
Mario Vento · Pasquale Foggia
Donatello Conte · Vincenzo Carletti (Eds.)

LN
CS

 1
41

21 Graph-Based
Representations
in Pattern Recognition
13th IAPR-TC-15 International Workshop, GbRPR 2023
Vietri sul Mare, Italy, September 6–8, 2023
Proceedings

Lecture Notes in Computer Science 14121
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Mario Vento · Pasquale Foggia ·
Donatello Conte · Vincenzo Carletti
Editors

Graph-Based
Representations
in Pattern Recognition
13th IAPR-TC-15 International Workshop, GbRPR 2023
Vietri sul Mare, Italy, September 6–8, 2023
Proceedings

Editors
Mario Vento
University of Salerno
Fisciano, Italy

Donatello Conte
University of Tours
Tours, France

Pasquale Foggia
University of Salerno
Fisciano, Italy

Vincenzo Carletti
University of Salerno
Fisciano, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-42794-7 ISBN 978-3-031-42795-4 (eBook)
https://doi.org/10.1007/978-3-031-42795-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2948-741X
https://orcid.org/0000-0003-4642-4768
https://orcid.org/0000-0002-7096-1902
https://orcid.org/0000-0002-9130-5533
https://doi.org/10.1007/978-3-031-42795-4

Preface

This volume contains the papers presented at GbR 2023: 13th IAPR-TC15 Workshop
on Graph-based Representations in Pattern Recognition, held on September 6–8, 2023
in Vietri sul Mare, Italy.

GbR 2023 was the thirteenth edition of a series of workshops organized every two
years by theTechnicalCommittee #15 of the InternationalAssociation for PatternRecog-
nition (IAPR). This was the first edition held after a hiatus due to the CoViD pandemic
and the consequent travel restrictions; since the direct, informal interaction between the
participants has always been one of the key aspects of this workshop series, the TC15
decided to skip the organization of the 2021 edition, rather than transform it into an
online event.

This workshop series traditionally provides a forum for presenting and discussing
research results and applications at the intersection of pattern recognition and image
analysis on one side and graph theory on the other side. In addition, given the avenue
of new structural/graphical models and structural criteria for solving computer vision
problems, the GbR 2023 organization encouraged researchers in this more general con-
text to actively participate in the workshop. Furthermore, the application of graphs to
pattern recognition problems in other fields such as computational topology, graphic
recognition systems and bioinformatics is also highly welcome at the workshop.

The volume contains 16 papers, of the original 18 submissions. Each accepted paper
was single-blind reviewed by three program committee members. The program of GbR
2023 also included two talks by IAPR invited speakers: Walter Kropatsch (Profes-
sor Emeritus at the Vienna University of Technology, Austria) and Francesc Serratosa
(Universitat Rovira i Virgili, Spain).

We want to thank the International Association for Pattern Recognition for mak-
ing GbR 2023 an IAPR-sponsored event. We also thank the University of Salerno and
the Department of Information and Electrical Engineering and Applied Mathematics
(DIEM) for sponsoring the workshop.

September 2023 Mario Vento
Pasquale Foggia
Donatello Conte
Vincenzo Carletti

Organization

General Chairs

Mario Vento University of Salerno, Italy
Pasquale Foggia University of Salerno, Italy
Donatello Conte University of Tours, France

Program Committee Chair

Vincenzo Carletti University of Salerno, Italy

Web and Publicity Chair

Luca Greco University of Salerno, Italy

Program Committee

Sebastien Bougleux Université de Caen Normandie, France
Luc Brun ENSICAEN, France
Ananda S. Chowdhury Jadavpur University, India
Pasquale Foggia University of Salerno, Italy
Benoit Gäuzère LITIS – INSA de Rouen, France
Rosalba Giugno University of Verona, Italy
Edwin Hancock University of York, UK
Xiaoyi Jiang University of Münster, Germany
Walter G. Kropatsch Vienna University of Technology, Austria
Cheng-Lin Liu Chinese Academy of Sciences, China
Josep Llados Autonomous University of Barcelona, Spain
Bin Luo University of York, UK
Jean-Yves Ramel Université de Tours, France
Romain Raveaux Université de Tours, France
Kaspar Riesen University of Bern, Switzerland
Francesc Serratosa Universitat Rovira i Virgili, Spain
Salvatore Tabbone Université de Lorraine, France
Ernest Valveny Autonomous University of Barcelona, Spain

viii Organization

Mario Vento University of Salerno, Italy
Richard Wilson University of York, UK

Local Committee

Antonio Greco University of Salerno, Italy
Pierluigi Ritrovato University of Salerno, Italy
Alessia Saggese University of Salerno, Italy

Abstracts of Invited Talks

From LBP on Graphs to Slopes in Images

Walter G. Kropatsch

Pattern Recognition and Image Processing Group, TU Wien, Austria
krw@prip.tuwien.ac.at

Abstract.Local Binary Patterns (LBP) are efficient texture descriptors by
a binary code comparing the differences of grey values between a center
pixel and its neighbors. This works well if the number of neighbors is
constant (i.e. 4 or 8) like in digital images.

We introduce an equivalent code on graphs that allows the vertices to
have different degrees. LBPs determine critical points (minima, maxima,
saddles) without explicit differentiation even on plane graphs and the
known drawbacks of differentiation in the presence of noise. Maximal
monotonic profiles (1D curve) connect a local minimum with a local
maximum while the 1D LBP between two successive extrema is always
the same. A bounded range of values causes a long profile to have lower
(average) inclination corresponding to a low contrast in images.

We propose to build a graph pyramid by successively contracting
edges with lowest contrast and preserving critical points as much as pos-
sible. In contrast to most previous pyramid constructions these selec-
tions preserve not only the grey value range and the critical points but
more importantly the high frequencies corresponding to the remaining
high contrasts. Images can be reconstructed from a high pyramid level
by simple inheritance from parents to childs. It is surprising how diffi-
cult it is to visually see the difference between the original image and a
reconstruction using only a small percentage of colors/grey values.

We further explore the scientific question of what characterizes the
neighborhoods of the critical points at a high pyramid level. We define
slopes as regions of the image domain where every pair of points can be
connected by a monotonic path. Such a slope can contain a single local
maximum and a single local minimum but no saddle point strictly inside
its domain. Saddles appear exclusively along the boundaries of slopes.
The diversity of slope regions allows to partition images beyond internal
and external contrast.

Several further interesting properties of slopes will be addressed
during the talk.

https://orcid.org/0000-0003-4915-4118

Face to Face: Graphs and Biotechnology

Francesc Serratosa

Research Group ASCLEPIUS: Smart Technology for Smart Healthcare, Departament
d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira I Virgili, 43k007

Tarragona, Catalonia, Spain
francesc.serratosa@urv.cat

Abstract. A chemical compound is basically a structural element. Nev-
ertheless, until some years ago, non-structural representations, such
as vectors, were used in machine learning applications, which predict
compound toxicity or drug potency.

Currently, several machine learning methods have appeared in
biotechnology that are feed by structural representations of chemical
compounds, such as attributed graphs. This tendency change has emerged
due to the appearance of more powerful machine learning methods
boosted by the increase of computational power of servers and personal
computers.

In this talk, several methods are going to be commented, ranging from
the first graph matching methods to some of the latest tendencies related
to graph machine learning. These methods have been applied in biotech-
nology to fields such as chemical compound classification, drug potency
prediction and nanocompound toxicology prediction. More specifically,
the aim is to remember and present old methods such as graph edit dis-
tance, K-nearest neighbours or graph embedding. But also, the aim is
to comment the current methods such as graph convolutional networks,
graph autoencoders, graph regression or saliency maps.

https://orcid.org/0000-0001-6112-5913

Contents

Graph Kernels and Graph Algorithms

Quadratic Kernel Learning for Interpolation Kernel Machine Based Graph
Classification . 3

Jiaqi Zhang, Cheng-Lin Liu, and Xiaoyi Jiang

Minimum Spanning Set Selection in Graph Kernels . 15
Domenico Tortorella and Alessio Micheli

Graph-Based vs. Vector-Based Classification: A Fair Comparison 25
Anthony Gillioz and Kaspar Riesen

A Practical Algorithm for Max-Norm Optimal Binary Labeling of Graphs 35
Filip Malmberg and Alexandre X. Falcão

An Efficient Entropy-Based Graph Kernel . 46
Aymen Ourdjini, Abd Errahmane Kiouche, and Hamida Seba

Graph Neural Networks

GNN-DES: A New End-to-End Dynamic Ensemble Selection Method
Based on Multi-label Graph Neural Network . 59

Mariana de Araujo Souza, Robert Sabourin,
George Darmiton da Cunha Cavalcanti,
and Rafael Menelau Oliveira e Cruz

C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling 70
Rongji Ye, Lixin Cui, Luca Rossi, Yue Wang, Zhuo Xu, Lu Bai,
and Edwin R. Hancock

Splitting Structural and Semantic Knowledge in Graph Autoencoders
for Graph Regression . 81

Sarah Fadlallah, Natália Segura Alabart, Carme Julià,
and Francesc Serratosa

Graph Normalizing Flows to Pre-image Free Machine Learning
for Regression . 92

Clément Glédel, Benoît Gaüzère, and Paul Honeine

xvi Contents

Matching-Graphs for Building Classification Ensembles . 102
Mathias Fuchs and Kaspar Riesen

Maximal Independent Sets for Pooling in Graph Neural Networks 113
Stevan Stanovic, Benoit Gaüzère, and Luc Brun

Graph-Based Representations and Applications

Detecting Abnormal Communication Patterns in IoT Networks Using
Graph Neural Networks . 127

Vincenzo Carletti, Pasquale Foggia, and Mario Vento

Cell Segmentation of in situ Transcriptomics Data Using Signed Graph
Partitioning . 139

Axel Andersson, Andrea Behanova, Carolina Wählby, and Filip Malmberg

Graph-Based Representation for Multi-image Super-Resolution 149
Tomasz Tarasiewicz and Michal Kawulok

Reducing the Computational Complexity of the Eccentricity Transform
of a Tree . 160

Majid Banaeyan and Walter G. Kropatsch

Graph-Based Deep Learning on the Swiss River Network 172
Benjamin Fankhauser, Vidushi Bigler, and Kaspar Riesen

Author Index . 183

Graph Kernels and Graph Algorithms

Quadratic Kernel Learning
for Interpolation Kernel Machine Based

Graph Classification

Jiaqi Zhang1, Cheng-Lin Liu2,3, and Xiaoyi Jiang1(B)

1 Faculty of Mathematics and Computer Science, University of Münster,
Einsteinstrasse 62, 48149 Münster, Germany

xjiang@uni-muenster.de
2 National Laboratory of Pattern Recognition, Institute of Automation of Chinese

Academy of Sciences, Beijing 100190, People’s Republic of China
3 School of Artificial Intelligence, University of Chinese Academy of Sciences,

Beijing 10049, People’s Republic of China

Abstract. Interpolating classifiers interpolate all the training data and
thus have zero training error. Recent research shows their fundamen-
tal importance for high-performance ensemble techniques. Interpolation
kernel machines belong to the class of interpolating classifiers and do gen-
eralize well. They have been demonstrated to be a good alternative to
support vector machine for graph classification. In this work we further
improve their performance by considering multiple kernel learning. We
establish a general scheme for achieving this goal. The current experimen-
tal work is done using quadratic kernel combination. Our experimental
results demonstrate the performance boosting potential of our approach
against the use of individual graph kernels.

1 Introduction

There are a large amount of data that can be modeled naturally as graphs. They
appear in many application domains, ranging from social networks to chemistry
and medicine. Graph classification can be applied to such data for answering
numerous challenging questions [11,13,22]. For instance, chemical compounds
can be modeled as graphs where vertices correspond to atoms and edges to bonds.
Then, graph classification helps predict if a compound is active, say against HIV
or if a protein is an enzyme or not. The datasets used in our experimental work
as described in Sect. 4 give concrete examples of applications.

Graph kernels provide a way to compute similarities between graphs and have
been studied for a long time, e.g. for graph classification. Dozens of graph kernels
have been developed [11,13,22], which focus on specific structural properties of
graphs. The key design ideas behind these graph kernels differ, e.g. based on
Weisfeiler-Lehman test of graph isomorphism [24], paths [4], and graph decom-
position [17]. Meanwhile, public graph kernel libraries are also available [10,25].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 3–14, 2023.
https://doi.org/10.1007/978-3-031-42795-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_1

4 J. Zhang et al.

Despite the diversity in the design of graph kernels, their use for classifica-
tion is, however, rather monotonous and dominated by support vector machines
(SVM). This is clearly reflected in the recent survey papers for graph kernels
[11,13,22], e.g. “The criteria used for prediction are SVM for classification” [11].
This is not a surprise due to the dominance of SVM in machine learning.

As another kernel-based classification method, interpolation kernel machines
belong to the class of interpolating classifiers that interpolate all the training
data and thus have zero training error [27]. The study [3] demonstrated that
interpolation kernel machines trained to have zero training error do perform
very well on test data (a phenomenon typically observed in over-parametrized
deep learning models). Our recent work [30] has shown that interpolation kernel
machines are a good alternative to SVM for graph classification. This study
justifies a systematic consideration of interpolation kernel machines parallel to
the popular SVM for experimentation in graph classification. For this purpose we
have proposed an extended experimental protocol in [30] to obtain the maximal
possible graph classification performance in a particular application.

In this work we further improve the performance of interpolation kernel
machines by considering multiple kernel learning [5]. We establish a general
scheme for achieving this goal. The current experimental work is done using
quadratic kernel combination. Our experimental results demonstrate the perfor-
mance boosting potential of our approach.

The remainder of the paper is organized as follows. We give a brief general
discussion of interpolating classifiers and introduce interpolation kernel machines
in Sect. 2. The general scheme of multiple kernel learning tailored to interpolation
kernel machines is presented in Sect. 3. The experimental results follow in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 Interpolating Classifiers

It is commonly believed that perfectly fitting the training data, as in the case
of interpolating classifiers, must inevitably lead to overfitting. Recent research,
however, reveals good reasons to study such classifiers. For instance, the work [27]
provides strong indications that ensemble techniques are particularly successful
if they are built on interpolating classifiers. A prominent example is random
forest. Recently, Belkin [2] emphasizes the importance of interpolation (and its
sibling over-parametrization) to understand the foundations of deep learning.

2.1 Interpolation Kernel Machines

Here we introduce a technique to fully interpolate the training data using kernel
functions, known as kernel machines [3,9]. Note that this term has been often
used in research papers (e.g. [8,29]), where variants of support vector machines
are effectively meant. For the sake of clarity we will use the term “interpolation
kernel machine” throughout the paper.

Quadratic Kernel Learning for Interpolation Kernel 5

Let X = {x1, x2, . . . , xn} ⊂ Ωn be a set of n training samples with their
corresponding targets Y = {y1, y2, . . . , yn} ⊂ T n in the target space. The sets
are sorted so that the corresponding training sample and target have the same
index. A function f : Ω → T interpolates this data iif:

f(xi) = yi, ∀i ∈ 1, . . . , n (1)

Representer Theorem. Let k : Ω × Ω → R be a positive semidefinite kernel
for some domain Ω, X and Y a set of training samples and targets as defined
above, and g : [0,∞) → R a strictly monotonically increasing function for reg-
ularization. We define E as an error function that calculates the loss L of f on
the whole sample set with:

E(X,Y) = E((x1, y1), ..., (xn, yn)) =
1
n

n∑

i=1

L(f(xi), yi) + g(‖f‖) (2)

Then, the function f∗ = argminf{E(X,Y)} that minimizes the error E has the
form:

f∗(z) =
n∑

i=1

αik(z, xi) with αi ∈ R (3)

The proof can be found in many textbooks, e.g. [6].
We now can use f∗ from Eq. (3) to interpolate our training data. Note that

the only learnable parameters are α = (α1, . . . , αn), a real-valued vector with
the same length as the number of training samples. Learning α is equivalent to
solving the system of linear equations:

G(α∗
1, ..., α

∗
n)T = (y1, ..., yn)T (4)

where G ∈ R
n×n is the kernel (Gram) matrix. In case of positive definite kernel

k the Gram matrix G is invertible. Therefore, we can find the optimal α∗ to
construct f∗ by:

(α∗
1, ..., α

∗
n)T = G−1(y1, ..., yn)T (5)

After learning, the interpolation kernel machine then uses the interpolating func-
tion from Eq. (3) to make prediction for test samples. Note that solving the
optimal parameters α∗ in (5) in a naive manner requires computation of order
O(n3) and is thus not feasible for large-scale applications. A highly efficient
solver EigenPro has been developed [15] to enable significant speedup for train-
ing on GPUs. Another recent work [26] applies an explainable AI technique for
sample condensation of interpolation kernel machines.

In this work we focus on classification problems. In this case f(z) is encoded
as a one-hot vector f(z) = (f1(z), . . . fc(z)) with c ∈ N being the number of
output classes. This requires c times repeating the learning process above, one

6 J. Zhang et al.

for each component of the one-hot vector. This computation can be formu-
lated as follows. Let Al = (α∗

l1, ..., α
∗
ln) be the parameters to be learned and

Yl = (yl1, ..., yln) target values for each component l = 1, ..., c. The learning of
interpolation kernel machine becomes:

G
(
AT

1 , ..., AT
c

)
︸ ︷︷ ︸

A

=
(
Y T
1 , ..., Y T

c

)
︸ ︷︷ ︸

Y

(6)

with the unique solution:

A = G−1 · Y (7)

which is the extended version of Eq. (5) for c classes and results in zero error on
training data. When predicting a test sample z, the output vector f(z) is not
a probability vector in general. The class which gets the highest output value
is considered as the predicted class. If needed, e.g. for the purpose of classifier
combination, the output vector (z) can also be converted into a probability vector
by applying the softmax function.

3 Multiple Kernel Learning for Interpolation Kernel
Machines

Multiple kernel learning (MKL) methods use multiple kernels simultaneously
instead of selecting one specific kernel function [5]. Given a pool of m kernels
ki, i = 1, . . . ,m, a combined kernel function is generally defined by:

Φ(K = (k1, . . . , km),W)

where W are the weights (parameters) for kernel combination. Applications for
MKL have been found, for instance, in processing biomedical data [16,23]. Recent
developments include extensions to handle the scenario with missing channels
in data [14] and unreliable data [1]. For graph classification, it was proposed to
use a linear combination of kernel matrices obtained from the same kernel with
different values of the hyper-parameters [18]. The recent work [28] deals with
MKL using a GMDH-type neural network. In both [18,28] the classification
backbone is SVM.

3.1 Construction of Combined Kernels

Positive definite kernels can be combined to build more complex positive definite
kernels. Given two such kernels k1 and k2, some simple combination rules are:

– k(x, y) = c · k1(x, y), for all c ∈ R+

– k(x, y) = k1(x, y) + c, for all c ∈ R+

– k(x, y) = k1(x, y) + k2(x, y)
– k(x, y) = k1(x, y) · k2(x, y)

Quadratic Kernel Learning for Interpolation Kernel 7

– k(x, y) = f(x) · f(y) for any function f mapping to R

The proof and additional combination rules can be found in [6]. The fundamental
discussion in the following applies to any combined kernel Φ(K,W) that are
constructed using such rules to guarantee the positive definiteness. Obviously,
polynomial functions satisfy this requirement. This work will focus on quadratic
combination only:

Φq(K,W) = w0 +
m∑

i=1

wi · ki +
m∑

i=1

m∑

j=i

wij · kikj

with the weights W = (w0, w1, . . . , wm, w11, w12, . . . , w1m, . . . , wmm), |W | =
(m + 1)(m + 2)/2.

The weights W can be constrained in different ways. In this work we study
three variants: R (no constraint), R0

+ (nonnegative), [0, 1]. When using nonneg-
ative weights, we can extract and study the relative importance of the terms of
combined kernels [5]. The interval [0, 1] further restricts the influence of these
terms.

3.2 General Scheme of MKL for Interpolation Kernel Machines

We present a general scheme (formulation and solution) of MKL tailored to
interpolation kernel machines. Given the pool of kernels K, the combined kernel
results in Gram matrix G(W) that is built on Φ(K,W) and thus dependent
of the weights W . Then, the task of learning an interpolation kernel machine
becomes:

min
W,A

E(W,A) = min
W,A

||G(W)A − Y ||2 (8)

with |W | + cn parameters to be optimally estimated.
Due to |W | << cn, this optimization problem is dominated by estimating

the large number of parameters of the interpolation kernel machine. A param-
eter decomposition technique has been discussed in [12] for effective parameter
reduction (see Appendix for a brief summary) and found applications [19,32].
For applying this technique, we can naturally partition all parameters into two
groups: W and A. Then, the optimization problem can be reformulated as:

min
W,A

E(W,A) = min
W

[
min
A

||G(W)A − Y ||2
]

(9)

= min
W

Ψ(W) = min
W

G(W)−1 · Y (10)

where Ψ(W) means the global minimum of the overall optimization function for
a fixed W and all possibilities of A. The last step is justified by the fact that for a
fixed W , we simply need to search for the optimal interpolation kernel machine
for the concrete combined kernel Φ(K,W). When following the construction
rules above, the combined kernel is guaranteed to remain positive definite. Thus,
the corresponding Gram matrix G(W) is invertible and the interpolation kernel

8 J. Zhang et al.

machine deduced from Φ(K,W) has a unique solution, see Eq. (7). Doing it this
way, we are able to reduce the number of optimization parameters from |W |+cn
to |W | only without any loss of optimization quality.

In practice, however, the optimization scheme (10) does not work because of
a specific property of interpolating classifiers, as an interpolation kernel machine
is. The optimization function E(W,A) is simply insensitive to W . Whatever
value W is assumed to take, the interpolation kernel machine deduced from the
combined kernel Φ(K,W) will produce zero training error, i.e. Ψ(W) = 0 holds
for all W . Pragmatically, we thus introduce an approximation in order to make
the optimization function E(W,A) workable. For this purpose the original opti-
mization task (8) is reformulated using the two-step (alternating) optimization
method [5]:

– Step 1: We optimize A by using (fixing) the current W :

min
A

||G(W)A − Y ||2

This corresponds to solving the standard problem of learning an interpolation
kernel machine for the combined kernel Φ(K,W).

– Step 2: We optimize W by using (fixing) the current A:

min
W

||G(W)A − Y ||2

– We repeat the two steps until convergence.

In both steps the minimization is done using the complete training dataset.
This is exactly the reason for the trouble discussed above. Thus, we introduce a
simple heuristic to circumvent the problem. We partition the training dataset T
into two subsets: T = T1 ∪ T2, T1 ∩ T2 = ∅. Then, we use T1 for step 1 and T2

for step 2. In this work T1 is chosen to contain 80% and T2 20% of the training
data, respectively.

3.3 Dealing with Indefinite Kernels

Learning interpolation kernel machines as presented in Sect. 2.1 requires positive
definite kernels. In practice, however, many kernels reported in the literature,
do not satisfy this property. This is particularly the case when working with
graph kernels. Combining indefinite kernels generally does not deliver positive
definite kernels. Thus, we need an indefinite interpolation kernel machine learn-
ing method for step 1 of the two-step optimization. Several methods for such an
extension have been studied in [31]. We will use the matrix perturbation method
in this work. The trouble with indefinite kernels is the lacking invertibility of the
Gram matrix G. The matrix perturbation method artificially introduces some
minor perturbation (noise) to G to make it invertible.

Quadratic Kernel Learning for Interpolation Kernel 9

4 Experimental Results

We use 18 graph datasets from various domains (see Table 1 for an overview).
These datasets have different application background. Examples of chemi-
cal datasets include benzodiazepine receptor dataset (BZR), cyclooxygenase-
2 inhibitors (COX2), inhibitors of dihydrofolate reductase (DHFR), estrogen
receptor ligands (ERMD). They are classified whether the chemical composi-
tion is active. Several datasets are related to medical applications. For instance,
the AIDS dataset contains chemical compounds which have been screened as
active or inactive against HIV. The Proteins dataset is for protein function
prediction (functional class membership of enzymes and non-enzymes). The
PTC (Predictive Toxicity Challenge) dataset is labeled according to carcino-
genicity on rodents, aiming to predict carcinogenicity of chemical compounds.
The Cuneiform dataset contains graphs representing different Hittite cuneiform
signs. MSRC 9 and MSRC 21 are datasets in semantic image processing. Seman-
tic labels are, for instance, building, grass, tree, cow, sky, sheep, boat, face, car,
bicycle, etc.

Table 1. Description of graph datasets.

domain dataset # graphs # classes avg. # nodes avg. # edges

Chemistry BZR 405 2 35.8 38.4

BZR MD 306 2 21.3 225.1

COX2 467 2 41.2 43.5

COX2 MD 303 2 26.3 335.1

DHFR 467 2 42.4 44.5

DHFR MD 393 2 23.87 283.01

ER MD 446 2 21.3 234.9

MUTAG 188 2 17.9 19.8

Medicine AIDS 2000 2 15.69 16.20

PROTEINS 1113 2 39.1 72.8

PROTEIN full 1113 2 39.1 72.8

PTC FM 349 2 14.1 14.5

PTC FR 351 2 14.6 15.0

PTC MM 336 2 14.0 14.3

PTC MR 344 2 14.3 14.7

Vision Cuneiform 267 30 21.3 44.8

MSRC 9 221 8 40.6 97.9

MSRC 21 563 20 77.5 198.3

Six graph kernels were selected for the experiments: shortest-path kernel
[4], neighborhood hash kernel [7], Weisfeiler-Lehman graph kernel [24], tree-
based graph decomposition kernel [17], propagation kernel [20], and pyramid

10 J. Zhang et al.

match kernel [21]. The main selection criterion are the diverse design paradigms
of these kernels. We used the implementations from the graph kernel library
GraKeL written in Python [25]. For each pair of dataset and graph kernel, we
conducted a 5-fold cross validation and report the average performance in term
of classification accuracy.

The results on these datasets are presented in Table 2, where matrix pertur-
bation was used for achieving positive definiteness. For each dataset the best-
performing method is shown in bold. The quadratic kernel learning (QKL) con-
siderably improves the performance (classification accuracy) of the individual
graph kernels. In particular, restricting the weights to a small interval [0, 1]
turns out to be positive. The matrix perturbation method, however, is not best-
performing among the methods studied in [31] to deal with indefinite kernels.
Instead, a cross-entropy variant proved to be most favorable. Table 3 shows the
superior performance of this variant compared with matrix perturbation on the
individual graph kernels. Unfortunately, it is not possible to apply this variant
in step 1 of the two-step optimization to replace matrix perturbation (the reason
for this is rather technical and thus not detailed here). Nevertheless, we show a
comparison with these results in Table 3. Here the quadratic kernel learning is
still favorable.

Table 2. Accuracy (%) of individual graph kernels (matrix perturbation was used for
achieving positive definiteness) and quadratic kernel learning.

dataset method

Shortest
Path

Neighborhood
Hash

Weisfeiler
Lehman

Graph
Decomposi-
tion

Propagation Pyramid
Match

QKL (R) QKL (R0
+) QKL ([0,1])

BZR 70.1 87.9 83.9 85.7 70.4 67.9 84.9 86.4 86.7

BZR MD 52.2 52.9 49.0 57.2 52.3 59.8 63.7 67.6 68.6

COX2 65.5 79.7 68.3 78.8 65.5 64.9 79.4 81.1 81.2

COX2 MD 60.7 48.2 52.5 53.8 53.4 55.8 60.7 63.0 64.7

DHFR 51.6 71.4 70.4 79.4 53.3 49.3 75.9 78.8 79.9

DHFR MD 62.9 56.5 62.9 62.4 56.8 56.5 64.7 68.7 68.5

ER MD 52.2 54.3 61.4 54.7 60.1 58.5 61.4 64.3 69.7

MUTAG 63.8 79.9 84.1 82.5 56.5 79.9 78.2 83.5 84.6

AIDS 63.5 94.6 81.7 52.5 49.3 66.2 99.1 99.6 99.5

PROTEINS 55.2 64.5 64.7 57.1 54.9 55.3 74.8 75.1 75.5

PROTEINS full 57.3 63.4 64.8 55.6 58.9 57.8 76.4 76.5 76.5

PTC FM 59.8 54.4 59.3 57.7 52.2 55.6 65.3 65.3 66.2

PTC FR 60.4 61.8 62.7 62.7 52.1 61.0 63.3 64.1 64.1

PTC MM 55.0 58.9 64.3 57.5 52.7 55.4 63.1 63.1 63.7

PTC MR 54.4 57.9 54.7 59.0 52.9 57.3 62.2 61.0 61.6

Cuneiform 19.2 46.9 52.5 21.2 55.0 78.1 77.4 82.1 80.4

MSRC 9 51.5 92.8 90.1 85.9 90.5 92.3 95.5 94.6 94.2

MSRC 21 59.3 91.5 87.6 64.9 87.9 90.4 91.5 91.8 91.8

average 56.4 67.6 67.5 62.7 59.7 64.6 74.3 75.9 76.5

Quadratic Kernel Learning for Interpolation Kernel 11

Table 3. Accuracy (%) of individual graph kernels (a cross-entropy variant was used
to deal with indefinite kernels) and quadratic kernel learning.

dataset method

Shortest Path Neighborhood
Hash

Weisfeiler
Lehman

Graph
Decomposition

Propagation Pyramid
Match

QKL ([0,1])

BZR 84.9 87.8 86.2 85.7 84.0 85.0 86.4

BZR MD 68.9 66.7 58.5 62.7 57.8 59.8 70.9

COX2 79.7 79.7 81.0 78.8 80.1 80.5 82.0

COX2 MD 61.4 59.7 60.1 62.4 55.1 55.8 66.3

DHFR 75.7 82.5 79.6 79.4 75.9 77.4 79.7

DHFR MD 67.2 60.4 64.4 67.9 60.5 56.5 69.5

ER MD 62.8 69.3 67.7 54.7 67.7 58.5 69.9

MUTAG 78.8 84.6 79.8 82.5 74.5 87.2 84.6

AIDS 97.5 99.2 92.5 81.2 85.4 99.2 99.5

PROTEINS 74.9 73.7 68.5 65.4 68.9 73.9 75.9

PROTEINS full 75.9 71.9 68.9 65.8 68.6 74.2 76.5

PTC FM 60.7 58.5 67.0 62.2 61.6 59.9 65.6

PTC FR 64.4 68.4 67.5 66.4 66.4 63.0 64.4

PTC MM 63.7 67.9 67.0 66.1 68.5 63.7 62.8

PTC MR 59.3 63.4 64.2 61.0 57.3 59.6 60.7

Cuneiform 70.7 71.7 81.5 75.4 81.8 78.1 80.4

MSRC 9 91.0 92.8 90.1 85.9 91.4 92.3 95.2

MSRC 21 59.3 91.5 87.6 64.9 82.4 90.4 92.3

average 72.0 75.0 74.0 70.5 71.6 73.1 76.8

5 Conclusion

Interpolation kernel machines have been demonstrated to be a good alterna-
tive to support vector machine for graph classification. In this work we further
improve their performance by considering multiple kernel learning. We have pre-
sented a general scheme for achieving this goal. Our experimental results using
quadratic kernel combination demonstrated the performance boosting potential
of our approach against the use of individual graph kernels. In future we will
study more complex combined kernels. In addition, we will also apply the pro-
posed general scheme to non-graph data. With interpolation kernel machines as
an alternative to support vector machine our work contributes to increasing the
methodological plurality in the graph processing community (and beyond).

Acknowledgement. Jiaqi Zhang is supported by the China Scholarship Council
(CSC). This research has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agree-
ment No 778602 Ultracept.

Appendix: Parameter decomposition for function fitting

In contrast to treating all parameters simultaneously the parameters are decom-
posed into two parts, one part can be solved by either an analytic or a direct
method, and the other part has to be solved by an iterative optimization process.
Let pi, i = 1, . . . , n, denote n data points to be fitted by function f(v) = 0,

12 J. Zhang et al.

where v ∈ R
k is the parameter vector. Given the distance function d(pi, f(v))

of a point pi to f(v), the geometric fitting problem can be formulated as:

min
v∈Rk

n∑

i=1

d(pi, f(v))

We decompose v into v = [v1v2], where v1 ∈ R
k1 , v2 ∈ R

k2 , and k ≡ k1 + k2.
After a rearrangement of parameters v, the optimization task becomes:

min
v∈Rk

n∑

i=1

d(pi, f(v)) = min
v1∈Rk1

[
min

v2∈Rk2

n∑

i=1

d(pi, f(v1,v2))

]
= min

v1∈Rk1
Ψ(v1)

where Ψ(v1) means the global minimum sum of the distance measures for a fixed
v1 and all possibilities of v2. Assume that the optimal v2 for reaching Ψ(v1)
can be solved analytically or in some other way, then the original optimization
problem with a total of k1 + k2 parameters is transformed into an equivalent
optimization problem with k1 parameters only. This parameter reduction can be
expected to decrease the number of local minima and thus reduce the possibilities
of dropping into local minima. Moreover, this scheme also tends to reduce the
computation time.

References

1. Alavi, F., Hashemi, S.: A bi-level formulation for multiple kernel learning via self-
paced training. Pattern Recogn. 129, 108770 (2022)

2. Belkin, M.: Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation. Acta Numerica 30, 203–248 (2021)

3. Belkin, M., Ma, S., Mandal, S.: To understand deep learning we need to understand
kernel learning. In: Proceedings of of 35th ICML, pp. 540–548 (2018)

4. Borgwardt, K.M., Kriegel, H.: Shortest-path kernels on graphs. In: Proceedings of
5th ICDM, pp. 74–81 (2005)

5. Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res.
12, 2211–2268 (2011)

6. Herbrich, R.: Learning Kernel Classifiers: Theory and Algorithms. The MIT Press,
Cambridge (2002)

7. Hido, S., Kashima, H.: A linear-time graph kernel. In: Proceedings of 9th ICDM,
pp. 179–188 (2009)

8. Houthuys, L., Suykens, J.A.K.: Tensor-based restricted kernel machines for multi-
view classification. Inf. Fusion 68, 54–66 (2021)

9. Hui, L., Ma, S., Belkin, M.: Kernel machines beat deep neural networks on
mask-based single-channel speech enhancement. In: Proceedings of 20th INTER-
SPEECH, pp. 2748–2752 (2019)

10. Jia, L., Gaüzère, B., Honeine, P.: graphkit-learn: a python library for graph kernels
based on linear patterns. Pattern Recogn. Lett. 143, 113–121 (2021)

11. Jia, L., Gaüzère, B., Honeine, P.: Graph kernels based on linear patterns: theoret-
ical and experimental comparisons. Expert Syst. Appl. 189, 116095 (2022)

12. Jiang, X.: A decomposition approach to geometric fitting. In: Proceedings of IAPR
Conference on Machine Vision Applications (MVA), pp. 467–470 (2000)

Quadratic Kernel Learning for Interpolation Kernel 13

13. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw.
Sci. 5(1), 6 (2020)

14. Liu, X., et al.: Absent multiple kernel learning algorithms. IEEE Trans. Pattern
Anal. Mach. Intell. 42(6), 1303–1316 (2020)

15. Ma, S., Belkin, M.: Kernel machines that adapt to GPUs for effective large batch
training. In: Proceedings of 3rd Conference on Machine Learning and Systems
(2019)

16. Mart́ınez-Vargas, J.D., Duque-Muñoz, L., Vargas-Bonilla, J.F., López, J.D.,
Castellanos-Domı́nguez, G.: Enhanced data covariance estimation using weighted
combination of multiple Gaussian kernels for improved M/EEG source localization.
Int. J. Neural Syst. 29(6), 1950001:1–1950001:15 (2019)

17. Martino, G.D.S., Navarin, N., Sperduti, A.: A tree-based kernel for graphs. In:
Proceedings of 12th SIAM International Conference on Data Mining, pp. 975–986
(2012)

18. Massimo, C.M., Navarin, N., Sperduti, A.: Hyper-parameter tuning for graph ker-
nels via multiple kernel learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K.,
Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 214–223. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46672-9 25

19. Mazzini, F., Kettler, D.T., Guerrero, J., Dubowsky, S.: Tactile robotic mapping of
unknown surfaces, with application to oil wells. IEEE Trans. Instrument. Meas.
60(2), 420–429 (2011)

20. Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels:
efficient graph kernels from propagated information. Mach. Learn. 102(2), 209–
245 (2016)

21. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for
graph similarity. In: Proceedings of 31st AAAI, pp. 2429–2435 (2017)

22. Nikolentzos, G., Siglidis, G., Vazirgiannis, M.: Graph kernels: a survey. J. Artif.
Intell. Res. 72, 943–1027 (2021)

23. Ruan, P., Hayashida, M., Akutsu, T., Vert, J.: Improving prediction of het-
erodimeric protein complexes using combination with pairwise kernel. BMC Bioin-
formatics 19S(1), 73–84 (2018)

24. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

25. Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis, K., Vazirgiannis,
M.: GraKeL: a graph kernel library in python. J. Mach. Learn. Res. 21, 54:1–54:5
(2020)

26. Winter, D., Bian, A., Jiang, X.: Layer-wise relevance propagation based sample
condensation for kernel machines. In: Proceedings of 19th International Conference
on Computer Analysis of Images and Patterns (CAIP), Part I, vol. 13052, pp. 487–
496 (2021)

27. Wyner, A.J., Olson, M., Bleich, J., Mease, D.: Explaining the success of AdaBoost
and random forests as interpolating classifiers. J. Mach. Learn. Res. 18, 48:1–48:33
(2017)

28. Xu, L., et al.: Multiple graph kernel learning based on GMDH-type neural network.
Inf. Fusion 66, 100–110 (2021)

29. Xue, H., Chen, S.: Discriminality-driven regularization framework for indefinite
kernel machine. Neurocomputing 133, 209–221 (2014)

https://doi.org/10.1007/978-3-319-46672-9_25

14 J. Zhang et al.

30. Zhang, J., Liu, C., Jiang, X.: Interpolation kernel machine and indefinite kernel
methods for graph classification. In: Proceedings of 3rd International Conference on
Pattern Recognition and Artificial Intelligence (ICPRAI). LNCS, vol. 13364, pp.
467–479. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-09282-
4 39

31. Zhang, J., Liu, C.L., Jiang, X.: Indefinite interpolation kernel machines, submitted
for publication (2023)

32. Zheng, G., Zhang, X.: A novel parameter decomposition based optimization app-
roach for automatic pose estimation of distal locking holes from single calibrated
fluoroscopic image. Pattern Recogn. Lett. 30(9), 838–847 (2009)

https://doi.org/10.1007/978-3-031-09282-4_39
https://doi.org/10.1007/978-3-031-09282-4_39

Minimum Spanning Set Selection in
Graph Kernels

Domenico Tortorella(B) and Alessio Micheli

Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3,
56127 Pisa, Italy

domenico.tortorella@phd.unipi.it, micheli@di.unipi.it

Abstract. Kernel-based learning models such as support vector
machines (SVMs) can seamlessly deal with graph structures thanks to
suitable kernel functions that compute a particular similarity between
pairs of data samples. In the last two decades, a plethora of graph ker-
nels have been proposed, motivated by theoretical properties or designed
specifically for an application domain. Computing graph kernels however
presents a significant cost for both training and inference, since predic-
tions on unseen graphs require evaluating the kernel e.g. between the
new sample and all support vectors, and solutions to an SVM optimiza-
tion problem are not guaranteed to be sparse. In this paper, we present
a method to select a minimum set of spanning vectors for the solutions
of SVMs, based on the rank-revealing QR decomposition of the kernel
Gram matrix. We apply it on 18 real-world classification tasks on chem-
ical compounds, showing its effectiveness to reduce the computational
burden in performing inference on unseen graphs by minimizing the num-
ber of support vectors without penalizing accuracy. This in turn gives us
a tool to better analyze the trade-off between accuracy, expressiveness
and inference cost among different graph kernels.

Keywords: Graph Kernels · Support Vector Machines · Kernel basis ·
Rank-Revealing QR

1 Introduction

Among the structures commonly used to represent data, graphs are one of the
most general, allowing to model complex objects as a set of entities (nodes) and
relationships between such entities (edges) [10]. In chemo- and bio-informatics,
in particular, graphs have been extensively used to represent molecular com-
pounds [3,16,23], with nodes corresponding to atoms and edges corresponding
to chemical bonds.

The flexibility afforded by graph structures has posed a challenge to tra-
ditional machine learning approaches conceived for vector or fixed-grid data.
On one hand, artificial neural networks became able to adaptively learn graph
representations by performing message-passing on the graph structure, leading
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 15–24, 2023.
https://doi.org/10.1007/978-3-031-42795-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_2&domain=pdf
http://orcid.org/0000-0003-3910-7713
http://orcid.org/0000-0001-5764-5238
https://doi.org/10.1007/978-3-031-42795-4_2

16 D. Tortorella and A. Micheli

to the current explosion of the graph neural network (GNN) models [1]. On
the other hand, kernel-based learning models such as support vector machines
(SVM) [18] were readily extended to graph structures by suitable kernel func-
tions, which compute a particular similarity between pairs of data samples. In
the last two decades a plethora of graph kernels have been proposed, tailored to
a specific application domain or grounded in different theoretical properties of
graphs [2,10].

Computing graph kernels presents a significant cost not only during training
but also in the inference phase, since e.g. the decision function of an SVM requires
evaluating the kernel between the new graph and all support vectors to make
a prediction. Furthermore, the solutions of an SVM are not guaranteed to be
sparse, leading to decision functions having a large proportion of the training set
as support vectors [6]. Since this is a general issue that affects all kernel-based
SVMs, different methods have been proposed to reduce the number of support
vectors. Those approaches have mostly focused on the training phase often at the
expense of accuracy, including clustering training samples [22], applying a divide-
et-impera heuristic to select support vectors from smaller subsets of the training
data [9], or finding a subset of samples sufficient for a separating surface between
classes [11,15]. Even an altogether different type of SVM has been proposed in
order to better control the number of support vectors [17]. All the aforementioned
methods, however, do not offer guarantees against degradation of accuracy with
respect to an SVM trained on the whole data.

The approach presented in this paper instead is applied after the training of
an SVM to minimize the number of support vectors without any loss of accuracy.
This method consists in selecting a spanning set of minimum cardinality able to
represent all linear decisors in the kernel space that can be obtained from the
data [6]. To the best of our knowledge, this is the first application of such method
to graph kernels. The aim of our contribution is twofold: (i) to provide a simple
and effective method to reduce the computational cost in performing inference on
unseen graphs by minimizing the number of support vectors in SVMs without
penalizing accuracy; (ii) to provide an approach to better analyze the trade-
off between accuracy, expressivity and inference cost between different graph
kernels.

The reminder of this paper is structured as follows. In Sect. 2 we present
a brief background on SVMs and graph kernels. In Sect. 3 we introduce our
method to select a spanning set for kernels based on the RRQR factorization.
We validate this method experimentally in Sect. 4 on eighteen binary graph
classification tasks, finally drawing conclusions in Sect. 5.

2 Support Vector Machines and Graph Kernels

Let X be a set of n data samples {xi}n
i=1 divided into two classes identified

by a label yi ∈ {±1} associated to each one. A binary classifier is a function
ŷ : X → {±1} that tries to predict the correct class yi of a sample xi ∈ X .

A kernel function κ : X × X → R is a symmetric positive semi-definite
function that represents a scalar product in a reproducing kernel Hilbert space

Minimum Spanning Set Selection in Graph Kernels 17

(RKHS). This function allows to work in the RKHS without having to explicitly
define the transformation from X into such space. For example, we can define
a hyper-plane to separate the samples belonging to the two classes as the locus
f(x) = 0 of the function parametrized by ϑ ∈ R

n, β ∈ R:

f(x) =
n∑

i=1

ϑiκ(xi,x) + β. (1)

A kernel-based support vector machine [18] learns a classifier ŷ(x) =
sign(f(x)) by finding the maximum-margin separating hyper-plane as the solu-
tion of the following optimization problem:

min
ϑ∈Rn, β∈R

1
2

n∑

i=1

n∑

j=1

ϑiϑjκ(xi,xj) + C
n∑

i=1

max {0, 1 − yif(xi)} , (2)

with C > 0 a constant affecting the trade-off between model regularization and
empirical error, where a larger value of C favors solutions of (2) with smaller mis-
classification margins over smaller norms of ϑ. The samples xi that correspond to
coefficients ϑi �= 0 are defined as the support vectors (SVs) of the SVM.

2.1 Graph Kernels

Note that so far we have not specified the nature of data samples in X . Indeed,
kernel-based learning allows to deal with any kind of data structure beyond
vectors, such as sequences, trees, and graphs. In the latter case, the data samples
xi ∈ X are objects xi = (Vi, Ei, �i), where Vi is the set of nodes, Ei ⊆ Vi × Vi

is the set of edges, and �i(v) ∈ L is a label that can be associated with each
node v ∈ Vi. A plethora of kernel functions for graphs has been proposed so
far, based on different theoretical features of graphs or motivated by a specific
application domain [2,10]. Generally speaking, a graph kernel function computes
a similarity measure between a pair of graphs based on common properties or
sub-structures. Some examples of graph kernels include:

– Graphlet (GL) kernel [20], which compares the distribution of all possible
small sub-graphs (so-called “graphlets”) having up to k nodes;

– Shortest-path (SP) kernel [4], which decomposes graphs into shortest paths
and compares pairs of shortest paths according to their lengths and the labels
of their endpoints;

– Weisfeiler–Lehman (WL) kernel [19], which is based on h iterations of the
WL graph isomorphism test and is equivalent to comparing the number of
shared sub-trees of height h between the two graphs.

Computing a graph kernel can be significantly costly. For example, the SP kernel
must compare all possible pairs of shortest paths from the two graphs, while the
WL kernel scales quadratically in the total number of graphs (support vectors
plus the graph to infer) due to the multi-set relabeling step of the WL test
iteration. Therefore, keeping at minimum the number of support vectors in the
decision function (1) is of paramount concern for the efficiency of SVMs and
other kernel-based learners.

18 D. Tortorella and A. Micheli

3 Kernel Spanning Set Selection via RRQR

Let us focus on the linear part of the function f(x) defined in (1). This is an
element belonging to the dual space of X with respect to the kernel κ, that is
the vector space of functions z �→ κ(xi,z) and their linear combinations

F = Span {κ(x1, ·), ..., κ(xn, ·)} def=

{
n∑

i=1

ϑiκ(xi, ·) : ϑ ∈ R
n

}
. (3)

Any subset S ⊆ X such that Span{κ(x, ·) : x ∈ S} = F is called a spanning set
of F . The smallest cardinality of a spanning set is the dimension of the vector
space F , and such spanning sets are called basis of F . We define the rank r of
kernel κ on X as the dimension of F . To reduce the number of support vectors
from n to n′, we must find a basis of the subspace of F spanned by the SVs,
along with new coefficients ϑ′ ∈ R

n′
so that

f(x) =
n∑

i=1

ϑiκ(xi,x) + β =
n′∑

i=1

ϑ′
iκ(xsi

,x) + β = f ′(x). (4)

To obtain these, we work on the Gram matrix K, whose elements are Kij =
κ(xi,xj), and is thus a real symmetric matrix. Each of its columns can be seen
as a representation in vector form of κ(xi, ·), since its evaluation on all elements
of X completely specifies it. Therefore the linear combinations that span the
range of K have the same coefficients of the linear combinations of vectors in F .
Let us illustrate this with a simple example.

Example. Consider a set of n = 4 samples X = {x1,x2,x3,x4} and a kernel
function κ defined between pairs of its elements such that its Gram matrix is

K =

⎛

⎜⎜⎝

κ(x1,x1) κ(x1,x2) κ(x1,x3) κ(x1,x4)
κ(x2,x1) κ(x2,x2) κ(x2,x3) κ(x2,x4)
κ(x3,x1) κ(x3,x2) κ(x3,x3) κ(x3,x4)
κ(x4,x1) κ(x4,x2) κ(x4,x3) κ(x4,x4)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 1 2 2
1 2 3 2
2 3 5 4
2 2 4 4

⎞

⎟⎟⎠ .

Each column (or row) of K represents a function κ(xi, ·) by its evaluation on all
samples in X . For example, κ(x1, ·) is represented as (1 1 2 2)�. In this way is
easy to notice that κ(x3, ·) = κ(x1, ·) + κ(x2, ·) and κ(x4, ·) = 2κ(x1, ·). Since
rank(K) = 2, this means that the first two columns are linearly independent
and provide a minimum spanning set. Therefore, in our example we have that
F = Span{κ(x1, ·), κ(x2, ·)}, and that any f(x) of (1) can be expressed as

f ′(x) = (ϑ1 + ϑ3 + 2ϑ4)κ(x1,x) + (ϑ2 + ϑ3)κ(x2,x) + β.

For an SVM decision function, that would mean halving the number of support
vectors without affecting the prediction score. �

Minimum Spanning Set Selection in Graph Kernels 19

To find a set of spanning columns for the Gram matrix K, we rely on a rank-
revealing QR (RRQR) decomposition [5,8]. This matrix factorization consists of
permuting the columns of K such that the resulting QR factorization contains
an upper triangular matrix whose linearly independent columns are separated
from the linearly dependent ones. In detail, the RRQR factorization produces a
column permutation Π, an orthogonal matrix Q, and an upper triangular matrix
R such that

ΠK =

(
K̄rr K̄rn

K̄nr K̄nn

)
= Q

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1,1 · · · R1,r R1,r+1 · · · R1,n

...
. . .

...
...

...
0 · · · Rr,r Rr,r+1 · · · Rr,n

0 · · · 0 Rr+1,r+1 · · · Rr+1,n

...
...

.
...

0 · · · 0 0 · · · Rn,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

The singular values of R are obtained from the diagonal elements as |Ri,i|. In
(5), the singular values |R1,1|, ..., |Rr,r| > 0 correspond to the r columns of ΠK
that are linearly independent, while the |Rr+1,r+1|, ..., |Rn,n| ≈ 0 correspond
to the linearly dependent columns. The computational cost of the whole QR
decomposition is O(n3), but it can be reduced to O(rn2) by halting as soon as
|Ri,i| ≈ 0. A strong RRQR [7,14] additionally improves the numerical stability
of the factorization by ensuring that certain bounds on the singular values of R
are respected.

At this point we have discovered both the rank r of our kernel κ as the number
of nonzero singular values of R, and a set of samples S = {xπ−1(1), ...,xπ−1(r)}
that span the dual space of X (here π(·) is the permutation represented by the
matrix Π). We can finally make explicit the function f ′(x) of (4) as

f ′(x) =
r∑

i=1

ϑ′
iκ(xπ−1(i),x) + β, (6)

where the coefficient vector ϑ′ ∈ R
r is computed from ϑ ∈ R

n as

ϑ′ =
(
Ir | K̄−1

rr K̄rn

)
Πϑ. (7)

4 Experiments and Discussion

We now investigate experimentally the kernel rank and the minimum spanning
set selection of support vectors on eighteen real-word graph datasets, repre-
senting binary classification tasks of chemical compounds such as toxicity or
carcinogenicity [12]. We focus our analysis on the GL kernel with graphlet size
k = 5, the shortest-path kernel (SP), and the WL kernel with h = 4 iterations.
The kernels have been computed with the GraKeL library [21]. The number of
data samples and the ranks of the three graph kernels are reported in Table 1.

20 D. Tortorella and A. Micheli

Table 1. Ranks of three graph kernels for binary classification datasets, along with
the SVM cross-validation accuracy on 10 folds.

Dataset Samples Kernel rank SVM accuracy

GL SP WL GL SP WL

AIDS 2000 9 538 1866 80.0±0.0 99.7±0.4 98.4±0.8

BZR 405 7 264 390 78.8±1.1 87.9±3.2 89.4±2.8

BZR MD 306 1 24 202 51.3±1.0 73.2±5.7 59.5±6.0

COX2 467 8 312 373 78.2±0.9 83.7±3.2 83.7±2.4

COX2 MD 303 1 26 228 51.2±1.4 68.3±11.7 58.8±3.9

DD 1178 21 1178 1178 74.5±3.7 80.6±2.2 79.5±1.7

DHFR 756 5 327 704 61.0±0.5 81.7±2.6 85.5±4.4

DHFR MD 393 1 26 244 67.9±1.2 70.2±3.0 69.0±1.8

ER MD 446 1 29 240 59.4±0.7 68.2±5.7 68.4±6.4

Mutagenicity 4337 8 635 4147 67.3±2.4 77.9±2.2 84.3±1.7

MUTAG 188 4 78 174 71.8±6.1 88.2±8.7 88.2±6.1

NCI1 4110 9 766 3915 59.9±2.2 74.2±2.1 85.0±1.7

NCI109 4127 8 734 3931 60.4±1.9 73.8±1.7 85.1±1.7

PTC FM 349 7 205 331 63.3±4.4 66.8±5.4 68.5±3.6

PTC FR 351 7 207 335 66.1±0.9 72.9±3.3 70.1±2.8

PTC MM 336 7 202 317 64.0±2.6 68.4±5.1 69.0±4.5

PTC MR 344 7 204 328 59.6±3.8 66.5±6.2 66.6±6.0

PROTEINS 1113 21 178 1067 69.7±3.0 77.7±3.3 76.9±4.0

We can immediately notice how the basis for the ranks of GL kernels are consid-
erably smaller compared to the number of samples and the corresponding ranks
of the SP and WL kernels.

