
Real-Time Data Transmission
Optimization on 5G Remote-Controlled

Units Using Deep Reinforcement
Learning

Nikita Smirnov(B) and Sven Tomforde

University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{nsm,st}@informatik.uni-kiel.de

https://www.ins.informatik.uni-kiel.de/

Abstract. The increasing demand for real-time data transmission for
the remote-controlled units and the complexity of 5G networks pose sig-
nificant challenges to achieving optimal performance in device-based sce-
narios, when the 5G network cannot be controlled by its users. This paper
proposes a model-free Deep Reinforcement Learning approach for this
task. The model learns an optimal policy for maximizing the data trans-
mission rate while minimizing the latency and packet loss. Such an app-
roach aims to investigate the applicability of the environment-agnostic
agents driven purely by the transmission statistics of the acknowledged
packets. The evaluation is done with the help of a 5G simulation based on
the OMNeT++ network simulator and the obtained results are compared
to a classic throughput-based adaptive bitrate streaming approach. Mul-
tiple questions and challenges that arose on the way to the final model
and evaluation procedure are highlighted in detail. The resulting findings
demonstrate the effectiveness of Deep Reinforcement Learning for opti-
mizing real-time data transmission in 5G networks in an online manner.

Keywords: deep reinforcement learning · data transmission · adaptive
bitrate streaming · 5G networks · remote-controlled unit · organic
computing

1 Introduction

Organic Computing (OC) is a research field that aims to maintain the control-
lability of technical systems in the face of ever-increasing complexity by shifting
tasks from the developer to the system itself [10]. The result is typically collec-
tives of self-adaptive and self-organizing systems using machine learning technol-
ogy that makes independent decisions based on objective functions. Especially
learning technology from the field of Deep Learning (DL) and Deep Reinforce-
ment Learning (DRL) has been proven as key-enablers for OC-capabilities.

A highly topical area of application for OC technology is autonomous sys-
tems, such as those found in the context of autonomous shipping. In this paper,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 281–295, 2023.
https://doi.org/10.1007/978-3-031-42785-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_19&domain=pdf
http://orcid.org/0000-0001-6955-830X
http://orcid.org/0000-0002-5825-8915
https://doi.org/10.1007/978-3-031-42785-5_19


282 N. Smirnov and S. Tomforde

we consider the scenario of an autonomous ferry navigating within the overloaded
maritime areas, see e.g. [19]. As full autonomy is currently restricted due to legal
issues, either an onboard or a remote control by a human is required. As part
of current research projects, the unmanned ferry (see Fig. 1) is equipped with
fifth-generation (5G) wireless communication technology to transfer its sensor
data such as video and 3D point cloud flows to the shore-based remote control
center.

The rapid development of 5G technology has increased the potential reli-
ability of remote-controlled units (RCUs). The real-time data transmission in
5G-based RCUs is crucial for ensuring seamless communication between the
operator and the unit, which demands low latency, high reliability, and efficient
use of network resources. Since in our ferry scenario, dramatically more data is
generated than 5G capacity is available, the system has to select and adapt the
communicated data at runtime based on changing conditions.

The main contribution of this paper is the application, setup and testing
of a general-purpose Deep Reinforcement Learning (DRL) for optimizing the
real-time data transmission on the RCUs in 5G networks, where DRL agent
learns to make optimal decisions based on the network conditions while so far
avoiding using 5G environmental data and any knowledge about the problem.
A simulation-based testbed is developed to verify the proposed approach while
using both simulated and real data. This paper contributes to the growing body
of research on OC and the application of DRL to wireless communication net-
works and it provides insights into the potential benefits of using DRL solutions
in 5G networks or OC systems in general.

This paper is organized as follows: Sect. 2 shortly reviews the related work,
Sect. 3 presents the optimization problem, Sect. 4 describes the proposed app-
roach, Sect. 5 addresses evaluation and results and Sect. 6 briefly recaps the con-
tent of previous parts and concludes the paper with possible future work.

Fig. 1. Design of a 5G remote-controlled passenger ferry “Wavelab” for the Bay of
Kiel.



