
Georgios Goumas · Sven Tomforde ·
Jürgen Brehm · Stefan Wildermann ·
Thilo Pionteck (Eds.)

LN
CS

 1
39

49

36th International Conference, ARCS 2023
Athens, Greece, June 13–15, 2023
Proceedings

Architecture of
Computing Systems

Lecture Notes in Computer Science 13949
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Georgios Goumas · Sven Tomforde ·
Jürgen Brehm · Stefan Wildermann ·
Thilo Pionteck
Editors

Architecture of
Computing Systems
36th International Conference, ARCS 2023
Athens, Greece, June 13–15, 2023
Proceedings

Editors
Georgios Goumas
National Technical University of Athens
Athens, Greece

Jürgen Brehm
Gottfried Wilhelm Leibniz Universität
Hannover
Hannover, Germany

Thilo Pionteck
Otto-von-Guericke University Magdeburg
Magdeburg, Germany

Sven Tomforde
Kiel University
Kiel, Germany

Stefan Wildermann
Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)
Erlangen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-42784-8 ISBN 978-3-031-42785-5 (eBook)
https://doi.org/10.1007/978-3-031-42785-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapter “FPGA-Based Network-Attached Accelerators – An Environmental Life Cycle Perspective” is
licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativec
ommons.org/licenses/by/4.0/). For further details see license information in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7811-4831
https://orcid.org/0000-0003-0417-4078
https://orcid.org/0000-0001-6518-1226
https://orcid.org/0000-0002-5825-8915
https://orcid.org/0000-0002-4324-2187
https://doi.org/10.1007/978-3-031-42785-5
http://creativecommons.org/licenses/by/4.0/

Preface

The 36th International Conference onArchitecture of Computing Systems (ARCS 2023)
was hosted at the Museum of Cycladic Art in Athens, Greece, June 13–15, 2023 in
cooperation with the National Technical University of Athens. It was organized by the
special interest group on “Architecture of Computing Systems” of the GI (Gesellschaft
für Informatik e.V.) and ITG (Informationstechnische Gesellschaft im VDE).

Following a successful restart in Heilbronn, Germany in 2022, ARCS23 was the
second conference after the break caused by the Corona epidemic.Wewere very pleased
to be able to hold a physical meeting again this year. Despite all the manifold options of
virtual conferences, we believe that nothing beats face-to-face meetings and exchanges
of ideas. Besides the discussion in the sessions, we see the personal exchange during the
social events as essential for the scientific discourse.

The ARCS conferences series has 36 years of tradition reporting leading edge
research in computer architecture, operating systems, and other related low-level system
software, and a wide range of software techniques and tools required to exploit and build
new hardware systems efficiently. ARCS addresses the complete spectrum from fully
integrated, self-powered embedded systems up to plant-powered high-performance sys-
tems and provides a platform covering new emerging and cross-cutting topics, such as
autonomous and ubiquitous systems, reconfigurable computing and acceleration, neural
networks, and artificial intelligence. ARCSwas the basis for the founding of the Organic
Computing (OC) Initiative and has been one of the driving forces ever since, so that self-
adaptation, learning capability and distributed control through self-organisation in tech-
nical systems have been part of the focus for two decades. Recently, further related topics
such as Quantum Computing and next-generation memory technologies have become
part of the scope of ARCS, reflecting the dynamic nature of the field of computing
architectures.

ARCS 2023 attracted 29 submissions from authors in 10 countries, including Brazil,
Canada, France, Greece, Iceland, Sweden, Thailand, the UK, and the USA. Each sub-
mission was reviewed by a diverse and dedicated ProgramCommittee. Almost all papers
received four qualified reviews. The reviews summed up to a total of 103 reviews from
which 91 were provided by the members of the program committee while 12 originated
from external reviewers. The Program Committee selected 21 submissions to be pre-
sented at ARCS and published in the proceedings, which corresponds to a 72% paper
acceptance rate.

The conference included three basic tracks: Architecture of Computing Systems
(ARCS), Organic Computing (OC), and Dependability and Fault Tolerance (VERFE).
While ARCS accepted 10 papers, OC accepted 9, and VERFE 2. The accepted papers
formed eight entertaining sessions with 25-minute slots per presentation: Accelerating
NeuralNetworks (2 papers),OrganicComputingMethodology (3 papers),Dependability
and Fault Tolerance (2 papers), Computer Architecture Co-Design (2 papers), Computer
Architectures and Operating Systems (3 papers), Organic Computing Applications 1 (3

vi Preface

papers) and Organic Computing Applications 2 (3 papers), as well as a session on
Hardware Acceleration (3 papers).

There is no successful conference without keynote talks. At ARCS 2023, we were
delighted to host two very interesting keynotes, on “Reconfigurable Technologies in
HPC and Data-centers”, by Dionisios Pnevmatikatos, and on “Optimizing the Memory
Access Path Across the Computing Stack”, by Vasileios Karakostas.

We further thank all authors for submitting their work to ARCS and presenting
accepted papers. The special track on Organic Computing was co-organized and coor-
dinated by Anthony Stein. VERFE was organised by Bernhard Fechner, Peter Sobe, and
Karl-Erwin Großpietsch. Thanks to all these individuals and all the many other people
who helped in the organization of ARCS 2023. Finally, we thank Springer for sponsoring
this year’s conference.

June 2023 Georgios Goumas
Sven Tomforde
Jürgen Brehm

Stefan Wildermann

Organization

General Chairs

Sven Tomforde Kiel University, Germany
Georgios Goumas National Technical University of Athens, Greece

Program Chairs

Jürgen Brehm Gottfried Wilhelm Leibniz Universität Hannover,
Germany

Stefan Wildermann Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Proceeding Chair

Thilo Pionteck Otto von Guericke University Magdeburg,
Germany

Publicity and Web Chair

Lars Bauer Karlsruhe Institute of Technology, Germany

Program Committee

Lars Bauer Karlsruhe Institute of Technology, Germany
Andreas Becher Technische Universität Ilmenau, Germany
Mladen Berekovic Universität zu Lübeck, Germany
Andre Brinkmann Johannes Gutenberg-Universität Mainz, Germany
Uwe Brinkschulte Goethe-Universität Frankfurt am Main, Germany
Joao Cardoso Universidade do Porto, Portugal
Thomas Carle Institut de Recherche en Informatique de

Toulouse, France
Ahmed El-Mahdy Egypt-Japan University of Science and

Technology, Egypt

viii Organization

Pierfrancesco Foglia Università di Pisa, Italy
Roberto Giorgi University of Siena, Italy
Daniel Gracia-Pérez Thales Research and Technology, France
Christian Gruhl University of Kassel, Germany
Jan Haase Universität zu Lübeck, Germany
Joerg Haehner University of Augsburg, Germany
Christian Hochberger Technische Universität Darmstadt, Germany
Gert Jervan Tallinn University of Technology, Estonia
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Jörg Keller FernUniversität in Hagen, Germany
Peter Kogge University of Notre Dame, USA
Hana Kubatova FIT CTU, Czech Republic
Ulrike Lucke University of Potsdam, Germany
Erik Maehle Universität zu Lübeck, Germany
Lena Oden FernUniversität in Hagen, Germany
Alex Orailoglu University of California, San Diego, USA
Mario Porrmann Osnabrück University, Germany
Marc Reichenbach Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Jan S. Rellermeyer Leibniz University Hannover, Germany
Reza Salkhordeh Johannes Gutenberg University Mainz, Germany
Wolfgang Schröder-Preikschat Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Martin Schulz Technical University of Munich, Germany
Leonel Sousa Universidade de Lisboa, Portugal
Olaf Spinczyk Osnabrück University, Germany
Benno Stabernack Fraunhofer Institute for Telecommunications,

Heinrich Hertz Institute, Germany
Walter Stechele Technical University of Munich, Germany
Anthony Stein University of Hohenheim, Germany
Jürgen Teich Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Theo Ungerer University of Augsburg, Germany
Hans Vandierendonck Queen’s University Belfast, UK
Daniel Versick NORDAKADEMIE - Hochschule der Wirtschaft,

Germany
Stephane Vialle CentraleSupélec and UMI GT-CNRS 2958,

France

Organization ix

Special Track on Dependability and Fault Tolerance

Program Chairs

Bernhard Fechner University of Hagen, Germany
Peter Sobe HTW Dresden, Germany
Karl-Erwin Großpietsch St. Augustin, Germany

Program Committee

Fevzi Belli University of Paderborn, Germany
Rainer Buchty Technische Universität Braunschweig, Germany
Klaus Echtle University of Duisburg-Essen, Germany
Wolfgang Ehrenberger University of Fulda, Germany
Rolf Ernst Technische Universität Braunschweig, Germany
Michael Gössel University of Potsdam, Germany
Jörg Keller FernUniversität in Hagen, Germany
Hans-Dieter Kochs University of Duisburg-Essen, Germany
Miroslaw Malek USI-Lugano, Switzerland
Erik Maehle Universität zu Lübeck, Germany
Dimitris Nikolos University of Patras, Greece
Francesca Saglietti Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Martin Schulz Technical University of Munich, Germany
Janusz Sosnowski University of Warsaw, Poland
Carsten Trinitis Technical University of Munich, Germany
Peter Tröger Technische Universität Chemnitz, Germany
Norbert Wehn Technische Universität Kaiserslautern, Germany
Josef Weidendorfer Technical University of Munich, Germany
Sebastian Zug Technische Universität Bergakademie Freiberg,

Germany

Special Track on Organic Computing

Program Chairs

Anthony Stein University of Hohenheim, Germany
Sven Tomforde Kiel University, Germany
Stefan Wildermann University of Erlangen-Nuremberg, Germany

x Organization

Program Committee

Thomas Becker Karlsruhe Institute of Technology, Germany
Uwe Brinkschulte University of Frankfurt, Germany
Ada Diaconescu Télécom Paris, CNRS LTCI, France
Jörg Hähner Universität Augsburg, Germany
Martin Hoffmann Bielefeld University of Applied Sciences,

Germany
Christian Krupitzer University of Hohenheim, Germany
Erik Maehle Universität zu Lübeck, Germany
Gero Mühl University of Rostock, Germany
Mathias Pacher University of Frankfurt, Germany
Marc Reichenbach Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Wolfgang Reif University of Augsburg, Germany
Hartmut Schmeck Karlsruhe Institute of Technology, Germany
Gregor Schiele University of Duisburg-Essen, Germany
Jürgen Teich Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Sebastian von Mammen University of Würzburg, Germany
Torben Weis University of Duisburg-Essen, Germany

Keynote Talks

Reconfigurable Technologies in HPC and Data-Centers.
Challenges and Opportunities

Dionisios Pnevmatikatos

National Technical University of Athens, Greece

Abstract. Reconfigurable technology has been successfully showcased
in several computationally intensive applications that exploit the under-
lying adaptability to extract performance.When applying this technology
to more general environments (HPC and or data-centers), the necessary
tradeoffs and performance tuning are more challenging. In this talk I will
describe the current state of play in the field and our activities and progress
towards the two settings. For the HPC environment we are building a set
of open-source libraries for typical HPC kernels, starting from basic ones
(BLAS L1), and gradually moving towards the more involved, interest-
ing and difficult ones: (e.g. BLAS L2 & L2, SpMv, Jacobi, LU decom-
position). For deploying accelerators at the data center we are building
a substrate able to flexibly support multi-tenancy while ensuring isola-
tion of the data accessed by the accelerators. Scalability in the number
of accelerators and support of high-performance memory systems (with
multiple channels) is supported via a properly dimensioned NoC.

Optimizing the Memory Access Path Across
the Computing Stack

Vasileios Karakostas

National and Kapodistrian University of Athens, Greece

Abstract. The performance gap between accessing data and processing
them has been a long-standing problem. Accessing data consists of two
steps: (i) performing address translation to identify where the data lives,
and (ii) retrieving the data itself. However, two critical trends in mod-
ern computing systems prevent closing or even widen this performance
gap even further. First, the memory resources become larger to satisfy
the immense demand of modern applications for processing increasingly
large datasets, stressing address translation. Second, the introduction of
persistent memory allows data retrieval much faster compared to tra-
ditional devices, revealing new sources of overheads. In this talk, we
will discuss the challenges and opportunities that these trends introduce,
and will present some concepts and approaches for improving memory
accesses across the computing stack.

Contents

Accelerating Neural Networks

Energy Efficient LSTM Accelerators for Embedded FPGAs Through
Parameterised Architecture Design . 3

Chao Qian, Tianheng Ling, and Gregor Schiele

A Comparative Study of Neural Network Compilers on ARMv8
Architecture . 18

Theologos Anthimopulos, Georgios Keramidas, Vasilios Kelefouras,
and Iakovos Stamoulis

Organic Computing Methodology (OC)

A Decision-Theoretic Approach for Prioritizing Maintenance Activities
in Organic Computing Systems . 37

Markus Görlich-Bucher, Michael Heider, Tobias Ciemala,
and Jörg Hähner

Predicting Physical Disturbances in Organic Computing Systems Using
Automated Machine Learning . 48

Markus Görlich-Bucher, Michael Heider, and Jörg Hähner

Self-adaptive Diagnosis and Reconfiguration in ADNA-Based Organic
Computing . 63

Utkarsh Raj, Simon Meckel, Aleksey Koschowoj, Mathias Pacher,
Roman Obermaisser, and Uwe Brinkschulte

Dependability and Fault Tolerance (VERFE)

Error Codes in and for Network Steganography . 81
Jörg Keller and Saskia Langsdorf

Modified Cross Parity Codes for Adjacent Double Error Correction 94
Georg Duchrau and Michael Gössel

xviii Contents

Computer Architecture Co-Design

COMPESCE: ACo-designApproach forMemory Subsystem Performance
Analysis in HPC Many-Cores . 105

Antoni Portero, Carlos Falquez, Nam Ho, Polydoros Petrakis,
Stepan Nassyr, Manolis Marazakis, Romain Dolbeau,
Jorge Alejandro Nocua Cifuentes, Luis Bertran Alvarez, Dirk Pleiter,
and Estela Suarez

Post-Silicon Customization Using Deep Neural Networks 120
Kevin Weston, Vahid Janfaza, Abhishek Taur, Dhara Mungra,
Arnav Kansal, Mohamed Zahran, and Abdullah Muzahid

Computer Architectures and Operating Systems

TOSTING: Investigating Total Store Ordering on ARM . 139
Lars Wrenger, Dominik Töllner, and Daniel Lohmann

Back to the Core-Memory Age: Running Operating Systems in NVRAM
only . 153

Jonas Rabenstein, Dustin Nguyen, Oliver Giersch, Christian Eichler,
Timo Hönig, Jörg Nolte, and Wolfgang Schröder-Preikschat

Retrofitting AMD x86 Processors with Active Virtual Machine
Introspection Capabilities . 168

Thomas Dangl, Stewart Sentanoe, and Hans P. Reiser

Organic Computing Applications 1 (OC)

Abstract Artificial DNA’s Improved Time Bounds . 185
Aleksey Koschowoj and Uwe Brinkschulte

Evaluating the Comprehensive Adaptive Chameleon Middleware
for Mixed-Critical Cyber-Physical Networks . 200

Melanie Feist, Mathias Pacher, and Uwe Brinkschulte

CoLeCTs: Cooperative Learning Classifier Tables for Resource
Management in MPSoCs . 215

Klajd Zyla, Florian Maurer, Thomas Wild, and Andreas Herkersdorf

Hardware Acceleration

Improved Condition Handling in CGRAs with Complex Loop Support 233
Ramon Wirsch and Christian Hochberger

Contents xix

FPGA-Based Network-Attached Accelerators – An Environmental Life
Cycle Perspective . 248

Fritjof Steinert and Benno Stabernack

Optimization of OLAP In-Memory Database Management Systems
with Processing-In-Memory Architecture . 264

Shima Hosseinzadeh, Amirhossein Parvaresh, and Dietmar Fey

Organic Computing Applications 2 (OC)

Real-Time Data Transmission Optimization on 5G Remote-Controlled
Units Using Deep Reinforcement Learning . 281

Nikita Smirnov and Sven Tomforde

Autonomous Ship Collision Avoidance Trained on Observational Data 296
Raphael Schwinger, Ghassan Al-Falouji, and Sven Tomforde

Towards Dependable Unmanned Aerial Vehicle Swarms Using Organic
Computing . 311

Jonas Diegelmann, Philipp Homann, Mathias Pacher,
and Uwe Brinkschulte

Author Index . 327

Accelerating Neural Networks

Energy Efficient LSTM Accelerators
for Embedded FPGAs Through

Parameterised Architecture Design

Chao Qian(B) , Tianheng Ling , and Gregor Schiele

Embedded Systems Lab, University of Duisburg, Essen, Duisburg, Germany
{chao.qian,tianheng.ling,gregor.schiele}@uni-due.de

Abstract. Long Short-term Memory Networks (LSTMs) are a vital
Deep Learning technique suitable for performing on-device time series
analysis on local sensor data streams of embedded devices. In this paper,
we propose a new hardware accelerator design for LSTMs specially opti-
mised for resource-scarce embedded Field Programmable Gate Arrays
(FPGAs). Our design improves the execution speed and reduces energy
consumption compared to related work. Moreover, it can be adapted
to different situations using a number of optimisation parameters, such
as the usage of DSPs or the implementation of activation functions. We
present our key design decisions and evaluate the performance. Our accel-
erator achieves an energy efficiency of 11.89 GOP/s/W during a real-time
inference with 32873 samples/s.

Keywords: LSTM · Energy Efficiency · Embedded FPGAs

1 Introduction

Recent studies have shown the superiority of Deep Learning algorithms over
traditional methods for time series analysis [11,12]. Among these algorithms,
Long Short-term Memory Networks (LSTMs) have been extensively studied for
their ability to model and predict nonlinear time-varying systems [13]. Running
LSTMs at the edge, especially on embedded sensor devices, is preferable for tasks
with data privacy and security requirements, such as data collection at pub-
lic locations [9]. In addition, on-device inference with low latency is critical for
many applications, like human voice analysis with wearable devices [6]. However,
deploying LSTMs on devices faces challenges due to limited local computational
resources and energy. Microcontrollers are often not fast enough, while GPUs
consume too much energy. One promising approach is to design LSTM accel-
erators for Field-Programmable Gate Arrays (FPGAs), which offer fast compu-
tation and reconfigurability while being typically more energy-efficient [5]. This
paper proposes a novel LSTM accelerator architecture for embedded FPGAs. We
use an Xilinx Spartan-7 XC7S15 FPGA. Our main contributions are as follows:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-42785-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_1&domain=pdf
http://orcid.org/0000-0003-1706-2008
http://orcid.org/0000-0003-4603-8576
http://orcid.org/0000-0003-4266-4828
https://doi.org/10.1007/978-3-031-42785-5_1

4 C. Qian et al.

– Our LSTM accelerator architecture achieves superior resource utilisation com-
pared to state-of-the-art approaches. We accomplish this by using more effi-
cient activation functions and quantising to 8 bits. We achieve an average
reduction of 29.62% in LUT utilisation and 33.33% in LUTRAM utilisation.

– Our design offers the option of not using DSPs for arithmetic logic to overcome
the limitations of prior work that heavily relies on DSPs. This way, we can
support LSTM models with up to 5 LSTM layers, each of which can have a
maximum hidden size of 60.

– We significantly reduce the logic and net delay in the LSTM accelerator by
optimising the activation function and Arithmetic-Logic Unit (ALU) imple-
mentation. The accelerator’s maximum clock frequency increases to 204 MHz,
leading to nearly a 2× increase in throughput.

– We validate our proposed architecture by implementing it in Vivado and real
hardware. Our results demonstrate a reduced power consumption of up to
18.57% and an improved energy efficiency per inference of 59.19%.

In the remainder of this paper, we first discuss related research in Sect. 2.
Then, Sect. 3 provides background information on LSTMs. Our design is
described in Sect. 4, while Sect. 5 presents implementation details. An evaluation
of our work is conducted in Sect. 6. Section 7 concludes the paper and outlines
future research plans.

2 Related Work

Numerous studies have investigated the design of LSTM accelerators for FPGAs,
but most research has concentrated on either server-grade FPGAs installed in
the Cloud [1] or mid-range FPGAs in Edge servers [3,16,18]. To our knowledge,
only a few papers have discussed the design of LSTM accelerators for embedded
FPGAs. Due to their low cost, compact size, and low power consumption, such
FPGAs can provide flexible hardware acceleration for embedded devices, e.g., in
the Internet of Things. However, they have far fewer resources (in terms of LUTs,
DSPs, RAM, etc.) than bigger FPGAs, requiring compact accelerator designs. In
addition, such accelerators must be optimised for energy efficiency to not limit
the lifetime of battery-operated devices. To achieve the required performance
while adhering to size and power limits, careful study and hardware resource
optimisation are necessary to design LSTM accelerators on embedded FPGAs.

According to a study by Hasib-Al-Rashid et al. [14], the static power con-
sumption of the Artix 7 XC7A100T FPGA has a significant negative impact on
the overall energy efficiency of their LSTM accelerators. One possible solution
to mitigate this issue is to use FPGAs with negligible static power consumption.
For instance, Chen et al. [4] implemented their LSTM accelerator on the iCE40
UltraPlus UP5K FPGA, which has a static power consumption at the µA level,
resulting in an energy efficiency reported to be 7.6× better than that of [14].
However, the low maximum clock frequency (17 MHz) of the chosen FPGA lim-
ited the maximum throughput of the accelerator to 0.067 GOP/s, which could

Energy Efficient LSTM Accelerators for Embedded FPGAs 5

pose challenges in supporting real-time inference applications. Furthermore, their
accelerator implemented an LSTM model with a single LSTM cell but already
occupies 75% of DSPs, 100% of SPRAM, 73.3% EBR-RAM and 94.5% of LUTs.
This makes scaling up to bigger LSTM models impossible.

In 2022, Qian et al. [15] proposed an approach to reduce the proportion of
static power in the overall power consumption of the Spartan-7 XC7S15 FPGA.
They achieved this by increasing the dynamic power consumption through par-
allelism in the LSTM cell, resulting in a throughput of 0.363 GOP/s at 100 MHz.
This throughput is 5.4× faster than the maximum throughput achieved by the
approach proposed by Chen et al. [4]. In addition to the higher throughput,
Qian et al. achieved 1.37× better energy efficiency with 5.33 GOP/J compared
to Chen et al.’s approach.

While previous studies have shown promising results in accelerating LSTM
models, there are still limitations concerning the scalability of the FPGA and its
maximum usable clock frequency. For example, the FPGAs from the Spartan-7
family can implement fixed-point arithmetic at frequencies up to 239 MHz [2],
which presents an opportunity for optimising the accelerator for higher operat-
ing frequencies and better energy efficiency. Therefore, further research is neces-
sary to identify and develop optimisations for more scalable and energy-efficient
LSTM accelerators for embedded FPGAs.

3 LSTM Background

This section presents the fundamental concepts of LSTMs necessary to under-
stand our proposed architecture design. For simplicity, we use a basic LSTM
model specifically developed for single-step ahead time series prediction. The
model comprises an LSTM layer with one LSTM cell, followed by a dense layer,
as detailed in [7]. We assume that the input sequence X = {xt−N+1, . . . , xt−1, xt}
has length N and each element is of M dimensions, where M ≥ 1 to support
both univariate and multivariate time series. The input sequence X is iteratively
processed through an LSTM cell within the LSTM layer.

Fig. 1. Unfolding the LSTM Model Architecture in the Time Dimension

To better describe the iteration process, we unfold it in the time dimension
(see Fig. 1). Taking time step t − 1 as an example, the LSTM cell takes the
previous hidden state ht−2 and cell state Ct−2, as well as the current input xt−1

6 C. Qian et al.

as input, and produces the current hidden state ht−1 and cell state Ct−1. These
states are then propagated to the next time step, allowing the model to retain
contextual information. The initial values for h and C are typically set to 0 and
denoted as h0 and C0.

The LSTM cell contains three gates: input gate it, output gate ot, and forget
gate ft, to regulate which information to keep or discard. The intermediate
result gt is used to update Ct. Equations 1 to 6 represent the computations
within the LSTM cell and are explained in more detail in [8]. The ∗ denotes the
Hadamard product, [·, ·] represents vector concatenation, and W denotes the
weight matrices of each gate [15].

it = Sigmoid (Wi[ht−1, xt] + bi) (1)
ft = Sigmoid (Wf [ht−1, xt] + bf) (2)
gt = Tanh (Wg[ht−1, xt] + bg) (3)
Ct = ft ∗ Ct−1 + it ∗ gt (4)
ht = ot ∗ Tanh (Ct) (5)
ot = Sigmoid (Wo[ht−1, xt] + bo) (6)

The LSTM layer outputs its newest hidden states ht of length K when all
elements in the input sequence are processed. Subsequently, the dense layer
processes this output to generate the final output y with P dimensions. The
specific task that the model needs to solve determines the exact meaning of y.

4 Solution Design

Our overall goal is to create a template-based register-transfer level (RTL) design
for FPGAs that is (a) able to support larger LSTM models with multiple cells
and layers as well as large hidden size, and (b) is optimised for energy efficiency
by maximising throughput. In addition, we aim to provide a flexible design that
can be tailored to different usage contexts.

To support larger LSTM models, we categorise FPGA hardware resources
into critical and general, represented respectively by DSPs and LUTs. DSPs are
considered critical because they are faster in executing arithmetic computations
and are limited in number compared to LUTs. Our design aims to optimise
the LSTM accelerator components by reducing or eliminating the use of DSPs
and allocating DSPs to components that require them the most. However, this
may increase the utilisation of LUTs. Therefore, we also intend to optimise the
components to utilise fewer general resources, minimising the overall system
resource utilisation.

Energy Efficiency [GOP/s/W] =
Throughput[GOP/s]

Power[W]
(7)

Energy Efficient LSTM Accelerators for Embedded FPGAs 7

In addition, energy efficiency is an essential metric for embedded applica-
tions. We employ performance per watt to measure it. As demonstrated in Eq. 7,
throughput, normalised by 109, refers to the number of equivalent operations
executed per second, and power is the power consumption of the FPGA while
running. We believe that the energy efficiency of an accelerator can be improved
by increasing the throughput while consuming less power.

4.1 8-Bit Fixed-Point Quantisation

In FPGA designs, applying fixed-point data is a common approach to balance
the trade-off between precision and resource efficiency. In this work, we use the
notation (a, b) to represent fixed-point data, where a represents the number of
fractional bits (i.e. bits representing numbers smaller than 1) and b represents
the total width in bits. When we refer to 8-bit quantisation or 8-bit fixed-point
data in the following context, we mean that b is set to 8.

We observed that when using fixed-point data less than or equal to 8-bit,
implementing a fixed-point multiplier with LUTs can reach a speed comparable
to DSPs, which is in line with our idea of reducing or avoiding the use of DSPs.
At the same time, studies have shown that 8-bit fixed-point quantisation can
conserve more resources while maintaining an acceptable model precision [10,17].
Hence, although we support larger bit widths, our design uses 8-bit fixed-point
quantisation as its standard. Note that although our design also supports lower
bit widths, ternarisation and binarisation quantisation are difficult to use for
LSTMs and have mostly been used for partially quantised LSTM models, which
do not meet our needs.

4.2 Activation Function Optimisation

As described in Sect. 3, the calculation of the LSTM cell necessitates the use of
Tanh and Sigmoid activation functions. However, since these functions involve
exponential computations, their arithmetic implementation on the FPGA can
be resource inefficient and slow. One solution for this is to implement Tanh and
Sigmoid with lookup tables. This avoids using DSPs and works without iterative
computation. However, as demonstrated by Qian et al. [15], a large lookup table
with 256 entries is required to provide an acceptable precision. This can again
be resource-inefficient and adds delay due to the increased logic complexity.

As an alternative, we can replace Tanh and Sigmoid with HardTanh1 (shown
in Eq. 8) and HardSigmoid2 functions (shown in Eq. 9). They have piecewise-
linear characteristics, which typically take no more than two iterations for com-
putation, requiring fewer hardware resources. Although they behave differently
from Tanh and Sigmoid functions, the performance of a model using them as
alternative activation functions is comparable after training [14]. Hence, we opt
to implement the HardTanh and HardSigmoid functions instead of the Tanh and
Sigmoid functions.

1 https://pytorch.org/docs/stable/generated/torch.nn.Hardtanh.html.
2 https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html.

https://pytorch.org/docs/stable/generated/torch.nn.Hardtanh.html
https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html

8 C. Qian et al.

HardTanh(x) =

⎧
⎪⎨

⎪⎩

max val if x > max val
min val if x < min val
x otherwise

(8)

HardSigmoid(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ -3
1 if x ≥ 3
x/6 + 1/2 otherwise

(9)

The HardSigmoid function in the PyTorch framework has a slope of 1/6 for
its linear interval (−3, 3). Hasib-Al-Rashid et al. [14] demonstrated that setting
the slope to 1/5 in their LSTM accelerator design yields good results. However,
both 1/6 and 1/5 are not supported by 8-bit fixed-point data. We implement
a customised HardSigmoid function with a configurable slope. To distinguish it
from the HardSigmoid function in the PyTorch framework, we refer to our cus-
tomised implementation as HardSigmoid∗, where its slope must be supported by
the fixed-point configuration in our architecture. The slope of the HardSigmoid
function is approximately 0.167. For our standard fixed-point configuration of
(4,8), numbers close to 0.167 are 0.125 and 0.1875. Since 0.125 equals 1/8, we
can use bit-shifting to perform the division. Thus, in our experiments, we set
the slope of the HardSigmoid∗ function to 0.125.

4.3 ALU Optimisation

Equations 1 to 6 illustrate that most computations in an LSTM cell are vector
inner product calculations. Fixed-point Multiply-Accumulation (MAC) opera-
tions (see Algorithm 1) can be used to perform such calculations. Thus, optimis-
ing MAC operations with respect to speed and resource consumption is crucial.

Qian et al. [15] proposed an ALU that integrates lines 3–6 in Algorithm 1
into a single operation. This allows the LSTM cell to perform one MAC iteration
in a single clock cycle. However, this limits them to a maximum operating clock
frequency of 100 MHz, which cannot be increased without failing the timing
requirement. Additionally, all their ALUs require the use of DSPs. One LSTM
cell needs 7 of the 20 DSPs available on the XC7S15 FPGA, restricting their
accelerator to support a maximum of 2 LSTM cells.

A possible solution is to employ parallel ALUs to speed up the vector inner
product calculations. For instance, if two ALUs are used for one vector inner
product calculation, the time required for this calculation can be reduced by half,
improving throughput. However, using more ALUs leads to additional resource
consumption, further limiting the potential model size.

A more efficient approach that does not require more ALUs is to construct a
pipeline where each stage completes a single line in Algorithm 1. The stage with
the highest latency determines the maximum clock frequency. Line 4 has the
highest latency, given that multiplication is the most complex operation in the
loop. Although this approach may add development overhead, it is still worth
considering for embedded applications that require extreme energy efficiency.

Energy Efficient LSTM Accelerators for Embedded FPGAs 9

Algorithm 1. MAC implementation for fixed-point vectors inner product
Input: W , x, each of them is N element vector
1: Initialisation: sum ← 0, i ← 0
2: repeat
3: Load W [i] and x[i]
4: mul16 ← W [i] ∗ x[i] {mul16 is a fixed-point data in (8,16)}
5: mul8 ← fround(mul16) {mul8 is a fixed-point data in (4,8) }
6: sum ← sum + mul8
7: i ← i + 1
8: until i = N

Output: sum

5 Implementation

In this section, we present our implementation-level optimisations and design
decisions. Firstly, we outline how we implemented the chosen activation functions
and characterise the resulting performance and resource consumption. We then
present the details of our pipelined ALU implementation, which substantially
improves the maximum operating clock frequency. Finally, we present the overall
resulting accelerator architecture and describe supported meta-parameters.

5.1 Activation Function Implementation

Based on our decision in Sect. 4 to replace the original activation functions,
we describe the implementation details of HardTanh and HardSigmoid∗. Imple-
menting the HardTanh function on the FPGA is straight-forward. Only two
fixed-point comparators are required because the slope of its linear interval is 1
(see Eq. 9). This slope value enables the implementation to maintain the same
precision as the PyTorch framework, as long as the selected val max and val min
are supported by our fixed-point configuration. We synthesised the HardTanh
function in Vivado and found that it consumes only 5 LUTs.

The implementation of the HardSigmoid∗ function is more complex, and
the best choice depends on the optimisation goal and the used quantisa-
tion. We experimented with three methods. The first method is referred to as
HardSigmoid∗-arithmetic (abbreviated as arithmetic). If the input is below -3
or above 3, it simply returns 0 or 1, respectively. Otherwise, the output is gen-
erated by performing a right arithmetic shift on the input and then adding a
fixed-point value of 0.5. These two steps must be executed sequentially, increasing
delay. The two remaining methods for implementing HardSigmoid∗ are based on
lookup tables. Both produce the same behaviour as the arithmetic method. They
are referred to as HardSigmoid∗-1to1 (abbreviated as 1to1) and HardSigmoid∗-
step (abbreviated as step). The lookup table in the 1to1 method enumerates
all input-output pairs of HardSigmoid∗. For a fixed-point configuration (4,8),
this results in 96 entries. The step method merges entries in the lookup table
that have the same output. The output of HardSigmoid∗ is in [0, 1]. With a

10 C. Qian et al.

fixed-point configuration (4,8), only 16 output values can be represented in this
range. Thus, some entries have the same output. To merge these entries, we take
advantage of the monotonically increasing nature of HardSigmoid∗ and merge
adjacent entries with the same output. After performing the merge operation on
all entries, we obtain a step function with 14 entries.

Table 1. Comparing Methods for Implementing the HardSigmoid∗ Activation Function

Fixed-point

Configuration

Metrics arithmetic 1to1 step

(4,8) Logic Delay [ns] 3.765 3.778 3.660

LUTs utilisation 6 8 3

(6,8) Logic Delay [ns] 5.897 3.908 4.175

LUTs utilisation 36 27 28

(8,10) Logic Delay [ns] 10.883 4.872 6.360

LUTs utilisation 46 117 1793

We compared the performance of the three methods using measures obtained
from the Vivado synthesis report. The results are summarised in Table 1. For the
fixed-point configuration (4,8), we observed that the step method outperforms
the others regarding resource utilisation and logic delay. This is consistent with
the fact that the step method has far fewer entries than the 1to1 method. How-
ever, it is worth noting that decreasing the number of entries by 85.43% only
saves 62.5% of LUTs because merging entries creates additional overhead for
building more complex comparators.

Interestingly, for higher fractional bit widths, the situation changes. When
using six fractional bits, the 1to1 method outperforms the others. The step
method involves too much additional overhead. This becomes even more promi-
nent for larger fixed-point representations. For (8,10) fixed-point configuration,
the step method uses the most LUTs. The 1to1 method is the fastest. However,
while being the slowest of the three methods, the arithmetic method now uses
the least LUTs. As a result of these measurements, we decided to offer all three
methods and let the user select one as needed.

5.2 Pipeline-Based ALU Implementation

We constructed a pipeline-based ALU with a 5-stage depth for fixed-point MAC
operation. Taking the vector length of eight as an example, as depicted in Fig. 2,
the first stage (S1) involves initialisation, identical to line 1 in Algorithm 1.
In the subsequent stage (S2) (see line 3), two numbers from the corresponding
vectors are loaded. In stage S3 (i.e. line 4), they are multiplied, and the result
is stored as 16-bit fixed-point data and propagated to the next stage. At stage
S4 (see line 6), the intermediate result is added to the accumulation sum. After

Energy Efficient LSTM Accelerators for Embedded FPGAs 11

the final iteration, in the last stage (S5), the accumulation sum is rounded to 8
bits and output. Note that in contrast to Algorithm 1, this rounding is not done
after each multiplication but only at the end.

Fig. 2. Pipelined Loop with Five Stages and Eight Iterations

As shown in Fig. 2, from the 4th to the 9th clock cycle, our pipeline executes
3 lines of Algorithm 1 in parallel, potentially providing 3× higher throughput.
Nevertheless, in the beginning (from 1st to 3rd clock cycle) and the end (from
10th to 12th clock cycle), the pipeline performs lower throughput. The longer the
vector is, the higher the average throughput can be obtained with our pipeline-
based ALU approach. For instance, suppose we need to calculate the dot product
of 20-length vectors. In such cases, our pipeline approach can offer up to a 2.5×
increase in throughput. However, since the multiplication stage is slower than
the others, the essential throughput gain is below 2.5× in practice.

5.3 Parameterised Architecture

The overall architecture of our LSTM accelerator is shown in Fig. 3. The pre-
sented LSTM model consists of (1) a single LSTM layer with a single LSTM
cell and (2) a single dense layer afterwards. This model is also used for our
experiments in Sect. 6. The architecture contains two parallel instances of our
pipelined ALU implementation, one for xt and ht−1, the second one for Ct−1,
the two activation functions, and all weights and biases. No additional off-chip
memory is needed. We provide a number of meta-parameters for our design (see
Table 2), that can be used to adapt it to different usage contexts. Some are used
to specify the functional structure of a cell or layer. As an example, hidden size
specifies the number of hidden units in the internal state of the LSTM cell. Oth-
ers can be used to configure the implementation of the resulting accelerator. For
example, ALU resource type specifies if an ALU implementation in a LSTM cell
should use DSPs or LUTs. This way, the designer can choose to save DSPs for
other cells or layers in a more complex model.

Note that due to the limited number of DSPs available on the FPGA, the
system prioritises allocating DSPs to ALUs on the critical path to increase the
system clock frequency. This strategy is employed to make the most out of the
available DSP resources. Furthermore, when selecting the weight resource type

12 C. Qian et al.

Fig. 3. LSTM Accelerator Architecture Overview

parameter, if weights such as Wf are assigned to BRAM-type resources, a mul-
tiple of 18 Kbit BRAM-type resources will be utilised.

Table 2. Meta-Parameters of LSTM Accelerator Architecture

Meta-Parameter Description

hidden size (integer) number of the hidden units in [1, 200]

input size (integer) dimension of input sample in [1, 10]

ALU resource type (string) type of utilised resource of an ALU in [DSP, LUT]

weight resource type (string) type of utilised resource of a weights matrix
in [LUTRAM, BRAM, AUTO]

HardSigmoid∗ method (string) method of implementation of HardSigmoid∗

in [arithmetic, 1to1, step]

HardTanh threshold (fixed-point) threshold for the HardTanh implementation

in features (integer) size of each input sample

out features (integer) size of each output sample

6 Evaluation

To discuss our evaluation, we first describe the experimental settings. Then
we present our evaluation results focusing on FPGA resource utilisation and
throughput. Finally, we compare our power consumption and energy efficiency
to related approaches.

6.1 Experimental Settings

To make our results comparable, we based our experiments on the study pre-
sented in [15]. Like them, we used the PeMS-4W3 dataset to predict single-step
ahead traffic speed. We also adopted the LSTM model used in their study. It
3 https://doi.org/10.5281/zenodo.3939793.

https://doi.org/10.5281/zenodo.3939793

Energy Efficient LSTM Accelerators for Embedded FPGAs 13

comprises an LSTM layer with one LSTM cell having a hidden size of 20 and a
dense layer with 20 neurons. However, our design uses our replacement activa-
tion functions HardTanh (max val=1, min val=-1) and HardSigmoid∗, respec-
tively. We also changed the quantisation, moving from (8,16) to (4,8) fixed-point
configuration. We implemented and trained the modified LSTM model using
the ElasticAI-Creator4 tool. We followed the same general training settings but
employed Quantisation-Aware Training instead of Post-Training Quantisation.
Despite our additional optimisations, our model outperforms theirs, achieving
an MSE of 0.040, which is 78% lower than in [15].

6.2 Resource Utilisation

We conducted a series of experiments assessing resource utilisation to identify
how complex LSTM models can be supported by our LSTM accelerator design
on XC7S15 FPGA. Both Figs. 4 and 5 show that as the hidden size of the
LSTM cell increased from 20 to 200, the utilisation of BRAM, represented by
the blue dotted line, changed the most significantly, which suggests that BRAM
is the most critical resource to support a larger hidden size. BRAM utilisation
reached a maximum of 100% at a hidden size of 130 and remained so until
the hidden size reached 180. Beyond this point, BRAM utilisation decreased,
and the utilisation of LUTs increased significantly. This is because when BRAM
was exhausted, Vivado switched to using LUTRAM (included in LUT Slices
utilisation in Figs. 4 and 5) to implement some of the weights. Storing weights
in the BRAM is preferred because it has fast access latency. Therefore, for an
LSTM model with only one LSTM layer, the maximum hidden size of the LSTM
cell should be 180 to ensure optimal speed on the XC7S15 FPGA.

In addition, Figs. 4 and 5 were obtained under different settings of the meta-
parameter ALU resource type. In Fig. 4, all ALUs were set to use “LUT” as their
resource type, resulting in a constant value of 0 for the utilised DSPs. On the
other hand, in Fig. 5, all ALUs were set to use “DSP” as their resource type,
resulting in a constant value of 40% for the utilised DSPs, as the LSTM and
dense layers occupy 8 out of the 20 available DSPs.

As we mentioned before, not utilising DSPs will inevitably increase the over-
head of LUTs to realise ALUs. Comparing these two figures, we can see that the
utilisation of LUTs shows a consistent difference. Before the BRAM is exhausted,
the difference in LUT utilisation is between 4.375 and 6.03%. This indicates that
the LUTs consumed by implementing an 8-bit fixed-point multiplier account for
at most 0.74% of all LUTs in the XC7S15 FPGA, which is equivalent to about
60 LUTS. Based on this, we can estimate that up to five LSTM layers can be
instantiated simultaneously on this FPGA when the hidden size of each cell is
60. This is especially beneficial for complex LSTM models, such as Bi-LSTM and
Auto-encoders, which often require multiple LSTM layers and large hidden size.
By contrast, [15] relied on DSPs to perform arithmetic logic in their approach,

4 https://github.com/es-ude/elastic-ai.creator.

https://github.com/es-ude/elastic-ai.creator

14 C. Qian et al.

Fig. 4. Utilisation without DSPs Fig. 5. Utilisation with DSPs

which limited their ability to implement more than two LSTM layers on this
FPGA, as each layer consumes 7 of 20 available DSPs.

6.3 Throughput

The aim of this set of experiments is to assess the effect of different implemen-
tations of our LSTM accelerator architecture on throughput. To determine the
throughput of the accelerator, we first need to obtain its maximum operating
frequency by conducting timing analysis in Vivado.

Table 3. Frequency and Throughput for Different Optimisation Options

[15] this work†

HardSigmoid∗

without Pipelined ALU

Pipelined ALU

& step

arithmetic 1to1 step

Maximal Clock[MHz] 100 104 109 115 204

Latency[µs] 57.25 55.05 53.09 49.75 28.07

Throughput[GOP/s] 0.363 0.378 0.399 0.417 0.740

Improvement 1× 1.04× 1.09× 1.15× 2.04×
† All implementations used the HardTanh

Table 3 indicates that replacing the Tanh and Sigmoid functions with the
HardTanh and HardSigmoid (Columns 2 through 4) functions resulted in a slight
improvement in maximum clock frequency and accelerator performance, as com-
pared to the work by Qian et al. [15] (Column 1). This is because the ALU
implementation without pipeline constraint the maximum clock frequency. The
step method led to the highest increase in throughput among the three meth-
ods, at 1.15×, while the arithmetic method resulted in the lowest increase, at
1.04×. When combined with pipelined ALUs implementation (Column 5), the
step method further increased the maximum clock frequency and resulted in a

Energy Efficient LSTM Accelerators for Embedded FPGAs 15

nearly twofold increase in throughput of 2.04×, along with a 50.97% reduction in
latency. It is important to note that the maximum improvement in throughput
being less than 2.5× is not surprising, as multiplication takes more time than
the other stages.

6.4 Power Consumption and Energy Efficiency

We estimated the power consumption of the accelerator at its maximum oper-
ating frequency of 204 MHz using the Xilinx Power Estimator5 software. This
allows us to determine the energy efficiency of the accelerator and compare it
with the state-of-the-art. Table 4 shows that our work achieved higher energy
efficiency (Column 4) compared to the recently published work by Qian et al.
[15] (Column 3), with a 2.33× improvement. Our proposed optimisation method
achieved this, which reduced latency by 2.04× and power consumption by 1.22×.

Table 4. Comparison with State-of-the-Art

[14] [4] [15] this work

FPGA Model XC7A100T UP5K XC7S15

Utilised DSPs 4 6 8 8 0

Maximal Clock[MHz] 52.6 17 100 204 204

Power[mW] Static 92† 0 32† 32† 32†

Dynamic 17† 17 38† 25† 31†

Total 109† 17 70† 57† 63†

Latency[µs] incomparable 53.32 28.07 28.07

Energy[µJ] incomparable 3.70 1.51 1.67

Throughput [GOP/s] 0.055 0.067 0.390 0.740 0.740

Energy Efficiency [GOP/s/W] 0.50 3.90 5.57 12.98 11.75
† Measurements come from Xilinx Power Estimator

Interestingly, the implementation of the ALU without DSPs (Column 5)
exhibits higher dynamic power than the implementation with DSPs (Column
4), resulting in 9.47% lower energy efficiency. Nevertheless, this approach has
the advantage of not being limited by DSP resources, allowing it to support
more complex LSTM models. In contrast, implementing ALUs with DSPs can
be a practical choice for power efficiency applications. Moreover, we observed
that using DSPs to implement all the ALUs does not lead to further increases in
the maximum operating clock frequency. This is likely since using DSPs intro-
duces net delay, as DSPs are only available in a restricted area. Consequently,
the reduced logic delay achieved by using DSPs is offset by the increased net
delay.
5 https://www.xilinx.com/products/technology/power/xpe.html.

https://www.xilinx.com/products/technology/power/xpe.html

16 C. Qian et al.

To ensure the correctness of our values, we also measured on real hardware.
The results are similar to the ones obtained by the Estimator. The average power
consumption during inference when using DSPs for all ALUs is 57.4mW. Not
using DSPs consumes 65.7mW. In addition, the processing time per inference
for both accelerators is 2.35 µs slower than the estimated time. Our approach
achieved 11.89 GOP/s/W energy efficiency on real hardware, confirming its effec-
tiveness.

7 Conclusion and Future Work

Our LSTM accelerator architecture for embedded FPGAs shows that by combin-
ing 8-bit quantisation with an accompanying activation function implementation
as well as with optimisations to support higher clock frequencies, we can achieve
superior resource utilisation and energy efficiency compared to state-of-the-art
approaches. We can reduce utilised LUTs by 29.62% and LUTRAM by 33.33%.
Our design supports LSTM models with up to 5 layers, each with a maximum
hidden size of 60, on small embedded FPGAs and allows designers to tailor
accelerators to their specific needs, e.g. by choosing to get by without DSPs if
needed. We can achieve a nearly 2× increase in throughput with a maximum
clock frequency of 204 MHz. Power consumption is reduced by up to 18.57% and
energy efficiency per inference 59.19%.

In future work, we plan to verify the effectiveness of our optimised LSTM
accelerator architecture in more challenging applications with bigger models.
Furthermore, we plan to integrate our design into the ElasticAI-Creator tool
to enable users to generate optimised LSTM accelerators for their applications
more easily. Finally, we plan to extend our work to automatically select the
best parameterisation for a given context, leading to end-to-end optimisations
of complex Deep Learning models.

Acknowledgements. The authors acknowledge the financial support provided by
the Federal Ministry of Economic Affairs and Climate Protection of Germany in the
RIWWER project (01MD22007C).

References

1. Boutros, A., et al.: Beyond peak performance: comparing the real performance
of ai-optimized FPGAS and GPUs. In: 2020 International Conference on Field-
Programmable Technology (ICFPT), pp. 10–19. IEEE (2020)

2. Burger, A., Urban, P., Boubin, J., Schiele, G.: An architecture for solving the
eigenvalue problem on embedded FPGAS. In: Brinkmann, A., Karl, W., Lankes,
S., Tomforde, S., Pionteck, T., Trinitis, C. (eds.) ARCS 2020. LNCS, vol. 12155,
pp. 32–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52794-5 3

3. Cao, S., et al.: Efficient and effective sparse LSTM on FPGA with bank-balanced
sparsity. In: Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 63–72 (2019)

https://doi.org/10.1007/978-3-030-52794-5_3

Energy Efficient LSTM Accelerators for Embedded FPGAs 17

4. Chen, J., Hong, S., He, W., Moon, J., Jun, S.W.: Eciton: very low-power LSTM
neural network accelerator for predictive maintenance at the edge. In: 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL),
pp. 1–8. IEEE (2021)

5. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE
107(8), 1655–1674 (2019)

6. Conti, F., Cavigelli, L., Paulin, G., Susmelj, I., Benini, L.: Chipmunk: a systolically
scalable 0.9 mm 2, 3.08 gop/s/mw@ 1.2 mw accelerator for near-sensor recurrent
neural network inference. In: 2018 IEEE Custom Integrated Circuits Conference
(CICC), pp. 1–4. IEEE (2018)

7. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for
traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese
Association of Automation (YAC), pp. 324–328. IEEE (2016)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Huang, C.J., Kuo, P.H.: A deep CNN-LSTM model for particulate matter (PM2.5)
forecasting in smart cities. Sensors 18(7), 2220 (2018)

10. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference:
a whitepaper. arXiv preprint arXiv:1806.08342 (2018)

11. Lara-Beńıtez, P., Carranza-Garćıa, M., Riquelme, J.C.: An experimental review on
deep learning architectures for time series forecasting. Int. J. Neural Syst. 31(03),
2130001 (2021)

12. Lim, B., Zohren, S.: Time-series forecasting with deep learning: a survey. Phil.
Trans. R. Soc. A 379(2194), 20200209 (2021)

13. Lindemann, B., Müller, T., Vietz, H., Jazdi, N., Weyrich, M.: A survey on long
short-term memory networks for time series prediction. Proc. CIRP 99, 650–655
(2021)

14. Manjunath, N.K., Paneliya, H., Hosseini, M., Hairston, W.D., Mohsenin, T., et
al.: A Low-power LSTM processor for multi-channel brain EEG artifact detection.
In: 2020 21st International Symposium on Quality Electronic Design (ISQED), pp.
105–110. IEEE (2020)

15. Qian, C., Ling, T., Schiele, G.: Enhancing energy-efficiency by solving the through-
put bottleneck of LSTM cells for embedded FPGAS. In: Koprinska, I., et
al. Machine Learning and Principles and Practice of Knowledge Discovery in
Databases. ECML PKDD 2022. Communications in Computer and Information
Science, vol. 1752, pp. 594–605. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-23618-1 40

16. Varadharajan, S.K., Nallasamy, V.: P-SCADA-a novel area and energy efficient
FPGA architectures for LSTM prediction of heart arrthymias in BIoT applications.
Expert. Syst. 39(3), e12687 (2022)

17. Yang, Y., Deng, L., Wu, S., Yan, T., Xie, Y., Li, G.: Training high-performance
and large-scale deep neural networks with full 8-bit integers. Neural Netw. 125,
70–82 (2020)

18. Zhang, Y., et al.: A power-efficient accelerator based on FPGAs for LSTM network.
In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp.
629–630. IEEE (2017)

http://arxiv.org/abs/1806.08342
https://doi.org/10.1007/978-3-031-23618-1_40
https://doi.org/10.1007/978-3-031-23618-1_40

A Comparative Study of Neural Network
Compilers on ARMv8 Architecture

Theologos Anthimopulos1(B), Georgios Keramidas1,2, Vasilios Kelefouras3,
and Iakovos Stamoulis2

1 School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
{tanthimop,gkeramidas}@csd.auth.gr

2 Think Silicon, S.A. An Applied Materials Company, Patras, Greece
i.stamoulis@think-silicon.com

3 School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
vasilios.kelefouras@plymouth.ac.uk

Abstract. The deployment of Deep Neural Network (DNN) models in far edge
devices is a challenging task, because these devices are characterized by scarce
resources. To address these challenges various deep learning toolkits and model
compression techniques have been developed both from industry and academia.
The available DNN toolchains can perform optimizations at different levels e.g.,
graph level, Intermediate Representation (IR) or machine-dependent optimiza-
tions, while they operate in an Ahead-of-Time (AOT) or Just-in-Time (JIT) man-
ner. Although the area of DNN toolchains is an active research area, there is no
available study that analyses the performance benefits achieved by the different
optimization levels e.g., the performance boost reported by the graph-level vs. the
machine-dependent optimizations. This work performs a comprehensive study of
three popular neural network (NN) compiler frameworks that target (mainly) far
edge devices: TensorFlow Lite for MCUs, GLOW, and IREE. For a fair compar-
ison, our performance analysis targets to reveal the performance benefits offered
by the different optimization levels for the three studied frameworks as well as
the strength of specific graph-level optimizations e.g., in quantizing the input NN
models. Our evaluation is based on various NN models with different computa-
tional/memory resources and the experiments are performed in a state-of-the-art
high-performance embedded platform by Nvidia.

Keywords: Deep Neural Networks · Neural Network Compilers · Network
Optimization · Network Compression · Quantization

1 Introduction

Deep Neural Networks have demonstrated significant advances in various application
domains including (but limited to) image processing, audio translation, and speed recog-
nition. Embedded platforms, such as smartphones and smartwatches, frequently rely on
DNNmodels to provide digital smart assistants to the end-users. As a result, the efficient
deployment of DNN models in resource-constrained devices is an active research area

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 18–33, 2023.
https://doi.org/10.1007/978-3-031-42785-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_2

A Comparative Study of Neural Network Compilers 19

in both industry and academia. DNN models consist of a series of matrix multiplication
functions along with other complex kernel functions that cannot be efficiently optimized
by modern compilers. Therefore, in the recent years various graph or deep learning (DL)
compilers have been developed, such as GLOW [10], IREE [45], and TFLM [7]. The
main goal of a DL compiler is to take as input a high-level, (typically graph-based)
description of a DNN (e.g., extracted from TensorFlow [43] or PyTorch [35]) and trans-
form it into executable code that can run on a target hardware platform, such as a CPU,
a GPU, or a specialized accelerator. The compilation process typically involves a series
of optimizations and model transformations that reduce the arithmetic operations and
the memory utilization of the input DNN models.

This paper presents an evaluation study of three widely used Neural Network (NN)
compilers (GLOW, IREE, and TFLM) on ARMv8 architectures by focusing on the per-
formance boost offered by the frontend, backend, and various IR level optimizations
of the studied compilers. To the best of our knowledge, three other papers provide a
survey of DL compilers [27, 29, 39]. However, the latter papers exhibit specific limita-
tions. For example, the work in [39] studies DNN models trained only with the MNIST
dataset (which is a small dataset, not representative of state-of-the-art datasets [26]).
The evaluation in [29] is performed only using the floating-point representations of the
DNNmodels. Finally, none of the previous papers include an analysis about the recently
announced IREE compiler and/or offer a performance evaluation on edge platforms
based on the ARMv8 architecture.

Table 1. Related papers and positioning of this work

Studied
frameworks

int8
optimized
kernels

Graph-level
optimizations

Machine-dependent
optimizations

Number/
datatype
of tested
models

[39] (2021) GLOW,
TFLM, TVM,
OpenVINO
[34], ONNC
[28]

× × 1 / FP32,
INT8

[29] (2020) TFLM,
Caffe2 [3],
Pytorch
mobile [37]

× × × 6 / FP32

[27] (2020) TVM, XLA
[24], nGraph
[16], GLOW

× × × 19 / INT8

This work GLOW,
IREE, TFLM

✓ ✓ ✓ 12 / INT8

20 T. Anthimopulos et al.

Table 1 summarizes the contributions of this work with respect to [27, 29, 39]. It is
important to mention that when the analyses of [27, 29, 39] were performed, the support
(and the associated maturity level) for the efficient execution of the quantized DNN
models (e.g., in int8) was limited. For example, in [39] is mentioned that the floating-
point versions of the DNN models are faster to the corresponding quantized versions.
Obviously, the latter issue is due to the fact that the previous evaluations were done
using unoptimized quantized DNN kernels. Generally speaking, this is an expected
behavior in a fastmoving area: the majority of the DL compilers are in a continuous
development phase and new features are being regularly added.Moreover, as noted, there
is no available paper that studies the impact of the graph level vs. machine-dependent
level optimizations on the final execution time (inference time) of the DNN models.

As an additional contribution of thiswork and in order to end-upwith a fair evaluation
among the three studiedDL compilers, thewell-knownCMSIS-NN [22] library is ported
and integrated in GLOW (open-source repository [11]). The latter enabled us not only to
compare the reported performance of TFLM and GLOWusing the same backend library
(i.e., the CMSIS-NN), but also to study the impact of graph-level optimizations when
an optimized backend engine is used.

The Remainder of this Paper is Organized as Follows Section. 2 outlines the com-
monly used DNN optimization techniques. The main features of the studied compiler
frameworks are presented in Sect. 3. Section 4 describe the evaluation methodology and
provide the details of the edge platform and the DNN models that used throughout this
work. Section 5 offers our experimental results and Sect. 6 concludes this paper.

2 Background

The NN optimizations can be categorized as follows: model compression techniques,
graph-level optimizations, and machine-dependent optimizations. The various model
compression techniques (e.g., pruning, low-rank factorization) can be also deemed as
graph level optimizations. However, as part of this work, we will consider as graph-level
optimization only the techniques that are part of the available NN compiler toolchains.

2.1 The Three Categories of NN Optimizations

Model compression techniques are typically used to reduce the number of arithmetic
operations of input NN models and/or the memory required to store the model param-
eters. Popular NN compression techniques include quantization, pruning, and low-rank
factorization. A good survey of these techniques can be found in [5]. By applying these
optimizations, NN compilers can significantly improve the performance-power effi-
ciency of NN models making them more practical to be deployed on wide range of
hardware platforms, e.g., in far-edge devices.

A graph-based representation is a widely-used way to depict the architecture of a NN
model. The graph-based approach is actually a high-level intermediate representation
(IR) of a NN model i.e., each node in the graph corresponds to specific layer of the
input model. MLIR [23] and Relay [38] are, among others, two well-known IRs for NN

A Comparative Study of Neural Network Compilers 21

models that formulate the basis for the various proposed graph-level optimizations (a.k.a.
high-level optimizations). In general, high-level IRs provide a modular and extensible
way to represent and optimize graphs. Graph optimizations are machine-independent
optimizations applied in the graph of a NN model targeting to identify and eliminate
redundant computations, simplify the graph structure, and improve the memory usage
of the model [12].

Table 2. NN compilers based on hand-optimized kernels

IR Optimizations Backend

High-level
IR

Kernels Compression
tec

High-low
level opt

Compilation
method

Supported
devices

TVM Relay CMSIS,
NNAPI
[31],
OneDNN

Quant. Target ind./
specific level
opt

JIT/AOT CPUs,
GPUs,
FPGAs,
Accel.

ONNC Own
high-level
IR

CMSIS,
OneDNN

Quant. Target ind./
specific opt

AOT CPUs,
GPUs,
Accel.

TFLM × Own
kernels,
CMSIS,
NNAPI,

Quant. × AOT CPUs

PyTorch
Mobile

× Own
kernels,
NNAPI

Quant. × AOT Mobile,
CPUs
GPUs,
Accel.

nGraph nGraph IR
[30]

Own
kernels,
OneDNN

Quant.,
Pruning, etc.
[30]

Target
independent
opt.

JIT CPUs,
GPUs,
Accel.

XLA HLO [14] OneDN,
cuDNN
[6]

× Target ind. JIT/AOT CPUs,
GPUs,
Accel.

Well-known graph optimizations are node fusion, constant folding, and dead code
elimination (DCE) [9]. Node fusion combines multiple nodes into a single node (i.e.,
convolution with reshape) [53]. Constant folding computes (during compilation) parts
of the graph that rely only on constant initializers [44]. DCE removes nodes that are
not used by the model (i.e., dropout). General purpose compiler frameworks typically
contain the said optimizations, but is preferable to include a separate compilation step
when targeting NNs. Moreover, additional domain-specific specialized optimizations
(tailored to specific models and/or devices) have been proposed. For example, in [38] is
proposed to fuse multiple 2D convolutions that share the same input. The goal of this
pass is to produce a larger kernel and it is particularly efficient for GPU architectures, as

22 T. Anthimopulos et al.

the kernel launch on a GPU exhibits a significant overhead. This approach is showcased
in the Inception model [40], as this model contains blocks of convolutions that share the
same input.

Going one step deeper, state-of-the-art NN compilers leverage the well-known com-
piler optimizations to produce efficient NN microkernels [4, 54]. Microkernels are opti-
mized kernels (i.e., computationally intensive functions) that use vectorization tech-
niques (typically in the form of intrinsics) along with other compiler optimizations
techniques (e.g., loop tiling and register blocking [8]). During the compilation process
the latter kernels can be autogenerated based on the MLIR representation, they can be
optimized at run-time via auto-tuning techniques [48], or they rely on hand-optimized
code templates. For example, CMSIS-NN is a library that contains hand-optimized,
highly-efficient NN microkernels for Arm Cortex-M CPUs. As noted, in the context of
this work the CMSIS-NN is ported in the GLOW compiler and its correct integration
has been verified.

Table 3. NN compilers based on auto-tuning

IR Optimizations Backend

High-level
IR

Low-level
IR

Compression
tec

High-low
level opt

Compilation
method

Supported
devices

TVM Relay Halide
[13]

Quant Target
independent/
specific level
opt

JIT/AOT CPUs,
GPUs,
FPGAs,
Accel

TC [42] Own
high-level
IR

Polyhedra
[47]

× Target
independent
opt

JIT Nvidia
GPUs,
CPUs

TensorRT
[44]

Own
high-level
IR

× Quant Target
independent
opt

JIT Nvidia
GPUs

MNM
[17]

Own
high-level
IR

× Quant Target
independent
opt

AOT CPUs,
GPUs,
Accel

2.2 The NN Compilers Landscape

The NN compilers are used to employ the various optimizations. Typically, multiple
optimization passes are followed in a pipelined fashion until the actual executable code
is generated. Table 2 illustrates the main features of the compilers that rely on hand-
optimized kernels. In this case, the code from hand-optimized libraries, like OneDNN
[32] andCMSIS, are injected to the IR/codeof the inputNNmodel during the compilation
process. As we can see, graph level optimizations can be acquired by the frond-end
part of the toolchain using high-level IR. The latter method is straightforward, but it

A Comparative Study of Neural Network Compilers 23

exhibits specific limitations. For example, when the target device consists of multiple
processing elements and complex memory hierarchies (e.g., in GPUs), full utilization of
the hardware resources is difficult to be achieved. On the contrary, the NN compilers that
rely on auto-tuning take as input specific hardware details, such as cache sizes, number
of threads, size of vectorization lanes (e.g., AVX-512) as well as run-timemeasurements,
and follow various iterative steps until a desiredmicro-kernel is found. Themain features
of the compilers that rely on auto-tuning can be seen in Table 3. As show in Table 3,
specific compilers, like TVM and ONNC, can be configured (by the user) to operate in
more than one compilation mode.

Table 4. Basic features of the widely-used NN compilers

IR Optimizations Backend

High-level
IR

Low-level
IR

Compression
tec

High-low
level opt

Compilation
meth

Supported
devices

TVM Relay Halide Quant Target
independent/
specific level
opt

JIT/AOT CPUs,
GPUs,
FPGAs,
Accel

GLOW Own
high-level
IR

Own
low-level
IR

Quant Target
independent/
specific opt

JIT/AOT CPUs,
GPUs,
Accel

XLA HLO HLO × Target
independent/
specific opt

JIT/AOT CPUs,
GPUs,
Accel

ONNC Own
high-level
IR

Own
low-level
IR

Quant Target
independent/
specific opt

AOT CPUs,
GPUs,
Accel

IREE MLIR MLIR × Target
independent/
specific level
opt

JIT/AOT CPUs,
GPUs,
Accel

nGraph nGraph IR nGraph IR Quant.,
Pruning, etc

Target
independent/
specific level
opt

JIT CPUs,
GPUs,
Accel

It is important to note that low-level IR optimizations (as depicted in Table 3 and 4)
include various machine independent techniques. For example, if we create a specialized
function by declaring all parameters as constants, then the runtime checks will be elimi-
nated and the control flow will be simplified, leading to a performance increase. Finally,
with respect to AOT (Ahead-of-Time) vs. JIT (Just-in-Time) compilation approaches,
this is typically not a design option when the deployment targets edge devices. Edge

24 T. Anthimopulos et al.

devices are resource-constrained devices, thus the “in-field” invocation of the com-
piler cannot be done in a reasonable time, especially when the NN models are part of
latency-critical applications (which is usually the case [50]). The basic features of the
widely-used NN compilers are presented in Table 4. TensorRT, TC, and MNM are the
only frameworks that have not been included in an evaluation study. Such analysis is
left for future work.

3 Basic Features of the Selected Toolchains

Asmentioned, this work presents an evaluation study of three widely used NN compilers
(GLOW, IREE, and TFLM) on ARMv8 architectures by focusing on the performance
boost offered by the frontend, backend, and various IR level optimization parts of the
studied NN compilers. Figure 1 depicts the main compilation steps followed by modern
NN compilers until the NN model is transformed into machine code. Initially, the NN
model is taken as input in a NN format (e.g., ONNX [33]) and it is transformed in an
IR format. The latter IR goes through multiple passes until an optimized graph/IR is
generated. At this point, the compiler injects the kernels/microkernels in the optimized
IR and performs various target-specific compiler optimizations.

Fig. 1. Typical flow of a NN compiler

The NN compilers typically support different back-ends tailored to the unique archi-
tectural characteristics of the target devices. The back-end part of the NN compiler is
invoked to generate the final executable code (the latter process is called serialization).
Among the three studied framework, TFLM is the only framework that does not support
high-level or low-level IR optimizations.

TFLM(TensorFlowLite forMicrocontrollers) is a kernel-based framework designed
to run NN models on edge devices and/or bare metal systems. TFLM encodes the NN
model into a flat buffer, which is a compact binary format that can be loaded in MCUs.
Prior to this conversation, the model can be further optimized by reducing the precision
of the weights/activations using a suitable quantization scheme provided by TensorFlow
lite. Once the model is quantized, it can be dispatched to an MCU. TFLM provides a
set of NN kernels specifically developed for MCU systems. At runtime, TFLM offers
an APIs for handling the input/output data and memory allocation policies.

A Comparative Study of Neural Network Compilers 25

GLOW (Graph Lowering Compiler Techniques for Neural Networks) is based on
a proprietary IR. It contains tools for training, quantizing, and model partitioning (for
devices with heterogeneous processing elements). When a NN model is imported to
GLOW, each layer of the model is mapped to a specific node-based graph representation
(high-level IR). The latter graph is optimized to improve its performance using a variety
of transformations such as constant folding, DCE, and function inlining. The next step is
to transform the high-level IR into a set of linear algebra operations (low-level IR). As a
next step, the operator nodes are translated into one or more instructions. In this step, the
low-level IR is converted into instructions that can be executed on the target hardware.
These instructions are optimized kernels in the form of bytecode (LLVM IR). The latter
translation is accompanied by a set of low-level memory optimizations, e.g., register
allocation and instruction scheduling. The final step is to invoke LLVM to serialize the
generated functions and output the optimized binary code taking into account the unique
features of the target hardware. To run the model, GLOW offers an executable bundle, a
self-contained compiled network that can be used to execute the model in a standalone
mode. The bundle API can handle the model input and output, allocate memory, and
finally to execute the model.