We split the datasets in 10 balanced folds, reserving 90% of the samples for
training the SVM and 10% for selecting the regularization parameter C in the
range {10−5, ..., 104}. We report the average validation accuracy in Table 1 and
the average number of support vectors in Table 2. In our evaluation we take a
model selection perspective, with the aim of choosing the least computationally-
demanding model without penalizing accuracy and of analyzing the trade-offs
between the number of support vectors and model accuracy.

We apply the methods of Sect. 3 to select a minimum spanning set and reduce
the number of support vectors for each selected SVM. Comparing the average
number of support vectors and spanning vectors reported in Table 2, we notice
that the SVs are often a large portion of the samples for all three kernels, while
the required spanning vectors are considerably less. We can thus achieve a reduc-
tion of up to 99% in most of the cases for the GL kernel and of at least 10%
for the SP kernel in most of the cases, while for the WL kernel this is generally
limited below 5%. Since we have found no difference between the predictions

Minimum Spanning Set Selection in Graph Kernels 21

of the original and the reduced SVMs, instead of the validation accuracy of the
latter we report the maximum approximation error of the score function, defined
as ||f ′ − f ||∞ = maxx∈X |f ′(x)− f(x)|. In most of the cases this is smaller than
10−5, thanks to the numerical stability of the RRQR decomposition.

Table 2. Average number of support vectors (SVs), spanning set vectors, and average
relative reduction on 10-fold cross-validation, along with the maximum approximation
error of the SVM scoring function. (Average SVs and spanning set vectors are rounded.)

Dataset SVs Spanning Reduction Approximation

GL SP WL GL SP WL GL SP WL GL SP WL

AIDS 720 119 456 8 107 452 −98.9% −10.3% −0.9% 10−5.8 10−8.0 10−9.2

BZR 155 140 191 4 140 191 −97.4% −0.1% 0% 10−7.3 10−7.8 10−10

BZR MD 268 203 254 1 23 188 −99.6% −88.5% −26.1% 10−8.2 10−7.7 10−8.9

COX2 184 170 230 4 168 227 −97.8% −0.9% −1.5% 10−7.3 10−7.7 10−9.3

COX2 MD 266 222 256 1 25 210 −99.6% −88.7% −17.9% 10−7.6 10−7.3 10−8.8

DD 653 591 892 21 591 892 −96.7% 0% 0% 10−5.5 10−8.7 10−9.1

DHFR 531 316 361 4 241 352 −99.2% −23.9% −2.3% 10−6.4 10−2.2 10−8.8

DHFR MD 227 229 251 1 24 168 −99.5% −89.4% −33.0% 10−7.5 10−7.2 10−8.6

ER MD 326 299 332 1 21 212 −99.6% −93.0% −36.1% 10−12 10−6.8 10−8.5

Mutagenicity 2868 2062 2155 8 508 2143 −99.7% −75.3% −0.5% 10−5.5 10−5.1 10−7.1

MUTAG 113 64 97 4 52 96 −96.5% −17.9% −0.3% 10−8.1 10−8.1 10−11

NCI1 3356 2311 2253 8 610 2241 −99.7% −73.5% −0.5% 10−3.7 10−0.7 10−6.9

NCI109 3281 2434 2301 8 600 2290 −99.7% −75.3% −0.4% 10−3.7 10−2.8 10−6.7

PTC FM 254 245 284 7 161 276 −97.2% −34.3% −2.8% 10−7.5 10−6.9 10−8.6

PTC FR 219 183 270 7 141 265 −96.8% −22.9% −1.8% 10−7.5 10−6.8 10−9.0

PTC MM 233 218 261 7 145 251 −96.9% −33.4% −3.9% 10−7.8 10−7.3 10−9.2

PTC MR 269 234 284 7 155 277 −97.3% −33.9% −2.4% 10−7.5 10−6.9 10−8.8

PROTEINS 664 588 777 21 139 773 −96.8% −76.3% −0.5% 10−5.6 10−2.4 10−8.1

Fig. 1. Trade-off between spanning set size and accuracy for the graph kernels con-
sidered in our experiments. Lines join the pairs of results belonging to the same task.

22 D. Tortorella and A. Micheli

Having both determined the accuracy and the actual number of required
support vectors, we are now able to analyze the trade-offs offered by the three
kernels we have considered in our experiments. In Fig. 1 we can observe that
the SP kernel requires up to two orders of magnitude more support vectors with
respect to the GL kernel, with a gain in terms of accuracy from 5% up to 20%.
The WL kernel, on the other hand, while requiring a larger number of support
vectors, it does not offer in exchange a gain in accuracy compared to the SP
kernel in almost all of the cases. This analysis based essentially on the rank of
graph kernels can be seen as complementary to that of [13], which investigates
the expressiveness of graph kernels from a statistical learning theory perspective.

We point out that the significant reduction in support vectors could allow
more insights into how the learned model takes its decisions. For example, from
a spanning set of the GL kernel on the MUTAG dataset reported in Fig. 2 an
expert could readily analyze the molecular functional groups that correspond to
relevant graphlets used in computing the graph similarity by the kernel. We will
explore the repercussions of our work on model explainability in future research.

Fig. 2. A minimum spanning set for the GL kernel on the MUTAG chemical dataset.

5 Conclusion

In this paper, we have for the first time applied a numerically stable method for
minimizing the number of support vectors in an SVM on graph kernels. We have
applied this method on eighteen real-world graph binary classification tasks from
the bio-chemical domain. Thanks to the rank-revealing QR decomposition of the
Gram matrix, we were able to achieve a reduction of 96%–99% on the support
vectors learned on the graphlet kernel, and of 10% to 93% in most of the cases for
the shortest-path kernel, without any loss of accuracy. This in turn allowed us
to explore more rigorously the trade-offs between accuracy and inference cost—
measured in terms of support vectors—of SVMs learned by the different types of
kernels. For example, our experiments have shown that the Weisfeiler–Lehman
kernel generally does not offer an advantage in terms of accuracy with respect
to the shortest-path kernel, while requiring significantly more support vectors.

In future works, we will extend this analysis to cover more graph kernels
and the effect of their parameters, such as the graphlet size or the number of

Minimum Spanning Set Selection in Graph Kernels 23

Weisfeiler–Lehman isomorphism test iterations. This will offer a perspective com-
plementary to the previous analysis of the expressiveness of graph kernels based
on statistical learning theory. We will also investigate the accuracy/efficiency
trade-offs posed by lower-rank approximations, that is discarding also linearly-
independent support vectors, and explore the possibility of directly training
SVMs on a minimum spanning subset of samples.

Acknowledgement. Research partly funded by PNRR - M4C2 - Investimento 1.3,
Partenariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research”
- Spoke 1 “Human-centered AI”, funded by the European Commission under the
NextGeneration EU programme.

References

1. Bacciu, D., Errica, F., Micheli, A., Podda, M.: A gentle introduction to deep
learning for graphs. Neural Netw. 129, 203–221 (2020). https://doi.org/10.1016/
j.neunet.2020.06.006

2. Borgwardt, K., Ghisu, E., Llinares-López, F., O’Bray, L., Rieck, B.: Graph kernels:
state-of-the-art and future challenges. Found. Trends Mach. Learn. 13(5–6), 531–
712 (2020). https://doi.org/10.1561/2200000076

3. Borgwardt, K.M., Ong, C.S., Schonauer, S., Vishwanathan, S.V.N., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(Suppl. 1), i47–i56 (2005). https://doi.org/10.1093/bioinformatics/bti1007

4. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Proceedings of the
Fifth IEEE International Conference on Data Mining, pp. 74–81 (2005). https://
doi.org/10.1109/ICDM.2005.132

5. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorisations. SIAM
J. Matrix Anal. Appl. 15(2), 592–622 (1994). https://doi.org/10.1137/
S0895479891223781

6. Downs, T., Gates, K., Masters, A.: Exact simplification of support vector solutions.
J. Mach. Learn. Res. 2(Dec), 293–297 (2001). https://www.jmlr.org/papers/v2/
downs01a.html

7. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996). https://doi.org/
10.1137/0917055

8. Hong, Y.P., Pan, C.T.: Rank-revealing QR factorizations and the singular value
decomposition. Math. Comput. 58(197), 213–232 (1992). https://doi.org/10.2307/
2153029

9. Joachims, T.: Making large-scale support vector machine learning practical. In:
Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Sup-
port Vector Learning, Chapter 11, pp. 169–184 (1999). https://doi.org/10.7551/
mitpress/1130.003.0015

10. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw.
Sci. 5(1), 1–42 (2019). https://doi.org/10.1007/s41109-019-0195-3

11. Lee, Y.J., Mangasarian, O.L.: RSVM: reduced support vector machines. In: Pro-
ceedings of the 2001 SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics, Philadelphia, PA (2001). https://doi.org/10.
1137/1.9781611972719.13

https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1561/2200000076
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1137/S0895479891223781
https://doi.org/10.1137/S0895479891223781
https://www.jmlr.org/papers/v2/downs01a.html
https://www.jmlr.org/papers/v2/downs01a.html
https://doi.org/10.1137/0917055
https://doi.org/10.1137/0917055
https://doi.org/10.2307/2153029
https://doi.org/10.2307/2153029
https://doi.org/10.7551/mitpress/1130.003.0015
https://doi.org/10.7551/mitpress/1130.003.0015
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1137/1.9781611972719.13
https://doi.org/10.1137/1.9781611972719.13

24 D. Tortorella and A. Micheli

12. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
TUDataset: a collection of benchmark datasets for learning with graphs. In: ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)
(2020). https://www.graphlearning.io

13. Oneto, L., Navarin, N., Donini, M., Sperduti, A., Aiolli, F., Anguita, D.: Measuring
the expressivity of graph kernels through statistical learning theory. Neurocomput-
ing 268, 4–16 (2017). https://doi.org/10.1016/j.neucom.2017.02.088

14. Pan, C.T., Tang, P.T.P.: Bounds on singular values revealed by QR factor-
izations. BIT Numer. Math. 39(4), 740–756 (1999). https://doi.org/10.1023/A:
1022395308695

15. Panja, R., Pal, N.R.: MS-SVM: minimally spanned support vector machine. Appl.
Soft Comput. J. 64, 356–365 (2018). https://doi.org/10.1016/j.asoc.2017.12.017

16. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemi-
cal informatics. Neural Netw. 18(8), 1093–1110 (2005). https://doi.org/10.1016/j.
neunet.2005.07.009

17. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector
algorithms. Neural Comput. 12(5), 1207–1245 (2000). https://doi.org/10.1162/
089976600300015565

18. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. The MIT Press, Cambridge (2001). https://
doi.org/10.7551/mitpress/4175.001.0001

19. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011).
https://doi.org/10.5555/1953048.2078187

20. Shervashidze, N., Vishwanathan, S.V., Petri, T.H., Mehlhorn, K., Borgwardt,
K.M.: Efficient graphlet kernels for large graph comparison. In: Proceedings of
the Twelth International Conference on Artificial Intelligence and Statistics, vol.
5, pp. 488–495 (2009). https://proceedings.mlr.press/v5/shervashidze09a.html

21. Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis, K., Vazirgiannis,
M.: GraKeL: a graph kernel library in Python. J. Mach. Learn. Res. 21(54), 1–5
(2020). http://jmlr.org/papers/v21/18-370.html

22. Tran, Q.A., Zhang, Q.L., Li, X.: Reduce the number of support vectors by using
clustering techniques. In: Proceedings of the Second International Conference on
Machine Learning and Cybernetics, vol. 2, pp. 1245–1248 (2003). https://doi.org/
10.1109/icmlc.2003.1259678

23. Yi, H.C., You, Z.H., Huang, D.S., Kwoh, C.K.: Graph representation learning in
bioinformatics: trends, methods and applications. Brief. Bioinform. 23(1), 1–16
(2022). https://doi.org/10.1093/bib/bbab340

https://www.graphlearning.io
https://doi.org/10.1016/j.neucom.2017.02.088
https://doi.org/10.1023/A:1022395308695
https://doi.org/10.1023/A:1022395308695
https://doi.org/10.1016/j.asoc.2017.12.017
https://doi.org/10.1016/j.neunet.2005.07.009
https://doi.org/10.1016/j.neunet.2005.07.009
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1162/089976600300015565
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.5555/1953048.2078187
https://proceedings.mlr.press/v5/shervashidze09a.html
http://jmlr.org/papers/v21/18-370.html
https://doi.org/10.1109/icmlc.2003.1259678
https://doi.org/10.1109/icmlc.2003.1259678
https://doi.org/10.1093/bib/bbab340

Graph-Based vs. Vector-Based
Classification: A Fair Comparison

Anthony Gillioz1(B) and Kaspar Riesen1,2

1 Institute of Computer Science, University of Bern, Bern, Switzerland
{anthony.gillioz,kaspar.riesen}@unibe.ch

2 Institute for Information Systems, University of Applied Science and Arts
Northwestern Switzerland, Olten, Switzerland

Abstract. Numerous graph classifiers are readily available and fre-
quently used in both research and industry. Ensuring their performance
across multiple domains and applications is crucial. In this paper, we con-
duct a comprehensive assessment of three commonly used graph-based
classifiers across 24 graph datasets (we employ classifiers based on graph
matchings, graph kernels, and graph neural networks). Our goal is to find
out what primarily affects the performance of these classifiers in differ-
ent tasks. To this end, we compare each of the three classifiers in three
different scenarios. In the first scenario, the classifier has access to the
original graphs, in the second scenario, the same classifier has access only
to the structure of the graph (without labels), and in the third scenario,
we replace the graph-based classifiers with a corresponding related sta-
tistical classifier, which has access only to an aggregated feature vector
of the graph labels. On the basis of this exhaustive evaluation, we are
able to suggest whether or not certain graph datasets are suitable for
specific benchmark comparisons.

Keywords: Graph Classification · Model Comparison · Graph
Matching · Graph Kernel · Graph Neural Network

1 Introduction

According to recent studies, the machine learning and pattern recognition com-
munities raised concerns about several methodological issues in research. These
issues include, for instance, the replicability crisis, which states that previ-
ously published results cannot be replicated [1]. Other problems include biased
results [2] and models that cannot handle real-world scenarios [3] due to too
small datasets or lack of diversity. In summary, poor research practices, such as
unclear experimental setups, irreproducible results, and improper model compar-
isons, hinder consistent evaluations of machine learning and pattern recognition
methods and require concerted efforts to prevent their use.

Supported by the Swiss National Science Foundation (SNSF) under Grant Nr.
200021 188496.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 25–34, 2023.
https://doi.org/10.1007/978-3-031-42795-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_3&domain=pdf
http://orcid.org/0000-0001-7352-3708
http://orcid.org/0000-0002-9145-3157
https://doi.org/10.1007/978-3-031-42795-4_3

26 A. Gillioz and K. Riesen

A common solution to address improper comparisons of models is to use stan-
dardized datasets with rigorous and reproducible experimental designs [4]. In this
paper, we provide an exhaustive empirical analysis of three popular graph-based
classification methods on 24 node-labeled graph datasets from the TUDataset
repository [5]. The analysis includes graph edit distance [6], which computes
the minimum amount of transformation required to transform one graph into
another, a graph kernel [7], which computes implicit graph embeddings based
on certain graph properties, and finally a graph neural network [8], which com-
putes explicit graph embeddings based on the message passing mechanism. These
methods are well known and they embody standard classifiers (like k-NN, SVM,
or Neural Networks), which are in turn widely used in academic and applied
research.

It is, however, not the primary goal of this paper to compare these three
graph classifiers. Rather, the goal is to find out in which applications and with
which procedures a graph-based approach is actually beneficial at all. To find this
out, we test the three above-mentioned classification paradigms in the follow-
ing three configurations, each representing the same application and setup. (I)
Graph-based methods using the original graphs (node labeling and graph struc-
ture). (II) Graph-based methods using the graphs without their labels (only
graph structure). (III) Vector-based methods which only have access to a label
aggregated over all nodes (only node labeling). In particular, the experiments
aim at finding out which information is most important in the graph structure
(i.e., structure, labeling, or both). Moreover, especially the third configuration
can be seen as a näıve baseline, which should be used as a reference system
whenever a novel graph-based method is proposed.

We are aware that this is not the first attempt to figure out when, why,
and which graph-based methods are actually more valuable than other methods.
In [7], for example, a thorough survey of common graph kernels is given, and in [9]
it is shown that the results of state-of-the-art graph kernels are sometimes worse
than those of some trivial graph kernel methods. In addition, a comprehensive
comparison of six graph neural network architectures is presented in [4]. Our
analysis differs from previous work in two seminal ways. First, to the best of our
knowledge, we are the first to contrast each of the three popular graph-based
classifiers with two systems that operate similarly (or identically) but only have
access to either the structure or the labels of the graphs. Second, we complete
our paper by defining an explicit list of graph datasets that can be used to report
the results of (approximate) graph-based methods (or, put negatively, we point
out which graph datasets should not be used for such research purposes).

2 Research Context

In Sect. 2.1, we provide a brief overview of the graph classifiers employed in
this paper. Additionally, in Sect. 2.2, we discuss the methodical structure of our
experiment using the three configurations.

Graph-Based vs. Vector-Based Classification: A Fair Comparison 27

2.1 Graph Classification

The graph classification problem can be addressed through various methods. In
this paper, we use three methods based on graph edit distance, graph kernels,
and graph neural networks.

Graph Edit Distance [6] is a widely used measure of dissimilarity applica-
ble to any kind of graphs. Graph edit distance basically seeks a sequence of edit
operations required to transform a source graph into a target graph. Each of the
operations is associated with a cost, and one aims at finding the sequence that
minimizes the overall cost. The computation of graph edit distance is an NP-
hard problem [10], which means that finding the exact solution for large graphs
can be computationally expensive. Therefore, various approximation algorithms
to efficiently calculate a suboptimal solution have been proposed. In this paper,
we use the popular algorithm Bipartite-Graph Edit Distance [11] as a graph
edit distance approximation (termed ged in this paper). Traditionally, classifica-
tion based on graph edit distance is limited to the k-Nearest Neighbor classifier
(k-NN).

Graph Kernels [7] represent measures that can be used to quantify the
similarity of two graphs. In the present paper, we use the Weisfeiler-Lehman
graph kernel [12] (termed wl from now on). This popular graph kernel works by
assigning each node a label based on the labels of its immediate neighborhood
(which is the set of the node’s adjacent nodes). This labeling process is itera-
tively repeated, each time refining the labels based on the updated labels of the
neighboring nodes. The advantage of this graph kernel (as well as others) is that
it can capture the local and global structural properties of graphs. The actual
power of graph kernels is, however, that they implicitly map the graphs into a
high-dimensional vector space where the similarity between the graphs can be
calculated as the inner product between their corresponding vectors. The result-
ing implicit embedding can then be fed into a Support Vector Machine (SVM)
– or any other kernel machine – to perform the final classification.

Graph Neural Networks [8] are designed to learn vectorial representations
of nodes, edges, or complete graphs. Graph neural networks gained popularity
in recent years due to their ability to handle complex, structured data that
is difficult to model using traditional classification methods. The basic idea of
graph neural networks is to apply a series of graph convolutional operations
that aggregate information from neighboring nodes and edges to update the
features of each node. The updated features are then passed through a non-
linear activation function and used to predict the target variable. There are
different variations of graph neural networks available. In the present paper,
we use the Deep Graph Convolutional Neural Network (DGCNN) [13] (simply
termed gnn from now on). This architecture consists of three consecutive stages.
First, graph convolutional layers are used to extract local substructure features
of the nodes and establish a consistent node ordering. Second, a SortPooling
layer arranges the node features in the established order and standardizes input
sizes. Third, traditional convolutional and dense layers are utilized to process
the sorted graph representations and generate the final classification.

28 A. Gillioz and K. Riesen

2.2 Classification Methods Comparison

The overall information of a graph consists of two parts, namely the structure
and the labels. By omitting one or the other, or using both pieces of information
at the same time, we thus obtain three different configurations. We use the
three classification paradigms described in the previous subsection in these three
configurations.

In Table 1, the three configurations are summarised. (I) The initial configura-
tion (shown in column 1) consists of Labeled Graphs, which involves conducting
graph classification on the original graphs, including both its structure and node
labels. (II) The second configuration (shown in column 2) aims to examine the
significance of the graph structure itself by excluding the node labels to obtain
Unlabeled Graphs. (III) The final configuration (shown in the third column)
is the Aggregated Labels setup, in which only the node information is retained.
We use global sum pooling on the graphs’ nodes to obtain a basic vector rep-
resentation of the graphs. This feature vector is then fed into three statistical
classifiers (a k-NN classifier using the Euclidean distance (L2), an SVM with a
radial basis function (rbf), and a multilayer perceptron (mlp)). The rationale of
this procedure is to use statistical classifiers that are conceptually closely related
to the three graph-based classifiers defined above.

3 Experimental Setup

3.1 Datasets

The following empirical evaluation is conducted on 24 datasets from the
TUDataset graph repository [5] that contains various benchmark datasets for
graph classification research. For further details of each dataset, including the
number of graphs and classes, as well as the average, minimum, and maximum
number of nodes and edges per graph, we refer to [5].

Table 1. Three configurations (L, U, A) for the three classifier paradigms (k-NN,
SVM, NN) presented. (I) Labeled Graphs: Original graphs with node labels and graph
structure, (II) Unlabeled Graphs: Graphs without labels (graph structure only), and
(III) Aggregated Labels: Vector representation of the graphs based on the node labels.

Graph-Based Vector-Based

Classifier Labeled Graphs Unlabeled Graphs Aggregated Labels

k-NN ged(L) ged(U) L2(A)

SVM wl(L) wl(U) rbf(A)

NN gnn(L) gnn(U) mlp(A)

Our study is limited to a set of node-labeled graph datasets. These
graphs represent entities obtained from a broad range of fields to provide a

Graph-Based vs. Vector-Based Classification: A Fair Comparison 29

comprehensive evaluation across various applications. This particularly includes
chemoinformatics, bioinformatics, and computer vision. Roughly speaking, the
chemoinformatics datasets consist of molecular graphs, while the bioinformatics
datasets comprise protein interaction networks and biological pathways, and the
computer vision datasets include image-based graphs.

3.2 Experimental Setup

In order to ensure the reliability of the empirical results and minimize the influ-
ence of random data partitionings, we employ a 10-fold cross-validation strategy
that is repeated 10 times in a stratified manner for each dataset and configu-
ration. The performance of the models is then estimated using each partition,
where hyperparameters are chosen through an internal model selection process
that only uses the training data. Note that the model selection is conducted
independently for each training and test split, thus the optimal hyperparameter
configurations may differ from one split to another.

A common metric to assess the quality of a classifier is the classification
accuracy. It measures the relative proportion of correctly classified instances out
of the total number of instances. However, the classification accuracy can be
misleading in the case of imbalanced datasets, where the number of instances in
one class is much larger than the number of instances in another class (this may
cause the classifier to predict the majority class more often and thus report over-
optimistic results). Therefore, we report the balanced accuracy[14] by default in
this paper since not all the datasets used are class balanced.

Concerning the computation of graph edit distance, we use unit costs for both
node and edge insertions/deletions. For the node substitution cost, we use the
Euclidean distance between the corresponding node labels. For edge substitution,
we use a zero cost (since the edges are unlabeled). Parameter α ∈]0, 1[represents
the relative importance of node and edge edit operation costs and is varied from
0.1 to 0.9 in increments of 0.1 in our evaluation. The only parameter that needs to
be optimized for the k-NN classifier (viz. the number of neighbors k) is optimized
in the range k ∈ {3, 5, 7}.

In the kernel scenario, we use a 4-Weisfeiler-Lehman kernel which means we
perform four refinement iterations. To optimize the SVM parameter C, which
balances the trade-off between large margins and minimizing misclassification,
we explore values in the range 10−2.0,−1.5,...,2.0. We use the same range for the
regularization parameter when optimizing the SVM with radial basis function
for the aggregated node labels.

For the training process of the gnn experiments, we use the hyperparameters
as proposed in [4]. For the fully connected network, the following parameters
are optimized. The depth of the standard fully connected layers d ∈ {1, 3, 5, 10},
the number of neurons per layer n ∈ {5, 10, 20, 30}, the dropout value δ ∈
{0, 0.25, 0.5} and the learning rate l ∈ {0.005, 0.01, 0.05, 0.1}.

30 A. Gillioz and K. Riesen

Fig. 1. Balanced classification accuracy of the three types of classifiers (k-NN, SVM,
NN) achieved in the three tested configurations (L, U, A) across all datasets.

4 Experimental Evaluation

The experimental evaluation consists of two parts. First, in Sect. 4.1, we compare
the classification accuracies achieved using the three classifier paradigms in the

Graph-Based vs. Vector-Based Classification: A Fair Comparison 31

three configurations (resulting in nine classifiers according to Table 1). Second, in
Sect. 4.2, we analyze on which datasets the graph-based approaches are actually
significantly better than the vector-based counterparts.

4.1 Graph Classification

Figure 1 shows the balanced classification accuracy results obtained by the clas-
sifiers in the tested settings. For the three graph-based classifiers (ged, wl, gnn)
two different configurations are evaluated, viz. labeled graphs (L) and unlabeled
graphs (U). The three vector-based classifiers (L2, rbf, mlp) are tested on the
aggregated node labels (A). There are four main trends that can be observed
from this plot.

First, we observe that on the datasets Mutagenicity, NCI1, and NCI109 the
three different types of classifiers achieve somehow the expected results. That is
the statistical classifiers using the aggregated vectors achieve the lowest accura-
cies, the second-best performance is achieved with graph-based methods using
unlabeled graphs, and the best classification results are obtained on the original
graphs (that include both structure and node labels).

Second, we notice that on the six datasets BZR-MD, COX2-MD, MSRC-9,
MSRC-21, PROTEINS, and DD, the classifiers face difficulties when the node
labels are removed from the graphs. That is, on those datasets, the accuracies
obtained by the classifiers operating on unlabeled graphs is almost consistently
lower than those of the classifiers that operate on the aggregated feature vectors.
That indicates that the structure in those datasets is complicated to distinguish
from one another, and moreover, that the labels on the nodes play a pivotal role
in those applications.

Fig. 2. T-SNE visualization of the vector representation of the graphs for DD, MSRC-9,
and NCI1 datasets.

Third, we observe that all classifiers have difficulties performing well on the
OHSU, Peking-1, and KKI datasets. The achieved results are only slightly better
than random predictions, indicating that these tasks are extremely challenging
and currently unsolved by the tested classifiers.

Finally, we observe that on the datasets BZR-MD, COX2, COX2-MD, ER-
MD, DHFR-MD, MSRC-9, MSRC-21, DD, PROTEINS, and the four PTCs

32 A. Gillioz and K. Riesen

datasets, the performance of the näıve vector-based approach is comparable to
that of the more advanced graph-based techniques. We have two possible expla-
nations for this phenomenon. First, for the MD versions of these datasets, the
graphs are heavily modified and fully connected, rendering graph-based classifi-
cation less effective. Second, by visualizing the aggregated feature vectors with
T-SNE (see Fig. 2), we find that the different classes are easily separable, which
in turn explains the good results of the vector-based classifiers.

4.2 Dataset Selection

Comparing two classification algorithms is not a trivial task due to the risk of
committing type I or type II errors. Type I errors occur when the null hypothesis
is wrongly rejected even though it is true, whereas type II errors occur when the
null hypothesis is not rejected even though it is false. To address this issue,
the authors of [15] conduct an empirical evaluation of multiple statistical tests
and conclude that the 10-time repeated 10-fold cross-validation test is the most
effective. This test involves all 100 individual systems to estimate the mean and
variance of the accuracy with 10◦C of freedom (making it conceptually simple
to use).

We apply this statistical test [15], in order to conduct a comparison between
the statistical classifiers that use the aggregated node labeling only and their
graph-based counterparts (i.e., the classifiers that use both node labels and graph
structure). In particular, this analysis counts how often the graph-based methods
outperform their vector-based counterpart.

Regarding the results in Fig. 3, we observe that on six datasets, all of the three
graph-based approaches outperform the corresponding vector-based approaches.
On four datasets, two of the three graph-based methods outperform the vector-
based methods, and in the five cases, only one of the graph-based methods out-
performs the vector-based method (this is most frequently observed when com-
paring the two kernel approaches). On the remaining nine datasets, the graph-
based methods show no significant advantage over the corresponding vector-
based methods. On the total of 24 datasets, the ged and gnn methods show
superiority over the corresponding vector-based methods in 9 cases, while the
wl-graph kernel performs better than the rbf-kernel in 14 cases.

Based on the results shown in Fig. 3, we can make the following two rec-
ommendations. First, new graph-based approximation algorithms that aim to
reduce computation time should only be tested on datasets where the graph-
based classification methods outperform the vector-based method in at least
two, ideally three, cases. This recommendation is based on the fact that even
the fastest approximation method is likely to be slower than the baseline feature
vector method presented here. Second, graph-based methods with the goal of
improving the classifier rate should be tested primarily on datasets where the
graph-based methods evaluated here perform even worse than the correspond-
ing vector-based approaches. This recommendation is based on the fact that on
these applications there is still significant potential for improving the structural
approaches.

Graph-Based vs. Vector-Based Classification: A Fair Comparison 33

Fig. 3. Comparison of the statistical classifiers that use the aggregated labels (i.e.,
L2(A), rbf(A), and mlp(A) and the graph-based approaches that operate on the original
graphs with both structure and node labels (i.e., ged(L), wl(L), gnn(L)).

5 Conclusions

The main goal of this paper is to provide a comprehensive analysis of commonly
used benchmark datasets for graph-based pattern recognition. More specifically,
we investigate on which datasets the structure, the node labels, or both are
the most relevant for graph classification. We empirically show the significance
of both node labels and structure on various datasets. However, we also reveal
that certain common graph classifiers struggle to surpass a basic baseline that
uses feature vector representations extracted from the graphs. Based on this
analysis, we recommend specific sets of datasets to focus on when evaluating
novel (approximation) algorithms related to the three graph-based classifiers
used in this paper.

We see three potential ideas for future research activities. First, one could
explore whether or not certain graph properties (such as homophily, spectral
gap, and others) show a correlation between the classification performances of
the different types of classifiers. Second, one could investigate which graph-based
classifiers are robust to noise, either in terms of structural changes (e.g., ran-
domly adding or removing edges) or alterations to node information. Third,
one could extend our study to unlabeled datasets (our study is limited to graphs
with labeled nodes). However, in some preliminary experiments on datasets from
social media, we have not yet been able to find unlabeled datasets in which
the vector-based approaches outperform the graph-based classifiers. Thus, we
conclude that in the case of unlabeled graphs on social media networks, the
structural information given by the edges of a graph plays a central role.

References

1. Hutson, M.: Artificial intelligence faces reproducibility crisis. Science 359(6377),
725–726 (2018). https://doi.org/10.1126/science.359.6377.725

2. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in
commercial gender classification. In: Friedler, S.A., Wilson, C. (eds.) Conference
on Fairness, Accountability and Transparency, FAT 2018, 23–24 February 2018,
New York, USA. Proceedings of Machine Learning Research, vol. 81, pp. 77–91.
PMLR (2018)

https://doi.org/10.1126/science.359.6377.725

34 A. Gillioz and K. Riesen

3. Shmueli, G.: To explain or to predict? Stat. Sci. 25(3) (2010). https://doi.org/10.
1214/10-STS330

4. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neu-
ral networks for graph classification. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenRe-
view.net (2020)

5. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
TUDataset: a collection of benchmark datasets for learning with graphs (2020).
arXiv: 2007.08663

6. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recog-
nition. Pattern Recogn. Lett. 1(4), 245–253 (1983). https://doi.org/10.1016/0167-
8655(83)90033-8. May

7. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw.
Sci. 5(1), 6 (2020). https://doi.org/10.1007/s41109-019-0195-3

8. Yang, Z., et al.: A comprehensive survey of graph-level learning (2023).
arXiv: 2301.05860

9. Schulz, T., Welke, P.: On the necessity of graph kernel baselines. In: Graph
Embedding and Mining Workshop at ECML PKDD, p. 13 (2019). https://www.
semanticscholar.org/paper/On-the-Necessity-of-Graph-Kernel-Baselines-Schulz-
Welke/83c7fa53129c983e3124ad0b0d436d982a58c44f

10. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA (1990)

11. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). https://doi.
org/10.1016/j.imavis.2008.04.004. Jun

12. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt, K.M.
J.: Weisfeiler-Lehman graph kernels. Mach. Learn. Res. 12, 2539–2561 (2011).
https://doi.org/10.5555/1953048.2078187

13. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-
tecture for graph classification. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI
2018), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI
2018), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 4438–4445. AAAI
Press (2018)

14. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accu-
racy and its posterior distribution. In: 20th International Conference on Pattern
Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010, pp. 3121–3124.
IEEE Computer Society (2010). https://doi.org/10.1109/ICPR.2010.764

15. Bouckaert, R.R.: Choosing between two learning algorithms based on calibrated
tests. In: Fawcett, T., Mishra, N. (eds.) Machine Learning, Proceedings of the
Twentieth International Conference (ICML 2003), 21–24 August 2003, Washing-
ton, DC, USA, pp. 51–58. AAAI Press (2003)

https://doi.org/10.1214/10-STS330
https://doi.org/10.1214/10-STS330
http://arxiv.org/abs/2007.08663
https://doi.org/10.1016/0167-8655(83)90033-8
https://doi.org/10.1016/0167-8655(83)90033-8
https://doi.org/10.1007/s41109-019-0195-3
http://arxiv.org/abs/2301.05860
https://www.semanticscholar.org/paper/On-the-Necessity-of-Graph-Kernel-Baselines-Schulz-Welke/83c7fa53129c983e3124ad0b0d436d982a58c44f
https://www.semanticscholar.org/paper/On-the-Necessity-of-Graph-Kernel-Baselines-Schulz-Welke/83c7fa53129c983e3124ad0b0d436d982a58c44f
https://www.semanticscholar.org/paper/On-the-Necessity-of-Graph-Kernel-Baselines-Schulz-Welke/83c7fa53129c983e3124ad0b0d436d982a58c44f
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.5555/1953048.2078187
https://doi.org/10.1109/ICPR.2010.764

A Practical Algorithm for Max-Norm
Optimal Binary Labeling of Graphs

Filip Malmberg1(B) and Alexandre X. Falcão2

1 Centre for Image Analysis, Department of Information Technology,
Uppsala University, Uppsala, Sweden

filip.malmberg@it.uu.se
2 Institute of Computing, University of Campinas, Campinas, Brazil

afalcao@ic.unicamp.br

Abstract. This paper concerns the efficient implementation of a method
for optimal binary labeling of graph vertices, originally proposed by
Malmberg and Ciesielski (2020). This method finds, in quadratic time
with respect to graph size, a labeling that globally minimizes an objective
function based on the L∞-norm. The method enables global optimiza-
tion for a novel class of optimization problems, with high relevance in
application areas such as image processing and computer vision. In the
original formulation, the Malmberg-Ciesielski algorithm is unfortunately
very computationally expensive, limiting its utility in practical applica-
tions. Here, we present a modified version of the algorithm that exploits
redundancies in the original method to reduce computation time. While
our proposed method has the same theoretical asymptotic time com-
plexity, we demonstrate that is substantially more efficient in practice.
Even for small problems, we observe a speedup of 4–5 orders of magni-
tude. This reduction in computation time makes the Malmberg-Ciesielski
method a viable option for many practical applications.

Keywords: Graph labeling · Combinatorial optimization ·
Lexicographic Max-Ordering

1 Introduction

Many problems in computer science and pattern recognition can be as finding
vertex labeling of a graph, such that the labeling optimizes some application-
motivated objective function. In their recent work, Malmberg and Ciesielski [9]
proposed a quadratic time algorithm for assigning binary labels to the vertices
of a graph, such that the resulting labeling is optimal according to an objec-
tive function based on the max-norm, or L∞ norm. Here, we consider the effi-
cient implementation of the algorithm proposed by Malmberg and Ciesielski.
We present a version of their algorithm that, while having the same quadratic
asymptotic time complexity, is orders of magnitude faster in practice.

A key part of the Malmberg-Ciesielski algorithm is to solve a sequence of
Boolean 2-satisfiability (2-SAT) problems. Malmberg and Ciesielski observe that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 35–45, 2023.
https://doi.org/10.1007/978-3-031-42795-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_4

36 F. Malmberg and A. X. Falcão

each such 2-SAT problem can be solved in linear time using, e.g., Aspvall’s
algorithm [1]. They also observe, however, that there is a high degree of similarity
between each consecutive 2-SAT problem in the sequence and that solving each
2-SAT problem in isolation thus appears inefficient. Here, we show that this
redundancy between subsequent 2-SAT problems can indeed be exploited to
formulate a substantially more efficient version of the algorithm.

2 Background and Motivation

We consider the problem of assigning a binary label (0 or 1) to a set of variables
identified by indices 1, . . . , n. A canonical problem is to find a binary labeling
� : [1, n] → {0, 1} that minimizes an objective function of the form

Ep(�) :=
∑

i

φp
i (�(i)) +

∑

(i,j)∈N
φp
ij(�(i), �(j)), (1)

where �(i) ∈ {0, 1} denotes the label of variable i and N is a set of pairs of
variables that are considered adjacent.

The functions φi(·) are referred to as unary terms. Each unary term depends
only on the value of a single binary variable, and they are used to indicate the
preference of an individual variable to be assigned each particular label.

The functions φij(·, ·) are referred to as pairwise terms. Each pairwise term
depends on the labels assigned to two variables simultaneously, and thus intro-
duces a dependency between the labels assigned to the variables. Typically, this
dependency between variables is used to express that the desired solution should
have some degree of smoothness, or regularity.

In applications, rules for assigning these unary and pairwise terms might
be hand-crafted, based on the users knowledge about the problem at hand.
Alternatively, the preferences might be learned from available annotated data
using machine learning techniques [10,11].

As established by Kolmogorov and Zabih [7], the labeling problem described
above can be solved to global optimality under the condition that all pairwise
terms are submodular, which in the form presented here means that they must
satisfy the inequality

φp
ij(0, 0) + φp

ij(1, 1) ≤ φp
ij(0, 1) + φp

ij(1, 0). (2)

If the problem contains non-submodular binary terms, finding a globally
optimal labeling is known to be NP-hard in the general case [7]. Practitioners
looking to solve such optimization problems must therefore first verify that their
local cost functional satisfies the appropriate submodularity conditions. If this
is not the case, they must resort to approximate optimization methods that
may or may not produce satisfactory results for a given problem instance [6].
Recently, however, Malmberg and Ciesielski [9] showed that in the limit case,
as p approaches to infinity, the requirement for submodularity disappears! To

A Practical Algorithm for Max-Norm Optimization 37

characterize the labelings that minimize 1 as p goes to infinity, we first observe
that as p goes to infinity the objective function Ep itself converges to

E∞(�) := max
{
max

i
φi(�(i)), max

(i,j)∈N
φij(�(i), �(j))

}
. (3)

i.e., the objective function becomes the max-norm of the vector containing all
unary and pairwise terms. A more refined way of characterizing the solution is
the framework of lexicographic max-ordering (Lex-MO) [3–5]. The same concept
was also studied by Levi and Zorin, who used the term strict minimizers [8]. In
this framework, two solutions are compared by ordering all elements (in our case,
the values of all unary and pairwise terms for a given solution) non-increasingly
and then performing their lexicographical comparison. This avoids the potential
drawback of the E∞ objective function, that it does not distinguish between
solutions with high or low errors below the maximum error. The Malmberg-
Ciesielski algorithm [9] computes, in polynomial time, a labeling that globally
minimizes E∞, even in the presence of non-submodular pairwise terms. Under
certain conditions, the same algorithm is also guaranteed to produce a solution
that is optimal in the Lex-MO sense. As shown by Ehrgott [4], Lex-MO optimal
solutions have the following favorable properties:

– They are Pareto optimal, i.e., it is not possible to change the solution to
improve one criterion (unary- or pairwise term) without worsening another
one.

– They minimize E∞, i.e., that minimize the largest value of any criterion
(unary- or pairwise term).

– All Lex-MO solutions are equivalent in the sense that the corresponding vec-
tor of sorted criteria are the same.

3 Preliminaries

In this section, we recall briefly the Malmberg-Ciesielski algorithm, along with
some concepts needed for exposition of our proposed efficient implementation of
this algorithm in Sect. 4.

3.1 Boolean 2-Satisfiability

We start by recalling the Boolean 2-satisfiability (2-SAT) problem. Given a set
of Boolean variables {x1, . . . , xn}, xi ∈ {0, 1} and a set of logical constraints
on pairs of these variables, the 2-SAT problem consists of determining whether
it is possible to assign values to the variables so that all the constraints are
satisfied (and to find such an assignment, if it exists). To formally define the 2-
SAT problem, we say that a literal is either a Boolean variable x or its negation
¬x. A 2-SAT problem can then be defined in terms of a Boolean expression that
is a conjunction of clauses, where each clause is a disjunction of two literals.
Expressions on this form are known as 2-CNF formulas, where CNF stands for

38 F. Malmberg and A. X. Falcão

conjunctive normal form. The 2-SAT problem consists of determining if there
exists a truth assignment to the variables involved in a given 2-CNF formula
that makes the whole formula true. If such an assignment exists, the 2-SAT
problem is said to be satisfiable, otherwise it is unsatisfiable. As an example, the
following expression is a 2-CNF formula involving three variables x1, x2, x3, and
two clauses:

(x1 ∨ x2) ∧ (x2 ∨ ¬x3) (4)

This example formula evaluates to true if we, e.g., assign all three variables the
value 1 (or true). Thus the 2-SAT problem represented by this 2-CNF formula
is satisfiable.

For any 2-CNF formula, the 2-SAT problem is solvable in linear time w.r.t
to the number of clauses1 using, e.g., Aspvall’s algorithm [1].

We now introduce some further notions related to 2-SAT problems needed
for our exposition, using the convention that xi and ¬xi denote literals, while
vi denotes a literal whose truth value is unknown and v̄i is its complementing
literal.

Every clause (vi ∨ vj) in a 2-CNF formula is logically equivalent to an impli-
cation from one of its variables to the other:

(vi ∨ vj) ≡ (v̄i ⇒ vj) ≡ (v̄j ⇒ vi) . (5)

As established by Aspvall et al. [1], this means that every 2-SAT problem F
can be associated with an implication graph GF = (V,E), a directed graph with
vertices V and edges E constructed as follows:

1. For each variable xi, we add two vertices named xi and ¬xi to GF . The
vertices xi and ¬xi are said to be complementing.

2. For each clause (vi ∨ vj) of F , we add edges (v̄i, vj) and (v̄i, vj) to GF .

Each vertex in the implication graph can thus be uniquely identified with a
literal, and each edge identified with an implication from one literal to another.
We will therefore sometimes interchangeably refer to a vertex in the implication
graph by its corresponding literal vi. For a given truth assignment, we say that a
vertex in the implication graph agrees with the assignment if the corresponding
literal evaluates to true in the assignment. The implication graph GF is skew
symmetric in the sense that if (vi, vj) is an edge in GF , then (v̄i, v̄j) is also an
edge in GF . We observe that it follows that for every path π = (v1, v2, . . . , vk)
in GF , the path π̄ = (v̄k, v̄k−1, . . . , v̄1) is also a path in GF .

In proving the correctness of our proposed algorithm, we will rely on the
following property which is due to Aspvall et al. [1]:

Property 1. A given truth assignment satisfies a formula F if and only if there
is no vertex in GF for which the corresponding literal agrees with the assignment,
with an outgoing edge to a vertex not agreeing with the assignment.
1 This is in contrast to the general Boolean satisfiability problem, where clauses are

allowed to contain more than two literals. Already the 3SAT problem, where each
clause can have at most three literals, is NP-hard.

A Practical Algorithm for Max-Norm Optimization 39

3.2 The Malmberg-Ciesielski Algorithm

For a complete description of the Malmberg-Ciesieleski algorithm, we refer the
reader to the original publication ([9], Algorithm 1). We focus here on a key
aspect of the algorithm, which is to solve a sequence of 2-SAT problems. In this
step, we identify the variables to be labeled with the Boolean variables involved
in a 2-SAT problem. A truth assignment T for the Boolean variables naturally
translates to a labeling �. For this step of the algorithm, we are given an ordered
sequence C of clauses, ordered by a priority derived from the unary and pairwise
terms in Eq. 3. Informally, the algorithm operates as follows:

– Initialize F to be an empty 2-CNF formula, containing no clauses.
– For each clause c in C, in order:

• If F ∧ c is satisfiable, then set F ← F ∧ c.

At all steps of the above algorithm, the formula F remains satisfiable. At the
termination of the algorithm, the formula F defines a unique truth assignment
T and therefore also a labeling �. For the specific sequence C of clauses defined
by Malmberg and Ciesieleski, the resulting labeling is guaranteed to globally
minimize the objective function in Eq. 3.

In each iteration, we need to determine if F ∧ c is satisfiable, i.e., solve the
2-SAT problem associated with the formula F ∧ c. Malmberg and Ciesieleski
suggest to use Aspvall’s algorithm for this purpose, with an asymptotic time
complexity of O(|F |) ≤ O(|C|). Let N = n + |N | denote the total number of
unary and pairwise terms in Eq. 3. By its design, the number of clauses in the
sequence C is O(N), leading to the asymptotic time complexity of O(N2) for
the Malmberg-Ciesieleski algorithm implemented using Aspvall’s algorithm.

4 Proposed Algorithm

As observed in the previous section, the Malmberg-Ciesieleski algorithm itera-
tively builds a formula F that remains satisfiable at each step of the algorithm.
Our approach for improving the efficiency of the computations is to maintain, at
each step of the algorithm, a truth assignment that satisfies the current formula
F . When trying to determine whether the next clause c in the sequence C can
be appended to F without rendering the formula unsatisfiable, we show that this
previous truth assignment can be utilized to reduce the computation time. We
represent a truth assignment T to the Boolean variables of a 2-SAT problem as
a function T : [1, n] → {0, 1}, so that T (i) is the value assigned to variable xi.
Trivially, if T satisfies c then is also satisfies F ∧ c, so we focus on the case where
T does not satisfy the next clause c.

We will consider 2-SAT-solving under assumptions [2], i.e., given a satisfiable
formula, we ask if the same formula still satisfiable if we assume given values
for a subset of the variables? Such assumptions will be represented by a set of
vertices in the implication graph – since each vertex corresponds to a literal, the
set of vertices corresponds to a set of literals that are all assumed to evaluate to

40 F. Malmberg and A. X. Falcão

true. We assume that vertex sets used in this context are internally conflict-free,
i.e., they do not contain both a vertex and its complement.

Below we will present an efficient algorithm for solving a 2-SAT problem
under a set of assumptions A, given a truth assignment T that satisfies the
formula without the assumptions. To see how such a procedure helps us in effi-
ciently implementing the Malmberg-Ciesielski algorithm, we observe that by De
Morgan’s laws a clause (vi ∨ vj) can be rewritten as ¬(v̄i ∧ v̄j). In this form, it
is easier to see that in order to satisfy this clause, the truth assignment T must
satisfy exactly one of the expressions (vi∧vj), (vi∧ v̄j), or (v̄i∧vj). Each of these
expressions represent a set of assumptions, and therefore F ∧ (vi ∨ vj) is satisfi-
able if and only if F is satisfiable under one of the following sets of assumptions
A: {vi, vj}, {vi, v̄j}, or {v̄i, vj}. We note also that in the special case that i = j,
the above argument can be simplified further. In this case, the formula reduces
to F ∧ (vi) which is equivalent to solving F under the assumption A = {vi}.

The procedure listed in Algorithm 1 utilizes this result to perform the inner
loop of the Malmberg-Ciesieleski algorithm: It determines whether a given clause
can be added to a satisfiable formula without making it unsatisfiable. If so,
it updates an implication graph representing the formula to include the new
clause. Algorithm 1 utilizes a procedure SolveWithAssumptions, which we will
now describe.

Let F be a formula with corresponding implication graph GF = (V,E), let
T be a truth assignment for the variables associated with F , and let A be a set
of assumptions. We define RA,T ⊆ V as the set of vertices that are reachable
in GF from any vertex in A without traversing an edge that is outgoing from a
vertex that agrees with T . The main theoretical result that enables our proposed
algorithm is summarized in the following theorem:

Theorem 1. Assume that F is satisfiable. Let T be a truth assignment that
satisfies F , and let A be a set of assumptions. Then F is satisfiable under the
assumptions A if and only if the subgraph RA,T does not contain a pair of com-
plementing vertices.

Proof. For the first part of the proof, assume that RA,T does contain a pair of
complementing vertices vi and v̄i. Then the assumptions A directly imply that
both vi and v̄i are simultaneously satisfied, which is clearly a contradiction, and
so F is not satisfiable under the assumptions A.

For the second part of the proof, assume that RA,T does not contain any
pair of complementing vertices. We may then construct a well-defined truth
assignment T ′ from the given truth assignment T by setting, for every vertex
in RA,T , the corresponding variable to the corresponding truth value. For any
vertex vi /∈ RA,T , we have T (i) = T ′(i). Furthermore, the truth assignment T ′

agrees with all assumptions in A.
Next assume, with the intent of constructing a proof by contradiction, that

the truth assignment T ′ constructed above does not satisfy F . Then by Prop-
erty 1 there exists at least one vertex vi agreeing with T ′ that has an outgoing
edge to a vertex vj not agreeing with T ′. We now consider all four possibilities

A Practical Algorithm for Max-Norm Optimization 41

Algorithm 1: CheckSolvable(G,C,T)
Input: An implication graph G representing a 2-SAT problem. A clause

c = (vi) ∨ (vj). A truth assignment T that satisfies the formula F
encoded by G.

Result: A truth value indicating if F ∧ c is satisfiable. If it is, then T is a
truth assignment satisfying F ∧ c and G encodes F ∧ c. Otherwise, T
and G are unmodified.

1 Set satisfiable ← false
2 if T satisfies c then
3 Set satisfiable ← true

4 else
5 if vi = vj then
6 if SolveWithAssumptions(G,{vi},T) then
7 Set satisfiable ← true

8 else
/* vi �= vj */

9 if SolveWithAssumptions(G,{vi, vj},T) then
10 Set satisfiable ← true

11 else if SolveWithAssumptions(G,{v̄i, vj},T) then
12 Set satisfiable ← true

13 else if SolveWithAssumptions(G,{vi, v̄j},T) then
14 Set satisfiable ← true

15 if satisfiable then
16 Add edges (v̄i, vj) and (v̄j , vi) to G

17 Return satisfiable

for the truth assignment T with respect to the variables corresponding to vi and
vj :

1. Assume that both vi and vj agree with T . Then since vj does not agree with
T ′ we must have v̄j ∈ RA,T , i.e., there exists a path π from A to v̄j that does
not traverse an edge outgoing from a vertex that agrees with T . By the skew
symmetry of the implication graph, there is an outgoing edge from v̄j to v̄i,
and we may thus append this edge to the path π to see that v̄i is also in RA,T ,
contradicting that vi agrees with T ′. Thus, the assumption that both vi and
vj agree with T leads to a contradiction.

2. Assume that vi agrees with T but vj does not. Since vi has an outgoing edge
to vj , this contradicts that T satisfies F , and so the assumption that vi agrees
with T but vj does not agree with T leads to a contradiction.

3. Assume that vj agrees with T but vi does not. Then vi and v̄j are both
in RA,T . There is an outgoing edge from vi to vj , and vi disagrees with T ,
and thus vj is also in RA,T , contradicting the assumption that RA,T does

42 F. Malmberg and A. X. Falcão

Algorithm 2: SolveWithAssumptions(G,A,T)
Input: An implication graph G representing a 2-SAT problem. A set of

assumptions A, without internal conflicts. A truth assignment T that
satisfies the formula F encoded by G.