Real-Time Data Transmission Optimization on 5G RCUs Using DRL 283

2 Related Work

Considering optimization problems in 5G networks with machine and/or deep
learning applications, there is a huge trend towards network-based solutions [14].
Unlike device-based problems, it is assumed that a developer has partial or
even full control over a 5G network and may change the hardware or software
parts of it so that optimization problems are more concentrated on the network-
management aspects rather than on the data transmission ones. Typical exam-
ples of such problems could be network slicing, power allocation and control,
scheduling, handover management, etc. [16].

A standard approach to optimize data transmission is known as adaptive
bitrate streaming (ABR). Current edge- and cloud-solutions are very diverse and
are massively used in everyday streaming, especially by popular video streaming
services like YouTube, Netflix and other popular services. Standard techniques
are based on controlling two main features: a) video bitrate, i.e., the amount of
data send in the current period and b) playback stability, i.e., how smooth and
continuous is the video playing on the consumer side [3].

Intelligent solutions enhance standard techniques with smart retransmission
mechanisms [12], with DL-based predictive assistance [1] and also with DRL
integration by introducing an agent with a state including bitrate, downloading
time of the previous stream chunks and buffer occupancy [2,8]. Almost all of the
existing approaches for adaptive bitrate streaming assume that the data is on-
demand and is transmitted over the popular contemporary streaming protocols
like MPEG-DASH, HLS, WebRTC and others [7] so that they try to optimize
both throughput and playback smoothness. A pure bitrate-based approach with
DRL assistance is used in [15] without directly taking into account latency and
packet loss factors, which are very important in 5G networks.

Another important factor is that the sensors on remote-controlled units are
usually heterogeneous, not only cameras but often other remote sensing devices
like LiDARs and RADARs that produce 3D point clouds. Although there is a
way how to reduce point clouds to a video flow by using classic MPEG video
encoders as a compression tool [18], the most popular approach still involves
space-partitioning trees [4], so that a generalization of adaptive bitrate streaming
solutions for all possible types of data with their encoding options is needed.

3 Real-Time Data Transmission Problem

Improving performance for real-time data transmission is a more complicated
and challenging task in comparison to a standard adaptive bitrate streaming
since the consumer’s buffer cannot be filled for some time in advance, otherwise,
a human operator of the controlled unit will deal with outdated data and play-
back delays. Therefore, the only way is to try to optimize the bitrate directly.
Due to this constraint, it is not possible to use standard HTTP algorithms like
throughput-based FESTIVE [6] or buffer-based BOLA [20], since they all pre-
suppose that: a) the consumer’s buffer is used and could be manipulated, b) it is



284 N. Smirnov and S. Tomforde

possible to have simultaneous streams with different bitrate presets. While the
second condition can be so far neglected since the data, especially video data,
can be encoded on-the-fly relatively fast, the first one remains unfeasible.

Given the above, the optimization problem designated in this article as “real-
time data transmission” could be formulated as follows:

try to maximize the uplink goodput (GPT) while at the same time
minimize the round-trip-time (RTT) and minimize the packet loss
rate (PLR) by selecting a proper bitrate for one or multiple streams for
a certain period without holding the data in some buffer neither on the
sender nor the receiver side.

It is assumed that goodput, as well as RTT, are measured at the application level,
and the processing delays for unpacking and decoding the data are neglected.
It is also assumed that all optimization happens directly on the RCU,
therefore, there is no information about the packet as long as the receiver’s
acknowledgment does not come back. A unit uses “best-effort” transport proto-
cols (UDP-based ones) since retransmission mechanisms are not required.

There is no ready-made formula for selecting the optimal bitrate for the next
period based on the previously used bitrate and collected network feedback. It
may be even unfeasible in general due to the complexity of relations between these
parameters. The only known connection between throughput, RTT and PLR is
Mathis formula for TCP congestion algorithm [9]:

BW <
MSS
RTT

1√
p

(1)

where BW is a bandwidth of a TCP connection, MSS is the maximum segment
size (usually equals to 1460 bytes considering IP MTU of 1500 bytes) and p is a
probability of a packet loss. This formula only gives an upper bound in realistic
scenarios, requires a predictable loss rate and is tailored for a TCP congestion
window.