IREE (Integrated Runtime for Edge Execution) is anMLIR-based NN compiler and
the associated runtime system specifically designed to execute the inference phase of a
model on edge devices. The initial MLIR representation (high-level IR) goes through a
series of high-, mid-, and low-level optimizations. High-level and mid-level optimiza-
tions are graph optimizations like node fusion, redundant operation removal, DCE etc.
IREE also contain domain-specific specialized optimizations. Low-level optimizations
include code transformations, like loop tilling, loop unrolling, register blocking, vector-
ization etc. The IR is optimized using a set of passes that apply transformations to the
graph to improve performance, reduce memory usage, and support new operators. Once
the final (low-level) IR is built, IREE invokes LLVM (CPU backend) to generate efficient
code for the target hardware platform. LLVM and MLIR are strongly coupled and each
MLIR instruction can be serialized using LLVM. By using the notion of HAL, IREE
provides a runtime that handles device-specific details, such as memory allocation, data
transfers, and multi-threading execution.

4 Evaluation Methodology

As noted, the premise of this work is to perform a thorough comparison among three
different NN toolchains. To the best of our knowledge, this is the first work that reveals
the performance benefits offered by the optimizations of the different parts (high-level,
low-level, and backend) of NN compilers. However, extracting the latter performance
breakdowns is not a straightforward process. In order to end up with a fair comparison,
a step-by-step approach is followed (explained in Sect. 5).

To continue, the evaluation of the three studied compilers is based on multiple
datasets and 11CNNmodels that can be considered as representativemodels for low-end
andmobile devices. Ending-upwith the specific set ofmodels was a challenging process,
because not all NN compilers support all the model layers. Table 5 depicts the character-
istics (number of parameters and FLOPs, number and type of layers, and corresponding

26 T. Anthimopulos et al.

dataset) of the selected CNN models. FLOPs were calculated using Keras-FLOPS tool
[18]. Three of the CNN models (EfficientNet lite [41], MobileNetV1, MobileNetV2
[15]) are relatively complex models, while the remaining CNNs are considered as
more lightweight networks. Among them, Person Detection, Keyword Spotting, Image
Classification (Resnet), and Anomaly Detection are part of the TinyML suite [46].

Finally, the reported execution times aremeasured in a high-performanceARMV8.2,
64-bit, 1.9 GHz CPU equipped with a 4MB L2-cache and 8MB L3-cache. In order to
have accurate timing measurements, each inference phase of each model is executed
for 20 times; among the 20 measurements, the one with the smallest time is selected.
The setup time that each framework requires to load the model is not included in our
execution time results.

Table 5. Characteristics of the 11 CNN studied models

Models Param FLOPs Number and Type of
Layers

Dataset

Lenet5 [25] 62K 859.5K 3 Conv., 3 F.C Mnist [26]

Person Dect 377K 15.70 14 Conv., 14 DW_conv2d,
3 F.C

V.W.W. [1]

Clock 960K 127.5 10Conv., 6F.C., 2Add,
2Mul

self-created

AlexNet [2] 21.6M 84.7M 9 Conv., 3F.C CHIFAR-10 [49]

Mobilenet_v1 4.25M 1.15G 15 Conv., 13 DW_conv2d ImageNet [21]

Mobilenet_v2 3.504M 615M 36 Conv., 17 DW_conv2d ImageNet

Efficientnet lite 4.652 385M 33Conv., 16 DW_conv2d,
10 Add,
1 F.C

ImageNet

K.W.S 25K 900K 5Conv., 4 DW_conv2d + 1
F.C

Speech Commands [51]

A.D 267K 538K 12 F.C ToyADMOS
[19] [20] [36]

Resnet 78.5K 25.3M 9Conv., 1 F.C., 3 Add CIFAR-10

Lenet300 [25] 268K 536K 3 F.C Mnist

5 Evaluation Results

This section is organized in five main parts. The first four parts focus on analyzing
particular features of the three studied NN frameworks. In the last part, a performance
evaluation of the three frameworks (assuming the best performing configuration in each
case) and for the 11 models is presented. As noted, for a fair comparison, as part of this
work the CMSIS-NN library is ported and integrated in GLOW.

A Comparative Study of Neural Network Compilers 27

AlternativeQuantizationSchemes AOTcompilation and quantization support are two
first-class features that must be included in an NN compiler targeting edge use cases.
Among the studied toolchains, GLOW is the only toolchain that includes quantization
support (via a tool called model-tuner). In contrast to Tensorflow Lite, model-tuner
includes a variety of quantization schemes (asymmetric, symmetric, int8 symmetric,
symmetric with power of two) offering different precision levels (int8, int16, int32) and
dequantization strategies (e.g., quantization of weight and/or biases) [10]. The latter is
an important feature, since far-edge devices are typically custom devices employing
alternative quantization schemes.

Figure 2 shows the accuracy validation resultswhen four of the studiedmodels are fed
to model-tuner (quantization via the model-tuner is a very time-consuming process, thus
we only report results for four out of the 11 models that we consider in this work). The
input to themodel-tuner are pre-trainedmodels and the validation accuracy of the (initial)
floating-point (FP32) model is shown in the graph legend. The vertical axis in Fig. 2
depicts the reported increase in validation accuracy with respect to the initial validation
accuracy.At the bottomof the horizontal axis, the selected quantization scheme is shown.
The data type above the quantization schemes refers to the precision of theweights, while
the data type juxtaposed the x-axis corresponds to the precision of the biases. To the
best of our knowledge, GLOW and PyTorch Mobile are the only NN frameworks that
support the quantization of biases to int8 format.

Fig. 2. Quantization aware training using the model-tuner tool of GLOW

As Fig. 2 indicates, model-tuner manages to offer significant improvements in the
validation accuracy for the two out of the four models (in LeNet300 and LeNet5 the
room for further improving the accuracy is meager, since in these models the initial
validation accuracy is already > 98%). For AlexNet and ResNet, an accuracy increase
of up to 2.5% is reported also when the precision of the weights and the biases is equal
to int8.

Performance Improvements by Hand-Optimized NN Kernels The aim of this part
of the evaluation section is to reveal the performance benefits of hand-optimized NN
kernels. The CMSIS-NN library is a collection of efficient NN kernels developed to
maximize the performance andminimize the memory footprint of NNs on ARMCortex-
M cores. Figure 3 shows the speedups of the TFLM toolchain for the 11 studied models
when the CMSIS-NN is activated (CMSIS_On)/deactivated (CMSIS_Off). In the latter

28 T. Anthimopulos et al.

case, the vanilla (unoptimized) TFLM kernels are used. There are four bars in each
case corresponding to the different LLVM optimization levels: O0, O1, O2, and O3,
respectively. The statistics in Fig. 3 are normalized to the leftmost bar (CMSIS_Off/O0)
of the two groups of bars that are attached to each model.

It is important to note that TFLM does not include graph- or low-level optimizations.
Therefore, the results presented in Fig. 3 can be considered as the potential representative
speedups that can be achieved by hand-optimized kernels. This is also evident from the
fact that almost no improvements can be observedwhen the different LLVMoptimization
levels are employed. The reason for this is the following: TFLM invokes the NN kernels
associated to an input model during the initialization phase of the execution leaving no
room to LLVM to perform (backend) optimizations.

Fig. 3. TFLM speedups based on CMSIS-NN library

Graph-level vs. Target-Specific Optimizations in GLOW After revealing the poten-
tial of using hand-optimized kernels (backend part), the next step is to concentrate on the
frontend part of the compilers. GLOW includes two frontend optimizers: the graph opti-
mizer and the IRoptimizer. The graphoptimizer performsoptimizations on the graph rep-
resentation of NNmodels. The nodes of the graph usually represent more coarse-grained
operations than those represented by the IR instructions.Memory-oriented optimizations
are typically performed at the IR level, because memory allocations/deallocations are
explicitly represented in the IR (and not in the graph representation).

GLOW frontend IR optimizer supports a set of graph-level optimizations and only
eight of them can be enabled/disabled/configured [9]. Delving into more details about
these optimizations is out of the scope of this paper. However, it is important to note
that the various optimizations have different (and in some cases conflicting) objectives
and of course specific optimizations can be more effective in GPU or CPU architectures.
Moreover, the architecture of the NN model (e.g., shapes of layers) must also be taken
into account when these optimizations are devised. Unfortunately, no specific guidelines
are provided by GLOW on how the various optimizations must be configured. Creat-
ing suitable configuration recipes (in an automatic or semi-automatic way) for a given
architecture/model requires a multiparametric analysis and it is part of our on-going
work.

Figure 4 depicts the speedups reported by GLOW. The GLOW API exposes only
an ON/OFF knob (shown juxtaposed the x-axis in Fig. 4) that enables/disables all the
frontend optimizations altogether, respectively. The results in Fig. 4 are extracted using
the original NN kernels of GLOW (the results from CMSIS-NN are presented later in

A Comparative Study of Neural Network Compilers 29

this section). As in Fig. 3, there are four bars in each case in Fig. 4 corresponding to the
different LLVM optimization levels. Again, the results are normalized to the leftmost
bar of the two groups of bars attached to each model. During the serialization phase,
LLVM is invoked to perform optimized code generation. The original GLOW kernels
are written in a way to facilitate the LLVMauto-vectorization process.More specifically,
the outer loop of NN kernels is unrolled (using a constant factor equal to 8 for 256-bits
vectorized lanes), so as the inner loop can be vectorized.

As shown in Fig. 4, the different LLVM optimizations levels (O1, O2, O3) manage
to ramp-up the performance up to 6.42x and by 3.58x on average. This is an expected
result, since during code generation a single IR filewith thewholemodel is fed to LLVM.
However, if we concentrate on the improvements offered by the frontend part of GLOW,
the results exhibit a non-intuitive behavior. Although in many cases, there are noticeable
improvements (e.g., 32.1% in Person DetectionModel/O1 case), there are a few cases in
which a slowdown can be seen. It is evidence that this specific graph level optimization
pass of GLOW does not offer significant benefits in the majority of the studied models.
Part of our current work is to further analyze this issue.

Fig. 4. Speedups offered by GLOW high-level graph and IR optimizers for various LLVM
optimization levels

Graph-level vs. Target-specific Optimizations in IREE Fig. 5 shows the gathered
speedups when the IREE toolchain is used. As we show later, IREE offers significant
performance improvements compared to the two other frameworks. However, in Fig. 5
our focus is to evaluate the impact of: i) IREE graph levels optimizers and ii) LLVM
optimization levels. As in the previous graphs, the labels juxtaposed the x-axis indicate if
the graph-level optimizations are enabled (ON) or disabled (OFF). However, a different
approach is used to extract the execution time in the ON case.

IREE contains six domain-specific optimizations and four high-level graph opti-
mizations [45]. All optimizations are exposed as command-line arguments. As in the
GLOW case, formulating a suitable combination (and configuration) of these optimiza-
tions is a challenging and multi-objective task. For a safe comparison, we revert to a
brute-force approach: each model is run for all possible (2^10) configurations of these
parameters and in Fig. 5 the configuration with the lowest execution time is presented.
In addition, although IREE contains native support to enable thread level parallelism,
GLOW and TFLM do not (for CPU implementations). Therefore, IREE is configured
to extract single-thread executables.

30 T. Anthimopulos et al.

In addition, as noted, IREE is based on MLIR representation and due to this, the
well-refined MLIR optimizers are able to generate very efficient IR instructions leaving
almost no room for improvement in the LLVM code generation part. By checking the
disassembly code, it was noticed that IREE produced efficient vectorized code. Indeed,
as Fig. 5 depicts, the different LLVM optimization levels (O1, O2, O3) exhibit almost
similar performance in all cases. In most cases, the “opt-const-eval” and “opt-strip-
assertions” passes offer speedups, at least for a subset of the studied models. The former
pass calculates parts of global initializations (initializations only depend on constant
values) at compile-time. The second pass strips-out all “std.assert” ops in the input
program. Assertions provide useful user-visible error messages, but can prevent critical
optimizations to take place. Finally, also in this case, the graph-level optimizations do
not manage to offer any noticeable speedups. To sum-up, in IREE, the performance
improvements stem from the multiple, highly-optimized MLIR passes.

Fig. 5. Speedups offered by IREE

Overall Comparison Fig. 6 shows our full range of results for all studied frameworks.
For every model (shown in x-axis in Fig. 6), the following cases (bars) are depicted
(from left to right): TFLM, GLOW, IREE, TFLM with CMSIS-NN, and GLOW with
CMSIS-NN. All results are normalized to the TFLM case. Also, in all cases the best
combination of LLVM optimization levels and graph-level optimizations are used. In
the MobileNet V1 and V2 models, the execution times of GLOW/CMSIS-NN are not
reported because the original CMSIS-NN library does not include quantized kernels
with a common scale factor across all channels.

As Fig. 6 illustrates, among IREE (third bar) and GLOW (without CMSIS-NN)
(second bar), IREE is clearly the best performing mechanism (2.22x on average and
up to 5.2x). However, when GLOW is equipped with the CMSIS-NN (rightmost bar),
the situation is not clear. IREE is superior in four cases (K.W.S., EfficientNet, A.D.,
LeNet300), while GLOW/CMSIS-NN is better in six cases. Identifying the culprit of this
behavior required to delve into each case and manually inspect the code at the assembly
level. However, even in this way, our investigation revealed that these performance
variations are the result of different effects or combination of effects in each model. A
more thorough analysis on this is left for future work.

A Comparative Study of Neural Network Compilers 31

Fig. 6. Overall comparison of TFLM and GLOW (with and without the CMSIS-NN library), and
IREE

6 Conclusions

In this paper, we presented a comparison between three widely-used NN compilers.
Our analysis concentrated on the performance achieved by the different parts of the
NN compilers. Our experimental findings revealed that the high-level (target-agnostic)
optimizations offer meager performance improvements in both GLOW and IREE. On
the contrary, remarkable speedups are reported when the machine-dependent (backend)
optimizations are activated and appropriately configured. Part of our future work include
to extend our analysis by including more CPU architectures as well as devices equipped
with GPU and AI accelerators.

Acknowledgements. This research has been supported by a sponsored research agreement
between Applied Materials, Inc. And Aristotle University of Thessaloniki, Greece.

References

1. Aakanksha, C., Warden, P., Shlens, J., Howard, A., Rhodes, R.: Visual wake words dataset.
arXiv preprint arXiv:1906.05721 (2019)

2. AlexNet. url: https://cvml.ista.ac.at/courses/DLWT_W17/material/AlexNet.pdf
3. Cafee2 framework. url: https://caffe2.ai/
4. Chen, T., et al.: An automated end-to-end optimizing compiler for deep learning. arXiv

preprint arXiv:1802.04799 (2018)
5. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and acceleration

for deep neural networks. arXiv preprint arXiv:1710.09282 (2017)
6. CuDNN. url: https://developer.nvidia.com/cudnn
7. David, R., et al.: TensorFlow Lite Micro: Embedded machine learning on TinyML systems.

arXiv preprint arXiv:2010.08678 (2020)
8. Diniz, P.C., Cardoso, J.M.P., Coutinho, J.G.F.: Embedded computing for high performance

(2017)
9. GLOW graph-level optimization. url: https://github.com/pytorch/glow/blob/master/docs/Opt

imizations.md
10. GLOW. url: https://github.com/pytorch/glow
11. GLOW with CMSIS support. url: https://github.com/Theoo1997/glow
12. Graph Optimizations url: https://onnxruntime.ai/docs/performance/model-optimizations/

graph-optimizations.html#graph-optimization-levels

http://arxiv.org/abs/1906.05721
https://cvml.ista.ac.at/courses/DLWT_W17/material/AlexNet.pdf
https://caffe2.ai/
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1710.09282
https://developer.nvidia.com/cudnn
https://arxiv.org/abs/2010.08678
https://github.com/pytorch/glow/blob/master/docs/Optimizations.md
https://github.com/pytorch/glow
https://github.com/Theoo1997/glow
https://onnxruntime.ai/docs/performance/model-optimizations/graph-optimizations.html#graph-optimization-levels

32 T. Anthimopulos et al.

13. Halide library. url: https://halide-lang.org/
14. HLO IR. url: https://github.com/tensorflow/mlir-hlo
15. Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861, 2017
16. Intel ngraph: An intermediate representation, compiler, and executor for deep learning. url:

https://github.com/NervanaSystems/ngraph
17. Jiang, X., et al.: MNN: a universal and efficient inference engine. arXiv preprint arXiv:

2002.12418v1 (2020)
18. Keras FLOPs. url: https://pypi.org/project/keras-flops/
19. Koizumi, Y., et al.: Unsupervised anomalous sound detection for machine condition

monitoring. arXiv:2006.05822 (2020)
20. Koizumi, Y., Saito, S., Harada, N Uematsu, H., Imoto, K.: ToyADMOS: A dataset of

miniature-machine operating sounds for anomalous sound detection. Workshop on Appli-
cations of Signal Processing to Audio and Acoustics (2019)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. Commun. ACM 60, 84–90 (2017)

22. Lai, L., Suda,N., Chandra,V.: CMSIS-NN: efficient neural network kernels forArmCortex-M
CPUs. arXiv preprint arXiv:1801.06601, 2018

23. Lattner, C., et al.: MLIR: A compiler infrastructure for the end of moore’s law. arXiv preprint
arxiv:2002.11054 (2020)

24. Leary, C., Wang, T.: XLA: TensorFlow (2017)
25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proc. IEEE 86, 2278–2324 (1998)
26. LeCun, Y., Cortes, C., Burges, J.C.: The MNIST database of handwritten digits. Microsoft

Res. 1998
27. M. Li, et al.: The deep learning compiler: a comprehensive survey. arXiv preprint arXiv:

2002.03794 (2020)
28. Lin, W.F., et al.: ONNC: a compilation framework connecting ONNX to proprietary deep

learning accelerators. In: 2019 IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS) (2019)

29. Luo, C., He, X., Zhan, J., Wang, L., Gao, W., Dai, J.: Comparison and benchmarking of AI
models and frameworks on mobile devices. arXiv preprint arXiv: 2005.05085 (2020)

30. nGraph IR. url: https://docs.openvino.ai/2020.2/_docs_IE_DG_nGraph_Flow.html
31. NNAPI. url: https://developer.android.com/ndk/guides/neuralnetworks
32. oneAPI. url: https://github.com/oneapi-src/oneDNN
33. ONNX. url: https://onnx.ai/
34. OpenVino toolkit: Neural network compression framework (NNCF). url: https://docs.ope

nvino.ai/2022.1/docs_nncf_introduction.html
35. Paszke, A., et al.: PyTorch: An imperative style, high-performance deep learning library.

arXiv preprint arXiv: 1912.01703 (2019)
36. Purohit, H., et al.: MIMII dataset: sound dataset for malfunctioning industrial machine inves-

tigation and inspection. In: Workshop on Detection & Classification of Acoustic Scenes and
Events (2019)

37. PyTorch Mobile. url: https://pytorch.org/mobile/home/
38. Roesch, J., et al.: Relay: a high-level compiler for deep learning. arXiv preprint arXiv:1904.

08368 (2019)
39. M. Sponner, B. Waschneck, and A. Kumar. Compiler toolchains for deep learning workloads

on embedded platforms. arXiv preprint arXiv:2104.04576, 2021
40. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (2015)

https://halide-lang.org/
https://github.com/tensorflow/mlir-hlo
http://arxiv.org/abs/1704.04861
https://github.com/NervanaSystems/ngraph
https://arxiv.org/abs/2002.12418
https://pypi.org/project/keras-flops/
https://arxiv.org/abs/2006.05822
http://arxiv.org/abs/1801.06601
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.03794
https://arxiv.org/abs/2005.05085
https://docs.openvino.ai/2020.2/_docs_IE_DG_nGraph_Flow.html
https://developer.android.com/ndk/guides/neuralnetworks
https://github.com/oneapi-src/oneDNN
https://onnx.ai/
https://docs.openvino.ai/2022.1/docs_nncf_introduction.html
https://arxiv.org/abs/1912.01703
https://pytorch.org/mobile/home/
http://arxiv.org/abs/1904.08368
http://arxiv.org/abs/2104.04576

A Comparative Study of Neural Network Compilers 33

41. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks.
arXiv preprint arXiv:1905.11946arXiv: 1905.11946, 2019

42. Tensor comprehensions. url: https://github.com/facebookresearch/TensorComprehensions
43. TensorFlow. url: https://www.tensorflow.org
44. TensorRT constant folding example. url: https://www.ccoderun.ca/programming/doxygen/

tensorrt/md_TensorRT_tools_onnx-graphsurgeon_examples_05_folding_constants_REA
DME.html

45. TinyIREE. url: https://openxla.github.io/iree/
46. TinyML Benchmarks. url: https://github.com/mlcommons/tiny
47. Grosser, T., Größlinger, A., Lengauer, C.: Polly - performing polyhedral optimizations on a

low-level intermediate representation. Parallel Processing Letters (2012)
48. Tollenaere, N., et al.: Autotuning convolutions is easier than you think. ACM Trans. Archit.

Code Optimizations 20, 1–24 (2023)
49. The CIFAR-10 dataset. url: http://www.cs.toronto.edu/~kriz/cifar.html
50. Wade, A.W., Kulkarni, P.A., Jantz, M.R.: AOT vs. JIT: Impact of profile data on code quality,

In: Proceedings of the 18th ACM SIGPLAN/SIGBEDConference on Languages, Compilers,
and Tools for Embedded Systems (2017)

51. Warden, P.: Speech commands: a dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018

52. Xia, X., et al.: TRT-ViT: TensorRT-oriented vision transformer. arXiv preprint arXiv:
2205.09579 (2022)

53. Yi, X., et al.: Optimizing DNN compilation for distributed training with joint OP and tensor
fusion. arXiv preprint arXiv:2209.12769 (2022)

54. L. Zheng, et al.: Ansor: generating high-performance tensor programs for deep learning. In:
14thUSENIX symposiumon operating systems design and implementation (OSDI 20) (2020)

https://arxiv.org/abs/1905.11946
https://github.com/facebookresearch/TensorComprehensions
https://www.tensorflow.org
https://www.ccoderun.ca/programming/doxygen/tensorrt/md_TensorRT_tools_onnx-graphsurgeon_examples_05_folding_constants_README.html
https://openxla.github.io/iree/
https://github.com/mlcommons/tiny
http://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1804.03209
https://arxiv.org/abs/2205.09579
http://arxiv.org/abs/2209.12769

Organic Computing Methodology (OC)

A Decision-Theoretic Approach
for Prioritizing Maintenance Activities

in Organic Computing Systems

Markus Görlich-Bucher(B), Michael Heider, Tobias Ciemala, and Jörg Hähner

Organic Computing Group, University of Augsburg, Augsburg, Germany
{markus.goerlich-bucher,michael.heider,tobias.ciemala,

joerg.haehner}@uni-a.de
https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/oc/

Abstract. Organic Computing systems intended to solve real-world
problems are usually equipped with various kinds of sensors and actua-
tors in order to be able to interact with their surrounding environment.
As any kind of physical hardware component, such sensors and actua-
tors will fail after a usually unknown amount of time. Besides the obvious
task of identifying or predicting hardware failures, an Organic Comput-
ing system will furthermore be responsible to assess if it is still able
to function after a component breaks, as well as to plan maintenance
or repair actions, which will most likely involve human repair workers.
Within this work, three different approaches on how to prioritize such
maintenance actions within the scope of an Organic Computing system
are presented and evaluated.

Keywords: Organic Computing · Predictive Maintenance · Decision
Theory

1 Introduction

The interdisciplinary research domain of Organic Computing (OC) [8] is con-
cerned with solving the increasing complexity in information- and communica-
tion technology by allowing systems to freely adapt and organize themselves.
In order to interact with their surrounding environment, OC-based systems are
expected to include various kinds of sensors and actuators. Accordingly, a sig-
nificant amount of OC research conducted over the past two decades focused on
building systems and architectures that are inherently focused on dealing with
various real-world scenarios. [9] Hereby, a prominent aspect of OC systems is
their ability to remain robust with respect to various kinds of disturbances that
may happen within the scope of the OC system. In terms of OC, the idea of
robustness is to remain functioning at a desired level of system performance
while a disturbance occurs. Strongly related is the concept of self-healing, which
describes a systems capability of healing itself from disturbances or system fail-
ures in an abstract manner [9]. As for now, most OC research concerned with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 37–47, 2023.
https://doi.org/10.1007/978-3-031-42785-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_3

38 M. Görlich-Bucher et al.

robustness and self-healing focuses on dealing with software-sided disturbances,
as discussed in [4]. Although quite relevant due to the real-world focus, a rarely
discussed aspect in OC research is robustness against hardware-related distur-
bances, such as component failures or breakdowns. Besides the quite obvious
challenges of identifying or predicting hardware-related disturbances, a notable
problem lies in actually solving such a disturbance: As for now, one can expect
that sensors and actuators (or summarized: components) of an OC system settled
in a real-world context need to be repaired or maintained by some sort of human
repair worker. Furthermore, until the human repair worker is able to maintain or
replace a broken component, the overall robustness of the system may be endan-
gered: In contrast to software-sided disturbances, which may be compensated by
e.g. starting another instance of a software module, a hardware-related persists
until being repaired. If the overall system configuration does not provide some
sort of hardware redundancy, the system may not be able to remain robust.
Accordingly, it is of interest to both assess how the system will be perform in
the future considering known (that is: current) or potential (that is: predicted)
broken components, as well as to plan or prioritize certain repair or maintenance
actions involving said human repair workers. Within the scope of this paper, we
present a brief example on how to plan such maintenance actions. We evalu-
ate our approach using an example of an organic production line as well as a
datacenter.

The remainder of this paper is structured as follows. In Sect. 2, we give a brief
overview on existing work on the topic from the field of OC, as well as relevant
work from other research domains. Afterwards, we describe some assumptions
and prerequisites as well as the overall system model for our concept in Sect. 3.
We describe our methodology in detail in Sect. 4 before providing evaluating and
discussing our approach in Sect. 5. We conclude with a brief outlook on possible
future work in Sect. 6.

2 Related Work

A brief introduction of the original concept of robustness, as it is considered in
OC can be found in [8]. A more contemporary approach focusing on actually mea-
suring robustness is given in [13]. As already outlined in the introduction, exist-
ing OC research on self-healing mostly focuses on software-sided disturbances
(cf. [11,12]). The few work concerned with self-healing of hardware-related dis-
turbances mostly focuses on compensating breakdowns rather than repairing or
maintaining them, as for example [7]. A more detailed introduction on the gen-
eral problem of hardware-sided disturbances in OC can be found in [3] as well
as [4].

A research domain concerned with quite similar problems as those discussed
in this work is the broader field of Predictive Maintenance (PdM). PdM focuses
both on aspects of predicting breakdowns in various kinds of machinery, usually
using some sort of machine learning algorithm or statistical methods, as well
as the aspect of planning actual maintenance tasks. A brief introduction on the

Prioritizing Maintenance Activities in Organic Computing Systems 39

general topic can be found in [2]. Some notable work on planning maintenance
actions can be found in [6,14] as well as [5].

A quite relevant aspect of maintenance planning work from the PdM domain
is that PdM usually focuses on long-term planning of maintenance actions, as
comes clear when considering e.g. [5]. This does not come to much of a surprise,
as plenty existing PdM work is motivated by various subdomains of mechanical
engineering. Shutting down whole production plants with static manufacturing
processes and complex machinery, as for example in the automotive sector, may
require a significant amount of planning in advance. OC systems, as we expect
on the other hand, are affiliated with a more agile and flexible mode of operation.
Accordingly, it is more of interest to provide a more short-hand and flexible way
of planning maintenance actions.

3 Prerequisites

In the following section, various prerequisites necessary for the remainder of this
paper are discussed. First of all, we give a brief overview on the overall sys-
tem model based on the existing Multi Level Observer Controller -architecture.
Afterwards, the actual problem statement of this paper is discussed thoroughly.

We assume an Organic Computing system S based on the Multi-Level
Observer Controller -architecture (MLOC) [8]. In brief words, a System under
Observation and Control (SuOC), which kind of acts as a representation for the
real world aspect of S, is equipped with a Control Mechanism (CM) incorporat-
ing various Observers as well as a Controllers situated in several Layers. Layer 0
refers to the productive part, accordingly, to the SuOC. Layer 1 can be summa-
rized as the reactive part of the whole architecture and is responsible for taking
immediate action depending on the current system state. Layer 2 is responsible
for gaining new knowledge (e.g. on previously unknown system states), probably
by utilizing a simulation of the SuOC. Finally, Layer 3 consists various kinds of
collaboration mechanisms, such as communication with other MLOC instances
as well is responsible providing monitoring or goal management capabilities for
external users. We refer to [9] for a broader introduction on the overall topic.

In a more formal way, the OC system S is affiliated with a state space of
possible system states Z. For each observed state z(t) at timestep t, S reacts
with an (preferably suitable) action a. A disturbance θ at timestep t is defined
as a change of a system state z(t) to some other state θ(z(t)). Taking the quan-
tification methodology from [13] into account, each z is furthermore associated
with a utility measure U , which can be used to asses the overall performance
of S. If a disturbance θ is able to change U below some predefined threshold,
Uacc, S performs no longer in an acceptable manner. If the system is not able to
recover from this drop in utility, it cannot be considered as robust.

Considering the actual composition of S, we assume that the SuOC consists
of several components c ∈ C. Each component is associated with an unknown
degree of wear, therefore, will presumably fail some time in the future. We
assume that S is able to both identify currently broken components (e.g. by

40 M. Görlich-Bucher et al.

some sort of health signal) as well as to, affiliated with some uncertainty, predict
future breakdowns of components (e.g. by using some sort of prediction algorithm
trained on previous sensor readings from failing components). Accordingly, each
c ∈ C is associated with a specific measurement of its current wear state, that
is, if it is functioning or broken. We call this measurement integrity. In a more
formal way, the integrity measure for a component cj can be defined as cij →
{0, 1} with 1 determining a functional and 0 determining a broken component.
The uncertain prediction of a components functionality in a discrete, known
time horizon can be defined as cpj → {0, 1} with 0 determining a predicted
breakdown and 1 determining a predicted functional component. This prediction
is furthermore associated with a confidence measure ccj → [0, 1] determining how
reliable the prediction is. In order to reflect the physical state of the system
in the state space of S, we define ZC ⊂ Z as a state space containing limited
system state descriptions only concerned with describing the integrity measures
of all c ∈ C, that is, information on identified or predicted breakdowns. We
furthermore assume that S entirely knows the cost function ZC → U , meaning
that S is able to evaluate how its overall utility is affected by the integrity of its
components.

From an architectural point of view, the methodology for identifying and
predicting breakdowns would be found in the layer 1 observer, while the algo-
rithms for prioritizing maintenance actions would be executed within the layer
1 controller. The component for calculating the cost function for evaluating the
influence of a broken component on the system utility, however, would be located
in the layer 2 controller, as one can expect that it makes use of the corre-
sponding simulation component in order to learn the cost function. Taking these
known measurements into account, it is of interest to plan necessary maintenance
actions such that the overall system performance in terms of utility is ensured.
Three suitable approaches are presented in the following section.

4 Methodology

At each discrete timestep, S is expected to assign a priority ω to each c ∈ |C|,
taking the current system state as well as predictions of future breakdowns into
consideration. As mentioned earlier, it is expected that S has access to a perfect
cost function, allowing it to assess how the system will perform in case of a
breakdown, presumably by utilization of a simulation on MLOC layer 2. The
approach presented in this paper focuses on prioritizing maintenance activities
for a horizon of one discrete timestep. However, the concept should be applicable
to more extensive time horizons as well.

Two of the three algorithms presented in this work are based on concepts from
the broader field of decision theory. In brief words, the general idea of decision
theory is to formalize the problem of making decisions under uncertainty. In order
to do so, decision theory-based methodologies assess potential outcomes based
on their probability, combined with a utility function, in order to calculate an
expected utility for a discrete timestep. We refer to [10] for a broader introduction

Prioritizing Maintenance Activities in Organic Computing Systems 41

on the topic. Taking the formalization of the previous chapter into account, the
expected utility EU (z) for a system state z is calculated as follows:

EU (z) =
|ZC |∑

i=0

p(zi) ∗ U(zi) (1)

Here, a (physical) system state zi consists of the integrity measures of all
c ∈ C. Accordingly, the expected utility for a given state is calculated using
the current occurrence probabilities of all possible system states as well as their
corresponding system utilities. The occurrence probabilities are calculated using
the breakdown predictions as well as the confidence scores for all components as
follows:

p(zi) =
c∈C∏

{
ccj if cij = 0
1 − ccj if cij = 1

(2)

In simple words, the expected utility describes the expectation value for the
system utility under consideration of all possible system states. The probability
of a single system state is therefore calculated using the prediction confidences
under assuming the specific integrity values taken from this very system state.
From a practical point of view, calculating EU (z) would allow S to assess how
its utility would presumably develop under consideration of its current state, as
well as its current predictions. However, in general, calculating EU (z) is quite
expensive due to the combinatorial complexity of taking all conceivable system
states into account.

The priority ω of performing a maintenance action aj on component cj can
be regarded as directly proportional to improvement of the expected utility after
performing said maintenance action. More formally, ω can be defined as follows:

ω(aj) ∝ ΔEU (aj) (3)

Two decision theory-based methods implementing ΔEU are discussed in the
following. The simple stochastic planing algorithm, as explained in the next
section, focuses on a simplified approach by reducing the complexity coming from
taking all possible system states into account. The complex stochastic planing
algorithm, which is explained afterwards, actually utilizes EU (z) for planing
maintenance operations.

4.1 Simple Stochastic Planing

Within the simple stochastic planing algorithm, ΔEU is calculated using a sim-
plified expected utility function. This function does not take all possible system
states and their probabilities into account, but focuses only on the prediction
confidence associated with the component cj . The function can be defined as
follows:

E′
U (z, cj) = U(z|cij = 0) ∗ ccj + U(z|cij = 1) ∗ (1 − ccj) (4)

42 M. Görlich-Bucher et al.

Using E′
U , ΔEU can be calculated as follows:

ΔEU (aj) = E′
U (z, cj |aj) − E′

U (z, cj) (5)

Hereby, E′
U (z, cj |aj refers to the simplified expected utility function under

the assumption that a maintenance action was performed on cj just as E′
U is

calculated. In these cases, it is assumed that ccj = 0, therefore, that probability
of cj failing equals 0. Briefly, the calculation of ω for a component cj is based
on the difference between expected utility if cj is maintained and the expected
utility if it is not maintained.

4.2 Complex Stochastic Planing

The complex stochastic planing algorithm works quite similar to the simple
stochastic planing algorithm. The major difference is that the both the simpli-
fied expected utility, as well as the actual expected utility are utilized for the
calculation of the priorities:

ΔEU (aj) = E′
U (z, cj |cij = 1) − EU (z) (6)

In simple words, using the original expected utility instead of the simplified
version makes sure that the calculation considers interactions between compo-
nents. Accordingly, other possible breakdowns and their probabilities are taken
into account. As mentioned before, the calculation of EU (z) may be quite expen-
sive, depending on |C|.

At this point, one could argue that it is unnecessary to calculate EU (z), as
it is subtracted in each priority calculation. Accordingly, the sequence of the
priorities remains the same, when it is left out of the equation. This is indeed
correct, however, as it may be of interest to assess if the acceptance or survival
boundaries of the system might be violated, the calculation might be necessary,
depending on the actual application scenario.

4.3 Naive Planing

In order to provide some sort of most simple ground truth, a naive, greedy
planing algorithm is implemented. The naive algorithm is defined as follows:

ω(aj) = p(zi) (7)

Accordingly, following Eq. 2, a component currently broken is prioritized with
1 (as a maximum priority), while functioning components are prioritized based
on their predictions and prediction confidences.

5 Evaluation

We evaluate our approach using two scenarios of different complexity. In the
following, both scenarios are described briefly. Afterwards, the results of the
evaluation are shown and discussed.

Prioritizing Maintenance Activities in Organic Computing Systems 43

5.1 Datacenter Scenario

The idea of the datacenter scenario is to simulate the behaviour of hard drives
in RAID-arrays, more specifically, RAID5. Accordingly, the components in this
scenario are hard drives. Each RAID-array consists of three hard drives. The
utility of a single RAID-array is the reading speed of the combined hard drives.
Accordingly, if one drive fails, the reading speed decreases. If two drives fail,
the RAID is no longer functional, therefore, its reading speed decreases to 0. In
order to simulate a realistic behaviour, the runtimes and breakdowns of the hard
drives are calculated based on datasets from the hosting company backblaze1.
There exists work on predicting hard drive failures using the S.M.A.R.T. logging
data provided by a hard drive’s controller (e.g. [1,16]).

The hard drives within the datacenter are used as components within this
scenario, therefore, additional components like RAID-controllers are not consid-
ered. The scenario consists of 200 RAID-arrays with a runtime of 365 discrete
timesteps. Here, one timestep equals one day.

5.2 Organic Production Line Scenario

In order to emphasize the inherent real world aspect of OC, our Organic Produc-
tion Line (OPC) scenario is inspired by a pulley factory layout as shown in [15].
The overall layout of the production line is shown in Fig. 1 and briefly described
in the following. An Entry describes the entry point for raw material necessary
for the production line. As can be seen, three different types of raw material are
induced into the OPC. A Buffer describes some sort of buffering appliance where
semi-processed work pieces or, later on, fully processed products are stored until
their further processing. Various buffers are used for splitting the production
line—for example, when two redundant machines work in parallel—as well as
for combining processing lines—accordingly, when two machines in parallel pro-
duce the same work piece. A single Exit describes the end of the production line,
therefore, the final execution step where processed units leave the OPC. Finally,
various kinds of Processing Machinery (shown by the rectangles) are involved in
processing the work pieces from step to step.

From an OC point of view, the processing machinery can be regarded as all
components existing in C. For the scope of our evaluation, we assume that the
buffers, entries and exits, as well as other equipment not shown in the layout
(e.g. conveyor belts) do not feature sensors/actuators or do not belong to the
scope of S. U can be regarded as the number of assembled units per time leaving
the exit, while the maximum number of produced units per discrete timestep is
Umax = 100. Intuitively, the minimal number of produced units is Umin = 0.
The scenario consists of 25 equal OPCs and 500 discrete timesteps. Here, one
discrete timestep equals one hour, therefore, the overall simulation covers about

1 https://www.backblaze.com/b2/hard-drive-test-data.html.

https://www.backblaze.com/b2/hard-drive-test-data.html

44 M. Görlich-Bucher et al.

Fig. 1. Layout of the OPC scenario based on [15]

three weeks. Runtimes and breakdown behaviour of the machines in the scenario
is based on the Azure AI Predictive Maintenance Dataset2.

5.3 Results

As mentioned before, a perfect cost function is assumed for both scenarios.
Besides, for predicting upcoming disturbances, we assume a maximum predic-
tion horizon of three discrete timesteps. In order to simulate uncertainty, the
predictions for the longest horizon are correct with a chance of 50%, while those
with the shortest prediction horizon (that is: next discrete timestep) are correct
with a chance of 90%. Additionally, the probabilities are altered using a normally
distributed spread of 10%. 30 runs with different random seeds were conducted
for each experiment. For now, no survival space boundary was incorporated.

The cumulated total utility per repetition as well as the average utility per
timestep for the datacenter scenario are shown in Table 1. In order to check
the results on significance, one-sided t-Tests with α = 0.05 were performed
on each pair of algorithms. A previously performed Shapiro-Wilk-Test showed
that the assumption of a normal distribution cannot be rejected for all data.
In total, the complex stochastic algorithm performed significantly superior to
all other algorithms with p = 9.48 ∗ 10−15 for the naive algorithm as well as
p = 1.02 ∗ 10−17 for the simple stochastic algorithm.
2 https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-

maintenance.

https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance
https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance

Prioritizing Maintenance Activities in Organic Computing Systems 45

Table 1. Cumulated utility per repetition and average utility per timestep for the
datacenter scenario

Algorithm Cumulated utility Average utility

Simple stochastic 6877133.33± 104284.60 94.21± 1.43

Complex stochastic 6879315.56± 103708.81 94.24± 1.42

Naive 6810626.67± 129186.03 93.29± 1.77

The cumulated total utility per repetition as well as the average utility per
timestep for the OPC scenario are shown in Table 2. Again, a previously per-
formed Shapiro-Wilk-Test showed that the assumption of a normal distribution
cannot be rejected for all data. Therefore, this scenario was also tested using
one-sided t-Tests with α = 0.05. Hereby, the complex stochastic algorithm also
performed significantly superior to the other algorithms with p = 1.66 ∗ 10−18

for the naive algorithm and p = 2.36e∗10−5 for the simple stochastic algorithm.

Table 2. Cumulated utility per repetition and average utility per timestep for the
OPC scenario

Algorithm Cumulated utility Average utility

Simple stochastic 914905.52± 26934.46 73.19± 2.15

Complex stochastic 930305.83± 27585.01 74.42± 2.21

Naive 869469.17± 26718.52 69.56± 2.14

5.4 Discussion

For both scenarios, the decision theory-based algorithms show a significantly
better performance compared to the naive approach.

While the results for the datacenter scenario appear quite similar, the produc-
tion line scenario shows a quite notable difference between the three algorithms.
This might be due to the fact that the production line scenario incorporates
more interdependencies between the various components: For the datacenter,
only three components, that is, hard drives per raid show direct dependencies,
while one production line consists of twelve dependent components. Accordingly,
one single breakdown in a production line has a bigger influence on the whole
utility as it would have in the datacenter scenario. This results in slightly worse
prioritizations—as, for example, the naive algorithm deciding greedily based
on the breakdown probability—having a bigger impact on the overall utility.
This aspect could also explain the noticeably better performance of the complex
stochastic method (when compared to the simple stochastic method), as it takes
the potential influences of other broken components into account. Accordingly,

46 M. Görlich-Bucher et al.

consideration of all possible futures system states within the complex stochastic
method appears to be beneficial for systems with a higher degree of dependen-
cies.

6 Conclusion and Outlook

In this work, two decision-theoretic approaches on prioritizing maintenance
actions in organic computing systems were presented and evaluated alongside
a naive method. It was shown that the decision-theoretic approach is indeed
able to perform significantly better than the naive approach. Also, it was shown
that the presented complex variant may yield better results in scenarios with a
higher amount of dependencies between components.

In general, the presented methodologies base on rather simplified assump-
tions on how a real-world scenario may look like. There are various aspects not
considered yet, such as parallel maintenance actions or different maintenance
costs. Another relevant aspect, especially considering the OPC scenario, would
be the explicit consideration of breakdowns affecting the utility in a delayed
manner. Finally, within the scope of this work, a perfect utility function as well
as rather simplified assumptions on the behaviour of the overall system were
assumed, although is questionable if these assumptions could made for more
complex OC scenarios in real world settings. This could incorporate the neces-
sity to actually learn a suitable (probably imperfect) utility function, as well as
to deal with unknown system states, changing probabilities for their occurrence,
as well as imperfect or inaccurate predictions.

References

1. Aussel, N., Jaulin, S., Gandon, G., Petetin, Y., Fazli, E., Chabridon, S.: Predic-
tive models of hard drive failures based on operational data. In: 2017 16th IEEE
International Conference on Machine Learning and Applications (ICMLA), pp.
619–625. IEEE (2017)

2. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G.:
A systematic literature review of machine learning methods applied to predictive
maintenance. Comput. Ind. Eng. 137, 106024 (2019)

3. Görlich, M., Stein, A., Hähner, J.: Towards physical disturbance robustness in
organic computing systems using MOMDPs. In: ARCS Workshop 2019; 32nd Inter-
national Conference on Architecture of Computing Systems, pp. 1–4. VDE (2019)

4. Görlich-Bucher, M.: Dealing with hardware-related disturbances in organic com-
puting systems. In: INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik-
Informatik für Gesellschaft (Workshop-Beiträge). Gesellschaft für Informatik eV
(2019)

5. Hardt, F., Kotyrba, M., Volna, E., Jarusek, R.: Innovative approach to preventive
maintenance of production equipment based on a modified TPM methodology for
industry 4.0. Appl. Sci. 11(15), 6953 (2021)

6. Ji, B., et al.: A component selection method for prioritized predictive maintenance.
In: Lödding, H., Riedel, R., Thoben, K.-D., von Cieminski, G., Kiritsis, D. (eds.)
APMS 2017. IAICT, vol. 513, pp. 433–440. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66923-6_51

https://doi.org/10.1007/978-3-319-66923-6_51
https://doi.org/10.1007/978-3-319-66923-6_51

Prioritizing Maintenance Activities in Organic Computing Systems 47

7. Maehle, E., et al.: Application of the organic robot control architecture ORCA to
the six-legged walking robot OSCAR. In: Müller-Schloer, C., Schmeck, H., Ungerer,
T. (eds.) Organic Computing-A Paradigm Shift for Complex Systems, pp. 517–530.
Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0130-0_34

8. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing-A Paradigm
Shift for Complex Systems. Springer, Basel (2011). https://doi.org/10.1007/978-
3-0348-0130-0

9. Müller-Schloer, C., Tomforde, S.: Organic Computing – Technical Systems for Sur-
vival in the Real World. AS. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-68477-2

10. Pratt, J.W., Raiffa, H., Schlaifer, R., et al.: Introduction to Statistical Decision
Theory. MIT Press, Cambridge (1995)

11. Satzger, B., Pietzowski, A., Trumler, W., Ungerer, T.: Variations and evaluations
of an adaptive accrual failure detector to enable self-healing properties in dis-
tributed systems. In: Lukowicz, P., Thiele, L., Tröster, G. (eds.) ARCS 2007. LNCS,
vol. 4415, pp. 171–184. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71270-1_13

12. Schmitt, J., Roth, M., Kiefhaber, R., Kluge, F., Ungerer, T.: Using an automated
planner to control an organic middleware. In: 2011 IEEE Fifth International Con-
ference on Self-Adaptive and Self-Organizing Systems, pp. 71–78. IEEE (2011)

13. Tomforde, S., Kantert, J., Müller-Schloer, C., Bödelt, S., Sick, B.: Comparing the
effects of disturbances in self-adaptive systems - a generalised approach for the
quantification of robustness. In: Nguyen, N.T., Kowalczyk, R., van den Herik, J.,
Rocha, A.P., Filipe, J. (eds.) Transactions on Computational Collective Intelligence
XXVIII. LNCS, vol. 10780, pp. 193–220. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78301-7_9

14. van Horenbeek, A., Pintelon, L.: A dynamic predictive maintenance policy for com-
plex multi-component systems. Reliab. Eng. Syst. Saf. 120, 39–50 (2013). https://
doi.org/10.1016/j.ress.2013.02.029

15. Watanapa, A., Kajondecha, P., Duangpitakwong, P., Wiyaratn, W.: Analysis plant
layout design for effective production. In: Proceeding of the International Multi
Conference of Engineers and Computer Scientists, vol. 2, pp. 543–559 (2011)

16. Zhu, Y., Wu, P.H.J., Liu, F., Kanagavelu, R.: Disk failure prediction for Software-
Defined Data Centre (SDDC). In: 2021 IEEE International Conference on Depend-
able, Autonomic and Secure Computing, International Conference on Pervasive
Intelligence and Computing, International Conference on Cloud and Big Data
Computing, International Conference on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pp. 264–268. IEEE (2021)

https://doi.org/10.1007/978-3-0348-0130-0_34
https://doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1007/978-3-0348-0130-0
https://doi.org/10.1007/978-3-319-68477-2
https://doi.org/10.1007/978-3-319-68477-2
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1007/978-3-540-71270-1_13
https://doi.org/10.1007/978-3-319-78301-7_9
https://doi.org/10.1007/978-3-319-78301-7_9
https://doi.org/10.1016/j.ress.2013.02.029
https://doi.org/10.1016/j.ress.2013.02.029

Predicting Physical Disturbances
in Organic Computing Systems Using

Automated Machine Learning

Markus Görlich-Bucher(B), Michael Heider, and Jörg Hähner

Organic Computing Group, University of Augsburg, Augsburg, Germany
{markus.goerlich-bucher,michael.heider,joerg.haehner}@uni-a.de

https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/oc/

Abstract. Robustness against internal or external disturbances is a key
competence of Organic Computing Systems. Hereby, a rarely discussed
aspect are physical disturbances, therefore, failures or breakdowns that
affect a systems physical components. Before experiencing such a dis-
turbance, physical components may show various measurable signs of
deterioration that might be assessed through sensor data. If interpreted
correctly, it would be possible to predict future physical disturbances
and act appropriately in order to prevent them from possibly harming
the overall system. As the actual structure of such data as well as the
behaviour that disturbances produce might not be known a priori, it is of
interest to equip Organic Computing Systems with the ability to learn to
predict them autonomously. We utilize the Automated Machine Learning
Framework TPOT for an online-learning-inspired methodology for learn-
ing to predict physical disturbances in an iterative manner. We evaluate
our approach using a freely available dataset from the broader domain
of Predictive Maintenance research and show that our approach is able
to build predictors with reasonable prediction quality autonomously.

Keywords: Organic Computing · Automated Machine Learning ·
Predictive Maintenance

1 Introduction

Organic Computing (OC) [9] is intended to solve the increasing complexity in
information- and communication technology by allowing systems to freely adapt
and organize themselves. OC-based systems are expected to involve various kinds
of sensors and actuators and are explicitly designed to cope with plenty differ-
ent types of real-world scenarios and use-cases. A notable focus in OC research
over the last years lies on investigating how OC systems can be built to be
robust, therefore, to remain functioning within a desired range of performance
even though various kinds of internal or external disturbances may appear [14]
Hereby, most of the existing research focuses on software-sided disturbances.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 48–62, 2023.
https://doi.org/10.1007/978-3-031-42785-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_4

Predicting Physical Disturbances in OC Systems 49

Only few works on how to deal with hardware-sided disturbances, termed physi-
cal disturbances throughout this work, exist, although being a serious, yet unre-
solved problem in OC, as outlined in [6]: A damaged actuator, for example,
remains damaged until it is repaired or exchanged and may affect the overall
performance of the entire system. Although human repair works may be neces-
sary to replace broken hardware, it may indeed be possible and useful to reduce
the amount of human participation to an absolute minimum. In order to do
so, it is necessary to be able to predict when future physical disturbances will
happen. This could allow the OC system to estimate how long it will be able to
function in a desired way, therefore, to assess how long it will be robust. In order
to be able to predict upcoming physical disturbances, it is both necessary to col-
lect a suitable amount of training data as well as to choose a suitable Machine
Learning (ML) algorithm depending on the overall structure and type of the
collected data. As OC systems are intended to move design-time decisions to
runtime, it is not possible to choose an appropriate algorithm a priori. We sug-
gest the utilization of an Automated Machine Learning (AutoML) framework
for overcoming this issue. AutoML-approaches are intended to automatically
choose and parametrize an appropriate ML algorithm based on the given input
data, as well as to incorporate necessary data preprocessing steps. In this work,
we present an AutoML-based approach for predicting upcoming physical dis-
turbances using the Tree-based Pipeline Optimization Toolkit (TPOT) [10]. We
present an iterative process that gathers measurements from the OC systems’
hardware components and utilizes TPOT to continuously learn and optimize
until a desired prediction quality is reached.

The remainder of this paper is structured as follows. In Sect. 2, we give a
brief overview on existing related research from the field of OC as well as the
related field of Predictive Maintenance. Furthermore, we refer to various existing
AutoML frameworks. Afterwards, we provide a more detailed motivation of the
underlying problem of this work and provide a brief introduction to TPOT in
Sect. 3. We thoroughly explain our approach in Sect. 4 before evaluating it using
a simple smart factory scenario in Sect. 5. We conclude with a short outlook on
possible future work in Sect. 6.

2 Related Work

There are several aspects in OC research that are relevant to our work. First
of all, the concept of robustness, as already mentioned in the introduction, is
related to the occurrence of disturbances. A contemporary approach on measur-
ing robustness can be found in [14]. The latter work also gives a good introduction
on this topic in general. Quite similar is the self-x property self-healing, there-
fore, the ability of an OC system to resolve disturbances by taking appropriate
countermeasures. However, existing research on self-healing mostly focuses on
healing software-sided disturbances, e.g. in [12]. Finally, various ML approaches
have been utilized in OC research so far. Hereby, the XCS classifier system
(XCS) [3] as well as some of its derivates have gained plenty of attention in the

50 M. Görlich-Bucher et al.

OC community. However, they are mostly utilized to learn appropriate control
strategies based on the current situation in the underlying System. We refer
to [13] for a broader introduction to the usage of XCS in OC, as well as for an
overview of other ML techniques used in OC so far.

Predictive Maintenance (PdM), sometimes also termed as Condition-based
Maintenance is a quite active area of research in various other scientific disci-
plines. Especially over course of the last years, ML techniques have gained an
important role in PdM research. We refer to [4] for a more detailed introduc-
tion and broader overview on current research in this topic. A notable difference
between our proposed approach and PdM concepts lies in the inherent design-
time to runtime idea of OC: ML methodologies are usually developed with a
notable amount of domain knowledge, their applicability can be tested and eval-
uated thoroughly. Contrary, utilizing ML for predicting hardware failures in OC
necessitates methodologies that do not rely on such optimal conditions.

AutoML has become a quite active domain of research over the course of the
last years, too. Various state-of-the-art frameworks make use of Bayesian Opti-
mization in order to optimize both chosen algorithms and preprocessing steps
as well as their hyperparameters. A contemporary survey on various AutoML
frameworks is given in [17].

3 Prerequisites

The overall system model can be briefly described as follows: We assume a Sys-
tem under Observation and Control (SuOC) controlled by a Control Mecha-
nism (CM), for example an instance of the Multi-Layer Observer Controller -
architecture [15]. The SuOC is associated with a set of various components C.
Here, a component refers to possible sensors and actuators an OC system may be
associated with in order to interact with its surrounding environment. However,
the term sensors and actuators does not necessarily refer to sensors or actuators,
but could also be taken as a description for more sophisticated components or
machinery involving both of them, i.e. soft-sensing mechanisms.

We assume that the CM is able to assess individual health states for each
single component c ∈ C at each discrete timestep t. This means that the CM
is able to decide wether a component is functioning or defective (therefore dis-
turbed) at timestep t. This can happen, for example by a component shutting
down after an error, meaning that the CM can no longer gather data from it, or
by an utility metric measuring the system performance that suddenly decreases.

We assume that a component is able to return some sort of status infor-
mation or internal sensor readings somehow reflecting the internal state of a
component. The term internal sensor readings should not be confused with sen-
sors an OC system is equipped with for interacting with its environment: The
former refers to measuring, as explained, the internal state of a component, the
latter refers to a designated component that is used to assess the environment.
Under the assumption that the gathered measurements reflect the actual phys-
ical state of the component, this information appears useful to predict future

Predicting Physical Disturbances in OC Systems 51

physical disturbances: If an upcoming physical disturbance is known a priori,
the CM might be able to proactively take countermeasures to ensure a robust
system state. The OC approach of moving design-time decisions to runtime can
yield various problems at this point: It is not known in advance how the gath-
ered data may look like. There exist scenarios where one has to expect quite
simple, structured data (e.g. vibration and temperature sensor measurements in
a simple mechanical machinery). On the other hand, there may exist scenarios
where the gathered information is quite complex (e.g. images of produce taken
by a camera installed for quality assurance purposes). Also, the data can be
enriched with information actually useless for predicting physical disturbances.
This can necessitate different types of machine learning algorithms as well as var-
ious possible preprocessing steps depending on structure and type of the incom-
ing data. Finally, it is also necessary to determine suitable hyperparameters for
the used algorithms - a non-trivial task requiring an appropriate amount of data
for training and testing purposes. Accordingly, traditional OC-related learning
paradigms such as XCS appear inappropriate for this kind of learning problem,
as they are not necessarily applicable to e.g. unprocessed, high-dimensional or
unstructured data. More precise, XCS is a single learning paradigm, whereas the
described learning problem may necessitate multiple different suitable learning
algorithms, depending on the actual data available within specific scenario. We
therefore focus on methods from the broader field of AutoML in order to tackle
previously motivated problem. Within the scope of this work, we use the TPOT
framework as an AutoML framework, as it is based on Genetic Algorithms—a
class of optimization heuristics that are commonly used in OC.

The overall idea of TPOT is to utilize Genetic Programming (GP) [1] for
building and optimizing ML pipelines. TPOT is able to use various preprocessing
and decomposition algorithms, feature selectors as well as actual ML models
as operators. The operators are combined in tree-based structures. Both the
structure of these trees as well as the parameters of the chosen operators are
evolved by means of GP: In the very beginning, a population of such tree-based
individuals is generated randomly. Each individual is trained and tested using an
appropriate train/test-split of the given training data. Using a suitable selection
scheme, some of the individuals are chosen for breeding or applying genetic
operators, such as crossover, for the next generation of the population. From
generation to generation, TPOT is able to iteratively generate and optimize
ML pipelines for the given data. As a broader introduction would be beyond
the scope of this work, we refer to [10] for a more detailed explanation of the
individual parts of TPOT, as well as for an evaluation of the approach on several
datasets from the UCI machine learning repository.

4 Methodology

Our overall approach is divided in three phases: Right after setting up the OC
system, the BOOTSTRAP -phase takes place. It is used to collect an initial
amount of training data that is (presumably) sufficient enough to train a first

52 M. Görlich-Bucher et al.

pipeline. As this goal is reached, the system changes to the OPTIMIZATION -
phase. In this phase, pipelines are trained in an iterative manner at certain dis-
crete timesteps until the system reaches a desired prediction quality. Afterwards,
the system switches to the PRODUCTION -phase, where the actual predictions
of the trained pipeline should be used by the CM in order to cope with upcoming
disturbances.

In order to simplify the following explanations, we assume that all compo-
nents in C are of the same type (in order to allow the CM to use gathered data
from all components for training one ML pipeline that is used to predict distur-
bances in all components). Of course, OC systems presumably feature various
different kinds of components. Accordingly, in an actual real-world scenario, the
CM would conduct the following process individually for each type of component
existing in its SuOC.

4.1 Data Collection and Labeling

At each discrete timestep t, the CM gathers a row of sensor readings for each
component ci ∈ C and saves them for later use. Additionally, the CM examines
the current physical state of each component ci ∈ C.

If the CM identifies a component ci as broken, it recalls all sensor mea-
surements gathered for ci since the component’s last breakdown (or since the
installation of the overall system, if no breakdown for the corresponding compo-
nent happened before), resulting in a set of chronologically ordered rows for ci.
Afterwards, all rows that are younger than a certain threshold Θpred are labeled
as positive, all other rows are labeled as negative. Θpred can be described as the
desired prediction horizon for predicting upcoming breakdowns: If the trained
learner is able to make perfect predictions, an upcoming disturbance would be
predicted Θpred timesteps in advance. The choice of a suitable Θpred is not a
trivial task and may depend on various aspects that might not be known a pri-
ori. For now, we assume that Θpred is given in advance (e.g. during setting up
the corresponding system). After the data is collected and labeled, ci is reported
to the CM, e.g. for repair or maintenance operations. This overall functionality
is refered to as labelAndRepair() in the algorithms later on.

At the end of a timestep, all collected sets of data rows are merged. After-
wards, a train/test-split is applied to the merged data: The major amount of
collected data is added to the training dataset Dtrain. The minor amount is
added to the test holdout dataset Dtest. The split is done proportional to the pos-
itive/negative labels (that is, the proportion of positives and negatives among
the data added to the training set is the same as for those added to the test
holdout set). The intuition behind these sets is as follows: Dtrain is used as data
for training actual AutoML pipelines. Dtest, on the other hand, is used as previ-
ously unseen data to validate the results of the trained pipelines after they are
optimized. Both sets are extended with novel training (respectively testing) data
each time a component breaks. We refer to this functionality as consolidate-

Data() in the algorithms later on.

Predicting Physical Disturbances in OC Systems 53

4.2 Bootstrap Phase

The goal of the Bootstrap Phase is to gather enough data for training a first
pipeline for predicting future disturbances. Here, the term enough data should be
taken as a rough estimate rather than an explicit boundary: Deciding if enough
data for training a machine learning algorithm exists is not a trivial task and
of subordinate importance for our overall approach. The idea of the bootstrap
phase is just to avoid too early trainings that can lead to irritating results: For
example, we found that training a pipeline with very few examples can lead to
unrealistic good results during the first training episodes in our evaluation. The
trained pipeline apparently overfits on the training data. As both the training
data as well as the test data holdout are sampled from very few components in
the beginning, the test holdout dataset did not indicate an overfitting—leading
to very good results which later on declined iteratively, as more and more data
is added to both datasets.

Accordingly, nothing except the previously explained data collection and
labeling takes place during the bootstrap phase. Whenever a component fails, its
collected measurements are labeled and, at the end of a timestep, split and added
to Dtrain and Dtest respectively. We furthermore assume that the component is
repaired afterwards, allowing the CM to collect data from this component again.
At the end of each timestep, it is assessed if enough training data was collected
as shown in Algorithm 1.

Algorithm 1. isBootstrapDone()

1: function isBootstrapDone()

2: if |Dtrain+| ∗ Θsr/ Fib(fp) >= d and |Dtrain−| ∗ Θsr/Fib(fp) >= d then
3: return true
4: else
5: return false

Here, |Dtrain+| and |Dtrain−| refer to the number of positive (or negative)
training data rows available. Θsr determines the sample ratio and is a fixed
multiplier set in advance. Fib(i) is a function returning the ith element from a
list of Fibonacci numbers. The purpose of the variable fp (Fibonacci pointer) and
the corresponding list of Fibonacci numbers is explained in the next subsection.
Finally, d refers to the dimensionality of the used input data. The idea of the
isBootstrapDone() is as follows: It is checked if both the amount of positive
labeled training data as well as negative labeled training data lies above a certain
threshold. This threshold is calculated using a simple heuristic based on a fixed,
predefined sample ratio, a variable Fibonacci number as well as dimensionality of
the used data. The Bootstrap phase ends once these conditions hold by executing
the first training and starting the optimization phase.

54 M. Görlich-Bucher et al.

4.3 Optimization Phase

The optimization phase is meant to iteratively train ML pipelines using TPOT
and continuously assess their performance, until the latter reaches an acceptable
level for beeing used productively. The corresponding algorithm is shown in
Algorithm 2.

Algorithm 2. Optimization phase
1: function optimization()

2: for c in C do
3: if isBroken(c) then
4: labelAndRepair(c)
5: evaluateMachine(c)
6: consolidateData()
7: if nextTrainingNecessary() then
8: training()
9: if isOptimizationDone() then

10: production()

The overall procedure is as follows: Upon entering the optimization phase,
the method train() is called in order to train a first usable pipeline, as shown
in Algorithm 2 in the previous subsection. It should be denoted that the training
happens during the current discrete timestep, accordingly, ending the Bootstrap
phase, entering the Optimization phase and training the first pipeline happens
at the end of the same timestep. Afterwards, the system still continues to gather
labeled data similar to the Bootstrap phase. The method evaluateMachine()

is used to evaluate the performance of the current trained TPOT instance on
the (labeled) data of the newly broken component, therefore, to assess how good
the performance of the instance would have been in an (actual) productive sce-
nario. The calculated score is saved internally. Furthermore, if enough data was
gathered, the method calculates the moving average for the last ΘOptWindow

scores that have been recorded. The moving average is appended to the list
movingAverageScores, which then acts as a rolling window to assess how the
overall performance changes over time. At the end of each timestep, measure-
ments from newly broken components are added to the corresponding data
sets. Besides, it is checked if another retraining is necessary using nextTrain-

ingNecessary(). If this is the case, training() is called again. Finally, isOp-

timizationDone() is called in order to assess if the Optimization phase can
come to an end. The individual functions are explained in the following.

Algorithm 3 shows the Train()-method. First of all, in line 2, the existing
training data in Dtrain is divided into k stratified folds or splits used internally
in TPOT for training and testing. Actually, TPOT would be able to split the
training data for cross-validation (CV) purposes internally. The reason why this
is done in advance follows in line 3 and line 4: Due to the high class imbalance,

Predicting Physical Disturbances in OC Systems 55

Algorithm 3. train()
1: function train()

2: splits := StratifiedKFold(Dtrain)
3: for trainSplit in splits do
4: SMOTEENN(trainSplit)
5: newLearner := fitTpot(splits)
6: if currentLearner is not null then
7: newPrediction := newLearner.predict(Dtest)
8: currentPrediction := currentLearner.predict(Dtest)
9: if score(newPrediction) > score(currentPrediction) then

10: currentLearner := newLearner
11: fp := fp - 1
12: else
13: fp := fp + 1
14: else
15: currentLearner := newLearner
16: fp := fp - 1

TPOT tends to overfit on the majority class, as we found out in some preliminary
test runs. In order to cope with this issue, we integrated suitable over- and
undersampling methods. We used the SMOTEENN-algorithm, a combination of
SMOTE and Edited Nearest Neigbours (ENN) [2]. Applying SMOTEENN on
the whole training data and letting TPOT create the CV-folds by itself would
lead to synthetical data within the (internal) test splits. The internal test splits
need to be as imbalanced as the (expected) data the pipeline is confronted with
afterwards in order to avoid biasing the chosen scoring function. Accordingly,
only those splits that are used as training data afterwards are altered. After the
data augmentation is done, a new TPOT instance is created and fitted using
the splits in Line 5. The pipeline created by the new TPOT instance is now
used to create predictions for the existing test holdout set Dtest. Additionally,
the last TPOT instance (that is: the TPOT instance that was created in the
previous training run) is also used to create predictions for Dtest. Afterwards, a
scoring function is applied to both predictions in order to determine if the last
instance or the newly trained one performs better on the test holdout dataset. If
the newly trained instance performs better, it is saved and the previous instance
is discarded. Additionally, the Fibonacci pointer fp is decremented. If the older
instance performs better than the newly trained one, the latter is discarded and
fp is incremented. This also happens when no previously trained instance exists.

The idea of incrementing/decrementing the Fibonacci pointer followed our
first preliminary experiments, where we found that rather short training intervals
do not show any notable change in performance. Moreover, it could happen that
a newly trained pipeline performs worse than the previous one. The idea of the
Fibonacci pointer is to introduce some sort of adaptive threshold for deciding if a
retraining is necessary: Increasing the pointer leads to a longer interval until the
next retraining, reflecting the case that no increased performance was reached

56 M. Görlich-Bucher et al.

in the current training. Decreasing it leads to a shorter interval, as obviously the
size of the previous interval was sufficient to increase the prediction performance.
In general, the overall method would also work with fixed intervals, as a new
training does not depend on the previous training. However, as the trainings are
quite time expensive, it is of interest to reduce the overall number of trainings.
Fibonacci numbers as multiplicator for the intervals show favourable character-
istics. Their slope is larger compared to linear functions, which avoids smaller
training intervals and thus expensive training cycles. Furthermore, its slope is
smaller than a quadratic functions which would grow too quick. The influence of
the Fibonacci pointer can be seen in the nextTrainingNecessary() method,
shown in Algorithm 4.

Algorithm 4. nextTrainingNecessary()

1: function nextTrainingNecessary()

2: if (|Dtrain+| − |D−1
train+|) · Θsr/F ib(fp) >= d and (|Dtrain−| − |D−1

train−|) ·
Θsr/F ib(fp) >= d then

3: return true
4: else
5: return false

The algorithm is quite similar to Algorithm 1 that is used to decide if the
bootstrap phase shall end. The only difference here is the usage of |D−1

training+|
and |D−1

training−|, referring to the amount of positive (and negative) training
samples that were available during the last training. Therefore, it is investigated
if the amount of training data gathered since the last training exceeds a certain
threshold, again determined by the fixed sample ratio Θsr and the a Fibonacci
number gathered through the previously explained Fibonacci pointer.

Finally, Algorithm 5 shows the algorithm that is used to decide if the opti-
mization phase has come to an end.

Algorithm 5. isOptimizationDone

1: function isOptimizationDone()

2: for i=1 to ΘOptWindow do
3: if movingAverageScores[-i] < ΘOptThreshold then
4: return false
5: return true

The method uses the moving average score list that is extended each time
a physical disturbance occurs, as previously explained. If the last ΘOptWindow

scores lie above a predefined threshold ΘOptThreshold, the optimization phase
ends, as TPOT is now able to provide predictions that are considered good
enough for the CM to be used for assessing the SuOC’s future state. At the end
of the corresponding timestep, the production phase starts.