Result: A truth value indicating the existence of a truth assignment T ′ that
satisfies the formula F encoded by G while simultaneously satisfying
the assumptions A. If the algorithm returns true, then T is a truth
assignment satisfying this criterion. Otherwise, T is unmodified.

Auxiliary: A FIFO (or LIFO) queue Q of vertices; A set of vertices C.
1 Set C ← ∅
2 foreach v ∈ A do
3 Insert v in Q
4 Insert v in C

5 while Q is not empty do
6 Pop a vertex v from Q
7 if v disagrees with T then
8 foreach vertex w such v has an outgoing edge to w do
9 if w̄ ∈ C then

10 Return false and exit

11 else if w /∈ C then
12 Insert w in Q
13 Insert w in C

14 foreach vertex v ∈ C do
15 Set value of T for the variable corresponding to v so that it agrees with v.

16 Return true

not contain both a vertex and its complement. Thus, the assumption that vj
agrees with T but vi does not agree with T leads to a contradiction.

4. Assume that neither vi nor vj agree with T . Then since vi agrees with T ′ we
must have vi ∈ RA,T , i.e., there exists a path π from A to vi that does not
traverse an edge outgoing from a vertex that agrees with T . But since there is
an outgoing edge from vi to vj and vi does not agree with T , we may append
π with this edge to see that vj must also be in RA,T , contradicting that vj
disagrees with T ′. Thus, the assumption that neither vi nor vj agree with T
leads to a contradiction

The four cases above cover all possible configurations for the truth values of
the variables corresponding to vi and vj in the truth assignment T , and each
case leads to a contradiction. We conclude that the assumption that T ′ does not
satisfy F leads to a contradiction, and thus T ′ must satisfy F . This completes
the proof. �

Based on the theorem presented above, we can solve a 2-SAT problem under
given assumptions if we can find the set RA,T . We observe that for a given

A Practical Algorithm for Max-Norm Optimization 43

set of assumptions, the set RA,T can easily be found in O(V + E) time using,
e.g., breadth-first search. If we, during this breadth-first search, encounter a ver-
tex whose complement is already confirmed to be in RA,T , we may terminate
the search and return false. Pseudocode for this approach is presented in Algo-
rithm 2. With an upper bound of O(V + E) for solving each 2-SAT problem,
the proposed approach has the same quadratic asymptotic time complexity as
the approach using Aspvall’s algorithm. In practice, however, we will see that
the set RA,T is a very small subset of the implication graph, making this app-
roach much faster than running Aspvall’s algorithm for every iteration of the
Malmberg-Ciesielski algorithm.

In terms of memory complexity, both our proposed approach and Aspvall’s
algorithm operate on the implication graph. The number of vertices in this graph
is two times the number of unary terms, and the number of edges is up to
four times the number of pairwise terms. Thus, the memory complexity of the
proposed approach (and the approach using Aspvall’s algorithm) is linear in the
number of binary and pairwise terms.

5 Evaluation

To evaluate the performance of our proposed version of the Malmberg-Ciesielski
to the original formulation using Aspvall’s algorithm, perform an empirical study
emulating a typical optimization scenario in image processing and computer
vision. We perform binary labeling of the pixels of a 2D image of size W × H.
The neighborhood relation N is defined by the standard 4-connectivity used in
image processing. Values for the unary and pairwise terms are drawn randomly
from a uniform distribution. We then compare the computation time of the two
implementations, for image sizes varying from 8×8 to 64×64. We only measure
the time required for solving the sequence of 2-SAT problems, as this is the
only aspect that differs between the implementations. The results are shown in
Fig. 1. As the figure shows, the computation time for the implementation based
on Aspvall’s algorithm increases dramatically with increasing problem size. For
an image of size 64 × 64, the implementation based on Aspvall’s algorithm runs
in 62 s, while the proposed implementation only requires 0.004 s for the same
computation – a speedup of more than four orders of magnitude.

To further study the computation time of the proposed implementation with
respect to problem size, we perform a separate experiment on images with sizes
varying from 128 × 128 to 4096 × 4096, for which the implementation using
Aspvall’s algorithm becomes prohibitively slow. The results are shown in Fig. 2.
As can be seen from the figure the empirical relation between problem size and
computation time appears closer to a linear function across this range, rather
than quadratic relation suggested by the worst-case asymptotic time complexity.

44 F. Malmberg and A. X. Falcão

0 1 2 3 4
Total number of clauses 104

0

10

20

30

40

50

60

70

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Proposed algorithm
Aspvall's algorithm

Fig. 1. Comparison of computation time between the proposed implementation of the
Malmberg-Ciesielski method, and the original formulation using Aspvall’s algorithm,
with respect to the total number of clauses in the 2-SAT sequence.

0 2 4 6 8 10 12 14 16
Total number of clauses 107

0

10

20

30

40

50

60

70

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Fig. 2. Computation time of the proposed implementation in relation to problem size.

6 Conclusions

We have proposed a modified, efficient implementation of the Malmberg-
Ciesielski method for optimal binary labeling of graphs. While our proposed
implementation has the same asymptotic run-time complexity as the original
algorithm, we demonstrate that it is orders of magnitude faster in practice. This
reduction in computation time makes the Malmberg-Ciesielski method a viable
option for many practical applications.

Acknowledgment. This work was supported by a SPRINT grant (2019/08759-2)
from the São Paulo Research Foundation (FAPESP) and Uppsala University.

A Practical Algorithm for Max-Norm Optimization 45

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

2. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

3. Ehrgott, M.: Lexicographic max-ordering-a solution concept for multicriteria com-
binatorial optimization (1995)

4. Ehrgott, M.: A characterization of lexicographic max-ordering solutions (1999).
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-4531

5. Ehrgott, M.: Multicriteria optimization, vol. 491. Springer Science & Business
Media (2005)

6. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-
a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7) (2007)

7. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

8. Levi, Z., Zorin, D.: Strict minimizers for geometric optimization. ACM Trans.
Graph. (TOG) 33(6), 185 (2014)

9. Malmberg, F., Ciesielski, K.C.: Two polynomial time graph labeling algorithms
optimizing max-norm-based objective functions. J. Math. Imaging Vision 62(5),
737–750 (2020)

10. Wolf, S., et al.: The mutex watershed and its objective: efficient, parameter-free
graph partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3724–3738
(2020)

11. Wolf, S., Schott, L., Kothe, U., Hamprecht, F.: Learned watershed: End-to-end
learning of seeded segmentation. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 2011–2019 (2017)

https://doi.org/10.1007/978-3-540-24605-3_37
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-4531

An Efficient Entropy-Based Graph Kernel

Aymen Ourdjini1, Abd Errahmane Kiouche2 , and Hamida Seba2(B)

1 École nationale Supérieure d’Informatique (ESI), Oued Smar, Alger, Algérie
ga ourdjini@esi.dz

2 Université de Lyon, Université Lyon 1, LIRIS UMR 5205, 69622 Lyon, France
{abd-errahmane.kiouche,hamida.seba}@univ-lyon1.fr

Abstract. Graph kernels are methods used in machine learning algo-
rithms for handling graph-structured data. They are widely used for
graph classification in various domains and are particularly valued for
their accuracy. However, most existing graph kernels are not fast enough.
To address this issue, we propose a new graph kernel based on the con-
cept of entropy. Our method has the advantage of handling labeled and
attributed graphs while significantly reducing computation time when
compared to other graph kernels. We evaluated our method on sev-
eral datasets and compared it with various state-of-the-art techniques.
The results show a clear improvement in the performance of the ini-
tial method. Furthermore, our findings rank among the best in terms of
classification accuracy and computation speed compared to other graph
kernels.

Keywords: Graph Kernels · Graph Entropy · Graph similarity

1 Introduction

Graph kernels have emerged over the past two decades as promising approaches
for machine learning on graph-structured data [15]. Numerous graph kernels have
been proposed to address the problem of evaluating graph similarity, enabling
predictions in classification and regression contexts [3]. All graph kernel methods
adhere to a consistent two-step process [14]. The initial step entails proposing
a kernel function to compute the similarity between graphs. This is achieved
by mapping the graphs into an alternate vector space, known as the feature
space, where similarities are then calculated. Subsequently, the derived function
is employed to generate the graph kernel matrix, which contains the similar-
ity values between every pair of graphs. The second stage involves applying a
machine learning algorithm to ascertain the optimal separation geometry within
the feature space generated during the first step. The primary challenge of graph
kernels is to be both expressive and efficient in accurately measuring the similar-
ity between graphs. These kernels implicitly project graphs into a feature space,
denoted as H. Following this projection, the scalar product within the feature
space is calculated to measure the similarity.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 46–56, 2023.
https://doi.org/10.1007/978-3-031-42795-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_5&domain=pdf
http://orcid.org/0000-0003-2247-4859
http://orcid.org/0000-0003-0670-815X
https://doi.org/10.1007/978-3-031-42795-4_5

An Efficient Entropy-Based Graph Kernel 47

Numerous graph kernel computation methods have been proposed in the
literature, featuring similarity calculation principle based on various concepts
such as random walks [9], shortest paths [4], substructure enumeration [19], etc.
In this work, we focus on a relatively recent approach of new graph kernels
based on entropy [21,22]. In information theory, entropy measures the amount
of information contained in an information source. In a graph, it quantifies the
information stored within the graph, essentially capturing the complexity and
organization level of the graph’s structural features [1,2]. In other words, it
measures the amount of structural information (or structural complexity) gen-
erated by a graph; the larger its value, the more complex the graph and the
more diverse its structure. Our analysis of entropy-based graph kernels, espe-
cially the Renyi entropy-based graph kernel, introduced in [21], revealed several
weaknesses such as redundant computations that slows the algorithm and a lack
of accuracy mainly related to the fact that this kernel does not take into account
node attributes.

In this work, we address these weaknesses through a new graph kernel based
on the concept of Von Neumann entropy. Von Neumann entropy [12] allows us
to consider both structural information and attributes, thereby achieving bet-
ter accuracy. We also propose a new strategy for calculating similarity scores
between two graphs, which is significantly faster. Our proposed kernel ranks
among the fastest in terms of execution time. The remainder of the paper is
organized as follows: In Sect. 2 we analyze related work and motivate our con-
tribution. In Sect. 3, we describe the new proposed kernel. Section 4 presents the
experiments that we undertook to assess the efficiency of the proposed method.

2 Related Work and Motivation

Numerous graph kernels have been proposed in the literature. A detailed study
of existing approaches can be found in [11]. These techniques aim to measure
the similarity between graphs by assessing the relationships between their con-
stituent elements. We will outline the primary approaches and their basic prin-
ciples, focusing on the granularity of the graph elements considered in each case.
Node-Centric Approaches: These methods assess the similarity between two
graphs by examining the similarities between their nodes. Each node is assigned
a simple descriptor that encapsulates information from its direct or extended
neighborhood, which could be in the form of labels [20], vectors [13], or embed-
dings generated using neural networks. The resulting node representations are
compared using a base kernel function. Node-centric approaches are compu-
tationally efficient and relatively simple, making them particularly suited for
large-scale graph data. Notable examples include Neighborhood Hash Kernel
[8], Weisfeiler-Lehman graph kernels [17,18], Renyi entropy-based kernel [21],
and optimal assignment kernels between nodes, such as WL-OA [16].
Subgraph-Oriented Approaches: These techniques represent graphs as sets of
subgraphs and measure similarity by comparing the substructures present in each

48 A. Ourdjini et al.

graph. By decomposing graphs into their constituent subgraphs, these methods
can capture more complex relationships between graph structures. Prominent
examples include Graphlet Sampling Kernel [19] and Neighborhood Subgraph
Pairwise Distance Kernel (NSPD) [5]. While subgraph-oriented approaches offer
richer graph representations, they may be computationally intensive, particularly
when dealing with large graphs or a diverse range of subgraph types.
Path and Walk-Based Approaches: These kernels compare sequences of
node or edge attributes encountered during graph traversals. The similarity
between two graphs is quantified by assessing the similarity of their traversal
sequences. Path and walk-based approaches are divided into two main groups.
The first group focuses on the comparison of shortest paths, including Shortest
Path Kernel [4] and Graph Hopper Kernel [7]. The second group is based on ran-
dom walk comparisons, such as Random Walk Graph Kernel [9]. These methods
are well-suited for capturing topological and structural patterns in graphs.

Numerous graph kernel approaches have been proposed, each with its own
strengths and weaknesses. In the context of our study, we are particularly inter-
ested in recent advances in entropy-based graph kernels [21,22]. These methods
leverage information theory to quantify the complexity and organization of a
graph’s structural features, thus providing a powerful means of capturing graph
similarity.

The graph kernel proposed by Xu et al. [21] is the most recent approach
based on the concept of graph entropy. In this method, the authors use Renyi
entropy [6] to compute similarities between graphs. The Renyi entropy of a graph
G = (V,E) is given by Eq. 1, where the probability PG(v) represents the ratio
of the degree of node v to the sum of degrees of all nodes in the graph.

ERenyi(G = (V,E)) = −log(
∑

v∈V

PG(v)2) (1)

The authors then opted for a multi-layer vector representation of entropy
for each node in the graph. The fundamental idea is to represent each node by
a vector containing the entropies of subgraphs (layers) at different depths sur-
rounding the node. Figure 1 illustrates an example of the representation used for
each node in the graph. It is evident that if two nodes in different graphs have
similar vector representations, the structures (subgraphs) surrounding them are
similar since they have the same structural complexity score (Renyi entropy).
Finally, the similarity score (kernel) is calculated by solving an alignment prob-
lem between the vector representations of the nodes in the compared graphs.
However, this approach exhibits the following weaknesses:
1. The multi-layer representation of each node generates information redundancy
that may bias the similarity score between two graphs. Indeed, the subgraph
of order i surrounding a given node is entirely included in the higher order
subgraphs. This causes the entropy scores of different layers to be implicitly
correlated to some extent. Figure 1 illustrates a visualization of such a situation,
where an order i subgraph always constitutes part of the next order, i;e., i + 1,

An Efficient Entropy-Based Graph Kernel 49

subgraph. In this example, the entropy scores of the three layers are very close,
resulting in information redundancy.
2. Renyi entropy [6] (see Eq. 1) is simple and exploits only the distribution of
node degrees in a subgraph. This could negatively impact the accuracy of the
similarity measure. Indeed, the utilized entropy depends solely on node degrees
without considering neighborhood relationships, making it a coarse characteri-
zation of graphs. Moreover, there are numerous graphs with exactly the same
degrees but different structures.
3. The entropy formula used does not take into account node labels (types) or
attributes. However, these two pieces of information are crucial in many appli-
cation domains, particularly in biology and chemistry.
4. The assignment step, which calculates the kernel between two graphs using
the node vectors, is time-consuming. Furthermore, this assignment does not take
into account node labels (types) or attributes.

Fig. 1. Mutli-Layer representation [21]

In this work, we propose a new graph kernel based on the concept of Von Neu-
mann entropy [12]. Our approach extends and improves the method proposed by
Xu et al. [21], addressing all the previously mentioned weaknesses. Furthermore,
unlike the method of Xu et al., our kernel can be applied to labeled or attributed
graphs.

3 Von Neumann Entropy Based Graph Kernel

Algorithm 1 shows the main steps of our method. Our method takes as input two
labeled or attributed graphs, G1 = (V1, E1,L1) and G2 = (V2, E2,L2). The first
step consists of extracting the induced subgraphs of the neighborhood of each
node in both graphs. Next, we compute the entropy score of each node in both
graphs by applying Von Neumann entropy [12] that allows taking into account
the types (labels) or attributes of the nodes. The final step involves calculating

50 A. Ourdjini et al.

the kernel between the two graphs based on the entropy scores of the nodes in
the two graphs to be compared. In the following, we will detail each of these
steps.

Algorithm 1: Von-Neumann Entropy based Graph Kernel
Input: Graphs G1 and G2

Output: Von-Neumann entropy graph kernel K(G1, G2)
1 Extract induced neighborhood subgraph for each node in G1 and G2

2 Compute entropy scores for each subgraph
3 Compute the kernel K(G1, G2) using the entropy scores
4 return K(G1, G2)

Neighborhood Induced Subgraph Extraction: The first step of our kernel is
to compute the entropy scores of the graphs for each node. In other words, we
want to calculate for each node in the graph the amount of information stored
(entropy) in its neighborhood within a radius k. To address the first weakness
of Xu et al.’s kernel [21], which uses a multi-layer representation that gener-
ates redundant information that could bias the similarity calculation between
graphs, we propose to eliminate any kind of redundancy, to consider only the
largest neighborhood layer (i.e., the subgraph of the highest order). Moreover,
this strategy allows us to reduce computation time. The extraction of the induced
subgraph of the neighborhood (k-hops away) of a node v is quite simple and is
done in two steps. The first step is to find the set of nodes that are in the k-hop
neighborhood of node v (i.e., Nk(v) = {u ∈ V |distance(u, v) ≤ k}). To do so,
we use a variant of the BFS (breadth-first search) algorithm. In this variant,
the search stops at depth k. Then, the induced subgraph of the neighborhood is
constructed from the edges of the graph and the set of nodes in the k-hop neigh-
borhood Nk(v). The radius-k neighborhood induced subgraph around vertex v
is ζk

v (Vk
v , εk

v), with:

Vk
v = {u ∈ Nk(v)} (2)

εk
v = {(u, v) ⊂ Nk(v)|(u, v) ∈ E} (3)

The second step involves computing the amount of information contained in the
neighborhood of each node. This amount is used to compute the entropies of
the induced subgraphs constructed in the first step. To address the second and
third weaknesses of the kernel by Xu et al. [21], we will use an adapted variant
of Von Neumann entropy [12], which takes into account node types (labels) and
attributes in the graph. This is calculated with respect to a node v ∈ V , called the
“root node.” We adapt the Von Neumann formula [12] so that the entropy value
of a graph captures the similarities of labels (types) or attributes of the node.
To do this, we consider only the neighbours in the calculation of the entropy of a
neighborhood subgraph ζk

v (Vk
v , εk

v) of a node v that have the same type (label) or

An Efficient Entropy-Based Graph Kernel 51

attribute as the root node v. Suppose that the set of labels (types) or attributes
of the nodes is L, and � : Vk

v → L is a function that assigns labels (or attributes)
to the graph vertices. The set Vk

�(v) represents the nodes of G that have the same
label (or attribute) as the root v, i.e., V�(v) = u ∈ Vk

�(v) : �(u) = �(v). d = |Vk
�(v)|

is the cardinality of Vk
�(v). The entropy that we define for the subgraph ζk

v with
respect to the root v is then equal to:

H�(ζk
v , v) = 1 − 1

d
−

∑

u∈Vk
�(v)

1
d2 × deg(v) × deg(u)

(4)

At the end of this step, we represent each graph G = (V,E,L) by a vector
Dk(G) containing the entropy scores of each node v ∈ V along with its label or
attribute.

Dk(G) = [(H�(ζk
v1

, v1), �(v1)), (H�(ζk
v2

, v2), �(v2)), · · · , (H�(ζk
vn

, vn), �(vn))] (5)

Kernel Calculation: The final step involves calculating the kernel (similarity)
between the graphs. Let G1 and G2 be two graphs, and D1, D2 their vector
representations obtained from the previous step. Our entropy kernel between G1

and G2 is defined as follows:

KLE(G1, G2) = K(D1,D2) =
∑

e1∈D2

∑

e2∈D2

ke(e1, e2) (6)

where ke(ei, ej) is a positive semi-definite kernel on the entropies of the nodes.
This kernel is designed to compare both the entropy values and the labels
(attributes) of their root nodes. Let e1 = (H�1, �1) and e2 = (H�2, �2). H� rep-
resents the entropy value and � denotes the label (or attribute). In the case of
labeled graphs, the kernel ke is defined as follows:

ke(e1, e2) =

{
1, if H�1 = H�2 and �1 = �2

0, otherwise
(7)

Finally, we apply the RBF (Radial Basis Function) kernel to calculate the
final similarity kernel. This combination with RBF is chosen based on several
research works [11,15] which have found that applying RBF leads to a signif-
icant improvement in the accuracy of several graph kernels. The final value of
our kernel called (Von-Neumann Entropy Graph Kernel) VEGK between two
graphs is given by the following formula, where σ is a positive real number, its
value is generally determined by calibration [15].

KV EGK(G1, G2) = exp

(
−KLE(G1, G1) − 2KLE(G1, G2) + KLE(G2, G2)

σ2

)

(8)

52 A. Ourdjini et al.

4 Evaluation

We evaluated the performance of our graph kernel on 10 publicly accessible
datasets [10]. These datasets come from different fields, including cheminfor-
matics, bioinformatics, and social networks. All graphs are undirected. More-
over, the graphs contained in the cheminformatics and bioinformatics datasets
have labeled nodes, attributed nodes, or both. Table 1 presents the main char-
acteristics of the datasets. The “Class Imbalance” column indicates the ratio
between the size of the smallest class in the dataset and the size of its largest
class. (Num.) denotes the number of labels contained in the set, while (Dim.)
indicates the dimension of the attributes. The symbol (−) indicates that the
graphs in the set do not contain node labels or attributes.

Table 1. Summary of the 10 datasets used in our experiments

Dataset Statistics Nodes labeling

Graphs Classes Avg V Avg E Labels (Num.) Attributes (Dim.)

MUTAG 188 2 17.93 19.79 + (7) –

AIDS 2000 2 15.59 16.2 + (38) + (4)

ENZYMES 600 6 32.46 62.14 + (3) + (18)

MSRC 21C 209 17 40.28 96.6 + (21) –

PROTEINS 1113 2 39.05 72.82 + (3) + (1)

PTC MR 344 2 14.29 14.69 + (18) –

IMDB-BINARY 1000 2 19.77 96.53 – –

IMDB-MULTI 1500 3 13.0 65.94 – –

SYNTHETICnew 300 2 100.0 196.25 - + (1)

Synthie 400 4 91.6 172.93 – + (15)

“–” means no node labels

We rely on two main criteria: The accuracy of the kernel (Accuracy) and
the computation time (measured in seconds). Our approach is compared to the
Renyi entropy kernel (Second-order Rényi Entropy Graph Kernel) SREGK pro-
posed in [21] as well as several other existing graph kernels: (1) Shortest path
kernel (SP) [4], (2) Graph Hopper Kernel (GH) [7], (3) Random Walk Ker-
nel (RW) [9], (4) Graphlet Sampling kernel (GS) [19], (5) Neighborhood Hash
Kernel (NH) [8], (6) Weisfeiler-Lehman Optimal Assignment (WL-OA) [18],
and (7) Neighborhood Subgraph Pairwise Distance (NSPD) [5].

In our experiments, we use 10-fold cross-validation by applying the C-Support
Vector Machine (C-SVM) classification to calculate the classification accuracy.
We used nine out of ten samples for training and one sample for testing. We cal-
ibrated the parameters of each of the methods mentioned above on each dataset.

An Efficient Entropy-Based Graph Kernel 53

Results on Labeled/Attributed Graphs: Table 2 shows the computation times
of the kernel matrices on the 6 datasets containing labeled graphs. Table 3
illustrates the classification accuracy scores of all considered kernels on the
6 labeled/attributed datasets. We observe that our kernel is the fastest on 5
datasets. On the MSRC-21 dataset, our kernel ranks 2nd just after the NH
kernel, with the difference between the two not being very significant. In terms
of classification accuracy, our kernel did not achieve the best performance, but
it proved competitive compared to other kernels. We can observe that on all
datasets except AIDS, our approach outperforms the SREGK approach. This
demonstrates the usefulness and effectiveness of the improvements we have pro-
posed.

Table 2. Average running time of kernel computation over the 6 labeled/assigned
datasets

Kernel MUTAG ENZYMES PTC MR PROTEINS AIDS MSRC 21C

SP 0.219 2.812 0.339 13.04 2.834 1.344

GH 7.875 382.929 34.328 5247.866 915.848 30.161

RW 75.856 9034.529 162.043 OUT − OF − MEM 20346.321 2470.96

GS 0.906 22.984 1.027 46.678 6.45 24.08

NH 0.12 1.926 0.307 6.996 9.304 0.417

WL-OA 0.401 17.571 1.88 308.433 140.45 1.675

NSPD 0.328 3.797 0.51 13.202 3.969 2.647

VEGK 0.104 1.078 0.151 4.031 1.688 0.531

Table 3. Accuracy of the classification (± td) on the 6 classification datasets containing
graphs with labeled/assigned nodes

Kernel MUTAG ENZYMES PTC MR PROTEINS AIDS MSRC 21C

SP 87.18(±0.99) 62.03(±0.74) 65.43(±1.48) 76.74(±0.56) 99.59(±0.03) 85.72(±0.67)

GH 83.34(±0.29) 42.33(±1.11) 58.62(±1.5) 76.33(±0.44) 99.42(±0.04) 27.34(±1.23)

RW 66.49(±0.0) 16.67(±0.0) 55.82(±0.0) OUT − OF − MEM 80.0(±0.0) 13.88(±0.0)

GS 76.97(±0.38) 28.82(±1.15) 57.18(±0.48) 71.99(±0.36) 80.23(±0.04) 17.73(±1.69)

NH 90.15(±0.86) 58.58(±0.53) 66.08(±0.95) 75.77(±0.26) 99.44(±0.02) 63.39(±1.16)

WL-OA 88.54(±0.75) 59.25(±1.08) 66.79(±1.08) 76.11(±0.37) 99.36(±0.05) 80.78(±0.86)

NSPD 85.97(±1.04) 44.78(±0.99) 61.11(±1.23) 75.26(±0.25) 97.7(±0.14) 82.61(±0.62)

SREGK 86.65(±0.89) 44.53(±0.9) 59.82(±1.15) 71.52(±0.21) 98.88(±0.09) 15.84(±0.94)

VEGK 91.0(±0.5) 58.43(±0.49) 63.02(±0.78) 73.46(±0.63) 98.29(±0.13) 68.06(±0.79)

Results on Unlabeled Graphs Table 4 shows the computation times of the ker-
nel matrices on the 4 datasets containing unlabeled graphs. Table 5 illustrates

54 A. Ourdjini et al.

the classification accuracy scores obtained for all considered methods on the 4
unlabeled graph datasets. We notice that our kernel is the fastest on the first 2
datasets. On the Syntheticnew and Synthie datasets, our kernel ranks 2nd just
after the NH kernel. In terms of classification accuracy, it proved competitive
compared to other kernels. We can observe that on the first two datasets, our
kernel is the most accurate. Our approach outperforms the SREGK approach
except on the last dataset. This demonstrates once again the effectiveness of our
improvements.

Table 4. Average running time of the kernel computation on the 4 datasets containing
unlabeled graphs

Kernel IMDB-BINARY IMDB-MULTI SYNTHETICnew Synthie

SP 2.676 2.032 11.479 12.676

GH 40.854 49.877 237.854 363.177

RW 372.026 325.518 7354.625 10993.335

GS 589.696 541.116 89.724 178.158

NH 3.897 4.217 1.344 2.099

WL-OA 21.948 37.028 5.0 35.067

NSPD 11.934 12.211 18.265 20.366

VEGK 1.724 1.703 4.052 3.573

Table 5. Accuracy of the classification (± std) on the 4 datasets containing unlabeled
graphs

Kernel IMDB-BINARY IMDB-MULTI SYNTHETICnew Synthie

SP 59.88(±0.19) 41.53(±0.25) 67.0(±1.31) 55.25(±1.79)

GH 50.0(±0.0) 33.33(±0.0) 50.0(±0.0) 27.5(±0.0)

RW 61.91(±0.44) 42.74(±0.11) 59.17(±0.84) 27.5(±0.0)

GS 66.99(±0.54) 43.21(±0.36) 66.63(±0.71) 54.25(±0.0)

NH 74.85(±0.39) 51.21(±0.55) 64.33(±0.0) 54.25(±0.0)

WL-OA 74.38(±0.52) 50.95(±0.34) 99.0(±0.27) 54.25(±0.0)

NSPD 73.38(±0.89) 52.23(±0.34) 100.0(±0.0) 54.1(±0.13)

SREGK 72.72(±0.53) 48.86(±0.5) 91.57(±0.52) 58.73(±1.08)

VEGK 77.34(±0.74) 52.28(±0.5) 98.4(±0.28) 54.35(0.14)

An Efficient Entropy-Based Graph Kernel 55

5 Conclusion

In this paper, we proposed a new graph kernel based on the concept of entropy.
Our kernel, called VEGK (Von-Neumann Entropy Graph Kernel), brings an
important improvement over existing entropy based kernels. VEGK uses Von
Neumann entropy, which takes into account the labels/attributes of the graphs.
Tests and experiments conducted on real-world datasets demonstrate the rele-
vance of our kernel, which proved competitive compared to various graph kernels
proposed in the literature.

Acknowledgments. This work was funded by Agence Nationale de la Recherche
(ANR) under grant ANR-20-CE39-0008 and Département INFO-BOURG IUT Lyon1,
campus de Bourg en Bresse.

References

1. Anand, K., Bianconi, G.: Entropy measures for networks: toward an information
theory of complex topologies. Phys. Rev. E 80(4), 045102 (2009)

2. Anand, K., Bianconi, G., Severini, S.: Shannon and Von Neumann entropy of
random networks with heterogeneous expected degree. Phys. Rev. E 83(3), 036109
(2011)

3. Borgwardt, K., Ghisu, E., Llinares-López, F., O’Bray, L., Rieck, B., et al.: Graph
kernels: state-of-the-art and future challenges. Found. Trends R© Mach. Learn.
13(5–6), 531–712 (2020)

4. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE
International Conference on Data Mining (ICDM 2005), pp. 8-pp. IEEE (2005)

5. Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In:
ICML (2010)

6. Dairyko, M., et al.: Note on Von Neumann and Rényi entropies of a graph. Linear
Algebra Appl. 521, 240–253 (2017)

7. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scalable
kernels for graphs with continuous attributes. In: Advances in Neural Information
Processing Systems, vol. 26 (2013)

8. Hido, S., Kashima, H.: A linear-time graph kernel. In: 2009 Ninth IEEE Interna-
tional Conference on Data Mining, pp. 179–188. IEEE (2009)

9. Kang, U., Tong, H., Sun, J.: Fast random walk graph kernel. In: Proceedings of the
2012 SIAM International Conference on Data Mining, pp. 828–838. SIAM (2012)

10. Kersting, K., Kriege, N.M., Morris, C., Mutzel, P., Neumann, M.: Benchmark data
sets for graph kernels (2016). http://graphkernels.cs.tu-dortmund.de

11. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw.
Sci. 5(1), 1–42 (2020)

12. Minello, G., Rossi, L., Torsello, A.: On the Von Neumann entropy of graphs. J.
Complex Netw. 7(4), 491–514 (2019)

13. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for
graph similarity. In: Proceedings of the 31th AAAI Conference on Artificial Intel-
ligence, pp. 2429–2435, AAAI 2017 (2017)

14. Nikolentzos, G., Siglidis, G., Vazirgiannis, M.: Graph kernels: a survey. J. Artif.
Intell. Res. 72, 943–1027 (2021)

http://graphkernels.cs.tu-dortmund.de

56 A. Ourdjini et al.

15. Nikolentzos, G., Vazirgiannis, M.: Enhancing graph kernels via successive embed-
dings. In: Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pp. 1583–1586, CIKM 2018 (2018)

16. Salim, A., Shiju, S., Sumitra, S.: Graph kernels based on optimal node assignment.
Knowl.-Based Syst. 244, 108519 (2022)

17. Schulz, T.H., Horváth, T., Welke, P., Wrobel, S.: A generalized Weisfeiler-Lehman
graph kernel. Mach. Learn. 111, 2601–2629 (2022)

18. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9), 2539–2561
(2011)

19. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial Intelligence and
Statistics, pp. 488–495. PMLR (2009)

20. Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., Borgwardt, K.: Wasserstein
Weisfeiler-Lehman graph kernels. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

21. Xu, L., Bai, L., Jiang, X., Tan, M., Zhang, D., Luo, B.: Deep Rényi entropy graph
kernel. Pattern Recogn. 111, 107668 (2021)

22. Xu, L., Jiang, X., Bai, L., Xiao, J., Luo, B.: A hybrid reproducing graph kernel
based on information entropy. Pattern Recogn. 73, 89–98 (2018)

Graph Neural Networks

GNN-DES: A New End-to-End Dynamic
Ensemble Selection Method Based on
Multi-label Graph Neural Network

Mariana de Araujo Souza1(B), Robert Sabourin1,
George Darmiton da Cunha Cavalcanti2, and Rafael Menelau Oliveira e Cruz1

1 École de Technologie Supérieure, Université du Québec, Montréal QC, Canada
mariana.araujo.souza@gmail.com,

{robert.sabourin,rafael.menelau-cruz}@etsmtl.ca
2 Centro de Informática, Universidade Federal de Pernambuco, Recife,

Pernambuco, Brazil
gdcc@cin.ufpe.br

Abstract. Most dynamic ensemble selection (DES) techniques rely
solely on local information to single out the most competent classifiers.
However, data sparsity and class overlap may hinder the region defini-
tion step, yielding an unreliable local context for performing the selection
task. Thus, we propose in this work a DES technique that uses both the
local information and classifiers’ interactions to learn the ensemble com-
bination rule. To that end, we encode the local information into a graph
structure and the classifiers’ information into multiple meta-labels, and
learn the DES technique end-to-end using a multi-label graph neural net-
work (GNN). Experimental results over 35 high-dimensional problems
show the proposed method outperforms most evaluated DES techniques
as well as the static baseline, suggesting its suitability for dealing with
sparse overlapped data.

Keywords: Dynamic ensemble selection · Graph neural networks ·
Meta-learning · Data sparsity

1 Introduction

Dynamic ensemble selection (DES) techniques assume the classifiers in an ensem-
ble make distinct mistakes in different areas of the feature space. Thus, they

The authors would like to thank the Canadian agencies FRQ (Fonds de Recherche
du Québec) and NSERC (Natural Sciences and Engineering Research Council of
Canada), and the Brazilian agencies CAPES (Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior), CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico) and FACEPE (Fundação de Amparo à Ciência e Tecnologia de Pernam-
buco).

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-42795-4 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 59–69, 2023.
https://doi.org/10.1007/978-3-031-42795-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_6
https://doi.org/10.1007/978-3-031-42795-4_6

60 M. de Araujo Souza et al.

attempt to choose a subset of the models according to their perceived compe-
tence for classifying each sample in particular, often resulting in superior perfor-
mances compared to static selection schemes, which label all test instances with
the same set of classifiers [5]. Most DES techniques rely on the locality assump-
tion to solve the dynamic selection task, in the sense that similar samples should
be correctly labeled by a similar set of classifiers. These techniques require delim-
iting a region called the Region of Competence (RoC), via clustering [22], nearest
neighbors rule [2,12,23], distance-based potential function [29], recursive parti-
tioning [25], and/or fuzzy hyperboxes [6], in which the classifiers competences
are estimated according to some criteria, such as local accuracy [12], classifier
behavior [2], ensemble diversity [22], and meta-learning [3], among others.

The local region can thus have a large impact on the performance of these
techniques [5], and so several methods attempt to directly improve its distri-
bution. Filtering out the samples from the RoC is done in [17,18,24] based on
the Item Response Theory (IRT) discrimination index, class distribution, and
instance characterization, respectively. The RoC is characterized in [14] using a
must link and a cannot link graph that are then used together with the classi-
fiers’ local accuracy to estimate their competence in the region. These techniques
attempt to characterize and improve the local distribution for the classifier esti-
mation step but they still rely solely on the locality assumption to compute a
handcrafted competence estimation rule over an already defined region. While
these approaches work generally well over a vast array of problems, such as
class imbalanced distributions [17,24], local methods are known to struggle over
high dimensionality and class ambiguity [26,31] and can present a strong sen-
sitivity to overlap and data sparsity [21], with the latter being often associated
with an increased class boundary complexity [10,15]. Such challenging scenar-
ios may affect the local region definition and weaken the locality assumption,
which in turn may limit the application of the dynamic selection techniques over
real-world problems that present these characteristics, such as medical imaging
data [7] and DNA microarray data [15] used for disease detection.

We also find in the literature a few dynamic selection techniques that do not
rely on the locality assumption to perform the dynamic selection task [16,19].
Instead, they define the task as a multi-label meta-problem and learn the selec-
tion rule based on the classifiers’ inter-dependencies, thus the meta-learner yields
the ensemble combination rule for each input query instance without defining the
RoC or explicitly estimating the classifiers’ competences. While this approach
could be interesting over the scenarios where the local context does not favor
the dynamic classifier selection task, these techniques completely disregard the
local context and can perform poorly against simple local accuracy-based tech-
niques [19]. Both techniques also present a high computational cost due to the
use of a meta-learner ensemble [19] and Monte Carlo sampling [16].

Thus, we propose in this work a dynamic selection technique that learns from
the instances’ relationships and classifiers’ interactions jointly to better deal with
high dimensional overlapped data. To that end, we model the data into a graph
structure that can represent the samples’ local and class inter-relations. We
also model the classifiers’ interactions as the multi-labels of the dynamic selec-

GNN-DES: A New End-to-End Dynamic Ensemble Selection Method 61

tion meta-problem. We then train a multi-label graph neural network (GNN) to
yield the dynamic classifier combination rule in an end-to-end manner, without
resorting to handcrafted meta-features or explicit RoC definition.

Graph neural networks operate directly on graph-structured data and are
able to produce high-level representations of nodes and graphs [30]. The first
GNNs were proposed for transductive learning and were unable to yield embed-
dings for unseen nodes, such as the Graph Convolutional Network (GCN) [11]
which first generalized the convolution operation to the vertex domain. However,
several models have been since proposed that work in inductive scenarios. The
GraphSAGE model [9], seen as an extension of the GCN for inductive learn-
ing, learns a set of functions that aggregate the features from sampled neigh-
boring nodes to produce the node embeddings. The Graph Attention Network
(GAT) [28], which also works for inductive problems, presents a self-attention
mechanism that allows the assignment of different weights to the neighbors in
order to increase the model’s capacity and to naturally deal with graphs that
present variable node degrees.

Thus, by using a multi-label GNN as our meta-classifier, we leverage both the
classifiers’ inter-dependencies, represented in the meta-labels, and the samples’
local interactions, represented in the graph, so that internally the network may
learn an embedded space where the locality assumption for the dynamic selection
task is stronger. We then contribute to the dynamic ensemble selection research
area by (a) proposing an end-to-end technique that combines the information
from the local data and the classifiers’ interactions to better deal with sparse
and overlapped data, and (b) evaluating the proposed method and ten other
techniques over 35 high dimensional small sample sized (HDSSS) problems to
assess whether learning from the two sources of information help overcome the
limitations the current dynamic selection techniques present.

This work is organized as follows. The proposed method is introduced in
Sect. 2. The experiments are reported in Sect. 3. Lastly, we summarize our con-
clusions in Sect. 4.

2 Graph Neural Network Dynamic Ensemble Selection
Technique

We propose in this work the Graph Neural Network Dynamic Ensemble Selection
(GNN-DES) technique, which attempts to better deal with locally complex sce-
narios in sparse overlapped data by combining the information from the samples’
local context and the classifiers’ interactions. To that end, we model the former
using a graph structure, which is capable of representing the samples’ local and
class relationships, and model the latter by learning the dynamic selection task
as a multi-label meta-problem.

Figure 1 describes the general steps of the GNN-DES technique. In memo-
rization, the training set T and the pool of classifiers C are used to assign the
samples’ meta-labels U and construct the known graph GT , which are both then
used to train the multi-label meta-learner GNN . In generalization, the query

62 M. de Araujo Souza et al.

Meta-label

assignment

Graph construction

Meta-learner

training

C

GNN

G

G = (V , E
x

)

U

Memorization

Generalization

Graph expansion
Ensemble

combination

C

GNN

xq

Gq ŷq

Fig. 1. Description of the GNN-DES technique. T = {(x1, y1), (x2, y2), ..., (xN , yN)}
is the training set and U = {u1,u2, ...,uN} their corresponding meta-labels, C =
{c1, c2, ..., c|C|} is the ensemble of classifiers. GT is the known graph, composed of the
set of training vertexes (VT) and edges (ET ×T), Gq is the evaluation graph, composed
of the GT in addition to the query vertex (vq) and its edges (Eq×T), and xq and ŷq

are the query instance and its predicted label, respectively.

instance xq is added to the known graph to produce the evaluation graph Gq,
which is input to the meta-learner and used to produce the dynamic ensemble
combination and then the output prediction ŷq.

Meta-label Assignment. In the meta-label assignment step, we characterize the
competences of the classifiers by assigning to the samples meta-labels associated
with their correct classification. This allows the meta-classifier to exploit the
diverse behavior of the classifiers through learning the inter-dependecies between
the meta-labels. Thus, to obtain the meta-labels, we evaluate the training set
over the ensemble and we assign to each sample (xi, yi) ∈ T a meta-label vector
ui of size |C| so that ui,k = 1 if the classifier ck correctly labels xi, otherwise,
ui,k = 0.

Graph Construction. In the graph construction step, we aim to characterize in
the known graph GT the local context of the data that may be useful for the
dynamic selection task. More specifically, we wish to embed the information of
how reliable a sample is to indicate a good set of competent classifiers for another
sample according to the locality assumption and the class relations. Thus, we
link the samples that have a similar output response from the classifiers, as
that may indicate they share a subset of competent classifiers. However, if the
two samples belong to the same class we build a strong link, where the closer
the samples the larger the edge weight as we expect the locality assumption to
be stronger. Samples from different classes, on the other hand, are assigned a
weak link, where the closer the samples the smaller the edge weight as the class
ambiguity may indicate a weaker locality assumption.

Thus, to build the known graph GT , we project the training samples into
the decision space, in which the axes represent the responses of each classifier
in the pool. Then, we link each sample so that it has at least one strong link,

GNN-DES: A New End-to-End Dynamic Ensemble Selection Method 63

to its nearest neighbor from the same class, and calculate its maximum margin
for connection as a function of this link. Then, all samples within an instance’s
maximum margin are connected and their weights are set according to Eq. (1),
where di,j is the normalized L1 distance between the samples (xi, yi), (xj , yj) ∈
T projected into the decision space, dmax

i is the maximum margin for connection
of (xi, yi), and τ is a preset threshold.

ei,j =

⎧
⎪⎨

⎪⎩

1 − di,j , if (di,j ≤ dmax
i ∨ di,j ≤ dmax

j) ∧ yi = yj ,

d2i,j , if (di,j ≤ dmax
i ∨ di,j ≤ dmax

j) ∧ yi �= yj ,

0, otherwise,

dmax
i = min(di,k,∀xk ∈ T |yk = yi) + τ

(1)

Meta-learner Training. Using the known graph GT and the meta-labels U we fit
the meta-learner in a supervised manner in the final step of the proposed method
in memorization. We use a graph neural network core to learn and produce the
node embeddings and a dense layer of size |C| with sigmoid activation as the
output layer of the network so that each output node of the network represents
a classifiers’ weight in the dynamic ensemble combination rule. We use a GNN
core that is capable of inductive learning, and we fit the model using the binary
cross-entropy loss, weighted so that the harder to classify the sample, the higher
its weight, so as to encourage the model to focus on the more difficult samples.
We measure the instance hardness as the number of classifiers in the pool that
can label it correctly.

Graph Expansion. In generalization, we first expand the known graph to include
the query instance in the data structure as to provide the meta-learner with its
local context to obtain its ensemble combination rule. Thus, we project the query
xq into the decision space using the ensemble C and connect it to its nearest
neighbor. Based on that, its maximum margin for connection is calculated and
the edge weights between the query and the instances that fall within the margin
are calculated as shown in (2), where dq,j is the normalized L1 distance between
the samples xq and (xj , yj) ∈ T projected into the decision space, dmax

q is the
query’s maximum margin for connection, and τ is the preset threshold used in
the graph construction step. The evaluation graph Gq is then built as the union
between the known graph GT , the query vertex vq, and the set of all its edges
Eq = {eq,j ,∀xj ∈ T }.

eq,j =

{
1 − dq,j , if dq,j ≤ dmax

q ,

0, otherwise,

dmax
q = min(dq,k,∀xk ∈ T) + τ

(2)

Ensemble Combination. We then induce the meta-learner GNN with the eval-
uation graph Gq to produce the network’s outputs {oq,k,∀k ∈ |C|}, which rep-
resent the weighted support of each classifier when aggregating their responses.
The class with the largest support is output as the query’s predicted label ŷq.

64 M. de Araujo Souza et al.

3 Experiments

We evaluate in the experiments how well the DES techniques perform against a
static selection baseline, and whether the proposed method is able to outperform
them over the HDSSS problems. We describe the experimental protocol and
present the results next.

Ensemble Methods. We use as our baseline an AdaBoost (ADA) [8] ensemble
composed of 100 Decision Stumps, and we also evaluate 10 dynamic ensemble
methods, namely: the K-Nearest Oracles Union (KNU) [12], the K-Nearest Ora-
cles Eliminate (KNE) [12], the Dynamic Ensemble Selection-KNN (DKNN) [22],
the K-Nearest Output Profiles (KNOP) [2], the META-DES [3], the Randomized
Reference Classifier (RRC) [29], the Chained Dynamic Ensemble (CHADE) [19],
the Online Local Pool technique (OLP) [23], the OLP++ [25] and the Forest
of Local Trees (FLT) [1]. Except for CHADE, all of them are local-based tech-
niques, though they may define the RoC using distinct methods or in different
spaces, and the OLP, OLP++ and FLT are not evaluated using the AdaBoost
ensemble as they produce their own pool. We also include the performance of
the Oracle [13], an abstract model that always selects the correct classifier if it
exists, to provide an upper limit to the performance of the DES techniques.

Hyperparameters. The techniques’ hyperparameters were set as recommended
in their papers if no implementation is available in the DESLib [4] library, or
to their default value otherwise. The GNN-DES threshold was set to τ = 0.05,
and the meta-learner contained two GraphSAGE [9] layers of size 512 units, as
in [20], and one dense output layer, as in [9]. We use the attentional aggregation
function from [28] in the convolutional layers as the local samples may have
distinct importances for the DES task. To cope with the small sample-sized
problems, we sampled only 5 samples in each convolutional layer and applied L2

regularization with λ = 0.01, which was empirically observed to help the training
according to the validation loss curves. Moreover, 20% of the training set was
used for validation/early stopping, and the validation nodes were connected to
the known graph GT as if unknown samples (2). The GNN was trained over
150 epochs, with a patience of 30 epochs, a batch size of 300, and the adaptive
learning rate is initially set to 0.005, as in [28]. We also performed a sweep on
the drop-out rate in the set {0.0, 0.2, 0.5} as in [20], and the model with the best
micro-averaged multi-label precision in validation was chosen.

Datasets and Evaluation. We use the datasets shown in Table 1, which are the
same set of problems used in [25] with the exception of four datasets over which
the ensemble method generated fewer than the set amount of classifiers in the
pool. The testbed contains two-class HDSSS datasets (with at least 100 features)
taken from the OpenML repository [27]. The columns N , F , and IR indicate
the problems’ number of instances, number of features and imbalance ratio,
respectively, while the ratio F/N conveys the problems’ sparsity and is associated
with a higher data complexity [10,15].

GNN-DES: A New End-to-End Dynamic Ensemble Selection Method 65

We evaluate the datasets using a 10-fold cross-validation procedure using
the folds available at the repository for reproducibility, and as in [25] we use the
training set as the dynamic selection set (DSEL), a labeled dataset used for RoC
definition [5], due to the limited number of instances in several datasets. Also
due to the varying imbalance ratios in the testbed, we use the macro-averaged
recall, or balanced accuracy rate, as the performance measure, to account for
the class disproportion without focusing on one of the classes.

Table 1. Characteristics of the datasets used in the experiments.

Dataset N F IR F/N Dataset N F IR F/N

tumors C 60 7129 1.86 118.82 OVA Endometrium 1545 10935 24.33 7.08

leukemia 72 7129 1.88 99.01 OVA Uterus 1545 10935 11.46 7.08

AP Endometrium Lung 187 10935 2.07 58.48 OVA Ovary 1545 10935 6.80 7.08

AP Omentum Uterus 201 10935 1.61 54.40 OVA Breast 1545 10935 3.49 7.08

AP Omentum Lung 203 10935 1.64 53.87 fri c4 100 100 100 100 1.13 1.00

AP Lung Uterus 250 10935 1.02 43.74 tecator 240 124 1.35 0.52

AP Omentum Ovary 275 10935 2.57 39.76 fri c4 250 100 250 100 1.27 0.40

AP Ovary Uterus 322 10935 1.60 33.96 gina agnostic 3468 970 1.03 0.28

AP Omentum Kidney 337 10935 3.38 32.45 gina prior 3468 784 1.03 0.23

AP Colon Prostate 355 10935 4.14 30.80 fri c4 500 100 500 100 1.30 0.20

AP Colon Omentum 363 10935 3.71 30.12 spectrometer 531 101 8.65 0.19

AP Uterus Kidney 384 10935 2.10 28.48 scene 2407 299 4.58 0.12

AP Endometrium Breast 405 10935 5.64 27.00 mfeat-pixel 2000 240 9.00 0.12

AP Breast Prostate 413 10935 4.99 26.48 mfeat-factors 2000 216 9.00 0.11

AP Breast Omentum 421 10935 4.47 25.97 fri c4 1000 100 1000 100 1.29 0.10

AP Colon Ovary 484 10935 1.44 22.59 yeast ml8 2417 116 70.09 0.05

AP Colon Kidney 546 10935 1.10 20.03 sylva prior 14395 108 15.25 0.01

AP Breast Kidney 604 10935 1.32 18.10

Results. Table 2 summarizes the performances of the Oracle, the static selec-
tion baseline (ADA) and the other 10 dynamic ensemble methods besides the
proposed GNN-DES. The average performances per dataset are available in the
supplementary material. We can see that the GNN-DES yielded the highest
average balanced accuracy rate and the highest average rank among all tech-
niques. Moreover, the GNN-DES obtained a higher average performance over at
least half of the datasets compared to all techniques except for the META-DES,
another local-based meta-learning technique.

Performing the non-parametric Wilcoxon signed-rank test over the pairs of
techniques, we obtain the p-values shown in Table 3. First, we observe that
the GNN-DES statistically outperformed with significance α = 0.05 all eval-
uated techniques except the KNOP and the META-DES. As these three best-
performing and statistically similar techniques are the only ones to rely on the

66 M. de Araujo Souza et al.

local information in the decision space (in addition to the feature space, in the
case of the META-DES), the results suggest that this approach may be better
indicated for dynamic classifier selection on HDSSS problems.

We can also observe in Table 3 that the GNN-DES was the only dynamic
ensemble method to statistically outperform the static selection baseline (ADA)
with α = 0.05 over the HDSSS datasets. This suggests that not only do the DES
techniques generally struggle over these sparse datasets, as could be reasonably
expected, but also that GNN-DES might behave somewhat differently from the
classical local-based approaches, possibly due to the inclusion of the other source
of information relative to the classifiers’ interactions. However, how exactly the
learned embedded space may affect the behavior of the GNN-DES and in which
situations this information is valuable are questions to be analyzed in the future.
All in all, we believe these promising results over the HDSSS problems warrant
further investigation into the proposed approach.

Table 2. Mean balanced accuracy rate and rank, averaged over all datasets. The Win-
tie-loss row refers to the number of datasets the GNN-DES obtained a higher, equal,
or lower average performance to the column-wise technique.

Oracle ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

Mean 99.97 88.14 87.12 84.08 84.73 88.88 88.90 85.30 83.93 84.88 81.35 86.22 89.03

Mean rank n/a 5.31 5.36 8.39 8.01 4.90 4.29 6.33 7.69 5.90 10.59 7.11 4.13

Win-tie-loss n/a 23-0-12 21-3-11 31-0-4 32-0-3 18-1-16 15-0-20 21-3-11 28-0-7 22-1-12 33-0-2 27-1-7 n/a

Table 3. Resulting p-values of the Wilcoxon signed-rank test between average balanced
accuracy rates of all pairs of techniques, rounded to the second decimal point. Values
below α = 0.05 are in bold, rounded values below 0.01 are underlined, and the symbols
± indicate whether the column-wise technique statistically outperformed or not the
row-wise technique.

ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

ADA n/a 0.38 0.01(−) 0.01(−) 0.10 0.10 0.22 0.01(−) 0.51 0.01(−) 0.01(−) 0.04(+)

KNU n/a 0.01(−) 0.01(−) 0.11 0.08 0.06 0.01(−) 0.86 0.01(−) 0.37 0.03(+)

KNE n/a 0.26 0.01(+) 0.01(+) 0.24 0.66 0.15 0.01(−) 0.15 0.01(+)

DKNN n/a 0.01(+) 0.01(+) 0.42 0.95 0.30 0.01(−) 0.21 0.01(+)

KNOP n/a 0.12 0.06 0.01(−) 0.65 0.01(−) 0.01(−) 0.62

META-DES n/a 0.02(−) 0.01(−) 0.27 0.01(−) 0.01(−) 0.59

RRC n/a 0.12 0.67 0.01(−) 0.85 0.01(+)

CHADE n/a 0.35 0.09 0.25 0.01(+)

FLT n/a 0.01(−) 0.47 0.13

OLP n/a 0.01(+) 0.01(+)

OLP++ n/a 0.01(+)

GNN-DES n/a

GNN-DES: A New End-to-End Dynamic Ensemble Selection Method 67

4 Conclusion

We proposed in this work the GNN-DES technique, which learns the dynamic
classifier combination rule from the instances’ relationships and classifiers’ inter-
actions to deal with sparse overlapped data. We encode the local and class rela-
tions between the samples into a graph structure and the ensemble competence
information into multiple meta-labels, and then fit our meta-learner, a multi-
label GNN model, to perform the DES task in an end-to-end manner.

Experiments over 35 HDSSS datasets showed that the DES techniques in
the literature had difficulty in surpassing the static selection baseline, especially
the techniques based solely on similarities in the feature space for RoC def-
inition. The locality assumption in the decision space was shown to perform
better over the sparse data, and the three techniques that use this approach
performed similarly and the best. Moreover, the GNN-DES was the only tech-
nique to statistically outperform the baseline in addition to 8 of the 10 evaluated
DES techniques, suggesting its suitability for dealing with sparse and overlapped
data.

Future work in this line of research may involve evaluating the impact of using
different ensemble methods and hyperparameters to analyze the relationship
between the graph characteristics and the technique’s performance. Furthermore,
we may analyze the behavior of the technique in different local contexts and its
relation to the learned embedded space to investigate in which scenarios the
meta-learner improves the locality assumption for the DES task.

References

1. Armano, G., Tamponi, E.: Building forests of local trees. Pattern Recogn. 76,
380–390 (2018)

2. Cavalin, P.R., Sabourin, R., Suen, C.Y.: LoGID: an adaptive framework combining
local and global incremental learning for dynamic selection of ensembles of HMMs.
Pattern Recogn. 45(9), 3544–3556 (2012)

3. Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Ren, T.I.: META-DES: a dynamic
ensemble selection framework using meta-learning. Pattern Recogn. 48(5), 1925–
1935 (2015)

4. Cruz, R.M.O., Hafemann, L.G., Sabourin, R., Cavalcanti, G.D.C.: DESlib: a
dynamic ensemble selection library in python. J. Mach. Learn. Res. 21(8), 1–5
(2020)

5. Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: Dynamic classifier selection: recent
advances and perspectives. Inf. Fusion 41, 195–216 (2018)

6. Davtalab, R., Cruz, R.M., Sabourin, R.: Dynamic ensemble selection using fuzzy
hyperboxes. In: 2022 International Joint Conference on Neural Networks (IJCNN),
pp. 1–9 (2022)

7. El-Sappagh, S., et al.: Alzheimer’s disease progression detection model based on an
early fusion of cost-effective multimodal data. Futur. Gener. Comput. Syst. 115,
680–699 (2021)

8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

68 M. de Araujo Souza et al.

9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

10. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems.
IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR) (2017)

12. Ko, A.H.-R., Sabourin, R., de Souza Britto Jr., A.: A new dynamic ensemble
selection method for numeral recognition. In: Haindl, M., Kittler, J., Roli, F. (eds.)
MCS 2007. LNCS, vol. 4472, pp. 431–439. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-72523-7 43

13. Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Trans.
Pattern Anal. Mach. Intell. 24(2), 281–286 (2002)

14. Li, D., Wen, G., Li, X., Cai, X.: Graph-based dynamic ensemble pruning for facial
expression recognition. Appl. Intell. 49(9), 3188–3206 (2019)

15. Lorena, A.C., Costa, I.G., Spolaôr, N., De Souto, M.C.: Analysis of complexity
indices for classification problems: cancer gene expression data. Neurocomputing
75(1), 33–42 (2012)

16. Narassiguin, A., Elghazel, H., Aussem, A.: Dynamic ensemble selection with prob-
abilistic classifier chains. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C.,
Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 169–186.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9 11

17. Oliveira, D.V., Cavalcanti, G.D., Porpino, T.N., Cruz, R.M., Sabourin, R.: K-
nearest oracles borderline dynamic classifier ensemble selection. In: 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

18. Pereira, M., Britto, A., Oliveira, L., Sabourin, R.: Dynamic ensemble selection by
K-nearest local Oracles with discrimination index. In: 2018 IEEE 30th Interna-
tional Conference on Tools with Artificial Intelligence, pp. 765–771. IEEE (2018)

19. Pinto, F., Soares, C., Mendes-Moreira, J.: CHADE: metalearning with classifier
chains for dynamic combination of classifiers. In: Frasconi, P., Landwehr, N.,
Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp.
410–425. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1 26

20. Salehi, A., Davulcu, H.: Graph attention auto-encoders. In: 2020 IEEE 32nd Inter-
national Conference on Tools with Artificial Intelligence, pp. 989–996 (2020)

21. Sánchez, J.S., Mollineda, R.A., Sotoca, J.M.: An analysis of how training data
complexity affects the nearest neighbor classifiers. Pattern Anal. Appl. 10(3), 189–
201 (2007)

22. Soares, R.G., Santana, A., Canuto, A.M., de Souto, M.C.P.: Using accuracy and
diversity to select classifiers to build ensembles. In: The 2006 IEEE International
Joint Conference on Neural Network (IJCNN) Proceedings, pp. 1310–1316 (2006)

23. Souza, M.A., Cavalcanti, G.D., Cruz, R.M., Sabourin, R.: Online local pool gen-
eration for dynamic classifier selection. Pattern Recogn. 85, 132–148 (2019)

24. Souza, M.A., Sabourin, R., Cavalcanti, G.D.C., Cruz, R.M.O.: Local overlap reduc-
tion procedure for dynamic ensemble selection. In: 2022 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1–9 (2022)

25. Souza, M.A., Sabourin, R., Cavalcanti, G.D., Cruz, R.M.: OLP++: an online local
classifier for high dimensional data. Inf. Fusion 90, 120–137 (2023)

26. Vandaele, R., Kang, B., De Bie, T., Saeys, Y.: The curse revisited: when are dis-
tances informative for the ground truth in noisy high-dimensional data? In: Inter-
national Conference on Artificial Intelligence and Statistics, pp. 2158–2172. PMLR
(2022)

https://doi.org/10.1007/978-3-540-72523-7_43
https://doi.org/10.1007/978-3-540-72523-7_43
https://doi.org/10.1007/978-3-319-71249-9_11
https://doi.org/10.1007/978-3-319-46128-1_26

GNN-DES: A New End-to-End Dynamic Ensemble Selection Method 69

27. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

29. Woloszynski, T., Kurzynski, M.: A probabilistic model of classifier competence for
dynamic ensemble selection. Pattern Recogn. 44(10), 2656–2668 (2011)

30. Xia, F., et al.: Graph learning: a survey. IEEE Trans. Artif. Intell. 2(2), 109–127
(2021)

31. Zhang, S.: Challenges in KNN classification. IEEE Trans. Knowl. Data Eng.
34(10), 4663–4675 (2022)

C2N-ABDP: Cluster-to-Node
Attention-Based Differentiable Pooling

Rongji Ye1 , Lixin Cui1(B) , Luca Rossi2 , Yue Wang1 , Zhuo Xu1 ,
Lu Bai3 , and Edwin R. Hancock1,4

1 Central University of Finance and Economic, Beijing, China
cuilixin@cufe.edu.cn

2 Department of Electrical and Electronic Engineering,
The Hong Kong Polytechnic University, Hong Kong SAR, China

3 School of Artificial Intelligence, Beijing Normal University, Beijing, China
4 Department of Computer Science, University of York, York, UK

Abstract. Graph neural networks have achieved state-of-the-art perfor-
mance in various graph based tasks, including classification and regres-
sion at both node and graph level. In the context of graph classification,
graph pooling plays an important role in reducing the number of graph
nodes and allowing the graph neural network to learn a hierarchical rep-
resentation of the input graph. However, most graph pooling methods
fail to effectively preserve graph structure information and node fea-
ture information when reducing the number of nodes. At the same time,
the existing hierarchical differentiable graph pooling methods cannot
effectively calculate the importance of nodes and thus cannot effectively
aggregate node information. In this paper, we propose an attention-based
differentiable pooling method, which aggregates nodes into clusters when
reducing the scale of the graph, uses singular value decomposition to cal-
culate cluster information during the aggregation process, and captures
node importance information through a novel attention mechanism. The
experimental results show that our approach outperforms competitive
models on benchmark datasets.

Keywords: Graph neural network · Graph pooling · Attention

1 Introduction

The success of Convolutional Neural Networks (CNNs) [3,4,14,17,18], which
were able to achieve state-of-the-art performance on image classification tasks,
inspired many researchers to try and generalize CNNs from the image domain to
the graph one [2,6,8,9]. However, there are important differences between graphs
and images. Crucially, images are regular and grid-like, while graphs can have
highly complex, irregular structure. This in turn makes it difficult to directly
apply popular CNN architectures to tasks that involve the analysis of graphs.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 70–80, 2023.
https://doi.org/10.1007/978-3-031-42795-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_7&domain=pdf
http://orcid.org/0000-0002-4339-173X
http://orcid.org/0000-0003-1620-6532
http://orcid.org/0000-0002-6116-9761
http://orcid.org/0000-0001-6698-6210
http://orcid.org/0000-0002-1147-6181
http://orcid.org/0000-0002-1033-8908
http://orcid.org/0000-0003-4496-2028
https://doi.org/10.1007/978-3-031-42795-4_7

C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling 71

For this reason, in recent years there has been an increasing interest in extend-
ing existing neural architectures, such as CNNs, to the graph domain. In this
context, several Graph Neural Networks (GNNs) models have been proposed to
explore the information contained in node and edge features, while also cap-
turing the structural information of graphs. The GCN model [15] utilizes the
Fourier transform and the graph Laplacian matrix to define a convolution oper-
ation on graphs. GraphSAGE [13] optimizes the full graph sampling of GCNs
to partial node-centric neighbor sampling, making distributed training of large-
scale graph data possible. The GAT architecture [28] combines the attention
mechanism with the original GCN model, alleviating the bottleneck problem of
GCNs and allowing the assignment of different attention coefficients to different
neighbors. With the introduction of DGCNNs [33], the authors proposed an end-
to-end graph neural network architecture that uses SortPooling to classify vertex
features instead of summing them. Another well-known model is GIN [30], which
uses an injective aggregation strategy, and its ability to identify graph structures
is comparable to Weisfeiler-Lehman (WL) tests. These GNNs have been widely
employed for both node and graph level classification tasks.

In this paper, we focus on the graph classification task, i.e., predicting the
class of whole graphs. For example, chemical molecules can be represented as
graphs. In this case, we can extract graph node features and graph structure
information, learn a low-dimensional representation vector corresponding to the
graph data, and then use this to predict a molecular property of interest. At
present, graph representation learning methods can achieve excellent results in
graph classification tasks. Often, these models use some form of graph pooling.

Graph pooling methods can be divided into global and hierarchical pooling
methods [32]. Global pooling methods, such as mean and max pooling, aggregate
all nodes equally during pooling and thus lead to loss of structural information
and neglect the differences among the nodes. Hierarchical graph pooling meth-
ods, on the other hand, extract the local subgraph structure information and
gradually aggregate the subgraph information to obtain a representation vec-
tor for the full graph. The subgraph structure may play a very important role
in the classification of the whole graph. For example, the categories of organic
molecules can be divided according to the functional groups in the molecules.

In recent years, many effective graph pooling methods have emerged. DIFF-
Pool [32] is a differentiable graph pooling method that assigns nodes to clusters
by learning a soft clustering node assignment matrix. The node representations
are weighted and summed according to the probability of the nodes belonging
to the cluster, and then the cluster representation vectors are obtained. The
cluster representation vectors obtained by the pooling layer are then used as the
new node representations in the next layer. TOPK [12] is a method that dis-
cards nodes in each pooling process to reduce the size of the graph. Compared
with DIFFPool, it has the advantage of reducing the number of parameters
and improving the computational efficiency, however this comes at the cost of a
lower performance. SAGPool [19] is a pooling method combined with an atten-
tion mechanism. Originally based on TOPK, SAGPool uses graph convolution to

72 R. Ye et al.

achieve self-attention, obtain the importance score of each node, and retain the
nodes with the top k highest scores. Compared with TOPK, SAGPool considers
the local structure information of the graph when scoring the nodes. The main
drawback, however, is that the structure of the pooled graph is obtained through
a simple deletion process on the original graph. HGP-SL [34] uses the Manhat-
tan distance between node representations and the representations constructed
by their neighboring nodes as the criteria for filtering nodes. Then, it retains
those nodes that are difficult to be reconstructed by their neighbors. HGP-SL
also uses an attention-based structure learning layer to learn the potential con-
nections between nodes. VIPool [20] calculates the mutual information between
a node and its neighbors to measure the similarity and difference between each
node and its neighbors, and then retains nodes that can reflect the information
of their neighboring nodes. ASAP [23] takes each node as the center to obtain
candidate clusters, utilizes a self-attention mechanism to learn cluster represen-
tation and a novel way to filter candidate clusters and complete the pooling
process.

In this work, we propose Cluster-to-Node Attention-based Differentiable
Pooling (C2N-ABDP), a new attention-based graph pooling method based on
DIFFPool that is able to effectively utilize the graph structure information and
that is suitable for hierarchical pooling architectures. The main contributions of
our work can be summarized as follows: 1) we propose a Cluster-to-Node atten-
tion (C2N attention) mechanism and we combine it with DiffPool, allowing the
model to effectively learn the importance of nodes within clusters and thus to
obtain more reasonable cluster representations; 2) we apply SVD to extract the
cluster information in a way that is robust to the order of nodes in the cluster.

The remainder of the paper is organized as follows. In Sect. 2 we discuss the
relevant background and the limitations of two close methods to ours, DIFF-
Pool and ABDP [21]. In Sect. 3 we introduce C2N-ABDP and we present the
experimental results in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Background

2.1 Graph Convolutional Networks

The GCN model [13] stems from graph signal theory and uses the Fourier trans-
form as a bridge to successfully map CNNs to the graph domain and is now
widely used for feature extraction from graphs. Given a graph with adjacency
matrix A and node features matrix X, GCNs work by computing a new matrix
of convolved features Z, i.e.,

Z = D̃−1/2ÃD̃−1/2XΘ , (1)

where Ã = A + IN , IN is the graph adjacency matrix with self-connections
added, IN is the unit diagonal matrix, D̃ is the degree matrix of Ã, and Θ is
a trainable parameter matrix. GCNs aggregate the features of each node and
its neighbor nodes to obtain a new node feature and they are widely used in
hierarchical pooling architectures for graph feature extraction.

C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling 73

2.2 The Attention Mechanism

The attention mechanism [27] is one of the most widely used components in the
field of deep learning for natural language processing. The attention mechanism
calculates three matrices based on the source data matrix H ∈ R

n×d, i.e.,

Q = HWq, K = HWk, V = HWv (2)

Attention(Q,K, V) = Softmax
(

QK�
√

dk

)
V , (3)

where Q ∈ R
n×dq and K ∈ R

n×dq (the query and key matrices, respectively)
are used to calculate the attention score Attention(Q,K, V), V ∈ R

n×dv is the
representation matrix, dq is the dimension of attention calculation, dv is the
feature dimension of the output, and the softmax operates on each row of QK�

to get the importance score.

2.3 Graph Pooling

DIFFPool is a differentiable pooling method that learns a soft assignment matrix
and uses it to generate a new adjacency matrix and new node representation
vectors. Each value in the soft assignment matrix represents the probability
that a given node belongs to a corresponding cluster. This allows DIFFPool
to effectively utilize graph structure information, but it does not sufficiently
evaluate the importance of nodes within each cluster. In particular, we argue
that the importance of a node within a cluster is not necessarily equivalent to
the probability that the node belongs to the cluster.

ABDP [21] combines DIFFPool with an attention mechanism. It uses the
learned soft assignment matrix to generate a hard assignment matrix and ensure
that a node can only be assigned to one cluster. Then, it calculates the mutual
attention between nodes belonging to the same cluster. The problem with ABDP
is that the meaning of the attention mechanism is not clear and it lacks the ability
to extract overall information on the cluster.

2.4 Singular Value Decomposition

Singular value decomposition (SVD) is often used in data dimensionality reduc-
tion and recommendation systems. Given an input matrix A ∈ R

m×n, SVD
computes the decomposition A = UΣV �, with U ∈ R

m×m, Σ ∈ R
m×n and

V ∈ R
n×n. Both U and V are eigenvector matrices, U mainly contains informa-

tion related to the rows of A and V mainly contains information related to the
columns of A. Σ is the diagonal eigenvalue matrix, where each diagonal value of
Σ represents the importance of the corresponding eigenvectors in U and V . We
note that in general Σ and V are independent of the row order of A, which in
turn ensures that SVD can be applied as part of our pooling method.

74 R. Ye et al.

Fig. 1. Overview of the proposed pooling mechanism. C2N-ABDP collapses the graph
through graph convolution, hard assignment matrix generation, cluster information
extraction, and C2N attention embedding aggregation.

3 The Proposed Pooling Method

We propose a novel pooling operator, named Cluster-to-Node Attention-based
Differentiable Pooling (C2N-ABDP). At layer l, C2N-ABDP performs 5 main
operations: 1) graph convolution, 2) hard assignment matrix computation, 3)
cluster information extraction, 4) C2N attention computation, and 5) adjacency
matrix update and embedding matrix computation.

(i) Graph convolution. Given the adjacency matrix A(l) and the feature
matrix X(l), we use a GCN to generate the embedding matrix Z(l) ∈ R

nl×d

according to Eq. 1.

(ii) Hard assignment matrix computation. We use another GCN to gen-
erate the soft assignment matrix S(l) ∈ R

nl×nl+1 , i.e.,

S(l) = Softmax
(
GCN

l,pool
(
A(l),X(l)

))
. (4)

Each row of S(l) represents the probability of a node of the l-th layer belonging
to a cluster of the (l + 1)-th layer. Given S(l), we generate the hard assignment
matrix HS(l) ∈ R

nl×nl+1 by mapping the maximum value of each row in S(l) to
1 and the remaining values to 0, so that each node will only be assigned to a
single cluster.

(iii) Cluster information extraction. The cluster information extraction pro-
cedure can be further subdivided into 2 main steps.

SVD process. With HS(l) to hand, we define the matrix Z
(l)
(t) ∈ R

nt×d of the
node vectors assigned to t-th cluster, where t denotes the cluster number at
layer l, nt is the number of nodes assigned to cluster t, and d is the dimension
of node features in the current layer. Then, SVD is used to decompose Z

(l)
(t) into

U
(l)
(t) ∈ R

nt×nt , S
(l)
(t) ∈ R

nt×d, V
(l)
(t) ∈ R

d×d. Note that the order with which the
nodes are allocated to a cluster by the hard assignment matrix is not fixed,
however S

(l)
(t) and V

(l)
(t) are not affected by the order of nodes in the cluster. We

extract the preliminary cluster information as

M
(l)
(t) = S

(l)
(t)V

(l)
(t) ∈ R

nt×d . (5)

C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling 75

Fig. 2. Structure of the proposed architecture.

Our approach ensures that no matter how the nodes allocated to a cluster are
ordered, as long as the node features are the same, the extracted cluster infor-
mation is the same.

Residual linear layer. We first perform a zero padding operation on M
(l)
(t) to

expand its dimension to get M
′(l)
(t) ∈ R

d×d, with d > nt. The cluster information
is computed as

C
(l)�
(t) = L0(M (l)

(t) + L3(L2(L1(WM
(l)
(t)))) , (6)

where L0, L1, L2, and L3 are four linear layers, the output dimensions of L1 and
L3 are both one, and C

(l)
(t) ∈ R

1×d is the extraction result of the cluster infor-
mation, which will be used to determine the attention. The residual structure is
introduced to prevent overfitting. Finally, note that the previous equation omits
the activation function ReLU [1].

(iv) Cluster-to-node attention. The calculation of the C2N attention score
follows the equations

Q = C
(l)
(t)Wq ∈ R

1×dk , K = Z
(l)
(t)Wk ∈ R

nt×dk (7)

AT
(l)
(t) = Softmax

(
QK�

dk

)
∈ R

1×nt . (8)

The process is similar to the computation of the scaled dot-product atten-
tion [27], however here we changed the source of Q. Q is obtained from the
cluster information matrix C

(l)
(t) and K is obtained from Z

(l)
(t), i.e., the represen-

tation matrix of the nodes in the cluster. AT
(l)
(t) is the resulting attention vector,

representing the importance of each node to the cluster, while Wq and Wk are
trainable parameters.

(v) Adjacency matrix update and embedding matrix. We use the hard
cluster assignment matrix and the adjacency matrix of the current layer to cal-
culate the adjacency matrix of the next layer. The node feature matrix of the
next layer is given by the concatention of the cluster representation vectors,

76 R. Ye et al.

Table 1. Summary statistics of the graph datasets.

Graphs # Classes Avg. # Nodes Avg. # Edges

D&D 1178 2 284.32 715.66

MUTAG 188 2 17.93 19.79

PROTEINS 1113 2 39.06 72.82

NCI1 4110 2 29.87 32.30

ENZYMES 600 6 32.63 62.14

PTC 344 2 14.29 14.69

and the cluster representation is the weighted sum of the row vectors of Z
(l)
(t) wrt

the attention vector AT
(l)
(t) , i.e.,

X(l+1) = ‖nl+1
t=1 AT

(l)
(t)Z

(l)
(t) ∈ R

nl+1×d (9)

A(l+1) = HS(l)�A(l)HS(l) ∈ R
nl+1×nl+1 . (10)

Figure 1 shows the graph collapsing process of C2N-ABDP. Nodes assigned to
different clusters are marked with different colors, and nodes assigned to the same
cluster by the hard assignment matrix are surrounded by dotted lines. The C2N
attention is applied to calculate the importance of nodes in the cluster, where
darker shades denote highlight more important nodes, e.g., within the cluster
of blue nodes, darker blue nodes are more important than lighter blue nodes.
Finally, according to the importance of the nodes, the representations of the
nodes in the cluster are aggregated to obtain the next layer node representations.

4 Experiments

We evaluate the performance of a hierarchical pooling architecture based on
C2N-ABDP. Figure 2 shows the overall structure of our architecture. The input
graph data passes through two encoding blocks, each block contains a standard
GCN and the proposed pooling operator C2N-ABDP. ⊕ represents the splicing
operation, and after splicing the output of the two blocks, the representation of
the graph is obtained. Finally, the representation of the graph is passed through
the MLP classifier to obtain the classification result.

We compare our architecture with three graph kernel methods and nine
GNNs. The three graph kernel methods are GK [26], WL [25], and DGK [31]. The
nine GNN methods are DGCNN [33], GIN [30], SAGPool [19], DIFFPool [32],
ABDP [21], ASAP [23], VIPool [20], MinCutPool [5], CGIPool [22]. We use
results reported by the original papers (when available) in Table 2.

The models are compared in terms of classification accuracy on six graph
classification benchmarks. These datasets are D&D [11], MUTAG [10], PRO-
TEINS [7], NCL1 [29], ENZYMES [24] and PTC [16] respectively. Details about

C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling 77

Table 2. Average classification accuracy (± standard error, when available). The best
performing model for each dataset is highlighted in bold.

D&D MUTAG PROTEINS NCI1 ENZYMES PTC

GK 75.90 ± 0.10 81.70 ± 2.00 71.70 ± 0.60 - 24.90 ± 0.20 57.30 ± 1.40

WL 79.78 ± 0.36 82.05 ± 0.36 - 82.19 ± 0.18 52.22 ± 1.26 -

DGK - 87.44 ± 2.72 75.68 ± 0.54 80.31 ± 0.46 53.43 ± 0.91 60.08 ± 2.55

DGCNN 79.37 ± 0.94 85.83 ± 1.66 75.54 ± 0.94 74.44 ± 0.47 - 58.59 ± 2.47

GIN - 89.00 ± 6.00 75.90 ± 3.80 82.70 ± 1.60 - 66.60 ± 6.90

SAGPool 76.45 ± 0.97 - 71.86 ± 0.97 74.18 ± 1.20 - -

DIFFPool 80.64 - 76.25 - 62.53 -

ABDP - 91.10 ± 6.70 78.50 ± 2.90 - 64.00 ± 4.00 67.40 ± 4.30

ASAP 76.87 ± 0.70 - 74.19 ± 0.79 71.48 ± 0.42 - -

VIPool 82.68 ± 4.10 - 79.91 ± 4.10 - 57.50 ± 6.10 -

MinCutPool 80.80 ± 2.30 79.90 ± 2.10 76.50 ± 2.60 - - -

CGIPool - 80.65 ± 0.79 74.10 ± 2.31 78.62 ± 1.04 - -

C2N-ABDP 86.83 ± 1.15 91.50 ± 0.73 79.00 ± 1.49 80.77 ± 0.85 64.16 ± 3.85 71.06 ± 1.48

the datasets are shown in Table 1. For the D&D and NCI1 datasets, each pooling
layer will reduce the total number of nodes in the graph to 10% of the original.
For other datasets, the reduction ratio is 25%. We do 10-fold cross-validation
on each dataset and repeat this 10 times. The average accuracy and variance
of cross-validation results are shown in Table 2. For all datasets, the number of
epochs is selected according to the best cross-validation accuracy.

4.1 Results and Analysis

The experimental results in Table 2 show the advantages of C2N-ADBP, which
can be summarized as follows. On all experimental datasets, C2N-ABDP outper-
forms DIFFPool and ABDP, suggesting the efficacy of the proposed improvement
on DIFFPool. While DIFFPool only aggregates nodes based on the probability
that the node belongs to the cluster when generating a cluster representation,
we use the C2N attention to decouple the node weights from the assignment
matrix and distribute the node weights in a more intuitive way. The attention
mechanism of ABDP only calculates the weight of nodes based on the attention
between nodes, while we propose an attention mechanism that measures the
relationship between nodes and the overall information of the cluster where the
nodes are located, making it more suitable for graph pooling. We use SVD to
extract cluster information in a way that is robust to node ordering, and the
experimental results prove that the extracted cluster information is effective.

On both the D&D and PTC datasets, C2N-ABDP achieves state-of-the-art
performance, surpassing other competitive models in terms of classification accu-
racy. This is due to the advantages of the pooling method based on the cluster
assignment matrix. In C2N-ABDP, the cluster assignment matrix is used to
generate the feature matrix and the adjacency matrix of the next layer, which
ensures that C2N-ABDP fully retains the graph structure information while

78 R. Ye et al.

reducing the size of the graph data. However, other models such as SAGPool
directly delete nodes, resulting in the loss of graph structure information related
to the deleted nodes. In addition, we use a hard assignment matrix to assign
nodes to clusters, so that each node can only be assigned to one cluster, which
in turn reduces overfitting and makes it possible to use the C2N attention mech-
anism.

5 Conclusion

In this paper we proposed C2N-ABDP, a pooling method suitable for hierarchi-
cal graph pooling architectures. C2N-ABDP is based on DIFFPool but adds an
attention mechanism that is able to effectively utilize the graph structure infor-
mation and distinguish the node importance from the probability that the node
belongs to a cluster. To this end, we proposed C2N attention, which enabled our
model to better capture the membership of each node in a cluster. C2N-ABDP
also uses SVD to extract cluster information that is robust to the order of nodes.
The experimental results show that C2N-ABDP can achieve state-of-the-art per-
formance on multiple graph classification datasets.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under Grants T2122020, 61976235, and 61602535. This work is also
partly supported by the Program for Innovation Research in the Central University of
Finance and Economics.

References

1. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375 (2018)

2. Bai, L., Cui, L., Jiao, Y., Rossi, L., Hancock, E.R.: Learning backtrackless aligned-
spatial graph convolutional networks for graph classification. IEEE Trans. Pattern
Anal. Mach. Intell. 44(2), 783–798 (2022)

3. Bai, L., et al.: Learning graph convolutional networks based on quantum vertex
information propagation (extended abstract). In: 38th IEEE International Confer-
ence on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9–12, 2022.
pp. 3132–3133. IEEE (2022)

4. Bai, L., et al.: Learning graph convolutional networks based on quantum vertex
information propagation. IEEE Trans. Knowl. Data Eng. 35(2), 1747–1760 (2023)

5. Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph neural
networks for graph pooling. In: International Conference on Machine Learning,
pp. 874–883. PMLR (2020)

6. Bicciato, A., Cosmo, L., Minello, G., Rossi, L., Torsello, A.: Classifying me softly:
A novel graph neural network based on features soft-alignment. In: S+SSPR. pp.
43–53. Springer (2022). https://doi.org/10.1007/978-3-031-23028-8 5

7. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(suppl 1), i47–i56 (2005)

http://arxiv.org/abs/1803.08375
https://doi.org/10.1007/978-3-031-23028-8_5

C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling 79

8. Cosmo, L., Minello, G., Bronstein, M., Rodolà, E., Rossi, L., Torsello, A.: Graph
kernel neural networks. arXiv preprint arXiv:2112.07436 (2021)

9. Cui, L., Bai, L., Bai, X., Wang, Y., Hancock, E.R.: Learning aligned vertex convo-
lutional networks for graph classification. IEEE Trans. Neural Netw. Learn. Syst.
Press, 1808–1822 (2021). https://doi.org/10.1109/TNNLS.2021.3129649

10. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Han-
sch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity.
J. Med. Chem. 34(2), 786–797 (1991)

11. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes
without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

12. Gao, H., Ji, S.: Graph u-nets. In: International Conference on Machine Learning,
pp. 2083–2092. PMLR (2019)

13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition,
pp. 770–778 (2016)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 6th International Conference on Learning Representations (2017)

16. Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: Pro-
ceedings of the 29th International Conference on International Conference on
Machine Learning, pp. 291–298 (2012)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

18. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pp. 253–256. IEEE (2010)

19. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International Conference
On Machine Learning, pp. 3734–3743. PMLR (2019)

20. Li, M., Chen, S., Zhang, Y., Tsang, I.: Graph cross networks with vertex infomax
pooling. Adv. Neural. Inf. Process. Syst. 33, 14093–14105 (2020)

21. Liu, Y., Cui, L., Wang, Y., Bai, L.: Abdpool: Attention-based differentiable pool-
ing. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp.
3021–3026. IEEE (2022)

22. Pang, Y., Zhao, Y., Li, D.: Graph pooling via coarsened graph infomax. In: Pro-
ceedings of the 44th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 2177–2181 (2021)

23. Ranjan, E., Sanyal, S., Talukdar, P.: Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. vol. 34, pp. 5470–5477 (2020)

24. Schomburg, I., et al.: Brenda, the enzyme database: updates and major new devel-
opments. Nucleic Acids Res. 32(suppl 1), D431–D433 (2004)

25. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

26. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient graphlet kernels for large graph comparison. In: Artificial intelligence and
statistics, pp. 488–495. PMLR (2009)

27. Vaswani, A.,et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

http://arxiv.org/abs/2112.07436
https://doi.org/10.1109/TNNLS.2021.3129649

80 R. Ye et al.

28. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations
(2017)

29. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowl. Inf. Syst. 14, 347–375 (2008)

30. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6–9, 2019 (2019)

31. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374 (2015)

32. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Advances in Neural
Information Processing Systems, vol. 31 (2018)

33. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architec-
ture for graph classification. In: Proceedings of the AAAI Conference On Artificial
Intelligence, vol. 32 (2018)

34. Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv preprint
arXiv:1911.05954 (2019)

http://arxiv.org/abs/1911.05954

Splitting Structural and Semantic
Knowledge in Graph Autoencoders

for Graph Regression

Sarah Fadlallah , Natália Segura Alabart , Carme Julià ,
and Francesc Serratosa(B)

Research Group ASCLEPIUS: Smart Technology for Smart Healthcare,
Department D’Enginyeria Informática I Matemátiques, Universitat Rovira I Virgili,

43k007 Tarragona, Catalonia, Spain
{sarah.fadlallah,natalia.segura,carme.julia,francesc.serratosa}@urv.cat

Abstract. This paper introduces ReGenGraph, a new method for graph
regression that combines two well-known modules: an autoencoder and
a graph autoencoder. The main objective of our proposal is to split the
knowledge in the graph nodes into semantic and structural knowledge
during the embedding process. It uses the autoencoder to extract the
semantic knowledge and the graph autoencoder to extract the structural
knowledge. The resulting embedded vectors of both modules are then
combined and used for graph regression to predict a global property of
the graph. The method demonstrates improved performance compared to
classical methods, i.e., autoencoders or graph autoencoders alone. The
approach has been applied to predict the binding energy of chemical
compounds represented as attributed graphs but could be used in other
fields as well.

Keywords: Graph embedding · Graph Convolutional Networks ·
Autoencoders · Graph Autoencoders · Graph Regression

1 Introduction

A graph, in general, is a data structure depicting a collection of entities repre-
sented as nodes, and their pairwise relationships represented as edges. There is a
growing interest in having graph-based techniques applied to machine learning,
for instance, in biotechnology, they are used to represent chemical compounds
in order to predict their toxicity [2]. This can be attributed to their effectiveness
in characterising instances of data with complex structures and rich attributes.
An example of this is the ability of the Graph Edit Distance to capture the
dissimilarity between graphs [15,16].

In this paper, we propose a computational method called ReGenGraph:
Regression on Generated Graphs. This method applies graph regression tech-
niques based on graph autoencoders (GAE) (e.g., [6,8]) to predict a global prop-
erty of the graph. The key point of ReGenGraph is to split the knowledge in a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 81–91, 2023.
https://doi.org/10.1007/978-3-031-42795-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_8&domain=pdf
http://orcid.org/0000-0003-0758-5913
http://orcid.org/0000-0002-6276-2049
http://orcid.org/0000-0003-3440-6175
http://orcid.org/0000-0001-6112-5913
https://doi.org/10.1007/978-3-031-42795-4_8

82 S. Fadlallah et al.

graph into semantic and structural knowledge during the embedding process. This
means that the global property is predicted in two steps. First, an autoencoder and
a GAE are used to deduce a latent vector. Then, the global property of the graph
is computed through a regression module applied to the resulting latent vector.

As a result of ReGenGraph’s ability to split node attributes into two types, we
saw that our developed model would be suitable for data where both structural
and semantic knowledge are present, such as the case with molecular graphs.
They make a good example of a quite natural way to describe a set of atoms
and their interactions [2,13]. In this case, we use the ReGenGraph to predict the
binding energy of chemical compounds depicted as graphs that represent their
atoms and bonds as nodes and edges respectively.

In the next section, we present a summarised overview of the techniques
involved in this work. In Sect. 3 we explain our approach in detail. In Sect. 4
we show the experimental validation we carried out, concluding the paper with
Sect. 5.

2 Related Work

2.1 Autoencoders

Autoencoders are a particular class of neural networks that are employed in
machine learning to capture the most basic representations of an entity. To
achieve this, they are trained to reconstruct the input data after having gener-
ated an intermediate data called latent space [7]. Autoencoders can be used for
dimensionality reduction, data denoising, or anomaly detection [3]. The obtained
intermediate representations can also be used as learning tokens for classification
and prediction tasks, or for the generation of synthetic data.

An autoencoder consists of two components: an encoder that converts the
input space into a latent space, Z, and a decoder that converts the lower-
dimensional representation back to the original input space. W0, and W1 can
be defined as the trainable weights of the encoder and decoder, respectively.
The encoding processes results in latent vector z for each entity n in a latent
space, commonly denoted as Z ∈ R

n×a, defined by the number of entities n,
e.g., atoms in a molecule, and the features extracted in the latent space, a. Both
encoders and decoders include non-linear activation functions. This non-linearity
typically increases the expressive ability of the network and enables it to learn
a range of tasks at various levels of complexity.

From there, autoencoders continued to evolve and various enhancements were
introduced to tackle different issues and improve their representative capabilities.
An example of this is the denoising autoencoder, a variation that adds noise to
input, corrupting some of the samples on purpose, in order to prevent the net-
work from learning the identity function, i.e., having the network learn the data
points themselves rather than their representation [17]. Another popular architec-
ture was introduced by Diederik P. Kingma and Max Welling known as the vari-
ational autoencoder [4]. They combine autoencoders with probabilistic Bayesian
inference to map inputs according to their distribution in the latent space.

Splitting Structural and Semantic Knowledge in GAE 83

2.2 Graph Autoencoders

There has been a growth in using neural networks on data represented as graphs
across various domains, despite the complexity of graphs that results from their
intertwined characteristics. For the scope of this work, we focus on applica-
tions concerning drug potency prediction [1]. The currently used techniques can
be divided into four categories, recurrent graph neural networks, convolutional
graph neural networks, graph autoencoders, and spatial-temporal graph neu-
ral networks [19]. Graph Convolutional Networks (GCNs) can be an especially
attractive choice since they can capture and leverage the structure of a given
graph, making them well-suited for tasks where the topology of the graph is cru-
cial such as is the case with the analysis and generation of chemical compounds.

A graph with attributes, represented by a node attribute matrix X, and
an adjacency matrix A, can be represented as G(X,A), where X ∈ R

n×f is a
matrix of size n × f , with n being the number of nodes and f being the number
of attributes or node features. The adjacency matrix A ∈ R

n×n is of size n × n,
where the Ai,j = 1 if there is an edge between the ith and the jth node and 0
otherwise. The graph’s edges are unattributed and undirected, meaning that if
there is an edge from node i to node j, there is also an edge from node j to node
i, which is represented by the equality Ai,j = Aj,i.

GAEs are based on the concept of a GCN, which in turn is built on the
notion of generalising convolution-like processes on normal grids, e.g., images,
to graph-structured data through neural network layers [6].

The key idea behind GCNs is to define the neighborhood of a node in the
graph, using the information from the neighboring nodes to update the node’s
representation. This can be accomplished by defining a convolution operation
on the graph, which is typically implemented as a weighted sum of the repre-
sentations of the neighboring nodes. A learnable weight matrix is often used to
determine the weights of this sum, which the network learns as it updates the
node’s representation. Node attributes can also be used to infer global properties
about the graph’s structure and the links between its nodes.

Just like the classical autoencoder, GAEs are composed of two main parts:
an encoder and a decoder. The encoder embeds input graphs through a GCN
as defined in [6] returning a latent matrix Z ∈ R

n×b with the graph’s unique
properties. The number of features in the latent space is b. Equation 1 shows the
encoder’s function:

Z = GCN(X, A) = ÃReLU
(
ÃXW ′

0

)
W ′

1 (1)

where Ã is a symmetrically normalised adjacency matrix computed from A,
while W ′

0 and W ′
1 are the weight matrices for each layer, which are learned

through a learning algorithm. Note that ReLU is the classical non-negative linear
equation.

The decoder is defined as Eq. 2:

A∗ = σ
(
ZZT

)
(2)

84 S. Fadlallah et al.

where σ (·) is the sigmoid function, T means the transposed matrix. The output,
A∗, is a matrix of real numbers between 0 and 1 that represents the probability
of an existing edge in the reconstructed adjacency matrix. Note that in order
to deduce the final reconstructed matrix, a round function is applied to A∗ to
discern between non-edge and edge, i.e., zero and one values.

As the aim of the GAE is to reconstruct the adjacency matrix such that it
is similar to the original one, the learning algorithm minimises the mean square
distance between these matrices defined by Eq. 3,

L =
1
n2

n∑
i=1

n∑
j=1

wposAi,j logA∗
i,j + wneg(1 − Ai,j)log(1 − A∗

i,j) (3)

where wpos and wneg are introduced to deal with the value imbalance between
pairs of nodes with an edge and pairs of nodes without an edge.

3 Proposed Approach: ReGenGraph

The basis of the GAE approaches is the constraint that knowledge associated
with nodes is related to knowledge attached to edges and vice versa [6]. That is,
it is assumed that there is a relation between the local structural pattern and
the node attributes.

We have designed a specific model based on GAE that handles graphs with
nodes that have these two types of attributes: those that are impacted by struc-
tural patterns and those that are not related to edges. Specifically, our approach
is based on two modules that work accordingly. The first one is an autoen-
coder [9] that captures semantic information, without structural relations but
rather by only utilising certain node attributes. The other module is a GAE [6]
that captures structural knowledge, which is achieved by exploiting the remain-
ing node attributes and edges. Both modules project their data into a latent
domain, which is then used for any fitting mechanism, regression was chosen for
this case. The ReGenGraph architecutre is depicted in Fig. 1. We use the GAE
defined in [5] and summarised in Sect. 2.2. It is important to note that both the
autoencoder and the GAE are used for extracting features during the encoding
stage in order to be used for a prediction or classification task. Nevertheless, the
complete models, with both encoder and decoder components, are also useful
for reconstructing the graph.

The decision on which node attributes to use in the autoencoder and which to
use in the GAE is made through a validation process. This could mean training
the model on different subsets of selected attributes, i.e., randomly selecting
attributes for each architecture and determining the combination that results in
the lowest loss for both. However, for specific tasks, one can make this decision
based on their field knowledge of the problem. For the sake of this experiment, as
a consequence of the low number of features we are working with (only the atom
coordinates, and its atomic number), it seemed intuitive to cast the cartesian
coordinates to the GAE as structural features, while feeding the atomic number
to the autoencoder as node semantic feature.

Splitting Structural and Semantic Knowledge in GAE 85

Fig. 1. Schematic view of our architecture for graph regression based on an autoen-
coder, a graph autoencoder, fitted with a regression module.

The latent space of our architecture is created by combining the latent space
of the autoencoder, represented as Zsem , and the latent space of the GAE,
represented as Zstr . Graphs are structures that must be invariant to the order
of the nodes, meaning they have the property of being node-position invariant. A
common way to achieve this property is by computing the sum, mean, minimum,
or maximum of each feature for all nodes. We have chosen to calculate the mean,
as it makes the architecture independent of the number of nodes. Applying this
mean is commonly known as the global average pooling. Then, given zstr vectors,
the rstr vector is generated by computing their mean. Note the length of the
vector rstr is independent of the number of nodes n. This is an important feature
since it means that we can fit the system with graphs that have different numbers
of nodes.

Finally, the concatenated vector composed of rsem and rstr is used for regres-
sion fitting. This vector is used to determine the global property of the graph.

3.1 The Learning Process

The learning process is achieved in two steps. Initially, both weights W0, W1

of the autoencoder, and W ′
0, W ′

1 in the GAE are learned given all graphs Gg,
where g = 1, ..., k. Following that, the regression weights are learned, given the
returned latent vectors zg

sem and zg
str of all graphs Gg in the training set, where

g = 1, ..., k. For the scope of this paper and its application, we focus on GAEs.
More on the learning process of the autoencoder, weights W0, and W1, can be
found in the original work [7].

GAEs (Sect. 2.2) were modeled to reconstruct only one, usually huge, graph.
Thus, the aim of the learning process, which minimises Eq. 3, is to reconstruct
this unique graph. In that case, z would have to be defined such that it resembles
the inherent properties of this graph. We are in a different scenario. We wish

86 S. Fadlallah et al.

that all latent spaces zg generated by all k graphs Gg are able to reconstruct
their corresponding graphs G∗g given only one GAE, i.e., the same weights for
all the graphs. In this way, the minimisation criterion was redefined as the sum
of Eq. 3 to represent the loss function of all k graphs in the dataset as expressed
in Eq. 4:

L =
1
k

k∑
g=1

Lg (4)

where,

Lg =
1
n2

n∑
i=1

n∑
j=1

wposA
g
i,j logA∗g

i,j + wneg(1 − Ag
i,j)log(1 − A∗g

i,j). (5)

describes the loss function per each graph Gg, where wpos and wneg represent
the positive and negative weights.

4 Experimental Validation

ReGenGraphs have been applied to predict the interaction or binding energy
between a ligand and its corresponding protein. This binding energy is essentially
the free energy of the complex AB or the Gibbs energy, which is calculated by
subtracting the Gibbs energy of molecule A, i.e., the ligand, and the Gibbs energy
of molecule B, i.e., the protein, from the Gibbs energy of the complex AB.

As mentioned above, our proposal is thought for data that presents both
semantic and structural knowledge. In the database used in the experiments,
the node attributes consist of the three-dimensional position of the atom and its
atomic number. In the case of the first attribute, we can clearly see a relation
between having a bond, an edge in the graph, between two atoms, two nodes
in the graph, and the proximity between these atoms. Contrarily, in the case of
the second attribute, there is no relation between the type of atom and being
connected to a similar one. The contrary option would be, for instance, that
oxygen tends to be connected to oxygen and not to other atoms.

4.1 Database

We utilized data from the Immune Epitope Database (IEDB) [18] to develop a
new database. IEDB database is a valuable resource for studying specific dis-
eases, as it offers researchers the ability to identify and analyze epitopes that
are relevant to their particular research goals [10] or for training and develop-
ing web servers aimed at predicting binding interactions between peptides and
major histocompatibility complex molecules [12].

This new database selectively includes the HLA-A02:01 allele and peptides
of length 9, known as nonamers. The choice of HLA-A02:01 was made as it is
one of the most prevalent and polymorphic subtypes of HLA-A molecules both
in humans and in the IEDB. The choice of nonamers was made as it is the

Splitting Structural and Semantic Knowledge in GAE 87

most frequent peptide length that binds to HLA-A*02:01 allele in the IEDB
database. A total of 4872 peptides were selected and then further filtered to
yield a total of 500 graphs. This dataset was created using the data published
up until 23/10/2022.

The database was employed to generate 3D compounds utilizing FoldX [14],
a software that predicts the stability of protein structures and mutations and
gives their binding energies. The 3D compounds were created with the functions
RepairPDB, BuildModel and AnalyseComplex from FoldX. The 3D compounds
provide a more detailed insight into the interactions between the peptides and the
HLA-A02:01 allele. The 5ENW structure of HLA-A02:01 served as the template
to create all 3D compounds [11]. The 3D compounds are complexes involving
an HLA molecule and a peptide of interest. In this paper, we solely utilized the
structure and coordinates of the peptide to reduce the complexity associated
with studying the entire complex.

4.2 Architecture Configuration

The autoencoder was modeled with a fully connected neural network, which
only has one hidden layer with 20 neurons that takes the adjacency matrix and
atomic number as input. The length of zsem is 20. The input and output layers
have 96 neurons to consider the largest graph in the set (graphs varied between
48 and 96 nodes per graph with an average of 71 nodes). The weights were
defined as follows, W0 ∈ R

96×20 and W1 ∈ R
20×96. The hidden layer applied

a sigmoid activation function while the output layer utilised a linear function.
The back-propagation algorithm was used for learning.

The input X of the GAE is composed of a matrix of 96 (number of nodes)
times 3 (3D position). The input A of the GAE is composed of a square matrix of
96 times 96. W ′

0 ∈ R
3×100 and W ′

1 ∈ R
100×20 took their shape corresponding

to the size of the hidden layer (100), and the number of attributes given (3).
zsem is a matrix of 96 times 20 and thus rstr is a vector that has a length of
20. For graphs with fewer than 96 nodes, we fill the remaining rows of X and
the rows and columns of A with zeros. This procedure is applied to both the
autoencoder and the GAE.

Finally, the fitting function is modeled by a classical regression. Thus, it
receives a vector of 40 elements, composed by concatenating the 20 elements
from rsem and their counterparts from rstr . The function outputs only one real
number representing the binding energy.

4.3 Binding Energy Prediction

We want to heuristically validate the need of using an autoencoder and a GAE,
instead of applying a classical scheme that is composed of only one of them,
namely, an autoencoder or GAE.

88 S. Fadlallah et al.

Fig. 2. Three scatter plots showing the predicted and experimental binding energy of
the compounds in the database. From top to down, using only an Autoencoder, using
only a GAE and our model. The mean square errors appear on the top of the scatters.

Splitting Structural and Semantic Knowledge in GAE 89

Figure 2 shows three scatter plots of computed and experimental binding
energy values corresponding to the compounds in the database. In the first case,
only an autoencoder and a fitting function were used. Note that in this scenario,
it was not possible to reconstruct the bonds of the compounds. In the second
case, only a GAE and a fitting function were used. In this scheme, the compound
can be reconstructed. Finally, our method was applied by combining latent rep-
resentations derived from both the autoencoder and the GAE to be used by the
fitting function.

The first technique returns the highest mean square error (MSE), with a
value of 39.23. Following that, the GAE technique demonstrates an MSE of
31.19, and our proposed method achieves an MSE of 29.29. These outcomes
validate the proposed method in a heuristic manner, which is based on splitting
the node attributes -features of the atom- in two parts, one that is independent
of the graph edges -existence and type of a bond-N, while the other remained
dependent on them. Hence, by carefully deciding which attributes to be taken
into account and which ones to be discarded, we have demonstrated that it is
worthwhile to define a dual model that applies this split of attributes.

5 Conclusions

The binding energy between a protein and its ligand is key to understanding the
dynamics and stability of the protein-ligand complex. The non-covalent interac-
tions between the two molecules are crucial for predicting the strength of the
protein-ligand complex and identifying drug candidates that selectively bind to
the target proteins in the drug discovery process.

Given that we currently have some experimental data, this aim can be
achieved by modern computational methods based on machine learning. A bind-
ing energy predictor of drugs has been presented, which is based on two steps.
The first part is the conversion of the molecule into the interaction graph. The
second is a new architecture composed of an autoencoder, a graph autoencoder,
and a regression module.

A key aspect of our approach is the separation of the semantic and the struc-
tural knowledge of the compounds. The first is processed through the autoen-
coder while the second is processed through the graph autoencoder. This main
feature is independent of the application, which means, our proposal could have
different applications in other fields. The only important aspect to be consid-
ered is discerning between attributes that are dependent on the structure and
attributes that are not.

Practical experiments show the ability of our method to predict the binding
energy. In addition to that, they also show that the mean square error of the
binding energy prediction using a graph autoencoder is larger than using our
method.

In future work, we plan to test our proposal by using different architectures
for the autoencoder in addition to applying other fitting functions in the regres-
sion model, such as neural networks. we also aim to further validate our method

90 S. Fadlallah et al.

by testing it on other graphs and datasets. Despite the simplicity of the chosen
functions, the results are promising.

Acknowledgements. This research is supported by the Universitat Rovira i Virgili
through the Mart́ı Franquès grant and partially funded by AGAUR research group
2021SGR-00111: “ASCLEPIUS: Smart Technology for Smart Healthcare”.

