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Abstract. Major European rivers have their sources in the Swiss Alps.
Data from these rivers and their tributaries have been collected for
decades with consistent quality. We use GIS data to extract the structure
of each river and link this structure to 81 river water stations (that mea-
sure both water temperature and discharge). Since the water temperature
of a river is strongly dependent on the air temperature, we also include 44
weather stations (which measure, for instance, air or soil temperature).
Based on this large data corpus, we present in this paper a novel graph
representing the water network of Switzerland. Our goal is to accelerate
the research of the complex relationships at the (Swiss) water bodies.
In particular, we present different graph-based pattern recognition tasks
that can be solved on the novel water body graph. In a first evaluation,
we use graph-based methods to solve two of these tasks, outperforming
current state-of-the-art systems by several percentage points.

Keywords: Water body graph · Water temperature · LSTM ·
Recurrent Neural Network · Graph data

1 Introduction

Water temperature – an important variable in our ecosystem – is mainly influ-
enced by air temperature. That is, on the water surface a direct exchange with
the surrounding air takes place. Thereby, solar radiation is either absorbed by
particles in the water or the river bed, then transformed to heat and finally
exchanged with the water. Other factors that influence the temperature of water
bodies are snow melting, rain, ground water inflow, but also the rate of dis-
charge. Last but not least, also human-made infrastructure plays a pivotal role.
For instance, the climate regime shift (CRS) in the late 1980s, caused by anthro-
pogenic and natural origin, led to a sudden increase in water temperature [1,2].
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Three major European rivers have their sources in Switzerland, namely
Rhine, Rhône and Inn. In addition, the river Ticino rises in Switzerland, which
contributes significantly to the river Po. Furthermore, a large part of the Alps,
which separate the southern and northern climatic zones, lies in Switzerland.
The Alps are in turn home to large glaciers and huge snow reservoirs, as well
as human-made infrastructure such as power plants and dams. In addition, the
topology of Switzerland also consists of hilly lowlands, where small rivers flow
slowly and are influenced by both large cities and agriculture. Further towards
the borders of Switzerland we have the big rivers which are less affected by small
disturbances. There are also some medium sized lakes where the inflowing water
stays for a long time and thus the outflowing water is only slightly influenced
by the inflowing water (there the surface temperature is mainly influenced by
the exchange in the atmosphere). Overall, we find that in Switzerland there is a
fascinating network of water bodies that has a high complexity.

The present paper is concerned with water temperature predictions using air
temperatures by means of graph-based pattern recognition and machine learning.
Actually, concerning the climate crisis, rising water temperatures will have a big
impact on the Swiss ecosystem. For instance, certain species of fish will not
be able to reproduce anymore when the water temperature reaches a certain
threshold [3]. Different climate models exist that project air temperature for the
future in various versions [4]. Thus, our hypothesis is that it is rewarding to
explore more accurate modelling of the air-water model, as this will also lead to
better long-term projections of the water temperature.

The contribution of the present paper is threefold. First, based on data of the
water bodies stemming from a Geographic Information System (GIS), as well as
decades of measurements of dozens of stations, we create a novel and large-scale
graph that aims to comprehensively capture and model the complexity of the
Swiss water network. Hence, the basis of our research is similar in spirit to other
important prediction tasks such as analyses of transportation networks [5], or
predictions of loads on networks of power grids [6], to name just two examples.
Second, the novel graph allows us to reconsider current approaches to predict-
ing water temperature in rivers. We propose different tasks related to water
temperature prediction that can potentially be solved with graph-based pattern
recognition algorithms. Third, for two of these tasks, we propose a graph-based
prediction system and show that this novel system significantly outperforms two
current state-of-the-art methods.