Predicting Physical Disturbances in OC Systems 57

4.4 Production Phase

The overall goal of the production phase is to use TPOT to predict upcom-
ing physical disturbances, report those to the CM and to continuously assess
if TPOTs performance is still acceptable. The procedure executed after each
timestep is shown in Algorithm 6.

Algorithm 6. Production Phase
1: function production()

2: for c in C do
3: if isBroken(c) then
4: labelAndRepair(c)
5: evaluateMachine(c)
6: else if c.mode == EXPLOIT then
7: prediction := currentTpot.predict(c)
8: if prediction := true then
9: reportPrediction(c)

10: consolidateData()
11: if nextTrainingNecessary() then
12: training()
13: resampleExploreExploit()

The algorithm is quite similar to the optimization phase. The major dif-
ference is that each component in C is associated with a mode that can be
either EXPLOIT or EXPLORE. If a component is set to EXPLOIT, TPOT is
used to predict whether the component c is expected to break or not, as can
be seen in Line 6. If so, the CM is informed by calling reportPrediction().
It is now up to the CM to decide on proper countermeasures, e.g. by repairing
or changing c in advance. Components set to EXPLORE are not considered
in the predictions: Their purpose is to run until being hit by a physical dis-
turbance. This makes it possible to continuously assess if the TPOT instance
still makes acceptable predictions. The same obviously holds for components
set to EXPLOIT that break without the disturbance being predicted properly.
For now, nextTrainingNecessary() and training() in Line 11 and 12 fol-
low the functionality they have in the optimization phase: Data is gathered,
another training run is started, and if the prediction performance of the current
TPOT instance declines, it is replaced by a newly trained one. However, it is
also conceivable to, for example, return to the optimization phase if the per-
formance drops below a certain threshold. Another possible option would be to
adapt the ratio between EXPLOIT and EXPLORE towards more machines set
to EXPLORE in order to speeden up the learning process, if necessary. Finally,
the method resampleExploreExploit() is called to resample the distribu-
tion of EXPLORE, respectively EXPLOIT -modes among all components in C.
The ratio between the two modes is set in advance. A rather small number of
EXPLORE components appears suitable in order to allow the overall system to
benefit from the predictions made for the EXPLOIT components.

58 M. Görlich-Bucher et al.

5 Evaluation

The overall evaluation scenario is structured as follows. The SuOC consists of
5 components in form of identical production machines. In general, any other
number of components would be applicable too - with lesser components, the
overall process would take longer, with more components, is would be faster. We
assume that the CM is able to assess if a machine is working properly or is broken.
In the given scenario, this could be the case by assessing the number of work-
pieces a machine produces in a discrete timestep. Furthermore, each machine
delivers various internal measurements that can be used to assess its internal
state. Additionally, no configuration changes or other disturbances except actual
machine breakdowns will take place, resulting in a quite simple evaluation sce-
nario. The Azure AI Predictive Maintenance Dataset1 was used for simulating
the measurements from the individual machines. The dataset consists of 4 differ-
ent machine types in total, type number 1 was used throughout this evaluation.
The CSV-files in the dataset were preprocessed such that a single CSV-file exists
for each machine in the dataset (containing measurements from installation until
breakdown in chronologial order). Incomplete traces (that is, machines without
breakdowns and machines that were repaired although no breakdown happened)
were removed. Furthermore, the error column was removed, therefore, the only
measurements available are volt, rotate, pressure and vibration. This results in
a total of 672 machines. The 5 components of the SuOC are equipped with 5
uniformly chosen machine CSV-files. A component is regarded as broken when
the corresponding CSV-file reaches its last row. The component is then repaired
in the next timestep by replacing the CSV-file by a newly sampled one.

5.1 Implementation and Parametrisation

We implemented our approach using Python as well as the original TPOT imple-
mentation [10]. Scikit-learn [11] was used for the stratified cross validation as
well as for the scoring functions. Furthermore, the SMOTEENN-implementation
from the imblearn library [8] was used. If not stated otherwise, the default
parametrizations for the algorithms were used.

We used the balanced accuracy as a scoring function both internally in TPOT
as well as afterwards for scoring in our own implementation due to the imbal-
anced nature of the available data: As the balanced accuracy is defined as the
mean between sensitivity and specificity, it is less vulnerable to false predictions
of the minority class, at least compared to the non-balanced accuracy metric.
TPOT was configured with 10 generations, a population size of 25 and an early
stopping of 2. This results in TPOT stopping the optimization process if no
progress was made after 2 generations. At this point, it should be mentioned
that TPOT features a warmstart-function. This allows TPOT to use the last
population as a start population for a new run, however, we found that this

1 https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-
maintenance.

https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance
https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance

Predicting Physical Disturbances in OC Systems 59

leads to a notably worse performance compared to starting with a complete new
population each time, therefore, we did not use it.

The fixed sample ratio Θsr was set to 0.025. The optimization threshold
ΘoptThreshold as well as the optimization sliding window size ΘoptWindow were
set to 0.9 and 20, respectively. The Fibonacci pointer fp was set to 5 for the
bootstrap phase, resulting in the number 8. Additionally, we limited the fp to
6 to make sure the variable amount of the retraining interval does not get too
large. The split between Dtrain and Dtest was set to 0.9/0.1.

We evaluated 20 repetitions with different, fixed random seeds. Each repeti-
tion was limited to 80000 timesteps. The production phase was limited to 5000
timesteps, therefore, once the algorithm reaches production, it continues to run
for another 5000 timesteps.

As a simple baseline, we used a naive Random Forest Classifier (RF) with
sklearn-default parameters. The rest of the algorithm remains the same, therefore
instead of TPOT, RF instances were trained.

5.2 Results

In order to give an idea how the overall procedure behaves over time, a single
repetition is depicted in Fig. 1. The graph shows the behaviour of TPOT over
the course of the execution. Single Component refers to the scoring that is done
after a component broke, smoothed over 50 steps. Current TPOT and Newly
Trained TPOT show the scores for the predictions on Dtest in Line 7 and Line
8 from Algorithm 3. Figure 2 shows a similar experiment using RF classifiers.

We evaluated the balanced accuracy for all components broke during the
production phase. As explained earlier, the idea of the balanced accuracy is to
compensate the class imbalance in the dataset: In a worst-case scenario, the
simple, non-balanced accuracy score can show quite good results when the ML
algorithm simply classifies all incoming samples as the majority class, as the
(wrong predictions) for the minority class simply have a unsignificant influence
on the result. If the production phase was not reached, the last 5000 timesteps of
the optimization phase were used. A mean balanced accuracy of 0.865±0.047 was
reached by the TPOT-based approach, the RF runs achieved values of 0.816 ±
0.027. The optimization phase of the former takes an average of 44829 timesteps,
while the latter takes an average of 67741 timesteps. As the data appears to
be not normally distributed according to a performed Shapiro-Wilk-test, both
evaluated measurements were tested on significance using a Wilcoxon-rank-sum-
test. It showed that the TPOT-based approach was able to reach a significantly
better performance than the RF (with a p-value of 0.00043). Furthermore, it
took significantly less timesteps to reach the production phase (with a p-value
smaller than 0.00001).

60 M. Görlich-Bucher et al.

Fig. 1. A single TPOT-based run Fig. 2. A single RF-based run

5.3 Discussion

The results show that our approach is indeed able to achieve an acceptable
prediction quality in a comparable amount of time. However, as the naive RF-
classifier also reaches quite comparable results, one cannot necessarily state that
the utilization of an AutoML framework intuitively leads to a superior per-
formance. Rather, one can suspect that the chosen dataset is of quite simple
structure, therefore, the RF-classifier is able to learn it without sophisticated
preprocessing steps.

The Azure AI Predictive Maintenance Dataset is used in various other ML-
related research work on PdM. In order to give an idea what performances are pos-
sible with manually optimized ML pipelines in general, a brief overview on suitable
references is given in the following. Gęca [5] investigated several ML algorithms on
the dataset. Various preprocessing (such as calculating statistical measures and
including them in the data, as well as normalizing the whole dataset) was con-
ducted. The labeling was done similar to our approach, a prediction window of
24 h was used. Most of the algorithm evaluated were able to reach an accuracy of
over 0.99, with a Gradient boosting machine reaching 0.9993. Similar results were
achieved by Hrnjica et. al. [7]. An accuracy of 0.948 was reached by their approach
for the first machine type, also using 24 h as a prediction window and a gradient
boosting manchine. However, a direct comparison of these results to our approach
must be taken with caution: First of all, there is a quite obvious methodological
difference between iterative online learning and an offline learning setting, when
taking the amount of data a learner can use into account. Besides, both papers use
a different prediction horizon. Furthermore, they do not use the balanced accuracy,
which we do in order to compensate the class imbalance in the dataset. However,
they provide solid precision and recall values, which at least allows the assumption
that their approaches are able to deal with the class imbalance properly.

6 Conclusion and Outlook

In this paper, we presented a novel approach on learning to predict disturbances
of physical nature in Organic Computing systems, or, to be more precise, in

Predicting Physical Disturbances in OC Systems 61

the SuOC controlled by an OC-based CM. We motivated the advantages of
AutoML-methodologies for such an use-case over ML-approaches used in existing
OC-research so far. We introduced and explained our TPOT-based approach
and evaluated it with a simple Smart Factory-simulation scenario. We showed
that our approach is indeed able to learn to predict physical disturbances in an
automated manner, with suitable prediction quality and better than a simple
random forest-based approach. However, taking existing research work using
the Azure PdM dataset into account, it can be suspected that a significantly
better prediction quality could be possible–at least under the assumption, that
a balanced accuracy score for both works shows a similar performance. A In
order to investigate if the results from these papers are indeed as good as they
appear, it is necessary to manually build and optimize a suitable ML pipeline
using the balanced accuracy as a scorer. By doing so, it would be possible to
assess how well the AutoML-based methodology performance compared to what
is generally possible for the dataset.

As a next step, we plan to evaluate the overall concept using other AutoML-
frameworks as well as Neural Architecture Search–based frameworks like AutoK-
eras. Furthermore, it is of interest to evaluate our approach using other datasets
from the broader domain of PdM. Especially more complex dataset than the one
used in the evaluation provided here will be necessary to investigate if the over-
all methodology can benefit from AutoML-based approaches. Hereby, a notable
focus could lie on noise or wrong sensor readings. Besides, we plan to investigate
how the parameters of our own methodology as well as the parametrisation of
TPOT (or any other AutoML-framework we employ in the future) affects the
overall prediction quality. Another interesting question is how the approach deals
with an upcoming concept drift [16]: Intuitively, the continuous assessment in the
production phase would lead to more frequent trainings if the existing pipelines
increasingly fail on novel, drifted data. This would be a quite interesting aspect,
as it can be expected that OC-related real world scenarios, due to their approach
to adapt to changes, would involve some sort of drift. Another interesting aspect
would be a further investigation of the actual pipelines generated by TPOT
in terms analyzing if e.g. common patterns or algorithms are evolved. Finally,
the evaluation in this work relates to a quite optimistic real-world setting: The
(internal) sensor data from components in a SuOC might not always be reliable.
Accordingly, additional methodologies for validating the information gathered
for the AutoML-algorithms might be necessary. This would include mechanisms
to actually identify already disturbed components in a reliable manner, in order
to provide a correct labeling for the learning process.

References

1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An
Introduction: on the Automatic Evolution of Computer Programs and its Appli-
cations. Morgan Kaufmann Publishers Inc., Burlington (1998)

62 M. Görlich-Bucher et al.

2. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several meth-
ods for balancing machine learning training data. ACM SIGKDD Explor. Newsl
6(1), 20–29 (2004)

3. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. Soft. Comput. 6(3),
144–153 (2002)

4. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G.:
A systematic literature review of machine learning methods applied to predictive
maintenance. Comput. Ind. Eng. 137, 106024 (2019)

5. Gęca, J.: Performance comparison of machine learning algotihms for predic-
tive maintenance. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie
Środowiska 10 (2020)

6. Görlich-Bucher, M.: Dealing with hardware-related disturbances in organic com-
puting systems. In: INFORMATIK 2019. Gesellschaft für Informatik eV (2019)

7. Hrnjica, B., Softic, S.: Explainable AI in manufacturing: a predictive maintenance
case study. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G.,
Romero, D. (eds.) APMS 2020. IAICT, vol. 592, pp. 66–73. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-57997-5_8

8. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365

9. Müller-Schloer, C., Tomforde, S.: Organic Computing-Technical Systems for Sur-
vival in the Real World. Springer, Cham (2017)

10. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-
based pipeline optimization tool for automating data science. In: Proceedings of
the Genetic and Evolutionary Computation Conference 2016, pp. 485–492. GECCO
2016, ACM, New York, NY, USA (2016)

11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

12. Schmitt, J., Roth, M., Kiefhaber, R., Kluge, F., Ungerer, T.: Using an automated
planner to control an organic middleware. In: 2011 IEEE Fifth International Con-
ference on Self-Adaptive and Self-Organizing Systems, pp. 71–78. IEEE (2011)

13. Stein, A.: Reaction learning. In: Organic Computing - Technical Systems for Sur-
vival in the Real World, pp. 287–328. Springer (2017)

14. Tomforde, S., Kantert, J., Müller-Schloer, C., Bödelt, S., Sick, B.: Comparing the
effects of disturbances in self-adaptive systems - a generalised approach for the
quantification of robustness. In: Nguyen, N.T., Kowalczyk, R., van den Herik, J.,
Rocha, A.P., Filipe, J. (eds.) Transactions on Computational Collective Intelligence
XXVIII. LNCS, vol. 10780, pp. 193–220. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78301-7_9

15. Tomforde, S., et al.: Observation and control of organic systems. In: Müller-Schloer,
C., Schmeck, H., Ungerer, T. (eds.) Organic Computing-A Paradigm Shift for
Complex Systems, vol. 1, pp. 325–338. Springer, Basel (2011). https://doi.org/10.
1007/978-3-0348-0130-0_21

16. Wang, S., Schlobach, S., Klein, M.: What is concept drift and how to measure
it? In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp.
241–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16438-
5_17

17. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning
frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)

https://doi.org/10.1007/978-3-030-57997-5_8
http://jmlr.org/papers/v18/16-365
https://doi.org/10.1007/978-3-319-78301-7_9
https://doi.org/10.1007/978-3-319-78301-7_9
https://doi.org/10.1007/978-3-0348-0130-0_21
https://doi.org/10.1007/978-3-0348-0130-0_21
https://doi.org/10.1007/978-3-642-16438-5_17
https://doi.org/10.1007/978-3-642-16438-5_17

Self-adaptive Diagnosis
and Reconfiguration in ADNA-Based

Organic Computing

Utkarsh Raj1(B), Simon Meckel1, Aleksey Koschowoj2, Mathias Pacher2,
Roman Obermaisser1, and Uwe Brinkschulte2

1 University of Siegen, Siegen, Germany
utkarsh.raj@uni-siegen.de

2 Goethe University of Frankfurt a.M., Frankfurt a.M., Germany

Abstract. The increasing openness and dynamism in embedded sys-
tems necessitate the continuous advancement of diagnostic method-
ologies, particularly in contexts where safety is paramount and sys-
tem operability must persist despite faults or failures. The implementa-
tion of Organic Computing offers substantial benefits to these intricate,
dynamic systems, such as decreased development effort, enhanced adapt-
ability, and resilience. Nonetheless, safety-critical systems that must pre-
serve functionality amid failure by maintaining a fail-operational status
require additional characteristics. This paper presents approaches such as
adaptive diagnostics employing neural networks for fault detection and
localization, adaptive probing for fault identification, and strategies for
degraded performance states and system reconfiguration to circumvent
complete service disruption when computational resources are insufficient.

Keywords: Organic computing · artificial DNA · adaptive diagnosis

1 Introduction

To manage the growing complexity in distributed systems, bioinspired techniques
like self-organization and self-healing have been introduced through the research
focus of organic computing [13]. This approach offers significant benefits such as
reduced development efforts and increased adaptability and robustness. However,
for safety-critical systems, it is essential to maintain their ability to function in
situations where faults or failures may arise. To ensure the preservation of these
systems’ core functionalities, supplementary features are needed to safeguard
system performance even when confronted with the failure of non-redundant
system resources. This paper introduces the architecture and components for
combining application diagnosis with ADNA-based Organic Computing [3].

The ADNA of an application contains the entire blueprint of the target sys-
tem on each processing element. Based on this blueprint, the system builds itself
at runtime and adapts autonomously to changes in the computation environment.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 63–77, 2023.
https://doi.org/10.1007/978-3-031-42785-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_5

64 U. Raj et al.

Task distribution and management in distributed computational systems require
dynamic control to allow runtime fault tolerance. ADNA-based organic comput-
ing relies on Artificial Hormone System (AHS) to distribute and configure tasks
on different processing elements in the distributed system [4]. This paper devel-
ops the components used for diagnosis, including state variables for tasks and pro-
cessing elements; adaptive diagnosis using neural networks for fault detection and
fault localization on application and hardware layer; adaptive probing as a second
layer of diagnosis for fault identification; degraded application state to avoid total
service failure when not enough compute resource is available; reconfiguration to
allow activation of backup ADNA with a different logical model to ensure service
when the computational resource is severely limited.

Section 3 describes the diagnosis architecture used for fault tolerance in
ADNA-based organic computing. It consists of (1) LocDiag – handles local PE
faults and (2) SysDiag – handles preventive fault tolerance of PEs and complex
faults arising from interdependencies of tasks. Section 4 introduces the compo-
nents of adaptive diagnosis for detecting and localizing faults in the application
running atop organic computing middleware, and active probing for fault identi-
fication; this saves communication and computational resources compared to pre-
planned probing. Active probing allows SysDiag to select probes to collect further
relevant information about faults in tasks and PEs with a high confidence score
(as calculated by the neural networks). Section 5 introduces the metric Quality
of Service (QoS) for a generalized application, which involves maximizing service
availability and minimizing critical failures in the application. Section 6 introduces
reconfiguration when insufficient compute resource is available. Section 7 presents
the use case of Explorer Robot to demonstrate degraded service and reconfigura-
tion, which are not inherently handled by Organic Computing.

2 Related Work

In the state of the art, numerous active fault-diagnosis techniques exist. More-
over, some methods for automatic generation of diagnostic mechanisms have
been described recently. [11] summarizes the intelligent fault diagnosis methods
and presents the roadmap for end-to-end diagnosis. [16] utilizes deep reinforce-
ment learning algorithms to train agents for maintenance in Internet of Things
(IoT) networks.

[9] provides an introduction to fault-diagnosis systems, including classifica-
tion and inference methods. Classification methods consist of techniques such
as pattern recognition, statistical classification, and artificial intelligence-based
approaches, such as neural network classifiers. These approaches are designed to
distinguish and categorize faults based on their unique characteristics. Inference
methods, on the other hand, involve drawing conclusions about the underlying
causes of the faults. These methods may involve the use of binary and approx-
imate reasoning, as well as more advanced techniques that leverage predicate
logic or fuzzy logic. By combining the insights provided by classification and
inference methods, a system diagnosis can more effectively identify and address
faults in complex systems [10].

Self-adaptive Diagnosis in Organic Computing 65

3 Diagnosis Architecture

In most embedded applications, tasks only interact via messages. The message-
based communication consists of sending and requesting data from other tasks in
the application. Thus, any runtime application diagnosis must rely only on the
exchange of messages. Figure 1 shows the diagnosis architecture where SysDiag
runs only on one of the PEs in the system, unlike LocDiag and AHS that run on
every PE. Other components required for application diagnosis include PE logs,
task logs, alarms for critical state changes, probes, and global states for critical
system-variables.

Fig. 1. Diagnosis architecture for ADNA-based organic computing

3.1 Local Diagnosis

LocDiag is a lightweight program that runs along with the AHS on each PE in the
distributed system. LocDiag extends the current AHS to handle hormone-level
faults and allows for more robust fault handling. At runtime, LocDiag monitors
variables that affect the performance of the PE and that can predict immi-
nent failures (e.g., local temperature, radiation level, and memory errors). In
response to these monitored variables, LocDiag produces corresponding hor-
mones to ensure tasks migrate away from faulty PEs. Equation 1 shows the
relationship between the produced suppressor and the variable of interest, which
is Tt. When the variable is higher than the threshold (TTh), the suppressor pro-
duced follows a PID relationship, or otherwise, it exponentially decays to zero.

SpT (t) =

⎧
⎪⎨

⎪⎩

K · (Tt − TTh) + S · (Tt − TTh)2

+P · SpT (t − 1), if Tt ≥ TTh

a · e−r · SpT (t − 1), otherwise
(1)

In addition, LocDiag performs rule-based checks and threshold checks to con-
tain hormone faults and to limit error propagation to other PEs. It ensures that

66 U. Raj et al.

the values of suppressors, accelerators, and modified eager values for tasks are
correct before being transmitted. LocDiag acts like a communication guardian
responsible for checking hormone values received and sent by the PE. It is fur-
ther responsible for generating a local log file consisting of local runtime variables
associated with the PE and the locally running tasks; this log is periodically sent
to the SysDiag.

3.2 System Diagnosis

SysDiag handles complex faults arising from inter-dependencies between PEs
and tasks. It interfaces with AHS via hormones and has five primary functions:
1) reboot faulty tasks, 2) kill less critical tasks if insufficient compute resource is
available, 3) compensate for hormone faults, 4) instantiate a different application
configuration, and 5) optimize the quality of service.

SysDiag produces watchdog hormones for each task every m hormone cycles.
The watchdog hormone propagates to all PEs in the distributed system. The
respective tasks are required to produce a corresponding Watchdogack hormone
latest by p hormone cycles after receiving the watchdog hormone. The value of
the watchdog and watchdogack hormones are equal in value. Equation 2 defines
the watchdog status Wi for task Ti.

Wi = Watchdogi − Watchdogacki (2)

With watchdog status defined for each task, SysDiag along with instances of
LocDiag monitor the status of the task TSi for the task Ti, defined by Eq. 3.

TSi =

{
1, if Wi = 0 after p hormone cycles
0, else.

(3)

TSi equal to 1 translates to the task Ti being operational. When TSi = 0,
the task is supposed to be non-responsive, and therefore, the respective negator
hormone is produced by SysDiag to reboot the task.

3.3 Alarms

Specific alarms are required to detect the causality of events in case of multi-
ple faults in the system. LocDiag generates alarms local to a PE, and SysDiag
generates system-level alarms. The alarms are associated with state changes nec-
essary for diagnosis by event correlation. The alarms emitted by LocDiag do not
propagate to other PEs. The global alarms generated by SysDiag disseminate
and allow all tasks to be aware of global faults in the systems, which allows the
application to implement fault-tolerant mechanisms.

Alarms generated by LocDiag include:

– PE temperature or radiation crosses threshold values
– Input buffer overflow for a local running task

Self-adaptive Diagnosis in Organic Computing 67

– Mean current and mean voltage cross threshold values
– Peripherals unreachable or non-responsive
– Missing suppressor hormones
– Abnormal monitor hormone values

Alarms generated by SysDiag include:

– PE flagged to be faulty
– Task flagged to be faulty
– Not enough compute resources available to run all critical tasks
– Instantiating different configurations for the application
– Alarms generated by Probes.

3.4 Probes

A probe functions as a diagnostic tool, consisting of a test transaction designed
to assess the performance of specific components within a system. By selecting
suitable probes and analyzing their outcomes, diagnosis tasks can effectively
detect issues and provide insights into the system’s overall functionality. For
example, the traceroute and ping commands are two of the most popular probing
tools used in Linux for network availability [1].

Adaptive probing presented in [15] is used by SysDiag as the second layer
of diagnosis. To achieve fault localization, it is required to have a set of probes
that the SysDiag can deploy to assess various faults in the distributed system.
The probing can be done on 1) application level, 2) task cluster level, 3) task
level, 4) PE level.

Application-level probing involves sending a request at the application level
and monitoring the outputs as the request flows through the logical model
from one task to another. The data collected during application-level probing
involves measuring the variables of interest involving individual tasks and PEs.
Application-level probing is costly as it involves the required time dedicated to
diagnosis where it might not be possible to provide the requisite service. Thus,
an application-level probe must be deployed when low-cost probes are insuffi-
cient to collect the desired information for fault localization. Task cluster-level
probing involves probing a set of tasks that provide a sub-service. Thus, during
the diagnostic probing of the cluster, the sub-service is unavailable. Task level
and PE level probes are the cheapest as they form the smallest unit for fault
localization. Furthermore, these probes can be designed with a predefined set
of inputs, and their outputs can be monitored along with the associated state
variables.

4 Adaptive Diagnosis

In most embedded applications, tasks only interact via messages. The message-
based communication consists of sending and requesting data from other tasks

68 U. Raj et al.

and communicating with SysDiag. A processing element in the distributed sys-
tem is assumed to be a fault containment region. Each task and PE is considered
the unit of fault, i.e., a task or a PE is deemed faulty as a whole. Task dependency
can lead to error propagation, and thus the logical model has to be considered
for the detection of faulty tasks; in contrast, a hardware fault in a PE is assumed
to be independent of faults in other PEs.

4.1 Processing Element Diagnosis

A state vector of a PE Xi in the distributed system is given by the vector P i

defined by Eq. 4

P i =
[
T,Mcpu, Vcpu,Mvol, Vvol,Mcur, Vcur, Sp1, Sp2

]T
, (4)

where T is the mean temperature, Mcpu is the mean CPU usage, Vcpu is the
variance in CPU usage, Mvol is the mean voltage, Vvol is the variance in voltage,
Mcur is the mean current, Vcur is the variance in current, Sp1 is the status of the
first peripheral, and Sp2 is the status of the second peripheral. The peripherals
can be, for example, a GPU or a flash storage device. The state of a peripheral N
(SpN) is mapped to a number from the set {−1, [0, 1]}. SpN ∈ [0, 1] reflects the
peripheral’s utilization and its diagnostic signals, whereas if SpN = −1, then
either the peripheral is missing on a PE or is not to be considered for fault
classification.

The state vector of a processing element is generated using the local PE data
collected by the LocDiag, which is periodically sent to SysDiag as logs. Given the
state vector of the processing elements, the problem reduces to training a binary
classifier to identify faulty processing elements. A deep neural network [5] with
sigmoid activation for the output layer and cross-entropy for the loss function
serves as the classifier. In a heterogeneous system, the required number of binary
classifiers equals the number of different types of PEs (in the system).

The output of the deep neural network (Confidence Score) lies in the range
[0, 1], which is used by SysDiag to produce suppressor hormones proportional to
the network’s output; this ensures that processing elements likely to be faulty
take up fewer tasks or offer taken tasks to other PEs in the distributed system.

4.2 Task Diagnosis

Faults in processing elements are assumed to be independent of each other,
however, the same is not valid for tasks in the application. Here, the inter-
dependencies of tasks need to be considered by the diagnosis model for which a
Long Short-term Memory (LSTM) [6] network is suitable. The state of a task (Tj)
is defined by Eq. 5

Sj =
[
MTS, VTS, IAT, IB,Oj

]T
, (5)

where MTS is the mean time to service, VTS is the variance in time to service,
IAT is the input inter-arrival time, IB is input-buffer free size, and Oj is the

Self-adaptive Diagnosis in Organic Computing 69

feature vector associated with output of task Tj . The tasks running on a PE
forward the necessary information to the local instance of the LocDiag, which
forwards the collected information in a log to SysDiag. This reduces the diagnosis
communication load on the shared network between the PEs, as each task on a
PE does not directly communicate with the SysDiag.

LSTM neural networks are suited for processing sequences of data, and the
logical model of the application defines such a sequence. Since a task down
the logical model is affected by an upstream task, using the LSTM network
traditionally used to process language-related problems like machine translation
and speech recognition is desirable [17]. The LSTM network takes as input the
state vector (St(Tj)) of the tasks arranged sequentially as represented in the
logical model. The LSTM network produces a confidence score for each task
in the range [0, 1], highlighting the probability of the task being faulty. The
training data required to train the network depends on the logical model and
the specific application. For each application, data needs to be generated using
fault injection and simulation, and once the network is trained, the inference
can be made during the run time. SysDiag produces suppressor hormones for
the tasks depending on the confidence score produced by the LSTM network for
the respective tasks. Thereafter, tasks with high confidence scores can be further
investigated using probes in the second stage of diagnosis.

4.3 Probing Based Diagnosis

Probes are end-to-end test transactions that collect information about the per-
formance of various devices in the distributed system. In organic computing, a
probe is a program initiated by the SysDiag. The PEs and tasks with high con-
fidence scores (outputs of neural networks) are selected for probing. The choice
of probes can vary depending on the device/task being probed. For example, a
probe to confirm a faulty sensor might differ from a probe to confirm a faulty PE.
Further, a heterogeneous distributed system consists of different types of PEs,
for example, PEs with general digital processing cores, analog cores, or memory
cores. Probes are only run-on demand rather than periodically. Thus, it allows
designing probes to collect all necessary device/task information to detect the
type of fault and reaffirm that components are indeed faulty.

SysDiag uses multi-level probing [15], where the first level of probes are
lightweight programs to collect basic information. SysDiag uses the data col-
lected by the first-level probes to send more specialized probes to gather more
details about the nature and type of the fault. Figure 2 exemplifies the above
multi-level probing.

5 Quality of Service

An application running on the distributed system might have a variable of inter-
est that represents the application’s quality of service. We define the quality of
service of an application as the availability of critical tasks. Thus, the goal is to

70 U. Raj et al.

Fig. 2. Control flow for probe-based diagnosis.

maximize the availability of the set of critical tasks necessary for providing core
system functionality and to avoid critical system failures, especially when insuf-
ficient compute resource is available to run all application tasks. [7] presents the
extension of AHS where it is possible to assign each task a priority. [8] uses the
priority extension of AHS to allow service degradation by stopping low-priority
tasks when insufficient computation power is available for all application tasks.

Consider a logical model of the application to be composed of a n tasks, SA is
defined as the set of all application tasks,

SA = {T1, T2, T3, T4, ..., Tn}. (6)

The subset of SA, CTA denotes the set of critical tasks crucial to the applica-
tion such that any of these tasks being non-responsive is equivalent to a critical
failure. For example, consider the below set of tasks to be in the set CTA

CTA = {T2, T5, T6, T8, ..., Tm}. (7)

Each task Ti has an associated criticality score given as CSi. The parent
tasks have at least the same or higher criticality score as the maximum of CSi

amongst all children tasks. The tasks in the set CTA have the highest CSi. With
this, the quality of service is defined as minimizing the Service Parameter SP
given by Eq. 8

SP =
i=n∑

i=1

m · CSi + mcf · Pcf , (8)

herein m is the number of hormone cycles task Ti not available, Pcf is the hyper-
parameter associated with critical failure, mcf is the number of hormone cycles
the system is in critical failure mode, and n is the number of tasks in the set SA.

The subset of tasks in the set SA might be various runtime services the
application provides, each sub-service being of varying criticality. For example,
in a car, one sub-service might be associated with the entertainment system,

Self-adaptive Diagnosis in Organic Computing 71

while other critical sub-services might be associated with the anti-lock braking
system. Thus, in events where enough PEs have failed in the system such that
not all sub-services can run, it is desirable to deallocate the compute resources
dedicated to the less critical sub-services and allocate them to tasks providing
the critical sub-service. [14] details application in a dynamic environment with
sub-services where ADNA can merge at runtime to form a new system.

6 Application Reconfiguration

Application reconfiguration is required when insufficient compute resource is
available to run all critical tasks. Different application configurations are defined
by different sets of ADNAs stored in each PE in the distributed system. The
logical model described in the ADNA for a given configuration might differ
and require higher/lower compute resource requirements. When the compute
resource falls below a threshold such that the currently active configuration no
longer provides the desired service, a different configuration (i.e., ADNA) con-
sisting of a lighter version of the application needs to be instantiated. This
application configuration might consist of bare-bones implementation of the
service to avoid catastrophic failures or to provide the best service possible
with the remaining compute resources. For each configuration, the set of criti-
cal tasks CTA should always be available even in situations where not enough
computing resource is available to run all tasks SA in the given configuration.

6.1 Compute Resource Unit

Compute Resource Unit (CRU) is the unit to measure the compute resource
available on the PEs and that required by the application tasks. Each PE’s
available compute resource is defined at design time and is an integer multiple
of CRU. In a heterogeneous system, different PEs might differ in their available
compute resources. Thus, defining compute resource as an integer multiple of
CRU helps map requirements of tasks to be the set of available PEs.

SysDiag monitors the available compute resource (CAi) for each task in CTA

for a given configuration which is defined by Eq. 9,

CAi = a +
i=t∑

l=1

�Cl/Ki� (9)

where a = 1, if the task Ti is running, otherwise 0. t is the number of PEs suited
to run the task Ti; Cl is the compute resource, not dedicated to any task in the
set CTA on PEl, measured as a multiple of CRU; Ki is the compute resource
required to run task Ti measured as a multiple of CRU. In the above equation,
the floor function ensures that when none of the PEs have enough free compute
resources to instantiate the task Ti, the summation results in zero. Thus, when a
task belonging to set CTA is not running (a = 0), and none of the PEs have free

72 U. Raj et al.

compute resources (either unallocated or running a task, not in the set CTA)
then CAi for the task Ti evaluates to zero.

SysDiag decides to perform reconfiguration when CAi evaluates to zero for
any task Ti in CTA. To avoid reconfiguration in the case of transient failures,
SysDiag waits for a predefined number of hormone cycles before instantiating
reconfiguration. Since each application configuration might have a different set
of critical tasks with varying compute resource requirements, each set of ADNA
stores the associated compute resource required to run its set of critical tasks.

7 Use Case - Explorer Robot

The use case for quality-of-service optimization and reconfiguration in situations
where not enough compute resource is available is demonstrated via a use case
of an Explorer Robot set in an office environment, where the robot’s objective
is to explore the environment while avoiding stationary and moving obstacles.
The environment and robot are modeled in Coppelia Simulation distributed by
Coppelia Robotics, Ltd. [12].

7.1 Physical Model

The robot has sixteen proximity sensors spread all around the robot, with two
sensors on either side, six proximity sensors in the front, and six on the back.
In addition, the robot has a differential drive, i.e., two motors drive each wheel
independently. The differential drive allows the rotational speed of each wheel to
be independently controlled, allowing for a range of motion, including in-place
rotation.

Figure 3 shows the physical hardware model of the Explorer Robot with four
general-purpose processing elements connected to proximity sensors and drive
motors via the System Bus. The PE Bus connects the four processing elements
allowing for inter-processor communication. In addition, the system bus enables
each PE to access every sensor and to set the rotational speed of the left and
right wheel motors.

PEs are identical and have a computational resource of 2 CRU each. The
available CRU decides the viability of the ADNA configuration to run as
intended. Therefore, at any point in time, the total available CRU must be
higher or equal to the CRU required to run all tasks in a configuration to avoid
degraded performance or outright service failure. SysDiag monitors available
CRU and performs reconfiguration when this falls below the threshold required
to run all critical tasks in the current configuration.

7.2 Logical Model

The application involves three following significant steps. The first involves pro-
cessing proximity sensor data to detect obstacles and the distance of the detected
obstacle from the robot. The second step involves planning the direction and

Self-adaptive Diagnosis in Organic Computing 73

Fig. 3. Physical model of Explorer
Robot

Fig. 4. Logical model of Explorer
Robot

velocity of the robot based on the sixteen sensors’ data. The third step is to set
the rotational speeds of the wheel motors to achieve the desired robot motion
as planned in step 2. Figure 4 shows the logical model of the robot. Each task in
the set {T1, T2, T3, T4} interfaces with sensor hardware, calculates the distance
of detected obstacles, and forwards the array of distances to task 5, which is
responsible for path planning. Task 5 decides the robot’s direction and speed,
and sends the velocity and direction data to task 6, which controls the motors
connected to the two wheels, enabling the Explorer Robot to explore the envi-
ronment.

7.3 Initial Configuration

The primary ADNA of the application consists of six tasks. A copy of the primary
ADNA is stored on each processing element and is used by the AHS to perform
the initial configuration. AHS distributes six tasks to four processing elements.
Each PE is equally suited to run any of the six tasks, as there are no constraints
on the task suitability to a PE.

The computational resource requirement of each task in the primary ADNA
is 1 CRU each; thus, each PE can run at most two tasks. Therefore, the system
has a redundancy of one PE allowing organic computing to handle up to one
PE failure without adversely affecting the application’s quality of service. For
example, after one initial configuration, PE-2 and PE-4 take one task each, and
thus they have 1 free CRU available, which can be used to redistribute tasks in
case of failure of either PE-1 or PE-3, each of which runs two tasks.

7.4 Degraded Performance

The Explorer Robot can tolerate a permanent failure of one PE without impact-
ing the performance and quality of service since organic computing inherently
redistributes tasks in case of PE failures via the hormone loop that runs in the
local instance of AHS on each PE.

74 U. Raj et al.

In a failure situation, when two out of four PEs fail, six tasks have to be
redistributed to the two operational PEs, but since one PE has only 2 CRU, it
can only run a maximum of any two tasks from the set {T1, T2, T3, T4, T5, T6}.
Thus, critical tasks need to be prioritized. The set CTA for the application is
{T1, T2, T5, T6}; thus any task from the set {T3, T4} must be dropped in favor of
higher priority tasks in the set CTA. The choice of tasks in CTA assumes that
the forward motion of the robot is desirable for efficiency and better service.

7.5 Reconfiguration

When the robot suffers three PEs failures, it becomes impossible to run all tasks
in the set CTA. Therefore, it is required to trigger a reconfiguration, initiating
operational PEs to load the backup ADNA with a logical model that provides
the minimum service level and requires computation resources less than or equal
to what is available. Figure 5 shows such a logical model of backup ADNA for the
Explorer Robot. It consists of two tasks. Task 1B is responsible for processing
the six frontal sensors (sensors 2–7) to detect obstacles and calculate the distance
of detected obstacles from the robot. In addition, task 1B forwards the distance
value of detected obstacles to task 2B, which uses the Braitenberg algorithm [2]
to calculate the velocity of the wheels. This configuration is not as sophisticated
as the one denoted by the logical model in Fig. 4. Yet, it allows the robot to
operate with one PE, which is desirable when fail-operational is required.

The robot’s motion is limited in this configuration as it cannot move back-
ward because of no visibility of obstacles behind it. Furthermore, the left and
right turns are constrained due to a lack of side visibility. The total CRU needed
to run all tasks in this configuration is equal to the CRU capacity of one PE.
Thus, the backup ADNA allows the robot to stay operational with only one
functioning PE.

Fig. 5. Logical model of backup ADNA

7.6 Results and Evaluation

Simulation is performed for fifteen minutes in each configuration to evaluate
the robot’s objective function to maximize exploration and minimize collision.
Figure 6 presents a scatter plot of the robot’s position during the simulation.

Self-adaptive Diagnosis in Organic Computing 75

The robot’s movement is limited within the area bounded by the x-coordinate
[−2.2, 2.2] and y-coordinate [−2.2, 2.2]. In the primary configuration, the robot
uses a randomized turning angle in either direction to cover the maximum area.
It successfully avoids most obstacles and suffers collisions at the rate of 1.2 colli-
sions/min. The major causes of such collisions are moving objects colliding with
the robot’s side where insufficient space is available to perform speedy maneu-
vers. As shown in Fig. 6, Explorer Robot covers most of the area not blocked by
obstacles (corresponding to the white gaps in the scatter plot).

Fig. 6. Coordinates covered in primary
configuration

Fig. 7. Coordinates covered in
degraded configuration

When two PEs fail, the system has to enter degraded performance mode,
where only the front eight sensors are used to plan the robot’s motion, thus
reducing the rate of exploration. Figure 7 shows the area covered by the Explorer
Robot in degraded performance mode during the ten minutes of simulation. It is
observed that the area covered is significantly less than in Fig. 6. The observation
is explained by limited randomness in the robot’s motion due to limited visibility.
The collision rate also increases to 2.1 collisions/min, as shown in Fig. 8.

When three processing elements fail, the backup ADNA configuration is ini-
tialized, and the Explorer Robot uses only six frontal sensors to plan its motion.
The robot uses the Braintenberg algorithm for collision avoidance. Figure 9 shows
the area covered by the robot in this configuration, which is severely limited com-
pared to the primary configuration. The collision rate increases from 1.2 colli-
sions/min in the primary configuration to 2.9 collisions/min. This configuration’s
service quality is limited, but it avoids service availability failure as would have
happened if the classical organic computing principles were not extended with
degraded performance and reconfiguration.

76 U. Raj et al.

Fig. 8. Collisions/min in different con-
figurations

Fig. 9. Coordinates covered after
reconfiguration

8 Conclusion and Future Work

Organic computing handles PEs failures and task crashes by redistributing tasks
to available PEs in the distributed system. However, it does not provide the appli-
cation diagnosis. Thus, in this paper self-adapting diagnosis is developed for dis-
tributed systems running organic computing as a middleware. SysDiag handles
faults and failures on the application and global levels. In addition, LocDiag is
responsible for diagnosing faults in local PE and cooperating with SysDiag via
sending diagnosis data and locally monitored variables in terms of periodic logs.
The Explorer Robot use case demonstrates that self-adapting application diag-
nosis improves the reliability of the application running on organic computing
middleware.

Future work comprises the development and implementation of the diagnostic
models and algorithms based on the semantic description of the application and
using the semantics to trigger reconfiguration without explicitly storing backup
ADNA.

Acknowledgment. This work was supported by the DFG research grants BR
2024/25-1 and OB 384/11-1.

References

1. Linux User’s Manual (2022). Accessed 28 Feb 2023
2. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT press, Cam-

bridge (1986)
3. Brinkschulte, U.: An artificial DNA for self-descripting and self-building embedded

real-time systems. In: Proceedings of the 2014 IEEE 17th International Symposium
on Object/Component-Oriented Real-Time Distributed Computing, pp. 326–333.
ISORC 2014, IEEE Computer Society, USA (2014)

4. Brinkschulte, U., Pacher, M., Renteln, A.: An artificial hormone system for self-
organizing real-time task allocation in organic middleware. In: Organic Computing.
UCS, pp. 261–283. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
540-77657-4 12

https://doi.org/10.1007/978-3-540-77657-4_12
https://doi.org/10.1007/978-3-540-77657-4_12

Self-adaptive Diagnosis in Organic Computing 77

5. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

7. Hutter, E., Brinkschulte, U.: Towards a priority-based task distribution strategy for
an artificial hormone system. In: Brinkmann, A., Karl, W., Lankes, S., Tomforde,
S., Pionteck, T., Trinitis, C. (eds.) ARCS 2020. LNCS, vol. 12155, pp. 69–81.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52794-5 6

8. Hutter, E., Brinkschulte, U.: Handling assignment priorities to degrade systems in
self-organizing task distribution. In: 2021 IEEE 24th International Symposium on
Real-Time Distributed Computing (ISORC), pp. 132–140 (2021)

9. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to
Fault Tolerance. Springer, Heidelberg (2006)

10. Isermann, R.: Fault-Diagnosis Applications: Model-Based Condition Monitor-
ing: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems.
Springer, Heidelberg (2011)

11. Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., Nandi, A.K.: Applications of machine
learning to machine fault diagnosis: a review and roadmap. Mech. Syst. Signal
Process. 138, 106587 (2020)

12. Ltd., C.R.: Coppeliasim user manual (2022). https://www.coppeliarobotics.com/
helpFiles/index.html. Accessed 20 Feb 2023

13. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing - A Paradigm
Shift for Complex Systems, Autonomic Systems, vol. 1. Springer, Basel (2011)

14. Pacher, M., Brinkschulte, U.: Monitoring of an artificial DNA in dynamic environ-
ments. In: Wehrmeister, M.A., Kreutz, M., Götz, M., Henkler, S., Pimentel, A.D.,
Rettberg, A. (eds.) Analysis, Estimations, and Applications of Embedded Sys-
tems. IESS 2019. IFIP Advances in Information and Communication Technology,
vol. 576, pp. 167–178. Springer, Cham (2023)

15. Rish, I., et al.: Adaptive diagnosis in distributed systems. IEEE Trans. Neural
Netw. 16, 1088–1109 (2005)

16. Stamatakis, G., Pappas, N., Fragkiadakis, A., Traganitis, A.: Autonomous main-
tenance in IoT networks via AOI-driven deep reinforcement learning. In: IEEE
Conference on Computer Communications Workshops, pp. 1–7 (2021)

17. Yao, L., Guan, Y.: An improved LSTM structure for natural language processing.
In: IEEE International Conference of Safety Produce Informatization (IICSPI),
pp. 565–569 (2018)

https://doi.org/10.1007/978-3-030-52794-5_6
https://www.coppeliarobotics.com/helpFiles/index.html
https://www.coppeliarobotics.com/helpFiles/index.html

Dependability and Fault Tolerance
(VERFE)

Error Codes in and for Network
Steganography

Jörg Keller(B) and Saskia Langsdorf

FernUniversität in Hagen, Hagen, Germany
joerg.keller@fernuni-hagen.de

https://www.fernuni-hagen.de/pv

Abstract. We illustrate the inter-relationship between network
steganography and error coding through examples where error codes
(correction or erasure codes) are used in steganographic channels and
examples where steganographic channels are established in data on
which error codes are applied. In particular, we experimentally investi-
gate an existing approach of a steganographic channel in a transmission
with error correction code with respect to bandwidth, robustness and
detectability, and expand this construction to provide another exam-
ple of multi-level steganography, i.e., a steganographic channel within a
steganographic channel.

Keywords: Error Correcting Block Codes · Erasure Codes · Network
Steganography · Covert Channels

1 Introduction

Error codes and steganography both use redundancy in transmitted or stored
messages or data to embed additional information, albeit with different purpose.
Error codes, under which term we subsume correction and erasure codes, add
some redundant bits to a message to enable reconstruction of the original data in
the case of modified or lost message bits [4]. In contrast, steganography uses the
transmitted data as a cover and exploits redundancy to embed a secret message
without destroying the original data [16]. Due to the commonalities, both fields
partly use similar techniques, and sometimes even appear in conjunction. This
can come in two flavors. Robustness of the secret message, which is affected by
loss or modification of bits in the same way as the cover message, can be achieved
by error codes. Redundancy provided by error codes for the cover message can
be abused to also transmit secret data. However, both fields are researched by
largely different communities, so that the intersection of these fields has only
received limited interest so far. The combination can also lead to examples of the
otherwise rare multi-level steganography [6]: a steganographic message within
an error code needs to be protected by another error code, into which a second
steganographic message can be embedded.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 81–93, 2023.
https://doi.org/10.1007/978-3-031-42785-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_6&domain=pdf
http://orcid.org/0000-0003-0303-6140
http://orcid.org/0009-0005-1798-8793
https://doi.org/10.1007/978-3-031-42785-5_6

82 J. Keller and S. Langsdorf

In the present work, we therefore present a caleidoscope of the use of error
codes (both erasure codes and correction codes) in steganography, and the use of
steganography in both forms of error codes for cover messages. While part of this
work is kind of a survey, yet without claim of completeness or systematic treat-
ment (hence the term caleidoscope), we investigate one idea in more detail and
provide experimental results both with respect to steganographic bandwidth,
robustness and detectability of the steganographic method. Especially the lat-
ter is often neglected, but seems especially necessary as steganographic channels
are frequently used for criminal purpose, e.g., in the communication of botnet
computers with their command and control server, to avoid detection.

In particular, we make the following contributions:

– Examples of constructions for steganographic channels in error correction
codes and erasure codes, and examples of the use of error correction codes
and erasure codes in steganographic channels are given.

– A construction from literature [17] of a steganographic channel within a trans-
mission with error correction code is experimentally investigated with respect
to steganographic bandwidth, robustness and detectability.

– This construction is expanded to provide another example of multi-level
steganography.

The remainder of this paper is organized as follows: Section 2 presents back-
ground on error codes and steganography, and discusses related work. Section 3
explains the different approaches how to combine error codes and steganographic
channels in different ways. Experimental results on a steganographic channel
within error correction codes are presented in Sect. 4. Section 5 concludes and
suggests future work.

2 Background

2.1 Error Codes

Forward error correction serves to protect transmission over a noisy channel
without necessity of re-transmission or a back channel for acknowledgements.
The field of error codes is very large, hence we will focus on block codes for error
correction and rateless erasure codes. A good overview of the field is given in
[13] on which this subsection is based.

When a data word w ∈ Σk over symbol alphabet Σ of size q is transmitted
over a noisy channel, some symbols might be modified. Hence, prior to trans-
mission the data word is extended into a codeword C(w) ∈ Σn with the help
of a block code C : Σk → Σn, where n > k. Let d be the minimum Hamming
distance between any two codewords. Then, as long as fewer than d/2 symbol
modifications occur during transmission, the received word c′ can be successfully
corrected into the unique codeword c with minimum Hamming distance to c′,
and the data word w can be reconstructed by w = C−1(c). The so-called error
correction codes (ECC) normally can be arranged such that C(w) = w,w′ with

Error Codes and Covert Channels 83

w′ ∈ Σn−k. The former part of the codeword is then called data part, the latter
is often called parity part. Codes are commonly denoted by a tuple (n, k, d)q, or
(n, k) if d is maximum or not known. n/k is called the rate of the code. For q = 2,
codes are called binary. Examples of popular binary block codes are Hamming
codes, Reed-Muller codes and BCH codes.

Erasure codes (over a symbol alphabet Σ of size q) extend the data word
of k symbols into an n-symbol code word and allow the reconstruction of the
data word as long as a sufficient number of the n symbols are received. Optimal
erasure codes only need k of n symbols to reconstruct the data word, while
fountain codes, which are near-optimal, can generate an infinite sequence of
code symbols and need (1 + ε)k received symbols to reconstruct the data word
with very high probability. For example, for each code symbol to be transmitted,
a Luby-Transform (LT) code [15] randomly chooses a degree d, where 1 ≤ d ≤ k
according to a given distribution. Then it chooses d (of k) data symbols randomly
with equi-distribution, and combines these d data symbols into one code symbol.

Typically, data symbols are bit strings of fixed length, and the combination is
bitwise exclusive or. The code symbol is transmitted together with some encoding
of the subset that describes which data symbols have been combined, e.g. a k-bit
vector.

2.2 Network Steganography

A steganographic transmission hides the transmission of a secret message (also
called covert message) within the transmission of an innocent looking message
(also called overt or cover message or carrier). Thus, while an encrypted trans-
mission would keep the content of the covert message secret, the steganographic
transmission tries to hide the existance of the secret communication [16].

Embedding of a secret message can either be done by modifying temporal
behaviour of the carrier (timing channel) or by modifying the content of the
carrier (storage channel). As network transmission usually contains some redun-
dancy such as unused or reserved header fields in IP packets, the embedding often
can take place without disturbing the overt communication. Alternatively, also
random values can be replaced by random-looking parts of the secret message,
e.g., by encrypting the secret message prior to transmission. Finally, also part
of the overt communication can be overwritten by the secret message, which
may however lead to speedy detection. A complete set of hiding patterns has
been published in [22]. The established steganographic channel is also called
covert channel, a term introduced by Lampson [11] to describe communication
via means that have never been intended for communication.

Characteristic parameters of a steganographic transmission, which are inter-
dependent via the so-called magic triangle, are steganographic bandwidth,
robustness, and stealthyness [16].

As steganographic transmission can be used for good and bad (human rights
activists leaking information from autocratic regimes, or botnet computers com-
municating secretly with their command-and-control server), new approaches for

84 J. Keller and S. Langsdorf

secret transmission as well as approaches for detection, limitation and preventa-
tion of steganographic transmission must be researched. However, the latter is
often neglected.

Robustness of the steganographic transmission is often assumed as a property
of the carrier, however this is not always the case as the next section will show.
Robustness of the secret message can be achieved by forward error correction
within the steganographic transmission, or with the help of micro-protocols [20],
which however typically require the use of a steganographic back channel that
is often not available.

2.3 Related Work

A steganographic method using error correction codes was introduced in [17].
Medvedeva et al. used BCH correction codes and analyzed the impact of channel
noise on hidden messages. However, no second level of hidden information was
provided and an in-depth analysis on detectability is missing.

Liu et al. [14] investigate error correction codes in image steganography.
They use different error syndromes to embed different symbols of secret message,
however the relation between the error correction code and its use in encoding
the image is not detailed.

Munuera [19] investigates the systematic construction of algorithms to embed
secret messages in images with the help of error correction codes. The codes are
chosen such that as few pixels as possible must be modified. This line of research
has been followed in a string of articles up to [12].

Keller and Magauer [8] investigate robustness of watermarks or secret mes-
sages in jpeg images under re-encoding of those images with lower quality. They
design an error code which is able to correctly retrieve the secret message from
the re-encoded image in a majority of cases.

3 Combining Error Codes and Steganography

3.1 Error Correction Codes in Covert Channels

A steganographic message embedded into network packets may be subject to
modifications, e.g., if it is placed in a packet header field of which some bits may
also be modified by a router on the way due to rules of the network protocol. In
this case, the steganographic message should be protected by an error correction
code. The choice of the particular code depends on the type of modification, i.e.,
are there only single bit errors possible or also multi-bit errors.

However, error correction codes have also found less straightforward uses.
In [23], the authors present a steganographic scheme where a secret message is
partitioned into h-bit blocks, and covert sender and receiver both monitor the
same stream of network packets that serves as carrier. Each time when the h-bit
hash value of a packet matches the contents of the next block, the covert sender
signals the covert receiver via a different channel, thus reducing the bandwidth

Error Codes and Covert Channels 85

requirements by factor h, and avoiding the need to modify the network packets
themselves. When investigating steganographic bandwidth and detectability, the
authors propose to also use partial matches, where up to t bits of the hash value
may be wrong. To be able to correctly decode the secret message, they partition
the message into blocks of length h − c bits and append a BCH error correction
code of length c that is able to correct up to t bit errors.

3.2 Covert Channels in Error Correction Codes

So far error correction codes were introduced as redundancy to achieve robust-
ness of a secret message. However, the redundancy of error correction codes used
in a carrier can also be abused to create a covert channel itself. Transmission
errors commonly happen, but the ratio of errors to redundancy often allows
for a lot more errors to happen until a message content is lost. For example, if
up to two bit errors in a word can be corrected, but commonly only single bit
errors happen, then a specific bit can be flipped by the covert sender as a signal.
Hence, additional information can be injected as errors in data transmission. A
receiver unaware of secret information will perceive this additional information
as further transmission errors, while a covert receiver knowing of the hidden
message can extract the secret data by decoding the manipulated errors in the
received data. Please note that we assume two transmission errors in one block
to be sufficiently seldom to be ignored. Otherwise, a Hamming code would not
be suitable to protect the cover message.

In order to extract the secret information correctly, covert sender and receiver
must align where to insert or extract the information from, respectively. In its
simplest form, they can agree to use each t-th block. To distribute the manipu-
lated errors in a pattern observed as random by an observer, a pseudo random
number generator (PRNG) can be used [10], which outputs values from 0 to
t − 1 with similar frequency. The covert sender will only use a block to embed
secret information if the generator outputs a 0. Pseudo random number genera-
tors follow a deterministic algorithm, allowing covert sender and receiver to use
the same number sequence if they agree beforehand on the seed value.

To embed bit values 0 and 1 into a carrier medium, i.e. error correction
encoded data, a bit error is only injected into the content if a 1 is to be trans-
mitted. For a 0, no error will be injected in the respective code block. This idea
is borrowed from [17], yet transferred from BCH to Hamming codes and put into
a new setting where e.g. blocks to insert errors are chosen pseudo-randomly.

The steganographic bandwidth of such a covert channel strongly depends
on the error correction code of the medium, in which the secret information
will be embedded in. For example, a (7, 4)-Hamming code can transmit one
error in a block of seven bits, while in a (63, 57)-Hamming code one bit can
only be carried by 63 bits in the encoded carrier since all Hamming codes have
minimum distance d = 3 and, thus, only one error can be corrected within one
encoded block. For a given carrier transmission of length l, which is Hamming
encoded with block length n, the maximum capacity Cmax for secret information
is �l/(tn)�.

86 J. Keller and S. Langsdorf

The robustness of such a covert channel is impacted by transmission errors
in the physical transmission channel. If a 0 is transmitted, a transmission error
gets it decoded as a 1. If a 1 is transmitted, a transmission error will mostly lead
to a second faulty bit, and, thus, to still decoding a 1 for the secret message, but
wrong decoding of the block of carrier message. If the inserted error bit is flipped
back by the transmission error, then the received carrier block is error-free and
a 0 is decoded for the secret message. This indicates that the secret message
should be protected by an error correction code as well. Figure 1 depicts three
example situations to illustrate the above scheme.

Fig. 1. Example situations when transmitting data 0000 with (7,3) Hamming code:
(a) secret bit 1 is inserted into a block by flipping the least significant bit prior to
transmission. (b) secret bit 0 is inserted by not flipping any bit, but a transmission
error occurs. (c) secret bit 1 is inserted by flipping the least significant bit prior to
transmission, but a transmission error occurs on that bit.

The scheme above can be varied by differentiating between injecting the error
on the data bits and the redundant parity bits. A bit value 1 of the secret message
can be sent as an error in data bits and accordingly a 0 will be transmitted by
injecting an error in parity bits. For inefficient error correction codes, i.e., large
ratio n/k, the probability of an error appearing in a parity bit is close to the
probability of errors in data bits. Thus, this differentiation is less obvious to an
observer than choosing two specific bit positions. Robustness issues remain as
before. For example, a transmission error that results in a flipped data bit, while
a bit value 0 from the secret message has been injected as a bit error in a parity
bit, makes unique decoding impossible.

Multi-level Approach. Inserting secret information through error correction
codes offers the opportunity to hide further data in that secret information, i.e.,
enables multi-level steganography. The first obvious possibility opens because
the secret information itself is encoded using an error correction code and, thus,
applying the previously explained approach is possible again on the encoded
secret information.

Another approach can be made through the positioning of injected errors as
described above. By using the bit position to embed secret data, either the secret

Error Codes and Covert Channels 87

symbol alphabet can be extended to improve the steganographic bandwidth of
the first secret message, or a second message not correlated to the primary
hidden message can be transmitted. While the latter approach does not have
the advantage of an improved bandwidth for the first secret message, it might
hide the amount of secret information that is transmitted. It is unlikely that
an observer of the secret transmission, who already deciphered one message is
looking for the existence of a secondary hidden message.

Deployment Scenario. Error-correction codes are used both in transport pro-
tocols [2,21] and in cellular networks [1]. They have also been considered for pro-
tocols such as QUIC [18]. Hence, the proposed covert channels can be deployed
similarly to other scenarios where the value modulation pattern is applied in
transport or higher layer protocols. Examples of such deployment are given in
[22].

3.3 Erasure Codes and Covert Channels

In [7], the author demonstrates that within a fountain code, which is a rateless
erasure code without the need for a backwards channel to signal message loss
[3], a random subset index in a cover message protected by such code against
message loss can be replaced by the quasi-random looking encrypted part of a
secret message of appropriate size. The challenge here was that the index range
is not a power of 2 as there are

(
k
d

)
possible subsets of size d from the set of k

carrier symbols to be transmitted. At the same time, the secret message must
be protected against message loss due to loss of a cover message, yet without
having a channel back to the covert sender. Thus, a fountain code is also applied
here, which opens the door for a second level covert channel, which however has
a much smaller steganographic bandwidth. Even a third level channel could be
implemented [9].

4 Experimental Results

The covert channel presented in Sect. 3.2 has been implemented and analyzed.
To encode two secret messages, an overt message was encoded with a Hamming
code. For robustness purposes, each hidden message was encoded with an error
correction code, too. A PRNG was used to determine a code block in the cover
message for bit manipulation. Then the next bit of the primary secret message
was embedded. If that bit was a 0, no error was injected. If the message bit was a
1, the next symbol of the secondary message, that is the message encoded in the
bit position of the manipulated error, was checked to determine the bit position
of the manipulated error. A 1 was injected in a data bit, while a 0 was induced
through parity bit manipulation.

The error manipulated cover message was then sent through a simulated
physical channel. Additive white Gaussian noise (AWGN) was used to simulate
the channel quality. Hereby, the standard deviation correlates to the probability

88 J. Keller and S. Langsdorf

of a bit being correctly transmitted or not. While AWGN might not exactly
fit every physical link model (see e.g. [5]), it is still widely used and thus also
applied in our study.

The noise value added to a transmitted bit is being calculated randomly
across a standard normal distribution. If the resulting bit value is above 0.5, the
receiver will read the message bit 1, while a value below 0.5 will be read as 0.
Hence, a minimum of 0.5 must be added or subtracted from the bit value to
produce a transmission error. For a standard deviation of 0.1 for example, the
probability of a bit error is being further away from the mean of the normal dis-
tribution than the 5σ-area and, therefore, is approximately 0.000000287. Having
this channel quality, in one million bit transmissions the mean errors happen-
ing are 0.287. A standard deviation of 0.2 has already a significantly increased
probability of 0.006209666, i.e. 6209.666 errors in one million transmitted bits.

Without any transmission errors, the proposed covert channel successfully
delivers secret messages on both described levels, that is by manipulating error
existence and by manipulating the error position. To investigate the robustness
of the covert channel, simulations varying the channel noise, i.e. the standard
deviation of the AWGN, the chosen Hamming code and the occupancy rate, that
is the ratio of actually hidden information to maximal possible steganographic
bandwidth, have been conducted.

Figure 2 shows the influence of channel noise and chosen error correction code
based on different Hamming code length on the transmitted data. The occupancy
rate of primary and secondary message were set to 10% and 100%, respectively.
As the secondary message theoretically does not have any impact on the error
characteristics, the difference of occupancy rate between primary and secondary
message can be neglected. The calculated percentage of the error ratio is the
ratio of transmitted data to wrongly transmitted data. Specifically, for bit errors
during transmission, that is the ratio of occurring transmission bit errors to total
amount of transmitted bits. By visible errors in the cover message, we denote
the ratio of wrongly decoded symbols to total number of transmitted symbols.
Equivalently, errors in primary and secondary message are also calculated from
the ratio of wrongly decoded symbols to total amount of transmitted symbols.

In Fig. 2a the standard deviation correlates to the standard deviation of the
AWGN used to simulate a data transmission. All error correction encoding,
i.e. for cover message, primary and secondary message, was done using the (7,
4)-Hamming code. It can be seen that the secret message encoding using the
existence of errors (referred to as the primary message) is more robust to channel
noise than the encoding using the error positioning (referred to as the secondary
message).

The chosen Hamming code length has a significant impact on the robustness
of the primary hidden message, as shown in Fig. 2b. The channel quality was set
constant using σ = 0.2. While the bit errors do not increase, several bit errors
are more likely to be observed within the same error code block with increasing
code block length and, thus, are more likely to result in more errors in the cover
message as well as the primary message. For the secondary message, a worsening

Error Codes and Covert Channels 89

of the message errors can also be observed. Since the message modification is
already over 80% at (7, 4)-Hamming code due to the standard deviation of
σ = 0.2, the overall increase is not as drastic as for the primary message.

Fig. 2. Robustness of data transmission.

In Fig. 3, the influence of the occupancy rate is shown. Since the secondary
message does not have any impact on the error characteristics or steganographic
bandwidth of the first message, the secondary message is missing in this graph.
It can be seen that the impact of occupancy rate up to 10% of the steganographic
bandwidth is rather small. Only the errors in the primary secret message increase
continuously. At 100% occupancy rate, the impact on the robustness is clearly
visible. The bit errors do not increase since they are not linked to the occupancy
rate, as manipulated bit errors are not included in that value. At 100% occupancy
rate every channel error on a block carrying a hidden 1 directly results in an
error that cannot be corrected using the Hamming code, because each code block
is already occupied by a manipulated error. Thus, the amount of visible errors
in the cover message increases. For the primary message, not every channel error
disturbs the error encoded message since two channel errors in two blocks are
necessary to result in a not-correctable error. Thus, the impact is less severe on
the primary message compared to the cover message.

Various messages, that possibly serve as carriers for covert communication,
were classified by a trained Naive Bayes classifier to investigate the detectability
of secret messages based on the scheme proposed in Sect. 3.2. Two runs were per-
formed: One, in which the channel quality had AWGN with a standard deviation
in the range of σ = 0.1...0.2, and a second one, in which only specific channel

90 J. Keller and S. Langsdorf

Fig. 3. Robustness vs. occupancy rate of transmission medium (σ = 0, 2, (7,4)-
Hamming encoding).

qualities (e.g. σ = 0.175) were used for training and test data. A summary of
the classification results can be seen in Table 1 and Table 2, respectively.

Table 1. Classification for unknown channel noise (σ = 0.1, 0.125, 0.15, 0.175, 0.2).

contains message: classified as:

Yes No
∑

Yes 14 6 20

No 3 17 20
∑

17 23 40

Both classification scenarios show a statistically significant accuracy above
75% using only error rate and error position ratio for classification character-
istics. Specifically, the Naive Bayes classifier for unknown channel noise has an
accuracy of 77.5% and a precision of 82.4%. The sensitivity can be calculated to
70% resulting in a F-measure of 0.5768.

The Naive Bayes classifier for known channel noises has a slightly better
accuracy of 80% and an improved precision of 92.9%. However, the sensitivity
has decreased to 65%. The resulting F-measure exceeds the case of unknown
channel noise with 0.7649. It can be assumed that for further adjustments in
regards to the steganographic method, an improvement of classification quality
can be achieved.

In Tab. 3 the wrong prediction in contrast to the channel quality during
transmission can be seen. For the first classification case, i.e. unknown channel
quality (σ), the number of messages classified as not containing a secret message

Error Codes and Covert Channels 91

Table 2. Classification for known channel noise (σ = 0.1, 0.125, 0.15, 0.175, 0.2).

contains message: classified as:

Yes No
∑

Yes 13 7 20

No 1 19 20
∑

14 26 40

for high channel quality can be observed. A very low channel quality results in
the opposite false-positive prediction.

In contrast to the first classification case, the second classification case, i.e.
classification only within one specific standard deviation σ of the AWGN, wrong
predictions are only visible for low channel qualities. No wrong classification
appears for σ = 0.1 and σ = 0.125. For σ = 0.2, the incorrect classification
changed from false-positive to false-negative, resulting from the change of average
errors in the cover message.

Table 3. Wrongly classified messages.

σ σ unknown σ known

Prediction no Prediction yes Prediction no Prediction yes

0.1 1 0 0 0

0.125 2 0 0 0

0.15 1 0 1 0

0.175 2 0 2 1

0.2 0 3 4 0

Based on the results on steganographic bandwidth, robustness and detectabil-
ity, it can be assumed that an optimum of transmission channel quality exists
for the proposed covert channel using error correction codes. With decreasing
channel quality the errors in cover message and secret message increase, while
the detectability — especially in the case of known channel quality — decreases.
If the channel quality drops too low, neither cover message nor secret messages
can be read. Having few transmission errors, the message is likely to be detected.
Hence, the optimum is somewhere in between.

5 Conclusions

We have pointed out the relationships between steganographic transmission
channels and transmissions with error correction and erasure codes. We did so

92 J. Keller and S. Langsdorf

with the help of examples where both appear in different combinations. Further-
more, we have extended the proposal from [17] from BCH codes to Hamming
codes, added the capability for multi-level steganography, and experimentally
investigated detectability, which was not done in the original paper. The results
obtained from the investigation suggest an optimum of transmission quality for
covert channels in error correction codes.

Future work will comprise a systematic survey of the intersection between
those fields and a categorization of the possible forms of interaction between
steganographic channels and error coding, thereby possibly deriving new forms
of steganographic channels. Furthermore, detection by other means such as mon-
itoring error patterns with time series analysis will be investigated.

