
Matching-Graphs for Building
Classification Ensembles

Mathias Fuchs1(B) and Kaspar Riesen1,2

1 Institute of Computer Science, University of Bern, 3012 Bern, Switzerland
{mathias.fuchs,kaspar.riesen}@unibe.ch

2 Institute for Informations Systems, University of Applied Science and Arts
Northwestern Switzerland, 4600 Olten, Switzerland

kaspar.riesen@fhnw.ch

Abstract. Ensemble learning is a well known paradigm, which combines
multiple classification models to make a final prediction. Ensemble learn-
ing often demonstrates significant benefits, in particular a better classifi-
cation performance than the individual ensemble members. However, in
order to work properly, ensemble methods require a certain diversity of
its members. One way to increase this diversity is to randomly select a
subset of the available data for each classifier during the training process
(known as bagging). In the present paper we propose a novel graph-based
bagging ensemble that consists of graph neural networks. The novelty of
our approach is that the ensemble operates on substantially augmented
graph sets. The graph augmentation technique, in turn, is based on so-
called matching-graphs, which can be computed on arbitrary pairs of
graphs. In an experimental evaluation on five graph data sets, we show
that this novel augmentation technique paired with a bagging ensem-
ble is able to significantly improve the classification accuracy of several
reference systems.

Keywords: Graph Matching · Matching-Graphs · Graph Edit
Distance · Graph Augmentation · Graph Neural Network · Ensemble
Learning

1 Introduction

Graphs, which consist of nodes that might be connected by edges, are used in
a wide range of applications [1]. Indeed, graphs offer a compelling alternative
to vector-based approaches, especially for applications involving complex data.
This is mainly because graphs are capable of encoding more information than
just an ordered and fixed-size list of real numbers.

In the last four decades a large number of procedures for graph-based pat-
tern recognition has been proposed in the literature [2]. Those procedures range
from graph edit distance [3], over spectral methods [4], to graph kernels [5] (to
name just three examples). Recently, with the advent of Graph Neural Networks
(GNNs) [6], the power of (deep) neural networks can finally be utilized by graphs.
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In the present paper, we propose to use an ensemble learning method based
on individual GNNs. In order to produce performant and robust GNNs, a lot
of training data is typically required. Furthermore, it is accepted that ensemble
learning methods perform the best when a large diversity of the individual clas-
sifiers is given [7]. The major contribution of the present paper is a novel method
to generate both large and heterogeneous sets of graph data (particularly suited
for ensemble learning). The novel method is based on a recently introduced data
structure (known as matching-graph [8]).

Roughly speaking, a matching-graph encodes the matching subgraphs of two
graphs under consideration. This basic concept can be used in many different
ways. Matching-graphs can, for instance, improve the quality of graph dissim-
ilarity computations by aggregating a matching-graph based distance and the
original distance [8]. They can also be used to produce a subgraph based vector
space embedding, by checking whether or not a set of given matching-graphs
occur in the graph to embed [8]. The framework of matching-graphs is also
successfully adopted for the automatic detection of relevant (i.e., frequent) sub-
structures in very large graph sets [9]. Lastly, matching-graphs are also employed
for graph augmentation in order to even out very small graph data sets [10], as
well as to build more stable GNNs [11].

In the present work, we propose to further optimize the augmentation method
presented in [11] to generate even more diverse matching-graphs. These novel
matching-graphs provide a natural way to create realistic, diverse and relevant
graphs of a specific class. It is our main hypothesis that the large amount of
possible matching-graphs in conjunction with a bagging procedure ensures the
diversity of the individual classifiers and finally allows to build a robust ensemble.

The remainder of this paper is organized as follows. In Sect. 2, we formally
introduce the concept of matching-graphs and show how they can be used to
augment a given training set of graphs and build a bagging ensemble. Eventually,
in Sect. 3, we conduct an exhaustive experimental evaluation to provide empirical
evidence that this novel approach is able to improve the classification accuracy of
diverse reference systems. Finally, in Sect. 4, we conclude the paper and discuss
potential ideas for future work.