There is a wide range of interconnected factors that can impact the overall
performance of the data transmission and the network feedback and not all of
them could be controlled by a unit itself. For example, RTT can vary depend-
ing on the uplink or downlink congestion induced by other 5G devices as well
as the number of network hops in between, while PLR is strongly influenced
by the distance and the orientation towards the nearest 5G base stations and
physical channel quality at the moment. And since all optimization happens on
a unit and a public 5G network is used, the middle layers of the core network
as well as the intern computations of the base stations are hidden. Temporal
relations between GPT, RTT and PLR could be studied only by observing the
transmission behavior.

In summary, the absence even of an approximate formula in the general
case that describes complex relationships between the key parameters and the
overall complexity of a problem was the initial motivation to try to learn it with
a model-free DRL approach: to investigate how far the agent could discover these



Real-Time Data Transmission Optimization on 5G RCUs Using DRL 285

relations, how well it responds to their changing behavior and can optimize its
own decisions based on the observed experience of real-time data transmission
in the 5G network.

4 Approach: Deep Reinforcement Learning

As mentioned above, model-free DRL was chosen as the main approach in this
paper. The main advantage in comparison to the supervised learning is that it
does not require any labeled data or the expert knowledge, which are both hard
to be obtained for this problem. As a disadvantage, the results are dependent on
the manual fine-tuning of agent’s behavior control encoded through the reward
function. It was also so far consciously decided not to use any device-available
5G information to help to train the agent to investigate the limits of applicability
of environment-agnostic feedback-driven approach, i.e., the agent learns
so far independently from the actual communication technology, location, etc.
so that the achieved knowledge is easier to be transferred to other scenarios.

4.1 Background and Model

Reinforcement Learning is a type of machine learning that involves training an
agent to learn through interaction with the environment. The agent receives
feedback in the form of rewards or penalties for each action it takes. Markov
Decision Process (MDP) is a mathematical framework used to model decision-
making problems. It assumes that the current state of the environment contains
all relevant information necessary to make a decision and that the environment
follows the so-called Markov property, meaning that the process is memoryless:
the probability of selecting the next state depends only on the current one.
DRL is a further development of this strategy that utilizes deep neural networks
(DNN) to approximate the agent’s policy and value functions in MDP, see Fig. 2.

Proximal Policy Optimization (PPO) [17] was selected as a primary model
among different contemporary DRL algorithms. It is an on-policy algorithm that
employs a clipped surrogate objective function that constrains policy updates to
prevent large policy changes that could negatively impact learning stability. One

Fig. 2. Deep Reinforcement Learning workflow.



286 N. Smirnov and S. Tomforde

big advantage is its ability to handle both discrete and continuous action spaces.
Furthermore, PPO is commonly used not only with fully-connected DNNs but
also with Long Short-Term Memory (LSTM) layers, which could increase the
ability to learn complicated temporal relations in sequential data and opens a
perspective for further improvements.

4.2 Setup and Hyperparameters

Real-time data transmission could be always formulated as a single-agent prob-
lem by fixing the interval between two consecutive actions (transition). If a
remote-controlled unit has multiple sensors and consequently multiple simulta-
neous streams, they could be seen as a single flow, where the current common
bitrate is spread between the streams either equally or according to some pri-
oritization scheme. It was found after some experiments that the interval equal
to one second provides the best trade-off between a) a sufficient amount of sent
packets together with received transmission feedback and b) a sufficiently fre-
quent reaction of the DRL model. The first point eliminates a credit assignment
problem, which would inevitably arise if the next action is applied too early,
even maybe before the acknowledgments for the previous packets are delivered
through a congested network. The second point provides enough flexibility for
the DRL agent to control the transmission process.

The only negative drawback of this approach is the time it takes to train
the agent. Since the agent waits some time to observe enough transmission with
selected action, the training cannot be accelerated with modern GPUs. Even in
the simulated environment, it is needed around 20–30 s to train the agent for
100 steps with one second transition period because a simulation consumes only
CPU resources. On the other hand, it could be easily parallelized horizontally
by training several different DRL setups simultaneously on a multi-CPU system.
This drawback additionally highlights the importance of fine-tuning the DRL
setup.

State. A state represents the most essential agent’s parameters and the current
agent’s perception of the data transmission. It contains both values for a current
period as well as global average values for the whole run:

S = {Grx
p , Grx

g , Rp, Rg, Jp, Jg, Pp, Pg, Vp, Q} (2)

where low indexes denote either a value for the current period, p or the global
average g, and the upper index rx means the receiver side. G means goodput,
R - round-trip-time, J - jitter, P - packet loss rate, V is the relative standard
deviation of the chunks, i.e., how much is the difference between the sizes of
generated chunks within a period and Q means the quality stability, it measures
how often the bitrate has been changed over the previous ten steps.