References

1. Alexiou, A., Bouras, C., Papazois, A.: Adopting forward error correction for mul-
ticasting over cellular networks. In: 2010 European Wireless Conference (EW), pp.
361–368 (2010). https://doi.org/10.1109/EW.2010.5483446

2. Barakat, C., Altman, E.: Bandwidth tradeoff between TCP and link-level
FEC. Comput. Netw. 39(2), 133–150 (2002). https://doi.org/10.1016/S1389-
1286(01)00305-X

3. Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach
to reliable distribution of bulk data. In: Proceedings of the ACM SIGCOMM 1998
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM 1998), Vancouver, B.C., Canada, pp. 56–67.
ACM (1998). https://doi.org/10.1145/285243.285258

4. Clarke, G.C., Jr., Cain, J.B.: Error-Correction Coding for Digital Communication.
Springer, New York (1981)

5. Cunningham, D., Dawe, P.: Review of the 10Gigabit Ethernet link model. White
Paper AV02-2485EN, Avago Technologies (2010). https://docs.broadcom.com/
doc/AV02-2485EN

6. Fraczek, W., Mazurczyk, W., Szczypiorski, K.: Multilevel steganography: improv-
ing hidden communication in networks. J. Univ. Comput. Sci. 18(14), 1967–1986
(2012). https://doi.org/10.3217/jucs-018-14-1967

7. Keller, J.: Multilevel network steganography in fountain codes. In: Jaatun, M.G.,
Køien, G.M., Kulyk, O. (eds.) EICC 2021: European Interdisciplinary Cybersecu-
rity Conference, Virtual Event, Romania, November 10–11, 2021, pp. 72–76. ACM
(2021). https://doi.org/10.1145/3487405.3487420

8. Keller, J., Magauer, J.: Error-correcting codes in steganography. In: Karl, W.,
Becker, J., Großpietsch, K., Hochberger, C., Maehle, E. (eds.) ARCS 2006–19th
International Conference on Architecture of Computing Systems, Workshops Pro-
ceedings, March 16, 2006, Frankfurt am Main, Germany. LNI, vol. P-81, pp. 52–55.
GI (2006). https://dl.gi.de/items/928b33e5-ed16-4746-bc83-979877a4a28f

9. Keller, J., Marciniszyn, E.: Improved concept and implementation of a fountain
code covert channel. J. Wireless Mob. Netw. Ubiquit. Comput. Dependable Appl.
13(3), 25–36 (2022). https://doi.org/10.22667/JOWUA.2022.09.30.025

10. Kneusel, R.T.: Random Numbers and Computers. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77697-2

11. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973). https://doi.org/10.1145/362375.362389

https://doi.org/10.1109/EW.2010.5483446
https://doi.org/10.1016/S1389-1286(01)00305-X
https://doi.org/10.1016/S1389-1286(01)00305-X
https://doi.org/10.1145/285243.285258
https://docs.broadcom.com/doc/AV02-2485EN
https://docs.broadcom.com/doc/AV02-2485EN
https://doi.org/10.3217/jucs-018-14-1967
https://doi.org/10.1145/3487405.3487420
https://dl.gi.de/items/928b33e5-ed16-4746-bc83-979877a4a28f
https://doi.org/10.22667/JOWUA.2022.09.30.025
https://doi.org/10.1007/978-3-319-77697-2
https://doi.org/10.1007/978-3-319-77697-2
https://doi.org/10.1145/362375.362389

Error Codes and Covert Channels 93

12. Li, W., Zhang, W., Li, L., Zhou, H., Yu, N.: Designing near-optimal steganographic
codes in practice based on polar codes. IEEE Trans. Commun. 68(7), 3948–3962
(2020). https://doi.org/10.1109/TCOMM.2020.2982624

13. Lin, S., Costello, D.J.: Error Control Coding, Fundamentals and applications. 2nd
edn Prentice Hall, Upper Saddle River NJ (2004)

14. Liu, C.Q., Ping, X.J., Zhang, T., Zhou, L.N., Wang, Y.H.: A research on steganog-
raphy method based on error-correcting codes. In: 2006 International Conference on
Intelligent Information Hiding and Multimedia, pp. 377–380. IEEE (2006). https://
doi.org/10.1109/IIH-MSP.2006.265021

15. Luby, M.: LT codes. In: Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2002), Vancouver, BC, Canada, pp. 271–
280. IEEE (2002). https://doi.org/10.1109/SFCS.2002.1181950

16. Mazurczyk, W., Wendzel, S., Zander, S., Houmansadr, A., Szczypiorski, K.: Infor-
mation Hiding in Communication Networks: Fundamentals, Mechanisms, and
Applications. Wiley, IEEE Series on Information and Communication Networks
Security (2016)

17. Medvedeva, E., Trubin, I., Blinov, E.: Steganography method in error-correcting
codes. In: 24th International Conference on Digital Signal Processing and its Appli-
cations (DSPA), pp. 1–4. IEEE (2022). https://doi.org/10.1109/DSPA53304.2022.
9790782

18. Michel, F., De Coninck, Q., Bonaventure, O.: QUIC-FEC: bringing the benefits
of forward erasure correction to QUIC. In: 2019 IFIP Networking Conference
(IFIP Networking), pp. 1–9 (2019). https://doi.org/10.23919/IFIPNetworking.
2019.8816838

19. Munuera, C.: Steganography and error-correcting codes. Signal Process. 87(6),
1528–1533 (2007). https://doi.org/10.1016/j.sigpro.2006.12.008

20. Naumann, M., Wendzel, S., Mazurczyk, W., Keller, J.: Micro protocol engineer-
ing for unstructured carriers: on the embedding of steganographic control proto-
cols into audio transmissions. Secur. Commun. Networks 9(15), 2972–2985 (2016).
https://doi.org/10.1002/sec.1500

21. Pristupa, P.V., Mikheev, P.A., Suschenko, S.P.: Performance of forward error
correction in transport protocol at intrasegment level. In: Vishnevskiy, V.M.,
Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2020. CCIS, vol. 1337, pp. 546–
556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66242-4 43

22. Wendzel, S., et al.: A revised taxonomy of steganography embedding patterns. In:
Reinhardt, D., Müller, T. (eds.) ARES 2021: The 16th International Conference
on Availability, Reliability and Security, Vienna, Austria, August 17–20, 2021, pp.
67:1–67:12. ACM (2021). https://doi.org/10.1145/3465481.3470069

23. Wendzel, S., Schmidbauer, T., Zillien, S., Keller, J.: Did you see that? a covert
channel exploiting recent legitimate traffic. arXiv 2212.11850 (2022). https://doi.
org/10.48550/arXiv.2212.11850

https://doi.org/10.1109/TCOMM.2020.2982624
https://doi.org/10.1109/IIH-MSP.2006.265021
https://doi.org/10.1109/IIH-MSP.2006.265021
https://doi.org/10.1109/SFCS.2002.1181950
https://doi.org/10.1109/DSPA53304.2022.9790782
https://doi.org/10.1109/DSPA53304.2022.9790782
https://doi.org/10.23919/IFIPNetworking.2019.8816838
https://doi.org/10.23919/IFIPNetworking.2019.8816838
https://doi.org/10.1016/j.sigpro.2006.12.008
https://doi.org/10.1002/sec.1500
https://doi.org/10.1007/978-3-030-66242-4_43
https://doi.org/10.1145/3465481.3470069
https://doi.org/10.48550/arXiv.2212.11850
https://doi.org/10.48550/arXiv.2212.11850

Modified Cross Parity Codes for Adjacent
Double Error Correction

Georg Duchrau(B) and Michael Gössel

Universität Potsdam, Institut für Informatik und Computational Science, Potsdam,
Germany

duchrau@uni-potsdam.de

Abstract. The cross parity code is a well known single error correct-
ing and a double error detecting (SEC-DED) code with fast decoding.
Databits are abstractly arranged in a rectangular array. Checkbits are
determined as parities along rows and columns. In this paper we propose
to divide the data bit array into four quadrants Q1, Q2, Q3 and Q4. For
every quadrant a parity bit is determined. Compared to a non-modified
Cross-Parity Code the number of checkbits is increased by 3.

All single bit errors as well as all 2-bit errors with a first error in Q1

and a second error in Q3 or with a first error in Q2 and a second error
in Q4 can be corrected. Incorrectable 2-bit errors are detected.

By placing bits which are for instance stored in adjacent memory ele-
ments into appropriate quadrants Q1 and Q3 or Q2 and Q4, adjacent
2-bit errors can be corrected. Up to 2-bit check bit errors are detected
as well as all burst errors shorter than the side length of the data array.
Correct check bits can be recomputed from the corrected data bits. The
correction is as fast as for an unmodified cross-parity code.

Keywords: error correction · adjacent errors · cross parity code · DED

1 Introduction

Cross Parity Codes (CPC) are known for 1-bit error correction, two-bit error
detection and burst error detection. The data bits are arranged in a rectangular
(usually quadratic) array. A row parity for every row, a column-parity for every
column and an overall parity of all the data bits are determined. Figure 1a dis-
plays the data array, row and column parities as well as the overall parity for the
side length 4 and 16 data bits. The parities are determined as modulo 2 sums of
bits in a row (ri) or column (ci) or of all bits (p).

In some applications adjacent two bit errors occur more often than other
double bit errors. With smaller memory sizes errors can spread along two neigh-
bouring cells, causing adjacent errors. We propose a method for modifying well
known CPCs, to be able to correct certain double bit errors, like adjacent ones.

This is achieved by dividing the CPC array (Fig. 1a) into 4 quadrants (Fig.
1b) and determining the block parity pi for each quadrant, replacing the overall
parity. This increases the number of checkbits by 3.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 94–102, 2023.
https://doi.org/10.1007/978-3-031-42785-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_7

Modified Cross Parity Codes for Adjacent Double Error Correction 95

Fig. 1. Cross parity arrangement of databits, the array is divided into 4 quadrants the
overall parity p is split into 4 Block parities p1 . . . p4.

2 Related Work

A common method for SEC-DED is the well known Hsiao Code [1]. For k data
bits log k + 1 check bits are required in comparison to 2

√
k + 1 for CPC. The

latter comes with an advantage in correction speed and burst error detection.
The modification at hand, enabling roughly 25% of 2-bit error correction, is
adding another advantage at the cost of 3 additional checkbits.

CPCs for higher error correction were first investigated by Wieder in [2]. He
shows the existence of CPCs for correcting 3 errors and detecting 4 by using 4
types of lines (compared to 2 types for SEC-DED). The general approach is to
prove the uniqueness of syndromes.

The correction of two-bit errors is considered for instance in [2,5] and [9].
Besides the row parities and the column parities also diagonal parities are needed
and the number of checkbits is increased by the side length.

Argyrides et al. use matrix codes, with 2 or more checkbits per row/column
to be able to correct adjacent errors in the array [8].

In [3] Pflanz, Vierhaus et al. apply a 3 line scheme to detect a large number
of errors in a register array. The authors propose a correction method for errors
restricted to a single row or a single column and a syndrome based correction
method for other errors.

The correction of higher errors can be difficult in CPC like Codes. Some
methods have been proposed in [5] and [9].

96 G. Duchrau and M. Gössel

The concept of SEC-DED CPCs has been generalized for arbitrary dimen-
sions in [4].

Other ideas and applications regarding CPC can be found in [6,7].
We use the abbreviation “CPC” for Cross Parity Code. This is not to be mixed

up with cross parity check convolutional codes, a class of Codes for magnetic
tapes as defined in [10].

3 Proposed Method

The CPC array of databits is divided into 4 quadrants Q1, Q2, Q3 and Q4 of side
length M (see Fig. 2). Row parities ri and column parities ci remain the same
as for the ordinary CPC. For each quadrant a block parity pi is determined.
These 4 new checkbits replace the overall parity. Thus the number of checkbits
is increased by 3.

The checkbits are determined as follows (addition modulo 2):

ri =
2M−1∑

j=0

xi,j ci =
2M−1∑

j=0

xj,i

p1 =
∑

i,j<M

xi,j p2 =
∑

i<M, j≥M

xi,j

p3 =
∑

i,j≥M

xi,j p4 =
∑

i≥M, j<M

xi,j .

A two bit error with a first error in Q1 and a second error in Q3 can be corrected,
as well as a first error in Q2 and a second error in Q4.

If adjacent bits, e.g. bits stored in neighbouring memory elements, are
mapped to the appropriate quadrants, they can be corrected. This will be
explained in more detail below.

Up to the length 2M − 1 any burst in the databits can be detected (see
Sect. 4).

3.1 Decoding

For decoding the following rules apply:

1. If there is exactly one inverted column parity, row parity and block parity in
a quadrant, an error can be corrected via Δxi,j .

2. If there are at least two inverted checkbits regarding a single quadrant and
the correcting conditions (rule 1) are not fulfilled in any quadrant, an incor-
rectable error is detected.

The correction value for the bit xi,j is defined as

Δxi,j = Δri · Δcj · Δpq, q : quadrant index. (1)

(The point operation denotes the logical AND operation.) For burst error detec-
tion (see Sect. 4) the following third rule comes into effect:

Modified Cross Parity Codes for Adjacent Double Error Correction 97

3. Two inverted column bits in any quadrant always cause detection of an incor-
rectable error.

At first we describe the correction of data bits. Check bit errors are considered
in Sect. 3.2.

Fig. 2. Modified array with quadrant length M = 3, 2-bit error in encircled bits x1,1

and x4,4. Such errors can be corrected. To distinguish this error pattern from an error
in x1,4 ad x4,1 one uses the block parities pi.

As an example we consider a 2-bit error in the data bits x1,1 and x4,4 as
illustrated in Fig. 2. The set of inverted checkbits is {r1, r4, c1, c4, p1, p3}. In Q1

there is exactly one inverted row, column and block parity ({c1, r1, p1}). Likewise
in Q3, here the inverted set of parities is {c4, r4, p3}. According to rule 1 and Eq.
1 the bits x1,1 and x4,4 will be corrected. The block parities pi are necessary to
distinguish this error from a double error in x1,4 and x4,1.

We illustrate different cases with diagrams. In these diagrams an inverted
row or column parity corresponds to a line in the data array, on which an error
is located.The four quadrants are separated by thick lines. The thin lines express
inverted row and column parities. Asterisks express inverted block parities.

The example above is illustrated in Fig. 3a. The first erroneous bit is located
in Q1 at the intersection of 2 thin lines. Since also the block parity is inverted
the quadrant is marked by an asterisk. According to rule 1) the bit in Q1 located
at the intersection is corrected. Both neighbouring quadrants (Q2 and Q4) also
contain an intersection of thin lines but no inverted block parity (no asterisks).
No bit of these quadrants is corrected. In the remaining quadrant (Q3, lower
right) is a crossing point of to thin lines and a inverted block parity. According
to rule 1) the bit at the intersection is corrected. After this both erroneous bits
are correct.

98 G. Duchrau and M. Gössel

Fig. 3. Illustration of 2-bit data errors; a) is correctable, b) and c) are not.

Figure 3b illustrates the case of a double error in Q1. Here it is not possible
to localize the error positions unambiguously. Four thin lines intersect in Q1.
The two erroneous bits can be at both diagonally arranged positions marked by
the crossing points. No asterisk is displayed since an even number of errors is
not visible modulo 2.

Also in scenarios represented by Fig. 3c it is not possible to locate the error
positions unambiguously. Here the two errors are located in neighbouring quad-
rants, marked by asterisks (change in block parity). Both errors invert a column
and a row check bit, hence the 4 thin lines. The errors can either be located
at the top or bottom intersection of the marked quadrants. Due to rule 2) an
incorrectable error is detected in the two latter cases.

If both errors are located on the same row/column the according checkbit
will not be inverted. A localization of the errors is not possible and due to rule
2) an incorrectable error will be detected.

By mapping the data bits (yi in Fig. 4) to the bits in the abstract arrangement
(xi,j) one can choose, to a certain point, which errors are actually corrected.

If one desires to correct adjacent bits, two bits that succeed each other have
to be mapped to diagonally arranged quadrants. We refer to this as adjacent
mapping. This can be achieved by mapping the first bit to Q1, the second bit to
Q3 the third bit to Q1 etc. until Q1 and Q3 are filled. Thereby the quadrants
are filled in reading direction (from left to right). After this the two remaining
quadrants (Q2 and Q4) are filled similarly. By doing so an adjacent error becomes
correctable with one exception—the adjacent error between the last bit of Q3

and the first bit of Q2. If one desires to correct this error as well, an additional
check bit can be added.

3.2 Checkbit Errors

Since two-bit errors are considered only the following cases are possible:

– A single check bit error,

Modified Cross Parity Codes for Adjacent Double Error Correction 99

Fig. 4. Mapping of adjacent memory cells to bits in diagonally arranged quadrants.
This way 2-bit errors in adjacent memory cells can be corrected.

– a double check bit error
or

– a single check bit error and a single data bit error.

In case of a single check bit error either a row parity, a column parity or a
block parity is inverted. In none of the quadrants more than 1 check bit will be
inverted, and according to rule 1 no correction is possible. Also rule 2) does not
apply. This is because the data remains correct here. If correct checkbits are of
interest, they can be redetermined from the correct data bits. We refer to this
as a correctable checkbit error.

In the case of a double bit error in the check bits at most two check bits are
inverted in a quadrant. According to rule 1 no correction is possible. According
to rule 2 an incorrectable error will be detected if two checkbits are inverted in
the same quadrant. If at most one checkbit is inverted in every quadrant, the
data bits are error-free and a correctable check bit error remains.

In the case of a single check bit error together with a single data bit error we
assume without loss of generality that the erroneous data bit is located in Q1.

If additional to the data bit error a row, column or the block parity in Q1

is erroneous, the number of inverted check bits in Q1 is even and the number
of inverted check bits in the quadrants Q2, Q3 and Q4 is less or equal 2 and no
correction can take place. Due to rule 2 an incorrectable error is detected.

If the block parity in one of the quadrants Q2, Q3 or Q4 is erroneous, the
data bit in Q1 will be corrected and an correctable checkbit error remains.

An erroneous row parity in Q2 or a column parity in Q4 is equivalent to a
erroneous row/column parity in Q1. Here, as mentioned above, the number of

100 G. Duchrau and M. Gössel

inverted parities in Q1 is even. The number of inverted parity bits in the other
quadrants is lower or equal 2. No correction takes place and an incorrectable
error is detected.

If a column parity of Q2, a row parity of Q4 (equivalent to a row parity or a
column parity of Q3) is erroneous, the data error in Q1 will be corrected and a
correctable checkbit error remains.

Similar considerations can be done for the erroneous data bit located in Q2,
Q3 or Q4.

4 Burst Detection

A burst error of length L is an arbitrary error pattern in which the first and last
erroneous bit are at most L − 1 bits apart. CPCs are capable of detecting burst
errors in the data bits up to the side length of the data array ([5]). Without
the adjacent mapping (see. Sect. 3.2) this also applies to the modification of the
CPC. The detectable burst length is two times the quadrant length (2M). 2-Bit
Bursts starting in the last row of Q2 with a first erroneous bit in Q2 and a second
erroneous bit in Q4 become correctable.

In the following we consider burst detection with the adjacent mapping.
As described above, adjacent bits in a memory cell are alternatingly placed

in Q1 and Q3 for the first half, and in Q2 and Q4 for the second half of the data
bits. The quadrants are filled in reading direction (from left to right).

Each erroneous bit in a burst of length 2M restricted to the first or second
half will invert a unique column check bit. Thus the length of detected bursts
here is 2M (see positions a to f in Fig. 5a).

Fig. 5. Possible burst positions for length 2M , restricted to one half (a) and spread
across two halves (b)

Modified Cross Parity Codes for Adjacent Double Error Correction 101

Only if the burst starts in the last M bits of Q3 (see. Fig. 5b) the detection
length is reduced by one. This is because the 2Mth bit occurs in the same column
as the 1st one. This reduces the detectable burst length by one, unless one starts
the mapping in Q4 for the second half.

5 Conclusion

This paper shows how a cross parity code can be modified to correct a large
number of 2-Bit errors and detect all incorrectable 2-bit errors including 2-bit
errors in the check bits. The data array was divided into four quadrants Q1, Q2,
Q3 and Q4 of data bits. An additional parity bit for every quadrant is required.
The general parity of the data bits of an unmodified cross-parity- code was
replaced by these four block parities, increasing the number of check bits by 3.
It was shown how 2-bit errors with their first erroneous data bit in block Q1 and
their second erroneous data bit in Q3 (or in Q2 and Q4) can be corrected. If the
bits stored in neighboring memory cells are alternatingly placed in the blocks Q1
and Q3 (or Q2 and Q4), adjacent two-bit errors in the memory are correctable.
It was explained how all burst errors up to two times the side length of the
quadrants can be detected and that corrected check bits can be recomputed
from the corrected data bits. Compared to an unmodified cross parity code no
additional delay for correction is needed.

References

1. Hsiao, M.Y.: A class of optimal minimum odd-weight-column SEC-DED codes.
IBM J. Res. Dev. 14, 395–401 (1970)

2. Wieder Jr, E.J.: “N-Dimensional Codes for Detecting Four Errors and Correcting
Three”, Master Thesis, University of Pennsylvania, Mai (1961)

3. Pflanz, M., Walther, K., Galke, C., Vierhaus, H.T.: On-line techniques for error
detection and correction in processor registers with cross-parity check. J. Electron.
Test. Theory Appl. 19, 501–510 (2003)

4. Wong, T.F., Shea, J.M.: Multi-dimensional parity-check codes for bursty channels.
In: Proceedings of 2001 IEEE International Symposium on Information Theory
(IEEE Cat. No. 01CH37252). IEEE (2001)

5. Hosp, S: Modifizierte Cross-Parity Codes zur schnellen Mehrbit-Fehlerkorrektur,
Dissertation, Universität Potsdam (2014)

6. Anne, N.B., Thirunavukkarasu, U., Latifi, S.: Three and four-dimensional parity-
check codes for correction and detection of multiple errors. In: International Con-
ference on Information Technology: Coding and Computing, 2004. Proceedings.
ITCC 2004. vol. 2. IEEE (2004)

7. Poolakkaparambil, M., et al.: Low complexity cross parity codes for multiple and
random bit error correction. In: Thirteenth International Symposium on Quality
Electronic Design (ISQED). IEEE (2012)

8. Argyrides, C.A., et al.: Matrix-based codes for adjacent error correction. IEEE
Trans. Nucl. Sci. 57(4), 2106–2111 (2010)

102 G. Duchrau and M. Gössel

9. Duchrau, G., Gössel, M.: A new decoding method for double error correcting cross
parity codes. In: 2022 IEEE 28th International Symposium on On-Line Testing
and Robust System Design (IOLTS). IEEE (2022)

10. Fuja, T., Heegard, C., Blaum, M.: Cross parity check convolutional codes. IEEE
Trans. Inf. Theory 35(6), 1264–1276 (1989)

Computer Architecture Co-Design

COMPESCE: A Co-design Approach
for Memory Subsystem Performance

Analysis in HPC Many-Cores

Antoni Portero1(B) , Carlos Falquez1 , Nam Ho1 , Polydoros Petrakis2 ,
Stepan Nassyr1 , Manolis Marazakis2 , Romain Dolbeau3 ,

Jorge Alejandro Nocua Cifuentes4 , Luis Bertran Alvarez4 , Dirk Pleiter5 ,
and Estela Suarez1

1 Jülich Supercomputing Centre, Novel System Architectures Design,
Forschungszentrum Jülich GmbH, Jülich, Germany

{a.portero,c.falquez,n.ho,s.nassyr,e.suarez}@fz-juelich.de
2 Institute of Computer Science, Foundation for Research and Technology - Hellas

(FORTH), Heraklion, Greece
{ppetrak,maraz}@ics.forth.gr

3 SiPearl, Rennes, France
romain.dolbeau@sipearl.com

4 ATOS, Les Clayes-sous-Bois, France
{alejandro.nocua,luis.bertranalvarez}@atos.net

5 KTH, Royal Institute of Technology, Stockholm, Sweden
pleiter@kth.se

Abstract. This paper explores the memory subsystem design through
gem5 simulations of a non-uniform memory access (NUMA) architec-
ture with ARM cores equipped with vector engines. And connected to
a Network-on-Chip (NoC) following the Coherent Hub Interface (CHI)
protocol. The study quantifies the benefits of vectorization, prefetching,
and multichannel NoC configurations using a benchmark for generating
memory patterns and indexed accesses. The outcomes provide insights
into improving bus utilization and bandwidth and reducing stalls in the
system. The paper proposes hardware/software (HW/SW) advancements
to reach and use the HBM device with a higher percentage than 80% at
the memory controllers in the simulated manycore system.

Keywords: Co-design · HPC · Network on Chip · gem5

1 Introduction

ARM-based high-performance processors have lately joined the High-
performance computing (HPC) sector, appearing on the Top500 list and prov-
ing that ARM-based systems can deliver significantly high computing per-
formance [1]. An example of a relatively recent successful deployment of
ARM-based systems is the Fugaku supercomputer at Riken. Being ranked #1 on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 105–119, 2023.
https://doi.org/10.1007/978-3-031-42785-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_8&domain=pdf
http://orcid.org/0000-0003-1319-6404
http://orcid.org/0000-0003-0382-7743
http://orcid.org/0000-0002-6973-4120
http://orcid.org/0000-0002-0224-5808
http://orcid.org/0000-0002-0035-244X
http://orcid.org/0000-0002-4768-3289
http://orcid.org/0000-0002-4466-8948
http://orcid.org/0000-0003-1148-7697
http://orcid.org/0009-0006-0380-0953
http://orcid.org/0000-0001-7296-7817
http://orcid.org/0000-0003-0748-7264
https://doi.org/10.1007/978-3-031-42785-5_8

106 A. Portero et al.

the Top500 list in 2020 [2], the Fugaku supercomputer outperformed all competi-
tors by using the Fujitsu A64FX processor, one of the most potent ARM-based
processors available today [3,4]. Key innovations that led to the success of the
Fugaku design are the Scalable Vector Extension (SVE) – a SIMD extension
introduced by ARM [5,6].

This paper explores a path for accurately simulating an HPC chiplet-based
processor [7]. To do this, we simulate the system before building the silicon and
perform co-design exploration to determine the optimal hardware parameters for
executing applications and kernels of interest. Such kernels, which are abstrac-
tions of the most characteristic HPC codes, represent the most computationally
and memory intensive parts of the software that runs on a supercomputer.

The primary focus or this paper is the memory system, which offers more
potential for improvement than the Central Processing Unit (CPU). Processors
in the market implementing the AArch64 architecture already include the SVE.

Besides, the memory system design must be large enough to handle applica-
tions, libraries and codes with high bandwidth demands, rather than linear alge-
bra programs such as GEneral Matrix to matrix MultiplicationS (i.e. HPL [8],
GEMMS) architectures [9].

The HW/SW co-design approach relies on a reliable and accurate hard-
ware simulation via the gem5 simulator [33]. The gem5 simulator is a modular,
open-source, computer-system architecture research platform containing system-
level architecture and processor microarchitecture features. The simulation setup
description follows the AMBA-CHI protocol implemented in gem5 Ruby for the
network. Furthermore, it provides a cycle-accurate model of the CPU [10].

The benchmark selected for our study is Spatter [11], which provides a tun-
able and configurable framework to test a variety of indexed access patterns,
including variations of the Gather/Scatter patterns that are observed in HPC
applications.

Our setup depicts a part of the chiplet with all its components. It is a set
of RISC CPUs supporting the Scalable Vector Extension (SVE). These CPU
cores are connected with a two-dimensional mesh Network-on-Chip (2D MESH
NoC). The simulated setup has similar hardware components as encountered in
current state-of-the-art hardware designs as A64FX [12], Graviton2 [13] or Gravi-
ton3 [14]. The paper explores the most critical knobs for optimising the memory
subsystem. The results show a configuration that can benefit from external mem-
ory modules of High Bandwidth Memory (HBM2 [29])). A rational explanation
about the specific architecture decisions are described further in the paper (see
Sect. 4 Fig. 1a presents a diagram of the architecture, and the specific values for
the simulations are in Table 1, first column).

The contributions of the paper can be divided into two categories:

– The paper presents a HW/SW co-design methodology that can help to create
a manycore processor for an HPC system in which the memory system is
composed of a NoC AMBA-CHI configuration where the memory controller
utilisation is higher than 80%. In terms of bandwidth, the System Cache
Group (SCG) (which corresponds to a quadrant of the chiplet) achieves more

COMPESCE: A Co-design Approach for Memory Subsystem Performance 107

than 250 GB/s; if the chiplet is composed of four quadrants and each quadrant
has one HBM2 [18] module, the chiplet would reach a bandwidth higher than
1 TB/s.

– The paper describes the main components involved and how to employ them
to get such bandwidth performance. Our records show that few manycore
processor chips can deal deftly with HBM [16], and in manycore systems, the
NoC or memory wall could be the bottleneck of all system [15].

The rest of the paper can be divided into seven sections. Section 2 presents the
background and motivation. Section 3 explains the related work. Section 4 depicts
the proposed HPC architecture; Sect. 5 describes the design space exploration
methodology. Section 6 presents the case studies. Finally, the last section has the
conclusions and future work.

2 Background and Motivation

The research objective is to reproduce a methodology via simulations of the
proper architecture that ultimately benefits from the external HBM memories
where the sustainable bandwidth (BW) at the CPUs is 80% or higher.

Existing, many-core designs benefit from HBM modules [16], but without the
correct co-design for new designs, the NoC can become a bottleneck [15].

The Fujitsu A64FX [19] CPU has a sustainable bandwidth of 62% when
running the Stream benchmark (triad) [20]; unless zfill compile flag is specified,
which eliminates unnecessary memory accesses, then the bandwidth achieved is
80%—allowing a high usage of the external HBM devices.

Although the research question can be broader, the technical challenge is
if achieving one terabyte per second in a manycore chiplet with 64 ARM cores
armed with SVE 2× 256bits, and which network-on-chip design would allow such
performance?

The significance of the research is related to uncovering architectures that
attenuate the memory wall, which implies solving the processor/memory perfor-
mance gap. The memory wall limits many current HPC computation applica-
tions [21]. Therefore, memory-bound codes profit from the highest sustainable
bandwidth at the core level. This research manuscript’s significance and rele-
vance are finding strategies to achieve the correct usage of the HBMs and which
are the leading software and hardware features that bring an optimal design.

The paper innovations are about the Design Space Exploration (DSE)
methodology to encounter optimal design, where the complex problem of the
optimal memory system splits into more tractable subproblems with uni-
direction constraints propagation. The quantitative assessment for the optimal
architecture features, how the benchmarks are utilised to stress the memory
system and observe stalls, how to detect them, and offer solutions. Many exper-
iments use the Spatter [11] benchmark. The microbenchmark Spatter is used
to assess the impact of indexed access patterns of Gather and Scatter (G/S)
operations, which are widely used in many modern HPC applications. The
design of Spatter is composed of Gather and Scatter kernels that enable users to

108 A. Portero et al.

benchmark different access patterns to understand the implications of memory
prefetching and compiler development.

3 Related Work

Our effort goes toward co-designing the memory subsystem for an HPC archi-
tecture based on RISC CPUs technology. Similar previous works are Qureshi,
Yasir Mahmood at al. [22] with gem5-X an infrastructure to simulate an Out-of-
Order cluster with 3D high-performance memory (HBM2). But our effort, rather
than embedded systems, emphasises HPC architectures, adding Vector Engines
to the CPUs and networks with high bandwidth and low latencies. Our simula-
tion choice was gem5 [33] because it is a full-system (FS) architectural simulator
widely used in academia and industry, as it supports multiple Instruction Set
Architectures (ISAs), such as x86, ARMv8, RISCV, and others. In addition to
various ISAs, it supports different CPU models for these ISAs, such as atomic,
in-order, and out-of-order (OoO) CPU models, as well as multiple caching pro-
tocols and coherences. On the memory side, it supports many traditional and
emerging memories. Further, gem5 supports FS simulations via several Linux-
based operating systems, enabling applications to execute as they would on a
real platform. Although gem5 is cycle-accurate and detailed in statistics created
during execution, the turnaround is a long simulation time.

Other simulators for co-design of HPC systems are based on SystemC-TLM
[34] plus QEMU; however, such a description can miss details on the out-of-order
paths or trace base [35], where traces must come from a very similar architecture
and hence not effective for detailed and heterogenous design exploration. Other
simulators have their niche [36–38] for specific ISAs, but gem5 is more publicly
proven.

4 HPC Architecture

The architecture selected for the simulation is in several parameters similar to
the Graviton3 (G3). The G3 comprises 64 Neoverse-V1 [39] cores, and each tile
of the NoC or CPU has two cores with two SVE of 256 bits. Here, we describe
the main differences between our setup defined as Open Processor for Inception
Systems OPIS (see Table 1 parameters details), the G3 architecture, and A64FX.
The simulated designs [10] setup is not outside the parameters ARM offers for
their architectures. Moreover, we employ it to explore the memory system. For
this study, when there is slack, we always take the larger size of the memories,
but we design the decision to keep the two cores per tile as G3. In the case of G3,
there is only one NUMA domain for the complete chiplet, while our setup has 4
NUMA domains of 16 cores each, also called System Cache Groups (SCGs). The
design is for the SCG2 quadrant: the NUMA domain on the top-left of the chiplet
(see Fig. 1a). Another difference is that G3 is connected to four external Double
Data Rate (DDR5) memories with eight channels for 64 cores, while we are
simulating a configuration with four HBM2 modules with 32 memory channels

COMPESCE: A Co-design Approach for Memory Subsystem Performance 109

in total. We only simulate one SCG, with one HBM2 module and eight channels,
with 35.82 GiB/s per channel. G3 can exhaust the bandwidth with a few cores
executing a memory-bound application like STREAM. The ARM CMN-700 [40]
for G3 setup seems to follow an LVS1 strategy, meaning one channel per Virtual
Network (VNET).

At the same time, we are exploring a higher number of VNETs (i.e. LVS2)
to benefit from the higher bandwidth available from the HBM2.

Table 1. Details of fixed and explored parameters setup for one OPIS SCG architec-
ture

OPIS SCG (gem5) Architectural parameters

Clocks System: 1.6 GHz; CPU: 2.4 GHz; NoC: 2.0 Ghz
CPU #Cores: 16; Adjusted A76; Branch Pred.: BiMode;

Vector Unit: 2xSVE; None, SVE length:{256}
L1 Line size: 64B; Size: 64∼KiB; Associativity: 4-way;

Inclusion policy: strict inclusive; TBEs: 256;
Hit latency: 2-cycles (L1-D), 1-cycles (L1-I);

L2 Unified cache; Line size: 64B; Size: 1 MiB;
Associativity: 8-way; Hit latency: 4-cycles;
Inclusion policy: strict inclusive; TBEs: 256;

SLC Shared SLC cache; #Slices: 16; Line size: 64B;
Associativity: 16-way; Hit latency: 20-cycles;
Inclusion policy: Exclusive; TBEs: 256 per slice;
Size per slice: 4 MiB;

NoC Interconnect: CMN-650, Model: Garnet 3.0; Protocol: AMBA-CHI;
Flit width: 64B; Router latency: 1-cycle;
Link latency: 1-cycle; #VNETs: {lvs1:4, lvs2:7}; Routing XY
Topology: Mesh: 4 × 4;
Link configuration: {lvs1, lvs2}

Memory Model HBM2; #Channel: 8; Size: 2 × 8 GiB
Bandwidth per channel: 35.82 GiB/s

Prefetcher off, on

The main differences between G3 and A64FX [24] are that the A64FX can
deal with external HBM memories (see Fugaku arch [12,25]). The A64FX chip
includes four NUMA domains named Core Memory Group (CMG). Each CMG
contains 12 cores for application execution. Each core has an SVE of 2×512
bits instead of the 2×256 like in G3. In addition, the A64FX Tofu network
interconnection is a double-ring buffer [23] instead of the 2D MESH from G3
and OPIS.

110 A. Portero et al.

Prefetcher: Our simulation gem5-based setup supports different prefetching
schemes. In this paper, we focus on the next-line scheme [26], configured at the
L2 cache. For every memory access to the L2 cache, the prefetcher immediately
triggers sequential cache accesses (up to 32 cache lines) and stores prefetch candi-
dates in the prefetch queue. Before sending prefetch requests to the memory, the
prefetcher needs to search (snoop) in the cache and drops the prefetch request if
there is duplicate data. The prefetcher and the gather scatter hardware mecha-
nisms are black boxes in G3, while for A64FX, documentation of the mechanisms
is available [24].

Fig. 1. a) Chiplet with SCG Diagram, b) Unidirectional Methodology

The Fig. 1a) presents a chiplet with 4 NUMA regions in the down part.
Each NUMA region is named SCG0-3 (System Cache Group). Each SCG has
an external HBM2 device connected. Our simulations focus on the SCG2 that
is up-left. In the upper part of Fig. 1a, a 2D MESH network is depicted, and
routers are connected in the crosspoints of the SLC/L3 memories and the CPU.
The CPU is composed of 1, 2 or 4 cores with 2× 256 SVE vector engines. Each
CPU has a private per core L1 and shared L2 per cluster. The Subordinate
Nodes SN belongs to CHI protocol fundamentals [17]; SNFs nodes connect to
memory devices that back the coherent memory space. Eight SNFs nodes connect
the number of channels of the HBM2 device [18]. The CPUs work as Coherent
Home Nodes (HN-Fs) to compose all requests to coherent memory and issue
snoops to Request Nodes (RN-Fs).

COMPESCE: A Co-design Approach for Memory Subsystem Performance 111

5 Design Space Exploration Methodology

Architecture Virtualisation is fundamental for achieving rapid Design Space
Exploration (DSE) of HPC microprocessors. The HPC systems design space
is vast, with many dimensions to explore. It is the task of the design architects
and co-design developers to evaluate and prioritise the most relevant knobs to
get the most optimal design.

For this paper, our methodology approach follows the near-optimal design
space exploration [27]. In the mentioned DSE, in contrast to existent DSE
methods, the partition between the steps is selected so that they can be con-
nected through unidirectional constraint propagation instead of bidirectional
constraints. This route achieves a near-optimal result because constraints are
not overlooked, which happens when the steps are considered partially indepen-
dent. Moreover, it divides intractable problems into manageable subproblems.

The DSE methodology is applied to evaluate the memory sub-system. The
projected DSE framework pursues step-wise with the division of all the available
design space options into cases that correspond to these sub-problems, where
the top-down division principle rigorously applies to top-down splits, which are
connected through unidirectional constraint propagation.

The architecture exploration considers the SCG, which encloses a set of cores
connected in a mesh NoC. The NoC protocol is CHI [28] and the memory model
that represents a High Bandwidth Memory (HBM2 [29]) (see Fig. 1b).

5.1 Co-design Exploration: Memory Sub-system

The first split divides the entire design space exploration DSE into two sub-
spaces: On one side, the dimensions that belong to the SW optimisations; on the
other, the dimensions that belong to the HW ones. From the SW side, we are
not experimenting with the different compilers or manual code optimisations.
Instead, vectorisation is a crucial dimension affecting the code’s performance;
for this study, we use auto-vectorisation. Since the developers must adapt the
code to the platform, e.g. via loop reordering and specific flags for the compiler,
typically, the first step is to vectorise the code to enhance the vector engine
utilisation and hence, its influence on the performance (Table 2).

Table 2. Neoverse V1 knobs fixed for the exploration (in bold)

Neoverse V1 Possible knobs value Chosen
Value

Num cores per tile 1, 2, 4 2
SVE size 2× 256 2 × 256

L2 size 512 KiB OR 1 MiB (4 banks) 1 MiB
SLC size 2 MiB to 4 MiB, 16-way set associative 4 MiB

Regarding the HW size, this sub-space can be divided again between CPU
knobs and NoC knobs. Regarding the CPU knobs, we set them to a specific

112 A. Portero et al.

value: Although the CPU can have 1, 2 or 4 ARM V1 cores, we selected the
two cores’ organisation per tile (or in each router) with a total of 16 cores per
SCG (see Fig. 1a). One characteristic parameter is the vector size. We specified
2×-width vector units similar to the ARM-V1 architecture [30], with a width
of 256 bits. Although there is also flexibility in the L2 and SLC/L3 sizes, we
always opted for the larger cache sizes. L2 size can be 512 KiB or 1 MiB (4
banks). For the System-level cache (SLC), we have 1 Bank per core duplex and
a size of 2 MiB to 4 MiB, 16-way set associative. Finally, for the memory system
and the CPU, the hardware prefetcher in the L2 is a knob that enhances the
performance.

The other subspace or subproblem related to the network knobs for this
article is the network topology and the routing algorithm. We selected the 2D
Mesh, XY algorithm, again similar to architectures like Graviton3 [31]. The
external memory device is a High Bandwidth Memory (HBM2) [18,22].

Another knob we changed is the number of NoC physical links per VNET
in the routers, intending to find the setup that most benefits from the external
memory devices. Link-VNET-Support-1 (LVS1) is defined as one link per VNET,
where the 4 VNETS defined in AMBA-CHI Cache Coherence (CC) protocol are:
0-request, 1-snoop, 2-response and 3-data (REQ, SNP, RSP and DATA). The
second possibility (LVS2) uses two physical links per VNET. In the case of the
snoop VNET (SNP), we still use one link, as there is little traffic in the examples
under study. Hence, the LVS2 NoC configuration uses seven links in total.

5.2 Model Validation

To increase the confidence of the presented results, we have executed kernels in
real machines prototype and compared them with a corresponding gem5 model.
For instance, if the machine is the N1SDP [32] prototype board with two sockets,
each containing 2 ARM-N1 cores. We developed the gem5 version of the plat-
form using the board’s datasheet. In addition, we considered the Performance
Monitoring Unit (PMU) counters and compared the results. Finally, we apply a
multi-level consistency validation [10] for reference applications and kernels.

6 Case Studies

The section describes the design exploration of the memory sub-system through
the unidirectional with constraints propagation. The subsection defines the Spat-
ter Uniform Stride (US) behaviour in the CPU data path. It simplifies the
compiler generation of Gather/Scatter instructions. Each thread performs some
portion of the iteration. In addition, each thread’s block gathers into a local
destination buffer to ensure high performance. The effect avoids false sharing.

The Uniform Stride index buffer in Spatter is specified with UNIFORM:
N:STRIDE. It generates an index buffer of size N with STRIDE. For example, the
index buffer generated by UNIFORM:8:2 is [0,2,4,8,10,12,14,16] or UNIFORM:8:8
is [0,8,16,24,32,40,48,56]. This manuscript’s Spatter Uniform Stride is similar

COMPESCE: A Co-design Approach for Memory Subsystem Performance 113

to the Stream benchmark [20]. The added value offers extra information about
the pattern’s index of common HPC applications too large for cycle-accurate
simulation.

6.1 Unidirectional Approach

The Unidirectional approach with constraints propagation method begins in
the dimension with a higher impact on the outcomes. Then, when the space
exploration dimension is optimised, we continue with the following one with the
constraints from the previous one. Hence, no loops or iterations are needed. For
example, starting from the previous methodology, we observed and analysed the
impact of vectorisation; we then took the vectorised code and used it for the
prefetching effect afterwards for the increase of links, the LVS1 vs LVS2 study.
The expectation is to find an architecture where the external memory controllers’
usage is 80% or higher. After continuing with the following dimensions, for the
reasons analysed further below.

The dimension under study are a) vectorisation, b) enhancements due to
prefetcher, and c) enhancing the number of links from LVS1 to LVS2. Table 3
presents the improvements due to code vectorisation, which ranges from 23%
to 97%. Then we observed the impact of the prefetcher on the bandwidth (see
Sub. Fig. 2a), showing improvements of x2. The Fig. 2b) shows a saturation in
the NoC due LVS1 configuration.

Table 3. Spatter Uniform Stride: Bandwidth increase due to vectorisation

Spatter Uniform Stride:
BW increase due to vectorisation

Configuration 8:1 8:2 8:4 8:8 8:16
Performance Improvement(%) 60.3 93.9 96.8 29.3 23

Bandwidth in the SCG with LVS1: We experimented with the OPIS SCG
with LVS1, where we increased the number of cores per CPU. Instead of using
the default SCG with 16 cores, we increased it to 4 and 8 CPUs per router,
having an SCG of 32 cores and 64 cores, respectively, all the cores with the
prefetcher enabled. The objective is to maximise the bus utilisation in the mem-
ory controllers. In addition, we want to observe the optimal use of the HBM2
memory devices. As the number of cores increases, the number of data requests
to the memories increases. We want to observe the Miss Status Holding Register
(MSHR) since it is the buffer to track outstanding requests.

The results are depicted in Fig. 2b, showing the differences between the band-
width observable in the memory controllers as a percentage of the bus utilisa-
tion versus the bandwidth reported by the Spatter application. While Spatter
reports a lower bandwidth when the stride increases (as it measures effective

114 A. Portero et al.

Fig. 2. a) Bandwidth utilisation improvements due to data prefetching, b) HMB2
Bandwidth saturation due to LVS1-NoC.

bandwidth only), the bus utilisation increases to 75%, which means that from
the 286.56 GiB that can provide the HBM2 module, only 75% (215 GiB/s) is
achieved. Bus bandwidth utilisations start to saturate at stride-8 and 16, even
when using many more cores and increasing the outstanding requests by 4×.

Fig. 3. a) Stalls in memory controllers, b) stalls in the SLCs memories

Therefore, even when the number of MSHR requests increases since more
cores (i.e. SCG 32 and 64 cores) request data from the memory controllers, the
bandwidth at the memory controllers saturates when it achieves 75% of the peak
HBM2 bandwidth. The LVS1 configuration can only partially benefit from the
HBM2 bandwidth available. To understand the reason, we observe the situation
of the TBE_avg (similar to MSHR but named differently in the gem5 simulator)
in the routers for the point 24, which is our point of interest. This means there is

COMPESCE: A Co-design Approach for Memory Subsystem Performance 115

saturation in LVS1, and the HBM device provides 3/4 of its bandwidth capacity.
The architects decide if this limitation is economically viable or if using cheaper
devices with lower bandwidth (i.e. DDR5) but larger capacity is a better option.

Increasing stride will downsize the requirements for resource allocation in
the micro-architecture (e.g. register file allocation) and thus could reduce stalls.
Therefore, with a higher stride, the CPU can stress the memory system by
sending more in-flight requests. To observe the saturated point of bus bandwidth
utilisation at the memory controller, we ran experiments via a variant stride from
1 to 16. A stride-16 will advise us of the maximum bus bandwidth utilisation.

Fig. 4. Heatmap with router stalls (LVS1 vs LVS2). (a) REQUEST (b) DATA VNETs.

Heatmaps of the NoC and Memory Controllers for LVS1 Configura-
tion. Figure 3a, presents the increment of stalls from the baseline architecture
(i.e. 16-core SCG) to the architectures with 32- and 64-core SCG in the mem-
ory controllers. The increment in cores produces more outstanding requests to
the memory controllers. Nevertheless, there are a pair of bottlenecks, a factor
of ×3 in stalls in snf0 and snf4 (see Fig. 3a), and also a bottleneck in the tiles
see Fig. 3b in the routers far away from the memory controllers (i.e. r22, r32),
with increments higher than 5 and 8 times for 32 and 64 cores configuration,
respectively.

NoC VNET Stalls LVS1 vs LVS2. Previous experiments provide enough
insights to suggest that there are better configurations than LVS1 to optimise
the usage of the HBM2 devices. Hence, we experimented with the baseline SCG
but with the LVS2 configuration to observe the stalls in the routers.

Figure 4 presents another heatmap comparing the number of stalls for all the
VNETS; there is no figure for the SNOOP VNET because the packet traffic is
meagre in this study, and the RESPOND channel is similar the to REQUEST.
Again, we can observe that the decrease in stalls in LVS2 is a factor of ×10 with
respect LVS1.

116 A. Portero et al.

Fig. 5. Latencies histogram (LVS1 vs LVS2). (a) REQUEST; (b) DATA VNETS.

NoC VNET Latencies LVS1 vs LVS2. In the same experiment, we checked
the router flit network latency and created the histogram for the main VNETs.
Figure 5 presents how the network latency reduces from the LVS1 to the LVS2
configuration.

Fig. 6. Bus utilisation for spatter uniform stride, stride-16 in several OPIS configura-
tions: LVS1 without and with prefetcher(nopf, pf), LVS2 without and with prefetcher
(nopf, pf)

Bus Utilisation in MEM Controllers. Figure 6 exhibits the simulation out-
comes for uniform stride-16. The memory controllers have a utilisation higher
than 88% (achieving 252,17 GiB) for LVS2 with the prefetcher disabled and 93%
when the prefetcher is enabled. Hence, compared with the LVS1 configuration,

COMPESCE: A Co-design Approach for Memory Subsystem Performance 117

LVS2 decreases the stalls in the system and increases the bus utilisation. There-
fore, it is recommended to use LVS2 if the external memory is an HBM module
and we are interested in its optimal use. Figure 6 presents the bus utilisation
of each of the eight memory controller configurations with and without enabled
prefetcher. The best configuration is achieved for LVS2 with prefetcher active
(LVS2-pf).

Insight: Conversely, to the intuition adding more links (i.e. LVS1 to LVS2) with-
out other improvements in the design does not produce better performance. It
is when the combination of several design features like vectorisation and aggres-
siveness of the prefetcher and extra links in the NoC produces a high usage of
the memory device.

7 Conclusions and Future Work

The paper presents a methodology to explore the memory subsystem in a many-
core system for HPC connected to HBM devices using the Spatter benchmark.
The methodology permits finding bottlenecks in the system. For example, it was
able to detect that a NoC configuration with only one link per VNET (defined
as LVS1) can only use 75% of the bandwidth of the HBM2 device. Nevertheless,
the additional analysis allowed us to observe that a configuration with two links
per VNET (i.e. LVS2), with vectorised code and enough aggressiveness of the
prefetcher, increases resource utilisation above 90% (observation at the memory
controller).

In the future, using novel 3D stacked memory chiplets (i.e. HBM3), we would
like to model new network topologies and routing algorithms other than 2D
MESH to analyse if there are designs that bring benefit (i.e. reducing stalls and
latencies). Another dimension not described in the paper is the power enve-
lope; it would be relevant to estimate the overheads due to, for example, the
aggressiveness of the prefetching or due to more oversized packet routing buses.
Finally, it is still an open question whether our designs can keep the pace of
future characteristics’ external memories and use them efficiently.

Acknowledgment. This work has been performed in the context of the Euro-
pean Processor Initiative (EPI) project, which has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation program under Grant Agreement
№101036168 (EPI-SGA2).

References

1. Sato, M., et al.: Co-design and system for the supercomputer “fugaku”. IEEE Micro.
42(2), 26–34 (2022)

2. Monroe, D.: Fugaku takes the lead. Commun. ACM 64(1), 16–18 (2021)
3. Yamamura, S., et al.: A64FX: 52-core processor designed for the 442petaflops

supercomputer fugaku. In: ISSCC, San Francisco, CA, USA, 20–26 February 2022,
pp. 352–354. IEEE (2022)

118 A. Portero et al.

4. Sato, M.: The supercomputer “fugaku” and ARM-SVE enabled A64FX processor
for energy-efficiency and sustained application performance. In: ISPDC 2020, pp.
1–5 (2020)

5. Stephens, N., et al.: The ARM scalable vector extension. CoRR, abs/1803.06185
(2018)

6. Lee, J., et al.: Extending OpenMP SIMD support for target specific code and appli-
cation to ARM SVE. In: Scaling OpenMP for Exascale Performance and Portability
- 13th IWOMP (2017)

7. Reed, D., et al.: Reinventing high performance computing: Challenges and oppor-
tunities (2022)

8. Petitet, A., et al.: HPL - a portable implementation of the high-performance LIN-
PACK benchmark for distributed-memory computers, December 2018

9. Wu, D., Li, J., Yin, R., Hsiao, H., Kim, Y., Miguel, J.S.: UGEMM: unary computing
architecture for GEMM applications. In: ISCA, pp. 377–390 (2020)

10. Zaourar, L., et al.: Multilevel simulation-based co-design of next generation HPC
microprocessors (PMBS), St. Louis, MO, USA, pp. 18–29 (2021)

11. Lavin, P., Riedy, E.J., Vuduc, R., Young, J.S.: Spatter: a benchmark suite for
evaluating sparse access patterns. CoRR, abs/1811.03743 (2018)

12. Sato, M., et al.: Co-design for A64FX manycore processor and “Fugaku”. In: SC20:
International Conference For High Performance Computing, Networking, Storage
and Analysis, pp. 1–15 (2020)

13. Mathá, R., Kimovski, D., Zabrovskiy, A., Timmerer, C., Prodan, R.: Where to
encode: a performance analysis of ×86 and ARM-based Amazon EC2 instances.
In: eScience, pp. 118–127 (2021)

14. ARM: ARM® Neoverse™ V1- Amazon’s graviton3 server chip. https://www.
nextplatform.com/2022/05/24/the-value-proposition-for-amazons-graviton3-
server-chip/

15. ECP: Milestone M1 Report: HBM2/3 Evaluation on Many-core CPU WBS 2.4,
Milestone ECP-MT-1000. Exascale Computing Project, June 2018

16. Biswas, A.: Sapphire Rapids. In: 2021 IEEE Hot Chips 33 Symposium (HCS), Palo
Alto, CA, USA, pp. 1–22 (2021). https://doi.org/10.1109/HCS52781.2021.9566865

17. ARM: Learn the architecture - Introducing AMBA CHI, Non-Confidential. Issue
01, 102407_0100_01_e

18. High bandwidth memory (HBM) dram. JEDEC (2020)
19. Brank, B., Nassyr, S., Pouyan, F., Pleiter, D.: Porting applications to ARM-based

processors. In: 2020 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 559–566 (2020)

20. McCalpin, J.: Memory bandwidth and machine balance in current high perfor-
mance computers. (TCCA) Newsletter 2, 19–25 (1995)

21. McKee, S.A.: Reflections on the memory wall. In: Proceedings of the First Confer-
ence on Computing Frontiers, 2004, Ischia, Italy, 14–16 April 2004

22. Qureshi, Y., et al.: Gem5-X: a many-core heterogeneous simulation platform for
architectural exploration and optimization. ACM Trans. Archit. Code Optim. 18,
1–27 (2021)

23. Okazaki, R., et al.: Supercomputer Fugaku CPU A64FX Realizing High Perfor-
mance, High-Density Packaging, and Low Power Consumption. Fujitsu Technical
ReviewNo.32020 (2020)

24. Hondou, M.: A64fx microarchitecture manual v1.8 released (2019). https://github.
com/fujitsu/A64FX

25. Nakamura, Y., et al.: Fugaku codesign report. Technical report, FLAGSHIP 2020
Project, RIKEN Center for Computational Science (R-CCS), RIKEN (2022)

https://www.nextplatform.com/2022/05/24/the-value-proposition-for-amazons-graviton3-server-chip/
https://www.nextplatform.com/2022/05/24/the-value-proposition-for-amazons-graviton3-server-chip/
https://www.nextplatform.com/2022/05/24/the-value-proposition-for-amazons-graviton3-server-chip/
https://doi.org/10.1109/HCS52781.2021.9566865
https://github.com/fujitsu/A64FX
https://github.com/fujitsu/A64FX

COMPESCE: A Co-design Approach for Memory Subsystem Performance 119

26. Smith, A.J.: Sequential program prefetching in memory hierarchies. Computer 11,
7–21 (1978)

27. Kritikakou, A., Catthoor, F., Goutis, C.: Scalable and Near-Optimal Design Space
Exploration for Embedded Systems. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-04942-7

28. ARM: AMBA® 5 CHI architecture specification. https://developer.arm.com/
documentation/ihi0050/ea/ (2020)

29. JEDEC: High bandwidth memory (HBM) dram. Standards JESD235D, Joint Elec-
tron Device Engineering Council, March 2021

30. ARM: Developer, ARM® neoverse™ v1 core, rev:r1p1. Technical reference manual.
Technical report, ARM- Advanced RISC Machines (2021)

31. ‘/’ Inside amazon’s graviton3 ARM server processor. https://www.nextplatform.
com/2022/01/04/inside-amazons-graviton3-arm-server-processor. Accessed 17
Oct 2022

32. ARM: ARM® Neoverse™ N1 core - technical reference manual. https://developer.
arm.com/documentation/100616/0401/?lang=en (2020)

33. Binkert, N., et al.: The gem5 simulator. ACM SIGARCH Comput. Archit. News.
39, 1–7 (2011)

34. Ventroux, N., et al.: SESAM: An MPSoC simulation environment for dynamic
application processing. In: 2010 10th IEEE CIT, pp. 1880–1886 (2010)

35. Gómez, C., et al.: Design space exploration of next-generation HPC machines.
IPDPS 2019, 54–65 (2019)

36. Hardavellas, N., et al.: SimFlex: a fast, accurate, flexible full-system simulation
framework for performance evaluation of server architecture. SIGMETRICS Per-
form. Eval. Rev. 31, 31–34 (2004)

37. Magnusson, P.S., et al.: Simics: a full system simulation platform. Computer 35,
50–58 (2002)

38. Carlson, et al. Sniper: exploring the level of abstraction for scalable and accurate
parallel multi-core simulation. In: SC 2011, pp. 1–12 (2011)

39. Microarchitecture description ARM v1. ARM report (2022)
40. ARM: ARM® Neoverse™ CMN-700 Coherent Mesh Network, Technical Reference

Manual, 102308_0300_05_en (2022)

https://doi.org/10.1007/978-3-319-04942-7
https://doi.org/10.1007/978-3-319-04942-7
https://developer.arm.com/documentation/ihi0050/ea/
https://developer.arm.com/documentation/ihi0050/ea/
https://www.nextplatform.com/2022/01/04/inside-amazons-graviton3-arm-server-processor
https://www.nextplatform.com/2022/01/04/inside-amazons-graviton3-arm-server-processor
https://developer.arm.com/documentation/100616/0401/?lang=en
https://developer.arm.com/documentation/100616/0401/?lang=en

Post-Silicon Customization Using Deep
Neural Networks

Kevin Weston1(B), Vahid Janfaza1, Abhishek Taur1, Dhara Mungra2,
Arnav Kansal2, Mohamed Zahran2, and Abdullah Muzahid1

1 Texas A&M University, College Station, TX, USA
kevin.weston@tamu.edu

2 New York University, New York, NY, USA

Abstract. Dynamically customizing processor architecture after fabri-
cation, also known as Post-Silicon Customization (PSC) is effective in
balancing the conflicting demands of power and performance for vari-
ous applications. Existing approaches either use application-specific pro-
files or some adhoc heuristics or simpler machine learning models. These
techniques often do not unleash the full potential of PSC as they fail
to explore and exploit PSC opportunities to a larger extent. Towards
that end, we propose the first deep neural network (DNN) based PSC
technique, called Forecaster. Forecaster exploits several intuitive
observations to cope with the long inference latency of a DNN model
and boost customization impact. Forecaster works in two phases. In
Phase 1, Forecaster builds a dataset and then, selects and trains a suit-
able DNN model offline. In Phase 2, Forecaster periodically collects
hardware telemetry and uses the trained model to customize hardware
resources. We provide a detailed design and implementation of Fore-
caster and compare its performance against a prior state-of-the-art app-
roach. Our experimental results indicate that on average, Forecaster
provides 2.5X more power efficiency gain over the best static configura-
tion setup while sacrificing less than 1.0% of overall performance and less
than 3.5% extra system power. Compared to the prior scheme, Fore-
caster increases the power efficiency gain up to 1.5X while reducing the
performance degradation by 44%.

Keywords: Deep neural network · FPGA · post-silicon customization

1 Introduction

Dynamically customizing processor architecture after fabrication, also known as
Post-Silicon Customization (PSC) is an effective technique to satisfy the con-
flicting demands of power and performance for a diverse set of applications [24].
There are three general approaches to implement PSC - profiling, heuristic, and
learning-based. Profiling-based approaches profile a particular application on
specific hardware or platform and use the profiling information to customize the
hardware or software [11,12,15]. This line of work requires each program to be
instrumented and profiled first. However, the profiled information is useful for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 120–136, 2023.
https://doi.org/10.1007/978-3-031-42785-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_9

Post-Silicon Customization Using Deep Neural Networks 121

only that application. Heuristic-based approaches are built around some heuris-
tics which are often proposed by the architects or programmers based on their
experience or intuition [7,20] on a limited number of hardware or applications.
Heuristics often work best for a certain class of applications while other classes
may suffer from poor results. Learning-based approaches try to overcome the
limitations of profiling and heuristic-based approaches. At the heart of these
approaches are some machine learning models that predict application behavior,
processor performance, power consumption, or a combination of these factors.
Customization is done based on prediction [8,22,24]. Existing learning-based
approaches achieve some remarkable results. However, they rely on simple and
shallow machine learning models which often fail to unleash the full potential
of learning-based approaches. This paper aims to change that by using a deep
neural network (DNN) for PSC.

We pinpoint two reasons why existing approaches did not rely on DNN mod-
els. First, most of the existing works were proposed before the advancement of
deep learning techniques [3,6,8,13]. The recent explosion of DNN models and
their super-human ability in certain domains, coupled with the availability of
hardware accelerators for such models [4,5] makes DNNs the perfect and timely
choice to investigate whether they can improve PSC. Second, most of the exist-
ing works aim to customize hardware frequently (once in every 100K or less
instructions) [22,24]. Therefore, DNNs with thousands of cycles per inference
operation (Table 6) may not be suitable.

To investigate the feasibility of DNNs for PSC, we make two observations.
First, applications show repetitive execution phases (Sect. 2). Although phases,
when defined at a fine-grained level, might change very frequently, PSC done at
such a high frequency does not yield many benefits due to the high customization
overhead. Therefore, we have to focus on coarse-grained phases and such phases
do not change frequently. Second, hardware resources that can be customized in
the background (without affecting ongoing operations) can boost the customization
impact. Based on these observations, we propose a DNN-based PSC technique,
called Forecaster. Forecaster relies on hardware telemetry (a set of hard-
ware performance counters) to approximate how an application behaves and tar-
gets four hardware resources for customization - L2 and L3 caches, Branch Target
Buffer (BTB), and Prefetcher. We target these structures because they consume
significant power [14] and can be customized in the background. Forecaster
works in two phases. In Phase 1, it builds a predictive model offline to learn appli-
cation behavior and the corresponding level of hardware resources to maximize the
power efficiency. We use Instruction Per Second (IPS)3/Power as the metric to
calculate power efficiency. This is similar to prior work [8]. Forecaster builds
a training dataset based on the data collected from all possible configurations of
the selected hardware resources. This dataset is used to train and determine the
best DNN model for PSC. In Phase 2, Forecaster initializes a DNN hardware
with themodel selected fromPhase 1.During a program’s execution,Forecaster
collects hardware telemetry at regular intervals and uses the DNN model to pre-
dict the best configuration of hardware resources. Forecaster customizes those
resources accordingly to maximize the power efficiency. In summary, we make the
following contributions:

122 K. Weston et al.

1. We propose Forecaster, the first PSC technique to use a DNN model. We
used a DNN model with over 9 billion parameters.

2. We propose to use a longer customization interval and choose hardware
resources carefully to cope up with the long inference delay of a DNN model
and boost the customization impact.

3. We provide a detailed design and implementation of Forecaster using
Multi2Sim [25] simulator. Our experimental results using PARSEC 3.0 bench-
marks show that on average, Forecaster provides 2.5X more power effi-
ciency over the best static configuration while sacrificing less than 1.0% of
overall performance. Compared to a prior learning scheme [8], Forecaster
increases the power efficiency gain up to 1.5X while reducing the performance
degradation by 44%.

Fig. 1. Number of branch predictions and L1-data accesses over time (x-axis unit is
number of instructions). Similarities are highlighted in colored boxes.

2 Intuition

Forecaster is grounded on two simple hypotheses - (i) there are significant
similarities in execution phases across applications, and (ii) each execution phase
requires a specific hardware configuration to maximize the power efficiency with-
out hurting performance.

To support the first hypothesis, we analyze two applications - canneal and
fluidanimate from Parsec. Figure 1a & 1b show the number of branch predic-
tions and L1-data accesses over execution time. The red-colored boxes in Fig. 1a
show that one execution phase of canneal is similar to two execution phases of
fluidanimate where the number of branch predictions is steady at around 20K.
Thus, the control flow structure of these execution phases between two different
applications is similar. If we consider L1-data accesses, Fig. 1b shows that one
execution phase of canneal is similar to 6 other execution phases of fluidanimate.
Therefore, the data access patterns of these phases of the applications should be
similar too. In other words, despite being two completely different applications
with different functionalities, canneal and fluidanimate share a lot of similari-
ties in their execution phases. In addition to this, we notice in both figures that
each execution phase usually contains a significant number of instructions (more
than a few millions). Therefore, we do not need frequent customization of L1
and BTB structures.

Post-Silicon Customization Using Deep Neural Networks 123

Fig. 2. Time-series data of branch misprediction rate, L2 and L3 usage of fluidanimate
during execution.

Figure 2 shows the detailed time-series characteristics of L2 and L3 usage as
well as branch mispredictions of fluidanimate. It shows that the first execution
phase (shown in green boxes) has different L2, L3 access, and branch charac-
teristics than the second phase (shown in red boxes). Therefore, the hardware
configuration that provides the optimal trade-off between power efficiency and
performance for the first phase is different than that of the second phase. For
example, since the first phase uses about 45% of L2 and 25% of L3, an optimal
cache configuration of the first phase consists of 60% of L2 and 40% of L3. Sim-
ilarly, the optimal configuration for the second phase is a combination of 40% of
L2 and 20% of L3. This clearly demonstrates that every distinct phase requires
a different hardware configuration to maximize the power efficiency while main-
taining performance. Note that the fourth phase (in yellow box) is quite similar
to the second phase and therefore, require the same hardware configuration as
the second phase.

3 Background and Related Work

There is a considerable amount of prior work on reconfigurable architecture [2,3,
6–8,11–13,15,20,22,24], which can be grouped into three categories: profiling [11,
12,15], heuristic [2,6,7,20], and learning-based [3,8,13,22,24].

Heuristic-Based Techniques: Choi and Yeung [6] perform microarchitectural
resources distribution in an SMT processor using hill-climbing algorithm. Pet-
rica et al. [20] present Flicker, a general-purpose multicore architecture that
dynamically adapts to varying limits on allocated power. A Flicker core has
reconfigurable lanes through the pipeline that allows tailoring an individual core
to the running application with lower overhead.

Profiling-Based Techniques: Hubert et al. [11] propose MEMTRACE, a profil-
ing tool that analyzes memory accesses and runtime performance of applications,
enabling a variety of optimization opportunities. Ripple [15] introduces a profil-
ing technique that minimizes the instruction cache miss rate. First, the program
is profiled offline to get the basic blocks and reconstruct the oracle replacement
behavior. Next, Ripple forcefully evicts those basic blocks that is likely to be
evicted under the oracle policy by modifying the program binary code.

Learning-Based Techniques: Dubach et al. [8] use Maximum Likelihood Esti-
mation (MLE) to dynamically reconfigure the processor’s components. At run-
time, whenever the program encounters a new phase, the system enters a profiling
period. During this time, The system collects performance counters and converts

124 K. Weston et al.

them into histograms representing the hardware resource usage of that interval.
The MLE model uses these histograms as input to predict the optimal configura-
tion to apply for this phase. To reduce noise, the hardware is always reverted to
the default configuration during the profiling period, allowing the model to col-
lect unbiased input data. This technique doubles the reconfiguration cost, since
the hardware is changed two times per phase: (1) reverting to default configura-
tion for profiling and (2) reconfiguring to the model’s prediction. Additionally,
the conversion from runtime counters to histograms may produce extra com-
putational latency and hardware support. On the contrary, Forecaster can
work with simple performance counters and does not need a dedicated profiling
period, minimizing runtime overheads. Bitirgen et al. [3] combine performance
prediction model of multiple applications to get an aggregate performance pre-
diction of the overall resource distribution. Ravi et al. [22] propose CHARSTAR,
a clock tree aware resource optimizing mechanism. CHARSTAR incorporates a
shallow multi-layer perceptron with one hidden layer to predict the optimal
configuration in each execution phase. The model’s performance is then tested
on single-threaded programs. Tarsa et al. [24] propose a lightweight ML frame-
work that can be distributed through firmware updates to the microcontroller
for post-silicon CPUs. The ML model is first trained offline with a collection of
applications to avoid statistical blind spots. During execution, the CPU dynam-
ically sets the issue width of a clustered hardware component while clock-gating
unused resources.

