
Detecting Abnormal Communication
Patterns in IoT Networks Using Graph

Neural Networks

Vincenzo Carletti(B), Pasquale Foggia, and Mario Vento

Department of Information Engineering, Electrical Engineering and Applied
Mathematics, University of Salerno, Fisciano, Italy

{vcarletti,pfoggia,mvento}@unisa.it
https://mivia.unisa.it

Abstract. Nowadays, millions of Internet of Things (IoT) devices com-
municate over the Internet, thus becoming potential targets for cyber-
attacks. Due to the limited hardware capabilities of these devices, host-
based countermeasures are unlikely to be deployed on them, making net-
work traffic analysis the only reasonable way to detect malicious activi-
ties. In this paper, we face the problem of identifying abnormal commu-
nications in IoT networks using graph-based anomaly detection methods.
Although anomaly detection has already been applied to graph-based
data, most existing methods have been used for static graphs, with the
aim of detecting anomalous nodes. In our case, the graphs represent snap-
shots of the network traffic, and change with time. In this paper we com-
pare different graph-based methods, and different graph representations
of the network traffic, using two large datasets of real IoT data.

Keywords: Network Anomaly Detection · IoT Networks · Graph
Neural Networks

1 Introduction

The Internet of Things (IoT) has revolutionized different fields leading the devel-
opment of smart homes, smart medical devices, smart cities and smart industries.
IoT devices are embedded with sensors and communication technologies that
enable them to collect and transmit data over the internet. However, the wide
diffusion of such devices, together with their limited security capabilities, has
made them the preferred target of malicious users for performing Distributed
Denial of Service attacks (DDoS) [15]. Common host-based countermeasures,
like intrusion detection systems (HIDS) or antivirus software are unlikely to
be installed on IoT devices, due to their limited hardware capabilities. There-
fore, the only reasonable way to detect infected devices or malicious activities
is to analyze the network exchanges observed by a dedicated monitoring device.
Unfortunately, IoT network communications are highly dynamic and heteroge-
neous, if compared with traditional personal computer networks, making more
challenging for traditional network-based intrusion detection systems (NIDS) to
detect malicious traffic.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 127–138, 2023.
https://doi.org/10.1007/978-3-031-42795-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_12

128 V. Carletti et al.

Several methods for network analysis, based on machine learning and deep
learning, have been proposed [1,10,12,13], but most of them assume that the
characteristics of malicious traffic are known in advance (or, at least, can be
inferred from a set of training examples). Of course, this assumption does not
hold for many real-world scenarios, where we are not aware in advance of all the
possible threats, and it is inpractical to collect a sufficient amount of samples of
malicious traffic.

An alternative is to deal with this problem as an anomaly detection task,
where the system learns a model of normal traffic, so as to classify anything
that does not fit this model as a threat [6]. Anomaly detection methods for IoT
networks have been reviewed and compared in some recent papers [3,6,8]. Most
of them work with vectors of measurements extracted from network flows, i.e.
sequences of network packets sharing the same transport protocol and endpoints.
Although some network flows statistics have been proved to be very effective to
detect anomalies in the communication between two network nodes, they seem
to be less discriminant for abnormal communication patterns involving larger
groups of devices [9], as in the case of botnets.

Graph-based approaches can help to overcome this limitation: a graph is a
natural representation for data where the structure, i.e. the way the different
pieces are interconnected, plays an important role.

In the scientific literature, different Graph Neural Networks (GNNs) have
been proposed to detect anomalous nodes in attributed graphs [11,18]. Among
these, we have selected three different approaches recently proposed, for which
the authors publicly provide an implementation. DOMINANT (Deep Anomaly
Detection on Attributed Networks) [5], a deep graph autoencoder where the
encoder function aims to map node features to a lower-dimensional latent space,
and the decoder function aims to reconstruct both the original feature matrix
and the graph topology using these compressed node representations. CONAD
(Contrastive Anomaly Detection) proposed in [18] to identify anomalous nodes
in attributed graphs by utilizing prior knowledge. Together with the GNN the
authors have also proposed a new approach to graph data augmentation that
explicitly incorporates human knowledge of various anomaly types as contrastive
samples. The latter correspond to nodes whose structural and semantic infor-
mation deviate considerably from those of existing nodes in the input attributed
network. The contrastive samples are used to generate an adversarial version of
the input graph. OCGNN (One Class Graph Neural Network), a graph version
of the One Class Support Vector Machine OCSVM, proposed by Wang et al.
in [17]. The method aims at learning the minimum volume hyper-sphere that
contains all the embeddings of normal nodes.