Action Space. Action space in this article is discrete and fixed so far to a
size of six to compare it with standard ABR solutions: five values correspond to



Real-Time Data Transmission Optimization on 5G RCUs Using DRL 287

meaningful bitrate values and the last action turns the transmission completely
off, it is the “last hope action”. A set of bitrate values in kilobits per second
could look like that for one video stream: {800, 1500, 3000, 6500, 10000} reflecting
typical presets from SD to 4K. It should be noted that real-world encoders cannot
guarantee that they will precisely fit into the set bitrate value, there are always
oscillations. This peculiarity is also transferred to the simulated streams, they
may exceed with some chance an average packet size assumed for that bitrate.

Reward Function. Designing a reward function (RF) was the most challenging
task due to the complex and dynamic nature of the network environment. RF
needs to balance the competing objectives, such as maximizing GPT and mini-
mizing RTT and PLR. Additionally, it should be robust to changes in network
conditions and should adapt to new situations and scenarios. The function takes
the current state as an argument and consists of three subparts, each of which is
“responsible” for regulating one of the main optimization targets (GPT, RTT,
PLR):

R(S) = 0.33Rgpt(S) + 0.33Rrtt(S) + 0.33Rplr(S) (3)

Below is an explanation of all the parts presented in Eq. 3:

Rgpt = 0.33
Grx

p

Gmax
+ 0.33

Grx
g

Gmax
+ 0.33min(

Grx
p

Grx
g

, 1) (4)

0.5 ≤ Vp < 0.75 → Rgpt = 0.95Rgpt, Vp ≥ 0.75 → Rgpt = 0.9Rgpt

Rgpt = Rgpt(1 − Q

10
),

Rgpt in Eq. 4 is a combination of three parts, first two examine a current global
and periodic goodput at the receiver side in comparison with the maximum
possible, and the last part estimates how good the agent intents not to perform
worse than it already has. Having all three parts allow to control the goodput
from all the sides and adjusting weights 0.33 were found to be the most optimal
during the training. Two additional regulative mechanisms reduce the price for
a goodput if a relative standard deviation of packet sizes is too big (compensates
a key-frame difference) and if a bitrate is switched too often.

Rrtt =:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 5Rp 0 < Rp ≤ 0.1
0.6 − Rp 0.1 < Rp ≤ 0.5
0 0.5 < Rp < 0.9
−1 otherwise

Jp ≥ 0.1 ∧ Rrtt > 0 → Rrtt = 0.9Rrtt (5)

Rrtt in Eq. 5 is built on the top of “expert knowledge”. Specifications for RTTs
are very tight to maintain reliability: zero is given for the RTT below half a
second, and for more than 0.9 it is a constant maximum punishment. The idea



288 N. Smirnov and S. Tomforde

is to give an extremely high reward for RTT below 100 ms., proportional reward
for the RTT that is considered to be enough to provide a “good” quality of
experience and harshly punish otherwise. The additional punishment is added
for having a too-big jitter.

Rplr = 1 − 2Pp

if no packets received → R = −0.25 (6)

Rplr in Eq. 6 is a linear function over a PLR, which is very vulnerable to a
changed loss rate allowing to quickly punish in case of big packet drops. The last
condition controls a case, when there are no packets received. It could be due to
the turned-off stream as well as due to extreme congestion. It also softens the
punishment from the RTT part to encourage the agent to select lower qualities.

Finally, RF is clipped in the interval [−1, 1] and is equally weighted over each
of the three subparts. This makes it easier to analyze and interpret a cumulative
reward over multiple episodes as well as to analyze a reward distribution itself.

Hyperparameters. Hyperparameters were adjusted during multiple experi-
ments. The main idea was to encourage the model for more exploration while
still keeping a good balance. Therefore values for learning rate, entropy and clip
range are changed from default ones. The size of one update was chosen to be
equal to the number of steps in a single episode, the latter was chosen to be
long enough (more than 10 min of data transmission) while also divisible by a
batch size of 64. Network architecture is the same for both actor and critic with
two hidden layers each consisting of 128 neurons. The PPO implementation was
taken from stable-baselines3 library [13]. The full list of hyperparameters and
the default values are presented in Table 1.