There is also a well-established line of work that tries to achieve an energy-
performance trade-off without any hardware structural adaptation. Prominent
works that fall in this category use dynamic voltage-frequency scaling (DVFS) [7,
10,19]. However, applying this technique in real-world systems can be tricky
because reduced frequency means longer execution time.

4 Main Idea: FORECASTER

Forecaster works in two phases - (i) building a model that predicts the best
configuration of hardware resources for maximizing the power efficiency (i.e.,
IPS3/Power) and (ii) changing the hardware resources accordingly. Figure 3
shows the overall workflow. Forecaster works in the first phase only once using
a set of applications whereas the second phase happens at runtime repeatedly
during the execution. Both phases use hardware telemetry collected during the
execution of an application. The telemetry consists of various hardware event
counters that implicitly capture the behavior of the application. The first phase
uses telemetry to build a dataset which is used to train a DNN model. The
second phase uses the trained DNN model to customize hardware resources.

Post-Silicon Customization Using Deep Neural Networks 125

Fig. 3. Overall workflow of Forecaster.

4.1 Phase 1: Building a Predictive Model

Forecaster builds a predictive model by first collecting hardware telemetry
on a set of benchmarks for different configurations of hardware resources and
then, training a DNN model on the dataset.

Table 1. List of reconfigurable hardware.
Initial configuration is in bold-face.

Tunable Resource Configuration

BTB Size 0.5K, 1K,
2K, and 4K Entries

Prefetcher On, Off

L2 (private) cache 256K, 512K,
768K, and 1024K Bytes

L3 (shared LLC) cache 4M, 8M, 12M,
and 16M Bytes

Table 2. Pearson correlation coefficients
of counters.

Features Correlation Coefficient

L2 most usage 0.633786

normalized commit float 0.615692

normalized commit mem 0.505695

normalized commit int 0.450328

L1 data access 0.443464

normalized commit ctrl 0.436718

L2 avg eviction rate 0.337137

L2 most hit rate 0.295210

L3 usage 0.264086

branch mispred rate 0.242080

Selecting Hardware Resources. As reconfigurable hardware resources, we
choose L2 and L3 caches, Branch Target Buffer (BTB) and Prefetcher. We choose
caches because they are the most power-hungry resources in a modern chip [14].
We choose the other resources because they can be easily clock-gated without
making intrusive changes to the pipeline (Sect. 4.2). Moreover, as shown in prior
work [8], these structures can be customized in the background with minimal
impact on performance. Table 1 shows the reconfigurable resources and possible
configurations.

Selecting Hardware Telemetry. Modern processors provide hundreds of
hardware event counters as the telemetry. Not all of them are relevant in deciding
how to reconfigure various resources. Therefore, to select the most relevant ones,

126 K. Weston et al.

we use Pearson correlation coefficient. We first extract a large set of 24 microar-
chitectural counters closely related to those four hardware resources that we
want to optimize. These 24 counters capture both program characteristics and
their interaction with system components. We then compute the absolute value
of Pearson correlation coefficient between the input features and the output
label, which is the power efficiency. After doing some experiments we decide
to select features having the absolute correlation coefficient value greater than
0.20. Table 2 shows the features that have their correlation coefficients greater
than the cutoff value. The rest of the features can be discarded to prevent the
classifier from learning redundant information. Reducing the size of the feature
set minimizes the computational cost and time since we need to train classifiers
on large dataset. Those counters, combined with the last interval configuration
which are consolidated into 4 inputs, form the final set of 14 input features of
our DNN model.

Building Dataset. With 4 reconfigurable resources, there are N = 4∗2∗4∗4 =
128 possible configurations. Each application is executed and profiled under each
of these configurations. During the execution of an application, Forecaster
collects hardware telemetry, calculates the power efficiency periodically after
every I instructions and records them in a profiling file. Let us call every I

instruction an Interval. Let us denote the telemetry as T = {ti}ni=1, where each
ti is an individual hardware counter and the power efficiency as E. Thus, the
profiling file contains a set of records of < T,E >, one record for each interval.
Forecaster keeps the input fixed for an application during profiling. Still,
there could be slight perturbation during some execution due to the difference
in hardware configurations and thread scheduling (in the case of a multithreaded

Fig. 4. How training samples are
formed from profiles.

Fig. 5. Timing of various steps of
Forecaster.

Post-Silicon Customization Using Deep Neural Networks 127

application). Therefore, we choose I to be large enough so that the number of
intervals remains the same in every profiling file of an application. As a result,
each corresponding interval in different profiling files represents (roughly) the
same code region of the application. Whatever little difference that could exist
among the code regions of similar intervals, adds noise to the training dataset.
Such noise works in favor of DNN models to improve their generality.

Let us consider an interval i. The profiling record for i is < T
f
i ,E

f
i > in the

profiling file for Config − f (Config − f could be any of the N configurations
i.e., 1 ≤ f ≤ N). Forecaster finds the maximum among E

1
i to E

N

i . The config-
uration corresponding to the maximum, say Config − M, provides the highest
power efficiency. Therefore, at runtime, when Forecaster tries to predict the
best configuration at the beginning of interval i, it should predict Config − M

as the output of the DNN model. That is why phase 1 forms a training sample
by using T

f
i−1 as the input and Config − M as the output. Note that Fore-

caster uses T
f
i−1 instead of T

f
i as the input because the telemetry collected

at the beginning of interval i is the telemetry corresponding to interval i − 1.
Thus, DNN should be trained to predict Config−M (the best configuration for
interval i) by using the telemetry collected at the beginning of interval i. Figure 4
shows the telemetry and power efficiency of different intervals across different
configurations. Last but not least, in addition to T

f
i−1, the corresponding config-

uration i.e., Config − f is provided as part of the input in the training sample.
In other words, the training sample is formed by using < Config− f,Tf

i−1 > as
the input and Config − M as the output. So, there are N training samples for
interval i.

Selecting a Predictive Model. The dataset built previously is used to train
a machine learning model. We initially experiment with simple models such as
logistic regression or MLE. Our experiments reveal that such simple models are
not able to substantially improve the power efficiency of the system (Sect. 7). We
then use more sophisticated models including LSTM, Reinforcement Learning,
DNN and see that the fully connected DNN model strikes a good balance between
performance and implementation cost. Therefore, we finalize our design with a
fully connected DNN model. To find the best model architecture, Forecaster
searches all possible network configurations (e.g., topology, learning rate, acti-
vation functions, etc.) within a constrained search space (e.g., all topologies up
to the maximum of H hidden layers and L neurons per layer) and picks the
one with the highest accuracy. We use cross-validation for model training and
tuning to avoid overfitting. The training strategy for both single-program and
multi-program scenarios is discussed in Sect. 6. The final DNN architecture and
its hardware implementation cost is discussed in Sect. 7.

4.2 Phase 2: Prediction-Based Hardware Reconfiguration

During this phase, Forecaster loads the trained DNN model in a DNN hard-
ware and uses it to predict the configuration of hardware resources for maxi-
mizing the power efficiency. When an application starts execution, Forecaster

128 K. Weston et al.

starts with maximum resources. This prevents any initial slowdown due to insuf-
ficient resources. Forecaster collects hardware telemetry after every interval
of I instructions. Suppose the telemetry after interval t is Tt and the resource
configuration is Ct. Forecaster uses the DNN hardware with < Ct,Tt > as
the input to infer the new configuration Ct+1. Figure 5 shows the timing of
the inference step. After DNN hardware calculates the predicted configuration,
Ct+1, Forecaster customizes the hardware resources according to Ct+1. Now,
we describe how each resource is customized.

Fig. 6. SRAM Cell
Design (6T-MC) with
the gated-Vdd shown
on the bottom.

Fig. 7. Logic for customizing hardware components.

L2 and L3 Caches. Caches, mainly designed in SRAM (we are not considering
eDRAM in this paper) are sources of both static and dynamic power consump-
tion. Dynamic power is consumed in row-decoder, column-decoder, pre-charge
circuit and some parts of the core cell and depends on the access pattern. Static
power, mainly leakage, is dissipated in every cell of the SRAM cache. With the
continuous reduction in transistor sizes and, consequently, the switching thresh-
old voltage of the transistor, static power becomes the major source of power
dissipation in caches [26]. Therefore, when we turn off parts of the cache, we want
to ensure that we target leakage current. For that, we use gated-ground [1,18,21].

There are several ways of implementing SRAM cells. The one most widely
used, due to its relatively high noise immunity, is the 6-transistors Memory Cell
(6T-MC), shown in Fig. 6. The left part of the figure shows the gate level of
a single SRAM cell. The right part shows the circuit level. There is an extra
transistor, shown circled, that is used to reduce leakage current that constitutes
the major part of the static power dissipation in caches. In our design of cache
resizing, we turn-off individual blocks and never a full-set. Therefore, we can use
a single transistor per block. That is, one extra transistor per 64 cells for a 64-
byte block. This design does not use more than 4% of extra area with around 5%

Post-Silicon Customization Using Deep Neural Networks 129

increase in cache latency [1]. The increased access latency has been taken into
consideration in our simulation. When a block is turned-off, that extra transistor
is also turned off causing a stacking effect that reduces leakage current by orders
of magnitude [1].

The next step is to control which blocks will be gated (for static power)
and control which parts will be clock-gated to avoid accessing the blocks that
are turned-off. From Table 1, we can see that we have four configurations for
the cache. We need two bits to represent those configurations. A 2× 4 decoder is
enough, as shown in Fig. 7b. The output of the decoder that is set to one, is used
to turn off the corresponding transistors in the data lines. We turn off blocks
starting from the last way in each set. For example, in LLC cache, if we want to
go from 16 MB to 12 MB in a 16-way, we turn-off ways 15, 14, 13, and 12. In the
current design, Forecaster only turns off invalid ways, thus incurring no extra
data writeback cost. The output of the decoder is also used to clock-gate parts
of the column and row decoders to avoid accessing the parts of the cache that
are turned off. The customization of the cache does not happen in the critical
path of the execution. Therefore, it does not have any effect on performance,
except the negligible area and latency increase stated above.

Branch Target Buffer (BTB). BTB has 4 possible configurations (Table 1).
Therefore, we can partition BTB into 4 sections - B1, B2, B3, and B4 (Fig. 7a).
For the first configuration (i.e., 0.5K entries), sections (B2, B3, B4) are clock-
gated. Similarly, for the second and third configurations, sections (B3, B4) and
(B4) are clock-gated respectively. The last configuration does not clock-gate any
section at all. On the other hand, Section B1 is never clock-gated because at
least those entries in BTB are used in all configurations. We add a customization
logic that creates the appropriate clock-gating signal to enable the appropriate
sections. Moreover, for each configuration, the indexing logic needs to customize
the indexing bits accordingly. The extra logic circuits add negligible latency and
require less than 200 cycles for customization [8]. The majority of those cycles
are hidden in the background. In a multicore processor with one BTB per core,
Forecaster customizes all BTBs to the same configuration. This is done is to
simplify the prediction and customization logic in Forecaster.

Prefetcher. Prefetcher is used either completely or not at all. Therefore, the
prefetcher is clock-gated entirely or not at all. So, the customization logic simply
generates a single clock-gating signal for the entire prefetcher. Customization is
completely done in the background.

5 Implementation

In this section, we outline the implementation of DNN in Forecaster. We
implement a simple DNN accelerator in FPGA and add a CPU-side DNN Driver
Module to control the operation of the accelerator. The module forms inputs,
collects outputs from the accelerator, and sends control signals to the FPGA.

There are many DNN accelerator designs in the literature [5,9,23]. We use
one similar to the one proposed by Yuanfang Li [17]. Figure 8 shows the overview

130 K. Weston et al.

of our design. The accelerator is constructed as a systolic array of Processing
Elements (PEs). The systolic array supports the fast broadcast of inputs and
partial sum generation using row and column buses. Each PE contains 2 mem-
ories for storing activations and weights, 2 Multiplier, 1 Adder, 2 output buffers
for sending results to the row and column buses, 2 input buffers for loading
data from the row and column buses, and 4 multiplexers for handling reduc-
tion operation during the forward propagation. We consider an extra module for
calculating the Softmax function. We distribute the weights of all layers among
PEs and stream the inputs.

Fig. 8. Detailed design of the DNN module.

The DNN driver module has an input buffer, a prediction register, and a
control logic. The input buffer is responsible to generate inputs that are provided
to the DNN accelerator to infer the predictions. An input consists of various
hardware counters and current configuration. Each core collects the counters and
current configuration of resources independently and sends them to the driver
module after every n (e.g., say n = 10,000) instructions. When the module
receives counters of at least a total of I (e.g., I = interval size) instructions,
Forecaster assumes the start of a new interval. The module aggregates the
counters and normalizes each counter with respect to the total instructions of
the interval that just finished. The driver module then sends the formed input
to the DNN accelerator and receives the predicted configuration. The predicted
configuration is stored in the prediction register. The control logic sends the new
configuration to the cores and cache controllers to initiate the reconfiguration.

6 Experimental Setup

Interval Size: Determining the right interval size is crucial to strike the opti-
mal balance between performance gain and system overhead. Figure 9 shows the
efficiency of different interval sizes across applications, both single and multi-
program scenarios. On average, an interval size of 0.5M instructions is the opti-
mal setting, outperforming the second-best by 1.4%.

Simulators and Benchmarks: We use Multi2Sim [25] and McPAT [16] to eval-
uate Forecaster and its power consumption. We implement the DNN in the

Post-Silicon Customization Using Deep Neural Networks 131

Fig. 9. Efficiency vs. baseline (%) comparison between different interval sizes.

Xilinx FPGA to calculate the latency and overhead. This latency is then used
in Multi2Sim. Table 3 shows the hardware parameters for the experiments. We
use 8 Parsec 3.0 benchmarks (blackscholes, bodytrack, canneal, facesim, fluidan-
imate, freqmine, streamcluster, swaptions) with small inputs. All benchmarks
are run to completion or 1.0 B instructions. The interval size I is set to 0.5M
instructions.

Table 3. Parameters of the simulated hardware.

Parameter Value

CPU 8-core @ 2.4 Ghz, SMT off

Private L1 cache (I/D) 32 KB, 64B line, 8-way

Private L2 Cache 1 MB, 64 B line, 16-way

Shared L3 Cache 16 MB, 64 B line, 16-way

Coherence Protocol Directory-based MOESI

DNN Training and Tuning: For the single-program scenario, we use leave-one-out
cross-validation for model training and tuning. This approach ensures the DNN
model is not trained with the application it is optimizing. For the multi-program
scenario, we randomly select 5 combinations of programs, each containing 4
different programs. The other 4 that are not chosen are used for training. Two
instances of each program are launched during the execution of that combination.

Comparison Work: We compare Forecaster with 5 other schemes. First, we
implement the Maximum Likelihood Estimation (MLE) model from [8]. We call
this MLE-histogram. Second, we implement a version of Forecaster using an
MLE model (MLE-vanilla) instead of a DNN model. This is to compare the
performance of the DNN model to the simpler MLE model. Third, to verify the
potential of the dynamic optimization scheme, we profile all applications and
make two configurations: best-static and oracle. For best-static, we select the
best overall static setting for all applications, assuming no dynamic reconfigura-
tion. For the oracle, we dynamically apply the optimal setting for all hardware
components for each execution phase. This serves as the upper bound for this
study. Finally, we also compared our scheme with the DVFS algorithm from [19].

132 K. Weston et al.

7 Results

Efficiency Evaluation: The efficiency of single-program and multi-program
experiments are shown in Fig. 10. In both cases, our scheme outperforms all
other tuning techniques, especially in the multi-program scenario. On average,
Forecaster improve the system efficiency by 18.1% compared to the base-
line in single-program workloads and 15.8% in multi-program workloads. These
improvements account for 80% of the highest achievable efficiency, represented
by the oracle configuration.

Fig. 10. Normalized efficiency gain vs. baseline (%) of Forecaster.

Compared to the best static configuration, our technique provides almost
2X more efficiency gain in single-program and 3X more efficiency gain in multi-
program scenario. Compared to the MLE-histogram model in [8], Forecaster
provides 15.3% and 49.3% more efficiency in the single and multi-program sce-
nario, respectively. One of the things that separate our work from [8] is that
they do not consider the performance of their prediction model in multi-core,
multi-program mode, which is a more realistic scenario. The 1.5X performance
upgrade in multi-program experiment justifies the use of a more complex DNN
model in Forecaster over the simple MLE technique. The DVFS algorithm
we are using puts priority on preserving performance rather than saving power,
which is why it has the lowest performance loss, but also the least efficiency gain.

Fig. 11. Normalized power savings vs. baseline (%) of Forecaster.

Post-Silicon Customization Using Deep Neural Networks 133

This result is achieved thanks to the capability of Forecaster to accu-
rately predict the hardware demand of applications in each phase to save the
most possible amount of power, as shown in Fig. 11. In general, Forecaster
manages to save 16% and 15.3% in power compared to the baseline in the single
and multi-program scenarios, respectively. For multi-program workload, Fore-
caster outperforms all other techniques.

Table 4. Average percentage saving in cache static power of swaptions (single-
program) and combine-5 (multi-program).

Cache Module swaptions combine-5

L2-0 0.67 0.64

L2-1 0.67 0.62

L2-2 0.67 0.65

L2-3 0.67 0.64

L2-4 0.67 0.62

L2-5 0.67 0.65

L2-6 0.67 0.65

L2-7 0.67 0.65

L3 (last level cache) 0.61 0.67

Detailed Analysis: Figures 12 and 13 show how Forecaster manages the
hardware resources during program execution in single (swaptions) and multi-
program (combination-5) scenarios. Forecaster accurately estimates the
demand of swaptions, then turns off excessive resources, saving a lot of power
while maintaining the same performance. Sometimes Forecaster decision can-
not be fully satisfied as shown in Fig. 13(a). In some intervals, only around 65%
to 70% amount of L2 cache is disabled even though the prediction is 75%. This
is because those cache blocks are valid. To preserve performance, we do not
forcefully turn off resources that are being used. Table 4 shows the break down
in cache static power savings of Forecaster. For the single-program scenario,
the amount of power saved is identical between L2 private caches. In multi-
program scenario, this number is different because it depends on the application
running on the core. In general, using gated-ground technique [1,18,21] to turn
off cache blocks, we manage to save approximately 90% of static power of L2
and L3 caches. In swaptions, since Forecaster turns off 75% of L2 and 68%
of L3, the actual amounts of static power saved are 67% and 61%, respectively.

134 K. Weston et al.

Fig. 12. Average turned off amount of (a) L2, (b) L3, and (c) BTB during the execution
of swaptions.

Fig. 13. Average turned off amount of (a) L2, (b) L3, and (c) BTB during the execution
of combination-5 .

Runtime Overhead: The runtime cost of the proposed design can be divided
into two parts: prediction/reconfiguration latency, and the DNN module power
consumption. As for the latency cost, hardware telemetry reading and reconfig-
uration do not happen in the critical path. The hardware will continue in its
old configuration till the decision is made for a new configuration. [24] shows
that the reconfiguration time is negligible (tens of cycles). We use this number
in our simulation. Overall, our approach manages to reduce the IPS degradation
by about 44% compared to MLE-histogram, as shown in Table 5.

Table 5. IPS degradation (%) vs. base-
line. Negative numbers in parentheses.

Technique single-program multi-program mean

DVFS (0.1) 0.2 0.1

Best-static 0.0 (0.8) (0.4)

Forecaster (0.3) (0.7) (0.5)

MLE-histogram (0.4) (1.4) (0.9)

MLE-vanilla (0.6) (1.3) (1.0)

Oracle 0.5 0.9 0.7

Table 6. Cost of different DNN hardware.
This power usage is less than 3.5% of the
overall system power.

PE Array Frequency
(MHz)

Latency Slice Reg Power (W)

Static Dynamic

8*8 268 6352 79566 0.20 2.51

12*12 258 3200 93179 0.21 4.36

16*16 247 1896 109972 0.22 4.72

The main power cost of Forecaster comes from the DNN driver module
and the Processing Elements (PEs). With 16× 16 configuration, the PE array of
Forecaster consumes a total power of 4.94 W, as shown in Table 6. For the DNN
driver module, its total power consumption measured by McPAT is only 0.032W.

Post-Silicon Customization Using Deep Neural Networks 135

Altogether, the total power usage of Forecaster is 4.97W. As the system over-
all power consumption measured by McPAT is 142W for the single-program sce-
nario and 153W for the multi-program scenario, the power consumption of Fore-
caster is just 3.49% and 3.24% extra. Furthermore, since the DNN model is only
used once per 0.5M instructions, its actual energy cost is minimal.

Hardware Implementation Cost. The hardware cost consists of the DNN
hardware and the extra hardware used to implement the knobs. The DNN uses
a four-hidden-layer fully connected neural network with the neuron configuration
of 384/384/256/256. There are also an input layer of 14 neurons and an output
layer of 128 neurons. We use ReLU activation for the input and hidden layers and
Softmax for the output layer. For the hardware implementation, we consider sev-
eral design points as shown Table 6. We use 16*16 PE array size in our final design.

The hardware needed for the knobs is straightforward. The prefetcher is just
clock-gated as the knob is on/off. The BTB also uses clock-gating depending on
the configuration. We have four configurations so a small 2× 4 decoder will do the
job as shown in the customization logic in Fig. 7a. Clock gating the cache ways is
simplified by the fact that the way-reconfiguration logic, shown in Fig. 7b, never
gates a valid entry so no change to the cache controller or coherence hardware is
needed. The way-reconfiguration logic is not complicated because it exploits the
fact that large caches (such as L3) are usually partitioned. Therefore we have
one logic circuitry per partition.

8 Conclusions

The work presents the first DNN-based PSC technique, called Forecaster.
Forecaster exploits two intuitive observations to cope with the long infer-
ence latency of a DNN model and boost customization impact. Forecaster
works in two phases - offline training and online reconfiguration. We provide
a detailed design and implementation of Forecaster and compare its perfor-
mance against a prior state-of-the-art approach. Overall, Forecaster provides
2.5X and 1.5X more power efficiency gain over the best static configuration and
prior state-of-the-art approach.

Acknowlegement. We thanks the reviewers and the members of PALab research
group for valuable feeback. This work is supported by Texas A&M University Faculty
Startup Grant, and NSF Grant No. 1931078.

References

1. Agarwal, A., Li, H., Roy, K.: DRG-cache: a data retention gated-ground cache for
low power. In: Design Automation Conference (2002)

2. Balasubramonian, R., Albonesi, D., Buyuktosunoglu, A., Dwarkadas, S.: Memory
hierarchy reconfiguration for energy and performance in general-purpose processor
architectures. In: MICRO (2000)

3. Bitirgen, R., Ipek, E., Martinez, J.F.: Coordinated management of multiple inter-
acting resources in chip multiprocessors: a machine learning approach. In: MICRO
(2008)

136 K. Weston et al.

4. Chen, T., et al.: DianNao: a small-footprint high-throughput accelerator for ubiq-
uitous machine-learning. In: ASPLOS (2014)

5. Chen, Y.H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. In: ISCA (2016)

6. Choi, S., Yeung, D.: Learning-based SMT processor resource distribution via hill-
climbing. In: ISCA (2006)

7. Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T.F., Bianchini, R.: CoScale:
coordinating CPU and memory system DVFS in server systems. In: MICRO (2012)

8. Dubach, C., Jones, T.M., Bonilla, E.V., O’Boyle, M.F.P.: A predictive model for
dynamic microarchitectural adaptivity control. In: MICRO (2010)

9. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for
general-purpose approximate programs. In: MICRO (2012)

10. Haj-Yahya, J., et al.: SysScale: exploiting multi-domain dynamic voltage and fre-
quency scaling for energy efficient mobile processors. In: ISCA (2020)

11. Hubert, H., Stabernack, B.: Profiling-based hardware/software co-exploration for
the design of video coding architectures. IEEE TCSVT 19, 1680–1691 (2009)

12. Intel, “Profile-Guided Optimization (PGO).” https://software.intel.com/content/
www/us/en/develop-/documentation/cpp-compiler-developer-guide-and-
reference/top/optimization-and-programming-guide/profile-guided-optimization-
pgo.html

13. Ipek, E., Mutlu, O., Mart́ınez, J.F., Caruana, R.: Self-optimizing memory con-
trollers: a reinforcement learning approach. In: ISCA (2008)

14. Isci, C., Buyuktosunoglu, A., Cher, C.Y., Bose, P., Martonosi, M.: An analysis of
efficient multi-core global power management policies: maximizing performance for
a given power budget. In: MICRO (2006)

15. Khan, T.A., et al.: Ripple: profile-guided instruction cache replacement for data
center applications. In: ISCA (2021)

16. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
McPAT: an integrated power, area, and timing modeling framework for multicore
and manycore architectures. In: MICRO (2009)

17. Li, Y., Pedram, A.: CATERPILLAR: coarse grain reconfigurable architecture for
accelerating the training of deep neural networks. In: 2017 IEEE 28th International
Conference on ASAP (2017)

18. Manan, A.: Efficient 16 nm SRAM design for FPGA’s. In: SPIN (2018)
19. Pallipadi, V., Starikovskiy, A.: The Ondemand governor (2006)
20. Petrica, P., Izraelevitz, A.M., Albonesi, D.H., Shoemaker, C.A.: Flicker: a dynam-

ically adaptive architecture for power limited multicore systems. In: ISCA (2013)
21. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, N.: Reducing leakage in

a high-performance deep-submicron instruction cache. In: VLSI (2001)
22. Ravi, G.S., Lipasti, M.H.: CHARSTAR: clock hierarchy aware resource scaling in

tiled architectures. In: ISCA (2017)
23. Reagen, B., et al.: Minerva: enabling low-power, highly-accurate deep neural net-

work accelerators. In: ISCA (2016)
24. Tarsa, S.J., et al.: Post-silicon CPU adaptation made practical using machine learn-

ing. In: ISCA (2019)
25. Ubal, R., Sahuquilo, J., Petit, S., López, P.: Multi2Sim: a simulation framework to

evaluate multicore-multithreaded processors. In: SBAC-PAD (2007)
26. Wiltgen, A., Escobar, K.A., Reis, A.I., Ribas, R.P.: Power consumption analysis

in static CMOS gates. In: SBCCI (2013)

https://software.intel.com/content/www/us/en/develop-/documentation/cpp-compiler-developer-guide-and-reference /top/optimization-and-programming-guide/profile-guided-optimization-pgo.html
https://software.intel.com/content/www/us/en/develop-/documentation/cpp-compiler-developer-guide-and-reference /top/optimization-and-programming-guide/profile-guided-optimization-pgo.html
https://software.intel.com/content/www/us/en/develop-/documentation/cpp-compiler-developer-guide-and-reference /top/optimization-and-programming-guide/profile-guided-optimization-pgo.html
https://software.intel.com/content/www/us/en/develop-/documentation/cpp-compiler-developer-guide-and-reference /top/optimization-and-programming-guide/profile-guided-optimization-pgo.html

Computer Architectures and Operating
Systems

TOSTING: Investigating Total Store
Ordering on ARM

Lars Wrenger(B), Dominik Töllner, and Daniel Lohmann

Systems Research and Architecture Group, Leibniz Universität Hannover,
Hannover, Germany

{wrenger,toellner,lohmann}@sra.uni-hannover.de

Abstract. The Apple M1 ARM processors incorporate two memory
consistency models: the conventional ARM weak memory ordering and
the total store ordering (TSO) model from the x86 architecture employed
by Apple’s x86 emulator, Rosetta 2. The presence of both memory order-
ing models on the same hardware enables us to thoroughly benchmark
and compare their performance characteristics and worst-case workloads.

In this paper, we assess the performance implications of TSO on the
Apple M1 processor architecture. Based on various workloads, our find-
ings indicate that TSO is, on average, 8.94% slower than ARM’s weaker
memory ordering. Through synthetic benchmarks, we further explore the
workloads that experience the most significant performance degradation
due to TSO.

Keywords: TSO · Memory Ordering · Apple M1

1 Introduction

On traditional uniprocessor systems, the effects of memory accesses are observ-
able in the same order as they were specified in the instruction stream (program
order). This is still the case for multitasking on a single core. Challenges arise
when the memory is shared between multiple participants who access it concur-
rently, such as other cores, processors, or accelerators. Providing a consistent
global order in which memory accesses are visible to all observers can be partic-
ularly difficult for multiscalar processors with instruction reordering and local
caches that buffer accesses.

Memory consistency models (MCMs) in shared-memory systems formalize
how writes to shared memory can be observed by different participants within a
shareability domain. These hardware-defined guarantees provide rules that lead
to predictable results of shared memory operations [17,20,23]. These models dif-
fer in how strict guarantees they provide. Both x86 and ARM define a MCM
that allows (limited) reordering of instructions [1,5,6]. x86 guarantees a globally
consistent order for stores (TSO). ARM, in contrast, allows stores to different
memory locations to be observed differently from the program order. While com-
plicating the programming model, ARM’s weaker memory ordering allows pro-
cessors to reorder instructions more freely and potentially reduce synchronization
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 139–152, 2023.
https://doi.org/10.1007/978-3-031-42785-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_10&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_10

140 L. Wrenger et al.

overheads between caches. Seeing this tradeoff between higher performance and
simpler programming models, we ask how extensive the performance benefits
really are.

Apple’s M1 processors implement the ARMv8.3-A instruction set architec-
ture (ISA), which specifies a weak memory ordering model. With these SoC
processors, Apple transitions from Intel-based technology to ARM. Together
with introducing an entirely new ISA, these Apple Silicon SoCs also signifi-
cantly change the memory model the hardware now operates on [2]. To provide
backward compatibility with their former x86-based devices, Apple developed a
translation layer called Rosetta 2. This translation engine can emulate applica-
tions built for x86_64 on Apple Silicon SoCs [9]. Unfortunately, a direct trans-
lation on a per-instruction basis alone is insufficient since x86 follows a stricter
memory ordering. Every memory access could potentially rely on total store
ordering (TSO). To produce the same behavior as under x86, each access would
have to be explicitly synchronized. Instead of paying the accompanying per-
formance costs, Apple built TSO directly into their processors. Thus, the M1
SoC has both the ARM and the x86 memory ordering models implemented in
hardware, making it the ideal target for comparing these MCMs.

1.1 About This Paper

While benchmarks for comparisons between the M1 and other processor families
exist [14,25], no research has yet evaluated the performance impact of TSO on
M1 SoCs. Additionally, to the best of our knowledge, existing research sparsely
conducts evaluations on the M1 Ultra, which combines two M1 Max dies con-
nected by UltraFusion, Apple’s custom packaging architecture [4].

In this paper, we evaluate the performance impact of enabling TSO on
Apple’s M1 Ultra by running synthetic TSO-oriented benchmarks as well as the
CPU benchmarks of SPEC, a non-profit corporation to establish standardized
benchmarks [12]. With our evaluation, we claim the following contributions:

(1) Apple’s M1 Ultra benchmark data for the SPEC CPU benchmark suite.
(2) Quantification of TSO described by the benchmark suite and tailor-made

synthetic test cases.

2 Memory Consistency Models

The memory consistency model (MCM) defines the correct behavior of shared
memory for concurrent access. It is a contract between the developer, the com-
piler, and the parallel system, providing rules that, if followed, lead to predictable
results of shared memory operations. Parallel systems, like x86 or ARM, usually
have a relatively lax consistency model for their normal loads and stores and spe-
cific instructions to enforce stricter guarantees. With them, they can simulate a
stricter MCM if needed.

TOSTING 141

2.1 Programming Model

For hardware independence, most programming languages provide an atomics
abstraction, such as std::atomic in C++ or std::sync::atomic in Rust [8,
10]. These abstractions define their own MCMs and a set of operations (e.g.,
atomic_fetch_add) that ensure consistency independently from the hardware
MCM. The compiler inserts the required instructions and fences to enforce the
guarantees where necessary. Usually, atomics provide the three memory ordering
models listed below in increasing strictness:

relaxed Only loads/stores to the same location are ordered consistently. No
guarantees are provided for different memory locations.

acquire-release The acquire-release relation synchronizes accesses to different
memory locations for pairs of releasing stores and acquiring loads. All other
stores (to different memory) before a releasing store are guaranteed to be
visible after an acquiring load of the same memory on another processor.

sequential-consistent All sequential-consistent operations are guaranteed to
be visible to all processors in the same order.

2.2 Total Store Ordering on x86

Fig. 1. Observable effect of stores to different memory locations. Given that X =
0,Y = 0, each row in Fig. 1c and Fig. 1b represents an observable intermediary state
for CPU1, when CPU0 executes the two stores from Fig. 1a.

The x86 architecture guarantees that stores are visible in a consistent order,
meaning that each processor observes stores from other processors in the same
order [5]. Additionally, every processor also performs stores in program order.
Therefore the case that Y is updated before X is impossible, as shown in Fig. 1b.
This ordering is transitive. Other processors observe stores that are causally
related in an order consistent with the causality relation. This total store ordering
(TSO) already fulfills the acquire-release relation for regular loads and stores;
thus, no stricter instructions are needed and emitted by the compiler if using
the corresponding atomic abstractions.

On the downside, the compiled code loses the information of which instruc-
tions are expected to be acquire-release and which could also be relaxed. This
missing information makes it challenging to emulate x86 on systems with weaker

142 L. Wrenger et al.

memory ordering efficiently, as the optimal placement of fences is an undecid-
able problem [15]. To provide correctness, x86 emulators (e.g., QEMU) basically
insert a fence after every memory instruction.

2.3 Weak Ordering on ARM

The ARM architecture, on the other hand, has a weak memory ordering model.
In the ARMv8 ISA, the concurrency has been revised: In contrast to ARMv7,
the architecture now has a multicopy-atomic model (MCA), guaranteeing that
modifications to a cache line are linearizable [6]. While this MCM is stricter
than the non-MCA ARMv7 model, implementors did not exploit the latter
[31]. This multicopy-atomicity guarantees a consistent order of updates to the
same location. However, in contrast to x86, stores to different locations are
not required to be visible consistently, meaning that every state in Fig. 1c can
still be observed by other processors (CPU1). Stronger ordering guarantees can
only be enforced with explicit fences or memory barriers (DMB, DSB) or load,
store, compare-and-swap, fetch-add and similar instructions with acquire-release
semantic (LDAR, STLR, LDADDAL, CASAL from ARM A64 [1]). Despite being named
load-acquire (LDAR) and store-release (STLR), these instructions actually fulfill
the sequential-consistent memory ordering if combined. Consequently, they are
relatively slow, as discussed in Sect. 4.2. Thus, ARMv8.3 introduced LDAPR,
which allows reordering before STLR to different locations [1]. Despite making
acquire-release atomics more efficient, LDAPR is still not used by most compilers
for load-acquire (instead LDAR is emitted). Recently, clang added support for
LDAPR in C/C++ atomics in version 16 (March 2023), GCC in version 13 (April
2023), and for Rust, this is still only available on the nightly channel.

In general, ARMs laxer memory model gives cores more freedom to reorder
instructions, potentially increasing the overall multicore performance for regular
(relaxed) instructions. The downside of this is the more complex programming
model. Developers have to explicitly synchronize memory accesses if their data
structures might rely on the order of writes. However, this might not be a prob-
lem, as more and more programming languages have sufficient cross-platform
abstractions for atomics.

3 The Apple M1 Architecture

Apple has disclosed only limited information regarding their custom M1
chips [4,28]. Details on core counts, cache and memory sizes, theoretical mem-
ory bandwidth, and some performance characteristics have been made public.
However, there is no official information about the processor’s cache coherence,
load and store buffers, micro-operations, instruction schedulers, and execution
units. Insights into the microarchitecture stem primarily from reverse engineer-
ing projects [7,24].

The M1 Ultra system on a chip (SoC) consists of two M1 Max chiplets con-
nected through an UltraFusion interconnect, having a reported bandwidth of

TOSTING 143

Fig. 2. Cache-Architecture of the M1 Apple Silicon Processor. The E-Clusters each
contain two efficiency cores (codename “Icestorm”), while the P-Clusters consist of
four performance cores (codename “Firestorm”). Each core has L1 data and instruction
caches and shares the L2 cache with the rest of the cluster.

2.5TB/s [4]. A schematic representation of the chiplets and core clusters can be
found in Fig. 2. The processor architecture has 16 performance cores grouped
in four clusters and four efficiency cores in two clusters. Each processor encom-
passes separate L1 instruction (L1i) and L1 data (L1d) caches, while an L2 cache
is associated with each cluster. Information about a shared last-level (or system-
level) cache has not been disclosed. Experimental data indicates that the SLC
sizes are 48MB for the M1 Max and potentially 96MB for the M1 Ultra [3]. How-
ever, these values were not corroborated by our benchmarks. It is also not known
if the two SLCs are separated or combined. Regarding cache-line size, sysctl
on macOS reports a value of 128B, while getconf and the CTR_EL0 register on
Asahi Linux return 64B, which is also supported by our measurements.

The M1 Ultra is not a conventional ARM processor. It incorporates custom
instructions, accelerators, and media units, along with a hardware implementa-
tion for TSO, which can be enabled by setting the first bit of the general config
register (ACTLR_EL1) [7]. After that, normal memory accesses show the same
memory ordering behavior as under x86. Unfortunately, further details of this
hardware implementation and its limitations are not publically available.

4 Evaluation

Our test system is an Apple Mac Studio with an M1 Ultra SoC, 128GiB main
memory, and 1TiB SSD. Our software stack is based on Asahi Linux 6.1.0, a
Linux port to Apple Silicon. The TSO memory ordering was toggled system-
wide for all cores using a kernel module [13] before executing the respective
benchmark. The SPEC benchmarks were compiled with GCC 12.1, and the
synthetic benchmarks with Rust 1.69.0.

144 L. Wrenger et al.

4.1 CPU Benchmarks

To evaluate TSO impact on the M1 Ultra, we choose to run the SPEC CPU 2017
benchmark package [11]. This package consists of 4 benchmark suites with 43
individual benchmarks. SPEC generally distinguishes between rate and speed
benchmarks, which use different metrics to calculate a system’s benchmark
score. While the former measures throughput of a system, the latter measures
execution time. A higher benchmark score for speed benchmarks means less
time has been spent on the system under test (SUT) (here, the M1 Ultra). Addi-
tionally, both integrate integer and floating point benchmarks, where especially
the floating point benchmarks make use of heavy parallelism via OpenMP.

In this evaluation, we focus on the SPECspeed 2017 Floating Point suite since
the utilization of heavy parallelism results in many hardware threads accessing
shared memory concurrently, allowing us to evaluate different memory order-
ing models properly. We utilize all CPU cores within the M1 Ultra, resulting
in a total of 20 threads in execution for every benchmark issued. The bench-
marks run CPU- and memory-intensive code such as 3D simulation, modeling of
physical systems and their behavior, as well as image manipulation. We execute
three iterations of the floating point benchmark suite and select the median of
those iterations as the documentation recommends. A final score is calculated
by computing the geometric mean of all selected medians of all benchmarks.
While the suite provides two benchmark tuning modes base and peak, we<only
show the peak version that uses more platform-specific optimizations in this
paper. However, the base configuration exhibits similar trends. This whole suite
is executed twice, once for enabled TSO and once for disabled TSO. The bench-
mark code does not contain any atomic operations, hence neither the compiler
nor the hardware are hinted to emit/execute such instructions. Therefore, the
application binary code is exactly the same for weak ordering (WO) and TSO.

The results are illustrated in Fig. 3, where the impact of different MCMs
varies across individual benchmarks. For instance, in the 649.fotonik3d_s
benchmark, WO achieves a score of 83.63, while TSO records a score of 83.27.
Enabling TSO does not affect this benchmark. In contrast, for the 644.nab_s
benchmark, WO scores 171.34, and TSO attains a significantly lower score of
137.43. In the majority of benchmarks, the weak ordering native to the ARMv8
Apple Silicon outperforms TSO. The geometric mean score for the TSO-disabled
benchmarks is 86.57, whereas the TSO-enabled benchmarks yield a geometric
mean score of 78.83, translating to a 8.94% decrease in performance.

4.2 Synthetic Benchmarks

We devised two synthetic benchmarks to delve deeper into the performance dis-
crepancies observed in the SPECS benchmarks: (1) a store benchmark and (2) a
fetch-add benchmark. Both benchmarks employ a shared memory buffer between
two threads: a writer, responsible for updating the buffer, and a reader, tasked
with observing these updates. The benchmarks vary only in the instruction uti-
lized for buffer updates: The writer thread iterates through the buffer in 64-byte

TOSTING 145

Fig. 3. SPECspeed 2017 Floating Point. Comparison of the parallel SPEC CPU bench-
marks. Faster execution results in a higher score.

(cache-line) steps, executing either stores or fetch-adds to increment the num-
bers within the first 8 bytes of each element. Initially, all elements are zero, and
in the first iteration, they are all incremented to one, then in the second iteration
to two, and so forth. The store benchmark (1) uses a store operation to write
the current iteration to all elements, while the fetch-add benchmark (2) uses
this instruction to increment the previous values, resulting in the same general
behavior.

Concurrently, the reader iterates through the buffer, loading and comparing
pairs of adjacent elements. It observes and counts out-of-order updates where the
second element is smaller than the first, indicating that the update operations
were perceived in a different order from the writer’s execution. This phenomenon
only occurred under weak ordering; when TSO was enabled, no out-of-order
updates were detected. Apart from the shared buffer and a boolean utilized for
synchronizing the beginning and end of the measurement, the threads do not
access any shared data. They also do not synchronize between iterations; thus,
the reader usually finishes more iterations than the writer.

In these benchmarks, we counted the number of iterations each thread could
complete within one second. This value was then multiplied by the buffer length
to calculate the operations per second. The benchmarks were compiled with
relaxed (LDR and STR or LDADD) and acquire-release (LDAR and STLR or LDADDAL)
instructions. These exact same binaries were then executed with and without
TSO enabled. The reader and writer threads were pinned to different cores of
either the same cluster, sharing an L2 cache, a separate cluster on the same
chiplet, or different chiplets.

Regarding the store benchmark, Fig. 4 shows the number of parallel stores
(Fig. 4a) and loads (Fig. 4b) for varying buffer sizes. The horizontal lines indi-
cate the cache sizes (128KiB, 12MiB and 96MiB as described in Sect. 3). Our
first observation is that, for all benchmarks, enabling TSO does not impact

146 L. Wrenger et al.

Fig. 4. Concurrent store and load operations. The writer (top) and reader (bottom)
threads were pinned to different cores of the same cluster (left), separate clusters of
the same chiplet (middle), and different chiplets (right). The gray horizontal lines mark
the cache sizes (L1 = 128 KiB, L2 = 12 MiB and SLC = 96 MiB).

the performance of the acquire-release instructions. This outcome is to be
expected, as these acquire-release instructions employ an explicit and even
stricter sequentially-consistent memory ordering (Sect. 2.3), making them gen-
erally slower than weak ordering and TSO.

Looking at the store performance of the first benchmark, we see that it is
pretty low for buffers that fit in the L1 cache, possibly due to cache invalidations
(Fig. 4a). Meanwhile, for buffers with sizes between the L1 and L2 cache, the
highest number of stores occurs on the same cluster. This performance drops
significantly on different clusters where the L2 cache is not shared. For buffers
larger than the L2 cache, the performance is similar regardless of the cores used.
The limits of the L1 and L2 cache sizes are clearly visible, while the SLC is not
so apparent. We only observe that the performance stops increasing for buffers
larger than 96MiB (the SLC size).

The read performance, with TSO enabled, is faster for buffers smaller than
the L1 cache (Fig. 4b). This seems to be a pattern when comparing weak stores
and loads on small buffers: The lower the store performance is, the faster loads
tend to become. This inverse effect might be attributed to fewer cache invalida-
tions, as TSO writes are considerably slower. The performance counters, shown
in Fig. 5, support this observation: The number of load and store misses is higher
on weak ordering, where the number of writes is also significantly higher. For
buffers between the L1 and L2 cache sizes, the highest number of loads occurs
on the same cluster. The performance drop is not as significant for different clus-

TOSTING 147

Fig. 5. Perf counters for the store benchmark. The benchmark was executed on the
same cluster with a 216 bytes buffer. The events were measured for both the writer and
reader threads together.

ters on the same chiplet but is more pronounced between chiplets. Also, TSO
loads are slightly faster for L2-sized buffers on different clusters. For buffers
larger than the L2 cache, the performance is again very similar across different
configurations.

Fig. 6. Concurrent fetch-add and load operations

The second synthetic benchmark used fetch-adds (LDADD/LDADDAL) in the
writer thread to increment the buffer elements (Fig. 6). When comparing the
ldadd benchmark (Fig. 6a) with the store benchmark (Fig. 4a), we see that fetch-
adds are, at best, only half as fast as stores. Also enabling, TSO decreases
the fetch-add performance to or even below the acquire-release instructions.
This differs from the previous benchmark, where the TSO stores were generally
above their acquire-release counterparts. Meanwhile, weakly-ordered fetch-adds

148 L. Wrenger et al.

are almost twice as fast, especially for buffers between the L1 and L2 cache sizes
with the reader and writer on the same cluster. Again, the instructions are far
slower for L1-sized buffers and L2-sized buffers on different clusters. However,
this difference is even more pronounced compared to stores.

The load performance (Fig. 6b) also changed significantly from the store
benchmark. With TSO enabled, this time, the read performance is slower for
small buffers but faster for buffers between the L1 and L2 cache sizes on the
same cluster. On different clusters, TSO reads are now consistently slower than
weakly ordered ones. We again see that lower fetch-add performance generally
results in higher load performance.

In summary, our analysis of the store and ldadd benchmarks reveals sev-
eral performance nuances based on buffer sizes and the relationship between
the reader and writer threads. We see that stores and fetch-adds are generally
and sometimes drastically slower under TSO. With a few exceptions, the load
performance also seems to be faster on weak ordering.

5 Discussion

The measurable effects of different types of memory consistency models highly
depend on the access patterns of different actors of a shared memory system as
well as its cache hierarchy. Looking back at Sect. 4.1, we see that the impact of
different MCMs on the individual benchmark fluctuates. Without more detailed
information about the inner workings of the M1 architecture, its microarchi-
tecture, and cache hierarchy, we can only speculate on the reasons for these
performance variations: The primary performance advantage applications might
gain from running under weaker memory ordering models like WO is due to
greater instruction reordering capabilities. Therefore, the performance benefit
vanishes if the hardware architecture cannot sufficiently reorder the instructions
(e.g., due to data dependencies).

Furthermore, the synthetic benchmarks suggest that the performance differ-
ence highly depends on the size of the application’s working set and the cores
accessing the shared memory. The write (store, fetch-add) performance is consis-
tently higher on weak ordering. However, the load performance might be faster
under TSO when the corresponding write performance is very low, and conse-
quently, fewer cache invalidations happen. Fully understanding these variations
requires a more in-depth examination of the cache implementation.

Strict models like sequential consistency (SC) prohibit hardware from
reordering instructions but make it easier for developers and compilers to rea-
son about parallel code. Or, from another perspective, the freedom of hardware
reordering instructions requires developers and compilers to thoroughly reason
about the order in which the emitted code is executed to ensure the program’s
semantics remain correct. In this setting, the novel feature of the Apple M1,
where the MCM is configurable at run time, provides interesting flexibility for
software developers and compilers.

TOSTING 149

6 Related Work

The field of memory consistency models has been under active research for a
couple of decades. With the emergence of multiprocessor systems, the sequen-
tiality properties of those systems needed to be properly formalized. In a seminal
paper from 1979, Lamport describes sequential consistency as the property of a
multiprocessor system to run all instructions of all processors in some sequen-
tial order and that each processor strictly follows its program instruction order
[27]. Instruction reordering, however, can provide a considerable performance
benefit if the CPU can reschedule instructions to reach a higher cache hit rate.
Therefore, over the following years, many different other consistency models have
been established, such as WO [17], processor consistency (PC) [21], partial store
ordering (PSO), TSO, and many others. While most hardware commonly follows
a specific consistency model, there are a few systems in the wild next to the M1
that allow toggling between different MCMs dynamically, during runtime and in
hardware. Notably, all architectures that include a SPARC v8 Reference MMU
implementation allow to switch between PSO and TSO during runtime by tog-
gling the PSO bit in the MMU control register of a specific processor [32]. The
key difference between SPARC systems and the M1 is that the latter can switch
to WO as an alternative MCM, which is more relaxed compared to PSO and
therefore allows further instruction reordering. With the new release of SPARC
v9, the successor to SPARC v8, a new in-hardware toggleable MCM has been
added: relaxed ordering (RO) [33]. RO under SPARC v9 is even closer to WO on
ARM compared to PSO, as it allows further instruction rescheduling. SPARC
v9 systems and ARM, however, provide different synchronization primitives if
instruction rescheduling needs to be prohibited. While the former provides more
coarse-grained, global synchronization primitives, ARM comes with smaller, dis-
tinct shareability domains to limit the necessity of synchronization.

To investigate the performance impact of these consistency models, several
benchmarks have been conducted. Gharachorloo et al. [19] measured the effect
of different MCMs on a simulated Stanford DASH multiprocessor architecture.
Their results have shown that stricter ordering models performed significantly
worse than less strict models for architectures with blocking reads. A more recent
study by Naeem et al. [29] draws the same conclusion on network-on-chip (NOC)
based distributed shared memory multicore systems, improving their system per-
formance when transitioning from stricter to weaker memory consistency models.

Moving from stricter to weaker models shifts the responsibility of sequential-
ity from the hardware to the software and software toolchain. This inherently
enforces research on how to express program sequentiality as a developer and
how to emit appropriate instructions as a compiler. In the paper of Boehm
et al. [16], the authors describe a divergence between C/C++ being single-
threaded programming languages while giving additional multithread support
via an additional library. Since the language itself does not provide intrinsic
support for multithreaded code, it is up to the libraries to offer synchronization
primitives for concurrent access to shared resources, such as a shared address
space, that enforce a specific order for particular instructions. Enforcing a specific

150 L. Wrenger et al.

order is achieved by properly placing memory barriers, guaranteeing that certain
load/store operations execute before/after surrounding instructions. Shaked et
al. [18] investigate the impact of memory barriers on mixed-size memory accesses
of different data widths. Today’s processors commonly allow accessing memory
at granularities of 1, 2, 4, or 8 bytes. Placing barriers for mixed use of those gran-
ularities should enforce the same ordering as for data accesses of equal width.
This general assumption, however, proves to be wrong for ARMv8 and POWER
architectures, as the authors’ evaluation clarifies. While placing a strong mem-
ory barrier between every memory access of equal width for architectures imple-
menting WO results in a sequential-consistent behavior, this is not the case for
mixed-size memory accesses.

Other research regarding Apple’s M1 processors is sparse. [25] benchmarked
the M1 and M1 Ultra for high-performance scientific computing and compared
its GPU performance against two Nvidia-equipped servers, while [14] studied
their energy efficiency. ARM systems, in general, have been evaluated against
x86 systems on different, primarily HPC-based workloads [22,30,34]. Kodama
et al. [26] evaluated the performance of the ARM A64FX against a dual-socket
Xeon using the SPEC CPU and OMP benchmarks. Nevertheless, none of these
works focused specifically on memory-ordering differences.

7 Conclusion

The Apple M1 is the first processor that implements both, ARM’s weak memory
ordering and Intel’s TSO, as a software-configurable feature. This also makes it
possible for the first time to compare the performance impact of the different
memory models on real hard- and software.

In our results, we see a significant effect on the multicore performance when
comparing both models. Despite being more challenging to program for, the
weak model is generally faster: 8.94% on average running SPEC CPU and more
than twice as fast in some of our synthetic benchmarks. However, the lack of
knowledge about the internals of the M1 architecture makes it hard to fully
explain all effects of TSO on this SoC. Our results suggest that these are deeply
entangled with the caching hierarchy and memory access path. Nonetheless, we
think that this work is an essential step toward understanding the actual runtime
effects of the memory ordering models.

References

1. ARM Cortex-A Series - Programmer’s Guide for ARMv8-A. ARM Limited (2015)
2. Apple announces Mac transition to Apple silicon (2020). https://nr.apple.com/

d2O2Y718J3. Accessed 22 Mar 2023
3. Apple’s M1 Pro, M1 Max SoCs investigated: new performance and effi-

ciency heights (2021). https://www.anandtech.com/show/17024/apple-m1-max-
performance-review. Accessed 23 Mar 2023

https://nr.apple.com/d2O2Y718J3
https://nr.apple.com/d2O2Y718J3
https://www.anandtech.com/show/17024/apple-m1-max-performance-review
https://www.anandtech.com/show/17024/apple-m1-max-performance-review

TOSTING 151

4. Apple M1 Ultra (2022). https://www.apple.com/newsroom/2022/03/apple-
unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/.
Accessed 22 Mar 2023

5. Intel 64 and IA-32 Architectures Software Developer’s Manual - Combined Vol-
umes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Intel (2022). https://www.intel.
com/content/www/us/en/developer/articles/technical/intel-sdm.html. Accessed
30 May 2023

6. Learn the architecture - Memory Systems, Ordering, and Barriers. ARM Limited
(2022). https://developer.arm.com/documentation/102336/0100. Accessed 30 May
2023

7. Asahi Linux docs wiki (2023). https://github.com/AsahiLinux/docs/wiki.
Accessed 23 Mar 2023

8. C++ atomic operations library (2023). https://en.cppreference.com/w/cpp/
atomic. Accessed 26 Mar 2023

9. Rosetta Translation Environment (2023). https://developer.apple.com/
documentation/apple-silicon/about-the-rosetta-translation-environment.
Accessed 22 Mar 2023

10. Rust standard library - module std::sync::atomic (2023). https://doc.rust-lang.
org/std/sync/atomic/index.html. Accessed 26 Mar 2023

11. SPEC CPU benchmark package (2023). https://www.spec.org/cpu2017/. Accessed
27 Mar 2023

12. The Standard Performance Evaluation Corporation (2023). https://www.spec.
org/. Accessed 22 Mar 2023

13. Tsoenabler for Linux (2023). https://github.com/cyyself/m1tso-linux. Accessed 26
Mar 2023

14. Ali, Z., Tanveer, T., Aziz, S., Usman, M., Azam, A.: Reassessing the performance
of arm vs x86 with recent technological shift of apple. In: 2022 International Con-
ference on IT and Industrial Technologies (ICIT), pp. 01–06 (2022). https://doi.
org/10.1109/ICIT56493.2022.9988933

15. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about
weak memory models? In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 26–46.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_2

16. Boehm, H.J., Adve, S.V.: Foundations of the c++ concurrency memory model. In:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 68–78. PLDI 2008, Association for Computing
Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1375581.1375591

17. Dubois, M., Scheurich, C., Briggs, F.: Memory access buffering in multiprocessors.
In: Proceedings of the 13th Annual International Symposium on Computer Archi-
tecture, pp. 434–442. ISCA 1986, IEEE Computer Society Press, Washington, DC,
USA (1986)

18. Flur, S., et al.: Mixed-size concurrency: arm, power, C/C++11, and sc. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, pp. 429–442. POPL 2017, Association for Computing Machinery, New
York, NY, USA (2017). https://doi.org/10.1145/3009837.3009839

19. Gharachorloo, K., Gupta, A., Hennessy, J.: Performance evaluation of memory con-
sistency models for shared-memory multiprocessors. In: Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 245–257. ASPLOS IV, Association for Computing
Machinery, New York, NY, USA (1991). https://doi.org/10.1145/106972.106997

https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/102336/0100
https://github.com/AsahiLinux/docs/wiki
https://en.cppreference.com/w/cpp/atomic
https://en.cppreference.com/w/cpp/atomic
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://www.spec.org/cpu2017/
https://www.spec.org/
https://www.spec.org/
https://github.com/cyyself/m1tso-linux
https://doi.org/10.1109/ICIT56493.2022.9988933
https://doi.org/10.1109/ICIT56493.2022.9988933
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/106972.106997

152 L. Wrenger et al.

20. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. SIGARCH Comput. Archit. News 18(2SI), 15–26 (1990). https://doi.org/10.
1145/325096.325102

21. Goodman, J.R.: Cache consistency and sequential consistency (1991). http://
digital.library.wisc.edu/1793/59442. Accessed 28 Mar 2023

22. Gupta, N., Ashiwal, R., Brank, B., Peddoju, S.K., Pleiter, D.: Performance eval-
uation of parallex execution model on ARM-based platforms. In: 2020 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 567–575 (2020).
https://doi.org/10.1109/CLUSTER49012.2020.00080

23. Higham, L., Kawash, J., Verwaal, N.: Defining and comparing memory consistency
models (1997)

24. Johnson, D.: Apple M1 Microarchitecture Research (2023). https://dougallj.
github.io/applecpu/firestorm.html. Accessed 23 Mar 2023

25. Kenyon, C., Capano, C.: Apple silicon performance in scientific computing. In:
2022 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–10
(2022). https://doi.org/10.1109/HPEC55821.2022.9926315

26. Kodama, Y., Kondo, M., Sato, M.: Evaluation of SPEC CPU and SPEC OMP on
the A64FX. In: 2021 IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 553–561 (2021). https://doi.org/10.1109/Cluster48925.2021.00088

27. Lamport: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. C 28(9), 690–691 (1979). https://doi.
org/10.1109/TC.1979.1675439

28. Mattioli, M.: Meet the fam1ly. IEEE Micro 42(3), 78–84 (2022). https://doi.org/
10.1109/MM.2022.3169245

29. Naeem, A., Chen, X., Lu, Z., Jantsch, A.: Realization and performance comparison
of sequential and weak memory consistency models in network-on-chip based multi-
core systems. In: 16th Asia and South Pacific Design Automation Conference (ASP-
DAC 2011). pp. 154–159 (2011). https://doi.org/10.1109/ASPDAC.2011.5722176

30. Ouro, P., Lopez-Novoa, U., Guest, M.F.: On the performance of a highly-scalable
computational fluid dynamics code on AMD, arm and intel processor-based
HPC systems. Comput. Phys. Commun. 269, 108105 (2021). https://doi.org/
10.1016/j.cpc.2021.108105. https://www.sciencedirect.com/science/article/pii/
S0010465521002174

31. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplify-
ing ARM concurrency: multicopy-atomic axiomatic and operational models for
ARMv8. Proc. ACM Program. Lang. 2(POPL), 1–29(2017). https://doi.org/10.
1145/3158107

32. SPARC International Inc, C.: The SPARC Architecture Manual: Version 8.
Prentice-Hall Inc, USA (1992)

33. SPARC International Inc, C.: The SPARC Architecture Manual (Version 9).
Prentice-Hall Inc, USA (1994)

34. Xia, J., Cheng, C., Zhou, X., Hu, Y., Chun, P.: Kunpeng 920: the first 7-nm
Chiplet-based 64-core ARM SOC for cloud services. IEEE Micro 41(5), 67–75
(2021). https://doi.org/10.1109/MM.2021.3085578

https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/325096.325102
http://digital.library.wisc.edu/1793/59442
http://digital.library.wisc.edu/1793/59442
https://doi.org/10.1109/CLUSTER49012.2020.00080
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://doi.org/10.1109/HPEC55821.2022.9926315
https://doi.org/10.1109/Cluster48925.2021.00088
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/MM.2022.3169245
https://doi.org/10.1109/MM.2022.3169245
https://doi.org/10.1109/ASPDAC.2011.5722176
https://doi.org/10.1016/j.cpc.2021.108105
https://doi.org/10.1016/j.cpc.2021.108105
https://www.sciencedirect.com/science/article/pii/S0010465521002174
https://www.sciencedirect.com/science/article/pii/S0010465521002174
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1109/MM.2021.3085578

Back to the Core-Memory Age: Running
Operating Systems in NVRAM only

Jonas Rabenstein1(B), Dustin Nguyen1(B), Oliver Giersch2(B),
Christian Eichler3(B), Timo Hönig3(B), Jörg Nolte2(B),

and Wolfgang Schröder-Preikschat1(B)

1 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
{rabenstein,nguyen,wosch}@cs.fau.de

2 Brandenburgische Technische Universität Cottbus-Senftenberg (BTU),
Cottbus, Germany

{oliver.giersch,joerg.nolte}@b-tu.de
3 Ruhr-Universität Bochum (RUB), Bochum, Germany

{christian.eichler,timo.hoenig}@rub.de

Abstract. The classic core memory was completely non-volatile and
thus kept at least part of the operating system persistently in main mem-
ory, even over power cycles. Nowadays we can repeat this approach with
NVRAM, but with terabytes of main memory on a completely different
scale and with parts of the operating-system state stored in volatile CPU
caches. In this paper, we discuss our experiences of running large mod-
ern operating systems including their applications entirely in NVRAM.
We adapted stock Linux and FreeBSD kernels to work exclusively with
NVRAM by hiding all DRAM from the kernels at boot time to estab-
lish a realistic performance baseline without changing anything else. Fol-
lowing this entirely NVRAM-agnostic approach, we could observe an
effective performance penalty of a factor of about four, but only negligi-
ble increases in whole-system power draw. For our system with two CPU
sockets and 56 cores total, we also observed a reduction in power draw in
several scenarios. Due to prolonged execution times, the energy consump-
tion increased as well for these measured workloads. While this might be
discouraging at first sight, this result was achieved without any perfor-
mance tuning as to the specific characteristics of today’s NVRAM tech-
nology. Therefore, we are also discussing means to mitigate the observed
shortcomings by integrating NVRAM appropriately into the memory
hierarchy of future robust persistent systems.

Keywords: NVRAM · Operating Systems · Energy

1 Introduction

The current trend towards fast byte-addressable non-volatile memory (NVM)—
NVRAM for short as synonymous—with latencies and a write resistance much
closer to ordinary RAM (i.e. DRAM or SRAM) than to Flash, positions this
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 153–167, 2023.
https://doi.org/10.1007/978-3-031-42785-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_11&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_11

154 J. Rabenstein et al.

storage class memory (SCM [3]) as a possible replacement for the established
volatile technologies. This opens up a fundamentally different approach to the
resilient operation of computing systems, in which all programs, including the
operating system, are regularly executed directly in NVRAM.

Completely dispensing with DRAM promises a positive effect on energy con-
sumption, which is particularly important for the service life of mobile devices,
but stationary setups would also benefit in terms of electricity costs or cooling.
Such an “NVM-only” solution, however, still has to cover the volatile state stored
in CPU registers and caches and keep it consistent with the counterparts held
in the NVRAM.

Given such a top of the “memory pyramid” with both volatile and non-volatile
features, the primary advantages of NVRAM—direct byte-addressability and
persistence—are not, in fact, transparently made available to the vast majority
of applications and imply major challenges, especially for the programming of
such systems [10] as “using NVM for persistence requires fail-safe guarantees from
application or device failures” [6]. For example, power failures in combination
with NVRAM cause control flows that can unexpectedly transform a sequential
process into a non-sequential process: A program has to deal with its own state
from previous interrupted runs [9].

With quite simple precautions, however, these problems can be solved effi-
ciently and functionally transparently even without special hardware support,
both for the machine programs (i.e., applications) and for a large part of the
operating system programs at the operating system level itself:

1. by a sporadically triggered checkpointing mechanism integrated into the
exception-handling subsystem [2] and

2. by integration of this new storage class into the memory hierarchy via the vir-
tual memory subsystem, whereby the persistence of NVRAM pages buffered
in RAM is ensured by the former (point 1.., analogous to [5]).

Both concepts combined pave the way for direct execution from NVRAM for
the operating system and the machine programs running on it, but especially
for legacy software.

But the advantage of such a purely software-based whole-system persistence
with direct execution from NVRAM is of little value if the resulting performance
is too poor for the common use case, making this mode of operation unattractive.
It is therefore essential to first compare the cost of an NVRAM-based (general
purpose) operating system with that of its traditional RAM-based variant before
moving on to implementing NVRAM-specific concepts for an energy-efficient
transparent execution of legacy software, in order to be able to better classify the
hoped-for added value—in a real environment, not by simulation or emulation.

This is exactly what this paper does: it presents a case study where Linux
and FreeBSD, including machine programs, are executed from both NVRAM and
DRAM, and compares the obtained performance characteristics. DRAM-based
operation is nothing special, but it determines the baseline for comparison. In
contrast, the NVRAM-based operation of “vanilla” Linux or FreeBSD is—to the
best of our knowledge—an unprecedented act, which, as we will describe, requires

Back to the Core-Memory Age 155

some bold engineering work. The migration of Linux and FreeBSD from DRAM
to NVRAM will not only show whether the higher access latencies of the latter
are drowned out in the background noise of the overall system but also help to
gain insights and guidelines for operating system development in general.

Please note again, that none of the aforementioned challenges of a persis-
tent operating system are addressed at this early stage and that our mod-
ified operating-system kernels are still functionally volatile, only running
in non-volatile main memory (i.e. NVRAM).

We go further than [13] and supplement their work with the evaluation of systems
that run entirely in NVRAM. Thus, the paper makes the following contributions:

– A field report on freeing Linux and FreeBSD from DRAM dependencies and
preparing both operating systems to use NVRAM exclusively.

– A before-and-after comparison of the performance and energy efficiency of
the systems in different configurations using either NVRAM or DRAM, with
various benchmarks and practical, real-world workloads.

– Recommendations for transitioning to NVRAM-based operating systems that
enable functionally transparent use of NVRAM for legacy software.

The rest of the paper is organised as follows: Sect. 2 introduces the hard-
ware used for the experiments, explains the operating system configurations
and briefly describes the evaluation scenarios and benchmarks. Section 3 char-
acterises the performance and energy efficiency of the hardware and operating
system platforms we use and presents a before-and-after comparison. The empir-
ical results are then discussed in Sect. 4, followed by a presentation of relevant
related work in Sect. 5. Finally, Sect. 6 gives a brief summary of our work.

2 Fundamentals and Methodology

In this Section, we present the computer hardware used for the experiments,
explain the operating system configurations required for them and describe the
evaluation scenarios as well as the benchmarks.

2.1 Hardware Platform

In addition to the processor system components of our test device, especially
the NVRAM equipment, the raw data of the main memory regarding timing
and bandwidth are interesting as a reference for the theoretical (manufacturer’s
specification) performance. The latter is especially significant as a baseline for
the subsequent evaluation.

Processing Systems. The evaluation platform used to run and benchmark both
Linux and FreeBSD is a Dell PowerEdge R650 equipped with two Intel R© Xeon R©
Gold 6330 processors. Each processor has 28 cores and 56 threads, respectively.

156 J. Rabenstein et al.

Their base frequency is 2.0GHz, even though they can boost to up to 3.10GHz.
As conventional memory, there are eight 32GB DDR4 RDIMMs.

For NVRAM, there are eight DIMMs of OptaneTM Persistent Memory 200
with a capacity of 128GB each. Both kinds of memory are distributed evenly
between the CPUs, populating each memory channel with one DIMM. In total,
the system has 256GB RAM and 1024GB NVRAM. Even though the available
RAM and NVRAM support up to 3200MT/s, both are limited by the CPUs to
2933MT/s. The NVRAM is configured to App Direct Mode.

NVRAM Baseline. The manufacturer specifications of the memory bandwidth
for the 128GB NVRAM DIMM is quite sobering compared to DRAM. The idle
average latency for 64B accesses in App Direct Mode is given as 340 ns. Note
that each load or store instruction fetches a 64-byte cache line. At the persistent
memory module, this results in a read or write of 256 bytes of data accessed [4].