References

1. Fadlallah, S., Julià, C., Serratosa, F.: Graph regression based on graph autoen-
coders. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds.) Structural,
Syntactic, and Statistical Pattern Recognition, pp. 142–151. Springer International
Publishing, Cham (2022)

2. Garcia-Hernandez, C., Fernández, A., Serratosa, F.: Ligand-based virtual screening
using graph edit distance as molecular similarity measure. J. Chem. Inf. Model.
59(4), 1410–1421 (2019)

3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

4. Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning
with deep generative models (2014)

5. Kipf, T.N.: Deep Learning with Graph-Structured Representations. Ph.D. thesis,
University of Amsterdam (2020)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907

7. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neu-
ral networks. AIChE J. 37, 233–243 (1991)

8. Le, T., Le, N., Le, B.: Knowledge graph embedding by relational rotation and
complex convolution for link prediction. Expert Syst. Appl. 214, 119122 (2023).
https://doi.org/10.1016/j.eswa.2022.119122

9. Majumdar, A.: Graph structured autoencoder. Neural Netw. 106, 271–280 (2018).
https://doi.org/10.1016/j.neunet.2018.07.016

10. Naveed, M., et al.: A reverse vaccinology approach to design an mrna-based vaccine
to provoke a robust immune response against hiv-1. Acta Biochimica Polonica
70(2) (2023). https://doi.org/10.18388/abp.2020 6696

11. Remesh, S., et al.:Unconventional peptide presentation by major histocompatibil-
ity complex (mhc) class i allele hla-a*02:01:breaking confinement. J. Biol. Chem.
292(13) (2017). https://doi.org/10.1074/jbc.M117.776542

12. Reynisson, B., Alvarez, B., Paul, S., Peters, B., Nielsen, M.: Netmhcpan-4.1 and
netmhciipan-4.0: improved predictions of MHC antigen presentation by concurrent
motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids
Res. 48(W1), W449–W454 (2020). https://doi.org/10.1093/nar/gkaa379

13. Rica, E., Álvarez, S., Serratosa, F.: Ligand-based virtual screening based on the
graph edit distance. Int. J. Mol. Sci. 22(23), 12751 (2021)

14. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L.: The
foldx web server: an online force field. Nucleic acids research 33(Web Server issue)
(2005). https://doi.org/10.1093/nar/gki387

15. Serratosa, Francesc: Redefining the graph edit distance. SN Comput. Sci. 2(6), 1–7
(2021). https://doi.org/10.1007/s42979-021-00792-5

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1609.02907
https://doi.org/10.1016/j.eswa.2022.119122
https://doi.org/10.1016/j.neunet.2018.07.016
https://doi.org/10.18388/abp.2020_6696
https://doi.org/10.1074/jbc.M117.776542
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1093/nar/gki387
https://doi.org/10.1007/s42979-021-00792-5

Splitting Structural and Semantic Knowledge in GAE 91

16. Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure
to solve the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015)

17. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

18. Vita, R., et al.: The immune epitope database (iedb): 2018 update. Nucleic Acids
Res. 47(D1) (2018). https://doi.org/10.1093/nar/gky1006

19. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24
(2021). https://doi.org/10.1109/TNNLS.2020.2978386

https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1109/TNNLS.2020.2978386

Graph Normalizing Flows to Pre-image
Free Machine Learning for Regression

Clément Glédel(B), Benôıt Gaüzère, and Paul Honeine

Univ Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie,
Normandie Univ, LITIS UR 4108, 76000 Rouen, France

clement.gledel@univ-rouen.fr

Abstract. In Machine Learning, data embedding is a fundamental
aspect of creating nonlinear models. However, they often lack inter-
pretability due to the limited access to the embedding space, also called
latent space. As a result, it is highly desirable to represent, in the input
space, elements from the embedding space. Nevertheless, obtaining the
inverse embedding is a challenging task, and it involves solving the hard
pre-image problem. This task becomes even more challenging when deal-
ing with structured data like graphs, which are complex and discrete by
nature. This article presents a novel approach for graph regression using
Normalizing Flows (NFs), in order to avoid the pre-image problem. By
creating a latent representation space using a NF, the method overcomes
the difficulty of finding an inverse transformation. The approach aims at
supervising the space generation process in order to create a space suit-
able for the specific regression task. Furthermore, any result obtained
in the generated space can be translated into the input space through
the application of the inverse transformation learned by the model. The
effectiveness of our approach is demonstrated by using a NF model on
different regression problems. We validate the ability of the method to
efficiently handle both the pre-image generation and the regression task.

Keywords: Graph Normalizing Flows · Pre-image problem ·
Regression · Interpretability · Nonlinear embedding

1 Introduction

Graph machine learning generally operates by embedding graph data to a mean-
ingful space known as the latent (or feature) space. This embedding can either
be implicit, as in the case of kernel machines, or explicit through the use of
nonlinear operations in deep neural networks or more classic graph embedding
approaches [3,11]. While providing accurate prediction models for classification
or regression tasks, such methods lack interpretability, and it may be interesting
to invert the embedding and map the results back to the graph space to analyze
the behavior of the model. This process is referred to as the pre-image problem.
Several solutions for the pre-image problem have been proposed in the general

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 92–101, 2023.
https://doi.org/10.1007/978-3-031-42795-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_9

Graph NFs to Pre-image Free ML for Regression 93

case [1,9]. Moreover, some solutions have been proposed to solve the pre-image
problem on graph data [2,10].

In this work, we propose to design an interpretable prediction model using
a graph regression method that addresses the issue of the pre-image. The key
idea is to define a nonlinear-embedding function that is invertible by design. The
learned embedding space is designed to linearly organize the samples, leading to
good regression performances by the application of any standard linear regression
method in this space. Additionally, pre-images can be conveniently generated by
applying the inverse mapping on any sample of interest from the latent space.

Our approach producing a reversible nonlinear-embedding function takes
inspiration from recent advances in graph generative models [5–7], including
Normalizing Flows (NFs) for graphs and molecular data [20]. By defining an
invertible transformation from the complex distribution of input data to a simple
distribution easy to manipulate, NFs can learn a latent space while guaranteeing
the invertibility of the model. Our experimental results showcase the efficacy of
our proposed methodology through the use of the MoFlow architecture [20], a
graph normalizing flow (GraphNF) using coupling-layers to operate on graphs
represented by a combination of a feature matrix and adjacency tensor. We con-
ducted experiments on well-known molecular datasets to demonstrate the appli-
cability of our approach in addressing graph regression tasks while producing a
high-quality representation space free of the pre-image problem.

The paper is organized as follows: Sect. 2 gives an overview of NFs and Graph-
NFs. Our contributions are presented in Sect. 3, which is divided into three
parts. We first revisit the NF to address a regression task, and then detail the
regression model. Lastly, we introduce the pre-image generation operations. The
experiments and conclusion follow in Sects. 4 and 5, respectively.

2 Normalizing Flow Preliminaries

Normalizing Flows (NFs) are generative models that learn an invertible trans-
formation function Φ between two probability distributions: a complex data dis-
tribution PX and another distribution PZ , often chosen as a simple Gaussian
distribution represented in a latent space. This allows fast and efficient data gen-
eration by sampling from the Gaussian distribution in the latent space and using
the inverse function Φ−1 to generate data in the input space X . The relation-
ship between the two probability densities in NFs is defined using the change of
variable formula. Therefore, considering the input samples x1, x2, . . . , xN ∈ X ,
the training is performed by maximizing the log-likelihood function

log PX (X) =
N∑

i=1

log PZ(Φ(xi)) + log
∣∣∣∣det

(
∂Φ(xi)
∂ xi

)∣∣∣∣ , (1)

where the determinant of the Jacobian of the function Φ, evaluated at xi, indi-
cates the degree of deformation between the two distributions. This expression
represents the exact relationship between the distributions, which differs from

94 C. Glédel et al.

Fig. 1. NF adapted to a regression task, colors correspond to y values.

variational auto-encoders that rely on lower bounds. To define this relationship,
the NF model should have an easy-to-invert structure with an easy-to-compute
determinant. In order to enhance the model’s expressiveness, the transformation
Φ combines � bijective functions, i.e., Φ = Φ� ◦ Φ�−1 ◦ · · · ◦ Φ1. This results in
computing the Jacobian determinant of Φ as the product of the determinants of
all Φi. Various NF architectures have been proposed in the literature to satisfy
these constraints by defining a triangular Jacobian matrix whose determinant
computation is very efficient [14].

Graph Normalizing Flows (GraphNFs) apply the concept of NFs to graph-
structured data. While some GraphNFs generate graphs sequentially, such as
GraphAF [19] based on a flow-based autoregressive model, a large number of
GraphNFs generate graphs in a one-shot manner [8,15,16,20]. In the latter,
the first attempt to design a graph neural network using NF structures was
GNF [15] where the node features are updated using reversible message passing
transformation based on coupling layers. GraphNVP [16] and MoFlow [20] are
GraphNFs working in a one-shot manner and representing molecular graphs
as a pair of node feature matrix and adjacency tensor. They are based on the
use of affine-coupling layers to both the node feature matrix and the adjacency
tensor. Specifically, MoFlow involves a modified version of Glow [13] – which
is a convolutional NF for image data – to model the bonds and a new graph
conditional flow to model the atoms given the bonds using Relational Graph
Convolutional Network models. Moreover, to ensure the validity of the generated
molecules, MoFlow applies a post-hoc correction step.

3 Proposed Approach

This article presents a graph regression approach based on the NF formalism,
where the NF generated latent space Z is both relevant to the regression task at
hand and, by design, does not suffer from the pre-image problem. The underlying
idea, illustrated in Fig. 1, involves the three steps. First, we propose to supervise
the learning of the NF function Φ : G → Z to generate a distribution that

Graph NFs to Pre-image Free ML for Regression 95

follows multiple Gaussian distributions linearly organized in Z. Second, using
the learned latent space Z, we can perform straightforward operations (e.g.,
ridge regression) or more sophisticated algorithms to predict a quantitative value
given a data. Finally, as our model is invertible, both the transformation Φ and
its inverse Φ−1 are produced by our training algorithm. Therefore, it is possible
to compute the pre-image of any point from the latent space Z.

3.1 Regression-Based NF

Traditional NF models embed data in such a way that the distribution in the
latent space follows a target probability density, typically a Gaussian distribu-
tion. However, this configuration does not permit data to be organized based
on their quantitative values. In this section, we propose an adaptation of the
NF objective function to embed data based on their quantitative values, thus,
suitable for linear regression.

Consider a dataset D = {(G1, y1), (G2, y2) . . . (GN , yN)} composed of input
graph data denoted by Gi ∈ G and their corresponding quantitative labels
denoted by yi ∈ Y ⊂ R. Specifically, we consider the case where every graph
is partitioned into its corresponding feature matrix and adjacency tensor, i.e.,
G = (X,A) ∈ R

n×d × R
n×n×e where each graph is represented by n nodes of

d dimensions and a set of edges characterized by e dimensions. Thus, the total
dimension number is D = n2 × e + n × d. In this paper, we consider using NF
models to represent data, where each data point is represented by a two-part
latent representation that corresponds to the features matrix and adjacency ten-
sor. In particular, we concatenate the flattened representations of these two parts
to obtain the representation of data in the latent space Z ⊂ R

D.
We constitute our latent space using Gaussian distributions, each parame-

terised by a mean μ and a covariance matrix Σ, namely

PZ(z,μ,Σ) =
1√

(2π)D det(Σ)
e− 1

2 (z − μ)�Σ−1(z − μ)).

From this, we define the log-probability to belong to a Gaussian as

log PZ(z,μ,Σ) = − 1
2

(
D log(2π) + (z−μ)�Σ−1(z−μ)

) − log(det(Σ)). (2)

While common NFs rely on isotropic multivariate Gaussian distributions,
thus using a parameterization of zero-valued μ for all dimensions and the iden-
tity matrix as the covariance matrix Σ, our approach aims at solving regression
problems by the use of Gaussian distribution interpolations in Z. The principle
is to learn a distribution that spreads along a main axis by interpolating between
two Gaussians, which are associated with the extreme quantitative values. There-
fore, two Gaussian distributions are defined and parameterized by (μ1, Σ1) and
(μ2, Σ2), which are respectively associated with the minimum and maximum
values of Y. For the sake of simplicity, we use isotropic Gaussians, namely with
covariance matrices Σ1 = Σ2 = σ2

ID, where ID is the D × D identity matrix
and σ2 ∈ R represents the distribution variance.

96 C. Glédel et al.

To carry out the interpolation process, a belonging coefficient τyi
is assigned

to each sample (Gi, yi) based on its quantitative value computed with

τyi
=

yi − min(Y)
max(Y) − min(Y)

. (3)

The interpolated Gaussian mean μyi
is computed using

μyi
= τyi

μ1 +(1 − τyi
)μ2 . (4)

For the interpolation method to be useful, the 2 extreme Gaussian locations
in Z represented by their means (μ1,μ2) should be distinct and sufficiently sepa-
rated. Thus, we propose to learn their means within the NF training. To achieve
this, we incorporate an additional objective function into the NF objective func-
tion, aimed at maximizing the separability of the Gaussians.

Thus, the proposed NF loss function is composed of two terms. The first one
applies the change of variable formula (1) to describe the change in density of a
single sample. Specifically, for each sample Gi, the corresponding loss is

Lnf(Gi,μyi
) = − log PZ(Φ(Gi),μyi

,Σyi
) − log

∣∣∣∣det
(

∂Φ(Gi)
∂Gi

)∣∣∣∣ .

Here, log PZ(Φ(Gi),μyi
,Σyi

) refers to (2), which uses the interpolated Gaussian
parameters (μyi

,Σyi
). The mean μyi

is computed using (4), while the covariance
matrix Σyi

is defined in the same way as the other Gaussian distributions,
namely Σyi

= σ2
ID. The second term promotes the separation between the

two extreme Gaussians with Lμ = − log
(
1 + ‖μ1 −μ2 ‖22

)
. Thus, the final loss

function is
L(Gi, yi) = Lnf(Gi,μyi

) + βLμ, (5)

with β corresponding to the tradeoff coefficient between the two terms.
Let Θ denotes the set of parameters of Φ, and let ω the set of optimizable

parameters, i.e., ω = {Θ,μ1,μ2}. To estimate the parameters in ω, we employ a
stochastic gradient descent algorithm that minimizes the loss function (5) over
a randomly selected batch I of the training dataset at each iteration, namely

ω ← ω − η
∑

k∈I

∇ωL(Gk, yk), (6)

where η is the learning rate.

3.2 Operating in Z
Our approach allows a customized generation of a latent space Z where data
are linearly organized. Therefore, a simple and efficient predictive model can
be defined in Z. We denote g : Z → R a linear predictive model. Since Φ is a
nonlinear function, defining the linear predictive model g in Z is equivalent to
defining a nonlinear predictive model f : G → R, described as f(G) = g(Φ(G)).

Graph NFs to Pre-image Free ML for Regression 97

Let g(z) = z� ϕ* be the predictive linear model g : Z → R, where ϕ* ∈ Z are
the optimal parameters to be estimated. Without losing generality, we consider
a ridge regression in the latent space. This involves finding the best parameters
by minimizing the regularized mean square error given by

min
ϕ

1
N

N∑

i=1

(
yi − Φ(Gi)�ϕ

)2

+ λ ‖ϕ‖22, (7)

where the importance of the regularization term is weighted by λ. The opti-
mal solution vector ϕ* for this regularized optimization problem is obtained by
nullifying its gradient, resulting in

ϕ* = (Z� Z+λID)−1 Z� y . (8)

where

Z =
(
Φ(G1) · · · Φ(GN)

)�

y =
(
y1 · · · yN

)�
.

Then using (8) leads to the optimal predictive parameters in Z and we can
therefore specify the nonlinear predictive model f : G → R by combining the
transformation function Φ and the linear regression model g. Using this method,
the quantitative value prediction for any graph G ∈ G is achieved by

f(G) = Φ(G)�(Z� Z+λID)−1 Z� y .

3.3 Pre-imaging

The availability of Φ−1 allows the pre-image of any point of interest from the
latent space to be computed, thus eliminating the pre-image problem. We pro-
pose a pre-image generation method to obtain new data given a quantitative
label y. Indeed, our regression approach creates a linear relation between quan-
titative labels and positions in Z. As the Gaussian distribution characterized
by (μ1,Σ1) is intentionally associated with the minimum quantitative label in
Y , and the one defined by (μ2,Σ2) is associated to the maximum quantitative
label in Y , we can determine the position of the mean μy that corresponds
to a quantitative label y by employing (4). Then, from the Gaussian distribu-
tion parameterized by (μy,Σy), it is possible to sample a point z ∈ Z with
z ∼ N (μy, σ2

ID) where σ2 represents the variance of the Gaussian distributions
chosen during the training of the model and obtain its pre-image in G, namely

Ĝ = Φ−1(z).

98 C. Glédel et al.

4 Experiments

We evaluated our approach1 in order to answer two separate questions:

Q1 Can the latent space produced by our regression method for graph data
be considered effective, and are the representations generated suitable for
regression-based objectives?

Q2 Does our model preserve its ability to efficiently generate pre-images ?

The analysis was conducted on three molecular regression datasets. In these
datasets, the nodes encode the atoms of the molecule and are labeled by the
chemical element of each atom. The edges encode the chemical bonds between
atoms. The QM7 dataset is a quantum chemistry dataset composed of 7, 165
small organic molecules with up to 7 significant atoms. Its regression task con-
sist in predicting the atomization energy of each molecule. The ESOL dataset is
composed of 1, 128 molecular compounds, with a maximum of 55 nodes. As the
used graph representation is sensitive to the size of the graphs, molecules with
more than 22 atoms were filter out, thus reducing the dataset to 1, 015 differ-
ent graphs. The prediction task consists of predicting the solubility measurement
associated with each molecule. Finally, the FREESOLV dataset provides exper-
imental and calculated information on the hydration free energies of 643 small
molecules in water, with a maximum of 24 nodes. Similarly to the ESOL dataset,
the dataset was reduced to 632 distinct graphs with a maximum size of 22 nodes.

We implemented our approach using MoFlow [20] and compared it to stan-
dard graph kernels, such as Weisfeiler-Lehman (WL) [18], Shortest-Path
(SP) [4] and Hadamard Code (Hadcode) [12]. In addition, as our approach
consists in applying ridge regression on the concatenation of the flattened repre-
sentations of the graph in Z, we also compared to simpler kernels working on the
concatenation of the flattened representations of the graph in G. We considered
standard vector-based kernels: linear, RBF, Polynomial and a sigmoid [17]. Each
predictive model was trained by minimizing the cost function described in (7).
Finally, the capability of generating pre-images was compared with the approach
outlined in [1], employed on previously mentioned kernel methods.

Each dataset was split to 90% for training and the remaining 10% for evalu-
ation. To ensure a fair comparison, the kernels were fine-tuned and their param-
eters determined by cross-validation with a grid search where 10 values of λ
ranging from 10−5 to 102 were selected for sampling. In addition, for the simpler
kernels, a logarithmic scale was used to sample 5 weighting values applied to
the similarity measure used in the kernel ranging from 10−5 to 103. The power
of the Polynomial kernel was varied over a set of candidate values: 1, 2, 3, 4. For
regression evaluations, the performance is measured by the R2 score.

As described in previous sections, we converted the graph data into a combi-
nation of a node feature matrix and an adjacency tensor, namely G = (X,A) ∈ G
with X ∈ R

n×d and A ∈ R
n×n×e. The conducted experiments used labeled edges

1 For sake of reproducibility, all experiments can be reproduced from the available
GitHub repository https://github.com/clement-g28/nf-kernel.

Graph NFs to Pre-image Free ML for Regression 99

Table 1. R2 score (± std) on graph regression datasets

Method Datasets

QM7 ESOL FREESOLV

Standard Kernels

Linear 0.681 ± 0.001 0.555 ± 0.032 0.254 ± 0.114

RBF 0.680 ± 0.002 0.558 ± 0.032 0.262 ± 0.113

Polynomial 0.681 ± 0.001 0.566 ± 0.034 0.264 ± 0.102

Sigmoid 0.673 ± 0.002 0.563 ± 0.037 0.255 ± 0.074

Graph Kernels

WL 0.490 ± 0.0 0.602 ± 0.0 0.895 ± 0.0

SP 0.721 ± 0.0 0.531 ± 0.0 0.543 ± 0.0

Hadcode 0.491 ± 0.0 0.573 ± 0.0 0.901 ± 0.0

(Ours) MoFlow 0.730 ± 0.008 0.685 ± 0.039 0.754 ± 0.042

in each dataset, leading to the definition of e as the number of edge labels plus
one label for the non-existent edge. The value of d was determined by the num-
ber of node labels along with one label for the non-existent node. In addition,
since a graph composed of n nodes can be represented in n! distinct ways using
such a representation method, we trained our models by implementing a ran-
dom permutation transformation of the input graph data. Additionally, to assess
the permutation variability of our technique, all experiments were evaluated 10
times by employing random permutations. Consequently, the performance are
reported as the mean performance and its standard deviation.

To answer Q1, Table 1 displays the average performance and standard devi-
ation (std) on the regression datasets. These results show the good predictive
performance of our method when employing linear ridge regression within the
latent space Z for most datasets. However, best results on the FREESOLV
dataset are achieved by the Weisfeiler-Lehman and Hadamard Code kernels. To
understand this point, it is noteworthy that this dataset comprises a smaller
number of distinct graphs, which are relatively larger in size when compared to
other datasets like QM7. Moreover, the quantitative values in the FREESOLV
dataset are non-uniformly distributed, ranging between −5.48 and 1.79, with
a significant proportion (more than 97%) falling within the range of −2.57 to
1.79. As a result, the linear interpolation-based approach used in this study may
not be the most suitable method for such datasets. However, our approach has
the advantage over graph kernels that once the model has been learned, pre-
dictions can be made directly and simply while graph kernel methods can be
computationally more expensive. Moreover, we can observe in the results non-
zero standard deviation in our performances due to the nature of the used graph
representations, as opposed to the graph kernels that are designed to be permu-
tation invariant. Therefore, the question Q1 can be answered positively in most
cases, indicating that the nonlinear transformation Φ learned by our method is
able of producing a good representation space for a regression task.

100 C. Glédel et al.

Fig. 2. The pre-images generated from 12 points in Z sampled uniformly between the
min(Y) and max(Y).

To answer Q2 and test the ability of our model to generate pre-images, we
generated molecules from sampling points in Z using our model trained on the
QM7 dataset. These points were sampled by interpolating 12 values of y between
min(Y) and max(Y) as follows: For each value, we sampled a point in Z with
z ∼ N (μy, σ2

ID). Corresponding pre-images were generated in X by applying
the inverse transformation Φ−1 to the generated z. Figure 2 shows the obtained
pre-images, as well as the sampled quantitative values y and the predicted value
f(G) using our learned prediction model. This experiment demonstrates that
our model can generate meaningful pre-images of points in Z that are not a part
of the dataset, hence answering positively to Q2.

5 Conclusion

Our paper presented a novel approach that overcomes the curse of the pre-
image using NFs for a graph regression task. Our method generates a supervised
space where linear regression can be efficiently operated, as demonstrated by the
conducted experiments. The results indicated that the obtained latent space is
efficient in solving graph regression problems using straightforward linear oper-
ations. Moreover, the method enabled interpretability by facilitating the trans-
formation from the latent space to the input space and generating pre-images of
specific points of interest.

Our approach contributes to the application of NFs in a specific task and has
the potential to be adapted for other tasks such as classification. Although our
method is sensitive to the permutation of the graph due to the used representa-
tion, it may be interesting to extend it to other types of graph representations,
making it possible to achieve permutation invariance.

Acknowledgements. The authors acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-18-CE23-0014.

Graph NFs to Pre-image Free ML for Regression 101

References

1. Bakır, G.H., Weston, J., Schölkopf, B.: Learning to find pre-images. Adv. Neural
Inf. Process. Syst. 16, 449–456 (2004)

2. Bakır, G.H., Zien, A., Tsuda, K.: Learning to find graph pre-images. In: Rasmussen,
C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol.
3175, pp. 253–261. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28649-3 31

3. Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., Honeine, P.: Analyz-
ing the expressive power of graph neural networks in a spectral perspective. In:
International Conference on Learning Representations, Vienna, Austria (2021)

4. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE
International Conference on Data Mining (ICDM 2005) (2005)

5. Bresson, X., Laurent, T.: A two-step graph convolutional decoder for molecule
generation (2019). arXiv preprint arXiv:1906.03412

6. De Cao, N., Kipf, T.: Molgan: an implicit generative model for small molecular
graphs (2018). arXiv preprint arXiv:1805.11973

7. Guo, X., Zhao, L.: A systematic survey on deep generative models for graph gen-
eration. IEEE Trans. Pattern Anal. Mach. Intell. 45, 5370–5390 (2022)

8. Honda, S., Akita, H., Ishiguro, K., Nakanishi, T., Oono, K.: Graph residual flow
for molecular graph generation (2019). arXiv preprint arXiv:1909.13521

9. Honeine, P., Richard, C.: Solving the pre-image problem in kernel machines: a
direct method. In: 2009 IEEE International Workshop on Machine Learning for
Signal Processing, pp. 1–6. IEEE (2009)

10. Jia, L., Gaüzère, B., Honeine, P.: A graph pre-image method based on graph edit
distances. In: Proceedings of S+SSPR 2020 (2021)

11. Jia, L., Gaüzère, B., Honeine, P.: Graph kernels based on linear patterns: theoret-
ical and experimental comparisons. Expert Syst. Appl. 189, 116095 (2022)

12. Kataoka, T., Inokuchi, A.: Hadamard code graph kernels for classifying graphs. In:
ICPRAM, pp. 24–32 (2016)

13. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1×1 convolu-
tions. In: Advances in Neural Information Processing Systems, pp. 10215–10224
(2018)

14. Kobyzev, I., Prince, S.J., Brubaker, M.A.: Normalizing flows: an introduction and
review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3964–
3979 (2020)

15. Liu, J., Kumar, A., Ba, J., Kiros, J., Swersky, K.: Graph normalizing flows. Adv.
Neural Inf. Process. Syst. 32 (2019)

16. Madhawa, K., Ishiguro, K., Nakago, K., Abe, M.: Graphnvp: an invertible flow
model for generating molecular graphs (2019). arXiv preprint arXiv:1905.11600

17. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge
(2002)

18. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

19. Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., Tang, J.: Graphaf: a flow-
based autoregressive model for molecular graph generation (2020). arXiv preprint
arXiv:2001.09382

20. Zang, C., Wang, F.: Moflow: an invertible flow model for generating molecular
graphs. In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 617–626 (2020)

https://doi.org/10.1007/978-3-540-28649-3_31
https://doi.org/10.1007/978-3-540-28649-3_31
http://arxiv.org/abs/1906.03412
http://arxiv.org/abs/1805.11973
http://arxiv.org/abs/1909.13521
http://arxiv.org/abs/1905.11600
http://arxiv.org/abs/2001.09382

Matching-Graphs for Building
Classification Ensembles

Mathias Fuchs1(B) and Kaspar Riesen1,2

1 Institute of Computer Science, University of Bern, 3012 Bern, Switzerland
{mathias.fuchs,kaspar.riesen}@unibe.ch

2 Institute for Informations Systems, University of Applied Science and Arts
Northwestern Switzerland, 4600 Olten, Switzerland

kaspar.riesen@fhnw.ch

Abstract. Ensemble learning is a well known paradigm, which combines
multiple classification models to make a final prediction. Ensemble learn-
ing often demonstrates significant benefits, in particular a better classifi-
cation performance than the individual ensemble members. However, in
order to work properly, ensemble methods require a certain diversity of
its members. One way to increase this diversity is to randomly select a
subset of the available data for each classifier during the training process
(known as bagging). In the present paper we propose a novel graph-based
bagging ensemble that consists of graph neural networks. The novelty of
our approach is that the ensemble operates on substantially augmented
graph sets. The graph augmentation technique, in turn, is based on so-
called matching-graphs, which can be computed on arbitrary pairs of
graphs. In an experimental evaluation on five graph data sets, we show
that this novel augmentation technique paired with a bagging ensem-
ble is able to significantly improve the classification accuracy of several
reference systems.

Keywords: Graph Matching · Matching-Graphs · Graph Edit
Distance · Graph Augmentation · Graph Neural Network · Ensemble
Learning

1 Introduction

Graphs, which consist of nodes that might be connected by edges, are used in
a wide range of applications [1]. Indeed, graphs offer a compelling alternative
to vector-based approaches, especially for applications involving complex data.
This is mainly because graphs are capable of encoding more information than
just an ordered and fixed-size list of real numbers.

In the last four decades a large number of procedures for graph-based pat-
tern recognition has been proposed in the literature [2]. Those procedures range
from graph edit distance [3], over spectral methods [4], to graph kernels [5] (to
name just three examples). Recently, with the advent of Graph Neural Networks
(GNNs) [6], the power of (deep) neural networks can finally be utilized by graphs.

Supported by Swiss National Science Foundation (SNSF) Project Nr. 200021 188496.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 102–112, 2023.
https://doi.org/10.1007/978-3-031-42795-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_10&domain=pdf
http://orcid.org/0000-0002-9482-0442
http://orcid.org/0000-0002-9145-3157
https://doi.org/10.1007/978-3-031-42795-4_10

Matching-Graphs for Building Classification Ensembles 103

In the present paper, we propose to use an ensemble learning method based
on individual GNNs. In order to produce performant and robust GNNs, a lot
of training data is typically required. Furthermore, it is accepted that ensemble
learning methods perform the best when a large diversity of the individual clas-
sifiers is given [7]. The major contribution of the present paper is a novel method
to generate both large and heterogeneous sets of graph data (particularly suited
for ensemble learning). The novel method is based on a recently introduced data
structure (known as matching-graph [8]).

Roughly speaking, a matching-graph encodes the matching subgraphs of two
graphs under consideration. This basic concept can be used in many different
ways. Matching-graphs can, for instance, improve the quality of graph dissim-
ilarity computations by aggregating a matching-graph based distance and the
original distance [8]. They can also be used to produce a subgraph based vector
space embedding, by checking whether or not a set of given matching-graphs
occur in the graph to embed [8]. The framework of matching-graphs is also
successfully adopted for the automatic detection of relevant (i.e., frequent) sub-
structures in very large graph sets [9]. Lastly, matching-graphs are also employed
for graph augmentation in order to even out very small graph data sets [10], as
well as to build more stable GNNs [11].

In the present work, we propose to further optimize the augmentation method
presented in [11] to generate even more diverse matching-graphs. These novel
matching-graphs provide a natural way to create realistic, diverse and relevant
graphs of a specific class. It is our main hypothesis that the large amount of
possible matching-graphs in conjunction with a bagging procedure ensures the
diversity of the individual classifiers and finally allows to build a robust ensemble.

The remainder of this paper is organized as follows. In Sect. 2, we formally
introduce the concept of matching-graphs and show how they can be used to
augment a given training set of graphs and build a bagging ensemble. Eventually,
in Sect. 3, we conduct an exhaustive experimental evaluation to provide empirical
evidence that this novel approach is able to improve the classification accuracy of
diverse reference systems. Finally, in Sect. 4, we conclude the paper and discuss
potential ideas for future work.

2 Building an Ensemble with Matching-Graphs

Ensemble methods aim at combining several individual classifiers into one sys-
tem. That is, an ensemble weighs the opinions of its individual members and
combines their results to get the final decision [7]. Various ensemble methods
have been proposed in the literature (e.g. Boosting [12] or Bagging [13]). In the
present paper we employ – in principle – a bagging ensemble for graph classifica-
tion. Thereby, the ensemble consists of multiple GNN classifiers that are trained
on random subsets of the training data. The main contribution is to substantially
increase the diversity of the bagging ensemble by means of matching-graphs. For
this reason, we first introduce this basic concept (Subsect. 2.1) and then explain
how these matching-graphs can be used for bagging (Subsect. 2.2).

104 M. Fuchs and K. Riesen

2.1 Matching-Graphs

In the present paper, we use the following formalism to define graphs. A graph
g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes, E ⊆ V × V
is the set of edges, μ : V → LV is the node labeling function, and ν : E → LE

is the edge labeling function.
Intuitively speaking, a matching-graph is built by extracting information

about the matching of pairs of graphs and formalising this information into a
new graph [8]. Matching-graphs in their original form can actually be interpreted
as denoised core structures of the underlying graphs, and always refer to sub-
graphs of the original graphs. Therefore, to augment a given training set, the
original definition of a matching-graph is not suitable. In [10], we propose an
adapted version of a matching-graph that represents a mixed version of both
original graphs, without being just a subgraph. However, this definition is still
not optimal for the present purposes, since the resulting matching-graphs are
always smaller than, or equal to, the original graphs. Hence, we now propose a
further altered definition for matching-graphs more suited for the present context
of increasing ensemble diversity.

The process of creating matching-graphs can be described as follows. Given
a pair of graphs g = (V,E, μ, ν) and g′ = (V ′, E′, μ′, ν′), the graph edit distance
is computed first1. The basic idea of graph edit distance is to transform g into g′

using edit operations (substitutions, deletions, and insertions of both nodes and
edges). We denote the substitution of two nodes u ∈ V and v ∈ V ′ by (u → v),
the node deletion by (u → ε), and the node insertion by (ε → v), where ε refers to
the empty node. By computing the graph edit distance one obtains a dissimilarity
score d(g, g′), as well as a (sub-optimal) edit path λ(g, g′) = {e1, . . . , es} that
consists of s edit operations that transform the source graph g in to the target
graph g′.

Based on λ(g, g′) two matching-graphs mg×g′ and mg′×g can now be built.
Initially, mg×g′ and mg′×g refer to the source graph g and the target graph g′,
respectively. In our procedure, we first define the partial edit path τ(g, g′) =
{e(1), . . . , e(t)} ⊆ λ(g, g′) with t = �p1 · s� edit operations, where t < s is the
amount of randomly selected edit operations from λ(g, g′) based on a certain
probability p1 ∈ [0, 1]2. Next, each edit operation ei ∈ τ(g, g′) is applied on
graphs mg×g′ and mg′×g according to the following three rules.

Case 1. ei is a substitution (u → v): The labels of the matching nodes u ∈ V
and v ∈ V ′ are exchanged in both mg×g′ and mg′×g. Note that this
operation shows no effect, if the labels of the involved nodes are identical
(i.e. μ(u) = μ(v)).

Case 2. ei is a deletion (u → ε): Node u ∈ V

– is deleted in mg×g′ .

1 For this purpose, we use algorithm BP [14] with cubic time complexity.
2 We use here the expression p1 (with subscript 1), because later in the paper we will
introduce a second probability p2.

Matching-Graphs for Building Classification Ensembles 105

– is inserted in mg′×g.
As we only execute parts of the edit path, it is possible that the adjacent
nodes of u are not yet processed, which means that we do not know the edge
structure of u in mg′×g. In this case, we perform a look-ahead to include
edges from u to the corresponding nodes in mg′×g. Formally, for all node
substitutions (v → u′) ∈ λ(g, g′), where node v ∈ V is adjacent to node
u ∈ V , we insert an edge between the inserted node u and node u′ in mg′×g.

Case 3. ei is an insertion (ε → v): Node v ∈ V ′

– is deleted in mg′×g.
– is inserted in mg×g′ (using a similar look-ahead technique as defined for Case

2).

The basic rationale to apply these rules is that we aim at creating matching-
graphs that are indeed related to the underlying graphs, but also substantially
differ to them in significant ways. This is achieved by allowing both insertions
of nodes and swappings of node labels.

Clearly, if p1 is set to 1.0, τ(g, g′) is equal to λ(g, g′), and thus all edit
operations from the complete edit path are executed during the matching-graph
creation. In this case, mg′×g would be equal to the source graph g and mg×g′

would be equal to the target graph g′. For probabilities p1 < 1, however, we
obtain matching-graphs that are more diverse and particularly different from
simple subgraphs (due to relabelled nodes and potential insertions). That is,
when all edit operations of τ(g, g′) are applied, both matching-graphs represent
somehow intermediate graphs between g and g′.

Due to the flexibility of graph edit distance, the matching-graph can be built
using graphs with any given labeling functions μ and ν. In other words it does
not matter whether the graphs are unlabaled or contain categorical or continuous
node and/or edge labels.

Figure 1 shows a visual example of an edit path λ(g, g′) between two graphs
g and g′ and two possible resulting matching-graphs mg×g′ and mg′×g. Both
matching-graphs are created with the partial edit path that consists of t = 3
edit operations. In this example, it is clearly visible that neither mg×g′ nor
mg′×g is a subgraph of g or g′, respectively. Furthermore, the effects of the look-
ahead technique is visible. More specifically, between the inserted node b ∈ V ′

and node 3 ∈ V an edge is inserted, even though the substitution (3 → c) is not
yet carried out.

Note that the proposed process can lead to isolated nodes, despite look-ahead
technique (for a detailed explanation of this phenomenon see [8]). As we aim to
build graphs with nodes that are actually connected to at least one other node
in the graph, we remove isolated nodes from the matching-graphs whenever they
occur in our method.

2.2 Bagging with Matching-Graphs

Based on the process of creating matching-graphs for any pair of graphs, we can
augment a given training set with virtually any number of additional graphs. In

106 M. Fuchs and K. Riesen

Fig. 1. An example of a complete edit path λ(g, g′), a partial edit path τ , and the
resulting matching-graphs mg×g′ and mg′×g.

order to do this, we conduct the basic steps formalized in Algorithm 1 (which is
similar in structure to the procedure described in [11]). The algorithm takes k
sets of training graphs Gω1 , . . . , Gωk

stemming from k different classes ω1, . . . , ωk,
and builds two matching-graphs mg×g′ and mg′×g for each possible graph pair
g, g′ ∈ Gωi

× Gωi
. Note that the probability p1 ∈ [0.1, 0.9] used for the creation

of the matching-graphs is randomly defined for each pair of graphs g, g′ (see
line 5). Assuming n training graphs per class ωi this algorithm results in n(n−1)
matching-graphs, which are directly used to augment the corresponding training
set Gωi

. Hence, rather than n graphs, we now have access to n(n − 1) + n = n2

graphs per class ωi
3.

Based on the augmented sets, a bagging ensemble E = {c1, . . . , cm} with m
classifiers can now be built. Each classifier ci ∈ E is trained only on a subset of
all training graphs. To this end, each classifier ci of the ensemble E is trained on
�p2 × n2� randomly selected graphs from Gωi

, where p2 ∈ [0, 1] is a predefined
probability and n2 is the number of graphs available in Gωi

(i.e., we assume that
Gωi

is augmented to size |Gωi
| = n2).

As base classifiers ci ∈ E , we use GNNs, which are – due to their inherent
randomness – viable ensemble members. GNNs allow for the use of deep learning
on graph structured data. The general goal of GNNs is to learn vector embed-
dings hv ∈ R

n or hg ∈ R
n that represent nodes v ∈ V or complete graphs g,

respectively. This vector space embedding can then be used for classification pur-
poses. In order to learn an appropriate vector representation, GNNs implement
a neighborhood aggregation strategy, called neural message passing, in which
messages are exchanged between the nodes of a graph [15]. In the present paper,
we employ a model that consists of Graph Convolutional Layers [16], denoted as

3 By defining a further for loop inside the second for loop (in Algorithm 1 Line 5),
just before the definition of p1, even more than one matching-graph could be created
for each pair of graphs, viz. we could produce more than n(n − 1) matching-graphs.

Matching-Graphs for Building Classification Ensembles 107

Algorithm 1: Graph Augmentation Algorithm
input : sets of graphs from k different classes G = {Gω1 , . . . , Gωk

}
output: same sets augmented by matching-graphs

1 foreach set Gωi
∈ G do

2 M = {}
3 foreach pair of graphs g, g′ ∈ Gωi

× Gωi
do

4 Compute λ(g, g′) = {e1, . . . , es}
5 Randomly define p1 in [0.1, 0.9]
6 Define τ by selecting �p1 · s� edit operations from λ
7 Build both matching-graphs mg×g′ and mg′×g according to τ

8 M = M ∪ {mg×g′ , mg′×g}
9 end

10 Gωi
= Gωi

∪ M

11 end

GCN from now on4. For the final graph classification, we add a dropout layer
and feed the graph embedding into a fully connected layer. The outputs of the
individual classifiers are then aggregated into one single decision by means of
majority voting.

3 Experimental Evaluation

3.1 Data Sets and Experimental Setup

The experimental evaluation is conducted on five data sets obtained from the
TUDatasets repository5. The first three data sets contain graphs that repre-
sent chemical compounds (NCI1, PTC(MR) and COX-2). The fourth data set
(Cuneiform) contains graphs that represent Hittie cuneiform signs6. The last
data set (Synthie) is an algorithmically created data set. The graphs of the first
three data sets consist of nodes labeled with discrete values and unlabelled edges,
whereas both Cuneiform and Synthie contain real-valued continuous node labels
and unlabeled edges. Each data set is split into a training and test set according
to a 4:1 split.

The novel ensemble (denoted as GCN-emg) uses the augmented training data
and is built as described in Sect. 2.2. We set p2 to 0.3 and due to computational
reasons we limit the amount of selected graphs to 100′000 per class. For each
ensemble we create 100 classifiers, which are trained for 200 epochs (except for
the NCI1 data set, where we build 50 classifiers, trained for 50 epochs only, due
to computational problems arising from the large number of graphs in this data
set).

For all base classifiers (viz. GCNs) we use the Adam optimizer with an initial
learning rate of 0.01, together with a CosineAnnealingLR scheduler. Further-
more, we use the Cross Entropy loss function. The batch size is set to 64. For
4 Any other classifier could be used for the experiments, as long as both the reference
ensemble and our novel ensemble are based on the same classifier.

5 https://graphlearning.io.
6 One of the oldest handwriting systems in the world.

https://graphlearning.io

108 M. Fuchs and K. Riesen

the implementation of the ensemble we use the ensemble-pytorch library7 which
we adapted to seamlessly work with PyTorch Geometric [17]8.

Fig. 2. Training accuracies of all individual classifiers of the ensemble for all data sets
shown with a box-plot. The training accuracy of the ensemble is marked with a red
cross. (Color figure online)

Figure 2 shows by means of box-plots the training accuracies of all individual
classifiers available in the ensembles for all data sets. The diamonds above and
below the boxes mark the 10% best and worst classifiers w.r.t. the accuracy.
The training accuracy of the final ensemble is marked with a red cross. We
observe that the diversity of the classifiers is the largest for NCI1, PTC(MR), and
Cuneiform. It is also clearly visible that for all data sets the training accuracy of
the complete ensemble is better than the accuracy of the best individual member.
This is already a clear indication for the usefulness of the defined ensemble.

3.2 Reference Systems

The overall aim of the present experimental evaluation is to answer the question,
whether or not matching-graphs can be beneficially employed to build robust
classifier ensembles. In order to answer this research question, we use three ref-
erence systems for comparisons with our novel approach GCN-emg.

– Reference system 1 (denoted by GCN): This reference system is trained on
the full training set to obtain a baseline for the classification accuracy. In order
to counteract uncontrolled randomness during initialization, each experiment
that uses this reference system is repeated five times and the average accuracy
is finally reported.

7 https://ensemble-pytorch.readthedocs.io.
8 https://pytorch-geometric.readthedocs.io.

https://ensemble-pytorch.readthedocs.io
https://pytorch-geometric.readthedocs.io

Matching-Graphs for Building Classification Ensembles 109

We also perform an ablation study in order to empirically verify that the
superiority of the proposed method is indeed based on the matching-graphs. To
this end, we compare our novel ensemble GCN-emg with two additional reference
systems.

– Reference system 2 (denoted by GCN-e): This reference system is virtually
the same as our novel ensemble but has only access to the original training
data without matching-graphs.

– Reference system 3 (denoted by SINGL-emg): This reference system refers to
the best individual classifier of the novel augmented ensemble.

A comparison with reference system 2 allows us to better assess whether the
matching-graphs, or the ensemble by itself, is the important element of the whole
process. A comparison with reference system 3 allows us to assess whether the
ensemble outperforms the randomly generated members of the system – in other
words, whether the ensemble actually also makes a difference.

3.3 Test Results and Discussion

In Table 1 we compare the novel ensemble GCN-emg with the first reference
system (a single GCN trained on the full training set). Remember that we run the
GCN reference system five times to counteract randomness during initialization.
This is why we report here the mean accuracies (± standard deviation).

We observe that GCN-emg outperforms the reference system GCN in 18 out
of 25 cases with statistical significance9. On the NCI1 data set, even though we
observe an improvement in all five iterations, only four of them are statistically
significant. On the PTC(MR) data set, we outperform the reference system in
each iteration, however only two of the improvements are statistically significant.
On the COX-2 data set we get an improvement in four out of five iterations (two
of them are actually statistically significant). On Cuneiform and Synthie all of
the improvements are statistically significant (10 out of 10 cases).

Table 1. Average classification accuracy of reference system 1 (GCN) compared to our
novel ensemble (GCN-emg). Symbol x indicates a statistically significant improvement
in x out of the five comparisons (using a Z-test at significance level α = 0.05). Marked
in bold is the best accuracy per data set.

Ref. System 1 Ours

Dataset GCN GCN-emg

NCI1 70.5 ± 1.0 74.0 4

PTC(MR) 62.3 ± 4.5 68.6 2

COX-2 70.4 ± 11.1 78.7 2

Cuneiform 40.3 ± 20.5 96.7 5

Synthie 76.8 ± 7.5 97.5 5

9 The statistical significance is computed via Z-test at significance level α = 0.05.

110 M. Fuchs and K. Riesen

Table 2. Classification accuracy of the ensemble without matching-graphs GCN-e, the
individually best classifier SINGL-emg and our ensemble with matching-graphs GCN-
emg. Symbols ◦/◦ indicate a statistically significant improvement over the second/third
reference system using a Z-test at significance level α = 0.05). Marked in bold is the
best accuracy per data set.

Ref. System 2 Ref. System 3 Ours

Dataset GCN-e SINGL-emg GCN-emg

NCI1 70.7 74.8 74.0 ◦/–
PTC(MR) 61.4 62.9 68.6 ◦/◦
COX-2 73.4 77.6 78.5 -/–

Cuneiform 68.3 93.3 96.7 ◦/–
Synthie 64.2 93.8 97.5 ◦/–

Next, in Table 2 we compare the novel ensemble with the other two reference
systems (for the sake of an ablation study). First, we observe that the best
single classifier of each ensemble (reference system 3) outperforms the baseline
ensemble (reference system 2) on all data sets. This is a clear indication of the
usefulness of the matching-graphs. Even more important, the proposed ensemble
GCN-emg outperforms the second reference ensemble GCN-e on all data sets.
These improvements are statistically significant on four out of five data sets.
This is a strong indication that the matching-graphs are the important factor in
improving the classification accuracy, rather than primarily the ensemble itself.
However, when comparing our ensemble with the third reference system, it is
also obvious that the ensemble still makes an important contribution – only on
NCI1 is the best individual classifier better than the ensemble.

4 Conclusion and Future Work

Ensemble learning is often able to improve the accuracy of single classification
systems. One popular way to build an ensemble is bagging, which combines the
output of many classifiers into one strong prediction. One of the main problems
in building a robust ensemble is that large and diverse data sets are needed. In
the present work we propose to use so-called matching-graphs to substantially
increase the amount of training data available. On the basis of these augmented
training sets of graphs, a classifier ensemble is built via bagging. As base clas-
sifiers for the ensemble we use GNNs (note, however, that any other classifier
could be used as well).

By means of an experimental evaluation, we empirically confirm that our
novel approach significantly outperforms three related reference systems, viz. a
single GNN classifier, a bagging ensemble trained on the original training set, as
well as the best individual classifier stemming from the novel ensemble. Hence,
we conclude that matching-graphs provide a versatile way to generate large sets
of additional graphs in order to build a diverse and robust ensemble.

Matching-Graphs for Building Classification Ensembles 111

For future work we see at least two rewarding avenues that can be pursued.
First, we could explore other ensemble modalities (rather than bagging), and
second, other aggregation techniques to combine the results could be explored
(rather than majority voting).

References

1. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. Int. J. Pattern Recogn. Artif. Intell. 28(1), 1450001
(2014). https://doi.org/10.1142/S0218001414500013

2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004).
https://doi.org/10.1142/S0218001404003228

3. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010). https://doi.org/10.1007/s10044-008-0141-y

4. Kang, U., Hebert, M., Park, S.: Fast and scalable approximate spectral graph
matching for correspondence problems. Inf. Sci. 220, 306–318 (2013). https://doi.
org/10.1016/j.ins.2012.07.008

5. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw.
Sci. 5(1), 6 (2020). https://doi.org/10.1007/s41109-019-0195-3

6. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009). https://
doi.org/10.1109/TNN.2008.2005605

7. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front.
Comput. Sci. 14(2), 241–258 (2020). https://doi.org/10.1007/s11704-019-8208-z

8. Fuchs, M., Riesen, K.: A novel way to formalize stable graph cores by using
matching-graphs. Pattern Recogn. 131, 108846 (2022). https://doi.org/10.1016/
j.patcog.2022.108846

9. Fuchs, M., Riesen, K.: Iterative creation of matching-graphs - finding relevant
substructures in graph sets. In: Proceedings of the 25th Iberoamerican Congress
on Pattern Recognition, CIARP25 2021 (2021)

10. Fuchs, M., Riesen, K.: Graph augmentation for small training sets using matching-
graphs. In: ICPRAI - 3rd International Conference on pattern Recognition and
Artificial Intelligence (2022)

11. Fuchs, M., Riesen, K.: Graph augmentation for neural networks using matching-
graphs. In: Gayar, N.E., Trentin, E., Ravanelli, M., Abbas, H. (eds.) Artificial
Neural Networks in Pattern Recognition - 10th IAPR TC3 Workshop, ANNPR
2022, Proceedings. Lecture Notes in Computer Science, Dubai, United Arab Emi-
rates, 24–26 November 2022, vol. 13739, pp. 3–15. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-20650-4 1

12. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Stat. Interface 2(3),
349–360 (2009)

13. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1007/BF00058655

14. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). https://doi.
org/10.1016/j.imavis.2008.04.004

15. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International Conference on Machine Learning,
pp. 1263–1272. PMLR (2017)

https://doi.org/10.1142/S0218001414500013
https://doi.org/10.1142/S0218001404003228
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1016/j.ins.2012.07.008
https://doi.org/10.1016/j.ins.2012.07.008
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1016/j.patcog.2022.108846
https://doi.org/10.1016/j.patcog.2022.108846
https://doi.org/10.1007/978-3-031-20650-4_1
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.imavis.2008.04.004

112 M. Fuchs and K. Riesen

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017, Conference Track Proceedings, Toulon, France, 24–26 April 2017. OpenRe-
view.net (2017). https://openreview.net/forum?id=SJU4ayYgl

17. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

https://openreview.net/forum?id=SJU4ayYgl

Maximal Independent Sets for Pooling in Graph
Neural Networks

Stevan Stanovic1(B) , Benoit Gaüzère2 , and Luc Brun1

1 Normandie Univ, ENSICAEN, CNRS, UNICAEN, GREYC UMR 6072,
14000 Caen, France

{stevan.stanovic,luc.brun}@ensicaen.fr
2 INSA Rouen Normandie, Univ Rouen Normandie, Université Le Havre Normandie,

Normandie Univ, LITIS UR 4108, 76000 Rouen, France
benoit.gauzere@insa-rouen.fr

Abstract. Convolutional Neural Networks (CNNs) have enabled major advances
in image classification through convolution and pooling. In particular, image
pooling transforms a connected discrete lattice into a reduced lattice with the
same connectivity and allows reduction functions to consider all pixels in an
image. However, there is no pooling that satisfies these properties for graphs. In
fact, traditional graph pooling methods suffer from at least one of the following
drawbacks: Graph disconnection or overconnection, low decimation ratio, and
deletion of large parts of graphs. In this paper, we present three pooling meth-
ods based on the notion of maximal independent sets that avoid these pitfalls.
Our experimental results confirm the relevance of maximal independent set con-
straints for graph pooling.

Keywords: Graph Neural Networks · Graph Pooling · Graph Classification ·
Maximal Independent Set · Edge Selection

1 Introduction

Convolutional Neural Networks (CNNs) achieved major advances in computer vision
by learning abstract representations of images thought convolution and pooling. A con-
volution is a linear filter applied to each pixel of an image which combines its value
with the one of its surrounding. The resulting value is usually transformed via a non
linear function. The pooling step reduces the size of an image by grouping a connected
set of pixels, usually a small squared window, in a single pixel whose value is computed
from the ones of window’s pixel. Graph Neural Networks (GNNs) take their inspiration
from CNNs and aim at transferring advances performed on images to graphs. However,
most of CNNs use images with a fixed structure (shape). While using GNN both the
structure of a graph and its content varies from one graph to another. Convolution and
pooling operations must thus be adapted for graphs.

A GNN may be defined as a sequence of simple graphs (G(0), . . . ,G(m)) where
each G(l) = (V(l), E(l)) is produced by layer l from G(l−1). Sets V(l) and E(l) denote
respectively the set of vertices and the set of edges of the graph. Given nl = |V(l)|, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 113–124, 2023.
https://doi.org/10.1007/978-3-031-42795-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_11&domain=pdf
http://orcid.org/0000-0001-9656-2080
http://orcid.org/0000-0001-9980-2641
http://orcid.org/0000-0002-1658-0527
https://doi.org/10.1007/978-3-031-42795-4_11

114 S. Stanovic et al.

graph G(l) may be alternatively defined as G(l) = (A(l), X(l)) where A(l) ∈ R
nl×nl

is the weighted adjacency matrix of G(l) while X(l) ∈ R
nl×fl encodes the nodes’

attributes of G(l) whose dimension is denoted by fl. Each line u of X(l) encodes the
feature of the vertex u and is denoted by x

(l)
u .

The final graph G(m) of a GNN is usually followed by a Multi-Layer Perceptron
(MLP) applied on each vertex for a node prediction task or by a global pooling followed
by a MLP for a global graph classification task.