The remainder of this paper is organized as follows. In Sect. 2, we describe
two state-of-the-art methods that are currently used for water temperature pre-
diction, viz. the Air2Stream method [7] as well the adaptation of LSTM neural
networks [8]. In Sect. 3, we thoroughly describe the novel graph that models
the Swiss water bodies and introduce the challenges in predicting water tem-
perature. The novel method for water temperature prediction that employs a
graph-based model is then presented and evaluated later in Sect. 4. Finally, in
Sect. 5, we draw conclusions and propose possible rewarding avenues for future
research activities.
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2 Related Work

We are not the first to attempt to predict water temperatures based on air
temperatures. In the following two subsections, we present two state-of-the-art
models that are actually used as reference systems in our empirical evaluation.

2.1 Air2Stream

Air2Stream is a physically inspired model of the relationship between air and
water temperature based on air temperature and discharge [7]. Basis of this
model is a differential equation linearized using a Taylor series expansion. The
resulting equation has eight tuneable parameters which are calibrated using
training data. In particular, the original method employs a particle based optimi-
sation scheme for training and is quite sensitive to the chosen hyper-parameter.
In the present paper we use the predictions presented in [9].

2.2 LSTM on Water Data

Long short-term memory (LSTM) is a special type of a recurrent neural network
(RNN) [10]. An RNN is a neural network that is applied to a time series on every
time step. In addition, an LSTM keeps track of a hidden state and a memory
state, two vectors which are inputs to the next time step and will be altered
by the LSTM. Thus, the resulting backpropagation variant is called backprop-
agation through time [11]. To have a trade off between the time series and the
update steps, one works with a certain time window, where at the end of every
window the gradients are computed and an update step is made. LSTMs have
been particularly designed to encounter the vanishing gradient problem. This
problem occurs when the back propagation through time has to overcome a lot
of time steps and repeated multiplications tend to unstable numeric conditions.
In general LSTMs show state-of-the-art results on various time series data [12],
and can be applied to the task of water temperature prediction [8,13] or water
level (discharge) prediction [14,15].

3 The Swiss Water Body Graph

3.1 Construction of the Graph

One of the major contributions of the present paper is that we provide a novel
graph based on the Swiss water body. We construct a knowledge graph containing
information about the location of river beds (from a GIS), weather data of 44
weather stations (air temperature and more atmospheric measurements), and
water data of 81 water stations (water temperature and discharge).

The knowledge Graph G = (V,E, aV , aE) is a graph with nodes V and edges
E. Each node v ∈ V has an assigned type Tv. Currently we have three types of
nodes i.e. Tv ∈ {water station,universal river node,weather station}. The uni-
versal river node is used to model the river itself with sources or river mouths.
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(a) Original graph (b) Intermediate graph (Rhine only)

Fig. 1. (a) Original graph before pruning (all edges represent water). (b) Subgraph
representing the river Rhine after pruning and added water stations. The illustrated
graph is a tree where the water of a child station flows to its parent station.

There is currently only one edge type, which models the connectivity of the
nodes. The functions aV : V → R

n and aE : E → R
m deliver additional

attributes to nodes and edges. Function aE assigns the edge length in meters
to each edge. The nodes are attributed by the air temperature, or water tem-
perature and discharge (depending on the actual type Tv of the node). The
data basis for these attributes is thoroughly preprocessed. In particular the data
is min-max normalised and outliers are removed by the Federal Office for the
Environment (FOEN) as part of their quality control. Each weather station is
manually connected by means of an edge to n ≥ 1 water stations as proposed
in [9].

At first glance, the considered data basis seems of natural origin, yet it is not.
The current rivers are the product of decades of human intervention of stratifi-
cation, city planning, power plants, and renaturation. Also the placement and
running of the water and weather stations are obviously human based decisions
and can change in future. Keeping a constant and high quality of measurements
is challenging as it requires decades of stability in the corresponding country,
which fortunately is the case in Switzerland.

The original GIS graph contains 258,103 edges and 258,191 nodes repre-
senting different types of river segments as well as lake contours. We apply the
following preprocessing on this original graph. First, we prune the leaf nodes as
not every side creek is important. Nodes that actually contain water stations are
never purged. Then, we run a spanning tree algorithm in order to find the short-
est paths of the water flow and remove any ambiguity in the graph (for example,
when both sides of a lake are modelled as two edges in the graph). Finally, we
collapse all edges such that only the connectivity between water stations is left
in the form of a tree. This process allows us to compress edge information like
river bed length as sum of all collapsed segments between two water stations.