For the evaluation carried out here, namely running “vanilla” Linux and
FreeBSD, respectively, directly from NVRAM, the access mix of 67% read and
33% write is baseline relevant. In contrast, the (to-be) NVRAM-based backup
of the volatile system state will have 100% write in focus.

2.2 Operating Systems

While our modified versions themselves would allow running on an “NVM-only”
platform, we can neither modify the hardware nor the firmware. Common prob-
lems tackled by both implementations revolve around x86-64’s startup process,
which requires physical memory below 4GiB for switching from real mode to long
mode. In addition, some legacy drivers depend on 32-bit addressable memory,
while NVRAM populates physical addresses well above 4GiB.

However, we would like to point out that once the system finished booting,
all allocations are served from NVRAM only. As such, the RAM is solely used as
a workaround for hardware and firmware limitations and not used for essential
functionality of the operating system in execution.

Linux. NVRAM is already extensively supported by current versions of Linux
and can be used as a block device (DAX), directly mapped into the address
space of an application or extend the system memory. Together with the ability
to dynamically on- and offline memory regions during runtime, usage of RAM
could be almost eliminated for userspace applications. However, as the memory
of the kernel itself can not be moved, it would remain in RAM.

To overcome this limitation, the most recent version available during the
development process (v6.1) was modified to allow to only use NVRAM already
from the early boot stages on. During bootstrapping, a stub decompresses the
kernel image and allows to randomise the used kernel start addresses. To detect
suitable regions, as well as later on, when initialising the memory allocation
pools, a firmware-provided memory map is used. As this map also provides infor-
mation about non-volatile memory regions, we introduced a kernel parameter
(memtype) to allow the selection of memory types to be used on each boot.

Back to the Core-Memory Age 157

FreeBSD. As a basis for our changes to the FreeBSD system, we have used ver-
sion 13.1, which is the most recent at the time of writing. The current state of
NVRAM support in FreeBSD is limited to a device driver that makes the recog-
nized NVRAM DIMMs accessible. From there on, it can be used as a fast backing
store for conventional file systems—but this does not mean that FreeBSD itself
runs in NVRAM.

FreeBSD uses a custom, single-stage UEFI bootloader maintained in lockstep
with the rest of the operating system for non-legacy bootstraps by default. Based
on the EFI memory map, we adjusted the loader to place the kernel and modules
into NVRAM. In addition, the initial virtual address mapping used during the
early boot stage had to be adapted to reflect this change.

The FreeBSD kernel for x86-64 has a documented dependency on the ker-
nel being loaded into the lower 4GiB of memory, and many internal invariants
rely on that property. We identified each of these reliant components in the
kernel and modified them to work with the altered kernel placement. With the
kernel placed in NVRAM, the initialisation of the memory subsystem had to
be changed as well. Based on the EFI memory map, most of the RAM pages
are ignored. A small, single-digit number of RAM pages in the low physical
address range are set aside and stored in a separate data structure to serve the
architecture-specific requirements. In addition, all NVRAM regions are assigned
to the NUMA domain of their corresponding CPU in order to avoid memory
accesses across domains. To satisfy the 32-bit address DMA requirements of
old drivers, IOMMU-assisted DMA remapping had to be enabled as well. This
required no further changes aside from setting the appropriate kernel parame-
ter, however, the DMA remapping driver requires a single page of RAM below
4GiB for itself. These changes by themselves suffice to fully bootstrap the kernel
in NVRAM with only a single CPU core. For multi-core support the set aside
memory was used to initialize a transient allocator, which can be used to sat-
isfy any memory allocations to low-address memory. The architecture of x86-64
requires 20-bit addresses for startup and 32-bit addresses for the transition to
long mode. With all cores online, all references to the transient allocator and
DRAM memory are dropped, resulting in the execution of the operating system
and all future allocations being served from NVRAM.

2.3 Evaluation Approach

During the evaluation, the systems were mostly isolated from any outside-
induced noise, by shutting down any non-evaluation–related service and disabling
SSH access on the standard port.

As our modified Linux allows to select the memory region type that should
be used as main memory dynamically by a command line parameter, the same
binary had been used in the comparison. Our configuration is based on Debian,
with some unused modules removed.

The evaluation of the FreeBSD systems is done on the same hardware with
the same kernel configuration (GENERIC). Both kernels and loaders (original

158 J. Rabenstein et al.

and modified) are loaded via iPXE netboot, while the whole FreeBSD userland
is already installed on the local harddrive.

All our power measurements are conducted using an external measurement
device, the Microchip MCP39F511N Power Monitor Demonstration Board [12].
The server’s (cf. Sect. 2.1) two power-supply units (PSUs) are each connected to
one of the MCP39F511N measurement channels, allowing for a realistic whole-
system measurement, including the power losses in the PSUs and other hardware
components. The MCP39F511N is connected to another server to ensure that
the power measurement does not influence the system under test. Thus, our mea-
surement approach provides realistic, real-world power values of the otherwise
unaltered, off-the-shelf hardware platform.

Microbenchmark. To gain detailed measurements regarding the performance
characteristics of NVRAM vs. RAM and placement strategies of the operat-
ing systems under test, the sysbench [14] test suite was used. The baseline was
established by using sysbench’s memory benchmark. To estimate the impact
on overall system performance, we used fileio, which interacts with several sub-
systems such as the virtual file system, buffers, and system call handling. The
sysbench version used is supplied by the operating system vendor, Debian respec-
tively FreeBSD—in both cases version 1.0.20.

Different combinations of sysbench configurations were run multiple times to
test a variety of workloads. These options for adjustment are the number of used
threads, the block size of memory chunks and the kind of access. By modifying
the number of threads, the operating system is forced to make NUMA-placement
decisions, while different block sizes influence cache usage.

Application. In order to evaluate the systems’ performance with a real-world
workload, the build-system of the respective operating system is deemed as suit-
able. Most of the workload is comprised of source to binary translation, whereas
source files are read into memory, optimised and written back as an object file.
Since the option -pipe is used during translation, no intermediate files are gen-
erated, leading to greater memory consumption. During linking, all object files
are read again, and merged into a single binary. In between are some trans-
formations made by tools such as awk for generating header files and gzip for
compression of build artefacts.

3 Performance Characterisation

Following [13], we measure the performance of the NVRAM hardware (Intel
OptaneTM) underlying the experiments on the one hand and the operating sys-
tems on the other. The focus is on the timing and power requirements of Linux
and FreeBSD for the conventional DRAM-based deployment and the NVRAM-
based (“NVM-only”) approach to be evaluated. Every measurement was repeated
five times, and the presented numbers are the median thereof with a 95% confi-
dence level.

Back to the Core-Memory Age 159

Fig. 1. sysbench memory throughput for different block sizes per thread executed on
top of our modified Linux.

160 J. Rabenstein et al.

Memory Benchmarks. The sysbench benchmark was conducted in the local,
non-shared configuration, where each thread allocates its own memory buffer to
perform the read and write operations. The memory read benchmark (Fig. 1a)
reveals in the case of Linux the impact of the cache architecture of the CPU.
NVRAM and DRAM curves are close together with sharp drops near the 32KiB
and 512KiB tick marks, which strongly correlates with the sizes of the private
level 1 (48KiB) and level 2 (1.25MiB) data caches per core. In the case of 112
threads, two hyperthreads per core share the private caches, and the drop hap-
pens therefore earlier. As expected, the NVRAM throughput also drops sharply
from the DRAM curve as well after the L2 boundary due to the inclusive caching
strategy of the CPUs, which fills up the shared 42MiB L3 cache as well. Once we
fall out of the cache hierarchy (Fig. 1b) the NVRAM achieves around 21GiB/s
with 28 threads. DRAM scales further to 56 threads and achieves close to
121GiB/s (Fig. 1b), where NVRAM still remains at 21GiB/s. NVRAM does not
scale very well for a high number of threads, the difference to DRAM increases
to a factor between 5 to 6. However, at 112 threads where hyperthreads come
into play, the NVRAM rate sharply drops to less than 6GiB/s while DRAM still
holds up at 110GiB/s which gives us a high penalty factor of about 18.

The memory-write benchmark for Linux (Fig. 1a) shows no sharp drops at the
boundary of the L1 cache but at the L2 boundary, similar to the read benchmark,
Generally, when we still operate in the caches the write rate is about half the
read rate which is most probably caused by the fact, that each cache line that
is newly written to must first be fetched from memory as well. Once we are out
of the caches (Fig. 1b), NVRAM maxes out at approx. 2.1GiB/s already with
two threads. In the case of DRAM, the combined memory controllers are then
saturated with 56 threads offering a combined write bandwidth of about 56GiB/s
while NVRAM stays at approx. 1.7GiB/s, which gives us a severe penalty factor
of nearly 33 for the experiments with a large number of threads. The curves for
FreeBSD are largely similar, therefore we do not show them here. There is,
however, a significant difference in the cache case. FreeBSD always revealed a
lower throughput than Linux, which might be caused by less aggressive settings
for the frequency scaling of the CPUs.

The theoretical performance maximum of our system should be 8×0.56GiB/s
for 64B write and 8×1.86GiB/s for 64B read if all our eight DIMMs in the
system can really be operated in parallel. The measurements revealed a signifi-
cantly higher rate for the read operations, which can probably by attributed to
the wide internal 256B accesses of the DIMMs. However, the data rate of the
write operations was less than half of the theoretical maximum. We attribute this
to the fact that there is always a simultaneous read stream back to the caches
when one continuously writes to cacheable memory. Additionally, read and write
rates strongly depend on NUMA placement strategies as well as thread place-
ment/migration strategies of the underlying operating systems, which we did
not change at all.

When the combined working sets of all applications fit mostly into the cache
hierarchy, there is only a slight performance penalty for the NVRAM-based

Back to the Core-Memory Age 161

systems caused by working set changes. Memory-bound applications, however,
might suffer severely, especially the low write rates are the biggest problem and
can inhibit parallel execution significantly.

File Benchmarks. In Fig. 2, the results of the sequential memory read and write
benchmarks using the traditional file system interface via system calls are shown
for Linux and FreeBSD. In the case of NVRAM, Linux reaches its read peak of
about 5.4GiB/s already with four threads, while FreeBSD reaches its peak of
nearly 4.9GiB/s with 28 threads. From 14 threads on, however, the curves of
the two systems are relatively close together. Both systems do not scale well
beyond seven threads, irrespective of the type of memory used. In the case of
DRAM, Linux outperforms FreeBSD by a large margin, 15.5GiB/s achieved
already with seven threads vs about 10GiB/s with 28 threads. All in all, for the
read benchmark, the performance penalty of NVRAM is about 3x in the case of
Linux and approx. 2x for FreeBSD.

Fig. 2. sysbench fileio sequential read and write throughput

In the case of the write benchmark (Fig. 2), the throughput is way lower
than in the case of read, probably because an fsync() operation is automati-
cally inserted for every 100 write requests by the benchmark, that caused real
write operations to storage. The scalability is very low for this benchmark, both
systems are saturated with a few numbers of threads already. We strongly assume
that even the occasional fsync() operations quickly saturated the SSDs of our
system. Linux achieved slightly less than 2GiB/s with DRAM and four threads.
With NVRAM it achieved slightly less than 0.85GiB/s with four threads as well.

162 J. Rabenstein et al.

The penalty for NVRAM was about 2.4x. In the case of FreeBSD, one thread
already achieved the peak of 0.1GiB/s for NVRAM and about 0.18GiB/s for
DRAM. In all cases, the penalty for NVRAM was less than 1.5x.

Parallel Make Benchmarks. For the before and after comparison, we use a par-
allel make on each of the system’s build infrastructure to show how painful an
“NVM-only” approach really is in terms of system performance and whether or
not the differences in performance are lost in the system-related background
noise and are no longer perceived.

Fig. 3. Linux and FreeBSD parallel make

In Fig. 3, parallel makes of Linux and FreeBSD kernels are shown were 7–112
threads were applied for system generation. This gives us a first insight what
performance penalties can be expected in a real system used for software devel-
opment. Interestingly enough, the NVRAM-based systems can hold up well to
their DRAM-based counterparts, as long as no more than 28 threads are used.
A performance loss of around 25% is way better than the memory performance
numbers suggest. The overall “system jitter” hides the disadvantages of NVRAM
to a large extent here. From 56 threads on, the NVRAM-based system continu-
ously loses ground but never more than a factor of four. In the case of FreeBSD
most benchmarks even revealed a factor of less than three. The DRAM-based
systems are able to continuously achieve a slight performance benefit from more
threads but at a very low margin. There is only a negligible achievement from 56
threads onwards, probably due to increasing serial portions of the build process.

In absolute times, the generation of the FreeBSD system was nearly a magni-
tude faster than the generation of Linux, probably due to the size of the sources.
The penalty factors for NVRAM are slightly better (from 1.08x to 3.27x) for any
degree of parallelism than in the case of the Linux kernel. But the general obser-
vations are otherwise similar. For up to 28 threads, the NVRAM-based system
keeps up well with its DRAM counterpart, with a penalty of less than 1.3x.

Back to the Core-Memory Age 163

Fig. 4. Whole-system power draw for the benchmarks presented in Fig. 1.

Power Consumption. Figure 4 illustrates the average power draw for the sys-
bench memory evaluation scenarios presented in Fig. 1: On Linux, the power
demand for reading and writing blocks of up to 512KiB (or 1MiB, depending on
the level of parallelism) from/to NVRAM (solid shapes and lines) is almost iden-
tical compared to running the respective benchmark on DRAM (blank shapes
and dashed lines). When surpassing the boundary of 512KiB/1MiB—the same
block size the overall throughput decreases (see Fig. 1a) due to caching effects—
the power draw starts to decrease alongside the throughput. As for the through-
put, the power decrease is more pronounced when operating on NVRAM due
to its lower performance, causing the same benchmarks running on DRAM to
cause a higher power draw while exhibiting a higher throughput. This decrease in
power draw is most likely caused by the CPUs becoming idle by waiting for the
memory. Also, in terms of power draw, the difference between reading from and
writing to memory is small: While writing to both DRAM and NVRAM draws
slightly more power for small block sizes, these values begin to fall below the cor-
responding values for reading when surpassing the block size of 512KiB/1MiB.

When running the same benchmarks on FreeBSD, the observed values are
very similar to the values observed on Linux.

164 J. Rabenstein et al.

4 Discussion

In this Section, we discuss insights gained from the experiments and deduct
the following Recommendations for Action (RFAs) to adapt current operating
systems to NVRAM:

NVRAM awareness in the operating system(RFA #1). Today’s hardware sys-
tems still need some RAM because of legacy considerations. Typical Intel-
compatible CPUs reveal a kind of embryonal development in the boot phase
going through 16-bit real and various protected modes with segments, 32-bit
mode with segments, paging and PAE, and finally, paged 64-bit mode. During
these phases, the lower 32-bit physical address space must be used and must be
changed later. Finally, all volatile parts of the physical memory must be kept
away from the kernel to boot, which requires some system-dependent adapta-
tions. All in all, adapting the boot trampoline and kernel initialisation is rather
tedious and fiddly.

The benchmarks have clearly shown that a naive usage of NVRAM by sim-
ply replacing DRAM with NVRAM causes a significant performance penalty,
depending on the workload. A simple system like that might still be useful
because of its pure capacity. Huge out-of-core workloads can, in principle, be
put onto rather small and relatively cheap machines. Similarly, thousands of low-
intensity processes might run as well. For those applications, the Optane Memory
Mode that manages some of the available DRAM as hardware-controlled cache,
would probably be sufficient, for example. However, in that mode, a part of the
DRAM is lost and NVRAM is treated as volatile.

Transition from DRAM to NVRAM (RFA #2). Current Linux systems can
already use NVRAM following the SNIA recommendations. Furthermore, (parts
of) the NVRAM can also be used by the virtual memory subsystem as a kind of
overflow memory in times of high memory pressure. The NVRAM is handled as
a “far away”, still volatile, NUMA domain in this case without taking advantage
of its persistence features at all. In contrast, we clearly want to go beyond pure
capacity scaling. In further work, we want to use NVRAM truly as storage-class
memory, targeting robust systems, that provide efficient whole system persis-
tence with stock hardware and fast recovery times in exceptional cases. In the
next step, we will develop a suspend-to-NVRAM mechanism, that allows us to
freeze and wakeup entire systems with minimal latency on demand. Following
[2,5], we will integrate this mechanism into the handling of power failures, such
that systems will be able to survive power losses, ideally with low amounts of
residual energy from the power supply or a low-capacity UPS.

Persistency Guarantees and Power/Energy (RFA #3). Contemporary operating
systems, such as Linux and FreeBSD, are designed for running in and work-
ing with volatile main memory. Due to this volatility, the operating system
conducts a variety of persistency measures—such as periodic file-system cache
writebacks—just to protect from the loss of volatile data in the rare event of

Back to the Core-Memory Age 165

a power outage. Such persistency measures, however, come at the cost of com-
putational and energetic overhead, and their implementation also increases the
trusted code base.

Once the persistency of the main memory is guaranteed by the hardware,
that is, the system is using non-volatile main memory instead of volatile DRAM,
the software-implemented persistency measures become superfluous and can be
removed. Despite the lower throughput of NVRAM, without such measures, the
operating system can finally leverage the advantages of NVRAM over conven-
tional, volatile DRAM and, thus, compensate for the lower performance at least
partially—and achieve even higher performance compared to DRAM-only by
implementing the subsequent RFA #4.

Architectural Changes due to NVRAM (RFA #4). Finally and most importantly,
we will make virtual memory subsystems NVRAM-aware and develop a virtual
NVRAM that will manage the DRAM only as a cache for NVRAM to mitigate
the inherent performance penalties while retaining its persistence. Such a multi-
level virtual memory subsystem is most likely needed anyway in the future since
other memory technologies like high-bandwidth memory (HBM) also have to be
integrated appropriately.

Apart from the memory hierarchy, NVRAM awareness offers plenty of oppor-
tunities for improvements ranging from simplistic ones to highly sophisticated
schemes based on machine learning and similar techniques. For example, when
a scheduler decides to move low-intensity processes to “slow” economy cores, its
memory contents might be moved lazily to NVRAM as well. Program code often
has a high locality of reference and fits into the internal CPU caches, thus code
could always be placed into NVRAM without much performance loss, as our
benchmarks show. Accessing code and data in large persistent file system caches
would be possible without hard page faults but fast lazy mappings. All in all,
the observed performance penalties can most certainly be overcome but require
substantial changes to rather complex parts of current operating systems.

5 Related Work

There is as yet no Linux or FreeBSD that, together with all machine programs
(i.e., applications), runs directly and exclusively from NVRAM. Thus, at present,
our approach cannot be compared with other solutions on a level playing field.

This includes the concept of whole system persistence [7], which achieves the
persistence of complete systems on the basis of special DIMMs that contain both
DRAM and equally sized Flash memory. The content of the DRAM part is saved
with the help of backup capacitors on the local Flash as soon as a power failure is
detected. The same applies to NV-Hypervisor [11], where DRAM content is also
hardware-based persisted. In contrast, with our “NVM-only” vision, we do not
expect any special hardware support other than NVRAM to keep main memory
contents persistent.

Twizzler [1] seems to be an exception to these developments: It is presented
as a system from which a complete NVRAM-based operating system can be

166 J. Rabenstein et al.

built with a data-centric design. Whether Twizzler itself can be considered an
“NVM-only” system, however, remains an open question. In addition, Twizzler
must be understood as a replacement for an exokernel-based operating system
(implemented in Rust) and would establish Linux or FreeBSD as a guest oper-
ating system, if at all. The programming model of Twizzler unfolds its positive
effect, especially when used directly by the machine programs that are then to
run in NVRAM; it does not make the latter transparent for legacy software as
our approach does.

6 Conclusion

We strongly argue that NVRAM needs to be integrated appropriately into the
memory hierarchy to realize its true potential. Since this is a highly complex
undertaking, we have first shown with our work here that state-of-the-art oper-
ating systems can be run directly from NVRAM, which is a first to the best of
our knowledge. What’s more: entire software stacks, including legacy software,
can actually be run from NVRAM and don’t have to do without the persistence
properties of this memory technology.

We have now established a nearly worst-case baseline for the possible perfor-
mance of such systems under heavy load. While the synthetic memory bench-
marks showed a wide variety of performance penalties, all of the kernel build
benchmarks only revealed a penalty of significantly less than 4x. Thus, the
expected degradation was drowned in “system jitter” to a large extent. The
power draw increased only insignificantly and even decreased for several work-
loads, while the overall energy consumption was proportional to the prolonged
execution times of the benchmarks.

Although these measurement results may seem discouraging, one should not
forget that these numbers have been achieved with systems where we performed
a rigorous technology swap from DRAM to NVRAM without taking any special
precautions for efficient NVRAM operation. When we additionally use certain
amounts of DRAM as a software-controlled cache for NVRAM integrated into
the virtual memory subsystem, the way is paved for robust, moderately priced
servers with huge memory capacities—and which provide an efficient abstraction
layer in particular for legacy software that can also be directly run from NVRAM
without any change. We want to show this in further work.

Unfortunately, Intel has ceased to produce the Optane DIMMs used for our
work. However, first approaches like “memory semantics SSDs” were already
announced that might fill the gap and lead in a similar direction. The idea is in
the world, and we strongly expect CXL-based solutions for storage class memory
in the near future.

Acknowledgments. The author order corresponds to the FLAE (first-last-author
emphasis) model. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – project numbers 465958100, 501993201, and
502615015 and by the German Federal Ministry of Education and Research (BMBF),
project AI-NET-ANTILLAS 16KIS1315.

Back to the Core-Memory Age 167

Availability. The source code developed for the work and the measurement data
obtained is published via https://doi.org/10.5281/zenodo.7788760. See also [8].

References

1. Bittman, D., Alvaro, P., Mehra, P., Long, D.D.E., Miller, E.L.: Twizzler: a data-
centric OS for non-volatile memory. In: Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC 2020), pp. 65–80. USENIX Association
(2020)

2. Eichler, C., Hofmeier, H., Reif, S., Hönig, T., Nolte, J., Schröder-Preikschat, W.:
Neverlast: an NVM-centric operating system for persistent edge systems. In: Pro-
ceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys
2021, pp. 146–153. Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3476886.3477513

3. Freitas, R.F., Wilcke, W.W.: Storage-class memory: the next storage system tech-
nology. IBM J. Res. Dev. 52(4/5), 439–447 (2008)

4. Hady, F.T.: Faster access to more data. Intel Non-Volatile Memory Solutions
Group, Intel Corporation, USA, Technology brief (2022)

5. Heiser, G., Le Sueur, E., Danis, A., Budzynowski, A., Salomie, T.l., Alonso, G.:
RapiLog: reducing system complexity through verification. In: Proceedings of the
8th ACM European Conference on Computer Systems, EuroSys 2013, pp. 323–336.
Association for Computing Machinery, New York, NY, USA (2013). https://doi.
org/10.1145/2465351.2465383

6. Kannan, S., Qureshi, M., Gavrilovska, A., Schwan, K.: Energy aware persistence:
reducing energy overheads of memory-based persistence in NVMs. In: 2016 Inter-
national Conference on Parallel Architecture and Compilation Techniques (PACT),
pp. 165–177 (2016). https://doi.org/10.1145/2967938.2967953

7. Narayanan, D., Hodson, O.: Whole-system persistence. In: Proceedings of the sev-
enteenth international conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2012), pp. 401–410 (2012)

8. Rabenstein, J., et al.: On the performance of NVRAM-based operating systems:
a case study with Linux and FreeBSD. Technical report CS-2023-01, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), Department Informatik (2023).
https://doi.org/10.25593/issn.2191-5008/CS-2023-01

9. Ransford, B., Lucia, B.: Nonvolatile memory is a broken time machine. In: Pro-
ceedings of the 2014 Workshop on Memory Systems Performance and Correctness
(MSPC 2014), p. 5 (2014)

10. Ren, J., Hu, Q., Khan, S., Moscibroda, T.: Programming for non-volatile main
memory is hard. In: Proceedings of the 8th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys 2017), pp. 1–8. no. 13, ACM Digital Library (2017)

11. Sartakov, V.A., Kapitza, R.: NV-Hypervisor: hypervisor-based persistence for vir-
tual machines. In: 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 654–659 (2014). https://doi.org/10.1109/
DSN.2014.64

12. Technology, M.: MCP39F511N power monitor demonstration board. https://www.
microchip.com/en-us/development-tool/ADM00706

13. Yang, J., Kim, J., Hoseinzadeh, M., Izraelevitz, J., Swanson, S.: An empirical guide
to the behavior and use of scalable persistent memory. In: Proceedings of the 18th
USENIX Conference on File and Storage Technologies, FAST 2020 (2020)

14. Zaitsev, P.: sysbench (2004). https://github.com/akopytov/sysbench

https://doi.org/10.5281/zenodo.7788760
https://doi.org/10.1145/3476886.3477513
https://doi.org/10.1145/2465351.2465383
https://doi.org/10.1145/2465351.2465383
https://doi.org/10.1145/2967938.2967953
https://doi.org/10.25593/issn.2191-5008/CS-2023-01
https://doi.org/10.1109/DSN.2014.64
https://doi.org/10.1109/DSN.2014.64
https://www.microchip.com/en-us/development-tool/ADM00706
https://www.microchip.com/en-us/development-tool/ADM00706
https://github.com/akopytov/sysbench

Retrofitting AMD x86 Processors
with Active Virtual Machine Introspection

Capabilities

Thomas Dangl1(B), Stewart Sentanoe1, and Hans P. Reiser2

1 University of Passau, Innstr. 43, 94032 Passau, Germany
{td,se}@sec.uni-passau.de

2 Reykjavík University, Menntavegur 1, Reykjavík, Iceland
hansr@ru.is

Abstract. Active virtual machine introspection mechanisms intercept
the control flow of a virtual machine running on top of a hypervisor.
They enable external tools to monitor and inspect the state at predeter-
mined locations of interest synchronous to the execution of the system.
Such mechanisms, in particular, require support from the processor ven-
dor by facilitating interpositioning. This support is missing on AMD
x86 processors, leading to inferior introspection solutions. We outline
implicit assumptions about active introspection mechanisms in previous
work, offer constructions for solution strategies on AMD systems and
discuss stealthiness and correctness. Finally, we show empirically that
such retrofitted software solutions exhibit performance metrics in the
same order of magnitude as native hardware solutions.

Keywords: virtual machine introspection · monitoring · system
security · reliability · stealthiness · cloud computing

1 Introduction

Virtual machine introspection (VMI) is a popular approach for monitoring vir-
tual machines (VMs) at the hypervisor level. VMI is desirable for many practi-
cal purposes, including intrusion detection, malware analysis, and main memory
forensics. To perform VMI, we have to provide a monitoring application with
the means to access a target virtual machine’s internal state.

There are two flavors of VMI: active and passive. Passive VMI, or polling
VMI, refers to unsynchronized, read-only access to the virtual machine’s state.
This approach involves periodically polling the virtual machine’s memory and
registers to gather information about its state. Active VMI, or event-based VMI,
involves intercepting the virtual machine’s control flow and executing custom
code in response to specific events. This approach allows for more fine-grained
control over the target virtual machine, but can be more complex to implement.

Significant hardware differences exist between Intel and AMD x86 processors,
which majorly impact the use of active VMI. The usual approaches used by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 168–182, 2023.
https://doi.org/10.1007/978-3-031-42785-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_12

Retrofitting AMD x86 Processors with Active VMI Capabilities 169

VMI tools and libraries on Intel processors do not work on AMD processors
due to fundamental differences in their design. Specifically, AMD processors
support hardware-assisted virtualization through their Secure Virtual Machine
(SVM) extension and enable Second Level Address Translation (SLAT) using
Rapid Virtualization Indexing (RVI). This is different from Intel processors,
which use Virtual Machine Extensions (VT-x) and support SLAT with Extended
Page Tables (EPT). Additionally, while Intel processors have a feature called
the Monitor Trap Flag that simplifies single-stepping a virtual machine, AMD
systems do not offer an equivalent capability.

It is essential to address the current lack of VMI support on AMD processors
to expand the applicability of VMI-based tools. Notably, within the SmartVMI
project1, our objective is the development of VMI toolchains for generating train-
ing data sets for the next generation of VMI-based security tools, and neglecting
AMD platforms as a valuable source of real-system data sets would severely
hinder the generalizability of our outcomes. Therefore, this paper introduces a
software implementation that retrofits missing hardware features onto current
AMD x86 processors, extending their introspection capabilities. Our approach
seamlessly integrates with popular introspection APIs and off-the-shelf hyper-
visors, enabling developers of introspection applications to quickly port their
existing software to AMD systems. Our contributions include the following key
aspects:

1. We analyse two significant architectural differences between Intel and AMD
x86 processors that affect the realization of active introspection mechanisms
taking into account related research.

2. We conceptualize a mechanism that addresses the shortcomings of previous
approaches through retrofitting virtualization features in software. This mech-
anism enables virtualized single-stepping on systems that support regular,
non-virtualizable single-stepping.

3. Based on this principle, we develop a proof of concept implementation for the
KVM hypervisor and the LibVMI introspection library, based on KVMi [8].
We publish this implementation as an open source software.

This paper is structured as follows: Sect. 2 provides background knowledge
on VMI. Section 3 summarizes existing work that targets VMI on AMD pro-
cessors and highlights their limitations. Section 4 presents our guided single-
stepping approach, including a proof-of-concept implementation using KVMi. In
Sect. 5, we evaluate the correctness, stealthiness, and performance of our solu-
tion. Finally, Sect. 6 concludes the paper.

2 Background

In this section, we present relevant background on hardware-assisted virtualiza-
tion for AMD and Intel x86 systems as well as on virtual machine introspection.
1 https://www.smartvmi.org/.

https://www.smartvmi.org/

170 T. Dangl et al.

2.1 Hardware-Assisted Virtualization

The predominant approach to system virtualization on x86 is hardware-assisted
virtualization, which was introduced by Intel in 2005 through VT-x/VMX (Vir-
tual Machine Extensions). This extension featured new processor modes for vir-
tualization: VMX root mode, used as privileged mode by the hypervisor, and
VMX non-root mode, where the guest system executes in a non-privileged mode.
Our particular interest are context switches from the unprivileged to the priv-
ileged mode, i.e., from the guest virtual machine to the hypervisor, through
traps, refered to as VM exit (the opposite direction, from the hypervisor to the
virtual machine, is called VM entry). The configuration of the virtual machines
running under hardware-assisted virtualization, including VM exit conditions, is
performed in the Virtual Machine Control Structure (VMCS) [16].

AMD processors also support hardware-assisted virtualization since the intro-
duction of the Secure Virtual Machine (SVM) extension2 in 2006. In this exten-
sion, the new processor modes are called host mode (privileged) and guest mode
(unprivileged). The hypervisor configures the hosted virtual machines through
the Virtual Machine Control Block (VMBC) [17].

Starting with the second generation of processor extensions for hardware-
assisted virtualization, the vendors implemented a concept known as Second
Level Address Translation (SLAT). While traditional paging solely translates
logical, virtual addresses to physical addresses, SLAT extends capabilities of the
Memory Management Unit (MMU) by another dimension: The translation of
the physical address within the virtual machine to the physical address on the
host machine. For Intel processors, the SLAT implementation is called Extended
Page Tables (EPT). Intel refers to the top-level paging structure in the guest
that translates from guest virtual addresses (GVA) to guest physical addresses
(GPA) as Page Map Level 4 (PML4). For the new dimension, the corresponding
paging structure is called EPT PML4 and translates from GPA to host physical
addresses (HPA) [5]. The CR3 register references the PML4, while the VMCS
stores the EPT PML4 in the EPT Pointer (EPTP) field.

AMD x86 processors implement SLAT with Rapid Virtualization Indexing
(RVI) or Nested Paging (NP). In this implementation, the guest page tables
(gPT) translate guest linear addresses (GLA) to guest physical addresses (GPA).
For the second level address translation, nested page tables (nPT) are used to
convert GPA to system physical addresses (SPA) [18]. The CR3 register in the
guest is referred to as guest CR3 (gCR3) and holds the reference to the gPT.
The hypervisor loads the nPT value into the nested CR3 (nCR3) field in the
VMBC [1]. Besides completely different terminology, there are also significant
implementation differences between AMD’s RVI and Intel’s EPT.

2.2 Virtual Machine Introspection

Virtual machine introspection is the “approach of inspecting a virtual machine
from the outside for the purpose of analyzing the software running inside it.”
2 Newer publications refer to the same extension as AMD Virtualization (AMD-

V) [18].

Retrofitting AMD x86 Processors with Active VMI Capabilities 171

Garfinkel and Rosenblum characterize VMI by three main properties [4]: Iso-
lation (between monitoring and monitored system), introspection (monitoring
software has a full, untampered view of the whole system), and interposition
(interception of operations in the virtual machine).

VMI-based monitoring mechanisms can be categorized as either passive (or
polling), which means they analyze the main memory of the virtual machine
based on external triggers, or as active (or event-triggered), which means they
interposition themselves with the control flow of the virtual machine, e.g., by
placing breakpoints [6]. The active interpositioning allows introspection applica-
tions to perform their introspection task at specific, predetermined locations in
the control flow of applications running inside the guest virtual machine.

In our work, we investigate two forms of active VMI: The first type of intro-
spection mechanism is memory access tracing based on the SLAT feature of
modern processors. For such mechanisms, first, the VMI application modifies
the memory access permissions of a page within the SLAT. Second, accessing
these pages triggers a trap to the hypervisor, which then emits an event to the
introspection application. Besides these two basic steps, there are also mech-
anisms that involve additional actions, such as creating new views (top-level
paging structures for SLAT) and dynamically switching between these views [9].

The second kind of introspection mechanism involves the use of hyper-single-
stepping functionality. Unlike regular single-stepping, which transfers control to
the guest kernel after each instruction and can be used, e.g., by guest-level debug-
gers, hyper-single-stepping executes a single instruction in the guest and then
traps to the hypervisor, which then can notify the VMI tool. When combined
with a software hyper-breakpoint [14], this mechanism is particularly valuable.
This combination involves replacing an instruction in the guest with a break-
point instruction. Upon reaching this instruction, the guest traps to the hyper-
visor. The VMI tool handles this breakpoint by restoring the original instruction
and activating single-stepping. After the guest executes the original instruction,
the single-step triggers another hypervisor trap and the VMI tool re-inserts the
breakpoint.

3 State of the Art

While VMI is a promising technique for practically any efficiently virtualizable
architecture, current industry and academia work focuses mainly on the x86
architectures. Yet as we have alluded to in earlier parts of this work, there are
several architectural differences between the two main x86 vendors, namely Intel
and AMD, that limit the applicability of previous active introspection research
on AMD processors. These limitations exist because most works in the literature
conducted their development on Intel processors with the Intel VT-x processor
extensions. Subsequently, we will describe the two main architectural differences
and summarize the state of the art regarding addressing the open problems
arising from them.

172 T. Dangl et al.

3.1 SLAT-Based Mechanisms

Zhang and Zonouz have shown that the combination of SLAT controls and events
is suitable for hiding injected code from the guest [20]. By maintaining a set of
complementary paging structures for read/write/execute operations and switch-
ing between them dynamically, it is possible to have a different mapping for
reads to a page compared to an instruction fetch. Hence, injected code practi-
cally becomes invisible to the guest. While their approach used a hypervisor to
perform the code hiding, we do not consider their approach as virtual machine
introspection due to the non-flexible design. Instead, they created the technique
specifically for rootkits.

The first hypervisor to offer support for a wide range of options to manipulate
the SLAT for introspection purposes was Xen with the altp2m mechanism [9].
It allows the introspection application to manage multiple guest-physical to
machine-physical mappings for a single virtual machine, manipulate these map-
pings, switch between them, and directly handle the related events. However, as
of now, altp2m is only available on Intel processors.

Tanda was the first to identify the realization of SLAT memory access per-
missions on AMD processors as an issue regarding implementing the usual code
hiding technique [13]. Whereas Intel EPT allows configuring read, write, and
execute permissions of access to a specific page, AMD RVI merges the read
and execute permissions. Hence, it is not possible to set them separately, which
adversely affects the earlier-mentioned code-hiding technique. Tanda has also
outlined two partial workarounds for this problem. However, when used with
virtual machine introspection, these partial solutions rely on the availability of
hyper-single-stepping, which, as we will see in the following, is also missing.
Furthermore, neither of the approaches he proposed reaches performance char-
acteristics close to utilizing the hardware implementation on Intel.

Therefore, we can conclude that SLAT-based introspection mechanisms on
AMD processors are equally powerful to those on Intel if and only if hyper-
single-stepping is available. Henceforth, this paper will focus on realizing this
requirement and thus provide adequate support for active introspection mecha-
nisms on AMD64.

3.2 Hyper-Single-Stepping

The prevalent way to realize hyper-single-stepping for VMI architectures in envi-
ronments based on hardware-assisted virtualization is through virtualized pro-
cessor capabilities. For example, Intel processors feature the Monitor Trap Flag,
which can be set in the VMCS by the hypervisor. When this flag is enabled, the
processor will trigger a VM exit after each execution of an instruction.

The two most popular open-source hypervisors with VMI support for hyper-
single-stepping – Xen3 [2] and KVMi [8] – employ this functionality. However,
3 https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vmx/int

r.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23b675eb4ea
a2dc091f7bb3039f#l250.

https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vmx/intr.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23b675eb4eaa2dc091f7bb3039f#l250
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vmx/intr.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23b675eb4eaa2dc091f7bb3039f#l250
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vmx/intr.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23b675eb4eaa2dc091f7bb3039f#l250

Retrofitting AMD x86 Processors with Active VMI Capabilities 173

as mentioned earlier, this requires support from the architecture and, ultimately,
the processor vendor. Currently, an equivalent of the Monitor Trap Flag does
not exist on AMD. Hence, the feature is unavailable on AMD processors.

Yet, some debuggers such as GDB [7,19] offer limited single-stepping sup-
port for virtual machines even on AMD. They accomplish this by using the non-
virtualized single-stepping feature of the processor. Therefore, they incur severe
drawbacks: the single-stepping is trivially detectable from within the guest, mali-
cious actors can easily disable the mechanism, and the guest cannot do any
single-stepping on its own. All of these reasons make this approach unsuitable
for VMI, where solutions are bound to be isolated from the guest and stealthy.
The challenges to achieving these properties in an adverse environment are the
topic of this paper.

Finally, Sato et al. discuss ensuring stealthiness and correctness of retrofitted
virtual machine introspection mechanisms [12]. Their work mainly focuses on
retrofitted hardware breakpoints. However, we believe we can draw relevant
lessons for a much broader range of mechanisms, including hyper-single-stepping,
see Sect. 4.2.

4 Introspection on the AMD64 Architecture

As the realisation of the solutions presented by Tanda [13] rests on the availability
of hyper-single-stepping, and one can implement the outlined approaches at the
level of the introspection application with existing APIs, we focus solely on the
hyper-single-stepping functionality for the remainder of this paper. In our work,
the trust model assumes the hypervisor and the host system, which runs the
VMI application, to be trusted. Furthermore, we consider the hardware and its
firmware to be untampered. All other entities are untrusted. Finally, we assume
that the attacker does not directly attack the hypervisor or other trusted entities,
for example, through VM escapes.

4.1 Design

A naive approach to address the lack of the monitor trap flag on AMD machines
is to emulate instead of virtualizing the instructions in question. The approach
of falling back to emulation when hardware-assisted virtualization is unsuitable
is a common technique for similar problems. Regrettably, it comes with two
significant shortcomings: First, the emulation is often prone to errors due to the
high complexity and heterogeneity of processors. Second, it may sacrifice the
performance gains of efficient virtualization and can therefore slow down the
execution of the virtual machine significantly.

Another potential solution is to disassemble the current instruction and insert
a hyper-breakpoint directly following this instruction on-the-fly [11]. This app-
roach reduces the susceptibility to errors compared to the emulation since the
only requirement to execute the strategy is to determine the correct length of

174 T. Dangl et al.

Fig. 1. Concept of guided single-stepping contextualized with other approaches

any instruction. However, it still can be considered significantly slower than vir-
tualization with the monitor trap flag because every single-step now requires
mapping, reading, and length-disassembling the next instruction through VMI.

Instead of these slow and error-prone approaches, we rely on the regular trap
flag in the guest to generate the trap. Then, we elevate this trap to the hypervisor
by configuring the processor to perform exception intercepting on the respective
exception vector [1]. As we will see later, this retrofitting of single-stepping for
introspection applications comes at practically no cost and is resistant to both
errors and malicious insiders.

Figure 1 shows our approach called guided single-stepping alongside single-
stepping and hyper-single-stepping. We refer to it as guided since we guide the
guest’s execution from the outside to avoid manipulation and detection of the
monitoring. Our approach offers a way to realise the benefits of virtual machine
introspection, namely isolation, and interposition, for a single-stepping mech-
anism targeting virtual machines. Hence, it provides the same guarantees as
hyper-single-stepping, even when not explicitly supported by the hardware.

However, an important design decision remains. Like many other introspec-
tion mechanisms, our approach can be implemented at different levels, i.e., in
the hypervisor, an introspection library, or the guest itself. We decided to place
our solution in the hypervisor and the introspection library LibVMI.

Operating at multiple levels in the introspection stack enables a particularly
small footprint: Since our implementation is implemented transparently at the
hypervisor level, existing introspection applications, in general, do not need to
be modified for operation on AMD systems when using guided single-stepping.
As single-stepping in a VMI context is often used only selectively, e.g., to step
over a single instruction, counterintuitively, an implementation at the level of the
introspection library reduces the overhead. Hence, the introspection application
can determine partial emulation functions ahead of time and potentially even
cache them.

Retrofitting AMD x86 Processors with Active VMI Capabilities 175

4.2 Implementation

As mentioned in the beginning, our proof-of-concept implementation4 builds
upon the open-source introspection API KVMi based on the KVM hypervisor.
Since it operates at multiple layers in the introspection stack, we will discuss the
challenges and concrete realisation separately for each affected layer.

Hypervisor Layer. The core responsibility of the part of our solution that resides
in the hypervisor is to configure the virtual machine such that regular hardware
single-stepping is enabled and the generated traps end up in the hypervisor. In
particular, this requires the following three steps that must occur transactionally
and are started by the KVMI_VCPU_CONTROL_SINGLESTEP command:

1. Exception intercepting must be enabled for the #DB (Debug Exception)
vector. We implement this using the set_exception_intercept helper func-
tion5 during update_bp_intercept.

2. We must save off the original RFLAGS of the vCPU to determine whether
to reinject the exception and to set the trap flag correctly upon exit. Our
solution stores the guest’s RFLAGS within the vcpu_svm struct using the
svm_get_rflags function.

3. Finally, we must force the trap flag on within the guest for the duration of
the guided single-stepping. Our solution performs this manipulation within
__kvm_set_rflags6.

To disable the guided single-stepping after reaching the target instruction,
we have to perform the inverse of these three steps in reverse order. In this case,
we can omit step 2. Enabling and disabling the guided single-stepping is only
possible when the vCPU is currently not running, i.e., it is halted by either an
active mechanism or paused.

After setting up the virtual machine in this way, single-step operations in the
guest trap to the hypervisor. In KVM, they eventually reach the exit handler
called db_interception7. In this handler, we can convert the exception to a
VMI event and send it to the introspection application for further processing.

Since our retrofitted approach utilizes the regular trap flag, we need to con-
sider the edge case that the virtual machine itself is already single-stepping, e.g.,
for debugging purposes. To account for this issue, we need to reinject the inter-
rupt into the virtual machine if the trap flag was already set by the guest. Hence,
we have saved the guest’s original value of RFLAGS in step 2. Reinjecting the
debug exception is as simple as calling kvm_queue_exception with DB_VECTOR
after delivering the event to the introspection application. Thereby, the operating
system in the guest can correctly handle the single-step on its own.

4 Available at: https://github.com/smartvmi/VMI-on-AMD.
5 https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L591.
6 https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/x86.c#L10104.
7 https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L2783.

https://github.com/smartvmi/VMI-on-AMD
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L591
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/x86.c#L10104
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L2783

176 T. Dangl et al.

Our implementation currently does not handle a change to the trap flag in
the guest during single-stepping. This situation can, for example, occur when
a self-debugging program in the guest sets the trap flag on itself to obfuscate
its control flow. Addressing this problem would require sophisticated emulation
at the level of the hypervisor. However, we consider this a niche technique that
remains outside the scope of our current work.

Finally, the single-step may clobber the debug-status register (DR6). As the
processor sets bit 14 of DR6 when a #DB exception occurs due to single-
stepping, the guest could detect this value and conclude that it is being mon-
itored. To avoid this situation, we clear this bit if and only if we have not
reinjected the single-step into the guest.

Application Layer. At the level of the introspection library or the application
layer, we will exclusively deal with implementation details that are cheaper to
implement at this level than in the hypervisor. In particular, we apply partial
emulation on top of some critical instructions. As the application, in many cases,
e.g., when using hyper-single-stepping together with hyper-breakpoints, knows
the instruction ahead of time, the resulting overhead can be limited. Not only can
we avoid mapping and reading the page of the currently executed instruction,
but we can also eliminate all superfluous emulation for the statistically dominant
instructions that do not require intervention.

As our retrofitted approach uses the guest’s trap flag to generate the inter-
rupts, malicious insiders could potentially interfere with the monitoring by
manipulating the RFLAGS in the guest. To address this, we guide the execution in
the guest. The instruction we have to worry about the most is the POPF instruc-
tion that loads new flags from the stack. We manipulate the execution of this
instruction by dynamically rewriting the stack contents upon execution. Before
the guest executes this instruction, we force the trap flag onto the top-most value
on the stack:

1 ACCESS_CONTEXT(ctx ,
2 .translate_mechanism = VMI_TM_PROCESS_DTB ,
3 .addr = event ->x86_regs ->rsp + 8,
4 .pt = event ->x86_regs ->cr3 & ~0 x1000ull);
5
6 uint64 eflags , eflags_new;
7 if (VMI_SUCCESS == vmi_read_64(vmi , &ctx , &eflags))
8 {
9 eflags_new = eflags | X86_EFLAGS_TF;

10 vmi_write_64(vmi , &ctx , &eflags_new);
11 }

As the value remains on the stack after the execution, we have to write
back the original value after the instruction executes to hide the presence of the
monitoring. To this end, we must account for the fact that this value lies beyond
the stack pointer after the execution of the instruction.

The counterpart to the POPF instruction is the PUSHF instruction. This
instruction places the flags on top of the stack. As it is also available in user

Retrofitting AMD x86 Processors with Active VMI Capabilities 177

mode, it is an ideal candidate to detect our monitoring. Again, we can avoid
detection by rewriting the stack after its execution:

1 ACCESS_CONTEXT(ctx ,
2 .translate_mechanism = VMI_TM_PROCESS_DTB ,
3 .addr = event ->x86_regs ->rsp + 8,
4 .pt = event ->x86_regs ->cr3 & ~0 x1000ull);
5
6 uint64 eflags;
7 if (VMI_SUCCESS == vmi_read_64(vmi , &ctx , &eflags))
8 {
9 eflags &= ~X86_EFLAGS_TF;

10 vmi_write_64(vmi , &ctx , &eflags);
11 }

Finally, we have to deal with the CLI instruction that clears the interrupt
flag. With interrupts disabled, the single-stepping mechanisms will no longer
work. Luckily, most modern kernels nowadays are fully or mostly preemptible.
Therefore, we should not encounter this instruction for the most part when
using guided single-stepping. Assuming the execution reaches this instruction,
we propose two different approaches based on where it is located: In case it
occurs in a trusted location, i.e., one of the few places in the kernel that are
not preemptible, we ignore it. If we encounter the instruction in an untrusted
position, i.e., a driver or code not belonging to the kernel image, we propose to
halt the virtual machine for manual inspection.

5 Evaluation

In the following, we assess our guided single-stepping proof-of-concept implemen-
tation regarding its correctness, stealthiness, and performance.

5.1 Correctness

Our work relies on the correctness of the trap flag in the guest and the intercep-
tion of the #DB exception. Since all existing debuggers for the x86 architecture
use the trap flag, we can assume the feature to be working correctly.

However, there are critical differences to the hyper-single-stepping facilitated
by the monitor trap flag. In particular, the behavior between the two can differ
when delivering interrupts. First, our solution does not yet consider that the trap
flag can be reset from an Interrupt Service Routine (ISR), e.g., through the IRET
instruction. We could address this weakness by applying the flag to the stack
when encountering such an instruction, much like for the PUSHF instruction. Since
most introspection applications use single-stepping selectively, e.g., for stepping
over a single instruction, we currently do not regard this as a problem.

Second, it is theoretically possible to use hardware multitasking to turn off
the trap flag from within the guest. The necessary procedure requires stripping

178 T. Dangl et al.

the flag from the EFLAGS field in the active Task State Segment (TSS). We must
note that this is not possible from long mode since hardware multitasking is
not available in this mode and the TSS only holds the stack pointers and the
Interrupt Stack Table (IST). Therefore, exploiting this weakness would require
the attacker to switch the processor back to protected mode. For this reason,
we consider this possibility very unlikely. However, we could solve this issue by
trapping writes to the EFER (Extended Feature Enable Register) MSR (Model-
specific Register). By checking against a write of 0 to bit 8 (Long Mode Enable),
we can detect this behavior and halt the machine for manual inspection.

What we should note for both cases, however, is that this only disables single-
stepping until the next VM exit since our implementation in the hypervisor
makes sure to reapply the flag before entering the guest.

Finally, all instructions covered in our proof-of-concept implementation are
single-byte instructions (POPF, PUSHF, and CLI). Therefore, we generally do not
require sophisticated disassemblers to identify them accurately from the intro-
spection application. However, a malicious guest could append prefixes such as
the REX prefix to the instruction that does not have any effect, and thus no sen-
sible assembler would generate [1]. Hence, we caution against simply checking
the opcode for security-critical applications.

5.2 Stealthiness

As is the case with many VMI-based systems, our solution is not entirely invis-
ible to the guest. Active introspection can be detected from within the guest in
numerous ways. The most primitive approach that is often present in malware
is the detection of the hypervisor. This detection is possible due to the enforced
isolation, which requires privileged instructions to be emulated [10]. By com-
paring the execution time of these instructions with their native unvirtualized
counterparts, it is easy to determine if the system is currently executing under
virtualization.

However, there are also much more sophisticated methods that not only
can determine the presence of the hypervisor but also ongoing active introspec-
tion [15]. These can include timing attacks on various exit conditions, such as
our interception of the #DB exception. Therefore, our guided single-stepping
approach is detectable from within the guest. However, we should consider that
the same is true for hyper-single-stepping.

While discussing our implementation, we addressed other detection methods,
such as reading out the trap flag. To verify the effectiveness of these measures, we
attempted to detect the presence of our monitoring with the application shown
below. As expected, our solution can successfully hide the presence of the trap
flag from the guest.

1 uint64_t eflags = __builtin_ia32_readeflags_u64 ();
2 fprintf(stdout , "X86_EFLAGS_TF: %lu\n", !!(eflags &

↪→ X86_EFLAGS_TF));

Retrofitting AMD x86 Processors with Active VMI Capabilities 179

5.3 Performance

To evaluate the performance of our solution, we use an ASUS PN51 fitted with
an AMD Ryzen 5 5500U Hexa-core CPU, 32 GiB of DDR4-2666 main mem-
ory, and 1 TiB of non-volatile memory on an Kingston A2000 NVMe SSD. We
use Debian 11 for both the host and guest operating systems in our evaluation.
The virtual machine used in the following experiments has 2 GiB of main mem-
ory assigned to it. We take comparative measurements for Intel processors on a
machine with similar characteristics. This machine is an ASUS PN62 equipped
with a Intel Core i7-10510U quad-core CPU, 32 GiB of DDR4-3200 main mem-
ory, and 1 TiB of non-volatile memory on an Kingston A2000 NVMe SSD.

Microbenchmarks. To assess the performance of our retrofitted software solution,
we measure breakpoint and single-stepping performance by placing a breakpoint
on the getpid system call. Upon execution of this breakpoint, we replace it with
the original instruction, single step over it, and restore the breakpoint. We chose
this way of evaluating the performance of our solution because it resembles how
VMI is usually used in real-world applications. We include the source code of this
benchmark in the repository. Our setup measures 1,000 system call invocations
from user mode. We present the results of this measurement with a sample size
of 10 in Fig. 2.

As expected, the native solution implemented in hardware and microcode on
Intel outperforms our retrofitted software solution for AMD. However, both in
terms of overhead and absolute execution time, the approaches are within one
order of magnitude of each other. The overhead of this mechanism is around 2.6
times higher on AMD than on Intel. In absolute terms, the difference amounts
to a factor of 1.9. The error of our measurement was below 10% in both cases.

Fig. 2. Execution time with breakpoint on __x64_sys_getpid (less is better)

A limitation of this measurement is the jointness of the breakpoint and single-
stepping mechanism. Hence, it is not evident if the difference we observe can be
attributed entirely to the single-stepping or if the breakpoint implementation

180 T. Dangl et al.

exhibits some overhead caused by architectural differences. However, we still
argue for this way of determining the performance as it is closest to real-world
applications of the proposed mechanism.

UnixBench. The initial microbenchmark focused on assessing the worst-case
scenario for VMI. It involved a loop executing a lightweight system call, getpid,
which merely returns the process’s PID and has minimal execution time. VMI
introduced a trap to the monitoring application in each iteration. To provide a
more realistic understanding of VMI’s impact on the performance of a target
VM, we conducted additional tests using selected system calls traced during the
execution of various UnixBench [3].

Table 1 lists the results obtained from these tests. The performance figures
indicate the number of iterations completed within a fixed time interval. The
spawn test repeatedly invoked the clone system call, and the execl test invoked
the execl function, which translates to the execve system call. Despite tracing
each system call invocation in these tests, due to the higher execution time of the
system calls itself, the relative overhead imposed by VMI was significantly lower.
The syscall (system call overhead) test resembled our microbenchmark and pro-
duced similar results. The pipe throughput test focuses on communication via
a pipe, and we traced all write system calls during the test, with significant
overhead. Lastly, the pipe-based context switching test context1 is “more like a
real-world application” [3] and measures switches between two processes engaged
in a bidirectional pipe conversation. When tracing the pipe system call, which
is called only once at the beginning, no noticeable overhead was observed. We
omitted the DhryStone and WhetStone, as they do not use system calls, and thus
their runtime performance is not influenced by VMI-based system call tracing.

Table 1. Consolidated UnixBench scores on AMD64 (higher is better)

Test Monitored Syscall w/o VMI w/ VMI Unit

spawn sys_clone 18,050 (±475) 3,548 (±817) processes/s

execl sys_execve 5,168 (±101) 1,880 (±553) calls/s

syscall sys_getpid 17,758,288 (±339,741) 7,435 (±911) calls/s

pipe sys_write 2,639,602 (±49,713) 7,472 (±1,057) calls/s

context1 sys_pipe 259,947 (±1,272) 261,195 (±3,612) calls/s

6 Summary

In this paper, we have identified the causes of the limited availability of active
introspection mechanisms on AMD x86 processors impacting many introspection
applications and remedied some of the more pressing concerns. Thus, we have
improved the state of the art of VMI-based approaches and enabled their use on
previously inaccessible systems.

Retrofitting AMD x86 Processors with Active VMI Capabilities 181

First, we have highlighted two architectural differences that affect the imple-
mentation of introspection tools and the applicability of previous research. Active
mechanisms such as hyper-breakpoints often use SLAT-based controls and events
to realize code hiding. However, the specific implementation of SLAT with AMD
RVI does not allow to set read and execute permissions independently. Hence,
we cannot use the usual code-hiding technique. Previous research has proposed
alternative approaches, which rely on the availability of hyper-single-stepping.
Yet, due to the missing support of the monitor trap flag on AMD processors,
these approaches have not been realized for introspection-based solutions.

Second, we have focused on remedying this lack of hyper-single-stepping with
our guided single-stepping approach. Instead of relying on hardware support
through the Monitor Trap Flag, we retrofit the capabilities using software and
interception intercepting. We guide the execution of the guest from the hypervi-
sor and the introspection application to ensure the correctness and stealthiness
of the monitoring.

Third, we have implemented the approach of guided single-stepping in the
KVM hypervisor and the LibVMI introspection library. The evaluation of this
novel software-based approach demonstrates that its performance is in the same
order of magnitude as comparable hardware implementations on Intel proces-
sors. Hence, we claim that our solution increases the portability of introspection
applications for AMD processors.

Finally, we release our proof-of-concept implementation as free software and
work towards integrating it into the relevant open-source projects.

Acknowledgement. This work has been funded by the Bundesministerium für Bil-
dung und Forschung (BMBF, German Federal Ministry of Education and Research) –
project 01IS21063A-C (SmartVMI).

References

1. Advanced Micro Devices: AMD64 Architecture Programmer’s Manual, Volume 2
(2019)

2. Barham, P., et al.: Xen and the art of virtualization. In: Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles, SOSP, pp. 164–177.
Association for Computing Machinery, Bolton Landing, NY, USA (2003). https://
doi.org/10.1145/945445.945462

3. Byte Magazine: byte-unixbench (1983). https://github.com/kdlucas/byte-
unixbench. Accessed 20 Apr 2023

4. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: NDSS, vol. 3, pp. 191–206 (2003)

5. Intel Corporation: Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 2A (2009)

6. Jain, B., Baig, M.B., Zhang, D., Porter, D.E., Sion, R.: SoK: introspections on
trust and the semantic gap. In: IEEE Symposium on Security and Privacy, pp.
605–620 (2014). https://doi.org/10.1109/SP.2014.45

7. Kiszka, J.: Debugging kernel and modules via GDB (2023). https://www.
kernel.org/doc/Documentation/dev-tools/gdb-kernel-debugging.rst. Accessed 31
Mar 2023

https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://doi.org/10.1109/SP.2014.45
https://www.kernel.org/doc/Documentation/dev-tools/gdb-kernel-debugging.rst
https://www.kernel.org/doc/Documentation/dev-tools/gdb-kernel-debugging.rst

182 T. Dangl et al.

8. Lazăr, A.: KVMi subsystem v7 for KVM. KVM mailing list (2021). https://lore.
kernel.org/kvm/20200207181636.1065-1-alazar@bitdefender.com/. Accessed 24
Mar 2023

9. Lengyel, T.K.: Stealthy monitoring with Xen altp2m (2016). https://xenproject.
org/2016/04/13/stealthy-monitoring-with-xen-altp2m/. Accessed 24 Mar 2023

10. Pék, G., Buttyán, L., Bencsáth, B.: A survey of security issues in hardware virtu-
alization. ACM Comput. Surv. 45(3), 1–34 (2013)

11. Proskurin, S., Lengyel, T., Momeu, M., Eckert, C., Zarras, A.: Hiding in the shad-
ows: empowering ARM for stealthy virtual machine introspection. In: Proceedings
of the 34th Annual Computer Security Applications Conference, ACSAC, pp. 407–
417. Association for Computing Machinery, New York, NY, USA (2018). https://
doi.org/10.1145/3274694.3274698

12. Sato, M., Nakamura, R., Yamauchi, T., Taniguchi, H.: Improving transparency
of hardware breakpoints with virtual machine introspection. In: 12th Interna-
tional Congress on Advanced Applied Informatics (IIAI-AAI), pp. 113–117 (2022).
https://doi.org/10.1109/IIAIAAI55812.2022.00031

13. Tanda, S.: AMD-V for hackers. Hypervisor Development Hands On for Security
Researchers on Windows, Workshop, VXCON (2019). http://tandasat.github.io/
VXCON/AMD-V_for_Hackers.pdf. Accessed 24 Mar 2023

14. Taubmann, B.: Improving digital forensics and incident analysis in production envi-
ronments by using virtual machine introspection. Ph.D. thesis, Faculty of Com-
puter Science and Mathematics, University of Passau (2019)

15. Tuzel, T., Bridgman, M., Zepf, J., Lengyel, T.K., Temkin, K.J.: Who watches the
watcher? detecting hypervisor introspection from unprivileged guests. Digit. Invest.
26, S98–S106 (2018)

16. Uhlig, R., et al.: Intel virtualization technology. Computer 38(5), 48–56 (2005)
17. Van Doorn, L.: Hardware virtualization trends. In: ACM/Usenix International

Conference On Virtual Execution Environments, vol. 14, pp. 45–45 (2006)
18. VMWare Inc.: Performance Evaluation of AMD RVI Hardware Assist

(2008). https://www.cse.iitd.ernet.in/~sbansal/csl862-virt/2010/readings/RVI_
performance.pdf. Accessed 24 Mar 2023

19. Wessel, J.: Using kgdb, kdb and the kernel debugger internals (2022). https://
www.kernel.org/doc/Documentation/dev-tools/kgdb.rst. Accessed 31 Mar 2023

20. Zhang, M., Zonouz, S.: How to hide a hook: a hypervisor for rootkits. Phrack Mag.
15(69) (2016)

https://lore.kernel.org/kvm/20200207181636.1065-1-alazar@bitdefender.com/
https://lore.kernel.org/kvm/20200207181636.1065-1-alazar@bitdefender.com/
https://xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://doi.org/10.1145/3274694.3274698
https://doi.org/10.1145/3274694.3274698
https://doi.org/10.1109/IIAIAAI55812.2022.00031
http://tandasat.github.io/VXCON/AMD-V_for_Hackers.pdf
http://tandasat.github.io/VXCON/AMD-V_for_Hackers.pdf
https://www.cse.iitd.ernet.in/~sbansal/csl862-virt/2010/readings/RVI_performance.pdf
https://www.cse.iitd.ernet.in/~sbansal/csl862-virt/2010/readings/RVI_performance.pdf
https://www.kernel.org/doc/Documentation/dev-tools/kgdb.rst
https://www.kernel.org/doc/Documentation/dev-tools/kgdb.rst

Organic Computing Applications 1 (OC)

Abstract Artificial DNA’s Improved Time
Bounds

Aleksey Koschowoj(B) and Uwe Brinkschulte

Goethe University Frankfurt, Frankfurt am Main, Germany
{koschowoj,brinks}@es.cs.uni-frankfurt.de

Abstract. The Artificial DNA (ADNA) is a powerful tool for design-
ing self-organizing, self-healing and self-configuring distributed embed-
ded systems. However, a large amount of knowledge on the targeted
hardware, available sensors, is required, thus limiting the reusability
and adaptability of an already composed ADNA. Recently, the abstract
ADNA (A2DNA) has been proposed as a countermeasure to this prob-
lem. In an A2DNA, sensor elements are replaced by so-called abstract
sensors describing properties of the required sensory input. Only when
the A2DNA is initialized on the target hardware, these abstract sensors
are specified by a combination of actual sensors available. In addition, a
semantic knowledge base provides knowledge on the hardware’s sensors
and their relations. In order to convert an A2DNA to a hardware spe-
cific ADNA, knowledge about how to calculate a required sensor value
that cannot be directly measured by the hardware from other available
sensors is required. In this paper, we present and analyze two algorithms
that determine this knowledge.

Keywords: Artificial DNA · Semantics · Organic Computing · Virtual
Sensors · Embedded Systems

1 Introduction

The research field of Organic Computing has been established by [1] and [13]
in order to master both the growing complexity of real-time embedded sys-
tems equipped with sensors and actuators and their spread into our day-to-
day environment. In order to achieve this, OC aim to adapt principles found
in biological systems, like self-organization, to technical systems. Together
with self-configuration, self-improvement/self-optimization, self-description/self-
explaining, self-protecting and self-healing, self-organization forms the so-called
self-* properties as described in [14]. An example for a mechanism that adapts
the self-* properties onto a technical system is the Artificial Hormone System
(AHS) [15] with the Artificial DNA (ADNA) developed by [3]. Recently, [12]
introduced another expansion level the abstract ADNA (A2DNA) extending

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- project number 445555232.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 185–199, 2023.
https://doi.org/10.1007/978-3-031-42785-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_13&domain=pdf
http://orcid.org/0000-0003-2368-8701
https://doi.org/10.1007/978-3-031-42785-5_13

186 A. Koschowoj and U. Brinkschulte

the knowledge available to the system by a semantic knowledge base on sen-
sors, actuators and their interdependencies. However, the algorithms operating
on this new knowledge leave room for improvement and more rigorous analy-
sis. The initial implementation, with its worst-case execution time of O(n8), is
not suitable for real-time system operation. Consequently, it cannot be utilized
to promptly compensate for the loss of hardware, e.g. sensors, by providing an
alternative realization.

In this paper, we present and analyze two algorithms utilizing this knowledge
to infer more knowledge on the available and realizable sensors. The first is an
improved version of the approach described in [12]. The second, a novel approach
utilizing preprocessing and auxiliary data structures resulting in even better time
bounds.

The paper is structured as follows: First, we provide a brief overview of
related research and a short introduction into both the AHS and the ADNA.
Second, we summarize the A2DNA’s core concepts. Next, we describe and ana-
lyze both algorithms. Finally, we describe how our new approach can be used
in conjunction with current research on the ADNA and provide some closing
remarks.

2 Related Work

For several years, researchers have focused on enhancing a system’s knowledge
by adding semantics. While previous work, such as [9], has explored the use
of ontologies for sensors and their measurements, the proposed ontology places
greater emphasis on the measurements themselves and treats the underlying
system as a singular block, in contrast to the granular structure found in the
ADNA. Other ontologies, including [2] and [8], focus on physical quantities and
their relations, but their relations are limited to the relationships between units
of measurement rather than the physical quantities themselves. Only [7] has
shifted its focus on physical quantities and fundamental concepts in physics.
Since it is in its early stages, it can only serve as an orientation. Therefore,
ADNA will require its own ontology which is part of the A2DNA.

In addition to the A2DNA, other proposals, such as [6] and [11], deal with the
semantic description of the ADNA, with a stronger focus on the building blocks,
their behavior, and classification. [5] also discusses the combination of ADNA
and online diagnosis using semantics. Finally, [10] proposes the concept of the
conditional ADNA, which extends the range of available tasks by using condition
elements. These elements enable the denial of certain task sets while allowing
the assignment of other tasks based on the input signals from the condition
elements, thus enabling a change between different predefined substructures at
runtime.

3 AHS and ADNA

As described in [3] and [4], the AHS is a self-organizing, self-improving, self-
configuring, self-healing and decentralized mechanism that allocates tasks to

Abstract Artificial DNA’s Improved Time Bounds 187

so-called processing elements (PEs) in embedded real-time systems. Akin to the
hormone system of higher mammals where cells communicate via the blood-
stream by exchanging hormones, the PEs send short messages, so-called hor-
mones, to communicate and decide the task assignment among themselves.
These hormones consist of eager values, suppressor hormones and accelerator
hormones. Each PE has its own set of local eager values, that indicate a PE’s
default suitability, for each task. Suppressor hormones inhibit a PE’s eagerness
to acquire a task either because that task is already taken or the PE does not
have the computational capacity to carry out that task anymore. In contrast,
accelerator hormones raise the PE’s eagerness to acquire a task. When a PE
acquires a new task Ti, it disperses accelerator hormones to its neighboring PEs
for tasks related to task Ti.

Figure 1 shows the whole underlying communication control loop the so-called
hormone loop for a processing element PEγ . For each task PEγ receives eager
values, accelerator hormones and suppressor hormones from all other PEs. Then
PEγ calculates its own eager values utilizing the received hormones and sends
its new modified eager values to the other processing elements. If PEγ has the
highest eager value for task Ti then it will acquire this task and sends suppressor
hormones that convey this acquisition, and possible accelerator hormones to the
other processing elements.