These graph-based methods face the detection of abnormal communication
patterns as a node classification problem and are trained in a transductive con-
text, that involves training and testing the network on a single large attributed
graph. Although this is a very common approach, it does not allow to take
into account the dynamic nature of the IoT networks over time. To face this
limitation, in this paper, we have partitioned the network communication data

Detecting Abnormal Communication Patterns in IoT Networks 129

into temporal snapshots as proposed in [21]. Each snapshot is represented as a
distinct graph.

For the graph representation of a snapshot, we have considered three
approaches: similarity graphs [4], that provide a general method to transform
time series into graphs; traffic trajectory graphs [19,20], a graph representation
specifically devised for network flows; and extended TDG [21], an extension of
Traffic Dispersion Graphs [7] (TDGs) originally presented to model the behav-
ior of network hosts. The overall network traffic is thus represented through a
sequence of graphs, having a topology that can vary according to the communi-
cation flows in the corresponding temporal snapshot.

For each of the three graph-based representations, we have adapted the three
mentioned GNN anomaly detection methods, modifying their learning approach
from transductive (i.e. the GNN learns from different subsets of the same graph)
to inductive (i.e. each training sample is a different, complete graph). The 9
resulting combinations of graph representation and GNN method have been
experimentally evaluated using two large, recent datasets of real IoT traffic.

The paper is organized as follows. In Sect. 2, we describe the graph-based
representations for network traffic snapshots. In Sect. 3, we provide some details
on the three GNN considered. In Sect. 4, we describe the experimental setup,
the used datasets and how we have trained the GNN; then we present, compare
and discuss the results obtained by each combination of GNN and graph repre-
sentation. Finally, in Sect. 5 we draw our conclusions about the effectiveness of
using GNN for the task at hand.

2 Representing Network Traffic as a Graph

Although representing the static topology of a network as a graph is a relatively
straightforward process, in which hosts are assigned to nodes and physical links
to edges, there is not a unique way for representing network communications
as graphs. As introduced in Sect. 1, we have selected three recent graph-based
representations that are suitable for the task at hand.

Starting from the captured raw packets, we have extracted the communica-
tion flows and the related feature vectors using NFStream [2], a publicly available
tool for traffic analysis. Each feature vector represents a flow, i.e. a sequence of
packets having the same transport-level endpoints; the vectors contain 77 fea-
tures commonly used to represent flows in network analysis, including categorical
features like IP and MAC address, statistical features such as average packet size
or number of packets as well as temporal features like duration and starting time.

During the extraction, in order to represent the evolution of the communi-
cation over time, as proposed in [21], we have marked each network flow with
the timestamp obtained from its first captured packet and have partitioned the
overall network communication in time windows of duration T ; so that all the
flows having the timestamp that falls in the time window (t, t + T) have been
grouped in the temporal snapshots snapt.

130 V. Carletti et al.

The feature vectors of each snapshot are the input data for building the
graphs, according to the methods described in the following subsections.

2.1 Similarity Graphs

Given the snapshot snapt, a similarity graph [4] is made by assigning each feature
vector xi to a different node; thus nodes do not represent network devices, but
communication flows.

In the next step, a node similarity matrix is obtained by computing for each
pair of nodes the cosine distance between the vectors associated to the nodes.
Finally, for each node, K directed edges are added connecting it to its K closest
neighbors with respect to the similarity matrix.

Although similarity graphs are a general way to represent time series as
graphs, and they have not been developed to model network traffic, the ratio-
nale behind their use in our application is that the flows corresponding to normal
traffic should form large, densely connected clusters of nodes, while the anoma-
lous flows will likely become nodes that are more isolated from the rest of the
graph.