2 Building an Ensemble with Matching-Graphs

Ensemble methods aim at combining several individual classifiers into one sys-
tem. That is, an ensemble weighs the opinions of its individual members and
combines their results to get the final decision [7]. Various ensemble methods
have been proposed in the literature (e.g. Boosting [12] or Bagging [13]). In the
present paper we employ – in principle – a bagging ensemble for graph classifica-
tion. Thereby, the ensemble consists of multiple GNN classifiers that are trained
on random subsets of the training data. The main contribution is to substantially
increase the diversity of the bagging ensemble by means of matching-graphs. For
this reason, we first introduce this basic concept (Subsect. 2.1) and then explain
how these matching-graphs can be used for bagging (Subsect. 2.2).
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2.1 Matching-Graphs

In the present paper, we use the following formalism to define graphs. A graph
g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes, E ⊆ V × V
is the set of edges, μ : V → LV is the node labeling function, and ν : E → LE

is the edge labeling function.
Intuitively speaking, a matching-graph is built by extracting information

about the matching of pairs of graphs and formalising this information into a
new graph [8]. Matching-graphs in their original form can actually be interpreted
as denoised core structures of the underlying graphs, and always refer to sub-
graphs of the original graphs. Therefore, to augment a given training set, the
original definition of a matching-graph is not suitable. In [10], we propose an
adapted version of a matching-graph that represents a mixed version of both
original graphs, without being just a subgraph. However, this definition is still
not optimal for the present purposes, since the resulting matching-graphs are
always smaller than, or equal to, the original graphs. Hence, we now propose a
further altered definition for matching-graphs more suited for the present context
of increasing ensemble diversity.

The process of creating matching-graphs can be described as follows. Given
a pair of graphs g = (V,E, μ, ν) and g′ = (V ′, E′, μ′, ν′), the graph edit distance
is computed first1. The basic idea of graph edit distance is to transform g into g′

using edit operations (substitutions, deletions, and insertions of both nodes and
edges). We denote the substitution of two nodes u ∈ V and v ∈ V ′ by (u → v),
the node deletion by (u → ε), and the node insertion by (ε → v), where ε refers to
the empty node. By computing the graph edit distance one obtains a dissimilarity
score d(g, g′), as well as a (sub-optimal) edit path λ(g, g′) = {e1, . . . , es} that
consists of s edit operations that transform the source graph g in to the target
graph g′.

Based on λ(g, g′) two matching-graphs mg×g′ and mg′×g can now be built.
Initially, mg×g′ and mg′×g refer to the source graph g and the target graph g′,
respectively. In our procedure, we first define the partial edit path τ(g, g′) =
{e(1), . . . , e(t)} ⊆ λ(g, g′) with t = �p1 · s� edit operations, where t < s is the
amount of randomly selected edit operations from λ(g, g′) based on a certain
probability p1 ∈ [0, 1]2. Next, each edit operation ei ∈ τ(g, g′) is applied on
graphs mg×g′ and mg′×g according to the following three rules.

Case 1. ei is a substitution (u → v): The labels of the matching nodes u ∈ V
and v ∈ V ′ are exchanged in both mg×g′ and mg′×g. Note that this
operation shows no effect, if the labels of the involved nodes are identical
(i.e. μ(u) = μ(v)).

Case 2. ei is a deletion (u → ε): Node u ∈ V

– is deleted in mg×g′ .

1 For this purpose, we use algorithm BP [14] with cubic time complexity.
2 We use here the expression p1 (with subscript 1), because later in the paper we will
introduce a second probability p2.
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– is inserted in mg′×g.
As we only execute parts of the edit path, it is possible that the adjacent
nodes of u are not yet processed, which means that we do not know the edge
structure of u in mg′×g. In this case, we perform a look-ahead to include
edges from u to the corresponding nodes in mg′×g. Formally, for all node
substitutions (v → u′) ∈ λ(g, g′), where node v ∈ V is adjacent to node
u ∈ V , we insert an edge between the inserted node u and node u′ in mg′×g.

Case 3. ei is an insertion (ε → v): Node v ∈ V ′

– is deleted in mg′×g.
– is inserted in mg×g′ (using a similar look-ahead technique as defined for Case

2).

The basic rationale to apply these rules is that we aim at creating matching-
graphs that are indeed related to the underlying graphs, but also substantially
differ to them in significant ways. This is achieved by allowing both insertions
of nodes and swappings of node labels.