Graph convolution. This operation is mainly realized by a message passing mechanism
and allows to learn a new representation for each node by combining the information of
the mentioned node and its neighborhood. The neighborhood information is obtained by
aggregating all the adjacent nodes information. Therefore, the message passing mecha-
nism can be expressed as follows [8]:

x(l+1)
u = UPDATE(l)(x(l)

u , AGGREGATE(l)({x(l)
v ,∀v ∈ N (u)})) (1)

where N (u) is the neighborhood of u and UPDATE, AGGREGATE correspond to
differentiable functions.

Let us note that convolution operations should be permutation equivariant, i.e. for
any permutation matrix P ∈ {0, 1}nl×nl defined at level l, if f denotes the convolution
defined at this layer we must have: f(PX(l)) = Pf(X(l)). Note that this last equation,
together with Eq. 1, hides the matrix A(l) which nevertheless plays a key role in the
definition of the AGGREGATE function by defining the neighborhood of each node.

Global pooling. For graph level tasks, a fixed size vector needs to be sent to the MLP.
However, due to the variable sizes of graphs within a dataset, global pooling must
aggregate the whole graph information into a fixed size vector. This operation can be
performed by basic operators like sum, mean or maximum. Let note us that more com-
plex aggregation strategies [19] also exist. To insure that two isomorphic graphs have
the same representation, global pooling must be invariant to permutations, i.e. for any
permutation matrix P , defined at layer l we must have g(PX(l)) = g(X(l)) where g
denotes the global pooling operation.

Hierarchical pooling. Summing up a complex graph into a fixed size vector leads nec-
essarily to an important loss of information. The basic idea to attenuate this loss con-
sists in gradually decreasing the size of the input graph thanks to pooling steps inserted
between convolution layers. The resulting smaller final graph induces a reduced loss of
information in the final global pooling step. This type of method is called a hierarchical
pooling [12,18]. The hierarchical pooling step, as the convolution operation should be
permutation equivariant in order to keep information localised on desired nodes. Con-
versely, global pooling must be permutation invariant since it computes a graph level
representation. Let note that, similar to CNNs, the reduced graph leads to a reduction of
parameters in the next convolution. However, this reduction is mitigated by the learned
part of hierarchical pooling. Moreover, let us consider a line graph with a signal opti-
mally sampled on its vertices. As shown by [2], most of GNN correspond to a low pass
filter. Applying a GNN on this line graph, hence decreases the maximal frequency of

Maximal Independent Sets for Pooling in Graph Neural Networks 115

our signal on vertices producing an over sampling according to the Nyquist theorem.
More details on optimal sampling on graphs may be found in [1,15].

Given a graph G(l) = (A(l),X(l)) defined at layer l and its reduced version
G(l+1) = (A(l+1),X(l+1)) defined at level l + 1, the connection between G(l) and
G(l+1) is usually insured by the reduction matrix S(l) ∈ R

nl×nl+1 where nl and nl+1

denote respectively the sizes of G(l) and G(l+1). If S(l) is a binary matrix, each column
of S(l) encodes the vertices of G(l) which are merged into a single vertex at layer l + 1.
If S(l) is real, each line of S(l) encodes the distribution of each vertex of G(l) over the
vertices of G(l+1). In both cases, we require S(l) to be line-stochastic.

Given G(l) = (A(l),X(l)) and S(l), the feature matrix X(l+1) of G(l+1) is defined
as follows:

X(l+1) = S(l)�X(l) (2)

This last equation defines the attribute of each surviving vertex vi as a weighted sum of
the attributes of the vertices vj of G(l) such that S(l)

ji �= 0.
The adjacency matrix of G(l+1) is defines by:

A(l+1) = S(l)�A(l)S(l) (3)

Let us suppose that S(l) is a binary matrix. Each entry (i, j) ofA(l+1) defined by Eq. 3 is
equal to

∑nl

r,s A
(l)
r,sS

(l)
r,iS

(l)
s,j . Hence two surviving vertices i and j are adjacent in G(l+1)

if it exists at least two adjacent non surviving vertices r and s such that r is merged onto
i (S(l)

r,i = 1) and s onto j(S(l)
s,j = 1).

Pooling Methods. There are two main families of pooling methods. The first family,
called Top-k methods [7,12], is based on a selection of relevant vertices based on a
learned criteria. The second family is based on node’s clustering methods as in Diff-
Pool [18].

Top-k methods such as gPool [7] learn a score attached to each vertex by comput-
ing the scalar product between the vertex’s attributes and one or several learned vectors.
Alternatively, a GNN can be used to compute a relevance vector for each vertex as in
SagPool [12]. Next, a fixed ratio pooling is used to select the k vertices with a high-
est score. Unselected vertices are dropped. In this case, two surviving vertices in the
reduced graph will be adjacent only if they were adjacent before the reduction. This
last point may result in the creation of disconnected reduced graphs. This disconnec-
tion may be avoided by increasing the density of the graph, using power 2 or 3 of its
adjacency matrix or by using the Kron’s reduction [3] instead of Eq. 3. Nevertheless,
let us note that simply discarding all non surviving vertices leads to an important loss
of information. We proposed in a previous contribution [14], a top-k pooling method
called MIVSPool which avoids such drawbacks by using a maximal independent vertex
set and graph contraction operations.

Clustering based methods learn explicitly or implicitly the matrix S(l) which
encodes the reduction of a set of vertices at level l into a single vertex at level l+1. Meth-
ods (eg. [18]) learning S(l) explicitly have to use a predetermined number of clusters.
This last point forbids the use of graphs of different sizes. Additionally, these methods
generally result in dense matrices S(l) which then induce dense adjacency matrices at

116 S. Stanovic et al.

Fig. 1. General architecture of our GNN. Each block is composed of a convolution layer followed
by a pooling layer. Features learned after each block are sent to the next block and a Readout layer.
The K vectors resulting from each Readout are concatenated to have several levels of description
of the graph and, finally, the concatenation is sent to a Multi-Layer Perceptron.

level l + 1 (Eq. 3). As a consequence, graphs produced by these pooling methods have
a density close to 1 (i.e. a complete graph or an almost complete graph).

An alternative strategy consists in learning S(l) only implicitly. Graph pooling such
as the maximal matching method used in EdgePool [4] may be associated to this strat-
egy. A maximal matching of a graph G(l) = (V(l), E(l)) is a subset M of E(l), where no
two edges are incident to a same vertex, and every edge in E(l) \M is incident to one of
the two endpoints of an edge in M . EdgePool is based on a maximal weighted matching
technique, i.e. a maximal matching of maximal weight. The weight of each edge, called
its score, is learned using the attributes of its two end points. The selected edges are then
contracted to form a specific cluster. Note that the use of a maximal weighted matching
may result in some vertices not incident to any selected edges. These vertices are left
unchanged. The sequential algorithm [4] has been parallelized by Landolfi [11]. Unlike
EdgePool, Landolfi [11] learns a score attached to each vertex and sort all the vertices of
the graph according to their score. The weight of each edge is then defined from a com-
bination of the rank of its incident nodes. The similarity between two adjacent vertices
is in this case not taken into account. Moreover, both EdgePool and Landolfi [11] have
a decimation ratio lower than 50%, which suggests the need for more pooling steps or
a poor abstraction in the final graph of the GNN.

In this paper, we propose an unified family of graph pooling methods which main-
tains a decimation ratio of approximately 50%, while simultaneously preserving both
the structure of the original graph and its attribute information. We achieve this by
using a Maximal Independent Set (MIS) [9] to select surviving edges that are evenly
distributed throughout the graph, and by assigning non-surviving elements to those that
do survive. As a result, we avoid any subsampling or oversampling issues that may arise
(see Fig. 2). The source code of the paper is available on the CodeGNN ANR Project
Git repository: https://scm.univ-tours.fr/projetspublics/lifat/codegnn.

https://scm.univ-tours.fr/projetspublics/lifat/codegnn

Maximal Independent Sets for Pooling in Graph Neural Networks 117

Fig. 2. General proposition of our three graph poolings. Each edge is associated to a similarity
score (Sect. 2). Based on this similarity, a MIS on edge is computed from which a reduction
matrix S is derived. Applying S to both feature and structure leads to a reduced graph G(l+1).

2 Maximal Independent Sets and Graph Poolings

2.1 Maximal Independent Set (MIS) and Meer’s Algorithm

Definition. Let X be a finite set and N a neighborhood function defined on X such
that the neighborhood of each element includes the element itself. A subset J of X is
a Maximal Independent Set (MIS) if the two following equations are fulfilled:

∀(x, y) ∈ J 2 : x /∈ N (y) (4)

∀x ∈ X − J ,∃y ∈ J : x ∈ N (y) (5)

The elements of J are called the surviving elements or survivors. Equations (4)
and (5) respectively states that two surviving elements can’t be neighbors and each
non-surviving element has to be in the neighborhood of at least one element of J .
These two equations can be interpreted as a subsampling operation where Eq. (4) is a
condition preventing the oversampling (two adjacent vertices cannot be selected) while
Eq. (5) prevents subsampling: Any non-surviving element is at a distance 1 from a
surviving one.

A way to compute a MIS is the Meer’s algorithm [13] which only involves local
computations and is therefore parallelizable. This algorithm attaches a variable to each
element. Let us denote by J the current maximal independent set at an iteration of the
algorithm, and let us additionally consider the value vx attached to an element x. Then
x is added to J at current iteration if vx is maximal among the values of N (x)−N (J),
where N (J) denotes J and its neighbors. Meer’s algorithm provides thus a maximal
matching such that each of its element is a local maxima at a given step of the algorithm.
We can thus interpret the resulting set as a maximal weight independent set.

Assignment of Non-surviving Elements. After a MIS, X is split in two subsets: the
surviving elements contained in the set J and the non-surviving elements contained in
X − J . Simply considering J as a digest of X may correspond to an important loss
of information which simply discards X − J . In order to avoid such a loss we allow
each non surviving element contained in X −J to transfer its information to a survivor.
The possibility of such a transfer is insured thanks to Eq. 5 which states that each non

118 S. Stanovic et al.

Fig. 3. Schema of our proposed methods on a toy graph. Number on each edge corresponds to
its score s and the bold edges indicates the surviving ones. Each group of vertices with the same
color represent a cluster. Figures 3a and 3b are common steps for MIES and MIESCut.

surviving element is adjacent to at least one survivor. We can thus associate to any non
surviving element xj a surviving neighbor denoted by σ(xj). At layer l, the global
assignment of non-surviving elements onto surviving ones is encoded by the reduction
matrix S(l) ∈ R

nl×nl+1 such that :

S(l)
ii = 1 ∀xi ∈ J and S(l)

jσ(j) = 1 ∀xj ∈ X − J (6)

with S(l)
ij = 0 otherwise.

2.2 Maximal Independent Sets for Graph Pooling

Based on the work [9] defined within the image partitioning framework we introduce
in the following, three adaptations of these methods in order to define learnable pooling
steps. In the following sections, the adjacency matrixA(l+1) is obtained fromA(l) and
a binary version of S(l) using Eq. 3.

Maximal Independent Edge Set. Most of pooling methods are based on a projection
score for each vertex. This strategy is based on the assumption that we can learn features
characterizing relevant vertices for a given classification task. However, even if this
hypothesis holds, two adjacent vertices may have similar scores and the choice of the
survivor is in this case arbitrary. An alternative strategy consists in merging similar
nodes. Given a GNN with hierarchical pooling, the graph sequence corresponds to an
increasing abstraction from the initial graphs. Consequently, vertices encoded at each

Maximal Independent Sets for Pooling in Graph Neural Networks 119

layer of the GNN encode different types of information. Based on this observation, we
decided to learn a similarity measure between adjacent vertices at each layer. Inspired
by [16], we define the similarity at layer l between two adjacent vertices u and v as
s
(l)
uv = exp(−‖W(l).(xu − xv)‖) where xu and xv are the features of vertices u and v,
W(l) is a learnable matrix and ‖.‖ is the L2 norm.

Given the maximal weighted matching J (l) defined at level l, each vertex of G(l) is
incident to at most one edge of J (l). If u ∈ V(l) is not incident to J (l) its features are
just duplicated at the next layer. Otherwise, u is incident to one edge euv ∈ J (l) and
both u and v are contracted at the next layer. Since u and v are supposed to be similar
the attributes of the vertex encoding the contraction of u and v at the next layer must be
symmetrical according to u and v. To do so, we first define the attribute of euv as

xuv =
1
2
(x(l)

u + x(l)
v) (7)

where xu and xv are the features of vertices u and v. The attribute of the merged vertex
is then defined as suvxuv .

An equivalent update of the attributes of the reduced graph may be obtained by
computing the matrix S(l) encoding the transformation from G(l) to G(l+1). This matrix
can be defined as S(l)

ii = 1 if i is not incident to J (l), and by selecting arbitrary one

survivor among {u, v} if euv ∈ J (l). If u is selected we set S(l)
uu = S(l)

vu = 1
2suv . All

remaining entries of S(l) are set to 0. Matrix X(l+1) can then be obtained using Eq. 2.
We call this method MIESPool and the main steps are presented in Figs. 3a to 3c.

Maximal Independent Edge Set with Cut (MIESCut). Graph reduction through maximal
weighted matching has two main drawbacks within the GNN framework. First, a maxi-
mal matching may produce many vertices not adjacent to the set of selected edges. Such
vertices are just copied to the next level which induce a low decimation ratio (lower than
50%). Given that, the number of layers of a GNN is usually fixed, this last drawback
may produce a graph with an insufficient level of abstraction at the final layer of the
GNN. Secondly, only the score of the selected edges are used to compute the reduced
attributes. This last point reduces the number of scores used for the back-propagation
and hence the quality of the learned similarity measures. As in the previous section, let
us denote by J (l) the maximal weighted matching defined at layer l. By definition of a
maximal weighted matching, each vertex not incident to J (l) is adjacent to at least one
vertex which is incident to J (l). Following [9], we increase the decimation ratio, by
attaching isolated vertices to contracted ones. This operation is performed by selecting
for each isolated vertex u the edge euv such that suv is maximal and v is incident to
J (l).

This operation provides a spanning forest of G(l) composed of isolated edges, trees
of depth one (called stars) with one central vertex and paths of length 3. This last type
of tree corresponds to a sequence of 4 vertices with strong similarities between any
pair of adjacent vertices along the paths. However, merging all 4 vertices into a single
one, suppose implicitly to apply twice an hypothesis on the transitivity of our similarity
measure: more precisely the fact that the two extremities of the paths are similar is
not explicitly encoded by our selection of edges. In order to avoid such assumption we

120 S. Stanovic et al.

remove the central edge of such paths from the selection in order to obtain two isolated
edges (see Figs. 3d to 3f).

Let us denote by J ′(l) the resulting set of selected edges which forms a spanning
forest of G(l) composed of isolated edges and stars. Concerning the definition of S(l),
we apply the same procedure than in the previous section for isolated edges. For stars,
we select the central vertex as the surviving vertex. Let us denote by u such a star’s
center. We then set S(l)

uu = 1
2 and S(l)

vu = 1
2M suv for any v such that euv ∈ J ′(l) where

M is a normalizing factor defined as: M =
∑

v|euv∈J ′(l) suv . The computation of the

attributes of the reduced graph using Eq. 2 and matrix S(l) is equivalent to compute
for each star’s center u, the sum, weighted by the score, of the edges’ attributes (Eq. 7)
incident to u and belonging to J ′(l):

x(l+1)
u =

1
∑

v|euv∈J ′l suv

∑

v|euv∈J ′l
suvx(l)

uv (8)

Maximal Independent Directed Edge Set. The definition of a spanning forest composed
of isolated edges and stars is obtained in three steps by MIESCut: The definition of a
maximal weight matching, the attachment of isolated vertices and the cut of all paths
of length 3. Following [9], we propose to use the Maximal Independent Directed Edge
set (MIDES) reduction scheme which obtains the same type of spanning forest in a
single step. This reduction scheme is based on a decomposition of the edges euv of
the undirected graphs in two oriented edges eu→v and ev→u. The neighborhood of an
oriented edge N (eu→v) is defined as the union of the sets of edges leaving u, arriving
on u and leaving v. Given G(l) defined at layer l we formally have:

N (l)(eu→v) = {eu→v′ ∈ E(l)} ∪ {ev′→u ∈ E(l)} ∪ {ev→v′ ∈ E(l)} (9)

The main difference between the neighborhoods defined by Eq. 9 and the one of MIES
is that we do not include in the neighborhood edges arriving on v. This asymmetry
allows the creation of stars centered on v. The MIDES algorithm computes a MIS on
the edge set using the neighborhood defined by (9) (see Fig. 3g to 3i).

At layer l, applying a MIDES on G(l) requires to define a score function on directed
edges. We propose to use suv = exp(−‖W.(xu − xv) + b‖) where the bias term b
allows to introduce an asymmetry so that suv �= svu if xu �= xv .

Let us denote by D(l) the set of directed edges produced by a MIDES on G(l) using
our scoring function. The setD(l) defines on G(l) a spanning forest composed of isolated
vertices, isolated edges and stars [9].

For an isolated vertex u we duplicate this vertex at the next layer and copy its
attributes. We thus set S(l)

uu = 1.
For an isolated directed edge eu→v ∈ D(l) we select v as a surviving vertex and

set S(l)
vv = suv

M and S(l)
uv = svu

M where M = suv + svu. This setting corresponds to the

following update of the attributes: x
(l+1)
v = (suv.x

(l)
v + svu.x

(l)
u)/(suv + svu). Let us

note that since eu→v ∈ D(l) we have suv > svu. The previous formula put thus more
weight on the surviving vertex v. This update may be considered as a generalization of
Eq. 7 using the asymmetric scores suv and svu.

Maximal Independent Sets for Pooling in Graph Neural Networks 121

A star within the MIDES framework is defined by a set of edges ew→v of D(l)

arriving on the same vertex v. We then set v as survivor and generalize the update of
the attributes defined for isolated edges by setting S(l)

vv = 1
N

∑
u|eu→v∈D(l)

suv

Mu
and

S(l)
uv = 1

N
svu

Mu
for all u such that eu→v ∈ D(l) where Mu = suv + svu and N is the

number of such u. Such a definition of S(l) is equivalent to set the updated attribute of
v as the mean value of its incident selected edges:

x(l+1)
v =

1
N

∑

u|eu→v∈D(l)

suvx
(l)
v + svux

(l)
u

suv + svu
with N = |{u ∈ V(l)|eu→v ∈ D(l)|.

3 Experiments

Datasets. We evaluate our contribution to a bio-informatics and a social dataset called
respectively D&D [5] and REDDIT-BINARY [17] whose statistics are reported on
Table 1. The aim of D&D is to classify proteins as either enzyme or non-enzyme. Nodes
represent the amino acids and two nodes are connected by an edge if they are less than 6
Ångström apart. REDDIT-BINARY is composed of graphs corresponding to online dis-
cussions on Reddit. In each graph, nodes represent users, and there is an edge between
them if at least one of them respond to the other’s comment. A graph is labeled accord-
ing to whether it belongs to a question/answer-based community or a discussion-based
community.

Model Architecture and Training Procedure. Our model architecture is composed of
K blocks where each block consists of a GCN [10] convolution layer followed by a
pooling layer. The vector resulting of each pooling operation is then sent to the next
block (if it exists) and a Readout layer. A Readout layer concatenates the average and the
maximum of vertices’ features matrix X(l) and these K concatenations are themselves
concatenated and sent to a Multi-Layer Perceptron (MLP). The MLP is composed of
three fully connected layers and a dropout is applied between each of them. Finally,
a Softmax layer is used to determine the binary class of graphs. Note that no batch
normalization is applied (Fig. 1).

To evaluate our model, we use the training procedure proposed by [6]. This proce-
dure performs an outer 10-fold cross-validation (CV) to split the dataset into ten training

Table 1. Statistics of datasets

Dataset #Graphs #Classes Avg. |V| Avg, |E|
D&D [5] 1178 2 284± 272 715± 694

REDDIT-BINARY [17] 2000 2 430± 554 498± 623

122 S. Stanovic et al.

Table 2. Average classification accuracies obtained by different pooling methods. Highest and
second highest accuracies are respectively in bold and blue. ± indicates the 95% confidence
interval of classification accuracy.

Methods D&D [5] REDDIT-BINARY [17]

Baseline 76.29± 2.33 87.07± 4.72

gPool [7] 75.61± 2.74 84.37± 7.82

SagPool [12] 76.15± 2.88 85.63± 6.26

EdgePool [4] 72.59± 3.59 87.25± 4.78

MIVSPool [14] 76.35± 2.09 88.73± 4.43

MIESPool 77.17± 2.33 88.08± 4.55

MIESCutPool 77.74± 2.85 86.47± 4.57

MIDESPool 76.52± 2.21 88.40± 4.74

and test sets. For each outer fold, another 10-fold CV (inner) is applied to the training set
to select the best hyperparameter configuration. Concerning hyperparameters, learning
rate is set to 10−3, weight decay to 10−4 and batch size to 512. Other hyperparam-
eters are tuned using a grid search to find the best configuration. Possible values for
the hidden layers sizes are {64, 128}, dropout ratio is chosen within {0.2, 0.5} and the
number of blocks K between 1 and 5. We use the Adam optimizer and maximal num-
ber of epochs is set to 1000 with an early stopping strategy if the validation loss has not
been improved 100 epochs. For EdgePool, due to time constraints, we fixed the hidden
layers sizes at 128 and the dropout ratio at 0.5.

We compare, in Table 2, our methods to five state-of-art methods: Baseline (K
blocks of GCN [10]), gPool [7], SagPool [12], EdgePool [4] and MIVSPool [14], our
previous MIS method. First, we note that the baseline obtains quite good results while
not implementing any pooling strategy. It highlights the fact that defining a good pool-
ing operation is not trivial. State-of-the-art methods mostly fail at this task, certainly
due to the significant loss of information resulting from the hard selection of surviv-
ing vertices using a top−k strategy. This hypothesis is confirmed by the better results
obtained by MIVSPool. Let us note also that for D& D, based on T-tests with a signifi-
cance level of 5%, the average accuracy of EdgePool is statistically lower than the ones
of MIS methods. Second, we can observe that the strategies combining edge selection
methods and MIS (MIESPool, MIESCutPool, MIDESPool) achieve either the highest
or the second highest performances. This empirical results tend to demonstrate that the
selection on edges may be most relevant, and that a MIS strategy improves the effec-
tiveness of the pooling over EdgePool. Finally, best results are obtained by different
MIS strategies, hence indicating that the right MIS strategy may be dataset dependant.
This hypothesis has to be tested using more extensive hyperparameters selection.

4 Conclusion

Graph poolings based on Maximal Independent Sets (MIS) allow, unlike state-of-
art methods, to maintain a fixed decimation ratio close to 50%, to preserve vertex

Maximal Independent Sets for Pooling in Graph Neural Networks 123

information and to avoid subsampling and oversampling. Results obtained by our three
methods based onMIS confirm the interest of this approach but further investigations on
other datasets are needed to conclude on the effectiveness of our methods. The design
of alternative similarity scores also corresponds to a promising line of research.

Acknowledgments. The work reported in this paper was supported by French ANR grant
#ANR-21-CE23-0025 CoDeGNN and was performed using HPC resources from GENCI-IDRIS
(Grant 2022-AD011013595) and computing resources of CRIANN (Grant 2022001, Normandy,
France).

References

1. Anis, A., Gadde, A., Ortega, A.: Towards a sampling theorem for signals on arbitrary
graphs. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3864–3868. IEEE (2014)

2. Balcilar, M., Guillaume, R., Héroux, P., Gaüzère, B., Adam, S., Honeine, P.: Analyzing the
expressive power of graph neural networks in a spectral perspective. In: Proceedings of the
International Conference on Learning Representations (ICLR) (2021)

3. Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Hierarchical representation learning in
graph neural networks with node decimation pooling. IEEE Trans. Neural Netw. Learn. Syst.
33(5), 2195–2207 (2022)

4. Diehl, F., Brunner, T., Le, M.T., Knoll, A.: Towards graph pooling by edge contraction. In:
ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data (2019)

5. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes without
alignments. J. Molecul. Biol. 330(4), 771–783 (2003)

6. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural networks
for graph classification. arXiv preprint arXiv:1912.09893 (2019)

7. Gao, H., Ji, S.: Graph u-nets. In: International Conference on Machine Learning, pp. 2083–
2092. PMLR (2019)

8. Hamilton,W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3),
1–159 (2020)

9. Haxhimusa, Y.: The Structurally Optimal Dual Graph Pyramid and Its Application in Image
Partitioning, vol. 308. IOS Press (2007)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: International Conference on Learning Representations (ICLR) (2017)

11. Landolfi, F.: Revisiting edge pooling in graph neural networks. In: ESANN (2022)
12. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International Conference on

Machine Learning, pp. 3734–3743. PMLR (2019)
13. Meer, P.: Stochastic image pyramids. Comput. Vis. Graph. Image Process. 45(3), 269–294

(1989)
14. Stanovic, S., Gaüzère, B., Brun, L.: Maximal independent vertex set applied to graph

pooling. In: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR Interna-
tional Workshops, S+ SSPR 2022, Montreal, 26–27 August 2022, Proceedings, pp. 11–21.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23028-8 2

15. Tanaka, Y., Eldar, Y.C., Ortega, A., Cheung, G.: Sampling signals on graphs: from theory to
applications. IEEE Signal Process. Magaz. 37(6), 14–30 (2020)

16. Verma, N., Boyer, E., Verbeek, J.: Feastnet: feature-steered graph convolutions for 3d shape
analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2598–2606 (2018)

http://arxiv.org/abs/1912.09893
https://doi.org/10.1007/978-3-031-23028-8_2

124 S. Stanovic et al.

17. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–
1374 (2015)

18. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph repre-
sentation learning with differentiable pooling. Adv. Neural Inf. Process. Syst. 31, 4805–4815
(2018)

19. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. Proc. AAAI Conf. Artif. Intell. 32(1), 4438–4445 (2018)

Graph-Based Representations
and Applications

Detecting Abnormal Communication
Patterns in IoT Networks Using Graph

Neural Networks

Vincenzo Carletti(B), Pasquale Foggia, and Mario Vento

Department of Information Engineering, Electrical Engineering and Applied
Mathematics, University of Salerno, Fisciano, Italy

{vcarletti,pfoggia,mvento}@unisa.it
https://mivia.unisa.it

Abstract. Nowadays, millions of Internet of Things (IoT) devices com-
municate over the Internet, thus becoming potential targets for cyber-
attacks. Due to the limited hardware capabilities of these devices, host-
based countermeasures are unlikely to be deployed on them, making net-
work traffic analysis the only reasonable way to detect malicious activi-
ties. In this paper, we face the problem of identifying abnormal commu-
nications in IoT networks using graph-based anomaly detection methods.
Although anomaly detection has already been applied to graph-based
data, most existing methods have been used for static graphs, with the
aim of detecting anomalous nodes. In our case, the graphs represent snap-
shots of the network traffic, and change with time. In this paper we com-
pare different graph-based methods, and different graph representations
of the network traffic, using two large datasets of real IoT data.

Keywords: Network Anomaly Detection · IoT Networks · Graph
Neural Networks

1 Introduction

The Internet of Things (IoT) has revolutionized different fields leading the devel-
opment of smart homes, smart medical devices, smart cities and smart industries.
IoT devices are embedded with sensors and communication technologies that
enable them to collect and transmit data over the internet. However, the wide
diffusion of such devices, together with their limited security capabilities, has
made them the preferred target of malicious users for performing Distributed
Denial of Service attacks (DDoS) [15]. Common host-based countermeasures,
like intrusion detection systems (HIDS) or antivirus software are unlikely to
be installed on IoT devices, due to their limited hardware capabilities. There-
fore, the only reasonable way to detect infected devices or malicious activities
is to analyze the network exchanges observed by a dedicated monitoring device.
Unfortunately, IoT network communications are highly dynamic and heteroge-
neous, if compared with traditional personal computer networks, making more
challenging for traditional network-based intrusion detection systems (NIDS) to
detect malicious traffic.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 127–138, 2023.
https://doi.org/10.1007/978-3-031-42795-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-42795-4_12

128 V. Carletti et al.

Several methods for network analysis, based on machine learning and deep
learning, have been proposed [1,10,12,13], but most of them assume that the
characteristics of malicious traffic are known in advance (or, at least, can be
inferred from a set of training examples). Of course, this assumption does not
hold for many real-world scenarios, where we are not aware in advance of all the
possible threats, and it is inpractical to collect a sufficient amount of samples of
malicious traffic.

An alternative is to deal with this problem as an anomaly detection task,
where the system learns a model of normal traffic, so as to classify anything
that does not fit this model as a threat [6]. Anomaly detection methods for IoT
networks have been reviewed and compared in some recent papers [3,6,8]. Most
of them work with vectors of measurements extracted from network flows, i.e.
sequences of network packets sharing the same transport protocol and endpoints.
Although some network flows statistics have been proved to be very effective to
detect anomalies in the communication between two network nodes, they seem
to be less discriminant for abnormal communication patterns involving larger
groups of devices [9], as in the case of botnets.

Graph-based approaches can help to overcome this limitation: a graph is a
natural representation for data where the structure, i.e. the way the different
pieces are interconnected, plays an important role.

In the scientific literature, different Graph Neural Networks (GNNs) have
been proposed to detect anomalous nodes in attributed graphs [11,18]. Among
these, we have selected three different approaches recently proposed, for which
the authors publicly provide an implementation. DOMINANT (Deep Anomaly
Detection on Attributed Networks) [5], a deep graph autoencoder where the
encoder function aims to map node features to a lower-dimensional latent space,
and the decoder function aims to reconstruct both the original feature matrix
and the graph topology using these compressed node representations. CONAD
(Contrastive Anomaly Detection) proposed in [18] to identify anomalous nodes
in attributed graphs by utilizing prior knowledge. Together with the GNN the
authors have also proposed a new approach to graph data augmentation that
explicitly incorporates human knowledge of various anomaly types as contrastive
samples. The latter correspond to nodes whose structural and semantic infor-
mation deviate considerably from those of existing nodes in the input attributed
network. The contrastive samples are used to generate an adversarial version of
the input graph. OCGNN (One Class Graph Neural Network), a graph version
of the One Class Support Vector Machine OCSVM, proposed by Wang et al.
in [17]. The method aims at learning the minimum volume hyper-sphere that
contains all the embeddings of normal nodes.

These graph-based methods face the detection of abnormal communication
patterns as a node classification problem and are trained in a transductive con-
text, that involves training and testing the network on a single large attributed
graph. Although this is a very common approach, it does not allow to take
into account the dynamic nature of the IoT networks over time. To face this
limitation, in this paper, we have partitioned the network communication data

Detecting Abnormal Communication Patterns in IoT Networks 129

into temporal snapshots as proposed in [21]. Each snapshot is represented as a
distinct graph.

For the graph representation of a snapshot, we have considered three
approaches: similarity graphs [4], that provide a general method to transform
time series into graphs; traffic trajectory graphs [19,20], a graph representation
specifically devised for network flows; and extended TDG [21], an extension of
Traffic Dispersion Graphs [7] (TDGs) originally presented to model the behav-
ior of network hosts. The overall network traffic is thus represented through a
sequence of graphs, having a topology that can vary according to the communi-
cation flows in the corresponding temporal snapshot.

For each of the three graph-based representations, we have adapted the three
mentioned GNN anomaly detection methods, modifying their learning approach
from transductive (i.e. the GNN learns from different subsets of the same graph)
to inductive (i.e. each training sample is a different, complete graph). The 9
resulting combinations of graph representation and GNN method have been
experimentally evaluated using two large, recent datasets of real IoT traffic.

The paper is organized as follows. In Sect. 2, we describe the graph-based
representations for network traffic snapshots. In Sect. 3, we provide some details
on the three GNN considered. In Sect. 4, we describe the experimental setup,
the used datasets and how we have trained the GNN; then we present, compare
and discuss the results obtained by each combination of GNN and graph repre-
sentation. Finally, in Sect. 5 we draw our conclusions about the effectiveness of
using GNN for the task at hand.

2 Representing Network Traffic as a Graph

Although representing the static topology of a network as a graph is a relatively
straightforward process, in which hosts are assigned to nodes and physical links
to edges, there is not a unique way for representing network communications
as graphs. As introduced in Sect. 1, we have selected three recent graph-based
representations that are suitable for the task at hand.

Starting from the captured raw packets, we have extracted the communica-
tion flows and the related feature vectors using NFStream [2], a publicly available
tool for traffic analysis. Each feature vector represents a flow, i.e. a sequence of
packets having the same transport-level endpoints; the vectors contain 77 fea-
tures commonly used to represent flows in network analysis, including categorical
features like IP and MAC address, statistical features such as average packet size
or number of packets as well as temporal features like duration and starting time.

During the extraction, in order to represent the evolution of the communi-
cation over time, as proposed in [21], we have marked each network flow with
the timestamp obtained from its first captured packet and have partitioned the
overall network communication in time windows of duration T ; so that all the
flows having the timestamp that falls in the time window (t, t + T) have been
grouped in the temporal snapshots snapt.

130 V. Carletti et al.

The feature vectors of each snapshot are the input data for building the
graphs, according to the methods described in the following subsections.

2.1 Similarity Graphs

Given the snapshot snapt, a similarity graph [4] is made by assigning each feature
vector xi to a different node; thus nodes do not represent network devices, but
communication flows.

In the next step, a node similarity matrix is obtained by computing for each
pair of nodes the cosine distance between the vectors associated to the nodes.
Finally, for each node, K directed edges are added connecting it to its K closest
neighbors with respect to the similarity matrix.

Although similarity graphs are a general way to represent time series as
graphs, and they have not been developed to model network traffic, the ratio-
nale behind their use in our application is that the flows corresponding to normal
traffic should form large, densely connected clusters of nodes, while the anoma-
lous flows will likely become nodes that are more isolated from the rest of the
graph.

2.2 Traffic Trajectory Graphs

As in similarity graphs, also in traffic trajectory graphs [19,20] each node repre-
sents a communication flow. However, in this case, the (undirected) edges repre-
sent the fact that two flows share one of their endpoints network-level address.
In this way, if there is a device that is very active in the network, the nodes
corresponding to its flows will have a lot of connections. Thus, the graph struc-
ture implicitly encodes the activity level of different parts of the network in each
snapshot.

2.3 Extended Traffic Dispersion Graphs

In Traffic Dispersion Graphs (TDGs), the nodes are associated to the transport-
level endpoints that communicate over the network, i.e. the different IP
address/transport port number pairs between which communication flows are
exchanged, and the (undirected) edges represet the flows; notice that the flow
feature vectors thus become attributes of the graph edges, instead of the graph
nodes.

Extended TDGs [21] enrich the description of a node by adding, as node
attributes, both some graph-related properties such as degree, centrality, betwee-
ness, closeness, eccentricity, and the arithmetic mean of the flow feature vectors
of edges adjacent to the node.

3 Graph Neural Networks for Anomaly Detection

In this Section we provide some details about the structure and loss functions
of the GNNs mentioned in Sect. 1; we will also describe how they can be used to
distinguish between normal and abnormal nodes.

Detecting Abnormal Communication Patterns in IoT Networks 131

3.1 DOMINANT

DOMINANT is a graph autoencoder for attributed graphs composed of a
attributed graph encoder, a feature reconstruction decoder, and a topology recon-
struction decoder. The encoder part uses a GNN with three layers, each of them
followed by a ReLU activation function, that compute the embedding matrix Z,
associating to each node a latent vector. More formally, given a weight matrix
W , the adjacency matrix A and a feature matrix H (associating a feature vector
to each node of the graph), each layer computes the following function:

f(H,A|W) = ReLU(D̂− 1
2 ÂD̂− 1

2 HW) (1)

where Â = A + I and D̂ is the diagonal matrix with D̂ii =
∑

j Âij . The overall
computation of the encoder, given the feature matrix X corresponding to the
input features of the nodes, is:

H(1) = f(X,A|W (0))
H(2) = f(H(1), A|W (1))

Z = f(H(2), A|W (2))
(2)

At the end of this process, the latent vectors associated to the nodes (the
rows of matrix Z) do not depend only on the corresponding feature vectors, but
also contain information from the k-hops neighborhood of each node.

The topology decoder aims at reconstructing the matrix A from Z, using the
following computation:

A∗ = sigmoid(ZZT) (3)

while the feature decoder tries to reconstruct the feature matrix X from Z, using
a structure that is similar to a single layer of the encoder:

X∗ = f(Z,A|W (d)) (4)

.
The loss function is a linear combination of the reconstruction errors for the

topology and the features, which are measured using the Frobenius norm of the
differences between the input matrices and the reconstructed ones:

L = (1 − α)||A − A∗||F + α||X − X∗||F (5)

Once the network has been trained, it is used as an anomaly detector by
encoding and then reconstructing the input graph. The reconstruction error is
used to compute an anomaly score and rank the nodes that are most anomalous
in the network; thus the method does not return whether a node is anomalous or
not but only the score assigned to each node. To our purpose, we added a final
thresholding layer to classify normal and abnormal nodes. The best threshold
has been selected by using the (Receiver Operating Characteristic) computed on
the validation set.

132 V. Carletti et al.

3.2 OCGNN

OCGNN aims at learning together an embedding for the nodes of the graph,
and a hyper-sphere (in the node embedding space) that contains all the normal
nodes. The method does not depend on the choice of a particular embedding
function; however, the authors suggest to use one or more layers organized as
we have previously seen in Eq. 1.

The learnable weights of the embedding function g(X,A|W) are represented
by the matrix W (X and A are, as in the previous subsection, the node features
and the adjacency matrix). The hyper-sphere is represented by its center c and its
radius r. However, the center is computed simply as the average of the embedding
vectors of the training nodes, so only r is actually learned.

The algorithm uses as its loss function:

L(r,W) =
1

βN

∑

v∈Vtr

[
||g(X,A|W)v − c||2 − r2

]+
+ r2 +

λ

2

K∑

i=1

||W k||2 (6)

where Vtr is the set of training nodes having cardinality N , the notation g(·)v
represents the row corresponding to node v of the embedding matrix computed
by g(·), and [·]+ denotes a maximum operation between zero and its argu-
ment. Finally, λ is a regularization hyper-parameter while β ∈]0, 1[is a hyper-
parameter used to balance the trade-off between enclosing all the embeddings
in the hyper-sphere and getting the smallest radius: with the given loss func-
tion, the algorithm will try to enlarge the hyper-sphere if it contains less than a
fraction β of the training samples, and to reduce it otherwise.

OCGNN uses the distance between a node embedding and the center of the
hyper-sphere as a metric to provide an anomaly score. A node v is considered
as anomalous if and only if ||g(X,A|W)v − c||2 ≥ r2.

3.3 CONAD

CONAD is a graph autoencoder that uses data augmentation and a Siamese
architecture to learn an optimal latent encoding. More specifically, given a train-
ing graph G (containing only normal nodes), CONAD generates an augmented
graph Gano containing artificially generated anomalous nodes. While the method
does not depend on how these nodes are generated, the authors consider the fol-
lowing strategies: (a) adding a large number of random edges to a node, yielding
a degree significantly higher than the average; (b) removing most of the con-
nections of a node, making it mostly isolated from other nodes; (c) randomly
modifying node features so as to be very dissimilar from their immediate neigh-
bors; (d) randomly modifying node features so as to be significantly larger or
significantly smaller that the values in most other nodes.

The encoder of the network is a Graph Attention Network (GAT) trained
using a Siamese configuration, in which two instances of the encoder are applied
on both G and Gano; a contrastive loss function is used to make the corresponding
embeddings obtained on the two graphs more similar to each other for the normal

Detecting Abnormal Communication Patterns in IoT Networks 133

nodes, and more dissimilar if the node in Gano was an artificially generated
anomalous node:

Lsc =
1
N

∑

v∈Vtr

Iyv=0 · ||zv − ẑv|| + Iyv=1 · [m − ||zv, ẑv||]+ (7)

where zv and ẑv are the encodings computed for node v in G and in Gano

respectively, and Iyv=1 and Iyv=0 are the indicator functions representing the fact
that node v in Gano is normal or it has been modified to become anomalous,
respectively. The value m is a hyper-parameter denoting the desired margin
between the distances for normal nodes and the distances between a normal and
an anomalous node.

Similarly to DOMINANT, the CONAD network has two decoders to recon-
struct both the adjacency matrix A and the feature matrix X from the encoding
matrix Z. Thus, the complete loss function used for training the network is a
linear combination of the contrastive loss function presented above and the two
reconstruction errors. Finally, once the network has been trained, the latter is
used to decide if a node is anomalous, in a way similar to DOMINANT.

4 Experiments

In this section we describe in details the experiments conducted and the obtained
results.

4.1 Datasets

The experiments have been conducted using two recent publicly available
datasets that provide raw network captures.

IoT23 [14] is a dataset containing benign and malicious IoT network traffic
divided into 23 scenarios. Three of them consist of benign traffic captured from
real IoT devices in a smart home environment. The authors then created 20
malicious scenarios by uploading different attack instances to a RaspberryPI
present in the environment. The captures last 24 h, except in cases where the
number of generated packets increased too rapidly.

The second dataset is IoTID20 [16], that also considers devices of a typical
smart home scenario, together with smartphones and laptops. In addition, also
smartphones and laptops were connected to the network during This dataset
includes 9 kinds of attacks (some of them are not in IoT23), such as various cat-
egories of DoS and DDoS attacks, ARP spoofing and operating system scanning.

4.2 Graph Neural Network Training

As previously mentioned, the GNN methods we have considered for anomaly
detection, were originally employed by their authors in a transductive setting:
there is a single graph, whose structure is known a priori, and the method is used

134 V. Carletti et al.

to predict the class of some nodes (i.e. whether they are normal or anomalous)
given a disjoint set of nodes which are known to be normal.

In our case, that setting is not appropriate: each graph correspond to a
snapshot of observed network traffic, and snapshots captured at different times
will very likely have a different structure. Thus, we had to modify the training
procedure to a more conventional inductive setting, where the network learns
a function that is independent of the graph structure, and then this function
is used to classify the nodes of new graphs, that are different from the ones
seen at training time. Notice that the conventional technique used for inductive
learning, i.e. applying the optimization algorithm to fixed-size batches randomly
sampled from the training set, was not directly applicable here: the GNN layers
and the loss functions (as described in Sect. 3) assume that the structure of the
graph (the adjacency matrix A) is provided, and all the nodes of the graph are
given in input. So, we have used a different, entire graph from the training set at
each learning step; the training set was made of graphs consisting only of normal
nodes, while the validation set also contains abnormal nodes. The training and
validation procedure is repeted different times by randomly changing the order
of the input graphs sequence in order to prevent the GNNs from specialyzing on
a particular order of graphs.

In more datails, the dataset IoT23 has been used to train and validate the
GNNs, for each representation 10,041 graphs have been used for the training
set and 9,227 for the validation, while 9,221 graphs have composed the test set.
The graphs have been extracted from approximately 1,400,000 flows of which
1,000,000 are benign and 200,000 malicious. The dataset IoTID20 has be used
only for testing the capability of the GNNs to generalize on data collect from a
similar IoT context, but with different devices and network attacks. In particu-
lar, from IoTID20 we have extracted 209 graphs for each representation, starting
from 108,983 malicious and 14,753 benign flows. For both the datasets the dura-
tion of a temporal snapshot used to generate the graphs has been set to 2.5 min.
This choice has been mostly driven by memory constraints during the training
since we needed to load the whole graphs on the GPU.

For the sake of clarity, we provide some details about the hyperparame-
ters and the training parameters for each considered method. Regarding DOM-
INANT, we used an encoder with three layers and a feature reconstruction
decoder with one layer. The hidden layers of the encoder had 28 nodes, and
the dropout probability was 0.3. During loss and anomaly score computation,
we set the value of α to 0.8 to balance the features reconstruction error and
the structural reconstruction error. We optimized the GNN using ADAM with
a learning rate of 0.0005. The autoencoder was trained for 100 epochs, and we
set the patience level to 20. For OCGNN, we opted for a 2-layer GraphSAGE
encoder, as it is known to work effectively in an inductive context. The hidden
layer consists of 28 neurons. We set the contamination factor 1−β, which denotes
the proportion of nodes allowed to stay outside of the hyper-sphere, to 0.2. For
optimization of the encoder, we used the AdamW optimizer with a learning rate
of 0.0003 and decay coefficient. The model was trained for 50 epochs with a

Detecting Abnormal Communication Patterns in IoT Networks 135

patience of 10. Finally, in the case of CONAD, we set the number of encoder
layers to 3, while the number of decoder layers responsible for reconstructing fea-
tures is set to 1. The hidden encoder layer is had 28 neurons, while the output
layer had 14. We set the loss margin m to 0.5, and we introduced a percentage of
artificial anomalies in the augmented graphs equal to 0.2% of the total number
of nodes in the input graph. We used ADAM as optimizer, with a learning rate
of 0.0005. The autoencoder was trained for 50 epochs with a patience of 10.

4.3 Results

In Table 1 we have reported precision, recall and F-score for all the combina-
tions of GNN and representations previously mentioned. Since our system is an
anomaly detector, we considered as positive the anomalous nodes (e.g. a true
positive was a node representing an attack that was labeled as anomalous by the
system).

From Table 1 it is possible to note that among the three representations, the
extended TDG is performing significantly worse than the others on IoT23, the
dataset used to train the GNNs. On the other hand, the results on IoTD20 may
lead to a different conclusion, indeed, this representation seems to provide a
good generalization capability to GNNs. But, considering the compostion of the
two dataset, where the percentage of abnormal traffic in IoTD20 (about 87%) is
considerably higher than in IoT23 (about 29%), we can reasonably conclude that
the GNNs are specilized on IoT23 resulting in a large number of false positives
on IoTID20. An evidence of that is the very high recall achieved by all the
GNNs on IoTD20, while the precision is close to percentage of malicious flows.
Unfortunately, this is a common problem when an anomaly detection system
trained on a given scenario is moved on a different one. This is the only considered
representation where graph nodes represent communication endpoints instead of
communication flows. Also, note that extended TDGs include a lot of network-
related features in the nodes, but they fail to bring any benefit to the detection
task.

The two remaining representations, similarity graphs and traffic trajectory
graphs, have similar performance, but the first one is slightly better in gen-
eral. Remember that in similarity graphs, node adjacency is determined by the
similarity of the communication flow characteristics, while in traffic trajectory
graphs it depends only on the sharing of a common endpoint. Only while using
OCGNN, we get a significant drop of recall, that can be blamed to difficulty
in adapting this GNN to face the problem at hand. We suspect that similar-
ity graphs are better suited at capturing the occurrence of similar anomalous
behavior by several devices that are not immediately connected to each other,
and this may help for many kinds of attacks.

Looking at the GNNs, the one that achieved the best performance in the
average is DOMINANT. In particular, while working with similarity graphs,
DOMINANT shows the best F-score on both the datasets, therefore it has the
best trade-off between precision and recall. The results suggest that a classi-
cal graph autoencoder architecture, according to which DOMINANT has been

136 V. Carletti et al.

Table 1. Performance of the considered GNN and representations, in terms of precision
(Prec), recall (Rec) and F-Score, evaluated over the test sets of both IoT23 and IoTID20
datasets.

GNN Representation IoT23 IoTID20

Prec Rec F-Score Prec Rec F-Score

CONAD Extended 0.4815 0.5542 0.5153 0.8502 0.9953 0.9171

Similarity 0.6807 0.6725 0.6766 0.8699 0.8433 0.8564

Trajectory 0.6756 0.7010 0.6881 0.8652 0.8441 0.8545

DOMINANT Extended 0.4937 0.5399 0.5158 0.8466 0.9955 0.9168

Similarity 0.6748 0.7324 0.7024 0.8896 0.9951 0.9394

Trajectory 0.6137 0.7814 0.6875 0.8735 0.8855 0.8794

OCGNN Extended 0.4857 1.0000 0.6539 0.8491 1.000 0.9184

Similarity 0.5963 0.7268 0.6551 0.7154 0.2026 0.3158

Trajectory 0.5000 1.0000 0.6667 0.8823 1.000 0.9375

designed, is more suitable for the task at hand. CONAD also is based on a graph
autoencoder, but its use of manually designed models of anomalies introduces a
bias in the system, that may lead to a decrease in performance.

Finally, OCGNN seem to be slightly behind the other two methods. OCGNN
does not try to optimize reconstruction error as the other two methods do, but
attempts to project the nodes into a space where the normal nodes reside in a
possibly small hyper-sphere. The fact that on the test set this network shows a
large difference between precision and recall appears to be a consequence of the
fact that the optimal position and radius of this hyper-sphere may change when
the graph structure changes, and thus this algorithm is less performant in an
inductive setting than it would be in its original transductive usage.

5 Conclusions

In conclusions, in this paper we have faced the problem of detecting abnormal
communication patterns in IoT networks using Graph Neural Networks. To this
purpose, we have selected from the state of the art three different ways of rep-
resenting network traffic in terms of graphs, and three graph-based anomaly
detection algorithms. The resulting 9 combinations have been experimentally
evaluated using two recent datasets composed of real IoT network traffic. pro-
posed in the context of network analysis. The results that we have obtained in
the experiments are encouraging. Further analysis is required to assess the reli-
ability and robustness as well as the generalization capability of GNN in this
context.

Detecting Abnormal Communication Patterns in IoT Networks 137

References

1. Abbasi, M., Shahraki, A., Taherkordi, A.: Deep learning for network traffic mon-
itoring and analysis (NTMA): a survey. Comput. Commun. 170, 19–41 (2021).
https://doi.org/10.1016/j.comcom.2021.01.021

2. Aouini, Z., Pekar, A.: Nfstream: a flexible network data analysis framework. Com-
put. Netw. 204, 108719 (2022)

3. Churcher, A., et al.: An experimental analysis of attack classification using machine
learning in IOT networks. Sensors 21(2), 446 (2021)

4. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate
time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 4027–4035 (2021)

5. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed
networks. In: Proceedings of the 2019 SIAM International Conference on Data
Mining, pp. 594–602. SIAM (2019)

6. Fahim, M., Sillitti, A.: Anomaly detection, analysis and prediction techniques in
IOT environment: a systematic literature review. IEEE Access 7, 81664–81681
(2019). https://doi.org/10.1109/ACCESS.2019.2921912

7. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.:
Network monitoring using traffic dispersion graphs (TDGs). In: Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement, pp. 315–320 (2007)

8. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development
of realistic botnet dataset in the internet of things for network forensic analytics:
bot-IOT dataset. Future Gen. Comput. Syst. 100, 779–796 (2019)

9. Lo, W.W., Layeghy, S., Sarhan, M., Gallagher, M., Portmann, M.: E-graphsage: a
graph neural network based intrusion detection system for IOT. In: NOMS 2022–
2022 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9. IEEE
(2022)

10. Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep packet: a novel
approach for encrypted traffic classification using deep learning. Soft Comput.
24(3), 1999–2012 (2019). https://doi.org/10.1007/s00500-019-04030-2

11. Ma, X., et al.:: A comprehensive survey on graph anomaly detection with deep
learning. IEEE Trans. Knowl. Data Eng. (2021)

12. Macas, M., Wu, C., Fuertes, W.: A survey on deep learning for cybersecu-
rity: progress, challenges, and opportunities. Comput. Netw. 212, 109032 (2022).
https://doi.org/10.1016/j.comnet.2022.109032

13. Pacheco, F., Exposito, E., Gineste, M., Baudoin, C., Aguilar, J.: Towards the
deployment of machine learning solutions in network traffic classification: a sys-
tematic survey. IEEE Commun. Surv. Tutor. 21(2), 1988–2014 (2019). https://
doi.org/10.1109/COMST.2018.2883147

14. Parmisano, A., Garcia, S., Erquiaga, M.J.: A Labeled Dataset with Malicious
and Benign IOT Network Traffic. Stratosphere Laboratory, Praha, Czech Republic
(2020)

15. The Guardian: DDoS attack that disrupted internet was largest of its kind in his-
tory, experts say. https://www.theguardian.com/technology/2016/oct/26/ddos-
attack-dyn-mirai-botnet

16. Ullah, I., Mahmoud, Q.H.: A scheme for generating a dataset for anomalous activity
detection in IoT networks. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS
(LNAI), vol. 12109, pp. 508–520. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-47358-7 52

https://doi.org/10.1016/j.comcom.2021.01.021
https://doi.org/10.1109/ACCESS.2019.2921912
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1016/j.comnet.2022.109032
https://doi.org/10.1109/COMST.2018.2883147
https://doi.org/10.1109/COMST.2018.2883147
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://doi.org/10.1007/978-3-030-47358-7_52
https://doi.org/10.1007/978-3-030-47358-7_52

138 V. Carletti et al.

17. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural
networks for anomaly detection in attributed networks. Neural Comput. Appl. 33,
12073–12085 (2021)

18. Xu, Z., Huang, X., Zhao, Y., Dong, Y., Li, J.: Contrastive attributed network
anomaly detection with data augmentation. In: Advances in Knowledge Discovery
and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, 16–19
May 2022, Proceedings, Part II, pp. 444–457. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-05936-0 35

19. Zheng, J., Li, D.: Gcn-tc: combining trace graph with statistical features for net-
work traffic classification. In: ICC 2019–2019 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE (2019)

20. Zheng, J., Zeng, Z., Feng, T.: Gcn-eta: high-efficiency encrypted malicious traffic
detection. Secur. Commun. Netw. 2022, 1–11 (2022)

21. Zola, F., Segurola-Gil, L., Bruse, J.L., Galar, M., Orduna-Urrutia, R.: Network
traffic analysis through node behaviour classification: a graph-based approach with
temporal dissection and data-level preprocessing. Comput. Secur. 115, 102632
(2022)

https://doi.org/10.1007/978-3-031-05936-0_35
https://doi.org/10.1007/978-3-031-05936-0_35

Cell Segmentation of in situ
Transcriptomics Data Using Signed

Graph Partitioning

Axel Andersson, Andrea Behanova(B), Carolina Wählby, and Filip Malmberg

Centre for Image Analysis, Department of Information Technology and SciLifeLab
BioImage Informatics Facility, Uppsala University, Uppsala, Sweden

{axel.andersson,andrea.behanova,carolina.wahlby,filip.malmberg}@it.uu.se

Abstract. The locations of different mRNA molecules can be revealed
by multiplexed in situ RNA detection. By assigning detected mRNA
molecules to individual cells, it is possible to identify many different cell
types in parallel. This in turn enables investigation of the spatial cellular
architecture in tissue, which is crucial for furthering our understanding of
biological processes and diseases. However, cell typing typically depends
on the segmentation of cell nuclei, which is often done based on images
of a DNA stain, such as DAPI. Limiting cell definition to a nuclear stain
makes it fundamentally difficult to determine accurate cell borders, and
thereby also difficult to assign mRNA molecules to the correct cell. As
such, we have developed a computational tool that segments cells solely
based on the local composition of mRNA molecules. First, a small neural
network is trained to compute attractive and repulsive edges between
pairs of mRNA molecules. The signed graph is then partitioned by a
mutex watershed into components corresponding to different cells. We
evaluated our method on two publicly available datasets and compared
it against the current state-of-the-art and older baselines. We conclude
that combining neural networks with combinatorial optimization is a
promising approach for cell segmentation of in situ transcriptomics data.
The tool is open-source and publicly available for use at https://github.
com/wahlby-lab/IS3G.