2.2 Traffic Trajectory Graphs

As in similarity graphs, also in traffic trajectory graphs [19,20] each node repre-
sents a communication flow. However, in this case, the (undirected) edges repre-
sent the fact that two flows share one of their endpoints network-level address.
In this way, if there is a device that is very active in the network, the nodes
corresponding to its flows will have a lot of connections. Thus, the graph struc-
ture implicitly encodes the activity level of different parts of the network in each
snapshot.

2.3 Extended Traffic Dispersion Graphs

In Traffic Dispersion Graphs (TDGs), the nodes are associated to the transport-
level endpoints that communicate over the network, i.e. the different IP
address/transport port number pairs between which communication flows are
exchanged, and the (undirected) edges represet the flows; notice that the flow
feature vectors thus become attributes of the graph edges, instead of the graph
nodes.

Extended TDGs [21] enrich the description of a node by adding, as node
attributes, both some graph-related properties such as degree, centrality, betwee-
ness, closeness, eccentricity, and the arithmetic mean of the flow feature vectors
of edges adjacent to the node.

3 Graph Neural Networks for Anomaly Detection

In this Section we provide some details about the structure and loss functions
of the GNNs mentioned in Sect. 1; we will also describe how they can be used to
distinguish between normal and abnormal nodes.

Detecting Abnormal Communication Patterns in IoT Networks 131

3.1 DOMINANT

DOMINANT is a graph autoencoder for attributed graphs composed of a
attributed graph encoder, a feature reconstruction decoder, and a topology recon-
struction decoder. The encoder part uses a GNN with three layers, each of them
followed by a ReLU activation function, that compute the embedding matrix Z,
associating to each node a latent vector. More formally, given a weight matrix
W , the adjacency matrix A and a feature matrix H (associating a feature vector
to each node of the graph), each layer computes the following function:

f(H,A|W) = ReLU(D̂− 1
2 ÂD̂− 1

2 HW) (1)

where Â = A + I and D̂ is the diagonal matrix with D̂ii =
∑

j Âij . The overall
computation of the encoder, given the feature matrix X corresponding to the
input features of the nodes, is:

H(1) = f(X,A|W (0))
H(2) = f(H(1), A|W (1))

Z = f(H(2), A|W (2))
(2)

At the end of this process, the latent vectors associated to the nodes (the
rows of matrix Z) do not depend only on the corresponding feature vectors, but
also contain information from the k-hops neighborhood of each node.

The topology decoder aims at reconstructing the matrix A from Z, using the
following computation:

A∗ = sigmoid(ZZT) (3)

while the feature decoder tries to reconstruct the feature matrix X from Z, using
a structure that is similar to a single layer of the encoder:

X∗ = f(Z,A|W (d)) (4)

.
The loss function is a linear combination of the reconstruction errors for the

topology and the features, which are measured using the Frobenius norm of the
differences between the input matrices and the reconstructed ones:

L = (1 − α)||A − A∗||F + α||X − X∗||F (5)

Once the network has been trained, it is used as an anomaly detector by
encoding and then reconstructing the input graph. The reconstruction error is
used to compute an anomaly score and rank the nodes that are most anomalous
in the network; thus the method does not return whether a node is anomalous or
not but only the score assigned to each node. To our purpose, we added a final
thresholding layer to classify normal and abnormal nodes. The best threshold
has been selected by using the (Receiver Operating Characteristic) computed on
the validation set.

132 V. Carletti et al.

3.2 OCGNN

OCGNN aims at learning together an embedding for the nodes of the graph,
and a hyper-sphere (in the node embedding space) that contains all the normal
nodes. The method does not depend on the choice of a particular embedding
function; however, the authors suggest to use one or more layers organized as
we have previously seen in Eq. 1.

The learnable weights of the embedding function g(X,A|W) are represented
by the matrix W (X and A are, as in the previous subsection, the node features
and the adjacency matrix). The hyper-sphere is represented by its center c and its
radius r. However, the center is computed simply as the average of the embedding
vectors of the training nodes, so only r is actually learned.

The algorithm uses as its loss function:

L(r,W) =
1

βN

∑

v∈Vtr

[
||g(X,A|W)v − c||2 − r2

]+
+ r2 +

λ

2

K∑

i=1

||W k||2 (6)

where Vtr is the set of training nodes having cardinality N , the notation g(·)v
represents the row corresponding to node v of the embedding matrix computed
by g(·), and [·]+ denotes a maximum operation between zero and its argu-
ment. Finally, λ is a regularization hyper-parameter while β ∈]0, 1[is a hyper-
parameter used to balance the trade-off between enclosing all the embeddings
in the hyper-sphere and getting the smallest radius: with the given loss func-
tion, the algorithm will try to enlarge the hyper-sphere if it contains less than a
fraction β of the training samples, and to reduce it otherwise.