Clearly, if p1 is set to 1.0, τ(g, g′) is equal to λ(g, g′), and thus all edit
operations from the complete edit path are executed during the matching-graph
creation. In this case, mg′×g would be equal to the source graph g and mg×g′

would be equal to the target graph g′. For probabilities p1 < 1, however, we
obtain matching-graphs that are more diverse and particularly different from
simple subgraphs (due to relabelled nodes and potential insertions). That is,
when all edit operations of τ(g, g′) are applied, both matching-graphs represent
somehow intermediate graphs between g and g′.

Due to the flexibility of graph edit distance, the matching-graph can be built
using graphs with any given labeling functions μ and ν. In other words it does
not matter whether the graphs are unlabaled or contain categorical or continuous
node and/or edge labels.

Figure 1 shows a visual example of an edit path λ(g, g′) between two graphs
g and g′ and two possible resulting matching-graphs mg×g′ and mg′×g. Both
matching-graphs are created with the partial edit path that consists of t = 3
edit operations. In this example, it is clearly visible that neither mg×g′ nor
mg′×g is a subgraph of g or g′, respectively. Furthermore, the effects of the look-
ahead technique is visible. More specifically, between the inserted node b ∈ V ′

and node 3 ∈ V an edge is inserted, even though the substitution (3 → c) is not
yet carried out.

Note that the proposed process can lead to isolated nodes, despite look-ahead
technique (for a detailed explanation of this phenomenon see [8]). As we aim to
build graphs with nodes that are actually connected to at least one other node
in the graph, we remove isolated nodes from the matching-graphs whenever they
occur in our method.

2.2 Bagging with Matching-Graphs

Based on the process of creating matching-graphs for any pair of graphs, we can
augment a given training set with virtually any number of additional graphs. In
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Fig. 1. An example of a complete edit path λ(g, g′), a partial edit path τ , and the
resulting matching-graphs mg×g′ and mg′×g.

order to do this, we conduct the basic steps formalized in Algorithm 1 (which is
similar in structure to the procedure described in [11]). The algorithm takes k
sets of training graphs Gω1 , . . . , Gωk

stemming from k different classes ω1, . . . , ωk,
and builds two matching-graphs mg×g′ and mg′×g for each possible graph pair
g, g′ ∈ Gωi

× Gωi
. Note that the probability p1 ∈ [0.1, 0.9] used for the creation

of the matching-graphs is randomly defined for each pair of graphs g, g′ (see
line 5). Assuming n training graphs per class ωi this algorithm results in n(n−1)
matching-graphs, which are directly used to augment the corresponding training
set Gωi

. Hence, rather than n graphs, we now have access to n(n − 1) + n = n2

graphs per class ωi
3.

Based on the augmented sets, a bagging ensemble E = {c1, . . . , cm} with m
classifiers can now be built. Each classifier ci ∈ E is trained only on a subset of
all training graphs. To this end, each classifier ci of the ensemble E is trained on
�p2 × n2� randomly selected graphs from Gωi

, where p2 ∈ [0, 1] is a predefined
probability and n2 is the number of graphs available in Gωi

(i.e., we assume that
Gωi

is augmented to size |Gωi
| = n2).

As base classifiers ci ∈ E , we use GNNs, which are – due to their inherent
randomness – viable ensemble members. GNNs allow for the use of deep learning
on graph structured data. The general goal of GNNs is to learn vector embed-
dings hv ∈ R

n or hg ∈ R
n that represent nodes v ∈ V or complete graphs g,

respectively. This vector space embedding can then be used for classification pur-
poses. In order to learn an appropriate vector representation, GNNs implement
a neighborhood aggregation strategy, called neural message passing, in which
messages are exchanged between the nodes of a graph [15]. In the present paper,
we employ a model that consists of Graph Convolutional Layers [16], denoted as

3 By defining a further for loop inside the second for loop (in Algorithm 1 Line 5),
just before the definition of p1, even more than one matching-graph could be created
for each pair of graphs, viz. we could produce more than n(n − 1) matching-graphs.
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Algorithm 1: Graph Augmentation Algorithm
input : sets of graphs from k different classes G = {Gω1 , . . . , Gωk

}
output: same sets augmented by matching-graphs

1 foreach set Gωi
∈ G do

2 M = {}
3 foreach pair of graphs g, g′ ∈ Gωi

× Gωi
do

4 Compute λ(g, g′) = {e1, . . . , es}
5 Randomly define p1 in [0.1, 0.9]
6 Define τ by selecting �p1 · s� edit operations from λ
7 Build both matching-graphs mg×g′ and mg′×g according to τ

8 M = M ∪ {mg×g′ , mg′×g}
9 end

10 Gωi
= Gωi

∪ M

11 end

GCN from now on4. For the final graph classification, we add a dropout layer
and feed the graph embedding into a fully connected layer. The outputs of the
individual classifiers are then aggregated into one single decision by means of
majority voting.