This resulting graph consists of four trees (representing the rivers Rhine,
Rhône, Inn, Ticino) with a total of 73 nodes and 69 edges. In Fig. 1(a) the
original graph and in Fig. 1(b) the resulting graph is shown (representing the
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river Rhine only). Note that in this illustration the edges are not yet collapsed
to improve visualisability.

As we have man made changes over time on the underlying water body net-
work, we can create snapshots of the graph at every useful point in time. Based
on the visualisation of the available data from 1980 to 2021 (see Fig. 2), we
see that many new stations were established after 2002. Hence, we propose two
snapshots of the water body graph, viz. one graph that contains fewer nodes and
measurements ranging from 1990 to 2021 to represent a long history of measure-
ments and the other one from 2010 to 2021 where we include more stations but
on a shorter period of time. In both snapshots we apply an approximate 80/20
training-test split at the end of 2014 and 2017, respectively. The two graphs
are named G1990 and G2010 from now on. Both graphs will be made publicly
available for research purpose on the Git Repository of our research group1.

Fig. 2. Visualisation of the available data from 1980 to 2021. Each row represents one
station. Dark grey pixels indicate that at a certain day the river water temperature,
discharge and air temperature are available. Light grey pixels indicate that at least one
of the three values is missing.

3.2 Proposed Water Challenges

The novel graph based representation defined above allows us to rethink current
approaches for water temperature prediction. We propose five different bench-
mark tasks, that can potentially be solved on the basis of the novel graph.
Task 1 - Model Air Temperature Relationship: In this task the goal is to
model the relationship between the air and water temperature. This challenge
has already been extensively studied and it is what models like Air2Stream [7]
or LSTMs [8] are aiming at. Formally, we have both air temperature a0, ..., at,
the discharge q0, ..., qt of t + 1 time steps and the goal is to find a model f that
predicts the water temperature wt at time t: f(a0, ..., at, q0, ..., qt) = wt.
Task 2 - k-Day Forecast: In this task, we do not have access to same day
measurements anymore. Given the air temperature a0, ..., at and the discharge
q0, ..., qt of t+1 time steps, the goal is to predict the water temperature wt+k in k
days (we define k ∈ {3, 7, 30}). Formally, we seek a model f(a0, ..., at, q0, ..., qt) =
wt+k. Obviously, the larger k is choosen, the harder the problem (setting k = 0
results in Task 1).
Task 3 - Recover from Neighbours: Each water station is built at a certain
construction time bt. One problem of our graph is missing data for this station
at times t < bt. The goal of this task is to learn the data of a node for time points

1 https://github.com/Pattern-Recognition-Group-UniBe/swiss-river-network.

https://github.com/Pattern-Recognition-Group-UniBe/swiss-river-network
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t < bt based on the relationships with its neighbours. By filling in missing data,
this procedure allows us to construct an estimated graph of water temperatures
back to 1980 using all stations (although we cannot assess the quality of the
estimates).
Task 4 - Work on Degenerated Data: A challenge for any sensing and
recognition system are degenerated sensors. The fourth task is to detect and
repair potentially corrupted data. Formally, we define a function drift d(n) ∈ R,
where n is the n-th day after construction and d is a function to model the
amount of drift. The drift is then added to the water temperature during training:
w′

t = wt + d(t − bt), where w′
t is the degenerate training data and bt is the

construction time of the water station.
Task 5 - Few Shot Learning: The goal of this task is to minimise the effort
required to collect water temperatures. Imagine a mobile sensor system that is
moved from one place to another every month. When the mobile sensor system
is on site, the data is available and can be used for training. The goal is to
have as few of these mobile sensor systems in use as possible and still achieve a
reasonable estimation of the water temperatures.