OCGNN uses the distance between a node embedding and the center of the
hyper-sphere as a metric to provide an anomaly score. A node v is considered
as anomalous if and only if ||g(X,A|W)v − c||2 ≥ r2.

3.3 CONAD

CONAD is a graph autoencoder that uses data augmentation and a Siamese
architecture to learn an optimal latent encoding. More specifically, given a train-
ing graph G (containing only normal nodes), CONAD generates an augmented
graph Gano containing artificially generated anomalous nodes. While the method
does not depend on how these nodes are generated, the authors consider the fol-
lowing strategies: (a) adding a large number of random edges to a node, yielding
a degree significantly higher than the average; (b) removing most of the con-
nections of a node, making it mostly isolated from other nodes; (c) randomly
modifying node features so as to be very dissimilar from their immediate neigh-
bors; (d) randomly modifying node features so as to be significantly larger or
significantly smaller that the values in most other nodes.

The encoder of the network is a Graph Attention Network (GAT) trained
using a Siamese configuration, in which two instances of the encoder are applied
on both G and Gano; a contrastive loss function is used to make the corresponding
embeddings obtained on the two graphs more similar to each other for the normal

Detecting Abnormal Communication Patterns in IoT Networks 133

nodes, and more dissimilar if the node in Gano was an artificially generated
anomalous node:

Lsc =
1
N

∑

v∈Vtr

Iyv=0 · ||zv − ẑv|| + Iyv=1 · [m − ||zv, ẑv||]+ (7)

where zv and ẑv are the encodings computed for node v in G and in Gano

respectively, and Iyv=1 and Iyv=0 are the indicator functions representing the fact
that node v in Gano is normal or it has been modified to become anomalous,
respectively. The value m is a hyper-parameter denoting the desired margin
between the distances for normal nodes and the distances between a normal and
an anomalous node.

Similarly to DOMINANT, the CONAD network has two decoders to recon-
struct both the adjacency matrix A and the feature matrix X from the encoding
matrix Z. Thus, the complete loss function used for training the network is a
linear combination of the contrastive loss function presented above and the two
reconstruction errors. Finally, once the network has been trained, the latter is
used to decide if a node is anomalous, in a way similar to DOMINANT.

4 Experiments

In this section we describe in details the experiments conducted and the obtained
results.

4.1 Datasets

The experiments have been conducted using two recent publicly available
datasets that provide raw network captures.

IoT23 [14] is a dataset containing benign and malicious IoT network traffic
divided into 23 scenarios. Three of them consist of benign traffic captured from
real IoT devices in a smart home environment. The authors then created 20
malicious scenarios by uploading different attack instances to a RaspberryPI
present in the environment. The captures last 24 h, except in cases where the
number of generated packets increased too rapidly.

The second dataset is IoTID20 [16], that also considers devices of a typical
smart home scenario, together with smartphones and laptops. In addition, also
smartphones and laptops were connected to the network during This dataset
includes 9 kinds of attacks (some of them are not in IoT23), such as various cat-
egories of DoS and DDoS attacks, ARP spoofing and operating system scanning.

4.2 Graph Neural Network Training

As previously mentioned, the GNN methods we have considered for anomaly
detection, were originally employed by their authors in a transductive setting:
there is a single graph, whose structure is known a priori, and the method is used

134 V. Carletti et al.

to predict the class of some nodes (i.e. whether they are normal or anomalous)
given a disjoint set of nodes which are known to be normal.