Table 1. Selected hyperparameters for the PPO model in comparison to default values.

Hyperparameter Value Default Value

Episodes 100 10

Steps 640 2048

Batch Size 64 256

Learning Rate 0.00025 0.0003

Gamma (discount factor) 0.99 0.99

GAE λ 0.95 0.95

Clip Range 0.1 0.2

Entropy Coef 0.01 0.0

Value Coef 0.5 0.5

Max Grad Norm 0.5 0.5

Policy Network Architecture MLP (2 layers, 128 units each) MLP (2 layers, 64 units each)

Value Network Architecture MLP (2 layers, 128 units each) MLP (2 layers, 64 units each)



Real-Time Data Transmission Optimization on 5G RCUs Using DRL 289

4.3 Challenges

To overcome the survivorship bias, this sub-section presents the main challenges
that arose on the way to the final design resulting also in rejected DRL setups
that showed worse results. Some are caused by the environment, and some by
the DRL setup itself:

– Stochasticity of the environment. The 5G network itself is very volatile, the
next state of the DRL agent might depend not only on its actions but also
on how the network behaves as a whole. That is why it has been decided to
start with simulations - to minimize this factor at the beginning considering
the more predictable behavior of other 5G devices.

– Low actions variation, i.e., the agent doesn’t show an adaptation. It might be
stuck with the maximum quality even facing extreme congestion with the hope
of compensating current punishments with forthcoming rewards for maximiz-
ing a goodput or it might be too careful by not increasing the quality when the
network is free. The reward function presented in this paper tries to neutralize
this problem.

– “Irrational behavior” due to the cumulative nature of DRL. The agent learns
a policy to maximize the cumulative reward over an episode, so it elaborates a
strong bias towards certain actions or strategies, which may seem not optimal
in current circumstances and may be even considered “irrational” by a human
expert. An underrepresentation of “good” or “bad” network situations during
the training also belongs to this problem.

– Downlink congestion. RCU waits until the package makes the full round to
register it as “received” and update the statistic. If there is strong congestion
in the downlink direction, the agent may misinterpret the quality of current
data transmission.

5 Evaluation

5.1 5G Simulation and Scenario

The evaluation of the presented approach was conducted by developing a 5G
playground using the open-source Simu5G library: the OMNeT++-based 3GPP-
compliant 5G simulation written in C++ [11]. Additional modules were devel-
oped to enable working with real video and point cloud data together with encod-
ing/decoding on-the-fly. Another implemented feature is the inter-process com-
munication of a simulation in C++ with DRL modules from stable-baselines3
library in Python [13]. Such an approach allows to bring together multiple advan-
tages: a) use OMNeT++ discrete events and message scheduling infrastructure,
b) leverage well-developed python DL-stack, c) ease further transfer to the real
RCUs, where the inter-process communication with C++-based simulation will
be replaced with the external communication with the real world, leaving all
other parts unchanged.

The main scenario represents a sandbox, where a unit transmits the data to a
server within the 5G network. The setup is adapted to a maritime field: a unit is



290 N. Smirnov and S. Tomforde

a ferry, which sends the data from its cameras and LiDAR sensors, and a server
is a shore-based station. The other 5G devices are spread over the base stations.
There are also background cells imitating 5G base stations from other providers
in the area, producing signal interference and noise. A full run configuration is
given in Table 2, a schematic illustration of a sandbox is given in Fig. 3.

The idea of the presented sandbox scenario is to train the DRL agent with
different network experiences from almost perfect to loss rates of over 70% by
increasing the number of devices and their data rates as well as selecting the
areas, where the agent is moving during the run. If it moves towards the bottom
and right-bottom areas, then it suffers from strong congestion. On the contrary,
it enjoys perfect 5G coverage, minimal delays and scheduling priority in the top
and top-left areas.