4 Proposed Method and Experimental Evaluation

4.1 Experimental Setup and Reference Models

In this paper, we use the snapshots of the graphs G1990 and G2010 as described
in Sect. 3.1 and the corresponding training and test splits to solve Task 1 and
Task 2 as defined in Sect. 3.2 (that is, predicting the water temperature in k days
with k ∈ {0, 3, 7, 30}). To investigate the quality of the prediction, we measure
and report widely used metrics, namely the Root Mean Squared Error (RMSE)
and the Mean Absolute Error (MAE) on the test set. In addition, we measure
and report the Nash-Sutcliffe model Efficiency Coefficient (NSE), which is often
used to assess the predictive skill of hydrological models. Formally, the three
ratios are defined as follows

RMSE =

√
√
√
√

1
n

n∑

i=1

(yi − ŷi)2 (1)

MAE =
1
n

n∑

i=1

|yi − ŷi| (2)

NSE = 1 −
∑n

i=1(yi − ŷi)2
∑n

i=1(yi − ȳ)2
(3)

where n describes the number of measurements, yi the actual measured value, ŷi
the value estimated by the model, and ȳ the mean of the actual measured values.
For a perfect model with an estimation error variance equal to zero, the resulting
NSE equals 1. That is, values of the NSE nearer to 1 suggest a model with more
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(a) Reference LSTM (b) Our Method

Fig. 3. (a) The reference method models the air to water relationship in a 1-to-1
manner [8]. (b) The proposed method makes use of the local neighbourhood on the
novel water body graph. We adapt our LSTM architecture to the amount of child
stations contributing to the target station and train one such LSTM per target station.

predictive skill. While for the errors, of course, values closer to 0 indicate good
prediction quality.

For our evaluation, we use a total of three different reference models.

1. Air2Stream: The Air2Stream model as presented in Sect. 2.1. We only provide
here the RMSE results form [9] (and we cannot use the other metrics for
comparison).

2. Baseline: The baseline system refers to the unweighted average of the water
temperature of the target station and the water temperatures of its child
stations using the reference LSTMs (see below).

3. LSTM: For this reference system [8], we use LSTMs that take the air tem-
perature as input (as described in Sect. 2.2 – see Fig. 3(a)). To find a suitable
architecture, we perform a grid search on the width of the hidden layers, the
depth of the LSTM, the learning rate, and the weight decay (we use the Adam
optimiser). During validation we obtain the best results for 32 in width, 1 in
depth, 0.01 for learning rate, and a weight decay of 1e-6.

4.2 The Novel Graph-Based Model

For our new model, we use the four graphs described in detail in Sect. 3.1. The
new model uses the locality of the graph structure to model the time series data
and consists of two different nodes.

– Child station: Water station upstream to the target station
– Target station: Water station we want to predict.
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We extract a subgraph for each target station with its c child stations. One
such subgraph with one target station and c = 2 child stations is shown in
Fig. 3(b).

In Task 1 and Task 2, we do not have access to measured water temperatures
of the child stations as input, but we can estimate them using any air to water
model. For each child station, we train a reference LSTM to obtain an estimate of
the water temperature. Then we train an additional LSTM for the target station.
This LSTM is given the estimated water temperatures of the child stations and
the air temperature of the target station as input (see Fig. 3(b)).

More formally, the resulting recurrent neural network consists of an LSTM
layer with the input size c+1. The LSTM uses a larger hidden space than its input
size. The size of the hidden space is determined by a factor of the input size. After
the LSTM layer, we project the hidden space to the desired output size using
a linear layer. Our neural network models the function f(ŵ(1)

t , ..., ŵ
(c)
t , a

(ts)
t ) =

ŵ
(ts)
t+k where ŵ

(x)
t is the estimated water temperature at child station x and a

(ts)
t

is the air temperature at the target station ts at time t, and k depends on the
current prediction task (k ∈ {0, 3, 7, 30}).

For the training of our model, we perform a grid search for both width and
depth of the LSTM and use the Adam optimiser with a learning rate of 0.01 and
a weight decay of 1e-6.