Keywords: Cell segmentation · in situ transcriptomics · tissue
analysis · mutex watershed

1 Introduction

Over the past years, a large number of techniques for spatially resolved mul-
tiplexed in situ transcriptomics (IST) have been developed [1,2,5,6,8,10].
These techniques enable the mapping of hundreds of different mRNA molecules
directly within tissue samples, allowing the dissection and analysis of cell type
heterogeneity while preserving spatial information. These techniques produce
large gigapixel-sized images of tissue sections with millions of different spatial

A. Andersson and A. Behanova—Contributed equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 139–148, 2023.
https://doi.org/10.1007/978-3-031-42795-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_13&domain=pdf
https://github.com/wahlby-lab/IS3G
https://github.com/wahlby-lab/IS3G
https://doi.org/10.1007/978-3-031-42795-4_13

140 A. Andersson et al.

biomarkers for various mRNA molecules. A single experiment can pinpoint the
location of hundreds of different types of mRNA molecules with sub-micrometer
resolution. The many different types of targeted mRNA molecules, as well as a
large number of detected molecules, make visual exploration and analysis chal-
lenging. To alleviate, and compute quantitative statistics, a range of tools, as
described below, have been developed for grouping the mRNA molecules into
groups, such as cells, cell types, or tissue-level compartments.

1.1 Tools for Analyzing IST Data

The analysis of IST data typically starts by assigning mRNA molecules to local-
ized cells. By examining the composition of molecules within cells, it becomes
possible to define and analyze different cell types and their spatial organiza-
tion [3,11,19,22]. Traditionally, cells are located in a nuclear stained image
complementary to the IST experiment using techniques such as Stardist [21],
Cellpose [18], or the distance-transform watershed approach. Subsequently, the
mRNA molecules are assigned to the detected nuclei based on their proximity in
space. However, assigning molecules to cells solely based on their spatial prox-
imity to the nucleus may not be optimal due to irregular cell shapes and the
asymmetric distribution of detected mRNAs around the nuclei. Moreover, there
are situations where clusters of mRNA molecules belonging to a cell are detected
in the IST experiment, but the corresponding nucleus lies outside the imaged
region of interest. Additionally, if the quality of the nuclear image is poor and
the nuclei are not clearly visible, it further complicates the assignment process.
In such cases, cell detection based on nuclear staining is not optimal.

To improve the assignment of molecules to already detected cells, Qian et
al [17] created a probabilistic cell typing method, pciSeq, where prior known
information regarding the molecular composition of different cell types is uti-
lized when assigning molecules and typing cells. Similarly, Prabhakaran et al. [16]
introduced Sparcle, a method where mRNAs are assigned to cells through a rela-
tively simple “assign” and “refine” algorithm. However, both Sparcle and pciSeq
require that the location of cells is known beforehand. Petukhov et al. [15] intro-
duced Baysor, an extensive probabilistic model that both detects the location
of cells and assigns molecules to the cell. Alternatively, there are methods that
overcome assigning molecules to cells by simply ignoring the cells, and instead
assigning molecules to spatial bins [12,13,20], or using deep learning to learn
more abstract features [4,9,14]. Such methods allow the user to easily identify
regions of similar molecular compositions (corresponding to semantic segmen-
tation), but statistics on a per-cell level (requiring instance segmentation) are
difficult to compute.

1.2 Contribution

Localizing cells and assigning the right molecules to cells is a crucial task in IST.
In this context, we introduce In Situ Sequencing SEGmentation (IS3G), a novel
tool that jointly identifies the location of cells and assigns mRNA molecules to
them, without the need for prior knowledge of cell location or cell type molecular

Cell Segmentation of IST Data Using Signed Graph Partitioning 141

compositions. IS3G operates solely on local mRNA composition and identifies
cells by partitioning a signed graph, making it possible to segment cells without
relying on nuclear staining. Our results demonstrate that signed graph partition-
ing can be used to efficiently segment IST data without seeds for cell location
or cell types.

2 Methodology

In brief, IS3G utilizes a small neural network to classify whether two mRNA
molecules originate from the same cell or not. The posterior probabilities of the
classifier are used to determine the strength of attractive (positive) and repulsive
(negative) edges in a signed graph. Using a mutex watershed [23], this graph is
then partitioned into components that correspond to individual cells, enabling
the accurate assignment of molecules to their respective cells.

2.1 Compositional Features

The neural network used to predict the attractive and repulsive edge strengths
is trained on local compositions of mRNA molecules. In this section, we explain
how to extract such features. We start by setting the notation. In an IST experi-
ment, the i’th detected mRNA molecule can be described with two attributes: a
position pi ∈ R

D and a categorical label li ∈ L, where D is the number of spatial
dimensions (usually two or three) and L is the set of targeted mRNA molecules.
The categorical label of a molecule can be represented as a one-hot-encoded
vector, i.e., ei ∈ {0, 1}|L|. The local composition of mRNA molecules in a neigh-
borhood around the i’th mRNA can thus be computed by simply counting the
labels among the k nearest neighbors,

xi =
∑

j∈N (pi)

ej , (1)

where N (pi) refers to the k nearest neighbors to the i’th molecule. The parameter
k depends on the molecular density and must be tuned so that the compositional
features describe molecular patterns on a cellular scale. We found that setting
the value of k to roughly one third of the expected molecular count per cell
works well. The compositional features xi will serve as the input to our model
used for computing the strength of our attractive and repulsive edges.

To predict the edge strengths between molecules, we train a small Siamese
neural network to classify whether two molecules belong to the same cell or
not. The network consists of an encoder and a classifier. First, the composi-
tional features are computed for each of the pairs according to Eq. 1. The pair
of features, (xi, xj), are respectively encoded by the encoder into latent vectors
(zi, zj) using a simple neural network with two fully-connected layers with ELU
activations. Next, the Euclidean distance between the two latent vectors is com-
puted, Δi,j = ‖zi−zj‖2. Based on the distance between the vectors, the network

142 A. Andersson et al.

Fig. 1. Explanatory overview of the method. The top row: (a) Visualization of the
distribution of molecules within three cells, where each color represents a different
type of mRNA molecule. (b) Attractive edges connect molecules over short distances,
whereas repulsive edges connect molecules over greater distances. The weight of the
attractive edges indicates the desire that the two molecules belong to the same cell,
whereas the weight of the repulsive edges indicates a desire that the molecules belong
to two different cells. Panel (b1–b3) describes how the edge weights are computed.
First, compositional vectors are computed for a pair of molecules (b1). The pair of
compositional vectors, (xi, xj), are respectively fed through an encoder, transforming
the vectors into latent representations (zi, zj) (b2). The Euclidean distance between
the latent vectors is fed through a classifier, attempting to classify whether the pair of
latent vectors are from the same cell or not. The posterior probabilities of the classifier
are used to set the strength of the attractive and repulsive edges (b3–b4). The signed
graph is partitioned using a mutex watershed. The connected components defined by
the active attractive edges are labeled individual cell instances (b5,c).

attempts to classify whether the sampled molecule pair belongs to the same cell
or not. The classifier consisted of a single fully connected layer ending with a
Sigmoid function. The posterior probability, yij , is then used as the attractive
and repulsive (yij −1) edge strengths. However, compositional features (xi) com-
puted in regions with low concentrations of mRNA molecules are inherently more
sensitive to small molecular variations than compositional features computed in
high-concentration regions. We, therefore, scale edge weights by the density fac-
tor ρij = min(‖xi‖1, ‖xj‖1) to give edges between pairs of mRNA molecules in
low concentration regions lower weight than pairs in high concentration regions.

The weights of the encoder and classifier are jointly optimized by minimizing
the binary cross entropy using the Adam optimizer [7]. Training data is generated
stochastically using the heuristic that two molecules separated by a distance
less than Rcell are labeled as belonging to the same cell, whereas molecules
separated by a distance larger than 2Rcell are labeled to belong to two different
cells. We trained the network for a maximum of 300 epochs, where one epoch

Cell Segmentation of IST Data Using Signed Graph Partitioning 143

was reached when we sampled the same number of molecule pairs as the total
number of molecules in the dataset. However, 300 epochs were never reached
since we employed an early stopping procedure. If the loss was non-decreasing
for more than 15 epochs, the training would terminate. The model with the
lowest loss was saved and used for computing edge strengths. A batch size of
2048 was used for all experiments.

2.2 Graph Construction and Partitioning

In the previous section, we explained how a neural network can be used to
compute attractive and repulsive edge strengths. In this section, we will define
our set of attractive and repulsive edges. We define our set of attractive edges,
E+, by assuming that molecules separated by a short distance are likely to
belong to the same cell. Specifically, E+ is created by connecting each molecule
to all of its five nearest neighbors.

Next, we define our set of repulsive edges between molecules separated by a
distance larger than 2Rcell and less than 6Rcell. To save memory, each molecule
is only connected with a repulsive edge to 15 randomly selected neighbors
within the interval. The repulsive edge weights are set to −∞ for edges between
molecules separated by a distance larger than 4Rcell.

Finally, we use the procedure from the previous section to compute the
strength of the edges, leaving us with a graph with signed edge weights. The
graph is finally partitioned using a mutex watershed into components corre-
sponding to different cells.

The methodology is shown as an illustrative example in Fig. 1.

2.3 Pre and Post Processing

To speed up the segmentation we first remove markers in low-density regions,
as these markers are likely extracellular. We identify these markers automati-
cally by computing the distance to the 15’th nearest neighbor. The distance is
then clustered using a Gaussian mixture model. Markers belonging to the com-
ponent with the larger mean are deemed extracellular and removed. After the
segmentation, we discard cells with fewer than nmin number of molecules.

2.4 Visualization

The segmented cells can be visualized in two ways: by assigning a color to each
marker based on the cell it belongs to, or by outlining the segmented cell with
a contour. To generate the contours, we employ an algorithm similar to the one
described in [15]. For each cell, we calculate the marker frequency within small
spatial bins placed on a regular grid. This process is repeated for all detected
cells, resulting in a multi-channel count image. Each pixel in the image repre-
sents the marker count in a bin for a specific cell. The count image is spatially
smoothed using a Gaussian filter and then transformed into a 2D labeled mask

144 A. Andersson et al.

by identifying the index of the maximum value across the channels. Each label
in the mask thus corresponds to detected cells. Next, we find the contours of
each cell in the labeled mask. The contour pixels for each cell are finally filtered
by taking the longest path of the minimum spanning tree connecting the points.

3 Experiments

We perform experiments on two publicly available datasets: An osmFISH [1]
and an In Situ Sequencing (ISS) [17] dataset and compare with authors’ original
segmentation as well as Baysor [15]—the current state-of-the-art.

3.1 osmFISH

We first studied the osmFISH dataset [1]. This dataset consists of around two
million molecules of 35 different types. Also included in this dataset is a segmen-
tation produced by the original authors [1], here referred to as the Codeluppi
method. We ran IS3G using Rcell = 8 mm and k = 35. We also ran Baysor [15]
on the dataset, using the parameters provided in their osmFISH example. Baysor
can be seeded with prior information regarding the nuclei segmentation (as
described in [15]), as such, we run Baysor both with and without such a prior.
For each cell segmentation method, we filter out cells containing fewer than
nmin = 30 molecules. First, we look at the number of cells detected by each of
the methods as well as the fraction of assigned molecules. This is shown in Fig. 2a
and Fig. 2b respectively. As seen, IS3G finds roughly the same number of cells
as Baysor and Baysor with prior, but significantly more than the original pub-
lication [1].

Next, we wanted to investigate if we find cells in the same location as the other
methods. To do this we first matched our detected cells with the other methods’
detected cells based on Sørensen-Dice index (Dice index). If two cells identified
by two methods contain exactly the same molecules, the Dice index is one, and
zero if no molecules overlap between the two cells. We match the cells between
the two methods by maximizing the average Dice score across all detected cells
using the Hungarian algorithm. Figure 2c shows the distribution of Dice indices
between matched cells detected using IS3G versus Baysor, Baysor with prior and
Codeluppi et al. [1]. The median Dice index between IS3G detected cells matched
with Baysor detected cells was 0.8. Finally, Fig. 2d shows some examples of the
segmentation done by the different methods. The full dataset with segmentation
results from all the mentioned techniques can be found here: https://tissuumaps.
scilifelab.se/osmFISH.html

3.2 In Situ Sequencing

Secondly, we studied the dataset by Qian et al [17]. This dataset comprises
around 1.4 million detected molecules of 84 different types. As for post-
processing, we filter out cells containing fewer than nmin = 8 molecules. We
used an Rcell = 10 µm and k = 8. Figure 3a shows the number of cells detected

https://tissuumaps.scilifelab.se/osmFISH.html
https://tissuumaps.scilifelab.se/osmFISH.html

Cell Segmentation of IST Data Using Signed Graph Partitioning 145

a b c

d

e

g DAPI IS3G Codeluppi Baysor Baysor prior

Genes IS3G Segmenta�onf

IS3GGenes

Fig. 2. Results of various segmentation techniques applied on osmFISH dataset. The
total number of detected cells and the fraction of molecules assigned cells are shown
in a and b respectively. Cells detected by IS3G are paired with cells detected by other
methods. The distribution of Dice indices of the paired cells is shown in c. The dashed
line represents the median Dice index. Panel d shows a zoomed out view of the DAPI
image (100 µm scale bar), with zoom-ins showing the distribution of gene markers
(e) and IS3G segmented cells (f). A series of segmentation examples are shown in d.
Presented techniques are IS3G, Codeluppi, Baysor, and Baysor with DAPI.

by IS3G, Baysor, Baysor with prior, and pciSeq. We note that IS3G finds roughly
the same number of cells as Baysor and Baysor prior, and significantly more than
pciSeq.

146 A. Andersson et al.

d e f

g DAPI IS3G pciSeq Baysor Baysor priorGenes

a b c

Fig. 3. Results of various segmentation techniques applied on ISS dataset. The total
number of detected cells and the fraction of molecules assigned cells are shown in (a)
and (b) respectively. Cells detected by IS3G are paired with cells detected by other
methods. The distribution of Dice indices of the paired cells is shown in (c). The dashed
line represents the median Dice index. Panel (d) shows the DAPI image of the whole
data set (1 mm scale bar) with highlighted zoom-in sections showing gene markers (e)
and IS3G segmented cells (f). A series of segmentation examples are shown in (g).
Presented techniques are IS3G, pciSeq, Baysor, and Baysor with prior.

Figure 3c shows the distribution of Dice indices when matching molecules
assigned to our segmented cells with the other methods. The dashed lines indicate
the median. Finally, Fig. 3d shows some examples of the segmentation done by
the different methods. The full dataset with segmentation results from all the
mentioned techniques can be found here: https://tissuumaps.scilifelab.se/ISS.
html

4 Discussion

We have presented a simple technique for segmenting cells in IST data. IS3G
differs from other approaches that need prior cell segmentation, seeds, or pre-
determined cell types. Instead, IS3G directly extracts features from the data

https://tissuumaps.scilifelab.se/ISS.html
https://tissuumaps.scilifelab.se/ISS.html

Cell Segmentation of IST Data Using Signed Graph Partitioning 147

by utilizing a simple neural network. We tested IS3G on two datasets, and it
achieved performance comparable to the current state of the art, see Fig. 2c and
Fig. 2c, showing that signed graph partitioning can be used to efficiently segment
cells in IST data.

The deep learning model used to predict edge weights is very basic and likely
not optimal. It was trained on “already aggregated data,” which refers to compo-
sitional features obtained by computing the weighted frequency of molecules in
circular neighborhoods, see Eq. 1. A graph neural network may be more suitable
for this application since it can also learn the weights used in the aggregation.

IS3G requires that the user provides a rough estimate of the cell radius, i.e.,
Rcell. This parameter governs the bandwidth of the Gaussian kernel used when
computing the compositional features. However, here we have assumed that the
size of each cell is approximately the same. In practice, we have noticed that the
size of the cells, or more precisely, the size of the mRNA point-cloud surrounding
the cells, can vary between cells. Potentially, the segmentation could be improved
by considering an adaptive bandwidth or using a graph-neural network that can
extract features across multiple scales.

While not used explicitly herein, the mutex watershed algorithm provides a
convenient way to specify mutually exclusive constraints between specific types
of markers. This could be particularly beneficial in regions where it is difficult
to differentiate between cells based solely on mRNA composition but a clear
distinction can be made based on their nuclei. In such scenarios, IS3G may iden-
tify cells with multiple nuclei. However, if the user has supplementary markers
indicating the position of nuclei, infinitely repulsive edges can be incorporated
between these markers to explicitly ensures that each cell contains only one
nucleus.

References

1. Codeluppi, S., et al.: Spatial organization of the somatosensory cortex revealed
by osmFISH. Nat. Meth. 15(11), 932–935 (2018). https://doi.org/10.1038/s41592-
018-0175-z

2. Eng, C.H.L., et al.: Transcriptome-scale super-resolved imaging in tissues by RNA
seqFISH. Nature 568(7751), 235–239 (2019). https://doi.org/10.1038/s41586-019-
1049-y

3. Hao, Y., et al.: Integrated analysis of multimodal single-cell data. Cell 184(13),
3573–3587 (2021)

4. Hu, J., et al.: SpaGCN: integrating gene expression, spatial location and histology
to identify spatial domains and spatially variable genes by graph convolutional
network. Nat. Meth. 18(11), 1342–1351 (2021)

5. Janesick, A., et al.: High resolution mapping of the breast cancer tumor microen-
vironment using integrated single cell, spatial and in situ analysis of FFPE tissue
(2022). https://doi.org/10.1101/2022.10.06.510405

6. Ke, R., et al.: In situ sequencing for RNA analysis in preserved tissue and cells.
Nat. Meth. 10(9), 857–860 (2013). https://doi.org/10.1038/nmeth.2563

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
doi.org/10.48550/ARXIV.1412.6980

https://doi.org/10.1038/s41592-018-0175-z
https://doi.org/10.1038/s41592-018-0175-z
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1101/2022.10.06.510405
https://doi.org/10.1038/nmeth.2563
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980

148 A. Andersson et al.

8. Lee, H., Salas, S.M., Gyllborg, D., Nilsson, M.: Direct RNA targeted in situ
sequencing for transcriptomic profiling in tissue. Sci. Rep. 12(1), 7976 (2022).
https://doi.org/10.1038/s41598-022-11534-9

9. Li, J., Chen, S., Pan, X., Yuan, Y., bin Shen, H.: CCST: cell clustering for spatial
transcriptomics data with graph neural network (2021)

10. Moffitt, J.R., et al.: Molecular, spatial, and functional single-cell profiling of the
hypothalamic preoptic region. Science 362(6416), eaau5324 (2018). https://doi.
org/10.1126/science.aau5324

11. Palla, G., et al.: Squidpy: a scalable framework for spatial omics analysis. Nat.
Meth. 19(2), 171–178 (2022)

12. Park, J., et al.: Cell segmentation-free inference of cell types from in situ transcrip-
tomics data. Nat. Commun. 12(1), 4103 (2021). https://doi.org/10.1038/s41467-
021-23807-4

13. Partel, G., et al.: Automated identification of the mouse brain’s spatial compart-
ments from in situ sequencing data. BMC Biol. 18(1), 1–14 (2020)

14. Partel, G., Wählby, C.: Spage2vec: unsupervised representation of localized spatial
gene expression signatures. FEBS J. 288(6), 1859–1870 (2020). https://doi.org/
10.1111/febs.15572

15. Petukhov, V., et al.: Cell segmentation in imaging-based spatial transcriptomics.
Nat. Biotechnol. 40(3), 345–354 (2022)

16. Prabhakaran, S.: Sparcle: assigning transcripts to cells in multiplexed images.
Bioinf. Adv. 2(1), vbac048 (2022)

17. Qian, X., et al.: Probabilistic cell typing enables fine mapping of closely related cell
types In situ. Nat. Meth. 17(1), 101–106 (2019). https://doi.org/10.1038/s41592-
019-0631-4

18. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algo-
rithm for cellular segmentation. Nat. Meth. 18(1), 100–106 (2020). https://doi.
org/10.1038/s41592-020-01018-x

19. Teng, H., Yuan, Y., Bar-Joseph, Z.: Clustering spatial transcriptomics data. Bioin-
formatics 38(4), 997–1004 (2022)

20. Tiesmeyer, S., Sahay, S., Müller-Bötticher, N., Eils, R., Mackowiak, S.D., Ishaque,
N.: SSAM-lite: a light-weight web app for rapid analysis of spatially resolved tran-
scriptomics data. Front. Genet. 13, 785877 (2022). https://doi.org/10.3389/fgene.
2022.785877

21. Weigert, M., Schmidt, U., Haase, R., Sugawara, K., Myers, G.: Star-convex polyhe-
dra for 3D object detection and segmentation in microscopy. In: The IEEE Winter
Conference on Applications of Computer Vision (WACV), March 2020 (2020).
https://doi.org/10.1109/WACV45572.2020.9093435

22. Wolf, F.A., Angerer, P., Theis, F.J.: SCANPY: large-scale single-cell gene expres-
sion data analysis. Genome Biol. 19(1), 1–5 (2018)

23. Wolf, S., et al.: The mutex watershed and its objective: efficient, parameter-free
graph partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3724–3738
(2020)

https://doi.org/10.1038/s41598-022-11534-9
https://doi.org/10.1126/science.aau5324
https://doi.org/10.1126/science.aau5324
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1038/s41467-021-23807-4
https://doi.org/10.1111/febs.15572
https://doi.org/10.1111/febs.15572
https://doi.org/10.1038/s41592-019-0631-4
https://doi.org/10.1038/s41592-019-0631-4
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.3389/fgene.2022.785877
https://doi.org/10.3389/fgene.2022.785877
https://doi.org/10.1109/WACV45572.2020.9093435

Graph-Based Representation
for Multi-image Super-Resolution

Tomasz Tarasiewicz(B) and Michal Kawulok

Department of Algorithmics and Software, Silesian University of Technology,
Gliwice, Poland

{tomasz.tarasiewicz,michal.kawulok}@polsl.pl

Abstract. Multi-image super-resolution is a challenging computer
vision problem that aims at recovering a high-resolution image from its
multiple low-resolution counterparts. In recent years, deep learning-based
approaches have shown promising results, however, they often lack the
flexibility of modeling complex relations between pixels, permutability
of the input data, or they were designed to process a specific number of
input images. In this paper, we propose an improved version of our earlier
graph neural network that benefits from permutation-invariant graph-
based representation of multiple low-resolution images. Importantly, we
demonstrate that our solution allows for performing reconstruction from
a set of heterogeneous input images, which is not straightforward for
other state-of-the-art techniques. Such flexibility is a crucial feature for
practical applications, which is confirmed qualitatively and quantita-
tively for a set of real-world (rather than simulated) input images.

Keywords: Multi-image super-resolution · Image fusion · Graph
neural network

1 Introduction

Super-resolution (SR) reconstruction is a common term for a variety of tech-
niques whose common goal is to generate a high-resolution (HR) image from a
low-resolution (LR) observation. The latter may take the form of a single image
or multiple images presenting the same scene. Single-image SR (SISR) techniques
are easy to apply, as they do not require multiple images to operate, but they
are severely ill-posed, since in most cases an LR image can be super-resolved
into a variety of HR images. Multi-image SR (MISR) relies on the assumption
that every LR image carries a different portion of HR information. Therefore, by
means of information fusion, an HR image can be reconstructed more reliably
than with SISR.

This research was supported by the National Science Centre, Poland, under Research
Grant No. 2019/35/B/ST6/03006. MK was supported by the Silesian University of
Technology, Poland funds through the Rector’s Research and Development Grants No.
02/080/RGJ22/0024. TT benefits from the European Union scholarship through the
European Social Fund (grant POWR.03.05.00-00-Z305).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 149–159, 2023.
https://doi.org/10.1007/978-3-031-42795-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_14&domain=pdf
http://orcid.org/0000-0002-7706-1317
http://orcid.org/0000-0002-3669-5110
https://doi.org/10.1007/978-3-031-42795-4_14

150 T. Tarasiewicz and M. Kawulok

1.1 Related Work

The best-performing SISR and MISR methods are underpinned with convolu-
tional neural networks (CNNs) that learn the reconstruction procedure from
the matched LR and HR images showing the same scene. The use of CNNs for
SISR has been widely explored since 2014 when Dong et al. demonstrated that
the processing pipeline of sparse-coding-based SR [17] can be viewed as a deep
CNN. However, applying CNNs for MISR is not that straightforward, mainly
due to the problems with appropriate input data representation. In 2019, we
introduced the EvoNet framework [7], which preprocesses the input LR images
using CNN-based SISR techniques, prior to evolutionary multi-image fusion [6].
Such preprocessing enhances the performance of MISR, but this approach has
been outperformed with end-to-end deep learning solutions, proposed to address
the PROBA-V SR Challenge that European Space Agency (ESA) organized in
2018–19 [8], and published the first large-scale real-world dataset for MISR. The
DeepSUM network [9], later enhanced with non-local operations [10], was the
first end-to-end MISR network. It is composed of three parts that (i) extract
deep features from each LR image, (ii) co-register the feature maps with sub-
pixel precision, and (iii) perform their final fusion, whose outcome is added to
the image obtained as an average of bicubically-upsampled LR inputs. DeepSUM
assumes a fixed number of LR inputs and requires long training, being the result
of fusing the upsampled LR images. These downsides were addressed in other
MISR solutions, including HighRes-Net, which combines the latent LR represen-
tations in a recursive manner to obtain the global representation, which is upsam-
pled to obtain the super-resolved image [2]. Also, the attention mechanism was
found useful for selecting the most valuable features extracted from LR inputs
in the residual attention multi-image SR (RAMS) network [12], and a recurrent
network with gated recurrent units was proposed in [11]. An et al. focused on
simplifying the training with the use of transformers [1], and reported compet-
itive results obtained with their TR-MISR network for the PROBA-V dataset.
Recently, Valsesia and Magli showed with their PIUnet [16] that enforcing per-
mutation invariance within a set of LR inputs leads to significant improvements
in super-resolving multiple images.

In [15], we proposed to represent an input set of LR images as a graph
which is processed with a graph neural network (GNN) that produces the super-
resolved image. It leverages the inherent structure of the LR images and allows
for flexible connectivity between any pair of pixels on the graph. However, the
graph is transformed to a rectangular form prior to the upsampling performed
with the pixel shuffle operation, and this process assumes uniform pixel density
across the image (locally, the graph must inherit identical structure around each
pixel). This means that such a network can benefit from sub-pixel shifts in the
spatial domain, but it is assumed that the input images are of an identical
size and that they are not rotated between each other. Importantly, the same
limitation is imposed by other state-of-the-art techniques.

Graph-Based Representation for Multi-image Super-Resolution 151

1.2 Contribution

In this work, we address the important limitations of the technique proposed in
our earlier work [15] and we study the practical benefits of graph-based repre-
sentation for MISR. In particular, our contribution is threefold:

1. We propose Magnet++ which is an improved version of Magnet-our earlier
GNN for MISR. The primary improvement in Magnet++ lies in its upsam-
pling which leverages the graph structure of the input data for more efficient
and accurate performance. Unlike our previous model, where the upsampling
operation was performed after the graph had been transformed to a rectan-
gular form and then upsampled using the pixel shuffle algorithm, Magnet++
utilizes the inherent graph structure for a more effective and precise upsam-
pling process.

2. We report the results obtained for a real-world dataset with scenes composed
of multiple original low-resolution images captured by the PROBA-V satel-
lite showing the same area of Earth, coupled with a high-resolution image
acquired by a different sensor installed on the same satellite.

3. We argue that in Magnet++, the proposed graph-based representation cou-
pled with improved upsampling allows for performing super-resolution from
a set of heterogeneous low-resolution images, and we report the initial, yet
encouraging, results of our experimental study that confirm such capability.

Overall, the proposed technique (Sect. 2) provides a new perspective on SR by
exploiting the graph representation of LR images. The results of our experiments
(Sect. 3) confirmed that it allows for running the reconstruction from a set of
heterogeneous images of varying sizes without the need of resampling them to a
uniform regular grid, which has important practical implications. We will make
Magnet++ implementation publicly available upon paper acceptance.

2 Proposed Method

This section covers various techniques for converting a stack of LR images into
a single graph (Sect. 2.1), as well as a simple GNN designed to process this type
of data (Sect. 2.2). Additionally, we examine key features of both the GNN and
the proposed data representation.

2.1 Data Representation

Multiple images of the same scene may not be identical even when taken almost
immediately one after another due to various factors such as sensor noise, changes
in lighting conditions, camera shake or movement, and lens distortion. These fac-
tors can introduce variations in the captured images, resulting in differences in
pixel values and overall image appearance. In MISR, this is an especially useful
phenomenon as it allows for the extraction and fusion of complementary infor-
mation contained in each image. One of the most common differences between

152 T. Tarasiewicz and M. Kawulok

such images is their displacement with respect to the point of reference. These
displacements can span over multiple pixels or have values lower than one unit
(subpixel shifts). To address this issue, most of the current state-of-the-art MISR
methods apply different image co-registration techniques [5,9] in order to modify
the input images so that each pixel of a single image represents exactly the same
point on a 2D plane as its counterparts from other observations. These data
modifications may lead to a loss of important information, which can hinder
successful scene reconstruction. In our approach, however, we do not perform
any modifications on the input data; hence the initial information is preserved
in its entirety.

Node Positioning. To create a single graph representation of a stack of N
input LRs, we need to correctly place them on a 2D plane. To accomplish this,
we compute the displacement vectors for each LR with respect to a randomly
chosen image from the stack. This can be achieved using readily available regis-
tration algorithms or a trained neural network. We then recenter the displace-
ment vectors by subtracting the total mean of the displacements from each of
them, thereby minimizing any bias towards the reference image that has no ini-
tial shifts. Next, we place the images on a 2D plane by assigning each pixel a
discrete position (x, y), where x and y correspond to indices of a pixel in an input
image LRn, assuming LRn ∈ R

H×W and n ∈ (1, 2, ..., N). At this stage, each
pixel shares its discrete position with corresponding pixels from other images, so
we adjust their location by subtracting a displacement vector assigned for each
LR.

It is worth noting that the proposed method is designed for applications
where each image has the same shape and resolution. However, we can enhance
this approach by incorporating more advanced techniques for assigning node
positions, such as encoding geospatial coordinates for remote sensing applica-
tions. This would enable us to create graphs using LR images of varying resolu-
tions or sizes rather than being restricted to a constant shape for each LR image
or even combining images rotated with respect to each other.

Creating Connections. In the context of graph theory, an edge denotes a link-
age or a bond connecting a pair of vertices or nodes in a graph. The connection is
represented as a line or a curve, serving to indicate the relationship between the
vertices. Depending on whether it signifies a one-way or a two-way connection
between the vertices, an edge can be either directed or undirected. Concerning
GNNs, the presence of an edge signifies that two nodes are connected, and the
edge’s direction specifies whether the node is a source of information or a receiver.
Furthermore, an edge can be classified based on the relation it represents, given
a weight to express its strength, or endowed with a set of features.

In the context of the MISR problem, a typical approach would be to establish
edges solely between neighbouring nodes, given the relatively higher importance
of local information over global one. In a 2D tensor representation of an image,
each pixel has eight immediate neighbours, except those situated at the image’s

Graph-Based Representation for Multi-image Super-Resolution 153

boundary. However, in the case where all nodes across multiple images are placed
on a single, continuous Euclidean plane, determining their neighbourhood rela-
tionships becomes non-trivial. One potential solution, which we embraced in this
work, is to link nodes based on their Euclidean distance, with only those pairs of
nodes that fall within a pre-specified radius r being connected. For our experi-
ments, we set r = 1. This ensures a thoughtful equilibrium between maintaining
computational manageability and preserving the local integrity of the image by
connecting each pixel to its direct neighbors. It’s important to note that any
increase in the radius would escalate the connections, potentially overcomplicat-
ing the graph and intensifying computational demands.

Message Passing. In geometric deep learning, message passing is the funda-
mental operation used to update node states by propagating information. The
form of the message-passing function can vary depending on the architecture
of the GNN. However, the essential idea is to utilize the available graph infor-
mation, such as node and edge features, to update node states in a way that
reflects the graph’s structure and relationships. In our research, we have dis-
covered that the spline-based convolutional operator [4] is especially effective
when integrated into the MISR GNN. It works similarly to the sliding-window
approach of standard convolutional layers, however, if nodes are placed on a
continuous plane, applying a K ×K convolutional kernel with only K2 probing
points would be impossible. The spline-based convolution overcomes this issue
by using B-spline basis functions to create a continuous kernel with K2 trainable
parameters and interpolate their value depending on the position of a node being
probed. Additionally, the span of a standard convolution is closely related to the
size of a kernel and its dilation, whereas the spline-based operator allows for an
operational distance independent of the kernel size. This means that the larger
the kernel, the denser it samples node values assuming a constant operational
distance.

2.2 Graph Neural Network

The proposed architecture, Magnet++ is inspired by Magnet[15], which lever-
ages spline-based convolutions and a message-passing GNN approach to cap-
ture spatial information in a graph and node features. Similar to Magnet, our
architecture features a feature extraction layer, followed by a shrinking layer to
reduce trainable parameters and a convolutional block with skip connections, all
of which utilize spline-based convolutions. However, it diverges in the upscaling
method, which more effectively capitalizes on the unique characteristics of our
data representation.

In Magnet, the upscaling was performed by firstly max-pooling nodes that
correspond to the same pixel position of the LR images in the N ×W ×H tensor
form. This operation reduced the number of nodes N times. The resulting nodes
were then assumed to be positioned in a grid-like manner and transformed into
a W × H × f tensor, where f represents a number of features produced by the

154 T. Tarasiewicz and M. Kawulok

spline convolutional block. It was later processed by a 2D convolutional block
and passed to the pixel shuffle layer, which is responsible for rearranging the
tensor’s features to increase the spatial resolution of the image.

In contrast, Magnet++ leverages a combination of graph theory and spline-
based convolutions to perform image upscaling. Firstly, it takes a graph, com-
bined with multiple LR images, which is processed by the formerly mentioned
feature extraction and shrinking layers followed by a convolutional residual block.
Then, on top of that, we overlay a new regular grid-like graph consisting of
S2WH nodes where S stands for an upscaling factor of the network. The new
nodes are initialized with zeros and connected to the original nodes lying within
a specified radius r =

√
2. Every such connection is created in a one-way manner,

meaning that each already existing node is the source of information and the
overlayed nodes are the targets. This creates a single bipartite graph consisting
of two sets of nodes, where there is no existing connection between any pair of
nodes belonging to the same set. We then apply a single spline-based convolu-
tional layer activated by the ReLU function to collect the information from the
source nodes. Finally, we separate the overlayed grid-like graph from the other
nodes and transform it into a single tensor of shape SW × SH. Thanks to this
approach, we ensure that the upscaling method does not introduce any loss of
information contained in the input graph, which is not guaranteed in the Magnet
architecture due to the use of the max-pooling algorithm.

Since the bipartite upscaling operation returns a single rectangular tensor, it
makes it suitable to apply the standard 2D convolutional layers instead of the
spline-based ones. Thus, we further process the data using a single residually-
connected convolutional block followed by a convolutional layer with a single
kernel producing the final super-resolved image. The architecture diagram is
presented in Fig. 1.

3 Experiments

In this study, we utilized the renowned PROBA-V dataset [8] for both the train-
ing and evaluation of our model. The PROBA-V dataset, with its rich collec-
tion of satellite data from different regions worldwide, has been instrumental in
shaping the evolution of many contemporary MISR techniques. The dataset was
carefully curated for a MISR challenge, focusing on the super-resolution of low-
resolution images by a factor of 3×. Each scene in the dataset is representative of
multiple distinct observations. Our study particularly focused on data pertaining
to the RED spectral band. Despite the provision of separate training and testing
subsets in the dataset, we faced a limitation in the lack of high-resolution images
in the test subset, restricting our ability for local model evaluation. As a solu-
tion to this challenge, we opted to randomly divide the training subset, which
included numerous scenes, into three separate sections for training, validation,
and testing in a ratio of 80:10:10.

Graph-Based Representation for Multi-image Super-Resolution 155

Fig. 1. Architecture of the proposed Magnet++ graph neural network. Multiple input
images are co-registered and aligned into a graph that is processed with a graph neural
network.

We evaluated our model against two state-of-the-art networks that achieved
high rankings on the PROBA-V challenge—HighRes-Net [2] and RAMS [12]. To
ensure a fair comparison, we used each model’s exact code available in the official
online repositories. However, for RAMS, we had to convert the code from Tensor-
flow implementation to PyTorch in order to incorporate it into our environment.
We conducted training of each of the previously mentioned models using our
own dataset splits and the same hyperparameters as reported in their original
publications rather than utilizing their trained weights published in official repos-
itories. We embraced this approach as the training and validation subsets used in
the original publications differed from ours, resulting in different permutations
of the available data. Directly using the trained weights could introduce biases
towards specific examples and adversely affect performance. By conducting train-
ing from the beginning, we ensured a fair and unbiased comparison between our
proposed model and the state-of-the-art methods. Magnet++ was trained over
100 epochs using a batch size of 24 and a learning rate of 5 ·10−4. The loss func-
tion was defined as the corrected (in terms of shifts in the brightness and spatial
domains) peak signal-to-noise ratio (cPSNR), which is the same metric employed
for the official evaluation of models submitted in the PROBA-V challenge. Also,
the same corrections are applied to the structural similarity index (SSIM) and
learned perceptual image patch similarity (LPIPS) [18], leading to the cSSIM
and cLPIPS metrics. The experiments were conducted in Python 3.9.12 using
the PyTorch 1.11 and PyTorch Geometric 2.1.0 [3] libraries and were executed
on the NVIDIA RTX 3090Ti GPU with 24 GB VRAM.

The results of our experiments on the PROBA-V dataset, using nine LR
observations as input, are presented in Table 1. Interestingly, these results con-
trast with our previous findings on simulated data as detailed in [15]. In our

156 T. Tarasiewicz and M. Kawulok

previous work, both our Magnet model and its improved version, Magnet++,
outperformed the RAMS network. However, in the case of real-world images,
the RAMS network delivers superior results, illustrating the nuanced changes
in model performance when the context shifts from simulated to actual data.
Despite this, a notable outcome from these experiments is the performance
increase when we move from the Magnet model to its enhanced version. The lat-
ter model substantially outperforms the former in critical metrics such as cPSNR
and cSSIM. This performance boost validates the upgrades integrated into Mag-
net++, demonstrating their effectiveness in enhancing image super-resolution
quality. While the RAMS model demonstrates the highest scores across all
three metrics, our Magnet++closely follows with the second-highest scores in
cPSNR and cSSIM. This suggests that Magnet++effectively captures critical
image attributes such as brightness, contrast, and structure. Additionally, Mag-
net++outperforms HighRes-Net, another well-regarded network, thereby vali-
dating the robustness and potential of our improved model.

Table 1. The scores obtained for the original PROBA-V dataset with nine LR images
in each scene. The best scores are boldfaced, and the second-best—underlined.

Model cPSNR cSSIM cLPIPS

Bicubic 35.42 0.898 0.313

HighRes-Net [2] 37.39 0.928 0.161

RAMS [12] 38.49 0.941 0.160

Magnet [15] 37.52 0.930 0.188

Magnet++ 38.16 0.936 0.179

In order to verify the flexibility of the graph-based representation, we con-
ducted an experiment focused on processing input images of different sizes. To
accomplish this, we selected three low-resolution images from each scene having
the highest clear-pixel ratio. For two of the images, we created four subsam-
pled versions of each, with both dimensions reduced to half the original size.
This was accomplished by sampling every second row and column, using four
unique initial unitary displacements, ensuring that each pixel from the original
image is retained in one of the resulting images without any duplicates. Con-
sequently, we obtained nine distinct and heterogeneous LR images (in terms of
their dimension), with one remaining unaltered and eight reduced to a quarter
of their original size (in terms of the number of pixels). Importantly, this oper-
ation did not result in any loss of information contained in the original three
low-resolution images, as it merely redistributed it between separate images.

For Magnet++, it was essential to encode each pixel’s position within the
2D space accurately. By doing so, the resulting input graph effectively replicates
the scenario of passing three original LR images to the network, maintaining the
desired graph structure. This task was readily accomplished through the com-
putation of displacement vectors between each pair of corresponding original LR

Graph-Based Representation for Multi-image Super-Resolution 157

Fig. 2. Visual comparison of RED imgset0337 scene with LR images of varying dimen-
sions. The values in brackets correspond to cPSNR and cSSIM metrics, respectively.
LR1 is the original LR image, while LR2 and LR3 are obtained by decomposing another
LR image into four counterparts.

images, incorporating the initial displacement applied during the subsampling
process. It is important to emphasize that this specific case of encoding node
positions for images of varying dimensions benefits from the fact that the decom-
posed LR images are derived from the original LR image, but this was intended
to provide a proof of concept demonstrating the Magnet++ capabilities of pro-
cessing a stack of heterogeneous images.

Contrary to Magnet++, alternative networks (including our earlier Mag-
net) enforce restrictions on input data, requiring uniform dimensions for all LR
images. To overcome this limitation, we resampled each smaller LR image to the
size of the single original LR image in the stack using nearest neighbor inter-
polation to prevent any loss of information. Subsequently, we fed this stack of
uniformly sized images to the other networks. In Table 2, we report the obtained
quantitative results. Lower scores (compared with those in Table 1) result from
using information from three images instead of nine, and because of the fact that
the information was further spread across nine non-uniform LR images. How-
ever, it can be seen that Magnet++ retrieved substantially better scores than
other models (for all the metrics), as it effectively utilized the information in the
stack of LR images in a manner that other models could not achieve due to their
limitations. The qualitative results, an example of which is presented in Fig. 2,
confirm that Magnet++ leads to much better outcome, showing definitely more
details in the reconstructed image.

158 T. Tarasiewicz and M. Kawulok

Table 2. Image similarity metrics computed for models processing LR images with
non-uniform dimensions as input data. The highest scores are highlighted in bold,
while the second-highest scores are underlined.

Model cPSNR cSSIM cLPIPS

Bicubic 34.35 0.833 0.560

HighRes-Net [2] 34.27 0.837 0.436

RAMS [12] 34.21 0.835 0.506

Magnet [15] 33.62 0.819 0.489

Magnet++ 35.88 0.891 0.256

4 Conclusions

In this paper, we proposed an enhanced version of our graph neural network for
multi-image super-resolution. Our tests over a set of real-world images confirmed
that it achieves competitive quantitative and qualitative results and can oper-
ate from a set of heterogeneous low-resolution images. Although in the study
reported here, such heterogeneity was limited to the varying image size, the
input graph can be assembled from any (even non-regular) images without the
need for their resampling to a regular grid [13]. Therefore, our ongoing work is
focused on verifying the benefits of graph-based representation on an experimen-
tal basis and on introducing further improvements to our technique, including
the attention modules which may help select the most useful nodes in each local
neighborhood. We believe that our approach, which is based on graph theory
and deep learning, can be adapted for solving other image reconstruction prob-
lems, including SR of multispectral images with varying resolution of spectral
bands [14].

References

1. An, T., Zhang, X., Huo, C., Xue, B., Wang, L., Pan, C.: TR-MISR: multiimage
super-resolution based on feature fusion with transformers. IEEE J-STARS 15,
1373–1388 (2022)

2. Deudon, M., Kalaitzis, A., et al.: HighResnet: recursive fusion for multi-frame
super-resolution of satellite imagery. arXiv preprint arXiv:2002.06460 (2020)

3. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

4. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: fast geometric deep
learning with continuous B-spline kernels. In: Proceedings of the IEEE CVPR, pp.
869–877 (2018)

5. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image regis-
tration algorithms. Opt. Lett. 33(2), 156–158 (2008)

6. Kawulok, M., Benecki, P., Kostrzewa, D., Skonieczny, L.: Evolving imaging model
for super-resolution reconstruction. In: Proceedings of the GECCO, pp. 284–285.
ACM, New York (2018)

http://arxiv.org/abs/2002.06460

Graph-Based Representation for Multi-image Super-Resolution 159

7. Kawulok, M., Benecki, P., Piechaczek, S., Hrynczenko, K., Kostrzewa, D., Nalepa,
J.: Deep learning for multiple-image super-resolution. IEEE GRSL 17(6), 1062–
1066 (2020)

8. Märtens, M., Izzo, D., Krzic, A., Cox, D.: Super-resolution of PROBA-V images
using convolutional neural networks. Astrodynamics 3(4), 387–402 (2019)

9. Molini, A.B., Valsesia, D., Fracastoro, G., Magli, E.: DeepSUM: deep neural
network for super-resolution of unregistered multitemporal images. IEEE TGRS
58(5), 3644–3656 (2020)

10. Molini, A.B., Valsesia, D., Fracastoro, G., Magli, E.: DeepSUM++: non-local deep
neural network for super-resolution of unregistered multitemporal images. In: Pro-
ceedings of the IEEE IGARSS, pp. 609–612 (2020)

11. Rifat Arefin, M., et al.: Multi-image super-resolution for remote sensing using deep
recurrent networks. In: Proceedings of the IEEE CVPR Workshops, pp. 206–207
(2020)

12. Salvetti, F., Mazzia, V., Khaliq, A., Chiaberge, M.: Multi-image super resolution
of remotely sensed images using residual attention deep neural networks. Remote
Sens. 12(14), 2207 (2020)

13. Seiler, J., Jonscher, M., Schöberl, M., Kaup, A.: Resampling images to a regular
grid from a non-regular subset of pixel positions using frequency selective recon-
struction. IEEE Trans. Image Process. 24(11), 4540–4555 (2015)

14. Tarasiewicz, T., et al.: Multitemporal and multispectral data fusion for super-
resolution of Sentinel-2 images. arXiv preprint arXiv:2301.11154 (2023)

15. Tarasiewicz, T., Nalepa, J., Kawulok, M.: A graph neural network for multiple-
image super-resolution. In: Proceedings of the IEEE ICIP, pp. 1824–1828 (2021)

16. Valsesia, D., Magli, E.: Permutation invariance and uncertainty in multitemporal
image super-resolution. IEEE TGRS 60, 1–12 (2022)

17. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse rep-
resentation. IEEE TIP 19(11), 2861–2873 (2010)

18. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effec-
tiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF
CVPR (2018)

http://arxiv.org/abs/2301.11154

Reducing the Computational Complexity
of the Eccentricity Transform of a Tree

Majid Banaeyan and Walter G. Kropatsch(B)

Pattern Recognition and Image Processing Group, TU Wien, Vienna, Austria
{majid,krw}@prip.tuwien.ac.at

Abstract. This paper proposes a novel approach to reduce the compu-
tational complexity of the eccentricity transform (ECC) for graph-based
representation and analysis of shapes. The ECC assigns to each point
within a shape its geodesic distance to the furthest point, providing essen-
tial information about the shape’s geometry, connectivity, and topol-
ogy. Although the ECC has proven valuable in numerous applications,
its computation using traditional methods involves heavy computational
complexity. To overcome this limitation, we present a method that com-
putes the ECC of a tree, significantly reducing the computational com-
plexity from O(n2log(n)) to O(b), where n and b are the numbers of ver-
tices and branching points in the tree, respectively. Our method begins
by computing the ECC for tree structures, which are simpler represen-
tations of shapes. Subsequently, we introduce the concept of a 3D curve
that corresponds to a smooth shape without holes, enabling the com-
putation of the ECC for more complex shapes. By leveraging the 3D
curve representation, our method provides an upper-bound approxima-
tion of the ECC, which can be effectively utilized in various applications.
The proposed approach not only preserves the valuable properties of the
ECC but also significantly reduces the computational burden, making
it a more efficient and practical solution for graph-based representation
and analysis of shapes in both 2D and 3D contexts.

Keywords: eccentricity transform · graph analysing · smooth shape ·
3D curve · medial axis · distance transform

1 Introduction

The eccentricity transform (ECC) is a function that assigns to each point within
a shape its geodesic distance to the furthest point [10]. In other words, it asso-
ciates each point with the longest of the shortest paths connecting it to any
other point within the shape [11]. The eccentricity transform is valuable for
graph-based image analysis [1] due to its robustness to noise and minor segmen-
tation errors [7], unique representation of a shape’s geometry, and the ability
to reveal connectivity and topology [9]. Additionally, it is useful for 2D and

Supported by the Vienna Science and Technology Fund (WWTF), project LS19-013.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 160–171, 2023.
https://doi.org/10.1007/978-3-031-42795-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_15&domain=pdf
http://orcid.org/0000-0001-8621-6424
http://orcid.org/0000-0003-4915-4118
https://doi.org/10.1007/978-3-031-42795-4_15

Reducing the Computational Complexity of the Eccentricity Transform 161

3D shape matching [5], enabling accurate comparisons between shapes [6]. Its
invariance to translation, rotation, and scaling [5] allows for precise comparisons
between shapes, while its capability to separate touching or overlapping objects
enhances object detection and segmentation [12].

Calculation of the eccentricity transform for a shape can be computation-
ally intensive. Using the Dijkstra algorithm, the complexity is O(n2 log(n)) [5],
where n is the number of vertices (pixels) in a 2D connected plane graph (2D
image). However, under certain conditions, such as when a shape S has no holes,
Ion [5] managed to reduce this complexity to O(|∂S|n log(n)), where |∂S| is the
number of vertices (pixels) on the boundary of the shape S. In this study, we
examine basic shapes with increasing complexity, including line segments, tree
structures , and smooth shapes. Our primary approach is to compute the eccen-
tricity transform without the need for distance propagation. Nevertheless, when
direct computation is not feasible, one can employ efficient parallel and hierar-
chical approaches [4] to expedite the propagation of distances.