Simulated streams were used during the training of the DRL model to speed
up the process. Apart from saving time on reading and visualizing, they dif-
fer from the real data only by skipping the encoding, the bitrate is regulated
numerically. However, the real video and LiDAR data are often used during the
testing phase to verify the transmission “tolerance level” through the visualiza-
tion. Sometimes “bad” transmission may be even acceptable if it still allows a
human operator to adequately perceive the situation. For example, the artifacts
of lost frames could be more tolerable than prolonged stalling. This process is
illustrated in Fig. 4.

Table 2. A full configuration for the “sandbox” 5G scenario for DRL training.

Parameter Value Description

Number of gNBs 2 Number of 5G base stations (gNBs)

Number of BgCells 3 Number of background cells (BgCells)

Number of UEs 80–130 Number of other 5G devices (UEs)

Mobility Model Random waypoints Random trajectories for UEs

Playground area 1.5 km2 The area for a playground

UL traffic main UE [2.5, 20] mbit/s Uplink traffic range for a DRL-controlled device

UL traffic other UEs [4, 8] mbit/s Uplink traffic range for other UEs

DL traffic other UEs [2, 6] mbit/s Downlink traffic range for other UEs

Simulation time 640 sec Maximum length of one simulation run in seconds

Carrier frequency 3.6 GHz Frequency used for transmission and reception

Bandwidth 100 MHz Amount of frequency spectrum

Scheduling discipline MAX C/I Allocate resources according to signal-to-noise ratio

Antenna configuration 2× 2 MIMO Antenna configuration

NR scenario Urban macro-cellular 3GPP-based 5G scenario for outdoor urban areas

The repeating OMNeT++ seeds were used to provide a reproducibility of
a simulation process. The maximum bitrate was set to 10 mbit/s and constant
bitrate mode (CBR) was turned on. However, PPO model itself is stochastic
and always estimates actions’ probability and then samples accordingly. To over-
come this, it is instructed to take the argmax on each step. It does not make a



Real-Time Data Transmission Optimization on 5G RCUs Using DRL 291

Fig. 3. OMNeT++ visualization of the “sandbox” scenario.

learned policy deterministic, on the contrary, it shrinks the variability of possi-
ble decisions, which often results in worse predictions [5], however for the first
proof-of-concept it was considered an acceptable reduction.

5.2 Results

The analysis of obtained results consists of several stages. First, the training
results are analyzed. Next, the agent is tested on three unseen validation sce-

Fig. 4. Visualization of a test run with one video and one LiDAR stream. The data
is taken from a regular ferry and loaded into a simulation. 1 illustrates a segment loss
in LiDAR stream, 2 demonstrates an artifact, 3 is a blurring effect originating from a
too-big delay. One can see on 4 a console with the current transmission statistic.



292 N. Smirnov and S. Tomforde

narios roughly labeled as “easy”, “moderate” and “hard” depending on the area
and workload. Finally, its performance is compared with the simple throughput-
based ABR algorithm, which selects the next bitrate by analyzing the goodput
of the previous step. If it is stable for three steps in a row, it selects the next
available higher quality until the maximum one is reached and downgrades it
immediately in case the goodput is reduced. The idea is to compare: a) a DRL
solution with an ABR one, and b) a model-free DRL approach with a rule-based
one.

Figure 5 illustrates a mean episodic reward (MER) collected during the
training. It is a classic learning curve: first MER explodes exponentially, then
decreases a bit and finally stabilizes on some plateau. As stated in Sect. 4.2,
the maximum step reward is equal to 1, then taking an episode equal to 640 s
(see Table 1) results in the maximum reward for one episode being 640. How-
ever, episodes are very diverse, and for some of them it is simply impossible to
achieve even half of the reward due to the extreme network conditions. Figure 6
shows the cumulative rewards collected during the three validation cases, which
makes it clear that MER from training is mostly influenced by the scenario’s
complexity and the network’s unpredictability.

ABR and DRL solutions were tested on the three validation scenarios and the
average outcomes were compared, see Fig. 7. DRL outperforms ABR in terms of
RTT and PLR in each of the three scenarios by sacrificing some bitrate. However,
for the “Moderate” and “Hard” scenarios DRL lowers GPT not so much in
percentage as improves the other two parameters. It is also worth saying that an
improvement of average RTT from, e.g., 80 to 60 ms is more valuable than the
proportional decrease in GPT from 5 to 4 mbit/s since the RCU is controlled
more reliably.

Fig. 5. Mean episodic reward during the
training.