In our case, that setting is not appropriate: each graph correspond to a
snapshot of observed network traffic, and snapshots captured at different times
will very likely have a different structure. Thus, we had to modify the training
procedure to a more conventional inductive setting, where the network learns
a function that is independent of the graph structure, and then this function
is used to classify the nodes of new graphs, that are different from the ones
seen at training time. Notice that the conventional technique used for inductive
learning, i.e. applying the optimization algorithm to fixed-size batches randomly
sampled from the training set, was not directly applicable here: the GNN layers
and the loss functions (as described in Sect. 3) assume that the structure of the
graph (the adjacency matrix A) is provided, and all the nodes of the graph are
given in input. So, we have used a different, entire graph from the training set at
each learning step; the training set was made of graphs consisting only of normal
nodes, while the validation set also contains abnormal nodes. The training and
validation procedure is repeted different times by randomly changing the order
of the input graphs sequence in order to prevent the GNNs from specialyzing on
a particular order of graphs.

In more datails, the dataset IoT23 has been used to train and validate the
GNNs, for each representation 10,041 graphs have been used for the training
set and 9,227 for the validation, while 9,221 graphs have composed the test set.
The graphs have been extracted from approximately 1,400,000 flows of which
1,000,000 are benign and 200,000 malicious. The dataset IoTID20 has be used
only for testing the capability of the GNNs to generalize on data collect from a
similar IoT context, but with different devices and network attacks. In particu-
lar, from IoTID20 we have extracted 209 graphs for each representation, starting
from 108,983 malicious and 14,753 benign flows. For both the datasets the dura-
tion of a temporal snapshot used to generate the graphs has been set to 2.5 min.
This choice has been mostly driven by memory constraints during the training
since we needed to load the whole graphs on the GPU.

For the sake of clarity, we provide some details about the hyperparame-
ters and the training parameters for each considered method. Regarding DOM-
INANT, we used an encoder with three layers and a feature reconstruction
decoder with one layer. The hidden layers of the encoder had 28 nodes, and
the dropout probability was 0.3. During loss and anomaly score computation,
we set the value of α to 0.8 to balance the features reconstruction error and
the structural reconstruction error. We optimized the GNN using ADAM with
a learning rate of 0.0005. The autoencoder was trained for 100 epochs, and we
set the patience level to 20. For OCGNN, we opted for a 2-layer GraphSAGE
encoder, as it is known to work effectively in an inductive context. The hidden
layer consists of 28 neurons. We set the contamination factor 1−β, which denotes
the proportion of nodes allowed to stay outside of the hyper-sphere, to 0.2. For
optimization of the encoder, we used the AdamW optimizer with a learning rate
of 0.0003 and decay coefficient. The model was trained for 50 epochs with a

Detecting Abnormal Communication Patterns in IoT Networks 135

patience of 10. Finally, in the case of CONAD, we set the number of encoder
layers to 3, while the number of decoder layers responsible for reconstructing fea-
tures is set to 1. The hidden encoder layer is had 28 neurons, while the output
layer had 14. We set the loss margin m to 0.5, and we introduced a percentage of
artificial anomalies in the augmented graphs equal to 0.2% of the total number
of nodes in the input graph. We used ADAM as optimizer, with a learning rate
of 0.0005. The autoencoder was trained for 50 epochs with a patience of 10.

4.3 Results

In Table 1 we have reported precision, recall and F-score for all the combina-
tions of GNN and representations previously mentioned. Since our system is an
anomaly detector, we considered as positive the anomalous nodes (e.g. a true
positive was a node representing an attack that was labeled as anomalous by the
system).

From Table 1 it is possible to note that among the three representations, the
extended TDG is performing significantly worse than the others on IoT23, the
dataset used to train the GNNs. On the other hand, the results on IoTD20 may
lead to a different conclusion, indeed, this representation seems to provide a
good generalization capability to GNNs. But, considering the compostion of the
two dataset, where the percentage of abnormal traffic in IoTD20 (about 87%) is
considerably higher than in IoT23 (about 29%), we can reasonably conclude that
the GNNs are specilized on IoT23 resulting in a large number of false positives
on IoTID20. An evidence of that is the very high recall achieved by all the
GNNs on IoTD20, while the precision is close to percentage of malicious flows.
Unfortunately, this is a common problem when an anomaly detection system
trained on a given scenario is moved on a different one. This is the only considered
representation where graph nodes represent communication endpoints instead of
communication flows. Also, note that extended TDGs include a lot of network-
related features in the nodes, but they fail to bring any benefit to the detection
task.