On its own, the AHS lacks any knowledge of the system whose tasks it has
to allocate. This knowledge, including the required tasks, their communicative
interconnections and the PEs’ initial suitability for each task, is provided by
the ADNA. When a task is assigned to a PE, the PE derives the parametriza-
tion from its local copy of the ADNA. The corresponding process is shown in
Fig. 2. The ADNA is based on the observation that most embedded systems can
be assembled from a limited number of basic elements, e.g. sensors, actuators,
arithmetic/logic units, etc. Thus, it is possible to compose a given embedded
system by combing a sufficient multiset of these elements and providing a fitting
parameterization for each element. An exemplary control loop build from basic
elements and its netlist are given in Fig. 3 and Fig. 4 respectively.

4 A2DNA

4.1 Relation to the ADNA

Just as the ADNA describes the parameterization and interconnections of build-
ing blocks, adding a new descriptive layer to the AHS, the A2DNA functions as
an additional layer of abstraction in relation to the ADNA. The A2DNA intro-
duces semantic knowledge on the building blocks1 and enables the description of
a building block based on its requirements such as the measured physical quan-
tity. Depending on the available knowledge and hardware, a concrete specifica-
tion of this block must be determined to adapt the A2DNA into a system-specific
ADNA.
1 At this stage the knowledge is limited to knowledge on the sensors and actuators.

188 A. Koschowoj and U. Brinkschulte

Fig. 1. Hormone Cycle, [4]

Local copy of
DNA

…

Local
instance of

AHS

DNA Processor

Task
1

Task
m

. . .

Local
instance of

DNA Builder

Local copy of
DNA

…

Local
instance of

AHS

DNA Processor

Task
1

Task
m

Local
instance of

DNA Builder

Fig. 2. ADNA architecture, [3]

Abstract Artificial DNA’s Improved Time Bounds 189

ALU
 (Id = 1, parameter = Minus)

PID
(Id = 10, parameters = P,I,D,

period)

Sensor
(Id = 500, parameters =

resource, period)

Actor
(Id = 600, parameter =

resource)

Constant
(Id = 70, parameter =

constant value, period)

1

1 1 1 1
1

1

 2

Fig. 3. A closed control loop consisting of basic elements, [6]

1 = 70 (1:2.2) 100 25 // constant setpoint value, period 25 msec
2 = 1 (1:3.1) - // ALU, control deviation (minus)
3 = 10 (1:4.1) 4 5 6 25 // PID (4, 5, 6), period 25 msec
4 = 600 1 // actor, resource id = 1
5 = 500 (1:2.1) 2 25 // sensor, resource id = 2, period 25 msec

ADNA line: linenumber = id destinationlink parameters //comment
destinationlink: (destchannel:destlinenumber.sourcechannel...)

Fig. 4. Netlist and parameterization of the closed control loop shown in Fig. 3, [6]

4.2 Fundamental Idea

The A2DNA is a generalized form of the ADNA. A sensor block no longer refers
to a specific piece of hardware, but describes an abstract sensor.

Definition 1 (Abstract sensor). Let Q, D and T be three disjoint sets. Their
elements (values) describe a physical quantity qs ∈ Q, a direction ds ∈ D, and
which target ts ∈ T an abstract sensor s := (qs, ds, ts) ∈ Q × D × T measures.

Example 1. A system (car) may have an abstract sensor (v, x, c) that describes
a real sensor measuring the car’s (c) velocity (v) in the x-axis direction (x). But
our A2DNA in Fig. 5 requires the abstract sensor (a, x, c) that measures the
car’s acceleration a in the negative x-axis (x).

A meaning to the attribute’s values and their relations, e.g. acceleration being
the temporal derivation of velocity or what directions are each others inverses,
are given by so called equations.

Definition 2 (Equation). For j ≥ 1, let (k0, k1, . . . , kj) be a tuple, such that
{k0, k1, . . . , kj} is a (j + 1)-element subset of either Q or D or T . An equation
eq := k0 = OPj

i=1 ki describes the relation between an attribute value k0 and
the sequence of attribute values (k1, . . . , kj). The j-nary operator OP denotes a
specific building block2 that derives the output k0 from the input k1, . . . , kj.

2 The block’s exact structure must not be known in the equation, just what block or
set of blocks will be needed.

190 A. Koschowoj and U. Brinkschulte

Abstract Sensor

(Id = 599, parameters =
quantity, direction, target)

1 = 599 a nx c // abstract sensor,
quantity = acceleration, direction = x, target = car

Fig. 5. An abstract sensor block in an A2DNA describing a car’s acceleration in the
negative x-axis

We also refer to k1, . . . , kj as an equation’s right-hand side. Further, let |eq| := j
be the length of eq.

Remark 1. A given set of equations E can be separated into three disjoint sets
depending on the affected attribute Q, D or T . These sets are denoted as EQ,
ED or ET respectively.

Example 2. To our car system in Example 1 we can convey both the relation
between velocity and acceleration and the relation between a direction and its
reverse with the equations:

x = (−1) · x (1)

a = v̇ (2)

The equations serve as the backbone of the knowledge base.

Definition 3 (Knowledge base). A knowledge base K := (S, E) consists of
a set S of sensors available on the system’s hardware and a set E of known
relations (equations).

Remark 2. The sets Q, D and T are implicitly given by the values that appear
in the available sensors and known equations. Therefore, each of their sizes are
asymptotically O(n) in regards to the input size n = |K|.

Example 3. Combining the abstract sensors and equation from Exam-
ples 1 and 2, the car system might have a simple knowledge base:

K = ({(v, x, c)}
︸ ︷︷ ︸

S

, {x = (−1) · x, a = v̇}
︸ ︷︷ ︸

E

).

In order to build an ADNA, abstract sensors in the A2DNA must be specified
by a determinator when initializing the system. This whole process is shown in
Fig. 6.

Abstract Artificial DNA’s Improved Time Bounds 191

determinator

A2DNA

sensor
description

ADNA

demands certain
abstract sensors

equations

describes the
available sensors

knowledge
base

using specifies

Fig. 6. Specification process, [12]

4.3 Determinability

Before we focus on the specification, we must know which sensors are implicitly
given on a knowledge base K. This is done by applying an equation to a set of
sensors and adding the yielded sensor to that set.

Definition 4 (Applying equations). Let S be a set of sensors and eq :=
k0 = OPj

i=1 ki be an equation. We say that the set of sensors yields the sensor
z by applying the equation eq on the set S, denoted as z |= eq(S), if one of the
following cases holds3:

– If there exists a set Z(d,t) = {(ki, d, t)|1 ≤ i ≤ j} ⊆ S, fixed by k1, . . . , kj in
eq, eq(S) yields z = (k0, d, t).

– If there exists a set Z(q,t) = {(q, ki, t)|1 ≤ i ≤ j} ⊆ S, fixed by k1, . . . , kj in
eq, eq(S) yields z = (q, k0, t).

– If there exists a set Z(q,d) = {(q, d, ki)|1 ≤ i ≤ j} ⊆ S, fixed by k1, . . . , kj in
eq, eq(S) yields z = (q, d, k0).

Example 4. Recall the car system from Example 1 and its knowledge base from
Example 3. Applying Eq. 1 on the set S yields z1 = (v, x, c). Applying Eq. 2 on
S yields z2 = (a, x, c).

Now, we can better define when a sensor is implicitly given, we call this
determinable.

Definition 5 (Determinable). We say a sensor s is determinable on a given
knowledge base K = (S, E) iff s ∈ S or there is a set Z of sensors determinable
on K and an equation eq ∈ E, such that z |= eq(Z) and z /∈ Z.
3 Since all attribute values in an equation are from the same set, we only have these

three cases.

192 A. Koschowoj and U. Brinkschulte

Example 5. Again we focus on the knowledge base from Example 3. Since the
sensor s = (v, x, c) is in S, it fulfills the first case and is determinable on K.
From Example 4, we know that applying the first or the second equation on S
yields the sensors z1 = (v, x, c) and z2 = (a, x, c) respectively. Since S does not
contain either z1 or z2, both fulfill the second case and are also determinable on
K. Finally, applying any equation on the set {(v, x, c), (v, x, c), (a, x, c)} yields
a new sensor z3 = (a, x, c). Thus, we now know that the sensor required in
Example 1 is determinable on K.

This is a condensed definition, for a more rigorous definition please refer to
[12]. Still, this is enough to define PK the set of all sensors that are determinable
on K.

Definition 6 (All Determinable Sensors). We call a set of sensors PK the
set of all sensors determinable on K iff all sensors in PK are determinable and
applying any equation eq to PK yields only a sensor s in PK.

Example 6. In Example 5 we reached the set of sensors determinable on K

S ′ = {(v, x, c), (v, x, c), (a, x, c), (a, x, c)}.

Applying any equation on S ′ yields only a sensor in S ′. Thus, S ′ = PK is the
set of all sensors determinable on K.

5 Determinability Algorithms

For a more precise analysis, we require two more definitions.

Definition 7 (F). The set F consists of all triples having an equation eq and
a pair of values from the two sensor attributes unaffected by eq.

F := EQ × D × T ∪ ED × Q × T ∪ ET × Q × D

Definition 8 (JM). For a set of equations M we define the sum over the length
of all right hand sides as

JM :=
∑

eq∈M

|eq|.

5.1 Naive Algorithm

While [12] shows that a polynomial time algorithm exists, the provided asymp-
totic worst case execution time of O(n8) is not feasible for use at the system’s run
time. Some small improvements can be achieved using a dictionary to represent
the set of all already determined sensors P. The adapted algorithm is shown in
Algorithm 14. Since all sensors in S are determinable, we initialize the set P of
4 For better readability, the iteration over E is written as a sequential one over the

sets EQ, ED, ET instead of using a switch case structure.

Abstract Artificial DNA’s Improved Time Bounds 193

Algorithm 1: Determinability check
Input: Knowledge base K consisting of S and E .
Output: Set PK of all sensors determinable in K.
P := S;
do

foreach eq := k0 = OPj
i=1 ki ∈ EQ:

foreach (d, t) ∈ D × T :
if ((k0, d, t) /∈ P):

counter = 0;
for i = 1 to j: if ((ki, d, t) ∈ P): counter += 1;
if counter == j : P.Add((k0, d, t));

foreach eq := k0 = OPj
i=1 ki ∈ ED:

foreach (q, t) ∈ Q × T :
if ((q, k0, t) /∈ P):

counter = 0;
for i = 1 to j: if ((q, ki, t) ∈ P): counter += 1;
if counter == j : P.Add((q, k0, t));

foreach eq := k0 = OPj
i=1 ki ∈ ET :

foreach (q, d) ∈ Q × D:
if ((q, d, k0) /∈ P):

counter = 0;
for i = 1 to j: if ((q, d, ki) ∈ P): counter+=1;
if counter == j : P.Add((q, d, k0));

while new sensor found ;
return P

already determined sensors with S. While we find new sensors in the previous
iteration, we continue the search for new sensors. In each iteration, we check for
every triple (eq, a, b) ∈ F if the yielded sensor is already in P. If it is not, we
check if all sensors in the set Z(a,b) fixed by eq are in P. If this is the case, we
can apply eq and add the yielded sensor to P.

Theorem 1. Let I be the number of while loop iterations and set N as N :=
max{|Q|, |D|, |T |}, then Algorithm 1’s time complexity is bounded by

O
(

I(|F| + JEN2) + |PK|
)

.

Proof. First, we analyze the operations unaffected by the number of iterations
I. These are the additions to the set P: Over the whole algorithm, we will add
each sensor p ∈ PK exactly once to P. If p ∈ S, then this will be done when
we initialize P. Otherwise, the first application that yields p will add it to P.
Therefore, we have |PK| steps unaffected by the while loop.

In each of the while loops iterations, we will go over all triples (eq, a, b) ∈ F
and check if they may yield a new sensor. Independent from the result, this

194 A. Koschowoj and U. Brinkschulte

already costs |F| steps. For the cases which yield a new sensor, we will focus
without loss of generality on the triples (eq, d, t) ∈ EQ × D × T . In the worst
case, each pair (d, t) ∈ D × T will trigger this check for each e ∈ EQ, therefore
producing JEQ steps per pair, resulting in JEQ |D| · |T | steps per iteration. Thus,
we have asymptotically O(JEQN2) steps for those triples. Therefore, all those
checks require asymptotically

O((JEQ + JED + JET)N
2) = O(JEN2)

steps.
All in all, each iteration has O(|F| + JEN2) steps and for I iterations we

have O(I(|F| + JEN2)). Therefore, we have a time complexity of

O
(

I(|F| + JEN2) + |PK|
)

. ��

Corollary 1. For an input K with n := |K|, Algorithm 1 has a time complexity
of O(n6).

Proof. By Definition 7, F consists of triples of equations and the two unaffected
attributes. Each of these sets is implicitly contained in K. Therefore, we have

|F| = |EQ| · |D| · |T | + |ED| · |Q| · |T | + |ET | · |Q| · |D| = O(n3).

Since the equations are part of the input, their length JE is O(n). Thus, JEN2 =
O(n3).

In the worst case, we may only add at most one sensor5 per iteration to P.
Therefore, I ≤ |PK| − |S| + 1 which is O(|PK|). Finally, PK may be any subset
of Q × D × T . Thus, |PK| = O(|Q × D × T |) = O(n3). Therefore, Algorithm 1
has a time complexity of O(n6). ��

5.2 Towards Preprocessing

There are two sections in this algorithm we can improve further. First, we only
get one possible construction for each determined sensor because we skip a triple
once the yielded sensor is added to P. We can get this information if we use a
dictionary F that stores for each triple (eq, a, b) ∈ F if it has already yielded
a sensor. Since we do these checks each iteration, they have asymptotically no
extra cost.

Second, in each iteration we have to check anew for each triple (eq, a, b) if all
sensors in Z(a,b) are in P to apply eq. It would be more convenient to calculate
the number of hits once and to update the values when a new sensor is added
to P that affects the triple. A sensor s = (qs, ds, ts) only affects a triple (eq, a, b)
if either qs, ds or ts appears in eq’s right-hand side and (a, b) are respectively
(ds, ts), (qs, ts) or (qs, ds). Since qs, ds and ts are all fixed when processing a
newly added sensor, we only need a list of affected equations for each value in

5 Only in the last iteration, we do not add a new sensor.

Abstract Artificial DNA’s Improved Time Bounds 195

Algorithm 2: Determinability check with preprocessing
Input: Knowledge base K consisting of S and E .
Output: Set of all determinable sensors PK in K.
R := {(x, [])|x ∈ Q ∪ D ∪ T };
foreach eq := k0 = OPj

i=1 ki ∈ E: foreach i ∈ {1, . . . , j}: R[ki].Add(eq) ;
foreach (q, d, t) ∈ S: U .Enqueue((q, d, t));
while U not empty:

(q, d, t) = U .Dequeue();
if (q, d, t) /∈ P:

P.Add((q, d, t));
foreach eq := k0 = OPj

i=1 ki ∈ R[q]:
if (eq, d, t) /∈ F .Keys: F .Add(((eq, d, t) , j));
F [(eq, d, t)] -= 1;
if F [(eq, d, t)] == 0 : U .Enqueue((k0, d, t));

foreach eq := k0 = OPj
i=1 ki ∈ R[d]:

if (eq, q, t) /∈ F .Keys: F .Add(((eq, q, t) , j));
F [(eq, q, t)] -= 1;
if F [(eq, q, t)] == 0 : U .enqueue((q, k0, t));

foreach eq := k0 = OPj
i=1 ki ∈ R[t]:

if (eq, q, d) /∈ F .Keys: F .Add(((eq, q, d) , j));
F [(eq, q, d)] -= 1;
if F [(eq, q, d)] == 0 : U .Enqueue((q, d, k0));

return P;

Q ∪ D ∪ T . These lists can be constructed in O(|E| + JE) = O(n) by inverting
the equations.

We can combine both ideas by using the dictionary F to store the values at
run time and using an additional queue U to keep track of all yielded sensors.
All in all, these ideas result in Algorithm 2 which we will now discuss in detail.

5.3 Algorithm with Preprocessing

As a small average case improvement, we add entries to F while executing the
algorithm. Instead of generating F with possibly many unused entries, we check
before an access if we a triple (eq, a, b) ∈ F has already an entry. If it does not,
we only then add the entry to the dictionary. This improvement adds an extra
step before each access to F , but has asymptotically no influence on the worst
case. Since we already analyzed the preprocessing in the previous subsection, we
will only focus on processing the queue U .

By Definition 5, all sensors in S are determinable. Therefore, we initialize U
by enqueuing all sensors in S. Then, we repeat the following until U is empty:
First, we dequeue a sensor s = (qs, ds, ts) from U . If this sensor is already in P,
we proceed with the next sensor. If the sensor has been determined for the first
time, we add it to P and reduce the counter of all affected triples in F by one.

196 A. Koschowoj and U. Brinkschulte

We get these by iterating over R[qs], R[ds] and R[ts] while fixing (ds, ts), (qs, ts)
and (qs, ds) respectively. If a triple (eq, a, b) with eq := k0 = OPj

i=1 kj has no
corresponding value in F , we add this triple to F and initialize the value6 with
j. If any counter reaches 0, we enqueue the resulting sensor in U .

Theorem 2. Let N be defined as N := max{|Q|, |D|, |T |}, then Algorithm 2 has
a time complexity of

O
(

min
(

|F| + JEN2, |E| · |PK|
)
)

.

Proof. An upper bound for the number of steps can be defined in two ways.
First, focusing on the number of operations performed by adding a new sensor.
Each sensor in PK triggers the operation sequence within the outermost if only
once. In each step of each loop over the respective equations, only a fixed number
of operations are executed. Namely, two comparisons, one counter manipulation
and sometimes an addition to a dictionary or an enqueue. In the worst case, a
sensor may appear in all equations resulting in at most 5|E| operations for each
sensor. Therefore, we have asymptotically O(|E| · |PK|) for this sequence.

Finally, we have to analyze how many sensors are enqueued in U since each
entry must be dequeued and checked for membership in P. Besides the initial
|S| sensors, we can enqueue at most |E| · |PK| sensors. Thus, we have up to
2(|E| · |PK| + |S|) for the entries in U7. Overall, we have

7|E| · |PK| + |PK| + 3|S| + |E| + JE = O(|E| · |PK|)

operations.
For the second upper bound, we analyze the number of operations in relation

to F . With the exception of adding a sensor to P, all operations within the while
loop can be separated into two categories. The first one consists of all operations
that depend on the size of F . Each entry in F is created once, will trigger at most
one enqueue that results in a dequeue and a membership check down the line.
Thus, we have 4 operations in this category. Therefore, each of these operations
is bound by the size of F . The second category consists of all operations that
depend on the number of manipulations on the counters in F . Each counter can
be reduced, then follows a check if the counter has reached 0. Furthermore, each
reduction forces a prior check on the existence of the required key. Thus, we
have 3 operations in this category. At most, we can reduce all values in F to 0,
therefore limiting these operations by the sum of the initial values in each entry
in F . This is at most

JEQ |D| · |T | + JED |Q| · |T | + JET |Q| · |D|

which is bound above by JEN2.

6 Thus, we only have to check if any counter has reached 0, instead of checking for
different js.

7 Since we have dequeue every enqueued entry the number of operations doubles.

Abstract Artificial DNA’s Improved Time Bounds 197

All in all, these observations result in a second upper bound of

4|F| + 3JEN2 + 3|S| + |PK| + |E| + JE = O(|F| + JEN2).

We can combine both upper bounds to

O
(

min
(

|F| + JEN2, |E| · |PK|
)
)

.

��

Corollary 2. For an input K with n := |K|, Algorithm 2 has a time complexity
of O

(

n3
)

.

Proof. Since our upper bound is the minimum of two upper bounds, we have to
determine which is the smaller in which case. The bound |E| · |PK| depends on
|PK| in relation to n. For |PK| = O(n2), |E| = O(n) still keeps the complexity in
O(n3). For |PK| = ω(n2), the overall bound is dominated by the second bound.

As argued in Corollary 1, |F| + JEN2 = O(n3). This bound is true for any
|PK|. Therefore, it is worse for |PK| = O(n2), but imposes the required limit on
|PK| = O(n2). All in all, we have a complexity of O(n3). ��

Since Algorithm 2 creates during its execution auxiliary data structures, a
space analysis is necessary. The set P is the algorithm’s output, therefore we do
not consider its space as auxiliary.

Theorem 3. Algorithm 2 requires O(|F|) auxiliary space.

Proof. During the algorithm’s execution, we have to keep at worst one counter
for every entry in F accessible in F . Each such entry may enqueue at most
one element into the queue U . Therefore, both require O(|F|) auxiliary space.
Since the inverted equations in R are a similar to reordering the equations, they
require asymptotically the same space of O(|E| + JE). This auxiliary space is
asymptotically dominated by O(|F|). Therefore, requiring O(|F|) overall. ��

Corollary 3. For an input K with n := |K|, Algorithm 2 requires O(n3) auxil-
iary space.

Proof. As argued in Corollary 1, |F| = O(n3). ��

5.4 Specification

As described in [12], we can expand P to a dictionary which uses the determined
sensor as key and the equation that yielded the sensor as value. Then, this dictio-
nary can be used to recursively specify an abstract sensor. In case of Algorithm 2,
we can further expand this to a sensor referencing a list of equations that yield
the sensor. These lists can be filled during Algorithm 2’s execution by enqueuing
a sensor s with the yielding equation eq. Thereby, we can add eq to the sensor’s
list, after performing the check whether s ∈ P. Therefore, Algorithm 2 allows
to construct a sensor using different structures whereas Algorithm 1 only finds
a single structure.

198 A. Koschowoj and U. Brinkschulte

6 Conclusion and Future Work

6.1 Conclusion

In this paper, we have introduced and analyzed two improvements, one with-
out and one with auxiliary data structures, for the determinability algorithm
described in [12]. The Algorithm 1 without auxiliary structures improves the
worst-case time bound from O(n8) to O(n6). On top of these improvements,
Algorithm 2 uses auxiliary structures and reduces the worst case time bound to
O(n3) while requiring an auxiliary space of O(n3), it also finds more possible
structures for an abstract sensors specification.

6.2 Future Work

Future work will focus on algorithms utilizing the knowledge provided by Algo-
rithm 2. This includes efficient algorithms that specify the abstract sensors with
one of their constructions. For this, we will also develop and evaluate heuristics
to decide which possible construction fits further aspects like using less build-
ing blocks or using only simple building blocks. Such a heuristic may also be a
pretrained neural network.

Both algorithms are described using a centralized approach, which con-
trasts with the decentralized nature of the AHS and ADNA. Future work will
involve the development and analysis of more decentralized versions. An app-
roach inspired by the AHS’s task distribution shows promise. In this approach,
each PE possesses a portion of the knowledge base and initiates the determina-
tion process based on its own knowledge base. If a PE determines a new sensor,
it shares this information with other PEs through a message, allowing them to
expand their sets of determinable sensors.

If we keep track of every possible construction, we can integrate them with the
conditional ADNA proposed in [10]. This would seamlessly provide emergency
structures for the same abstract sensor. These alternate structures also provide
a system’s diagnosis unit with reference values that can be used to analyze an
abstract sensor’s output.

References

1. Allrutz, R., et al.: POSIPAP organic comp - VDE (2003). https://www.vde.
com/resource/blob/932548/bfcfaa9bae199aa27f888319c396d6ed/fa-6-1-organic-
computing-download-akkordeon-data.pdf

2. Borst, R., Akkermans, H., Pos, A., Top, J.: The PhysSys ontology for physical
systems. In: Proceedings Workshop Qualitative Reasoning 1995, Amsterdam, NL,
pp. 11–21 (1995)

3. Brinkschulte, U.: Technical report: artificial DNA - a concept for self-building
embedded systems. arXiv abs/1707.07617 (2017)

4. Brinkschulte, U.: An artificial DNA for self-descripting and self-building embedded
real-time systems. Concurr. Comput. Pract. Experience 28, 3711–3729 (2015)

https://www.vde.com/resource/blob/932548/bfcfaa9bae199aa27f888319c396d6ed/fa-6-1-organic-computing-download-akkordeon-data.pdf
https://www.vde.com/resource/blob/932548/bfcfaa9bae199aa27f888319c396d6ed/fa-6-1-organic-computing-download-akkordeon-data.pdf
https://www.vde.com/resource/blob/932548/bfcfaa9bae199aa27f888319c396d6ed/fa-6-1-organic-computing-download-akkordeon-data.pdf

Abstract Artificial DNA’s Improved Time Bounds 199

5. Brinkschulte, U., Obermaisser, R., Meckel, S., Pacher, M.: Online-diagnosis with
organic computing based on artificial DNA. In: 2019 First International Conference
on Societal Automation (SA), pp. 1–4 (2019). https://doi.org/10.1109/SA47457.
2019.8938032

6. Brinkschulte, U., Pacher, M.: Semantic description of artificial DNA for an organic
computing middleware architecture. In: Proceedings of the 1st International Work-
shop on Middleware for Lightweight, Spontaneous Environments, MISE 2019, pp.
1–6 (2019)

7. Cvjetkovic, V.: Web physics ontology: online interactive symbolic computation in
physics. In: 2017 4th Experiment@International Conference (exp.at 2017), pp. 52–
57 (2017). https://doi.org/10.1109/EXPAT.2017.7984405

8. FAIRsharing Team: Fairsharing record for: quantities, units, dimensions and types
(2015). https://doi.org/10.25504/FAIRSHARING.D3PQW7

9. Haller, A., et al.: The SOSA/SSN ontology: a joint W3C and OGC standard spec-
ifying the semantics of sensors, observations, actuation, and sampling. Semant.
Web-Interoperability Usability Applicability IOS Press J. 56, 1–19 (2019)

10. Homann, P., Pacher, M., Brinkschulte, U.: Evaluation of conditional tasks in an
artificial DNA system. In: 25th IEEE International Symposium on Real-Time Dis-
tributed Computing, ISORC 2022, Västerås, Sweden, 17–18 May 2022, pp. 1–10.
IEEE (2022). https://doi.org/10.1109/ISORC52572.2022.9812764

11. Koschowoj, A.: Towards a semantic description of artificial DNA using ontolo-
gies. In: Tomforde, S., Krupitzer, C. (eds.) Organic Computing, pp. 32–46. Uni-
versität Kassel (2022). https://doi.org/10.17170/KOBRA-202202215780. https://
kobra.uni-kassel.de/handle/123456789/14004

12. Koschowoj, A., Pacher, M., Brinkschulte, U.: The next step in the evolution of arti-
ficial DNA: the abstract ADNA. In: 10th Edition in the Evolution of the Workshop
Series on Autonomously Learning and Optimizing Systems (SAOS) (in press)

13. Schmeck, H.: Organic computing - a new vision for distributed embedded systems.
In: Eighth IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC 2005), pp. 201–203 (2005). https://doi.org/10.1109/
ISORC.2005.42

14. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic Computing in the Spotlight.
CoRR abs/1701.08125 (2017). http://arxiv.org/abs/1701.08125

15. von Renteln, A., Brinkschulte, U., Pacher, M.: The artificial hormone system–an
organic middleware for self-organising real-time task allocation. In: Müller-Schloer,
C., Schmeck, H., Ungerer, T. (eds.) Organic Computing—A Paradigm Shift for
Complex Systems, pp. 369–384. Springer, Basel (2011). https://doi.org/10.1007/
978-3-0348-0130-0_24

https://doi.org/10.1109/SA47457.2019.8938032
https://doi.org/10.1109/SA47457.2019.8938032
https://doi.org/10.1109/EXPAT.2017.7984405
https://doi.org/10.25504/FAIRSHARING.D3PQW7
https://doi.org/10.1109/ISORC52572.2022.9812764
https://doi.org/10.17170/KOBRA-202202215780
https://kobra.uni-kassel.de/handle/123456789/14004
https://kobra.uni-kassel.de/handle/123456789/14004
https://doi.org/10.1109/ISORC.2005.42
https://doi.org/10.1109/ISORC.2005.42
http://arxiv.org/abs/1701.08125
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-0348-0130-0_24

Evaluating the Comprehensive Adaptive
Chameleon Middleware

for Mixed-Critical Cyber-Physical
Networks

Melanie Feist(B), Mathias Pacher, and Uwe Brinkschulte

Goethe University Frankfurt, Frankfurt am Main, Germany
{feist,m.pacher,brinksch}@em.uni-frankfurt.de

Abstract. Cyber Physical Systems (CPS) are growing more and more
complex due to the availability of cheap hardware, sensors, actuators and
communication links. A network of cooperating CPSs (CPN) addition-
ally increases the complexity. Furthermore, CPNs are often deployed in
dynamic, unpredictable environments and safety-critical domains, such
as transportation, energy, and healthcare. In such domains, usually appli-
cations of different criticality level exist. As a result of mixed-criticality,
applications requiring hard real-time guarantees compete with those
requiring soft real-time guarantees and best-effort application for the
given resources within the overall system.

This poses challenges as well as it offers chances: the increasing com-
plexity makes it harder to design, operate, optimize and maintain such
CPNs. However, on the other side an appropriate use of the increas-
ing resources in computational nodes, sensors, actuators can signifi-
cantly improve the system performance, reliability and flexibility. Hence,
Organic Computing concepts like self-X features (self-organization, self-
adaptation, self-healing, etc.) are key principles for such systems.

Therefore, the comprehensive adaptive middleware Chameleon has
been developed which applies such principles for CPNs. In this paper,
the self-adaptation mechanism of Chameleon based on a MAPE-K loop
and learning classifier systems is examined and evaluated. The results
show its effectivity in autonomously handling the system resources to
keep the required constraints of the applications with respect to their
criticality.

Keywords: adaptive middleware · mixed-criticality · cyber-physical
systems · cyber-physical networks · MAPE-K · learning classifier
systems

1 Introduction

The rapid growth of Cyber-Physical Systems (CPS) due to the availability of
cheap hardware, sensors, actuators and communication links, has led to an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 200–214, 2023.
https://doi.org/10.1007/978-3-031-42785-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_14&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_14

Evaluating the Comprehensive Adaptive Chameleon Middleware 201

increased system complexity. In the automotive area e.g. the number and capa-
bilities of these components in a car is constantly rising during the last years.
This complexity arises due to the interdependence of physical processes, sensing
and actuation, communication networks, and computing resources. The combi-
nation of these factors creates a multitude of issues that must be addressed, such
as task allocation, scheduling, fault tolerance and communication. As the num-
ber of heterogeneous components in such a system rises, the complexity of the
interactions between them also increases. A network of cooperating CPSs - a so-
called Cyber Physical Network (CPN) - makes the situation even more complex,
since information between the CPSs in the network has to be exchanged and
actions have to coordinated and deployed. Cooperating or platooning vehicles,
in which several autonomous vehicles drive in a convoy with small inter-vehicle
distances and coordinate their inter-vehicle gaps via IEEE 802.11p communica-
tion, can be an example for such a CPN. Additionally, CPNs are often deployed
in dynamic, unpredictable environments and safety-critical domains, such as
transportation, energy, and healthcare. In such domains, usually applications of
different criticality level exist. In an automotive environment for example, the
brake has a higher criticality level regarding safety as the infotainment. As a
result of mixed-criticality, applications requiring hard real-time guarantees com-
pete with those requiring soft real-time guarantees and best-effort application for
the given resources within the overall system. This leads to the need to accom-
modate multiple levels of criticality while ensuring safety and reliability, which
increases the already high complexity even more.

A main idea of Organic Computing is to improve the operation of highly
complex systems by transferring operation decisions from design-time to run-
time. Self-X features like self-organization, self-adaptation and self-healing are
a key principles for such systems since the increasing complexity cannot be
handled effectively and efficiently by the system developer without the assis-
tance of the system itself any longer. This paper presents and evaluates a
comprehensive adaptive mixed-criticality supporting middleware for Cyber-
Physical Networks (Chameleon) which efficiently handles safety-related non-
functional real-time requirements with regard to the mixed-criticality aspect.
The entire system consisting of applications, computing nodes, communication
channels, sensors, actuators and the middleware itself is considered. In such
a comprehensive approach, the key parameters of each of these components
(e.g. scheduling parameters, scheduling schemes, task parameters, communica-
tion parameters and protocols, data compression, monitoring rates, ...) as well as
the structure itself (task allocation) are subject of adaptation. While the basic
architecture of Chameleon have already been introduced in [2] and [5], this paper
mainly focuses on the evaluation of the adaptation process. It is organized as
follows: After this introduction, related work is presented in Sect. 2. Then, the
basic architecture and the self-adaptation mechanism of Chameleon are intro-
duced in Sect. 3. Following, Sect. 4 presents extensive evaluation results. Finally,
Sect. 5 concludes this paper.

202 M. Feist et al.

2 Related Work

Self-organization has been a research focus for several years. In particular, the
Organic Computing Initiative can be listed here. Its basic aim is to improve
the controllability of complex embedded systems by using principles found in
organic entities [15]. Organization principles which are successful in biology are
adapted to embedded computing systems and used to acquire self-X properties

Self-Organization is often encapsulated into a middleware. Several projects
related to Organic Computing use this approach. In the frame of the DoDOrg
project, e.g. the Artificial Hormone System (AHS) was introduced [13]. The AHS
has been later extended by the Artificial DNA (ADNA) [3]. Other self-organizing
middlewares arise from the field of Wireless Sensor Networks (WSN), e.g. [19,20].
Here, the focus lies on energy-efficiency rather than on safety-related real-time
constraints. Additionally, all the middlewares mentioned above mainly deal with
self-organizing task allocation. In Chameleon, task allocation is one adaptation
possibility in a wider range of other self-organizing adaptation capabilities.

Chameleon is intended to allow CPNs to maintain real-time constraints with
regard to the mixed-criticality aspect. There are various general research trends
related to mixed-critical CPNs. First, there are several approaches dealing with
the handling of mixed-criticality. Those are in general based on different schedul-
ing strategies to ensure the sound execution of critical system tasks. Hu et
al. introduces an adaptive real-time scheduling algorithm to handle dynamic
multiple-criticality applications based on a least-laxity first strategy. Thereby,
a mode-switch scheme and virtual deadlines to meet the different requirements
of multiple-criticality applications are used [8]. ASDYS is a dynamic scheduling
approach using active strategies where the mixed-criticality is actively treated
throughout the scheduling process. The aim of the approach is to minimize the
deadline miss rate ratio [1]. On the other hand, GoodSpread is a framework that
statically allocates multi Quality-of-Service (QoS) resources to a set of control
applications so that each of them meets its performance requirements in all sce-
narios while using the minimum amount of high-QoS resources [14]. All of those
papers address mixed-criticality in terms of scheduling. Chameleon, however,
considers scheduling as one but not the only part of the adaptation possibilities.

An approach for a self-organizing task allocation with respect to mixed crit-
icality is presented in [9]. This approach extends the AHS mentioned above by
so-called task assignment priorities. These priorities enable self-healing in over-
load situations by gradually dropping low-priority tasks. In comparison to our
approach, the system view is limited to the nodes and adaptation to handle
overload situations is limited to task dropping.

Ratasich et al. present a self-healing framework for building resilient CPS
which achieves self-healing through structural adaptation [12]. In contrast, our
approach is not limited to structural adaptation. Instead also parametric adap-
tation to modify the behavior of the system is applied.

[7] provides an initial-architecture for a CPS middleware. Thereby, the target
is on subsystems where timing deadlines are not hard nor safety critical. Thus,
this architecture is not suitable for the goal of our work.

Evaluating the Comprehensive Adaptive Chameleon Middleware 203

3 Middleware Architecture and Implementation

In the following, the basic middleware architecture including the adaptation
mechanism and its implementation are briefly presented. For more details on
the middleware architecture and underlying system model, please refer to [5].

3.1 Middleware Architecture

A middleware in a mixed-critical CPN is responsible for transparent operation of
the distributed system. It handles all the interactions of applications, sensors and
actuators within a single CPS and the entire CPN. It also manages the resources
like computation nodes and communication channels to enable distributed oper-
ation. Therefore, the middleware is the ideal place to provide self-adaption which
affects the entire CPN. Figure 1 shows the architecture of the Chameleon mid-
dleware. The middleware is structured in a modular way and can be divided into

Fig. 1. Middleware Architecture

two major parts: the Basic Middleware part shown on the left side of the figure
and the Adaptation Logic shown on the right sied. The Basic Middleware
part is responsible for the basic middleware operations to provide distributed
system interaction and transparency. It consists of several sub-parts: The Inter-
faces connect the middleware to the computing node and applications on one
side and to the communication network and sensors/actuators on the other side.
The Local Map contains information about the location of applications, sensors
and actuators and how they can be reached using the communication network.

204 M. Feist et al.

It is filled automatically by analyzing the incoming network traffic. The Request
Handler is responsible for the management of messages between the application
and the communication side and the transformation of application requests to
messages and vice versa. The Load Handler finally handles the load manage-
ment of applications. It can modify the computational and communication load
by starting, stopping, relocating, tuning (changing e.g. the periods and priorities
of) applications as well as changing data compression or scheduling schemes.

Mixed-criticality is introduced by defining an Importance parameter (cf.
interfaces in Fig. 1), which expresses the level of criticality for a component1.
This cardinal valued parameter allows to express the criticality of a component
on a fine grain level. By introducing a cardinal valued Importance parameter, the
criticality of a component can be expressed on a fine-grained level independent
of its priority.

3.2 Adaptation

The core ingredient of the Chameleon middleware architecture is the Adapta-
tion Logic part shown in grey on the right side of Fig. 1. As a design pattern,
the commonly known MAPE-K feedback loop architecture [10] has been cho-
sen to realize the desired self-adaptation capabilities in the mixed-critical CPN.
First, the Monitor samples the parameter data from the mixed-critical CPN.
Afterwards, this data needs to be analyzed and adaptations need to be planned
if necessary. As representation of the analyzing and planning component as well
as the knowledge base, a learning classifier system (LCS) [18] has been selected.
LCS-based approaches are popular in Organic Computing (cf. [16,17]) and have
been applied for approaches in the CPS domain. In comparison to other online
learning approaches, LCS are less computationally complex. Therefore, training
can be performed on devices with low computational resources and decisions
can be made in real-time, which are both essential requirements for the CPN
adaptation process. LCS use a set of rules that represent potential adaptations
schemes. A rule thereby mainly consists of a condition clause, an action clause
and an expected reward. Based on the measured reward, i.e., the effectiveness of
an action, that was observed after applying a certain rule, LCS learn and select
suitable rules for future adaptations. In Chameleon, the Analyzer first derives
abstract and normalized health values from the data of the Monitor. Health val-
ues range from 1 (best healthy state) to 0 (least healthy state) down to negative
(unhealthy state). This enables a unified concept for defining conditions for LCS
rules. Such health values are for example retrieved from parameters like load (of
a communication channel or a computational network node) or deadline misses
(of an application). After deriving the health values, the Analyzer uses its Rule

1 Importance must not be confused with priority. Regarding real-time scheduling,
components with short periods often result in high priorities (e.g. rate monotonic
scheduling). However these components might be less important for the system than
components with longer periods and resulting lower priority. In case of overload or
lack of resources the lower priority component then has to be preferred.

Evaluating the Comprehensive Adaptive Chameleon Middleware 205

Engine to trigger an adaptation if necessary. Therefore, it compares the cur-
rent system condition to the condition clauses of the Rule Set stored in the
Knowledge base. Thereby, the rules are expressed in Rango—a generic and
flexible rule language—which is dedicated to systematically and formally cre-
ate set-based adaptation rules for mixed-critical CPNs in an intuitive way [6].
The rules are parsed from a rule file (.rul) and automatically integrated into the
knowledge base. Also, Rango offers a rule writer, which exports rules modified
by learning into a human-readable form (.rulx) which makes the learning pro-
cess persistent and allows the user to inspect the learning result. All rules that
are currently applicable are included in the match set. The Planner collects all
action clauses from the match set into the action set. Then, it selects the action
that is expected to lead to the highest reward2.

In the next step, the Execute stage deploys the selected action to the mixed-
critical CPN.

As the final step in the LCS-based MAPE-K cycle, the Analyzer determines
the measured reward of an executed action and updates the Rule Set accordingly.

An LCS-based feedback loop may additionally contain a Rule Generation
Engine which evolves the rule set automatically at runtime, e.g., with genetic
algorithms [18], but this is not implemented yet and part of future work.

3.3 Middleware Implementation

For the realization of Chameleon, the modules of the basic middleware architec-
ture and the LCS-based MAPE-K Adaptation Logic shown in Fig. 1 have been
prototypically implemented in C++ 11.

Table 1 summarizes the Lines of Codes and Code Size of all Chameleon
modules. The modules were compiled using clang version 5.0.1, target x86-
w64-windows-gnu. It can be seen that the basic middleware itself is rather
small with an overall code size far less than 100kBytes. Also, the adaptation
logic doesn’t occupy much code space. The biggest module is the Rule Parser
and Rule Writer with 93kBytes. However, this module may not necessarily be
included in each Chameleon instance since the Rule Set can be compiled offline
and loaded directly into the local Knowledge base in binary format. Also, for the
Rule Writer, the Rule Set modified by learning can be exported in binary form
and written back in human readable form offline.

To simulate the environment, OMNet++ (Objective Modular Network
Testbed in C++) [11] has been used. OMNet++ is a commonly known and
well reputed event-based simulator for network processing. It offers many fea-
tures and pre-defined modules to precisely simulate communication networks
and sensor/actuator systems. Furthermore, it has been extended by modules to
simulate applications and computing nodes.

2 This can be done value based like in classical LCS or precision based (where the
best match of measured reward and expected reward are considered) in extended
learning classifier systems (XCS).

206 M. Feist et al.

Table 1. Lines of Codes and Code Size [kBytes] of Chameleon modules.

Lines of Code Code Size Lines of Code Code Size

Basic Middleware: Adaptation Logic:

Interfaces 716 22 Monitor 1170 24

Local Map 832 25 Analyze and Plan 1940 56

Load Handler 616 17 Execute 720 19

Request Handler 176 2 Rule Parser and Rule Writer 3835 93

4 Evaluation

For the practical evaluation of Chameleon, an automotive scenario has been cho-
sen because it offers a wide range of criticality and timing constraints (comfort
functions, driving assistants, driving functions) as well as dynamics (e.g. turning
on or off assistants or comfort functions at runtime, processor failures). In more
recent car configurations, different functionalities share more powerful proces-
sors. This reduces the costs and eases redundancy, since functionalities now can
be moved between processors. It also offers opportunities for adaptation. Thus,
Chameleon has been integrated into a simulated networked car environment
(based on OMNeT++, cf. Sect. 3.3).

The simulated environment offers the opportunity to deeply look inside the
adaptation processes while deficiencies will not cause physical harm. As network
computing nodes, 4 processors (NodeA .. NodeD) with a capacity of 10 Mips
each have been chosen. The processors are interconnected with each other and
the sensors and actuators via a CAN like bus system with 500 kBits/sec trans-
mission capacity supporting message priorities. The applications and their major
parameters3 used for the evaluation are shown in Table 2. Applications marked
with * are started on driver demand, all the others are activated at system start.
Important parameters for the timing behavior of the rule evaluation are the eval-
uation period (rules are evaluated periodically), the reward delay (to measure
the reward after an action is executed) and the monitoring periods (the periods
in which parameters of m components are monitored). Based on the application
periods, an evaluation period of 100 ms and a reward delay of 2000 ms has been
chosen. The local monitoring period is set to 5-times the application period,
while the global monitoring period is 2-times the local monitoring period. These
values are a suitable compromise between monitoring resolution (as lower the
values as better) and overhead (as higher the values as better). A basic Rule
Set consisting of 17 rules for handling of failures, overload situations, scheduling
issues, recovery and connection losses has been applied. This Rule Set as well as
a complete definition of the Rango syntax can be found in [4]. In the following,
major evaluation results are presented.

3 higher values indicate higher Importance and priority.

Evaluating the Comprehensive Adaptive Chameleon Middleware 207

4.1 Evaluation 1: Handling of Dynamic Load Changes

For the first experiment, several events have been injected to change the overall
load of the system. Those are summed up in Table 3. Thereby, the first two
columns of the table show the time of the event and the event itself. First, the
system load is gradually increased: After 10 s the performance of computing
NodeA is slowed down from 10 Mips to 7.5 Mips due to thermal issues. At 25 s
the Cruise Control application is started by the driver. The Infotainment system
and the Navigation are started after 40 s respectively 55 s. Beginning with second
70 the load now is gradually decreased back to its initial value. By this, it shall
be evaluated how the adaptation mechanism not only reacts on increased but
also on decreased load. Therefore, at 80 s the original performance of NodeA
is restored. Afterwards, the Cruise Control, Infotainment and Navigation are
stopped at 80, 90 and 100 s.

Table 2. Application Parameters

Application Importance Priority Period [ms] Max Period [ms] (tune)

Steering 7 4 50 50 (–)

Brake 7 4 50 50 (–)

Passenger Safety 7 5 25 25 (–)

Powertrain 6 5 25 25 (–)

Lights 6 1 500 1000 (2)

Stability 5 4 50 100 (2)

Data Repository 5 inherits – – (–)

Cruise Control* 4 4 50 100 (2)

Driver Warning 3 2 250 500 (2)

Navigation* 2 3 100 500 (5)

Infotainment* 1 4 50 500 (10)

Column 3 of Table 3 shows the actions selected by the autonomous adapta-
tion mechanism. Additionally, adaptation actions selected manually by a human
developer4 are listed in column 4. Columns 5 show the component affected by
an action.

Thus, this evaluation not only validates the effectivity of the action portfolio
(cf. Sect. 3 Load Handler), but also can serve as a comparison between the effec-
tivity of the autonomous adaptation mechanism versus manual adaptation by a
human developer. Although not being a strict evidence, it gives a good impres-
sion on the quality and capability of the selected autonomous self-adaptation
mechanism in conjunction with its Rule Set.

4 The manually selected adaptation actions have been performed as a proof of concept
before the implementation of the autonomous adaptation mechanism was finished.

208 M. Feist et al.

Figure 2 compares the number of unhealthy applications (applications which
violate their constraints) with manual, autonomous and without the adaptation.
As well, the number of the overall activated and running applications, the events
and the adaptation actions as reference to Table 3 column 3 and 4 are shown.

It can be seen, that without adaptation a large number of unhealthy applica-
tions occur. The manual and autonomous adaptation keeps the system healthy
(meet the real-time constraints) by relocation, tuning, data compression and
pausing of the least important application. While the autonomous adaptation
succeeds to keep the system healthy without pausing any application by effi-
ciently combining the other actions (e.g. actions A5-A7) the human developer
did not find this solution and paused one application instead. Overall, the
autonomous adaptation performs significantly better than the manual adap-
tation since it reacts quickly to unhealthy applications in the system (A1-A7)
and the adaptation actions are more fine grain and less restrictive. The last
actions of the autonomous adaptation (A8-A13) react to the decreased load by
undoing previous adaptation measures. This was not in the focus of the manual
adaptation experiment.

Table 3. Events and adaptation actions (manual and autonomous).

time [s] Event Actions (Chameleon) Action (manual) Components

10 Slow down NodeA (10 to 7.5 Mips)

10.3 Relocate (A1) Stability and Drive Dynamics: NodeD

15 Relocate (M1) Stability and Drive Dynamics: NodeD

25 Start CruiseControl (NodeC)

25.41 Tune (A2) Driver Warning : Factor 2

27.81 Tune (A3) Cruise Control : Factor 2

30 Tune (M2) Cruise Control : Factor 1.5

40 Start Infotainment (NodeD)

40.25 Compress (A4) Infotainment : Factor 0.8

45 Compress (M3) Infotainment : Factor 0.75

Tune (M4) Infotainment : Factor 2

55 Start Navigation (NodeD)

55.55 Compress (A5) Navigation: Factor 0.8

57.65 Tune (A6) Navigation: Factor 5

59.65 Relocate (A7) Navigation: NodeA

60 Pause (M5) Infotainment

Tune (M6) Navigation: Factor 3

70 Speed up NodeA (7.5 to 10 Mips)

80 Stop Cruise Control

90 Stop Infotainment

90.26 Untune (A8) Navigation: Factor 4.5

Untune (A9) Driver Warning : Factor 1.5

92.27 Untune (A10) Navigation: Factor 4

Untune (A11) Driver Warning : Factor 1

94.28 Untune (A12) Navigation: Factor 3.5

96.28 Untune (A13) Navigation: Factor 3

98.28 Untune (A14) Navigation: Factor 2.5

100 Stop Navigation

Evaluating the Comprehensive Adaptive Chameleon Middleware 209

Figure 3 compares the execution time of the high important Brake application
to its constraint given by the period. The start of the Cruise Control leads to a
slight violation of the execution time constraint. This is due to the fact that in the
chosen initial configuration of the evaluation scenario both applications reside
on NodeC . The autonomous adaptation mechanism reacts to this violation by
tuning the least important application in the system (A2). The second violation
about two seconds later is counteracted by tuning the next least important
application (A3). This leads to the restoration of the initial valid execution
times. Also, the further load changes can be noticed in the diagram but do not
cause any further violation of the constraint. In contrast, without adaptation
the constraint is heavily violated especially after the start of the Infotainment.

Fig. 2. Comparison of unhealthy applications (apps) with manual, autonomous
(Chameleon) and without adaptation.

Fig. 3. Execution time and period of the Brake application with autonomous
(Chameleon) and without adaptation.

210 M. Feist et al.

4.2 Evaluation 2: Handling of Failures

This evaluation investigates the handling of failures by the autonomous adapta-
tion mechanism. To maximize the pressure and load on the system, node failures
are successively injected unless only a single node is left. A node failure causes
the middleware instance and all applications running on this node to crash. It
will be examined how the system reacts on such failures. The aspect of mixed-
criticality and the influence of the Importance is of particular interest here.
Figure 4 shows the number of unhealthy, running and activated applications
while Fig. 5 displays the allocation of the applications on the nodes ordered
by Importance. The adaptation mechanism is able to compensate two node
failures completely by restarting the affected applications on other nodes and
keeps the system healthy by tuning the least important applications. This is no
longer possible when the third node fails. So the adaptation mechanism pauses
lower important applications to maintain the healthy execution of the three most
important applications on the remaining NodeA.

The adaptation mechanism is able to handle the extreme overload situation
and behaves according to the application’s Importance by tuning and or pausing
of less important applications for the benefit of the higher important ones. Thus,
the mixed-criticality of the system is respected by keeping the most important
application alive as long as the resources are still sufficient.

Fig. 4. Node failures - Number of unhealthy and running applications (apps).

4.3 Evaluation 3: Effects of Learning

To evaluate the effect of learning by the reward, an additional rule has been
introduced to the basic Rule Set which has the same condition as an already
existing rule but a different action. While the original action decreases the period
and priority of an unhealthy application, the new action increases both values.
The Rule engine can now learn which of both rules performs better under this
condition and therefore has to be preferred.

Evaluating the Comprehensive Adaptive Chameleon Middleware 211

Fig. 5. Node failures - Allocation of applications on nodes ordered by Importance

In the chosen evaluation scenario (same as for evaluation 1), the newly added
rule is executed first at time 57.65 causing a strongly negative reward. This is
reflected in the peak of unhealthy applications at that time in Figs. 6. Therefore,
the new rule is never applied again. Instead, the original rule with the same
condition is used to bring the system back into a healthy state.

Fig. 6. Learning - Number of unhealthy applications (apps).

Thus, this evaluation shows that Chameleon is able to learn from past expe-
rience. If a rule has not the desired effect, the reward decreases and thus is no
longer applied.

212 M. Feist et al.

4.4 Evaluation 4: Exploiting the Potential of CPN

The previous evaluations of the adaptation mechanisms have been conducted
on a single mixed-critical CPS. Now, the benefits of a CPN consisting of more
than one mixed-critical CPS will be investigated. Therefore, two vehicles of the
application scenario are combined.

Initially, both vehicles are isolated. After 15 s, both vehicles become intercon-
nected. This is done via a wireless connection established between the NodeD of
both vehicles. After 100 s, both vehicles are separated again. The same events as
in evaluation 1 (Sect. 4.1 Table 3) are applied to one vehicle. The only difference
is that after 100 s the Navigation application is not stopped like in evaluation
1, but kept active after the separation of the two vehicles. During the whole
evaluation, the other vehicle is left in its initial state.

Before the vehicles are connected, the performed adaptation actions of eval-
uation 1 and evaluation 4 are identical. Afterwards, vehicle V1 uses local adap-
tation actions first. This results in almost the same actions as in evaluation 1.
After 59.53 s, a Chameleon instance in V1 exploits the potential of the addi-
tional resources due to the connection to V2 (CPN) and relocates the Navigation
application to a node of vehicle V2. Figure 7 shows the benefit of this inter-CPS
adaptation by comparing the period of the Navigation application in evaluation
1 (CPS) and evaluation 4 (CPN). In evaluation 1, the Navigation is tuned down
to a factor of 5 after the activation until the system load is decreased (speed up
of NodeA, stop of applications Cruise Control and Infotainment). In evaluation
4, the Navigation application is also shortly tuned down to a factor of 5 after the
activation and relocation, but then this factor is quickly decreased step by step
down-to 1.5. Thus, less tuning is needed due to the exploitation of the additional
resources of the CPN.

Fig. 7. Comparison of the period of the Navigation application in evaluation 1 (CPS)
and evaluation 9 (CPN) while Navigation is running in both evaluations

Evaluating the Comprehensive Adaptive Chameleon Middleware 213

After the disconnection of the vehicles at 100 s, the Navigation application
of V1 is relocated back to its origin. Since the load in vehicle V1 meanwhile has
decreased (see events at 70, 80 and 90 s in Table 3), the Navigation application
is able to continue its operation at its original period.

Thus, the adaptation mechanism can use the resources of CPNs and adapt
the system through global and local adaptation actions. The exploitation of
abilities and resources of the whole CPN leads to more adaptation options and
better results.

Many more experiments and evaluations have been conducted which could
not be shown here due to page limitations, e.g. healing of scheduling issues,
communication overhead, analysis of the real-time behavior, the usability and
usability of Rango, etc. All these evaluations have shown that Chameleon is well
able to efficiently manage mixed-critical CPNs to maintain to keep the system
within the constraints while respecting the mixed-criticality aspect.

5 Conclusions

Chameleon is a middleware architecture dedicated to autonomously manage
CPNs with mixed-critical applications. It uses an LCS-based realization of the
MAPE-K loop to provide system adaptation and learning from the outcome of
adaptation actions. System constraints can be expressed by normalized health
values while the rule language Rango is used to define adaptation rules in a flex-
ible and intuitive way. The evaluation showed that, having a suitable basic Rule
Set, Chameleon is able to keep the system within the constraints while respect-
ing the mixed-criticality aspect. It can handle overload situations (even better
as the human developer was able to), properly react to node failures, learn from
the payoff and exploit the additional resources offered by CPNs. Future work
will focus on the design of a rule generation engine to automatically define and
generate new and improved rules.

References

1. Bai, Y., Huang, Y., Xie, G., Li, R., Chang, W.: ASDYS: dynamic scheduling using
active strategies for multifunctional mixed-criticality cyber-physical systems. IEEE
Trans. Ind. Inform. 17(8), 5175–5184 (2021)

2. Brinkschulte, M., Becker, C., Krupitzer, C.: Towards a QoS-aware cyber physical
networking middleware architecture. In: 1st International Workshop on Middleware
for Lightweight, Spontaneous Environments, MISE 2019, pp. 7–12. Association for
Computing Machinery, New York (2019)

3. Brinkschulte, U.: Prototypic implementation and evaluation of an artificial DNA
for self-descripting and self-building embedded systems. EURASIP J. Embed. Syst.
(2017)

4. Chameleon: Basic Rule Set and Rango Grammer (2023). https://github.com/
GrammarRango/Rango.git

5. Feist, M., Becker, C.: A comprehensive approach of a middleware for adaptive
mixed-critical cyber-physical networking. In: Proceedings of the PerCom Work-
shops. IEEE (2022)

https://github.com/GrammarRango/Rango.git
https://github.com/GrammarRango/Rango.git

214 M. Feist et al.

6. Feist, M., Breitbach, M., Trotsch, H., Becker, C., Krupitzer, C.: Rango: an intu-
itive rule language for learning classifier systems in cyber-physical systems. In: 2022
IEEE International Conference on Autonomic Computing and Self-Organizing Sys-
tems (ACSOS), Los Alamitos, CA, USA, pp. 31–40. IEEE Computer Society (2022)

7. Garćıa-Valls, M., Baldoni, R.: Adaptive middleware design for CPS: considerations
on the OS, resource managers, and the network run-time. In: Proceedings of the
ARM. ACM (2015)

8. Hu, B., Cao, Z., Zhou, L.: Adaptive real-time scheduling of dynamic multiple-
criticality applications on heterogeneous distributed computing systems. In: Pro-
ceedings of the CASE. IEEE (2019)

9. Hutter, E., Brinkschulte, U.: Handling assignment priorities to degrade systems in
self-organizing task distribution. In: Proceedings of the ISORC. IEEE (2021)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

11. OMNet++: Discrete Event Simulator (2023). https://omnetpp.org/
12. Ratasich, D., Hoftberger, O., Isakovic, H., Shafique, M., Grosu, R.: A self-healing

framework for building resilient cyber-physical systems. In: Proceedings of the
ISORC. IEEE (2017)

13. von Renteln, A., Brinkschulte, U., Pacher, M.: The artificial hormone system—an
organic middleware for self-organising real-time task allocation. In: Müller-Schloer,
C., Schmeck, H., Ungerer, T. (eds.) Organic Computing—A Paradigm Shift for
Complex Systems. ASYS, vol. 1, pp. 369–384. Springer, Basel (2011). https://doi.
org/10.1007/978-3-0348-0130-0 24

14. Roy, D., Ghosh, S., Zhu, Q., Caccamo, M., Chakraborty, S.: GoodSpread:
criticality-aware static scheduling of CPS with multi-QoS resources. In: Proceed-
ings of the RTSS. IEEE (2020)

15. Schmeck, H.: Organic computing - a new vision for distributed embedded systems.
In: 8th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2005), Seattle, USA, pp. 201–203 (2005)

16. Sommer, M., Tomforde, S., Hähner, J.: An organic computing approach to resilient
traffic management. In: McCluskey, T.L., Kotsialos, A., Müller, J.P., Klügl, F.,
Rana, O., Schumann, R. (eds.) Autonomic Road Transport Support Systems. AS,
pp. 113–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25808-9 7

17. Stein, A., Maier, R., Rosenbauer, L., Hähner, J.: XCS classifier system with expe-
rience replay. In: Proceedings of the GECCO. ACM (2020)

18. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduc-
tion, review, and roadmap. J. Artif. Evol. Appl. (2009)

19. Yang, J., Zhang, H., Ling, Y., Pan, C., Sun, W.: Task allocation for wireless sensor
network using modified binary particle swarm optimization. Sens. J. 14(3), 882–
892 (2014)

20. Yin, X., Dai, W., Li, B., Chang, L., Li, C.: Cooperative task allocation in hetero-
geneous wireless sensor networks. Int. J. Distr. Sens. Netw. 13(10) (2017)

https://omnetpp.org/
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-319-25808-9_7

CoLeCTs: Cooperative Learning Classifier
Tables for Resource Management

in MPSoCs

Klajd Zyla(B) , Florian Maurer , Thomas Wild ,
and Andreas Herkersdorf

Chair of Integrated Systems, Technical University of Munich, Munich, Germany
{klajd.zyla,flo.maurer,thomas.wild,herkersdorf}@tum.de

Abstract. The increasing complexity and unpredictability of emerging
applications makes it challenging for multi-processor system-on-chips to
satisfy their performance requirements while keeping power consump-
tion within bounds. In order to tackle this problem, the research com-
munity has focused on developing dynamic resource managers that aim
to optimize runtime parameters, such as clock frequency, voltage and
task mapping. There is a large diversity in the approaches proposed in
this context, but a class of resource managers that has gained traction
recently is that of reinforcement learning-based controllers. In this paper
we propose CoLeCTs, a resource manager that enhances the state-of-
the-art resource manager SOSA by employing a joint reward assignment
function and enabling collaborative information exchange among multi-
ple learning agents. In this manner we tackle the suboptimal determi-
nation of local performance targets for heterogeneous applications and
allow cooperative decision making for the learning agents. We evaluate
and quantify the benefits of our approach via trace-based simulations.

Keywords: MPSoCs · Resource management · DVFS · Reinforcement
learning · LCTs · Cooperation

1 Introduction

As applications become more computationally complex and process larger
amounts of data, they put higher demands regarding performance on multi-
processor system-on-chips (MPSoCs). This comes at the cost of higher power
consumption, which increases the failure rate and accelerates the aging process
of electronic components. In order to achieve the performance target of an appli-
cation while fulfilling the power constraints of the platform (MPSoC) where it
runs, dynamic frequency scaling (DFS) [29], dynamic voltage and frequency scal-
ing (DVFS) [12] and optimization of task distribution among CPU cores [9] are
commonly used. However, it is challenging to effectively employ these methods

We acknowledge the financial support from the DFG Grant HE4584/7-2.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 215–229, 2023.
https://doi.org/10.1007/978-3-031-42785-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_15&domain=pdf
http://orcid.org/0009-0000-4599-2718
http://orcid.org/0000-0002-3369-7874
http://orcid.org/0000-0002-2455-3625
http://orcid.org/0000-0002-8886-5345
https://doi.org/10.1007/978-3-031-42785-5_15

216 K. Zyla et al.

because MPSoCs run different applications with variable workloads and indi-
vidual goals. Consequently, it is difficult to develop controllers that can build
accurate models of the system that take into account the microarchitecture of
the MPSoC, device variations, emerging workloads and can then determine the
optimal clock frequency, voltage and task distribution at runtime.

In order to solve this problem, ongoing research presents approaches which
are (1) robust against environmental changes and corner cases [8,26,27], (2)
model-independent to adapt to emerging workloads [7–9], (3) scalable for
many-core architectures [8,25,26], and provide (4) coordination between the
per-core low-level controllers to ensure stable operation [8,11,24].

Coordination helps to distribute the workload between CPU cores by assign-
ing local targets for each core. However, each low-level controller individually
attempts to achieve its local optimization target without awareness of the behav-
ior of its peers. This may lead to unstable and globally suboptimal behavior.
Furthermore, a suboptimal assignment of the local targets could prevent the
resource manager from achieving the common goal (e.g., a video-decoding appli-
cation runs three tasks on different cores, which are required to process the whole
frame).

In order to tackle these issues, we propose cooperative learning classifier
tables (CoLeCTs), a resource manager for MPSoCs which builds on SOSA
[8], a state-of-the-art reinforcement learning (RL)-based resource manager, and
employs cooperation. Cooperation enables the low-level controllers to jointly
achieve the requirements of an application without active workload distribution
by a supervisory entity. To this end, the optimization targets of the low-level
controllers are application-specific and not core-specific (e.g., an application’s
overall performance target for all cores instead of dividing it into core-specific
targets). We evaluate the global impact of control decisions and allow the con-
trollers to constructively work together by exchanging information.

CoLeCTs fulfills the aforementioned properties (1)–(4) in the same way as
SOSA [8], but is more optimal by introducing cooperation to the resource man-
ager. We evaluate our design via trace-based simulations in Matlab in a packet
processing scenario. The results show that, by using our resource manager, the
MPSoC drops no packets, processes packets up to 95.77% faster and needs up
to 23.32% less queue space for temporary storage of incoming packets compared
to SOSA.

2 Related Work

Classical control-theoretic approaches [20,21,25] deliver optimal behavior in
well-defined scenarios with multiple objectives, but are not able to handle chang-
ing applications. They also require the definition of a model, on the basis of which
control decisions are made.

Heuristic solutions [1,15,18] are model-independent, but likewise lack the
ability to adapt to workload changes. Furthermore, coming up with an optimal
heuristic, even in a static environment, is challenging.

CoLeCTs: Cooperative Learning Classifier Tables 217

Machine-learning approaches [2,4,19] have been proven to solve problems
with large configuration spaces and can build and update their models at
runtime. However, some of them are dependent on the definition of a model
and their decisions are usually difficult to interpret. A subclass of machine-
learning approaches that has gained traction recently are RL resource managers
[8,10,17,30].

Moreover, RL has been applied to enable energy-efficient deep learning infer-
ence at the edge [13] and to jointly adjust application- and system-level param-
eters at runtime to satisfy the Quality-of-Service (QoS) of multi-user High Effi-
ciency Video Coding (HEVC) streaming in power-constrained servers [5]. Other
recent fields of application of RL are runtime control of configuration parameters
on coarse-grained reconfigurable architectures (CGRA) for sparse linear algebra
operations [22], the optimization of the performance of machine learning work-
loads on mobile and embedded platforms [32] and the design of energy-efficient
memory subsystems [16].

In contrast to control-theoretic and heuristic approaches, RL approaches are
able to adapt to environment changes and can be model-independent due to their
generalizability. Compared to other machine-learning approaches, they do not
necessarily need a model of the dynamics of the environment and the decisions
are explainable in some approaches. However, they often leave designers with
the conundrum of having to make a trade-off between optimality and scalability.
This comes as a result of the exponential growth of the state-action space as the
complexity of the resource management problem increases with more CPU cores
and parameters. Intelligent design decisions are required to address this issue.
Moreover, applying RL to MPSoC control with distributed decision making (e.g.,
one RL agent per core, as in SOSA [8]) results in a multi-agent system. These
often lack cooperation between the agents toward achieving the common goal,
thus leading to locally optimal, globally suboptimal decisions [23].

3 Background

In this section we describe the resource manager SOSA [8], focusing on the
learning process that occurs in the low-level controllers attached to the CPU
cores. Then we elaborate on the challenges in SOSA that motivated our work
and describe a cooperation method that could be effectively employed to address
these challenges.

3.1 SOSA

Figure 1 shows a hierarchical representation of SOSA and its interaction with
the MPSoC. Its main components are the supervisor in SW and the learning
classifier tables (LCTs) in HW. The LCTs act as the above-mentioned low-level
controllers.

Supervisor. The supervisor, which was introduced in SPECTR [26], provides
self-adaptivity to the resource manager by exploiting supervisory control theory

218 K. Zyla et al.

Fig. 1. Hierarchical representation of SOSA [8] on an MPSoC. SOSA components in
the shaded region.

(SCT) [28]. This is enabled by translating the user and application requirements
(e.g., packets per second in a packet processing scenario) into per-core hardware-
related targets and constraints (e.g., an instructions per second (IPS) target and
a power constraint). These can be adjusted based on the MPSoC’s current state
(e.g., high temperature due to defective fan), which is provided by an abstract
model of the MPSoC. This system model is updated based on the current sensor
values of the real hardware.

LCTs. The hardware-related targets and constraints are used by the self-
optimizing LCTs, which were initially introduced in ASoC [33]. LCTs make
decisions based on a set of rules. Each rule has a condition, an action (e.g.,
increase/decrease frequency) and a fitness. The condition represents a state or
a set of states of the corresponding CPU core. The fitness is an indicator of the
rule’s effectiveness toward achieving the low-level objective and it corresponds to
the action-value function in a typical RL agent. In order to optimize the MPSoC
operation with respect to the targets and constraints given by the supervisor,
each LCT first senses the current state (e.g. current frequency, utilization, power
consumption) of its corresponding core and compares the state to the conditions
of the rules. Rules whose conditions match the current state build the match set.
Afterwards the LCTs decide which rule of the match set gets applied based on the
fitness values. Possible selection strategies are highest fitness wins and roulette
wheel (the probability of a rule to be selected is proportional to its fitness value).
The action of the selected rule gets forwarded to the actuators. Once an action

CoLeCTs: Cooperative Learning Classifier Tables 219

is applied, its effect gets evaluated based on the received immediate reward.
The reward is determined based on the change of the system’s state toward the
low-level target and the fulfillment of the low-level constraints: ’0’ for deviating
from the target or violating the constraint and ’1’ for approaching the target
and simultaneously fulfilling the constraint. The reward R changes the fitness f
of the applied rule, so that past experiences are considered in future decisions:
f(s, a) ← f(s, a) + β (R − f(s, a)). β represents the impact of the latest reward.