Fig. 6. Rewards for each validation sce-
nario.

The only problem occurs with the “Easy” scenario: the agent sacrifices here
too much bitrate without a need. It could be explained that the environment-
agnostic agent learns more about how to find trade-offs in problematic cases:



Real-Time Data Transmission Optimization on 5G RCUs Using DRL 293

Fig. 7. The results of comparison between ABR (red) and DRL (blue) solutions on
“easy”, “moderate” and “hard” scenarios. (Color figure online)

if there is no loss and no strong congestion, then two of three optimization
parameters (RTT, PLR) are already almost at minimum, the algorithm just
needs to concentrate on keeping the transmission at the maximum rate. Such
scenarios happened during the training, but they are rare because if the agent
is trained on “Easy” scenarios too much, it starts losing its adaptive knowledge
too fast and always selects the highest bitrate. As the result, the agent has some
sort of a “fear” in “Easy” scenarios: it trembles between the two highest bitrates
expecting the packet loss that may come if it stays at the maximum rate too
long which will result in penalties. It is concluded that it requires adding some
additional expert knowledge in its state to both perceive the adaptivity and to
behave at the most optimal in all cases. This knowledge could be learned via
behavioral cloning on the expert dataset.

6 Summary

The main goal of this paper was to apply the environment-agnostic and model-
free DRL agent in an attempt to learn the real-data transmission problem in 5G
networks and to perform better than rule-based ABR solutions without imitating
their behavior. As an example problem for OC technology, it is the first step
towards a data management system that could adapt to every possible network
condition and control the data flow between an RCU and a human operator most



294 N. Smirnov and S. Tomforde

optimally. The results demonstrate the ability of the DRL agent to find in most
cases an effective balance between lowering the latency and loss rate without
lowering the amount of transferred data too much, therefore making a remote
control more reliable. While the DRL model was trained and tested only in a
simulation, its design enables easy deployment on real devices in the assistance
mode: a human operator might accept or ignore the suggested action at every
time step.

Apart from positive results, the limits of the pure environmental-agnostic
DRL approach were also clearly indicated. To be able to solve the problem in a
more general way, the agent’s state and reward function need to be enriched with
some environmental knowledge but only to some point to avoid overfitting. That
constitutes a possible future work, namely: a) to add some form of (imitated)
ABR rule-based strategy to the reward function deviating from the “model-free”
property, b) to add 5G channel indicators to the state that increases the quality
of predictions deviating from the “environment-agnostic” property, and c) to
transfer the task to a continuous action space to extend the diversity of possible
actions for more optimal strategies.

Acknowledgment. This research has been partly funded by the German Federal Min-
istry for Digital Affairs and Transport (Bundesministerium für Digitales und Verkehr)
within the project “CAPTN Förde 5G”, funding guideline: “5G Umsetzungsförderung
im Rahmen des 5G-Innovationsprogramms”, funding code: 45FGU139 H. The authors
acknowledge the financial support of the BMDV.

References

1. Biernacki, A.: Improving streaming video with deep learning-based network
throughput prediction. Appl. Sci. 12(20), 10274 (2022). https://doi.org/10.3390/
app122010274

2. Cui, L., Su, D., Yang, S., Wang, Z., Ming, Z.: TCLiVi: transmission control in live
video streaming based on deep reinforcement learning. IEEE Trans. Multimedia
23, 651–663 (2021). https://doi.org/10.1109/TMM.2020.2985631

3. Dao, N.N., Tran, A.T., Tu, N.H., Thanh, T.T., Bao, V.N.Q., Cho, S.: A contempo-
rary survey on live video streaming from a computation-driven perspective. ACM
Comput. Surv. 54(10), 1–38 (2022). https://doi.org/10.1145/3519552

4. Feng, Y., Liu, S., Zhu, Y.: Real-time spatio-temporal lidar point cloud compression
(2020)

5. Huang, S., Dossa, R.F.J., Raffin, A., Kanervisto, A., Wang, W.: The 37 imple-
mentation details of proximal policy optimization (2022). https://iclr-blog-track.
github.io/2022/03/25/ppo-implementation-details/. Accessed 08 Aug 2023

6. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming with FESTIVE. In: Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technologies,
pp. 97–108 (2012). https://doi.org/10.1145/2413176.2413189