3 Experimental Evaluation

3.1 Data Sets and Experimental Setup

The experimental evaluation is conducted on five data sets obtained from the
TUDatasets repository5. The first three data sets contain graphs that repre-
sent chemical compounds (NCI1, PTC(MR) and COX-2 ). The fourth data set
(Cuneiform) contains graphs that represent Hittie cuneiform signs6. The last
data set (Synthie) is an algorithmically created data set. The graphs of the first
three data sets consist of nodes labeled with discrete values and unlabelled edges,
whereas both Cuneiform and Synthie contain real-valued continuous node labels
and unlabeled edges. Each data set is split into a training and test set according
to a 4:1 split.

The novel ensemble (denoted as GCN-emg) uses the augmented training data
and is built as described in Sect. 2.2. We set p2 to 0.3 and due to computational
reasons we limit the amount of selected graphs to 100′000 per class. For each
ensemble we create 100 classifiers, which are trained for 200 epochs (except for
the NCI1 data set, where we build 50 classifiers, trained for 50 epochs only, due
to computational problems arising from the large number of graphs in this data
set).

For all base classifiers (viz. GCNs) we use the Adam optimizer with an initial
learning rate of 0.01, together with a CosineAnnealingLR scheduler. Further-
more, we use the Cross Entropy loss function. The batch size is set to 64. For
4 Any other classifier could be used for the experiments, as long as both the reference
ensemble and our novel ensemble are based on the same classifier.

5 https://graphlearning.io.
6 One of the oldest handwriting systems in the world.

https://graphlearning.io
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the implementation of the ensemble we use the ensemble-pytorch library7 which
we adapted to seamlessly work with PyTorch Geometric [17]8.

Fig. 2. Training accuracies of all individual classifiers of the ensemble for all data sets
shown with a box-plot. The training accuracy of the ensemble is marked with a red
cross. (Color figure online)

Figure 2 shows by means of box-plots the training accuracies of all individual
classifiers available in the ensembles for all data sets. The diamonds above and
below the boxes mark the 10% best and worst classifiers w.r.t. the accuracy.
The training accuracy of the final ensemble is marked with a red cross. We
observe that the diversity of the classifiers is the largest for NCI1, PTC(MR), and
Cuneiform. It is also clearly visible that for all data sets the training accuracy of
the complete ensemble is better than the accuracy of the best individual member.
This is already a clear indication for the usefulness of the defined ensemble.

3.2 Reference Systems

The overall aim of the present experimental evaluation is to answer the question,
whether or not matching-graphs can be beneficially employed to build robust
classifier ensembles. In order to answer this research question, we use three ref-
erence systems for comparisons with our novel approach GCN-emg.

– Reference system 1 (denoted by GCN): This reference system is trained on
the full training set to obtain a baseline for the classification accuracy. In order
to counteract uncontrolled randomness during initialization, each experiment
that uses this reference system is repeated five times and the average accuracy
is finally reported.

7 https://ensemble-pytorch.readthedocs.io.
8 https://pytorch-geometric.readthedocs.io.

https://ensemble-pytorch.readthedocs.io
https://pytorch-geometric.readthedocs.io
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We also perform an ablation study in order to empirically verify that the
superiority of the proposed method is indeed based on the matching-graphs. To
this end, we compare our novel ensemble GCN-emg with two additional reference
systems.

– Reference system 2 (denoted by GCN-e): This reference system is virtually
the same as our novel ensemble but has only access to the original training
data without matching-graphs.

– Reference system 3 (denoted by SINGL-emg): This reference system refers to
the best individual classifier of the novel augmented ensemble.