The two remaining representations, similarity graphs and traffic trajectory
graphs, have similar performance, but the first one is slightly better in gen-
eral. Remember that in similarity graphs, node adjacency is determined by the
similarity of the communication flow characteristics, while in traffic trajectory
graphs it depends only on the sharing of a common endpoint. Only while using
OCGNN, we get a significant drop of recall, that can be blamed to difficulty
in adapting this GNN to face the problem at hand. We suspect that similar-
ity graphs are better suited at capturing the occurrence of similar anomalous
behavior by several devices that are not immediately connected to each other,
and this may help for many kinds of attacks.

Looking at the GNNs, the one that achieved the best performance in the
average is DOMINANT. In particular, while working with similarity graphs,
DOMINANT shows the best F-score on both the datasets, therefore it has the
best trade-off between precision and recall. The results suggest that a classi-
cal graph autoencoder architecture, according to which DOMINANT has been

136 V. Carletti et al.

Table 1. Performance of the considered GNN and representations, in terms of precision
(Prec), recall (Rec) and F-Score, evaluated over the test sets of both IoT23 and IoTID20
datasets.

GNN Representation IoT23 IoTID20

Prec Rec F-Score Prec Rec F-Score

CONAD Extended 0.4815 0.5542 0.5153 0.8502 0.9953 0.9171

Similarity 0.6807 0.6725 0.6766 0.8699 0.8433 0.8564

Trajectory 0.6756 0.7010 0.6881 0.8652 0.8441 0.8545

DOMINANT Extended 0.4937 0.5399 0.5158 0.8466 0.9955 0.9168

Similarity 0.6748 0.7324 0.7024 0.8896 0.9951 0.9394

Trajectory 0.6137 0.7814 0.6875 0.8735 0.8855 0.8794

OCGNN Extended 0.4857 1.0000 0.6539 0.8491 1.000 0.9184

Similarity 0.5963 0.7268 0.6551 0.7154 0.2026 0.3158

Trajectory 0.5000 1.0000 0.6667 0.8823 1.000 0.9375

designed, is more suitable for the task at hand. CONAD also is based on a graph
autoencoder, but its use of manually designed models of anomalies introduces a
bias in the system, that may lead to a decrease in performance.

Finally, OCGNN seem to be slightly behind the other two methods. OCGNN
does not try to optimize reconstruction error as the other two methods do, but
attempts to project the nodes into a space where the normal nodes reside in a
possibly small hyper-sphere. The fact that on the test set this network shows a
large difference between precision and recall appears to be a consequence of the
fact that the optimal position and radius of this hyper-sphere may change when
the graph structure changes, and thus this algorithm is less performant in an
inductive setting than it would be in its original transductive usage.

5 Conclusions

In conclusions, in this paper we have faced the problem of detecting abnormal
communication patterns in IoT networks using Graph Neural Networks. To this
purpose, we have selected from the state of the art three different ways of rep-
resenting network traffic in terms of graphs, and three graph-based anomaly
detection algorithms. The resulting 9 combinations have been experimentally
evaluated using two recent datasets composed of real IoT network traffic. pro-
posed in the context of network analysis. The results that we have obtained in
the experiments are encouraging. Further analysis is required to assess the reli-
ability and robustness as well as the generalization capability of GNN in this
context.

Detecting Abnormal Communication Patterns in IoT Networks 137

References

1. Abbasi, M., Shahraki, A., Taherkordi, A.: Deep learning for network traffic mon-
itoring and analysis (NTMA): a survey. Comput. Commun. 170, 19–41 (2021).
https://doi.org/10.1016/j.comcom.2021.01.021

2. Aouini, Z., Pekar, A.: Nfstream: a flexible network data analysis framework. Com-
put. Netw. 204, 108719 (2022)

3. Churcher, A., et al.: An experimental analysis of attack classification using machine
learning in IOT networks. Sensors 21(2), 446 (2021)

4. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate
time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 4027–4035 (2021)

5. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed
networks. In: Proceedings of the 2019 SIAM International Conference on Data
Mining, pp. 594–602. SIAM (2019)

6. Fahim, M., Sillitti, A.: Anomaly detection, analysis and prediction techniques in
IOT environment: a systematic literature review. IEEE Access 7, 81664–81681
(2019). https://doi.org/10.1109/ACCESS.2019.2921912

7. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.:
Network monitoring using traffic dispersion graphs (TDGs). In: Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement, pp. 315–320 (2007)

8. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development
of realistic botnet dataset in the internet of things for network forensic analytics:
bot-IOT dataset. Future Gen. Comput. Syst. 100, 779–796 (2019)

9. Lo, W.W., Layeghy, S., Sarhan, M., Gallagher, M., Portmann, M.: E-graphsage: a
graph neural network based intrusion detection system for IOT. In: NOMS 2022–
2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9. IEEE
(2022)

10. Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep packet: a novel
approach for encrypted traffic classification using deep learning. Soft Comput.
24(3), 1999–2012 (2019). https://doi.org/10.1007/s00500-019-04030-2

11. Ma, X., et al.:: A comprehensive survey on graph anomaly detection with deep
learning. IEEE Trans. Knowl. Data Eng. (2021)

12. Macas, M., Wu, C., Fuertes, W.: A survey on deep learning for cybersecu-
rity: progress, challenges, and opportunities. Comput. Netw. 212, 109032 (2022).
https://doi.org/10.1016/j.comnet.2022.109032

13. Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., Aguilar, J.: Towards the
deployment of machine learning solutions in network traffic classification: a sys-
tematic survey. IEEE Commun. Surv. Tutor. 21(2), 1988–2014 (2019). https://
doi.org/10.1109/COMST.2018.2883147

14. Parmisano, A., Garcia, S., Erquiaga, M.J.: A Labeled Dataset with Malicious
and Benign IOT Network Traffic. Stratosphere Laboratory, Praha, Czech Republic
(2020)

15. The Guardian: DDoS attack that disrupted internet was largest of its kind in his-
tory, experts say. https://www.theguardian.com/technology/2016/oct/26/ddos-
attack-dyn-mirai-botnet

16. Ullah, I., Mahmoud, Q.H.: A scheme for generating a dataset for anomalous activity
detection in IoT networks. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS
(LNAI), vol. 12109, pp. 508–520. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-47358-7 52

https://doi.org/10.1016/j.comcom.2021.01.021
https://doi.org/10.1109/ACCESS.2019.2921912
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1016/j.comnet.2022.109032
https://doi.org/10.1109/COMST.2018.2883147
https://doi.org/10.1109/COMST.2018.2883147
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://doi.org/10.1007/978-3-030-47358-7_52
https://doi.org/10.1007/978-3-030-47358-7_52

138 V. Carletti et al.

17. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural
networks for anomaly detection in attributed networks. Neural Comput. Appl. 33,
12073–12085 (2021)

18. Xu, Z., Huang, X., Zhao, Y., Dong, Y., Li, J.: Contrastive attributed network
anomaly detection with data augmentation. In: Advances in Knowledge Discovery
and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, 16–19
May 2022, Proceedings, Part II, pp. 444–457. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-05936-0 35

19. Zheng, J., Li, D.: Gcn-tc: combining trace graph with statistical features for net-
work traffic classification. In: ICC 2019–2019 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE (2019)

20. Zheng, J., Zeng, Z., Feng, T.: Gcn-eta: high-efficiency encrypted malicious traffic
detection. Secur. Commun. Netw. 2022, 1–11 (2022)

21. Zola, F., Segurola-Gil, L., Bruse, J.L., Galar, M., Orduna-Urrutia, R.: Network
traffic analysis through node behaviour classification: a graph-based approach with
temporal dissection and data-level preprocessing. Comput. Secur. 115, 102632
(2022)

https://doi.org/10.1007/978-3-031-05936-0_35
https://doi.org/10.1007/978-3-031-05936-0_35

	Detecting Abnormal Communication Patterns in IoT Networks Using Graph Neural Networks
	1 Introduction
	2 Representing Network Traffic as a Graph
	2.1 Similarity Graphs
	2.2 Traffic Trajectory Graphs
	2.3 Extended Traffic Dispersion Graphs

	3 Graph Neural Networks for Anomaly Detection
	3.1 DOMINANT
	3.2 OCGNN
	3.3 CONAD

	4 Experiments
	4.1 Datasets
	4.2 Graph Neural Network Training
	4.3 Results

	5 Conclusions
	References