7. Kaur, A., Singh, S.: A survey of streaming protocols for video transmission. In:
Proceedings of the International Conference on Data Science, Machine Learning
and Artificial Intelligence, pp. 186–191. Association for Computing Machinery, New
York (2022). https://doi.org/10.1145/3484824.3484892

https://doi.org/10.3390/app122010274
https://doi.org/10.3390/app122010274
https://doi.org/10.1109/TMM.2020.2985631
https://doi.org/10.1145/3519552
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1145/3484824.3484892


Real-Time Data Transmission Optimization on 5G RCUs Using DRL 295

8. Mao, H., Chen, S., Dimmery, D., Singh, S., Blaisdell, D., Tian, Y., et al.: Real-world
video adaptation with reinforcement learning (2020)

9. Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP
congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev. 27(3), 67–82
(1997). https://doi.org/10.1145/263932.264023

10. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Sur-
vival in the Real World. Birkhäuser (2017)

11. Nardini, G., Sabella, D., Stea, G., Thakkar, P., Virdis, A.: Simu5G-An OMNeT++
library for end-to-end performance evaluation of 5G networks. IEEE Access 8,
181176–181191 (2020). https://doi.org/10.1109/ACCESS.2020.3028550

12. Nguyen, M., Lorenzi, D., Tashtarian, F., Hellwagner, H., Timmerer, C.: DoFP+: an
HTTP/3-based adaptive bitrate approach using retransmission techniques. IEEE
Access 10, 109565–109579 (2022). https://doi.org/10.1109/ACCESS.2022.3214827

13. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res.
22(268), 1–8 (2021)

14. Rekkas, V.P., Sotiroudis, S., Sarigiannidis, P., Wan, S., Karagiannidis, G.K.,
Goudos, S.K.: Machine learning in beyond 5G/6G networks - state-of-the-art
and future trends. Electronics 10(22), 2786 (2021). https://doi.org/10.3390/
electronics10222786

15. del Ŕıo Ponce, A., Serrano Romero, J., Jimenez Bermejo, D., Contreras, L.,
Alvarez, F.: A deep reinforcement learning quality optimization framework for
multimedia streaming over 5G networks. Appl. Sci. 12, 10343 (2022). https://doi.
org/10.3390/app122010343

16. Santos, G.L., Endo, P.T., Sadok, D., Kelner, J.: When 5G meets deep learn-
ing: a systematic review. Algorithms 13(9), 208 (2020). https://doi.org/10.3390/
a13090208

17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017)

18. Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P.A., et al.:
Emerging MPEG standards for point cloud compression. IEEE J. Emerg. Sel. Top.
Circ. Syst. 9(1), 133–148 (2019). https://doi.org/10.1109/JETCAS.2018.2885981

19. Smirnov, N., Tomforde, S.: Navigation support for an autonomous ferry using
deep reinforcement learning in simulated maritime environments. In: 2022 IEEE
Conference on Cognitive and Computational Aspects of Situation Management
(CogSIMA), pp. 142–149 (2022). https://doi.org/10.1109/CogSIMA54611.2022.
9830689

20. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: BOLA: near-optimal bitrate adap-
tation for online videos. IEEE/ACM Trans. Networking 28(4), 1698–1711 (2020).
https://doi.org/10.1109/TNET.2020.2996964

https://doi.org/10.1145/263932.264023
https://doi.org/10.1109/ACCESS.2020.3028550
https://doi.org/10.1109/ACCESS.2022.3214827
https://doi.org/10.3390/electronics10222786
https://doi.org/10.3390/electronics10222786
https://doi.org/10.3390/app122010343
https://doi.org/10.3390/app122010343
https://doi.org/10.3390/a13090208
https://doi.org/10.3390/a13090208
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1109/CogSIMA54611.2022.9830689
https://doi.org/10.1109/CogSIMA54611.2022.9830689
https://doi.org/10.1109/TNET.2020.2996964

	Real-Time Data Transmission Optimization on 5G Remote-Controlled Units Using Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Real-Time Data Transmission Problem
	4 Approach: Deep Reinforcement Learning
	4.1 Background and Model
	4.2 Setup and Hyperparameters
	4.3 Challenges

	5 Evaluation
	5.1 5G Simulation and Scenario
	5.2 Results

	6 Summary
	References