Presently, our research focuses on the Water’s Gateway to Heaven project1,
which involves high-resolution X-ray micro-tomography (μCT) and fluorescence
microscopy. The image dimensions in this project exceed 2000 pixels per side,
necessitating the use of the eccentricity transform to distinguish cells that are
visually challenging to separate [2,3]. Consequently, fast computation of the
eccentricity transform with low complexity is essential.

In this study, we begin in Sect. 3 by computing the eccentricity of line seg-
ments and extending the method to develop an efficient algorithm for tree struc-
tures. Next, in Sect. 4, we introduce the concept of a 3D curve for a shape
and expand the proposed method to compute the eccentricity in smooth shapes
without holes. Finally, Sect. 5 presents the simulations and results of our inves-
tigation.

2 Definitions

Basic definitions and properties of the ECC are introduced following [8,10]. Let
the shape S be a closed set in R

2 and ∂S be its border. A path π is the continuous
mapping from the interval [0, 1] to S. Let Π(p1, p2) be the set of all paths between
two points p1, p2 ∈ S within the set S. The geodesic distance d(p1, p2) between
two points p1, p2 ∈ S is defined as the length λ of the shortest path π(p1, p2),
such that π ∈ S, more formally

d(p1, p2) = min{λ(π(p1, p2))|π ∈ Π} (1)

where

λ(π) =
∫ 1

0

√
1+

·
π
2

(t) dt (2)

1 https://waters-gateway.boku.ac.at/.

https://waters-gateway.boku.ac.at/

162 M. Banaeyan and W. G. Kropatsch

where
·
π is a parametrization of the path from p1 =

·
π (0) to p2 =

·
π (1). The

eccentricity transform of a simply connected planar shape S is defined as, ∀p ∈ S

ECCS(p) = max{d(p, q)|q ∈ S} = max{d(p, q)|q ∈ ∂S} (3)

i.e. to each point p it assigns the length of the shortest geodesics to the points
farthest away from it. An eccentric point is defined as the point y that reaches
a maximum in Eq. 3. Note that all eccentric points of a simply connected planar
shape S lie on its border ∂S [10].

3 Tree Structure

A tree structure is an undirected graph characterized by its acyclic nature and
connectedness, which means that there are no cycles and any two vertices are
connected by exactly one path. A tree can be constructed by combining line
segments that are connected together at branching points . Each line segment
represents an edge in the tree, connecting two vertices, while the branching
points serve as junctions where multiple line segments meet. By connecting line
segments in this manner, it is possible to create a hierarchical structure with a
single root node at the top and multiple branches extending downwards, ulti-
mately forming a tree structure that captures the relationships and connectivity
among the various nodes in the graph.

Consequently, computing the eccentricity transform in a tree can be achieved
by considering the combination of its line segments. By analyzing each line seg-
ment’s eccentricity and their connections at the branching points, the overall
eccentricity transform for the entire tree structure can be determined. This app-
roach simplifies the computation of the eccentricity transform for complex tree
structures by breaking them down into smaller, more manageable segments,
ultimately allowing for a more efficient calculation of the eccentricity values
throughout the tree.

3.1 Line Segment

Consider a line segment, denoted by l = (A,B), with endpoints A and B. In
order to compute the eccentricity:

Proposition 1. The eccentric points of a line segment are its corresponding two
endpoints.

Proof. Let us consider a line segment l with its two endpoints, A and B. Suppose
that there exists a point P ∈ l\{A,B} such that Q is an eccentric point, meaning
that Q is the farthest point away from P . If we move Q towards the corresponding
endpoint, for instance point B, we obtain λ(P,Q) < λ(P,B), which contradicts
the original assumption. �

Reducing the Computational Complexity of the Eccentricity Transform 163

Proposition 2. The eccentricity of a point P on a line segment l = (A,B) is:

ECC : P ∈ l �→ R
+

ECC(P) = max{λ(A,P), λ(B,P)} (4)

where λ(A,P) and λ(B,P) represent the arc length of curves (A,P) and (B,P),
respectively.

Proof. Based on Proposition.1, the two endpoints of a line segment are its eccen-
tric points. Therefore, the eccentricity is the maximum value of these two end-
points to the point P (see Fig. 1a). �
It is important to note that the edges of a graph are not necessarily straight lines;
in general, an edge can be a curve. Therefore, λ(A,P) and λ(B,P) typically
represent the geodesic distance from point P to points A and B.

3.2 Branching Point

In a tree, vertices having only one incident edge are the leaves of the tree. We
define a branching point as follows:

Definition 1 (Branching point). A branching point in a tree is a vertex with
a degree of more than two.

Consider a tree consisting of a branching point B and k number of leaves.

Proposition 3. The eccentricity of a point P in a tree T containing one branch-
ing point B and k leaves is:

ECC(P) = max{λ(A,P), λ(B,P) + Dmax} (5)

where P ∈ l = (A,B) and Dmax is the maximum distance of other leaves to the
branching point B as follows:

Dmax = {max{λ(B, Vi)}|∀i ∈ k, Vi �= A} (6)

Proof. With only one line segment l = AB, the eccentricity is computed based on
Proposition 2. When adding another line segment BC that shares an endpoint
with l, the eccentricity is computed as ECC(P) = max{λ(A,P), (λ(P,B) +
λ(B,C)}. To prove the proposition, we can iteratively connect a branch into
the branching point B and keep the maximum distance as the result of the
comparison to the previous branch (see Fig. 1b). By doing this, the λ(B,C) is
substituted with Dmax. �

3.3 Tree

Let T = (V,E) represent a tree comprising leaves and branching points. The
attribute of an edge e is its arc-length λ(e) where e = (u, v) ∈ E, u, v ∈ V , and
λ(e) = λ(u, v). The eccentricity calculation is performed using a hierarchical
structure constructed over the input tree as we call it hierarchical tree. There
are two types of movements in the hierarchical tree: inward and outward. The
former is considered a bottom-up movement, while the latter is regarded as
top-down.

164 M. Banaeyan and W. G. Kropatsch

Fig. 1. computing the ECC. (a) a line segment, ECC(P) = λ(A, P). (b) a branching
point, ECC(P) = λ(P, B) + λ(B, C).

Bottom-Up Movement. In this fashion, in order to compute the eccentricity
of vertices, a stack of smaller reduced trees is constructed over the given input
tree. Consider the input tree T , which serves as the base of the hierarchy. At
each level k of this hierarchy, vertices are categorized into two types: leaf vertices
and branching vertices. Let Lk represent the set of all leaf vertices at level k,
and let Bk represent the set of all branching vertices at the same level. All
vertices connected to a given vertex v (the adjacent vertices of v) are identified
by Nk(v) at level k. In order to propagate distances to the upper levels of the
hierarchy, an intermediate distance, ID(v), is assigned to each vertex. Initially,
all vertices have an intermediate distance of zero, i.e., ID(v) = 0 for all v ∈ V .
A distance value for each branching point b ∈ Bk incident to at least one leaf is
then calculated as follows:

D(b) = max{λ(u, b) + ID(u)|∀u ∈ {Nk(b) ∩ Lk} } (7)

where Nk(b) ∩ Lk is a set of leaves that are adjacent to the branching point b.
Subsequently, the leaves at the base level are contracted, leading to a smaller
tree at the higher level, where the leaves of the smaller tree correspond to the
branching points from the level below. This procedure is repeated, while the
leaves are contracted in a bottom-up approach, ultimately leading us to the top
of the hierarchy. At the top of the hierarchy, there is either one single vertex or
two vertices. The longest path at the base of the hierarchical tree is the diameter
of the tree, dim(T).

Proposition 4. The top of the hierarchical tree consists of a single vertex if
and only if the length of the tree’s diameter at the base level is an even number.

Proof. Given that the tree’s diameter is an even number, dim(T) at the base
level is expressed as 2k. The process of leaf contraction at each level leads to a
subsequent smaller tree T1 at the upper level, where dim(T1) equals (2k) − 2.
Upon repeated application of this reduction process at subsequent levels, we
ultimately reach the apex, characterized by a single vertex where the diameter
is equal to zero.

Proposition 5. The top of the hierarchical tree consists of two vertices if and
only if the length of the tree’s diameter at the base level is an odd number. �

Reducing the Computational Complexity of the Eccentricity Transform 165

Proof. Similar to the previous proof, here dim(T) = 2k + 1 at the base level.
Through the contraction of leaves at each level, the resulting smaller tree at the
upper level has dim(T) = (2k + 1) − 2. Therefore, repeating this reduction at
upper levels leads to a tree with diameter 1 at the top which is a tree consisting
of two vertices.

When a single vertex is present at the top, the computed distance value repre-
sents that vertex’s eccentricity. However, when there are two vertices, labeled as
v1 and v2, each with corresponding computed distance values D1 and D2, the
eccentricity for these vertices is calculated as follows:

D1 > D2 ⇒ ECC(v1) = max(D1, D2 + λ(v1, v2)) and ECC(v2) = D1 + λ(v1, v2)

D1 = D2 ⇒ ECC(v1) = ECC(v2) = D1 + λ(v1, v2)
(8)

Top-Down Movement. The eccentricities of remaining vertices are iteratively
computed in a top-down fashion. The tree at the top is successively expanded
through outward movement until it reaches the base of the hierarchy, where each
vertex is assigned its corresponding eccentricity value.

Consider a hierarchical tree with a single vertex at the top level k+1. Through
a bottom-up approach, the eccentricity of the top vertex is determined based
on Eq. (7) by taking the maximum value from the sum of intermediate values
and the arc lengths of each leaf at level k. Let vm be the leaf at level k that
corresponds to the maximum value. Additionally, let D′(b) be the maximum
value of b where vm is eliminated from its adjacency:

D′(b) = max{λ(u, b) + ID(u)|∀u ∈ {Nk(b) ∩ Lk\vm} } (9)

Employing a top-down approach, the eccentricities of the remaining vertices are
iteratively computed. A leaf vertex at level k +1, whose eccentricity has already
been determined, transmits its eccentricity to the corresponding branching point
b at the lower level k. The eccentricity of each leaf v ∈ Lk, \vm at level k is
computed as follows:

ECC(v) = λ(v, b) + ECC(b) , v ∈ Lk , b ∈ Bk (10)

To calculate the eccentricity of the leaf vertex vm, a comparison is made between
the value derived from Eq. (9) and the value of ECC(b) − λ(v, b). Subsequently,
the eccentricity of the vertex vm is computed as follows:

ECC(vm) = max{D′(vm) + λ(vm, b) , ECC(b) − λ(vm, b)}∀b ∈ {Nk(b) ∩ Lk}
(11)

Figure 2a shows an instance of a hierarchical tree featuring three levels and a
single vertex at its apex. The bottom-up movement is depicted on the left side,
whereas the top-down progression is illustrated on the right. Intermediate dis-
tances are visually represented within a box, while the eccentricity of vertices is

166 M. Banaeyan and W. G. Kropatsch

Algorithm 1. Computing the eccentricity (ECC) in a Tree
1: Input: Tree: T = (V, E) , Lk : set of leaves at level k, Bk : set of branching vertices

at level k, ID(v) : Intermediate Distance of v , k: level of the hierarchy , D(b) :
distance value for a branching point , λ(u, v) : arc length of edge e = (u, v)

2: Initialization: ID(v) = 0 ∀v ∈ V , k = 1
3: While ∃ v ∈ Lk (bottom-up movement in the tree hierarchy)
4: D(b) = max{λ(u, b) + ID(u)|∀u ∈ {Nk(b) ∩ Lk} }
5: k = k + 1
6: end
7: ECC(b) = D(b) (Top of the hierarchy)
8: k = k − 1
9: While k > 0 (top-down movement in the tree hierarchy)

10: ECC(v) = λ(u, v) + ECC(u) , v ∈ Lk , u ∈ Bk

11: end

denoted by a number enclosed in a red circle. In the event that two vertices reside
at the top following the computation of their eccentricities, the calculation of the
eccentricity for the remaining vertices aligns with the methodology previously
described (see Fig. 2b). The specifics of this method are outlined in Algorithm1.
The algorithm’s complexity is determined by the number of branching points in
the tree.

4 Shape

Calculating the eccentricity of trees can potentially enable us to extend the
proposed method for more complex shapes. In a tree, the leaves are recognized
as the eccentric points of the structure. However, what constitutes the eccentric
points in an arbitrary shape? If we are unable to identify the eccentric points,
is it possible to at least estimate them and compute the eccentricity of a shape?
To address this question, we propose the following method, which may offer an
upper bound for the eccentricity value of a given shape.

4.1 3D Curve of a Shape

The medial axis (MA) of a shape is a collection of center points of all maximally
inscribed circles (or spheres in 3D) . These circles touch the shape’s boundary
at two or more points, with their centers forming the MA, also known as the
topological skeleton. This axis captures connectivity of the shape, providing
a compact and informative representation. Conversely, the distance transform
assigns a value to each point within the shape, representing the shortest distance
from that point to the shape’s boundary.

The proposed method combines the MA and distance transform to effectively
reconstruct the original shape. First, the radius of the maximally inscribed circle
(or sphere in 3D) is obtained for each point on the MA using distance transform
values. Then, these circles (or spheres) grow at each point on the MA, and

Reducing the Computational Complexity of the Eccentricity Transform 167

Fig. 2. Computing the ECC in a hierarchical tree. (a) One vertex and (b) two vertices
at the top level.

their union is taken to reconstruct the shape. The reconstructed shape may
not be an exact replica of the original, particularly if derived from a noisy or
imperfect representation. However, it preserves the shape’s essential topology
and connectivity, providing a reasonable approximation.

In this paper, a shape is represented by its MA and corresponding distance
transform values, resulting in what we refer to as the 3D curve of the shape. The
MA can be sensitive to non-smooth shapes or shapes with small irregularities,

168 M. Banaeyan and W. G. Kropatsch

noise, or perturbations, which may produce many small branches or spurious
structures. As a result, we focus on examining smooth shapes without any holes.

Fig. 3. Computing the 3D curve of the snake shape.

Figure 3a displays a 2D binary image of a snake. Figure 3b presents the cor-
responding MA of the snake, while Fig. 3c calculates the shape’s distance trans-
form. Figure 3d depicts the resulting 3D curve of the shape. Finally, Fig. 3e
demonstrates how the original shape is reconstructed by combining the MA and
the 3D curve.

4.2 Smooth Shapes Without Holes

Computing the eccentricity transform of a smooth shape without knowledge
of the eccentric points can be a daunting task. However, by decomposing the
shape into its corresponding 3D curve, it may be feasible to directly compute an
approximation of the eccentricity.

By projecting the arc length onto the X-axis [13], a straightened version of
the 3D curve is computed, resulting in a tree structure. Algorithm 1 computes
the ECC of the MA. For the remaining points not on the MA of the shape, each
point of the shape computes its corresponding distance to the MA. Afterward,
the eccentricity of the resulting point is computed along the MA (geodesic dis-
tance) to find the corresponding eccentric point on the MA. Finally, the distance
transform of the computed eccentric points is added to the previous distances.
However, due to the concavity of a shape, the computed eccentricity using the
proposed method is generally an overestimate of the true eccentricity of the origi-
nal shape. This is because the method computes the geodesic distance along the
MA, and the concavity of the shape can lead to the distance being overesti-
mated in some regions [10]. As a result, the computed eccentricity represents an
upper-bound for the eccentricity transform of the smooth shape.

Reducing the Computational Complexity of the Eccentricity Transform 169

5 Simulation and Result

The effectiveness of the proposed method for computing the eccentricity trans-
form was evaluated through a simulation of a snake shape, as depicted in Fig. 4.
The medial axis of the shape was first computed, and for each point on the medial
axis, its corresponding eccentric point was computed (see Fig. 4a). The color
of each point in Fig. 4a corresponds to the value of its corresponding eccentric
point. The thickness of the smooth shape was then determined using the distance
transform (Fig. 4b). The resulting upper bound of the eccentricity transform is
presented in Fig. 4c, while the ground truth was computed and shown in Fig. 4d.
Table 1 shows the computational error by comparing the ground truth with the
upper bound of the eccentricity.

The presented results demonstrate that the proposed method offers a promis-
ing approach for achieving more accurate eccentricity computation. Notably, the
method is capable of being computed with O(b) complexity when b is the number
of branching points of the tree of the medial axis.

Table 1. Comparing the ECC of ground truth with the computed upper bound.

Mean Absolute Error(MAE) Relative MAE Mean Square Error (MSE) Relative MSE

1.1832 0.0348 10.9440 0.0025

Fig. 4. Computation of the eccentricity transform.

170 M. Banaeyan and W. G. Kropatsch

6 Conclusion

This paper introduces an innovative approach for computing the eccentricity
transform of a tree. The proposed method achieves O(n) complexity, where n is
the number of branching points. By utilizing the introduced 3D curve representa-
tion, the paper extends the method to compute the eccentricity of smooth shapes
without holes. This allows for a faster computation of an upper bound for the
eccentricity, which is useful in many applications in 2D and 3D shape analysis,
such as shape matching, classification, and recognition. The main result of this
paper demonstrates that the proposed algorithm provides a reliable estimation
of the actual eccentricity, and it closely approximates the ground truth. More-
over, the reduced computational complexity of the proposed approach promises
efficient processing of more complex shapes in future work, which is crucial for
real-world applications where computational resources and time are limited.

Acknowledgment. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland
for the provision of beamtime at the TOMCAT beamline of the Swiss Light Source
and would like to thank Dr. Goran Lovric for his assistance. This work was supported
by the Vienna Science and Technology Fund (WWTF), project LS19-013, and by the
Austrian Science Fund (FWF), projects M2245 and P30275.

References

1. Aouada, D., Dreisigmeyer, D.W., Krim, H.: Geometric modeling of rigid and non-
rigid 3D shapes using the global geodesic function. In: 2008 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8
(2008)

2. Banaeyan, M., Carratù, C., Kropatsch, W.G., Hlad̊uvka, J.: Fast distance trans-
forms in graphs and in gmaps. In: IAPR Joint International Workshops on Statis-
tical Techniques in Pattern Recognition (SPR 2022) and Structural and Syntactic
Pattern Recognition (SSPR 2022), Lecture Notes in Computer Science, Montreal,
Canada, 26–27 August 2022, pp. 193–202. Springer, Heidelberg (2022). https://
doi.org/10.1007/978-3-031-23028-8 20

3. Banaeyan, M., Kropatsch, W.G.: Parallel O(log(n)) computation of the adjacency
of connected components. In: International Conference on Pattern Recognition
and Artificial Intelligence (ICPRAI), Paris, France, 1–3 June 2022, pp. 102–113.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-09282-4 9

4. Banaeyan, M., Kropatsch, W.G.: Distance transform in parallel logarithmic com-
plexity. In: Proceedings of the 12th International Conference on Pattern Recogni-
tion Applications and Methods - ICPRAM, pp. 115–123 (2023). https://doi.org/
10.5220/0011681500003411

5. Ion, A.: The eccentricity transform of n-dimensional shapes with and without
boundary. Ph.D. thesis, Vienna University of Technology, phD (2009)

6. Ion, A., Artner, N.M., Peyré, G., Kropatsch, W.G., Cohen, L.: Matching 2D &
3D articulated shapes using the eccentricity transform. Comput. Vision Image
Underst. 115(6), 817–834 (2011)

https://doi.org/10.1007/978-3-031-23028-8_20
https://doi.org/10.1007/978-3-031-23028-8_20
https://doi.org/10.1007/978-3-031-09282-4_9
https://doi.org/10.5220/0011681500003411
https://doi.org/10.5220/0011681500003411

Reducing the Computational Complexity of the Eccentricity Transform 171

7. Ion, A., Peltier, S., Alayranges, S., Kropatsch, W.G.: Eccentricity based topological
feature extraction. In: Alayranges, S., Damiand, G., Fuchs, L., Lienhardt, P. (eds.)
Workshop Computational Topology in Image Context, CTIC 2008. Universit’e de
Poitiers (2008)

8. Ion, A., Peyré, G., Haxhimusa, Y., Peltier, S., Kropatsch, W.G., Cohen, L.:
Shape matching using the geodesic eccentricity transform - a study. In: Pon-
weiser, W., Vincze, M. (eds.) Proceedings of 31st OEAGM Workshop, pp. 97–104.
Österreichische Computer Gesellschaft (2006). Band 224

9. Janusch, I., Kropatsch, W.G.: Lbp scale space origins for shape classification. In:
Artner, N.M., Janusch, I., Kropatsch, W.G. (eds.) Proceedings of the 22nd Com-
puter Vision Winter Workshop 2017, pp. 1–9. TU Wien, PRIP Club (2017). iSBN
978-3-200-04969-7

10. Kropatsch, W.G., Ion, A., Haxhimusa, Y., Flanitzer, T.: The eccentricity transform
(of a digital shape). In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006.
LNCS, vol. 4245, pp. 437–448. Springer, Heidelberg (2006). https://doi.org/10.
1007/11907350 37

11. Kropatsch, W.G., Ion, A., Peltier, S.: Computing the eccentricity transform of a
polygonal shape. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS,
vol. 4756, pp. 291–300. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76725-1 31

12. Ma, J., et al.: How distance transform maps boost segmentation cnns: an empirical
study. In: Arbel, T., Ben Ayed, I., de Bruijne, M., Descoteaux, M., Lombaert, H.,
Pal, C. (eds.) Proceedings of the Third Conference on Medical Imaging with Deep
Learning. Proceedings of Machine Learning Research, vol. 121, pp. 479–492. PMLR
(2020)

13. Pucher, D., Artner, N.M., Kropatsch, W.G.: 2D tracking of platynereis dumerilii
worms during spawning. In: Čehovin, L., Mandeljc, R., Štruc, V. (eds.) Proceedings
of the 21st Computer Vision Winter Workshop 2016, pp. 1–9 (2016)

https://doi.org/10.1007/11907350_37
https://doi.org/10.1007/11907350_37
https://doi.org/10.1007/978-3-540-76725-1_31
https://doi.org/10.1007/978-3-540-76725-1_31

Graph-Based Deep Learning on the Swiss
River Network

Benjamin Fankhauser1(B) , Vidushi Bigler2 , and Kaspar Riesen1

1 Institute of Computer Science, University of Bern, Bern, Switzerland
{benjamin.fankhauser,kaspar.riesen}@unibe.ch

2 Institute for Optimisation and Data Analysis, Bern University of Applied Sciences,
Biel, Switzerland

vidushi.bigler@bfh.ch

Abstract. Major European rivers have their sources in the Swiss Alps.
Data from these rivers and their tributaries have been collected for
decades with consistent quality. We use GIS data to extract the structure
of each river and link this structure to 81 river water stations (that mea-
sure both water temperature and discharge). Since the water temperature
of a river is strongly dependent on the air temperature, we also include 44
weather stations (which measure, for instance, air or soil temperature).
Based on this large data corpus, we present in this paper a novel graph
representing the water network of Switzerland. Our goal is to accelerate
the research of the complex relationships at the (Swiss) water bodies.
In particular, we present different graph-based pattern recognition tasks
that can be solved on the novel water body graph. In a first evaluation,
we use graph-based methods to solve two of these tasks, outperforming
current state-of-the-art systems by several percentage points.

Keywords: Water body graph · Water temperature · LSTM ·
Recurrent Neural Network · Graph data

1 Introduction

Water temperature – an important variable in our ecosystem – is mainly influ-
enced by air temperature. That is, on the water surface a direct exchange with
the surrounding air takes place. Thereby, solar radiation is either absorbed by
particles in the water or the river bed, then transformed to heat and finally
exchanged with the water. Other factors that influence the temperature of water
bodies are snow melting, rain, ground water inflow, but also the rate of dis-
charge. Last but not least, also human-made infrastructure plays a pivotal role.
For instance, the climate regime shift (CRS) in the late 1980s, caused by anthro-
pogenic and natural origin, led to a sudden increase in water temperature [1,2].

Supported by Swiss National Science Foundation (SNSF) Grant Nr. PT00P2 206252.
Data are kindly provided by the Federal Office for the Environment and MeteoSwiss.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 172–181, 2023.
https://doi.org/10.1007/978-3-031-42795-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_16&domain=pdf
http://orcid.org/0000-0002-7982-2669
http://orcid.org/0000-0001-6043-8264
http://orcid.org/0000-0002-9145-3157
https://doi.org/10.1007/978-3-031-42795-4_16

Graph-Based Deep Learning on the Swiss River Network 173

Three major European rivers have their sources in Switzerland, namely
Rhine, Rhône and Inn. In addition, the river Ticino rises in Switzerland, which
contributes significantly to the river Po. Furthermore, a large part of the Alps,
which separate the southern and northern climatic zones, lies in Switzerland.
The Alps are in turn home to large glaciers and huge snow reservoirs, as well
as human-made infrastructure such as power plants and dams. In addition, the
topology of Switzerland also consists of hilly lowlands, where small rivers flow
slowly and are influenced by both large cities and agriculture. Further towards
the borders of Switzerland we have the big rivers which are less affected by small
disturbances. There are also some medium sized lakes where the inflowing water
stays for a long time and thus the outflowing water is only slightly influenced
by the inflowing water (there the surface temperature is mainly influenced by
the exchange in the atmosphere). Overall, we find that in Switzerland there is a
fascinating network of water bodies that has a high complexity.

The present paper is concerned with water temperature predictions using air
temperatures by means of graph-based pattern recognition and machine learning.
Actually, concerning the climate crisis, rising water temperatures will have a big
impact on the Swiss ecosystem. For instance, certain species of fish will not
be able to reproduce anymore when the water temperature reaches a certain
threshold [3]. Different climate models exist that project air temperature for the
future in various versions [4]. Thus, our hypothesis is that it is rewarding to
explore more accurate modelling of the air-water model, as this will also lead to
better long-term projections of the water temperature.

The contribution of the present paper is threefold. First, based on data of the
water bodies stemming from a Geographic Information System (GIS), as well as
decades of measurements of dozens of stations, we create a novel and large-scale
graph that aims to comprehensively capture and model the complexity of the
Swiss water network. Hence, the basis of our research is similar in spirit to other
important prediction tasks such as analyses of transportation networks [5], or
predictions of loads on networks of power grids [6], to name just two examples.
Second, the novel graph allows us to reconsider current approaches to predict-
ing water temperature in rivers. We propose different tasks related to water
temperature prediction that can potentially be solved with graph-based pattern
recognition algorithms. Third, for two of these tasks, we propose a graph-based
prediction system and show that this novel system significantly outperforms two
current state-of-the-art methods.

The remainder of this paper is organized as follows. In Sect. 2, we describe
two state-of-the-art methods that are currently used for water temperature pre-
diction, viz. the Air2Stream method [7] as well the adaptation of LSTM neural
networks [8]. In Sect. 3, we thoroughly describe the novel graph that models
the Swiss water bodies and introduce the challenges in predicting water tem-
perature. The novel method for water temperature prediction that employs a
graph-based model is then presented and evaluated later in Sect. 4. Finally, in
Sect. 5, we draw conclusions and propose possible rewarding avenues for future
research activities.

174 B. Fankhauser et al.

2 Related Work

We are not the first to attempt to predict water temperatures based on air
temperatures. In the following two subsections, we present two state-of-the-art
models that are actually used as reference systems in our empirical evaluation.

2.1 Air2Stream

Air2Stream is a physically inspired model of the relationship between air and
water temperature based on air temperature and discharge [7]. Basis of this
model is a differential equation linearized using a Taylor series expansion. The
resulting equation has eight tuneable parameters which are calibrated using
training data. In particular, the original method employs a particle based optimi-
sation scheme for training and is quite sensitive to the chosen hyper-parameter.
In the present paper we use the predictions presented in [9].

2.2 LSTM on Water Data

Long short-term memory (LSTM) is a special type of a recurrent neural network
(RNN) [10]. An RNN is a neural network that is applied to a time series on every
time step. In addition, an LSTM keeps track of a hidden state and a memory
state, two vectors which are inputs to the next time step and will be altered
by the LSTM. Thus, the resulting backpropagation variant is called backprop-
agation through time [11]. To have a trade off between the time series and the
update steps, one works with a certain time window, where at the end of every
window the gradients are computed and an update step is made. LSTMs have
been particularly designed to encounter the vanishing gradient problem. This
problem occurs when the back propagation through time has to overcome a lot
of time steps and repeated multiplications tend to unstable numeric conditions.
In general LSTMs show state-of-the-art results on various time series data [12],
and can be applied to the task of water temperature prediction [8,13] or water
level (discharge) prediction [14,15].

3 The Swiss Water Body Graph

3.1 Construction of the Graph

One of the major contributions of the present paper is that we provide a novel
graph based on the Swiss water body. We construct a knowledge graph containing
information about the location of river beds (from a GIS), weather data of 44
weather stations (air temperature and more atmospheric measurements), and
water data of 81 water stations (water temperature and discharge).

The knowledge Graph G = (V,E, aV , aE) is a graph with nodes V and edges
E. Each node v ∈ V has an assigned type Tv. Currently we have three types of
nodes i.e. Tv ∈ {water station,universal river node,weather station}. The uni-
versal river node is used to model the river itself with sources or river mouths.

Graph-Based Deep Learning on the Swiss River Network 175

(a) Original graph (b) Intermediate graph (Rhine only)

Fig. 1. (a) Original graph before pruning (all edges represent water). (b) Subgraph
representing the river Rhine after pruning and added water stations. The illustrated
graph is a tree where the water of a child station flows to its parent station.

There is currently only one edge type, which models the connectivity of the
nodes. The functions aV : V → R

n and aE : E → R
m deliver additional

attributes to nodes and edges. Function aE assigns the edge length in meters
to each edge. The nodes are attributed by the air temperature, or water tem-
perature and discharge (depending on the actual type Tv of the node). The
data basis for these attributes is thoroughly preprocessed. In particular the data
is min-max normalised and outliers are removed by the Federal Office for the
Environment (FOEN) as part of their quality control. Each weather station is
manually connected by means of an edge to n ≥ 1 water stations as proposed
in [9].

At first glance, the considered data basis seems of natural origin, yet it is not.
The current rivers are the product of decades of human intervention of stratifi-
cation, city planning, power plants, and renaturation. Also the placement and
running of the water and weather stations are obviously human based decisions
and can change in future. Keeping a constant and high quality of measurements
is challenging as it requires decades of stability in the corresponding country,
which fortunately is the case in Switzerland.

The original GIS graph contains 258,103 edges and 258,191 nodes repre-
senting different types of river segments as well as lake contours. We apply the
following preprocessing on this original graph. First, we prune the leaf nodes as
not every side creek is important. Nodes that actually contain water stations are
never purged. Then, we run a spanning tree algorithm in order to find the short-
est paths of the water flow and remove any ambiguity in the graph (for example,
when both sides of a lake are modelled as two edges in the graph). Finally, we
collapse all edges such that only the connectivity between water stations is left
in the form of a tree. This process allows us to compress edge information like
river bed length as sum of all collapsed segments between two water stations.

This resulting graph consists of four trees (representing the rivers Rhine,
Rhône, Inn, Ticino) with a total of 73 nodes and 69 edges. In Fig. 1(a) the
original graph and in Fig. 1(b) the resulting graph is shown (representing the

176 B. Fankhauser et al.

river Rhine only). Note that in this illustration the edges are not yet collapsed
to improve visualisability.

As we have man made changes over time on the underlying water body net-
work, we can create snapshots of the graph at every useful point in time. Based
on the visualisation of the available data from 1980 to 2021 (see Fig. 2), we
see that many new stations were established after 2002. Hence, we propose two
snapshots of the water body graph, viz. one graph that contains fewer nodes and
measurements ranging from 1990 to 2021 to represent a long history of measure-
ments and the other one from 2010 to 2021 where we include more stations but
on a shorter period of time. In both snapshots we apply an approximate 80/20
training-test split at the end of 2014 and 2017, respectively. The two graphs
are named G1990 and G2010 from now on. Both graphs will be made publicly
available for research purpose on the Git Repository of our research group1.

Fig. 2. Visualisation of the available data from 1980 to 2021. Each row represents one
station. Dark grey pixels indicate that at a certain day the river water temperature,
discharge and air temperature are available. Light grey pixels indicate that at least one
of the three values is missing.

3.2 Proposed Water Challenges

The novel graph based representation defined above allows us to rethink current
approaches for water temperature prediction. We propose five different bench-
mark tasks, that can potentially be solved on the basis of the novel graph.
Task 1 - Model Air Temperature Relationship: In this task the goal is to
model the relationship between the air and water temperature. This challenge
has already been extensively studied and it is what models like Air2Stream [7]
or LSTMs [8] are aiming at. Formally, we have both air temperature a0, ..., at,
the discharge q0, ..., qt of t + 1 time steps and the goal is to find a model f that
predicts the water temperature wt at time t: f(a0, ..., at, q0, ..., qt) = wt.
Task 2 - k-Day Forecast: In this task, we do not have access to same day
measurements anymore. Given the air temperature a0, ..., at and the discharge
q0, ..., qt of t+1 time steps, the goal is to predict the water temperature wt+k in k
days (we define k ∈ {3, 7, 30}). Formally, we seek a model f(a0, ..., at, q0, ..., qt) =
wt+k. Obviously, the larger k is choosen, the harder the problem (setting k = 0
results in Task 1).
Task 3 - Recover from Neighbours: Each water station is built at a certain
construction time bt. One problem of our graph is missing data for this station
at times t < bt. The goal of this task is to learn the data of a node for time points

1 https://github.com/Pattern-Recognition-Group-UniBe/swiss-river-network.

https://github.com/Pattern-Recognition-Group-UniBe/swiss-river-network

Graph-Based Deep Learning on the Swiss River Network 177

t < bt based on the relationships with its neighbours. By filling in missing data,
this procedure allows us to construct an estimated graph of water temperatures
back to 1980 using all stations (although we cannot assess the quality of the
estimates).
Task 4 - Work on Degenerated Data: A challenge for any sensing and
recognition system are degenerated sensors. The fourth task is to detect and
repair potentially corrupted data. Formally, we define a function drift d(n) ∈ R,
where n is the n-th day after construction and d is a function to model the
amount of drift. The drift is then added to the water temperature during training:
w′

t = wt + d(t − bt), where w′
t is the degenerate training data and bt is the

construction time of the water station.
Task 5 - Few Shot Learning: The goal of this task is to minimise the effort
required to collect water temperatures. Imagine a mobile sensor system that is
moved from one place to another every month. When the mobile sensor system
is on site, the data is available and can be used for training. The goal is to
have as few of these mobile sensor systems in use as possible and still achieve a
reasonable estimation of the water temperatures.

4 Proposed Method and Experimental Evaluation

4.1 Experimental Setup and Reference Models

In this paper, we use the snapshots of the graphs G1990 and G2010 as described
in Sect. 3.1 and the corresponding training and test splits to solve Task 1 and
Task 2 as defined in Sect. 3.2 (that is, predicting the water temperature in k days
with k ∈ {0, 3, 7, 30}). To investigate the quality of the prediction, we measure
and report widely used metrics, namely the Root Mean Squared Error (RMSE)
and the Mean Absolute Error (MAE) on the test set. In addition, we measure
and report the Nash-Sutcliffe model Efficiency Coefficient (NSE), which is often
used to assess the predictive skill of hydrological models. Formally, the three
ratios are defined as follows

RMSE =

√
√
√
√

1
n

n∑

i=1

(yi − ŷi)2 (1)

MAE =
1
n

n∑

i=1

|yi − ŷi| (2)

NSE = 1 −
∑n

i=1(yi − ŷi)2
∑n

i=1(yi − ȳ)2
(3)

where n describes the number of measurements, yi the actual measured value, ŷi
the value estimated by the model, and ȳ the mean of the actual measured values.
For a perfect model with an estimation error variance equal to zero, the resulting
NSE equals 1. That is, values of the NSE nearer to 1 suggest a model with more

178 B. Fankhauser et al.

(a) Reference LSTM (b) Our Method

Fig. 3. (a) The reference method models the air to water relationship in a 1-to-1
manner [8]. (b) The proposed method makes use of the local neighbourhood on the
novel water body graph. We adapt our LSTM architecture to the amount of child
stations contributing to the target station and train one such LSTM per target station.

predictive skill. While for the errors, of course, values closer to 0 indicate good
prediction quality.

For our evaluation, we use a total of three different reference models.

1. Air2Stream: The Air2Stream model as presented in Sect. 2.1. We only provide
here the RMSE results form [9] (and we cannot use the other metrics for
comparison).

2. Baseline: The baseline system refers to the unweighted average of the water
temperature of the target station and the water temperatures of its child
stations using the reference LSTMs (see below).

3. LSTM: For this reference system [8], we use LSTMs that take the air tem-
perature as input (as described in Sect. 2.2 – see Fig. 3(a)). To find a suitable
architecture, we perform a grid search on the width of the hidden layers, the
depth of the LSTM, the learning rate, and the weight decay (we use the Adam
optimiser). During validation we obtain the best results for 32 in width, 1 in
depth, 0.01 for learning rate, and a weight decay of 1e-6.

4.2 The Novel Graph-Based Model

For our new model, we use the four graphs described in detail in Sect. 3.1. The
new model uses the locality of the graph structure to model the time series data
and consists of two different nodes.

– Child station: Water station upstream to the target station
– Target station: Water station we want to predict.

Graph-Based Deep Learning on the Swiss River Network 179

We extract a subgraph for each target station with its c child stations. One
such subgraph with one target station and c = 2 child stations is shown in
Fig. 3(b).

In Task 1 and Task 2, we do not have access to measured water temperatures
of the child stations as input, but we can estimate them using any air to water
model. For each child station, we train a reference LSTM to obtain an estimate of
the water temperature. Then we train an additional LSTM for the target station.
This LSTM is given the estimated water temperatures of the child stations and
the air temperature of the target station as input (see Fig. 3(b)).

More formally, the resulting recurrent neural network consists of an LSTM
layer with the input size c+1. The LSTM uses a larger hidden space than its input
size. The size of the hidden space is determined by a factor of the input size. After
the LSTM layer, we project the hidden space to the desired output size using
a linear layer. Our neural network models the function f(ŵ(1)

t , ..., ŵ
(c)
t , a

(ts)
t) =

ŵ
(ts)
t+k where ŵ

(x)
t is the estimated water temperature at child station x and a

(ts)
t

is the air temperature at the target station ts at time t, and k depends on the
current prediction task (k ∈ {0, 3, 7, 30}).

For the training of our model, we perform a grid search for both width and
depth of the LSTM and use the Adam optimiser with a learning rate of 0.01 and
a weight decay of 1e-6.

Graph Neural Networks (GNNs) with message passing [16] are somehow
related to the proposed method. Similar in spirit is, for instance, Graph-
SAGE [17]. However, while GraphSAGE uses an LSTM to handle a flexible
amount of neighbours during the message aggregation phase, we have a fixed
amount of child stations but a flexible amount of time steps to handle. More-
over, GNNs aim to process the graph as a whole input unit. In the proposed
method we train a neural network individually per target station. This removes
any inductive property as our trained networks do not generalise to other graphs.

4.3 Test Results

The results we obtain on both versions of the graph (i.e. G1990 and G2010) are
shown in Table 1. The metrics RMSE, MAE, and NSE are reported for the
respective test years. In column k = 0, the results for estimations of the same
day are shown (Task 1). In the columns k = 3, k = 7, and k = 30, we show the
prediction results for 3, 7, and 30 days in the future, respectively (Task 2).

First, we observe that our new model performs best for both graphs and
all four tasks (measured across all three evaluation metrics). On average, we
outperform the state-of-the-art method Air2Stream by 23%. Moreover, on aver-
age, the novel location-based method outperforms the state-of-the-art LSTMs
by about 5%, remarkably more at the most difficult task k = 30. The results of
the baseline show that a simple average of locally connected water temperatures
is a poor estimate.

Regarding the results, we conclude that the proposed method is a flexible
extension to any system that models the relationship of air temperature and

180 B. Fankhauser et al.

Table 1. The results achieved on the test sets by our method and the reference systems
on two versions of the graph (G1990 and G2010). In the k = 0 column, we report the
results for the same day relation (Task 1), and in the k = 3, k = 7, and k = 30 columns
the forecasts for 3, 7, and 30 days in future, respectively (Task 2). The best result
per metric, task and graph is shown in bold face. *The Air2Stream model uses similar
years for training but a different set of test years.

Metric Method Graph Version

G1990 G2010

k=0 k=3 k=7 k=30 k=0 k=3 k=7 k=30

RMSE Air2Stream* 1.05 - - - 1.05 - - -

Baseline 1.90 2.00 2.16 3.02 1.65 1.87 2.00 2.41

Reference LSTM 0.80 1.10 1.37 2.29 0.91 1.24 1.43 2.24

Ours 0.75 1.07 1.30 1.77 0.85 1.19 1.39 1.65

MAE Baseline 1.58 1.65 1.79 2.38 1.36 1.53 1.62 1.95

Reference LSTM 0.60 0.84 1.04 1.68 0.69 0.93 1.09 1.69

Ours 0.56 0.81 0.99 1.36 0.63 0.89 1.05 1.26

NSE Baseline 0.82 0.81 0.77 0.54 0.85 0.83 0.81 0.76

Reference LSTM 0.97 0.94 0.90 0.74 0.96 0.93 0.91 0.77

Ours 0.97 0.95 0.93 0.86 0.97 0.94 0.92 0.89

water temperature. We argue that our system is able to capture water temper-
ature changes of upstream stations, which in general results in an improvement
of the prediction accuracy. A more in depth analysis of the performance of indi-
vidual stations, however, also reveals that there is no improvement for some
individual stations. The reason for this observation is that some water stations
have no dependence on their upstream water stations (e.g., when a lake lies
between two stations).

5 Conclusion and Future Work

In this paper, we address the difficult task of analysing water networks in com-
plex environments. This is indeed an important task, as the climate crisis is one
of the greatest challenges facing humanity. We propose to model the complex
water network of Switzerland using a graph. Based on this graph, we propose five
different challenging tasks that can potentially be solved using graph-based pat-
tern recognition or machine learning methods. Two of these five tasks are solved
in this paper using a graph-based model built on LSTMs. In a large-scale exper-
imental evaluation, we show that the proposed model can improve the widely
used Air2Stream model by about 23% and an isolated (i.e., non-graph-based)
LSTM by about 5% We see many worthwhile future research activities. Cur-
rently we are working with the authorities to extend the graph with more water
stations as well as other node types like cities, power plants and lakes. Moreover,
we will tackle the remaining benchmark tasks and explore more possibilities of
neural networks on our novel graph.

Graph-Based Deep Learning on the Swiss River Network 181

References

1. Reid, P.C., et al.: Global impacts of the 1980s regime shift. Glob. Change Biol.
22(2), 682–703 (2016)

2. Woolway, R.I., Dokulil, M.T., Marszelewski, W., Schmid, M., Bouffard, D., Mer-
chant, C.J.: Warming of central European lakes and their response to the 1980s
climate regime shift. Clim. Change 142, 505–520 (2017)

3. Dahlke, F.T., Wohlrab, S., Butzin, M., Pörtner, H.O.: Thermal bottlenecks in the
life cycle define climate vulnerability of fish. Science 369(6499), 65–70 (2020)

4. CH2018: Climate scenarios for Switzerland. Technical report, National Centre for
Climate Services, Zurich (2018)

5. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

6. Khodayar, M., Liu, G., Wang, J., Khodayar, M.E.: Deep learning in power systems
research: a review. CSEE J. Power Energy Syst. 7(2), 209–220 (2020)

7. Toffolon, M., Piccolroaz, S.: A hybrid model for river water temperature as a
function of air temperature and discharge. Environ. Res. Lett. 10(11), 114011
(2015)

8. Qiu, R., Wang, Y., Rhoads, B., Wang, D., Qiu, W., Tao, Y., Wu, J.: River water
temperature forecasting using a deep learning method. J. Hydrol. 595, 126016
(2021)

9. R̊aman Vinn̊a, L., Zappa, M., Piccolroaz, S., Bigler, V.C., Epting, J.: Swiss-wide
future river temperature under climate change, swissfurite (unpublished)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

11. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc.
IEEE 78(10), 1550–1560 (1990)

12. Siami-Namini, S., Tavakoli, N., Namin, A.S.: A comparison of ARIMA and LSTM
in forecasting time series. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 1394–1401. IEEE (2018)

13. Jia, X., et al.: Physics-guided recurrent graph model for predicting flow and temper-
ature in river networks. In: Proceedings of the 2021 SIAM International Conference
on Data Mining (SDM), pp. 612–620. SIAM (2021)

14. Kim, D., Han, H., Wang, W., Kim, H.S.: Improvement of deep learning models
for river water level prediction using complex network method. Water 14(3), 466
(2022)

15. Zhao, Q., et al.: Joint spatial and temporal modeling for hydrological prediction.
IEEE Access 8, 78492–78503 (2020)

16. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International Conference on Machine Learning,
pp. 1263–1272. PMLR (2017)

17. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

http://arxiv.org/abs/1709.04875

Author Index

A
Andersson, Axel 139

B
Bai, Lu 70
Banaeyan, Majid 160
Behanova, Andrea 139
Bigler, Vidushi 172
Brun, Luc 113

C
Carletti, Vincenzo 127
Cui, Lixin 70

D
da Cunha Cavalcanti, George Darmiton 59
de Araujo Souza, Mariana 59

E
e Cruz, Rafael Menelau Oliveira 59

F
Fadlallah, Sarah 81
Falcão, Alexandre X. 35
Fankhauser, Benjamin 172
Foggia, Pasquale 127
Fuchs, Mathias 102

G
Gaüzère, Benoît 92, 113
Gillioz, Anthony 25
Glédel, Clément 92

H
Hancock, Edwin R. 70
Honeine, Paul 92

J
Jiang, Xiaoyi 3
Julià, Carme 81

K
Kawulok, Michal 149
Kiouche, Abd Errahmane 46
Kropatsch, Walter G. 160

L
Liu, Cheng-Lin 3

M
Malmberg, Filip 35, 139
Micheli, Alessio 15

O
Ourdjini, Aymen 46

R
Riesen, Kaspar 25, 102, 172
Rossi, Luca 70

S
Sabourin, Robert 59
Seba, Hamida 46
Segura Alabart, Natália 81
Serratosa, Francesc 81
Stanovic, Stevan 113

T
Tarasiewicz, Tomasz 149
Tortorella, Domenico 15

V
Vento, Mario 127

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 183–184, 2023.
https://doi.org/10.1007/978-3-031-42795-4

https://doi.org/10.1007/978-3-031-42795-4

184 Author Index

W
Wählby, Carolina 139
Wang, Yue 70

X
Xu, Zhuo 70

Y
Ye, Rongji 70

Z
Zhang, Jiaqi 3

	 Preface
	 Organization
	Abstracts of Invited Talks
	 From LBP on Graphs to Slopes in Images
	 Face to Face: Graphs and Biotechnology
	 Contents

	Graph Kernels and Graph Algorithms
	Quadratic Kernel Learning for Interpolation Kernel Machine Based Graph Classification
	1 Introduction
	2 Interpolating Classifiers
	2.1 Interpolation Kernel Machines

	3 Multiple Kernel Learning for Interpolation Kernel Machines
	3.1 Construction of Combined Kernels
	3.2 General Scheme of MKL for Interpolation Kernel Machines
	3.3 Dealing with Indefinite Kernels

	4 Experimental Results
	5 Conclusion
	References

	Minimum Spanning Set Selection in Graph Kernels
	1 Introduction
	2 Support Vector Machines and Graph Kernels
	2.1 Graph Kernels

	3 Kernel Spanning Set Selection via RRQR
	4 Experiments and Discussion
	5 Conclusion
	References

	Graph-Based vs. Vector-Based Classification: A Fair Comparison
	1 Introduction
	2 Research Context
	2.1 Graph Classification
	2.2 Classification Methods Comparison

	3 Experimental Setup
	3.1 Datasets
	3.2 Experimental Setup

	4 Experimental Evaluation
	4.1 Graph Classification
	4.2 Dataset Selection

	5 Conclusions
	References

	A Practical Algorithm for Max-Norm Optimal Binary Labeling of Graphs
	1 Introduction
	2 Background and Motivation
	3 Preliminaries
	3.1 Boolean 2-Satisfiability
	3.2 The Malmberg-Ciesielski Algorithm

	4 Proposed Algorithm
	5 Evaluation
	6 Conclusions
	References

	An Efficient Entropy-Based Graph Kernel
	1 Introduction
	2 Related Work and Motivation
	3 Von Neumann Entropy Based Graph Kernel
	4 Evaluation
	5 Conclusion
	References

	Graph Neural Networks
	GNN-DES: A New End-to-End Dynamic Ensemble Selection Method Based on Multi-label Graph Neural Network
	1 Introduction
	2 Graph Neural Network Dynamic Ensemble Selection Technique
	3 Experiments
	4 Conclusion
	References

	C2N-ABDP: Cluster-to-Node Attention-Based Differentiable Pooling
	1 Introduction
	2 Background
	2.1 Graph Convolutional Networks
	2.2 The Attention Mechanism
	2.3 Graph Pooling
	2.4 Singular Value Decomposition

	3 The Proposed Pooling Method
	4 Experiments
	4.1 Results and Analysis

	5 Conclusion
	References

	Splitting Structural and Semantic Knowledge in Graph Autoencoders for Graph Regression
	1 Introduction
	2 Related Work
	2.1 Autoencoders
	2.2 Graph Autoencoders

	3 Proposed Approach: ReGenGraph
	3.1 The Learning Process

	4 Experimental Validation
	4.1 Database
	4.2 Architecture Configuration
	4.3 Binding Energy Prediction

	5 Conclusions
	References

	Graph Normalizing Flows to Pre-image Free Machine Learning for Regression
	1 Introduction
	2 Normalizing Flow Preliminaries
	3 Proposed Approach
	3.1 Regression-Based NF
	3.2 Operating in Z
	3.3 Pre-imaging

	4 Experiments
	5 Conclusion
	References

	Matching-Graphs for Building Classification Ensembles
	1 Introduction
	2 Building an Ensemble with Matching-Graphs
	2.1 Matching-Graphs
	2.2 Bagging with Matching-Graphs

	3 Experimental Evaluation
	3.1 Data Sets and Experimental Setup
	3.2 Reference Systems
	3.3 Test Results and Discussion

	4 Conclusion and Future Work
	References

	Maximal Independent Sets for Pooling in Graph Neural Networks
	1 Introduction
	2 Maximal Independent Sets and Graph Poolings
	2.1 Maximal Independent Set (MIS) and Meer's Algorithm
	2.2 Maximal Independent Sets for Graph Pooling

	3 Experiments
	4 Conclusion
	References

	Graph-Based Representations and Applications
	Detecting Abnormal Communication Patterns in IoT Networks Using Graph Neural Networks
	1 Introduction
	2 Representing Network Traffic as a Graph
	2.1 Similarity Graphs
	2.2 Traffic Trajectory Graphs
	2.3 Extended Traffic Dispersion Graphs

	3 Graph Neural Networks for Anomaly Detection
	3.1 DOMINANT
	3.2 OCGNN
	3.3 CONAD

	4 Experiments
	4.1 Datasets
	4.2 Graph Neural Network Training
	4.3 Results

	5 Conclusions
	References

	Cell Segmentation of in situ Transcriptomics Data Using Signed Graph Partitioning
	1 Introduction
	1.1 Tools for Analyzing IST Data
	1.2 Contribution

	2 Methodology
	2.1 Compositional Features
	2.2 Graph Construction and Partitioning
	2.3 Pre and Post Processing
	2.4 Visualization

	3 Experiments
	3.1 osmFISH
	3.2 In Situ Sequencing

	4 Discussion
	References

	Graph-Based Representation for Multi-image Super-Resolution
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Proposed Method
	2.1 Data Representation
	2.2 Graph Neural Network

	3 Experiments
	4 Conclusions
	References

	Reducing the Computational Complexity of the Eccentricity Transform of a Tree
	1 Introduction
	2 Definitions
	3 Tree Structure
	3.1 Line Segment
	3.2 Branching Point
	3.3 Tree

	4 Shape
	4.1 3D Curve of a Shape
	4.2 Smooth Shapes Without Holes

	5 Simulation and Result
	6 Conclusion
	References

	Graph-Based Deep Learning on the Swiss River Network
	1 Introduction
	2 Related Work
	2.1 Air2Stream
	2.2 LSTM on Water Data

	3 The Swiss Water Body Graph
	3.1 Construction of the Graph
	3.2 Proposed Water Challenges

	4 Proposed Method and Experimental Evaluation
	4.1 Experimental Setup and Reference Models
	4.2 The Novel Graph-Based Model
	4.3 Test Results

	5 Conclusion and Future Work
	References

	Author Index