A comparison with reference system 2 allows us to better assess whether the
matching-graphs, or the ensemble by itself, is the important element of the whole
process. A comparison with reference system 3 allows us to assess whether the
ensemble outperforms the randomly generated members of the system – in other
words, whether the ensemble actually also makes a difference.

3.3 Test Results and Discussion

In Table 1 we compare the novel ensemble GCN-emg with the first reference
system (a single GCN trained on the full training set). Remember that we run the
GCN reference system five times to counteract randomness during initialization.
This is why we report here the mean accuracies (± standard deviation).

We observe that GCN-emg outperforms the reference system GCN in 18 out
of 25 cases with statistical significance9. On the NCI1 data set, even though we
observe an improvement in all five iterations, only four of them are statistically
significant. On the PTC(MR) data set, we outperform the reference system in
each iteration, however only two of the improvements are statistically significant.
On the COX-2 data set we get an improvement in four out of five iterations (two
of them are actually statistically significant). On Cuneiform and Synthie all of
the improvements are statistically significant (10 out of 10 cases).

Table 1. Average classification accuracy of reference system 1 (GCN) compared to our
novel ensemble (GCN-emg). Symbol x indicates a statistically significant improvement
in x out of the five comparisons (using a Z-test at significance level α = 0.05). Marked
in bold is the best accuracy per data set.

Ref. System 1 Ours

Dataset GCN GCN-emg

NCI1 70.5 ± 1.0 74.0 4

PTC(MR) 62.3 ± 4.5 68.6 2

COX-2 70.4 ± 11.1 78.7 2

Cuneiform 40.3 ± 20.5 96.7 5

Synthie 76.8 ± 7.5 97.5 5

9 The statistical significance is computed via Z-test at significance level α = 0.05.
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Table 2. Classification accuracy of the ensemble without matching-graphs GCN-e, the
individually best classifier SINGL-emg and our ensemble with matching-graphs GCN-
emg. Symbols ◦/◦ indicate a statistically significant improvement over the second/third
reference system using a Z-test at significance level α = 0.05). Marked in bold is the
best accuracy per data set.

Ref. System 2 Ref. System 3 Ours

Dataset GCN-e SINGL-emg GCN-emg

NCI1 70.7 74.8 74.0 ◦/–
PTC(MR) 61.4 62.9 68.6 ◦/◦
COX-2 73.4 77.6 78.5 -/–

Cuneiform 68.3 93.3 96.7 ◦/–
Synthie 64.2 93.8 97.5 ◦/–

Next, in Table 2 we compare the novel ensemble with the other two reference
systems (for the sake of an ablation study). First, we observe that the best
single classifier of each ensemble (reference system 3) outperforms the baseline
ensemble (reference system 2) on all data sets. This is a clear indication of the
usefulness of the matching-graphs. Even more important, the proposed ensemble
GCN-emg outperforms the second reference ensemble GCN-e on all data sets.
These improvements are statistically significant on four out of five data sets.
This is a strong indication that the matching-graphs are the important factor in
improving the classification accuracy, rather than primarily the ensemble itself.
However, when comparing our ensemble with the third reference system, it is
also obvious that the ensemble still makes an important contribution – only on
NCI1 is the best individual classifier better than the ensemble.

4 Conclusion and Future Work

Ensemble learning is often able to improve the accuracy of single classification
systems. One popular way to build an ensemble is bagging, which combines the
output of many classifiers into one strong prediction. One of the main problems
in building a robust ensemble is that large and diverse data sets are needed. In
the present work we propose to use so-called matching-graphs to substantially
increase the amount of training data available. On the basis of these augmented
training sets of graphs, a classifier ensemble is built via bagging. As base clas-
sifiers for the ensemble we use GNNs (note, however, that any other classifier
could be used as well).

By means of an experimental evaluation, we empirically confirm that our
novel approach significantly outperforms three related reference systems, viz. a
single GNN classifier, a bagging ensemble trained on the original training set, as
well as the best individual classifier stemming from the novel ensemble. Hence,
we conclude that matching-graphs provide a versatile way to generate large sets
of additional graphs in order to build a diverse and robust ensemble.
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For future work we see at least two rewarding avenues that can be pursued.
First, we could explore other ensemble modalities (rather than bagging), and
second, other aggregation techniques to combine the results could be explored
(rather than majority voting).
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