Graph Neural Networks (GNNs) with message passing [16] are somehow
related to the proposed method. Similar in spirit is, for instance, Graph-
SAGE [17]. However, while GraphSAGE uses an LSTM to handle a flexible
amount of neighbours during the message aggregation phase, we have a fixed
amount of child stations but a flexible amount of time steps to handle. More-
over, GNNs aim to process the graph as a whole input unit. In the proposed
method we train a neural network individually per target station. This removes
any inductive property as our trained networks do not generalise to other graphs.

4.3 Test Results

The results we obtain on both versions of the graph (i.e. G1990 and G2010) are
shown in Table 1. The metrics RMSE, MAE, and NSE are reported for the
respective test years. In column k = 0, the results for estimations of the same
day are shown (Task 1). In the columns k = 3, k = 7, and k = 30, we show the
prediction results for 3, 7, and 30 days in the future, respectively (Task 2).

First, we observe that our new model performs best for both graphs and
all four tasks (measured across all three evaluation metrics). On average, we
outperform the state-of-the-art method Air2Stream by 23%. Moreover, on aver-
age, the novel location-based method outperforms the state-of-the-art LSTMs
by about 5%, remarkably more at the most difficult task k = 30. The results of
the baseline show that a simple average of locally connected water temperatures
is a poor estimate.

Regarding the results, we conclude that the proposed method is a flexible
extension to any system that models the relationship of air temperature and
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Table 1. The results achieved on the test sets by our method and the reference systems
on two versions of the graph (G1990 and G2010). In the k = 0 column, we report the
results for the same day relation (Task 1), and in the k = 3, k = 7, and k = 30 columns
the forecasts for 3, 7, and 30 days in future, respectively (Task 2). The best result
per metric, task and graph is shown in bold face. *The Air2Stream model uses similar
years for training but a different set of test years.

Metric Method Graph Version

G1990 G2010

k=0 k=3 k=7 k=30 k=0 k=3 k=7 k=30

RMSE Air2Stream* 1.05 - - - 1.05 - - -

Baseline 1.90 2.00 2.16 3.02 1.65 1.87 2.00 2.41

Reference LSTM 0.80 1.10 1.37 2.29 0.91 1.24 1.43 2.24

Ours 0.75 1.07 1.30 1.77 0.85 1.19 1.39 1.65

MAE Baseline 1.58 1.65 1.79 2.38 1.36 1.53 1.62 1.95

Reference LSTM 0.60 0.84 1.04 1.68 0.69 0.93 1.09 1.69

Ours 0.56 0.81 0.99 1.36 0.63 0.89 1.05 1.26

NSE Baseline 0.82 0.81 0.77 0.54 0.85 0.83 0.81 0.76

Reference LSTM 0.97 0.94 0.90 0.74 0.96 0.93 0.91 0.77

Ours 0.97 0.95 0.93 0.86 0.97 0.94 0.92 0.89

water temperature. We argue that our system is able to capture water temper-
ature changes of upstream stations, which in general results in an improvement
of the prediction accuracy. A more in depth analysis of the performance of indi-
vidual stations, however, also reveals that there is no improvement for some
individual stations. The reason for this observation is that some water stations
have no dependence on their upstream water stations (e.g., when a lake lies
between two stations).

5 Conclusion and Future Work

In this paper, we address the difficult task of analysing water networks in com-
plex environments. This is indeed an important task, as the climate crisis is one
of the greatest challenges facing humanity. We propose to model the complex
water network of Switzerland using a graph. Based on this graph, we propose five
different challenging tasks that can potentially be solved using graph-based pat-
tern recognition or machine learning methods. Two of these five tasks are solved
in this paper using a graph-based model built on LSTMs. In a large-scale exper-
imental evaluation, we show that the proposed model can improve the widely
used Air2Stream model by about 23% and an isolated (i.e., non-graph-based)
LSTM by about 5% We see many worthwhile future research activities. Cur-
rently we are working with the authorities to extend the graph with more water
stations as well as other node types like cities, power plants and lakes. Moreover,
we will tackle the remaining benchmark tasks and explore more possibilities of
neural networks on our novel graph.
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