search, encounter a ver-
tex whose complement is already confirmed to be in RA,T , we may terminate
the search and return false. Pseudocode for this approach is presented in Algo-
rithm 2. With an upper bound of O(V + E) for solving each 2-SAT problem,
the proposed approach has the same quadratic asymptotic time complexity as
the approach using Aspvall’s algorithm. In practice, however, we will see that
the set RA,T is a very small subset of the implication graph, making this app-
roach much faster than running Aspvall’s algorithm for every iteration of the
Malmberg-Ciesielski algorithm.

In terms of memory complexity, both our proposed approach and Aspvall’s
algorithm operate on the implication graph. The number of vertices in this graph
is two times the number of unary terms, and the number of edges is up to
four times the number of pairwise terms. Thus, the memory complexity of the
proposed approach (and the approach using Aspvall’s algorithm) is linear in the
number of binary and pairwise terms.

5 Evaluation

To evaluate the performance of our proposed version of the Malmberg-Ciesielski
to the original formulation using Aspvall’s algorithm, perform an empirical study
emulating a typical optimization scenario in image processing and computer
vision. We perform binary labeling of the pixels of a 2D image of size W × H.
The neighborhood relation N is defined by the standard 4-connectivity used in
image processing. Values for the unary and pairwise terms are drawn randomly
from a uniform distribution. We then compare the computation time of the two
implementations, for image sizes varying from 8×8 to 64×64. We only measure
the time required for solving the sequence of 2-SAT problems, as this is the
only aspect that differs between the implementations. The results are shown in
Fig. 1. As the figure shows, the computation time for the implementation based
on Aspvall’s algorithm increases dramatically with increasing problem size. For
an image of size 64 × 64, the implementation based on Aspvall’s algorithm runs
in 62 s, while the proposed implementation only requires 0.004 s for the same
computation – a speedup of more than four orders of magnitude.

To further study the computation time of the proposed implementation with
respect to problem size, we perform a separate experiment on images with sizes
varying from 128 × 128 to 4096 × 4096, for which the implementation using
Aspvall’s algorithm becomes prohibitively slow. The results are shown in Fig. 2.
As can be seen from the figure the empirical relation between problem size and
computation time appears closer to a linear function across this range, rather
than quadratic relation suggested by the worst-case asymptotic time complexity.

44 F. Malmberg and A. X. Falcão

0 1 2 3 4
Total number of clauses 104

0

10

20

30

40

50

60

70

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Proposed algorithm
Aspvall's algorithm

Fig. 1. Comparison of computation time between the proposed implementation of the
Malmberg-Ciesielski method, and the original formulation using Aspvall’s algorithm,
with respect to the total number of clauses in the 2-SAT sequence.

0 2 4 6 8 10 12 14 16
Total number of clauses 107

0

10

20

30

40

50

60

70

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Fig. 2. Computation time of the proposed implementation in relation to problem size.

6 Conclusions

We have proposed a modified, efficient implementation of the Malmberg-
Ciesielski method for optimal binary labeling of graphs. While our proposed
implementation has the same asymptotic run-time complexity as the original
algorithm, we demonstrate that it is orders of magnitude faster in practice. This
reduction in computation time makes the Malmberg-Ciesielski method a viable
option for many practical applications.

Acknowledgment. This work was supported by a SPRINT grant (2019/08759-2)
from the São Paulo Research Foundation (FAPESP) and Uppsala University.

A Practical Algorithm for Max-Norm Optimization 45

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

2. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

3. Ehrgott, M.: Lexicographic max-ordering-a solution concept for multicriteria com-
binatorial optimization (1995)

4. Ehrgott, M.: A characterization of lexicographic max-ordering solutions (1999).
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-4531

5. Ehrgott, M.: Multicriteria optimization, vol. 491. Springer Science & Business
Media (2005)

6. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-
a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7) (2007)

7. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

8. Levi, Z., Zorin, D.: Strict minimizers for geometric optimization. ACM Trans.
Graph. (TOG) 33(6), 185 (2014)

9. Malmberg, F., Ciesielski, K.C.: Two polynomial time graph labeling algorithms
optimizing max-norm-based objective functions. J. Math. Imaging Vision 62(5),
737–750 (2020)

10. Wolf, S., et al.: The mutex watershed and its objective: efficient, parameter-free
graph partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3724–3738
(2020)

11. Wolf, S., Schott, L., Kothe, U., Hamprecht, F.: Learned watershed: End-to-end
learning of seeded segmentation. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 2011–2019 (2017)

https://doi.org/10.1007/978-3-540-24605-3_37
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-4531

	A Practical Algorithm for Max-Norm Optimal Binary Labeling of Graphs
	1 Introduction
	2 Background and Motivation
	3 Preliminaries
	3.1 Boolean 2-Satisfiability
	3.2 The Malmberg-Ciesielski Algorithm

	4 Proposed Algorithm
	5 Evaluation
	6 Conclusions
	References