3.2 Challenges in SOSA

As mentioned in Sect. 3.1, the supervisor derives per-core targets and constraints
from the application requirements, while the LCTs attempt to independently
achieve their local targets through learning. An example would be an image
processing application that requires the MPSoC to process incoming images at
a frame rate of 30 frames per second (fps). The supervisor figures out that
the MPSoC must process 3000 million instructions per second (MIPS) in order
to achieve the required frame rate. However, the supervisor is not aware of
the degree of parallelism of the application, the complexity of the individual
threads, etc. Therefore, the overall performance requirement is only combined
with the knowledge of available cores (and potentially their individual maximum
compute performance, e.g. Arm Big.LITTLE). In order to achieve the required
performance while optimizing power consumption, the supervisor attempts to
distribute the workload among the CPU cores uniformly/proportional to the
compute performance. In our image processing example with three identical
cores, the required processing rate of 3000MIPS (global target) gets divided by
three. Consequently, each LCT manages its CPU core, such that it achieves a
performance of 1000MIPS (local target). The idea behind this approach is that
the LCTs will by chance discover the workload distribution that allows each
core to achieve its local target and thus the global performance requirement.
The division of global goals into subgoals makes use of emergent behavior [17],
which causes two problems.

The first problem is the potentially suboptimal determination of per-core low-
level targets by the supervisor. While the assignment of the same performance
target to every CPU core might be optimal for fully parallelizable homogeneous
applications, it’s not efficient for other types of applications. For instance, single-
threaded applications are composed of tasks that run on only one CPU core at
a time. If all three cores of a CPU have the same target, two of them will have
nothing to do and thus won’t reach their target, while the one where the task
is running will meet its target, but this won’t be sufficient to reach the global
performance target. In order to solve this problem, SOSA would need a more
complex supervisor that is aware of several low-level application metrics, like the
degree of parallelism. These are often not available. Another scenario where the
supervisor makes a suboptimal assignment of targets are heterogeneous appli-
cations with a mixture of compute- and memory-intensive tasks where no task
allocation results in an equal workload distribution. E.g., let’s assume a three-
core CPU where a core runs a compute-intensive task, while the other two run
memory-intensive tasks. The latter perform few computations and thus find it

220 K. Zyla et al.

difficult to reach their performance targets. Hence, their agents will probably
increase their clock frequencies, which might lead to a significant increase in
power consumption with little or no performance improvement if more access
contentions to the shared bus and memory occur. As a result, the MPSoC again
won’t reach the global performance target. Furthermore, the LCTs receive feed-
back only regarding the achievement of their local targets. This could result in
the development of greedy local behaviors that are globally suboptimal due to
the lack of incentive to help other agents achieve their local goals [23].

The second problem is that in many cases emergent behavior is unstable
[6] and globally suboptimal. In our case this means that the agent’s policies
might be unstable and they might not converge to a globally optimal policy.
The reason is that an agent could misinterpret the rewards it receives because
the effect of its action on the environment depends on the unknown states of
the other agents and the actions they take due to the access to shared resources,
such as interconnect and memory. Even if the agents find the optimal workload
distribution by chance, they might not realize it and thus their policies won’t
necessarily converge to it. A simple example that illustrates this point is when an
agent in a deterministic environment receives different reward values for the same
action it applies in a certain state, because the joint state of the other agents
and the joint action that the other agents apply is different in each learning
step. Furthermore, since the other agents continually change their policies, the
environment appears nonstationary to the agent under observation. This might
cause the policy of this agent to oscillate or to converge to a globally suboptimal
policy.

3.3 Cooperation in LCTs

Cooperation methods directly address the need for cooperation in decentralized
systems with shared resources. Tan identified and studied three general coopera-
tion methods between learning agents [31]. First, agents can share instantaneous
information, such as states, actions and rewards. Secondly, agents can share
information about past experiences in the form of episodes, which are defined
as sequences of 〈state, action, reward〉 previously encountered by the agent that
others may not have experienced yet. Thirdly, agents can share learned policies.
Although inter-agent communication can increase their learning rates and opti-
mize their policies, it incurs costs in terms of computational resources and power
consumption. Hence, a cost-benefit trade-off is necessary. We employ a modified
version of immediate action notification [31] because it’s effective, simple and
does not impair the explainability of the LCTs.

In regular immediate action notification we assign ordinal numbers to the
agents. In every learning step the first agent takes an action and informs the
other agents about it. The second agent selects its action by taking into account
the action selected by the first agent, so the second agent basically adapts to the
first one. Then, it informs the remaining agents about the selected action and
so on. Every agent is aware of the current individual states of the other agents.
Figure 2 illustrates a decentralized system that consists of three learning agents
and applies immediate action notification.

CoLeCTs: Cooperative Learning Classifier Tables 221

Fig. 2. Decentralized multi-agent system that consists of three learning agents and
applies immediate action notification: si/ai denotes an individual state/action of agent
i; s∗

i denotes the part of the state that is directly related to the achievement of the
goal of agent i; Ri denotes the reward that the reward assignment function allocates
to agent i

4 Design

In this section we elaborate on the design changes that we made to the resource
manager presented in SOSA [8]. They address the two main challenges men-
tioned in Subsect. 3.2. In principle there are two solutions to the first problem
of suboptimal determination of local low-level objectives for single-threaded and
heterogeneous applications.

The first solution is to equip the supervisor with knowledge of the type of
tasks that run on each CPU core. This would allow it to assign different per-
formance targets to each core based on the computational intensity of the tasks
it executes. This approach has some issues. First, this knowledge is often not
available. The supervisor usually receives a high-level goal, such as a frame rate
in image processing applications, and it translates it into a global performance
target. Secondly, even if the processing demands of each task are known, a CPU
core usually does not continuously execute a single task, but it switches between
tasks with different computational intensities. Hence, the supervisor would have
to change the local performance target whenever the currently executed task
changes. Dynamically determining the performance target is inefficient due to
the additional delay that the software implementation of the supervisor intro-
duces.

The second solution to the first problem is to let the supervisor simply trans-
late the high-level goal into a global performance target and derive no local per-
formance targets. In CoLeCTs this solution is the first modification we apply to
the resource manager presented in SOSA. In this manner we remove the restric-
tion imposed by the local performance targets and reward any combination of
CPU-core performance values that leads to the achievement of the global per-

222 K. Zyla et al.

formance target. This approach does not prevent the definition of local targets
or constraints when it makes sense to do so. On the contrary, it enables a combi-
nation of system-wide targets/constraints and core-specific targets/constraints.
An example would be the definition of a global performance target bounded by
a global power constraint combined with local power constraints allotted to each
CPU core. This example is the objective function that we use to evaluate our
approach in Sect. 5.

The above-mentioned modification does not address the second problem,
which is the instability of the principle of emergent behavior. This is caused
by the missing awareness of the states of the other agents or the actions they
take. This can be tackled by adding cooperation methods, such as immediate
action notification. For CoLeCTs we propose a lightweight, scalable version of
immediate action notification, which we add to the resource manager.

As in immediate action notification, we assign ordinal numbers to the agents.
The agents operate sequentially according to these numbers. This sequential
operation is affordable since it takes about an order of magnitude less than the
decision-making period of our hardware-based LCTs. In multi-core architectures
with shared bus/memory, the overall memory access rate as well as the overall
power consumption are highly correlated with the operating frequencies of the
cores. Therefore, forwarding the future operating frequencies of the cores allows
the ordinally following agents to apply beneficial DVFS decisions toward achiev-
ing the overall performance target without violating the power constraints.

Control Unit Agent 1 Agent 2 Agent n

sense()

selectAction()

notify(fA1
t+1) selectAction()

notify(mean(fA1
t+1, . . . , f

An−1
t+1)) selectAction()

applyAction()

Fig. 3. Lightweight version of immediate action notification

As depicted in Fig. 3, in every learning step each agent selects a frequency
change as an action (at = Δft), computes the mean value over the future fre-
quencies

(
fAi
t+1 = fAi

t + aAi
t

)
of the cores of all the ordinally preceding agents

and of its core and forwards it to the ordinally following agents. The ordinally
following agents take this value into account when selecting their actions. The
idea behind the choice of the mean value instead of the individual frequencies
is that it contains the essential information, but scales significantly better with
the increasing amount of cores in terms of the potential state space.

CoLeCTs: Cooperative Learning Classifier Tables 223

We can illustrate the benefit of this cooperation method for the performance
of the multi-core architecture with an example. Memory access conflicts degrade
the performance of the CPU. Hence, when the third agent knows that the CPU
cores of the first two agents are going to operate at a high frequency in the next
period and thus probably access the shared memory very often, it eventually
learns via RL to decrease the frequency of its CPU core in order to reduce
access conflicts. One can think of a scenario where the first two agents always
keep their CPU-core frequencies high and the third agent has to keep its core
frequency low in order to adapt to them. This would in turn cause the first
two CPU cores to consume more power and process their tasks faster. Such a
scenario is very unlikely to happen for two reasons. First, we limit the extent to
which load imbalances might occur by defining local power constraints. Second,
since the agents use the roulette-wheel selection algorithm to choose the actions,
exploration of equally or even more beneficial states is very likely to occur, thus
making such conditions temporary.

5 Evaluation

In this section we evaluate CoLeCTs via trace-based simulations in Matlab based
on these properties: optimality, robustness and reproducibility.

5.1 Simulation Setup

We assume that the MPSoC, which contains three LEON3 CPU cores [3], pro-
cesses incoming packets in real time in a network node. Each packet requires
the processing of three types of tasks: (1) IntMM [14] is a memory-intensive
Stanford benchmark that multiplies integer matrices; (2) FloatMM [14] is a
memory-intensive Stanford benchmark that multiplies floating-point matrices;
(3) CPUIntensive is a compute-intensive benchmark that adds two integer values
in every clock cycle. Each packet is assigned to an application that is composed
of the following sequential task graph: (1) IntMM → (2)CPUIntensive →
(3)FloatMM → (4)CPUIntensive → (5)FloatMM → (6) IntMM . Each
unit of the task graph is statically mapped to a CPU core in design time. In
our experiments we do not employ task migration as a possible action in order
to demonstrate the ability of the resource manager to cope with scenarios where
no ideal task distribution among CPU cores can be found. Each core has its
own FIFO task queue and we ensure that a task can be processed only after its
predecessor has been processed. We set the queue size to 1000 entries.

We evaluate CoLeCTs by employing two different task mappings. In the first
scenario each CPU core processes two different tasks, while in the second one
each of them executes the same task. In both cases we set power constraints
relative to the maximum power consumption, i.e. core-specific constraints equal
to 85% and a system-wide constraint equal to 75%. We also define a system-
wide performance target based on the mean inter-packet gap and the number of
instructions that the application that is assigned to the packet requires.

224 K. Zyla et al.

The individual state of each agent is composed of the current frequency,
utilization and performance of the CPU core that it controls. The actions that
each agent can take are: increase/decrease frequency by one/two step(s) and do
nothing.

We use six use-case-oriented metrics as indicators of the optimality of
CoLeCTs:

– Mean amount of dropped packets
– Mean amount of processed packets
– Mean amount of processing time per packet
– Mean queue fill level
– Mean amount of system-wide power constraint violations
– Mean amount of core-specific power constraint violations

We show the robustness of our resource manager by periodically varying the
inter-packet gap to random values up to 20 ms around the mean, which we set at
95 ms. We keep the performance target constant, thus showing that our resource
manager can handle short-term workload fluctuations. A supervisor as in SOSA
is necessary only for long-term variations. We show the reproducibility of the
results by performing 20 simulation runs for each scenario and computing the
standard deviation of each optimality indicator. We inject around 2500 packets
in each run and simulate a period of 237,5 s.

5.2 Results

Figure 4 depicts the performance of SOSA and CoLeCTs regarding the aforemen-
tioned optimality metrics when mapping two different tasks to the same CPU
core. CoLeCTs outperforms SOSA in five metrics, while performing worse in one
of them – the mean amount of system-wide power constraint violations.

In this scenario core 1 and core 2 have a higher processing workload than
core 3 (CPUIntensive is one of the tasks they execute), but SOSA assigns the
same performance target, which is derived from the processing workload of the
application, to all CPU cores. This means that core 1 and core 2 process at a
slower rate than they should, which leads to the total IPS being far below the
global performance target, as shown in Fig. 5a. As a result, their task queues
fill up and incoming tasks are eventually dropped. When a task is dropped, the
corresponding packet is also dropped. In contrast to SOSA, CoLeCTs defines a
global performance target based on the processing demands of the application.
This allows the CPU cores to tailor their processing rate to the workload of the
assigned tasks and jointly achieve the global target, as shown in Fig. 5b. The
simulation results show that by using CoLeCTs, the MPSoC drops no packets,
processes packets on average 90.91% faster and the queue fill levels are on average
21.5% lower compared to SOSA. Moreover, our resource manager leads to 50.8%
more processed packets and 0.667% less core-specific power constraint violations,
but 0.665% more system-wide power constraint violations.

CoLeCTs: Cooperative Learning Classifier Tables 225

Fig. 4. Performance of SOSA and CoLeCTs regarding six use-case-oriented optimality
metrics while mapping different tasks to the same CPU core. The processing time
includes the queuing time. The mean values are computed over 20 simulations runs.
The error bars indicate the standard deviation of each optimality metric. In order to
obtain a metric that can be measured in %, we set the mean amount of processing time
per packet that SOSA achieves to 100%.

Fig. 5. Moving average of the IPS achieved by the CPUs managed by SOSA and
CoLeCTs during a simulation run for the first task mapping

Figure 6 illustrates the performance of SOSA and CoLeCTs regarding the
aforementioned optimality metrics when mapping twice the same task to the
same CPU core. As in the first scenario, CoLeCTs outperforms SOSA in five
metrics, while performing worse in one of them - the mean amount of system-
wide power constraint violations.

In this scenario core 2 processes the compute-intensive task CPUIntensive,
while the other cores process memory-intensive tasks. Since SOSA allocates the
same performance target to all CPU cores, core 2 processes at a slower rate
than it should, which again leads to the total IPS being far below the global
performance target, as shown in Fig. 7a. On the other hand, CoLeCTs allows
the CPU cores to tailor their processing rate to the workload of the assigned
tasks and cooperatively achieve the global target, as shown in Fig. 7b. Since
different tasks impose different processing workloads on the CPU cores, assign-
ing the same task to the same core leads to larger discrepancies in processing
workloads among the CPU cores. This results in a less optimal determination of
core-specific performance targets by SOSA than in the first task mapping. Con-
sequently, it is reasonable to expect that our resource manager delivers larger

226 K. Zyla et al.

performance improvements, which is confirmed by the simulation results. In the
second task mapping, by using CoLeCTs, the MPSoC drops no packets, processes
packets on average 95.77% faster and the queue fill levels are on average 23.32%
lower compared to SOSA. Moreover, our resource manager leads to 71.2% more
processed packets and 0.746% less core-specific power constraint violations, but
0.058% more system-wide power constraint violations.

Fig. 6. Performance of SOSA and CoLeCTs regarding six use-case-oriented optimality
metrics while mapping twice the same task to the same CPU core. The processing time
includes the queuing time. The mean values are computed over 20 simulations runs.
The error bars indicate the standard deviation of each optimality metric. In order to
obtain a metric that can be measured in %, we set the mean amount of processing time
per packet that SOSA achieves to 100%.

Fig. 7. Moving average of the IPS achieved by the CPUs managed by SOSA and
CoLeCTs during a simulation run for the second task mapping

In both scenarios the amount of processed packets and the amount of dropped
packets do not add up to 100% of all the injected packets because there are
still tasks in the queues when the simulation ends. Furthermore, the standard
deviation of SOSA and CoLeCTs over all simulation runs for each metric is
similarly low with a mean of 0.79% and 0.67% respectively.

6 Conclusion and Outlook

In this paper we propose CoLeCTs, a cooperation-enhanced resource manager
with a joint reward assignment function that addresses the challenges in SOSA.

CoLeCTs: Cooperative Learning Classifier Tables 227

In order to tackle the suboptimal allocation of low-level objectives to the CPU
cores, we translate the system goal into a system-wide performance target and
define no local performance targets. This design change allows the CPU cores
to tailor their processing rate to the workload of the assigned tasks. We also
introduce cooperation to the resource manager by employing a lightweight ver-
sion of immediate action notification that scales well. The simulation results
show that CoLeCTs is superior to SOSA in almost all optimality metrics, while
retaining key features of state-of-the-art resource managers - robustness, model-
independence, scalability and reproducibility.

Future work could address the implementation and evaluation of our resource
manager on an FPGA to confirm the simulation results. Moreover, one could
extend the existing system with other types of actions, such as task migra-
tion. In this context, a promising idea is to apply multi-step RL to consider the
long-term influence of the applied actions. An interesting research area is the
investigation of model-based RL algorithms, which could increase the optimality
of the resource manager by allowing the agents to not just learn by trial and
error, but also to plan their actions depending on the running application.

Acknowledgement. We thank our IPF project partners at TU Braunschweig and UC
Irvine, Rolf Ernst, Fadi Kurdahi, Nikil Dutt and their teams, as well as our colleagues
at TUM for their valuable feedback and suggestions during our discussions.

References

1. Askarizade Haghighi, M., Maeen, M., Haghparast, M.: An energy-efficient dynamic
resource management approach based on clustering and meta-heuristic algorithms
in cloud computing IaaS platforms. Wirel. Pers. Commun. 104(4), 1367–1391
(2019)

2. Beckmann, N., Sanchez, D.: Maximizing cache performance under uncertainty. In:
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 109–120. IEEE (2017)

3. Cobham Gaisler AB: GRLIB IP Library User’s Manual (2022). https://www.
gaisler.com/products/grlib/grlib.pdf, version 2022.2

4. Costero, L., Iranfar, A., Zapater, M., Igual, F.D., Olcoz, K., Atienza, D.: MAMUT:
multi-agent reinforcement learning for efficient real-time multi-user video transcod-
ing. In: 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 558–563. IEEE (2019)

5. Costero, L., Iranfar, A., Zapater, M., Igual, F.D., Olcoz, K., Atienza, D.: Resource
management for power-constrained HEVC transcoding using reinforcement learn-
ing. IEEE Trans. Parallel Distrib. Syst. 31(12), 2834–2850 (2020)

6. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control
52(5), 852–862 (2007)

7. Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T.F., Bianchini, R.: CoScale:
coordinating CPU and memory system DVFS in server systems. In: 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 143–154.
IEEE (2012)

https://www.gaisler.com/products/grlib/grlib.pdf
https://www.gaisler.com/products/grlib/grlib.pdf

228 K. Zyla et al.

8. Donyanavard, B., et al.: SOSA: self-optimizing learning with self-adaptive control
for hierarchical system-on-chip management. In: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 685–698 (2019)

9. Donyanavard, B., Mück, T., Sarma, S., Dutt, N.: SPARTA: runtime task allocation
for energy efficient heterogeneous manycores. In: 2016 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 1–10.
IEEE (2016)

10. Dutt, N., Kurdahi, F.J., Ernst, R., Herkersdorf, A.: Conquering MPSoC complexity
with principles of a self-aware information processing factory. In: Proceedings of
the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pp. 1–4 (2016)

11. Gupta, U., et al.: Adaptive performance prediction for integrated GPUs. In: 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.
1–8. ACM (2016)

12. Kim, W., Gupta, M.S., Wei, G.Y., Brooks, D.: System level analysis of fast, per-core
DVFS using on-chip switching regulators. In: 2008 IEEE 14th International Sym-
posium on High Performance Computer Architecture, pp. 123–134. IEEE (2008)

13. Kim, Y.G., Wu, C.J.: Autoscale: energy efficiency optimization for stochastic edge
inference using reinforcement learning. In: 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pp. 1082–1096. IEEE (2020)

14. LLVM: LLVM “test-suite” repository (2022). https://github.com/llvm/llvm-test-
suite/tree/main/SingleSource/Benchmarks/Stanford

15. Ma, Y., Zhou, J., Chantem, T., Dick, R.P., Wang, S., Hu, X.S.: Online resource
management for improving reliability of real-time systems on “Big-Little” type
MPSoCs. IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst. 39(1), 88–
100 (2018)

16. Maity, B., Donyanavard, B., Dutt, N.: Self-aware memory management for emerg-
ing energy-efficient architectures. In: 2020 11th International Green and Sustain-
able Computing Workshops (IGSC), pp. 1–8. IEEE (2020)

17. Maurer, F., Donyanavard, B., Rahmani, A.M., Dutt, N., Herkersdorf, A.: Emergent
control of MPSoC operation by a hierarchical supervisor/reinforcement learning
approach. In: 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1562–1567. IEEE (2020)

18. del Mestre Martins, A.L., da Silva, A.H.L., Rahmani, A.M., Dutt, N., Moraes,
F.G.: Hierarchical adaptive multi-objective resource management for many-core
systems. J. Syst. Architect. 97, 416–427 (2019)

19. Mishra, N., Imes, C., Lafferty, J.D., Hoffmann, H.: CALOREE: learning control for
predictable latency and low energy. ACM SIGPLAN Not. 53(2), 184–198 (2018)

20. Moazzemi, K., Maity, B., Yi, S., Rahmani, A.M., Dutt, N.: HESSLE-FREE: hetero-
geneous systems leveraging fuzzy control for runtime resource management. ACM
Trans. Embed. Comput. Syst. (TECS) 18(5s), 1–19 (2019)

21. Mück, T., Donyanavard, B., Moazzemi, K., Rahmani, A.M., Jantsch, A., Dutt,
N.: Design methodology for responsive and robust MIMO control of heterogeneous
multicores. IEEE Trans. Multi-Scale Comput. Syst. 4(4), 944–951 (2018)

22. Pal, S., Amarnath, A., Feng, S., O’Boyle, M., Dreslinski, R., Dubach, C.:
SparseAdapt: runtime control for sparse linear algebra on a reconfigurable acceler-
ator. In: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-54, pp. 1005–1021 (2021)

23. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton.
Agent Multi-Agent Syst. 11(3), 387–434 (2005)

https://github.com/llvm/llvm-test-suite/tree/main/SingleSource/Benchmarks/Stanford
https://github.com/llvm/llvm-test-suite/tree/main/SingleSource/Benchmarks/Stanford

CoLeCTs: Cooperative Learning Classifier Tables 229

24. Pothukuchi, R.P., Ansari, A., Voulgaris, P., Torrellas, J.: Using multiple input,
multiple output formal control to maximize resource efficiency in architectures. In:
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architec-
ture (ISCA), pp. 658–670. IEEE (2016)

25. Pothukuchi, R.P., Pothukuchi, S.Y., Voulgaris, P., Torrellas, J.: Yukta: multilayer
resource controllers to maximize efficiency. In: 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA), pp. 505–518. IEEE (2018)

26. Rahmani, A.M., et al.: SPECTR: formal supervisory control and coordination for
many-core systems resource management. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 169–183 (2018)

27. Rahmani, A.M., Haghbayan, M.H., Miele, A., Liljeberg, P., Jantsch, A., Tenhunen,
H.: Reliability-aware runtime power management for many-core systems in the dark
silicon era. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 25(2), 427–440
(2016)

28. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. IEEE
77(1), 81–98 (1989)

29. da Rosa, T.R., Larréa, V., Calazans, N., Moraes, F.G.: Power consumption reduc-
tion in MPSoCs through DFS. In: 2012 25th Symposium on Integrated Circuits
and Systems Design (SBCCI), pp. 1–6. IEEE (2012)

30. Sadighi, A., et al.: Design methodologies for enabling self-awareness in autonomous
systems. In: 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1532–1537. IEEE (2018)

31. Tan, M.: Multi-agent reinforcement learning: independent vs. cooperative agents.
In: Proceedings of the Tenth International Conference on Machine Learning, pp.
330–337 (1993)

32. Xun, L., Tran-Thanh, L., Al-Hashimi, B.M., Merrett, G.V.: Optimising resource
management for embedded machine learning. In: 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pp. 1556–1561. IEEE (2020)

33. Zeppenfeld, J., Herkersdorf, A.: Applying autonomic principles for workload man-
agement in multi-core systems on chip. In: Proceedings of the 8th ACM Interna-
tional Conference on Autonomic Computing, pp. 3–10 (2011)

Hardware Acceleration

Improved Condition Handling in CGRAs
with Complex Loop Support

Ramon Wirsch(B) and Christian Hochberger

Computer Systems Group, Technische Universität Darmstadt,
Merckstr. 25, 64283 Darmstadt, Germany

{wirsch,hochberger}@rs.tu-darmstadt.de

Abstract. Coarse Grained Reconfigurable Arrays (CGRA) have
become a popular technology to realize compute accelerators. CGRAs
can be found in High-Performance systems and also in embedded sys-
tems. In order to provide the highest speedup, they need to support
conditional statements and nested loops. This requires a management of
conditions within the CGRA. This management can be done in different
ways. In this contribution, we compare two such concepts and evaluate
the impact that these concepts have on the achievable clock frequency,
the required resources and the change of schedules. It turns out, that
with our new condition management and the accompanying advanced
schedule, we can save more than 20% of runtime.

Keywords: CGRA · Scheduling · Compute Accelerator · Nested
Loops

1 Introduction and Motivation

Coarse Grained Reconfigurable Arrays (CGRA) have become a wide spread tech-
nology to speed up applications. The part of the application that is mapped to
the CGRA is called kernel. CGRAs contain an array of processing elements
(PE) that work in parallel and can exchange data with neighboring PEs. The
exact definition of neighbors can be very different depending on the nature
of the CGRA. Typically, CGRAs are also able to access the main memory
autonomously (either through address generators/memory access units or by
including caches in some PEs). Control of PEs can either be centralized (provid-
ing context numbers/addresses to the PEs) or it can be realized distributed as
a kind of program in the PEs. Most CGRAs allow switching the context from
cycle to cycle and thus enable larger kernels. Few CGRAs limit the execution to
a single context, such that all computations must be spatialy distributed.

Since CGRAs execute the kernels in parallel, there are some natural competi-
tors: Superscalar and VLIW processors. In contrast to superscalar processors,
CGRAs offer more flexibility to control the operations that are executed in par-
allel. At the same time, they are more efficient than VLIW processors, as no
central bottleneck like a single register file is present.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 233–247, 2023.
https://doi.org/10.1007/978-3-031-42785-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_16&domain=pdf
http://orcid.org/0009-0001-5202-4296
http://orcid.org/0000-0001-5516-7826
https://doi.org/10.1007/978-3-031-42785-5_16

234 R. Wirsch and C. Hochberger

We believe that the most efficient type of CGRA allows the mapping of
nested loops and also allows control flow in the loop body. Thus, conditions for
these decisions must be computed, aggregated and stored. To this end, different
concepts in the CGRAs can be found.

In this contribution, we compare two such concepts for condition management
with each other. We evaluate the impact on the clock frequency, the consequences
they have on scheduling and the overall impact on whole kernels.

The paper is structured as follows. Section 2 presents how conditional code
and loops are handled by various types of CGRAs. Two alternative concepts for
handling conditions are described and compared in Sect. 3. These two concepts
are then evaluated in Sect. 4. Ultimately, we give a conclusion and outlook onto
future work in Sect. 5.

2 Related Work

Some CGRAs, like [1,9] forgo any conditional execution or control flow on PEs
entirely. DySER [4,5] as CGRA architecture is similar to our CGRA in terms of
the spatial operating principles and its ability to predicate single operations, so
that multiple alternative branches of sequential code can be scheduled in paral-
lel. Since DySER targets being an “in-core” accelerator, it can rely on the host
processor for handling loops and control flow. The accelerator itself can only
handle predicating operations as a form of speculatively executing all branches
in parallel and only using the correct result further. It only maps the contents
of excerpts of loops onto the architecture. It does not need the temporal con-
figuration that lets the CGRA execute different operations over time. ADRES
[7,8] also only handles loops and complex logic by virtue of being the part of a
VLIW processor with a shared register file.

HiPREP [6] has PEs more akin to RISC cores. They can operate quite inde-
pendently, using their own register file and instruction/context memory. Each
PE can handle its own control flow and operate completely independently of
others. The architecture includes synchronization mechanisms to let diverging
PEs cooperate with another. Memory accesses are handled by separate Address-
Generator-Units. While our PEs can also be configured with enough internal
operand ports to execute operations autonomously, without the input from
neighbors and theoretically have the hardware for diverging control flow, they
lack synchronization facilities. The CGRA is intended to operate in lock-step,
with the scheduler assigning each PE actions for a shared timestep. Conditions
are thus handled centrally and distributed to all PEs from there. The hardware’s
ability to have diverging control flow on each PE is only used to compress idle
steps. A single PE can idle without this taking up an explicit NOP context, but
it will still remain in lock-step with all other PEs. Other than that, our context
memories have a lot more entries to contain larger kernels encompassing many
loops and entire loop-hierarchies. Memory accesses are handled from within the
CGRA. The addresses are calculated using the regular integer operations and
used by a subset of PEs that have additional access to their own cache or memory
port.

Improved Condition Handling in CGRAs with Complex Loop Support 235

CGRA-ME [2,3] has a similar integration with a host-processor to us. It also
requires predication as means to replace control flow in the schedulers input
representation. While CGRA-ME supports temporal configuration with differ-
ent contexts over time, it does not support any control flow in regard to those
different contexts and can therefore not map complex loop structures.

Previously mentioned architectures share that they are designed for static
generation of kernels. A kernel’s scope is either determined manually or chosen
without knowledge of their dynamic behavior. On the other hand, this approach
typically provides more type information and can be integrated into existing
compilers and reuse existing vectorization methods. The time to map and gen-
erate binary contexts for the target CGRA is much less relevant and a more
optimal scheduling approach can be used.

AMIDAR-CGRA [12,13] takes a very different approach to generating ker-
nels. It was designed for dynamic binary translation, integrated into the AMI-
DAR processor. Kernels are to be generated only from the binary instructions
the host processor would normally execute. This motivates changes to the CGRA
architecture. A quicker and more simple mapping to the target CGRA is impor-
tant, as kernels are only discovered at runtime and all translation efforts take
away processing power from the host processor, much like Just-In-Time opti-
mization popularized by Java Virtual Machines. The PE architecture is geared
towards temporal configuration of longer kernels spanning hundreds of contexts
with support for very regular nested loops as they can occur in standard Java
Byte Code. Like most CGRAs if-else constructs are still represented using pred-
ication, branching support is only present to the extend needed to map regular
do-while loops. Our CGRA is based on this original work, but our goal to develop
a host-architecture-agnostic CGRA [11], requires it to be more flexible in han-
dling loop control flow and conditions. Modern, optimizing compilers, such as
GCC and LLVM will output code that does not hold to the simplistic loop
structures present in Java Byte Code.

3 Condition Handling in CGRAs

Figure 1 shows the general structure of the CGRA HW, based on [13] and [12].
Each PE by default has its own context unit that has an individual context
counter (i.e. active context). This is done to localize storage and to allow com-
pressing idle contexts. If a single PE will idle multiple timesteps, those contexts
do not to take up a full context each, but can be combined into an idle count that
is stored with the last active context. The context units are generic and multiple
PEs could easily share one, if idle compression is not desired or both PEs tend
to idle at the same time. While technically, each PE could operate relatively
independently, the CGRA is missing synchronization mechanisms for diverging
PEs and schedules all PEs in lockstep. Our PEs themselves support predicated
execution of operations while the context units support relative jumps and con-
ditional branches. The hardware could reproduce arbitrary, direct control flow,
just no indirect control flow.

236 R. Wirsch and C. Hochberger

Fig. 1. Shows condition facilities, PEs of a CGRA that can achieve predication of
operations and arbitrary control flow capable of nested loop structures

3.1 CBox

Previous work used a centralized, so-called Condition Box, CBox in short, for all
handling of conditions and supplying predication signals to PEs and the context
units. The CBox collects all results of comparisons from all PEs. It contains a
1-bit wide register file of configurable size to store conditions, integrates logic
operations such as AND, OR and NOT. It also has one or more predicate out-
puts that can be used to predicate branches to different contexts or as operation
inputs to predicate/influence single operations on the various PEs. Internally,
the CBox consists of multiple EvalBlocks, shown in Fig. 2 that each contain the
logic operations, access to all inputs and producing one regular predicate, but
share the same register file. The gate structure of the EvalBlock was originally
designed to handle the kinds of operations that occur in Java Byte Code. Due to
the short-circuiting behavior of the code, arbitrary combinations of operations
cannot occur as a single operation. In Byte Code they will always be split by
branches and thus essentially form a hierarchy of nested if-operations. The Eval-
Block structure is very efficient at handling those. It can take condition logic
stemming from nested if-operations and compute the conditions needed for the
if- and else-cases in the same timestep as the underlying comparison operation
computes its result. Our CGRA is however no longer constrained to Java Byte
Code. In optimized assembly code, logic operations can get more complicated,
which requires replicated comparisons in order to still be mappable to the Eval-

Improved Condition Handling in CGRAs with Complex Loop Support 237

Fig. 2. Shows internals of CBox/one EvalBlock. In both combinatorial branch predica-
tion and buffered branch predication variants

Block. Memory address aliasing checks also consist of a more complex tree of
logic operations that would map perfectly to the parallel PEs of a CGRA and are
penalized heavily by needing to find a sequential order of the comparisons. The
existing EvalBlock implementation can never and-combine two arbitrary condi-
tions. One of the inputs needs to be precomputed and already stored, while the
other input must be newly produced by a comparison that finishes in the same
timestep.

The limited ability to supply predicates to PEs of only 1 per EvalBlock
was already observed [11] to pose a bottleneck for larger CGRAs, where ideally
operations from both if- and else-branch will execute simultaneously, requiring
more than one predicate in the same timestep. Simply increasing the count of
EvalBlocks, as intended by the original designer does not scale well, as each
EvalBlock already requires 2 write ports and at least 3 read ports of the shared
register file. Such a register file is not efficiently mappable to common FPGAs,
which are used for prototyping.

The original CBox was designed with both, the combinatorial and buffered
branch predicate, but the buffered predicate was not used by the scheduling,
since the input format into the schedule was not designed for it and this always
incurred one unnecessary timestep penalty for every branch operation.

238 R. Wirsch and C. Hochberger

Fig. 3. Shows internals of a CondPE

3.2 CondPE Hardware

To overcome the previously described limitations of the CBox, we propose a new
structure for implementing the condition facilities of our CGRA as a replace-
ment. The new implementation is based on the main principles of the PEs and
are thus named ConditionPEs or CondPE in short, as opposed to the tradi-
tional DataPEs. The proposed replacement shown in Fig. 3 still fits the overall
structure shown in Fig. 1. It requires only changes internal to the handling and
scheduling of conditions. A single CondPE is intended to be a replacement for
a CBox with a single EvalBlock. More CondPEs can be added to the CGRA
as needed. Each CondPE will have its own register file and will be part of a
“condition-interconnect” much like the DataPEs are. This may require routing
of conditions from one CondPE to another, like is already required for DataPEs,
that often require their neighbors to supply operands. Consequently, our schedul-
ing approach already supports routing of any irregular interconnect where every
PE is reachable from every other unit by some number of routing hops. Fur-
thermore, we designed the CondPE to be paired with a commonly available and
optimized 3-read-1-write register file. We swap the specialized structure of the
EvalBlock with a generic condition logic unit that can forward, and-combine and
or-combine any 2 operands, each of which can either be supplied from the inter-
nal register file, a neighboring CondPE or a DataPEs comparison result. Each
operand can also be inverted independently of the other. Since more registers
can be added by adding more CondPEs, we also fix the register file size to 64
entries, which is efficiently mapped to the distributed memory modern Xilinx
FPGAs support. Because all supported logic operations are actually commuta-
tive, the operand multiplexers do not each need to have every comparison result
from every DataPE or every predicate output from every neighboring CondPE
available. We instead distribute those inputs from external sources evenly across
the two operands to reduce the size of those MUXs. The scheduler will need to

Improved Condition Handling in CGRAs with Complex Loop Support 239

swap operands during scheduling in order to map every combination of locally
stored condition with every newly produced comparison result. The new hard-
ware allows many actions, the previous one was not capable of. Combinatorially
available comparison results from DataPEs can now be stored directly and pro-
cessed further at a later time. There are no intermediary results that cannot be
stored in the register file when a combination of logic operations is required. Both
where found to be big limitations in previous work. Two separate comparisons
can even be combined combinatorially in the same timestep, if the comparisons
are bound to DataPEs in a way where they arrive via separate operands.

The CondPEs allow a more distributed architecture which also enables new
kinds of CGRA compositions. CondPEs could be localized to only a partition
of DataPEs. Each partition could execute independently of others, as long as
at least a single CondPE is present in the partition. This partitioning concept
could be evaluated in future work, but is of no immediate concern for this work,
as the current scheduling approach cannot fully utilize CGRAs large enough,
that partitioning would make a meaningful difference. This work targets a sin-
gle CGRA partition, where every CondPE has access to all comparison results
combinatorially, with 1-hop routing/full interconnect between all CondPEs and
where every DataPE has access to all predicates of all CondPEs.

3.3 Scheduler Application Representation - SCAR

Fig. 4. CBox SCAR Format and scheduling

Kernels are first expressed as conventional Control Flow Graphs (CFGs), which
can be optimized and are then converted into the data-flow-centric Sched-
uler Application Representation (SCAR) format. Even though the hardware is

240 R. Wirsch and C. Hochberger

already capable of arbitrary direct control flow, the current SCAR format cannot
express branches explicitly. Rather it groups operations / nodes into loops, which
will start at the top and name a single “loop-controller” to be the decider whether
to exit the loop or continue until the bottom of the loop and jump back to the
beginning for the next iteration. The loop-controller represents the computation
of the loop-condition as well as the point in time when the branch exiting the
loop would be placed. This structure is shown in Fig. 4a and can be arbitrarily
nested to represent any regular loop structure. If-else constructs are currently
all mapped to predicated execution. The hardware’s branch-capabilities are still
only used for loops and switching between different kernel variants (assuming
aliasing-free memory accesses or total store order).

Figure 4a also shows how the previous hardware was paired with scheduler
input that directly and explicitly expressed the original CBox operations. The
loop-controller “>=” node maps exactly to what a single EvalBlock can accom-
plish in a single timestep. The two or-operations the EvalBlock can also execute
simultaneously are not depicted in the example, but would also be represented
by the same comparison node. Besides being difficult to read, the approach to
handle loop-conditions and points of control flow as one causes inefficiencies. In
most loops, there are operations with side effects that must either finish before
control flow leaving the loop or are only valid after a loop-exit was not taken
(which implies condition-outcome that the old SCAR cannot otherwise express
with loop conditions). While the addition of a buffered branch improved the
critical path of the hardware considerably, it caused the loop control flow oper-
ations to be effectively one step longer, prolonging this mostly sequential point
in the schedule. An example is shown in Fig. 4b. Should the same comparison
be needed in combination with multiple and- and or-operations, the comparison
needs to be replicated in its totality.

While the CBox can realize any hierarchy of if-else statements including
short-circuiting, as Java Byte Code is guaranteed to contain it, the current
iteration of the CGRA and toolchain need to work for any input-architecture.
Consequently the SCAR graph is built from control flow graphs, optimized with
common compiler techniques, which means Static Single-Assignment (SSA) form
that contains phi operations. The conditions needed to select the correct phi-
input differ and can be more complex than those of simple if-else constructs and
were problematic to map to the old format. If at all possible, it often included
replicating a lot of comparisons.

The new Condition SCAR format (Fig. 5a) on the other hand is much more
generic. It can express arbitrary conditions with full reuse of already computed
comparisons. It allows to express range checks, commonly needed in unrolled
loops or for memory overlapping checks, as efficient, balanced binary trees. The
cost of this change is that a chain of conditions that was mappable to the CBox
will take more time steps to compute. Figure 5b shows, why this is often not
a limitation in practice. Loop variables and conditions needed for control flow
decisions are often available much earlier than the side effects complete. They
can simply be spread throughout a loop without causing any schedule length

Improved Condition Handling in CGRAs with Complex Loop Support 241

increases. Complicated and error-prone logic optimizations during the creation
of SCAR could be dropped, as the new format can express any combination of
conditions. Operations that previously were only valid after the loop-exit branch
can now be simply predicated, giving the scheduler more choices in ordering those
nodes. Had enough resources been free, the predicated operation from Fig. 5b
could even have been scheduled before the exiting branch.

Lastly, the Java-style branch-to-exit, jump-to-iterate behavior shown in
Fig. 4a can be replaced with a single do-while branch. Most compilers will seek
to reorder assembly code into this form to save an additional instruction. This
was already the case in our CFG representations, but can only now be expressed
in SCAR and used by the scheduler. Multiple exit-points per loop are now also
supported by the scheduler. While this lays the groundwork for expressing if-else
constructs as well, deciding between branching and simply predicating alterna-
tive paths is difficult. Due to the lockstep nature of the CGRA it is difficult
to overlap branches and already ongoing operations efficiently at low scheduling
overhead.

Fig. 5. Condition SCAR Format and scheduling

3.4 Scheduler Improvements

The old format required to make static decisions on the order of comparisons
that are and- or or-combined. The new scheduler can make this decision during
scheduling and potentially fuse the logic-operation into the same timestep as
the operand that was produced last. This feature is used in Fig. 5b to sched-
ule the and-operation into the same timestep as the comparison. Without it,
the comparison-result would be stored unaltered, to be processed in another
timestep. The scheduler was extended with multiple of such fusing optimiza-
tions that depend on the actual scheduling order and resource availability. It is
also capable of scheduling multiple logic operations in the same timestep as a

242 R. Wirsch and C. Hochberger

shared comparison input. Due to the ability to quickly invert CondPE inputs, the
scheduler can even decide to store some intermediary conditions in inverted form
from SCAR at very low overhead. With this newly added fusing support, it was
also possible to extend the scheduler to also support scheduling for CBox hard-
ware with buffered branches from the new format. While a successful mapping
cannot be guaranteed, as the CBox only supports chains and not arbitrary trees
of logic, it can be made to work for most benchmarks with only slight changes to
the SCAR graph and helps avoiding the wasted timesteps for buffered branches,
that made this CBox variant previously uninteresting for scheduling.

4 Evaluation

4.1 HW Synthesis

Our efforts focus on implementing the CGRA on Xilinx Virtex-7-485 and Artix-
7-200 FPGAs. The much simpler structure of the CondPE internals, especially
the register file is expected to have reduced resource usage, yet still achieve higher
clock rates than a CBox. Both, 2 CondPEs and a CBox with 2 EvalBlocks and
buffered branch predicate are synthesized as standalone projects. Both have 16
comparison inputs. The CBox provides 2 operand predicates and a branch pred-
icate and contains 64 registers, while the CondPEs provide 4 operand predicates
in total, the first of which is also used as branch predicate. Since CondPEs
contain 64 condition registers each, they provide twice the storage as the CBox.

Table 1. Synthesis results for CondPE vs. CBox on xc7vx485 with 16 comparison
inputs & context units

Condition Unit Frequency LUTs DMEM FFs Context Width
Total Logic BlockRAMs Bits

2x CondPE
2x Context Units

201 MHz 206 194 12 38 2x6.5 2x 57 Bit

2x EvalBlocks
1x Context Unit

168 MHz 1026 1026 0 83 12 106 Bit

The Tables 1 and 2 show that the CondPEs are synthesizable at higher fre-
quencies and save a significant amount of logic resources while providing more
registers and predicates. LUTs for a single CondPE cannot be given exactly, as
the synthesis optimizes across module boundaries. Because the context is deliv-
ered combinatorially between the context unit and PEs, these optimizations are
desirable. CondPEs require orders of magnitude less LUTs than the CBox with
its 4 write-port, 7 read-port register file, which is on the critical path. Analysis
of the paths reading from the register files show that the CondPEs can deliver
register file outputs about 1ns faster than the CBox. Solely the context con-
sumption increases, but this is due to effects outside of the CondPE itself. By

Improved Condition Handling in CGRAs with Complex Loop Support 243

Table 2. Synthesis results for CondPE vs. CBox on xc7a200 with 16 comparison inputs
& context units

Condition Unit Frequency LUTs DMEM FFs Context Width
Total Logic BlockRAMs Bits

2x CondPE 2x
Context Units

117 MHz 241 229 12 38 2x6 2x 57 Bit

2x EvalBlocks 1x
Context Unit

101 MHz 1128 1128 0 83 12 106 Bit

default every PE has its own context unit that each consumes 20 Bits of con-
text for its internal branching and compression logic. The remaining context is
less than what the CBox requires. The context unit could be shared to save an
additional 20 Bits of context width. This is not further evaluated, as the result-
ing difference in BlockRAMs is negligable. The synthesis found some solutions
with identical amount of BlockRAMs and others using more. The critical paths
up until the outputs of the context units are identical in either case, for CBox
and CondPE. Targeting the smaller Artix-7 FPGA shows similar results, with
just slightly higher LUT usage and reduced frequencies. The relative difference
between CondPE and CBox remains similar.

Table 3. Achieved frequencies for whole 4x4 CGRAs, with homogenous Int&FP oper-
ations or just basic integer operations and only 2 division units

Config. Target FPGA Frequency Crit. Path

hom., 1 CondPE xc7vx485 125.5 MHz data ops
hom., 2 CondPE xc7vx485 125.6 MHz data ops
hom., 1 EvalBlock, comb. xc7vx485 107 MHz comb. branch
hom., 1 EvalBlock, buf. xc7vx485 123.6 MHz data ops
hom., 2 EvalBlock, comb. xc7vx485 110.3 MHz comb. branch
hom., 2 EvalBlock, buf. xc7vx485 123.9 MHz buf. branch, data ops
het. int., 2 CondPE xc7a200 91.1 MHz data ops
het. int., 2 EvalBlock, buf. xc7a200 87.8 MHz buf. branch

When synthesizing a whole CGRA, Table 3 shows that the CondPE never
limits the maximum frequency, while the combinatorially branching CBox is a
strong limitation. The DataPE operators currently prevent the CondPE hard-
ware from showcasing its full frequency potential. Large CGRAs with many
operators per DataPE may in the worst case achieve ±1MHz of the CBox imple-
mentation. A few operations could already be slightly optimized to achieve the
advantages for the CondPE shown in the table.

244 R. Wirsch and C. Hochberger

Fig. 6. PE configuration of evaluated CGRA

4.2 Scheduling

We compare three different main versions. The original CGRA hardware, includ-
ing a CBox, scheduled from the original CBox SCAR. Then CBox with buffered
branching, scheduled from the new Condition SCAR. This version also includes
the improved scheduling of phi instructions, now that the conditions this requires
can be safely expressed in SCAR. Lastly, the CBox is replaced with CondPEs on
top of using Condition SCAR. All benchmarks target a two-dimensional grid-
based 4x4 CGRA with matrix-star interconnect, shown in Fig. 6. All configu-
rations support all arithmetic operations (standard integer and single precision
float operations) homogeneously and have 2 PEs with memory access.

To evaluate the scheduling, the PolyBench Benchmark suite [10] with mini
datasets is used, similar to [11]. PolyBench provides a collection of kernels that
can be compiled for various platforms without code changes, do not use File-IO
and has one kernel per program, which makes it easy to check, whether a pro-
gram could be mapped, even when selecting kernels automatically. Benchmarks
were compiled for RISC-V with -Og and -O3 compiler options, resulting 2x 28
benchmarks. The deriche and jacobi-1D benchmarks are excluded, because they
contain the RISC-V FCLASS.S operation, which is still unsupported by the
toolchain or require soft-float double precision math. Only the intended kernel
of each benchmark is captured in CFG form, unrolled, otherwise optimized and
scheduled for the CGRA. The resulting schedules can then be simulated. The
trmm and gramschmidt benchmarks compiled with -O3 cannot be mapped to
the CGRA, because they contain irregular loop structures, that are not currently
supported by either the SCAR format or the scheduler. The CGRA hardware
itself could theoretically handle them, thanks to full direct branching support
Though they would likely not result in good utilization, as it is also not possible
to unroll and thereby increase the parallelism of irregular loops with the current
suite of CFG optimizations.

The simulated behavior of the CGRA itself is accurate, only cache- &
memory-latencies are not accurately simulated. The scheduling behavior with
regard to memory operation binding and scheduling is identical over all three
compared variants, so this does not influence results.

Improved Condition Handling in CGRAs with Complex Loop Support 245

Table 4. Scheduling & Simulation results of PolybenchSuite

Condition Facility SCAR geo.mean sched. length geo.mean cycles

CBox, 1 Block, comb. branch old/CBox 207.5 221576.8

CBox, 1 Block, buf. branch old/CBox 211.6 224975.7

CBox, 1 Block, buf. branch new/Condition 195.2 211231.7

CBox, 2 Block, buf. branch new/Condition 191.3 209918.5

1 CondPE new/Condition 192.1 207954.6

2 CondPE new/Condition 188.8 208007.3

Table 4 shows, that the biggest overall improvement is afforded by the switch
to the new SCAR format, because it enabled more efficient representations of phi
instructions and the required condition logic. The fact that the CBox hardware
cannot map all possible combinations of boolean logic, whereas the CondPE
can, does not come into play in any of the benchmarks. Increasing EvalBlocks
or CondPE count increases the amount of predicates that can be delivered in
the same timestep. Predicate-limited benchmarks can benefit greatly, but still
inefficient binding causes routing overhead between CondPEs which can make
the schedule longer at critical points, while overall still reducing its length.

EvalBlocks suffer no similar disadvantages in scheduling, because they share
a register file and require no routing. These inefficiencies for CondPEs can be
improved with better binding, while there are no such options for the CBox.

Fig. 7. Relative speedup simulated of cycles of new variants over baseline for each
benchmark

Figure 7 shows that the majority of benchmarks benefit from the new format
as well as CondPEs. Scheduling results are noisy, because only simple heuristics
are used to guide binding. When multiple choices remain, the scheduler uses a
pseudo-randomizer to spread out utilization. This can mostly lead to binding
multiple variables to the same PE, which prevents parallel access later in the
schedule. With smaller speedups, this noise can dominate runtime differences.

Og benchmarks often have a simple while-structure, which forces early eval-
uation of conditions. This simultaneously benefits the new format, that can

246 R. Wirsch and C. Hochberger

express conditions more efficiently, but is a disadvantage for CondPEs, as they
take longer to compute complex conditions and can not use their superior imple-
mentation of do-while control flow. Optimizing nested conditions in SCAR could
alleviate at least some of the compute-overhead.

4.3 Combined Evaluation

Table 5. Geom. mean of projected runtimes at respective max. frequency achieved by
matching hardware on xc7vx485 (as shown in Table 3)

Condition Facility SCAR geom. mean runtime on HW (ms)

CBox, 1 Block, comb. branch old/CBox 2.071

CBox, 1 Block, buf. branch old/CBox 1.820

CBox, 1 Block, buf. branch new/Condition 1.709

CBox, 2 Block, buf. branch new/Condition 1.694

1 CondPE new/Condition 1.657

2 CondPE new/Condition 1.656

The change in clock frequency and the change in scheduling can be combined.
Table 5 shows the geom. mean of schedule runtimes scaled by the frequency
the matching hardware can achieve. Taking into account the increases in clock
frequency the CondPE configurations achieve, they can extend their overall lead
over other configurations. We achieve a reduction of 20% from 2.071 ms down
to 1.656 ms over all benchmarks.

5 Conclusion

In this contribution, we have analyzed the impact that different types of condi-
tion handling have on the performance of a CGRA. Such condition handling is
required, if the CGRA shall be able to execute conditional code sequences or it
is even more required, if the CGRA should be able to execute (nested) loops.
We have shown that a distributed management of conditions in specialized Con-
dition PEs can achieve higher clock frequencies as a centralized approach. At
the same time, the distributed approach is more efficient in terms of resources.
Also, this change can have a positive effect on the scheduling of applications.
In total, the improvement from previously existing solution to our improved
solution combining the better hardware with the better scheduling reduces the
execution time by up to 20%. Since we already know how to improve some parts
of our new scheduling, we believe that higher reductions are possible.

5.1 Outlook

We plan to investigate other uses of the benefits of the CondPE hardware. Since
the predicate outputs now have more slack, but do not benefit the achievable

Improved Condition Handling in CGRAs with Complex Loop Support 247

frequencies of the whole CGRA much, options, such as on-the-fly inversion of
predicates should be investigated. This could further reduce the amount of logic
operations that take up a timestep and would also allow the scheduler to place
branches to jump over operations that currently would just be predicated, but
still take up valuable timesteps. Introducing such short-circuit branches, when
multiple alternative chains of data operations are scheduled in parallel, requires
the scheduler to dynamically obtain predicates depending on which path finishes
earlier than the other. The ability to invert already existing predicates as needed,
without additional hardware usage, could close this gap at low overhead for
scheduler and achievable frequency.

References

1. Adhi, B., Cortes, C., et al.: Exploration framework for synthesizable CGRAs tar-
geting HPC: initial design and evaluation. In: IPDPSW, pp. 639–646 (2022)

2. Anderson, J., Beidas, R., Chacko, V., et al.: CGRA-ME: an open-source framework
for CGRA architecture and CAD research (invited). In: ASAP, pp. 156–162 (2021)

3. Chin, S.A., Sakamoto, N., Rui, A., Zhao, J., Kim, J.H., et al.: CGRA-ME: a unified
framework for CGRA modelling and exploration. In: ASAP, pp. 184–189 (2017)

4. Govindaraju, V., Nowatzki, T., et al.: Breaking SIMD shackles with an exposed
flexible microarchitecture and the access execute PDG. In: PACT, pp. 341–352
(2013)

5. Hoy, C.H., Govindarajuz, V., Nowatzki, T., Nagaraju, R., et al.: Performance eval-
uation of a DySER FPGA prototype system spanning the compiler, microarchi-
tecture, and hardware implementation. In: ISPASS, pp. 203–214 (2015)

6. Käsgen, P., Messelka, M., Weinhardt, M.: HiPReP: high-performance reconfig-
urable processor - architecture and compiler. In: FPL, pp. 380–381 (2021)

7. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: ADRES: an archi-
tecture with tightly coupled VLIW processor and coarse-grained reconfigurable
matrix. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol.
2778, pp. 61–70. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45234-8_7

8. Mei, B., Vernalde, S., et al.: Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling. In: DATE, p. 10296 (2003)

9. Podobas, A., Sano, K., Matsuoka, S.: A template-based framework for exploring
coarse-grained reconfigurable architectures. In: ASAP, pp. 1–8 (2020)

10. Pouchet, L.N.: Polybenchc-4.2.1 beta. https://github.com/MatthiasJReisinger/
PolyBenchC-4.2.1

11. Wirsch, R., Hochberger, C.: Towards transparent dynamic binary translation from
RISC-V to a CGRA. In: Hochberger, C., Bauer, L., Pionteck, T. (eds.) ARCS 2021.
LNCS, vol. 12800, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81682-7_8

12. Wolf, D., Engel, A., Ruschke, T., Koch, A., Hochberger, C.: UltraSynth: insights
of a CGRA integration into a control engineering environment. J. Signal Process.
Syst. 93(5), 463–479 (2021). https://doi.org/10.1007/s11265-021-01641-7

13. Wolf, D., Jung, L., Ruschke, T., Li, C., Hochberger, C.: AMIDAR project: lessons
learned in 15 years of researching adaptive processors. In: ReCoSoC, pp. 1–8 (2018)

https://doi.org/10.1007/978-3-540-45234-8_7
https://doi.org/10.1007/978-3-540-45234-8_7
https://github.com/MatthiasJReisinger/ PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/ PolyBenchC-4.2.1
https://doi.org/10.1007/978-3-030-81682-7_8
https://doi.org/10.1007/978-3-030-81682-7_8
https://doi.org/10.1007/s11265-021-01641-7

FPGA-Based Network-Attached
Accelerators – An Environmental Life

Cycle Perspective

Fritjof Steinert1,2 and Benno Stabernack1,2(B)

1 Fraunhofer for Telecommunications, Heinrich Hertz Institute (HHI),
Einsteinufer 37, 10587 Berlin, Germany

fritjof.steinert@hhi-extern.fraunhofer.de,
benno.stabernack@hhi.fraunhofer.de

2 Embedded Systems Architectures for Signalprocessing, University of Potsdam,
August-Bebel Straße 89, 14469 Potsdam, Germany

Abstract. Homogeneous computing systems are reaching their limits
with the growing demands of current applications. Accelerating compute-
intensive applications ensures manageable computing times and boosts
energy efficiency, which is an important lever as part of ongoing efforts to
tackle global climate change. Field Programmable Gate Array (FPGA)
accelerators are well-known for increasing throughput and, in particular,
energy efficiency for many applications. FPGA accelerators connected
directly to the data center high-speed network are ideal for integration
into a heterogeneous data center, avoiding the energy and resource over-
head of a carrier system. The standalone Network-attached Accelerators
(NAAs) further benefits from low latency and predictable line-rate net-
work throughput, as well as an interoperable communications interface.
For selected use cases, we compare a heterogeneous computing cluster
extended by NAAs with a homogeneous CPU-based cluster not only in
terms of computing performance and energy efficiency, but also consider-
ing resource efficiency. For this purpose, we perform a Life Cycle Assess-
ment (LCA) for both systems based on the Key Performance Indicators
for Data Center Efficiency (KPI4DCE) indicator set, which takes into
account the manufacturing phase in addition to the usage phase. The
KPI4DCE tool has been extended to include modeling of NAAs. This
allows us to show that NAAs are not only more energy-efficient, but also
more resource-efficient for the selected applications, leading to a strong
improvement of the environmental impact of the manufacturing phase.

Keywords: FPGA · Network-attached Accelerator · Data Center ·
Life Cycle Assessment · Reconfigurable Computing · Heterogeneous
Computing

This work is part of the NAAICE project, which is funded by the German Federal
Ministry of Education and Research under reference 16ME0624.
c© The Author(s) 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 248–263, 2023.
https://doi.org/10.1007/978-3-031-42785-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_17&domain=pdf
http://orcid.org/0000-0002-8733-3064
http://orcid.org/0000-0002-6654-1606
https://doi.org/10.1007/978-3-031-42785-5_17

FPGA-Based NAAs – An Environmental Life Cycle Perspective 249

1 Introduction

With ever-increasing compute requirements of applications such as Machine
Learning (ML), image and video processing (e.g. video transcoding for social
media), distributed databases and the like, the need for energy-efficient acceler-
ation in Data Centers (DCs) is growing. Classical processor-based architectures
are reaching their limits, especially after the end of Dennard scaling. Homo-
geneous computing systems are accompanied by Graphics Processing Units
(GPUs), Field Programmable Gate Arrays (FPGAs) and Application Specific
Instruction Processors (ASIPs) like a Tensor Processing Unit (TPU) to provide
the required processing capabilities in an energy-efficient manner. In this het-
erogeneous landscape, the challenge is to find the appropriate compute node for
a workload. Energy efficiency in the usage phase has become the most impor-
tant design parameter in this regard, as it helps lessen the enormous greenhouse
impact of global DCs. Although ASIPs are to be preferred for energy efficiency
and performance reasons, long development times and in particular the lack of
flexibility outside a specific domain are an obstacle to their deployment in DCs.

Escobar et al. conducted an extensive study to determine which application
groups are suitable for which kinds of accelerators and are consequently the most
efficient [6]. They distinguish 4 groups:

1. High arithmetic demand and relatively regular memory access patterns → on
GPU.

2. High arithmetic demand and irregular regular memory access patterns → on
FPGA.

3. Low arithmetic demand and sophisticated memory management → on multi-
core processors.

4. Low arithmetic demand and operators are mapped directly to hardware →
on FPGA.

While the study provides an initial guide to selecting an accelerator, it
does not consider the communication interface. Microbenchmarks indicate that
hardware-based network implementations offer line-rate throughput as well as
low variance and deterministic latencies, unlike typical software stacks [3,23].
The implementation of Network Interface Controller (NIC) directly in FPGA
also saves the communication detour via the host when the data is delivered via
network to the compute node. In a DC architecture with compute nodes and
storage nodes, this is always the case resulting in a latency reduction. Therefore,
network-coupled FPGAs are well suited e.g. for latency-critical tasks.

Connecting the FPGA directly to the DC network degrades the host to a
power-only enclosure. By using a standalone, network-attached FPGA acceler-
ator, called Network-attached Accelerator (NAA), as proposed in [20,24], the
baseline energy requirements of the system can be greatly reduced without sac-
rificing performance, thereby boosting the energy efficiency. NAAs are treated
as distinct and fully equal nodes in the DC.

However, in addition to the operational phase, the environmental aspects of
the manufacturing phase, transportation, installation, and disposal should also

250 F. Steinert and B. Stabernack

be included in a Life Cycle Assessment (LCA), as these phases can have a signif-
icant impact. Not just a single component (as one NAA), but the entire system
(whole DC) should be considered in order to exclude undesirable interactions. It
is evident that the NAA approach also performs well in the extensive environ-
mental analysis as the reduced number of components in an NAA architecture
decreases the impact of the manufacturing phase on the environmental footprint,
in tandem to energy consumption.

Our main contribution is to perform and evaluate an environmental life cycle
analysis for a heterogeneous cluster accelerated by standalone NAA nodes and
its comparison with a homogeneous CPU-based cluster.

The following paper is structured as follows: In Sect. 2, the background and
related work regarding an optimal NAA communication model, LCA for DCs
and NAA use cases is presented. Section 3 describes our FPGA hardware frame-
work for NAA, which incorporates one-sided Remote Direct Memory Access
(RDMA) communication. It also introduces a flexible and scalable energy mea-
surement system for DCs. A review of the environmental impacts over the com-
plete life cycle of an NAA cluster compared to a homogeneous cluster is con-
ducted in Sect. 4. Section 5 summarizes and gives an outlook on our future devel-
opments.

2 Related Work

2.1 Communication Model for Network-Attached Accelerators

In the past, high-speed interfaces were usually used for coupling the appropri-
ate accelerators, such as Peripheral Component Interconnect Express (PCIe).
For coupling in a multiprocessor configuration, even more tightly coupled pro-
cessor interfaces such as QuickPath Interconnect (QPI), which provide cache
coherence, have been used. Due to their high data rates, these interfaces allow
very close coupling with the program flow of the main process and are suited
for communication-bound compute problems. However, the decisive factor for
selecting an adequate compute accelerator is not only the question of the avail-
able bandwidth of the interfaces, but the speedup including the communication
time over the compute time on the host. It can be observed that there is a
class of computing problems that require only a small amount of data, and
thus a small bandwidth for actual communication, which very quickly become
compute-bound instead of communication-bound.

This relationship can be visualized by the so-called Roofline model [14].
Figure 1 shows the relationship between achieved computational complexity and
required computational complexity. In the figure, applications that are in the
right area of the graph of the Roofline model are particularly well suited, e.g.
the MobileNetV2 inference kernel used in the analysis.

2.2 Environmental Life Cycle Assessment for Data Centers

To evaluate the environmental impact of a DC, numerous indicators based on
a literature review are presented in [17]. The indicators describe the impacts at

FPGA-Based NAAs – An Environmental Life Cycle Perspective 251

different system levels and are classified according to the objectives: energy con-
sumption, Global Warming Potential (GWP), raw materials and others such as
water consumption. Some indicators include more than one objective. The most
common efficiency indicator is Power Usage Effectiveness (PUE), which describes
the efficiency of building services as the ratio between the used energy of the
whole DC and the consumed energy of Information Technology (IT) devices like
compute nodes, storage servers and switches. Whether IT systems perform rel-
evant tasks with the energy consumed is not part of the PUE and thus a weak
point of this indicator.

Fig. 1. NAA communication Roofline model.

At the level of the entire DC, which includes building services and IT equip-
ment, only 8 indicators are applicable, of which only Data Center Performance
Per Energy (DPPE) takes into account energy demand, GWP and raw mate-
rial demand. Moreover, almost all indicators including DPPE consider only the
usage phase, which is insufficient for a comprehensive LCA.

KPI =
benefit [e.g. ops]

effort [e.g. kg Sb.eq./a]
(1)

Therefore, the study [17] developed the indicator set Key Performance Indica-
tors for Data Center Efficiency (KPI4DCE) as a quotient of benefit to effort
(cf. Eq. (1)), where the benefit metric is throughput in operations per second
(ops). It relates the generic benefit of the DC to the environmental effort in
the sub-areas computing power of the nodes, utilized storage capacity, exter-
nal data traffic as well as infrastructure of the DC for Cumulative Energy
Demand (CED), GWP, Abiotic Depletion Potential (ADP) and water consump-
tion. Hence, 16 sub-indicators exist. As a simplification, only the manufacturing
and usage phases are considered for KPI4DCE, since the influence of the trans-
portation and disposal phases is marginal according to the case studies in [8,17].
In [8], the indicator set was developed further, and the database was updated.
The KPI4DCE effort indicators in detail are:

– ADP: usage of non-renewable raw materials and minerals in kg of antimony
equivalents per year [kg Sb.eq./a].

252 F. Steinert and B. Stabernack

– CED: consumption of non-renewable and renewable energy resources in mega-
joules per year [MJ/a].

– GWP: effect on global warming in kilograms of carbon dioxide equivalents
per year [kg CO2 eq./a].

– Water: Water consumption in cubic meters per year [m3/a].

2.3 Use Cases for Network-Attached Accelerators

The survey by Kachris et al. shows significant performance and energy effi-
ciency gains for FPGA-based Map Reduce and FPGA-based Key-value Database
(KVD) applications, which both are part of Group 3 (cf. Sect. 1) [13]. This high-
lights that instead of processors, NAAs are the best accelerators for KVD appli-
cations.

In [24], NAAs are presented for speeding up text tokenization with regular
expressions that transfers natural language into a structured form as a prerequi-
site for subsequent text analyzes. A control node forwards through a 10 Gigabit
Ethernet (GbE) interface a text document to be analyzed to a process pipeline
consisting of 2 NAAs, with the last NAA sending the results back to the server.
Compared to a software solution with 2 servers as processing units instead of
NAAs, the throughput was increased by 14–18 times depending on the docu-
ment size, the latency was reduced 12–40-fold and the response time variance
was reduced to 0.5 ms from 3–4 ms. Compared to employing tightly-coupled
FPGAs in the nodes, the NAAs were able to increase the throughput by 10.8–
14.8, the latency was reduced up to 1.11x, and the variance of the response times
was reduced to the same extent as in the software solution. The server system
consumes a total of 600W and the tightly-coupled FPGA solution requires over-
all 650W. The NAA architecture, on the other hand, requires only 250W with
increased throughput, which improves energy efficiency by 33.6x–43.2x com-
pared to the software solution. Tightly-coupled FPGA increase energy efficiency
by only 10x–14x.

The acceleration of a Jacobi 2D Stencil is shown for an upgrade of the NAA
approach of [24] in a cluster with up to 31 NAAs (each with 10 GbE) and one
CPU [15]. The application is automatically synthesized for the FPGA using
Message Passing Interface (MPI) transpilation and communication is based on
a MPI/User Datagram Protocol (UDP) stack. For data sizes from 16 × 16 to
1024×1024, speedups over a homogeneous CPU cluster of 1.96–5.55 are achieved
for different cluster sizes. The energy efficiency increases by 5.74–31.31.

In [5], the authors investigate the acceleration of Monte-Carlo European
Option Pricing (MCE), which is applied in the financial community for the
pricing of an option with multiple uncertainties, for NAAs among others. The
high-end GPU A100 with 7 nm node technology achieves the highest through-
put, however, the end-to-end response time of the NAA (mid-range FPGA)
with 20 nm node technology for cold runs, which is particularly important in the
financial industry, is 3 orders of magnitude better. A more recent and performant
FPGA can certainly improve the throughput significantly. This is underlined by
the fact that a 3 times larger tightly-coupled FPGA with 16 nm achieves 7–8

FPGA-Based NAAs – An Environmental Life Cycle Perspective 253

Fig. 2. Exemplary NAA hardware framework.

times the throughput of the NAA due to more parallel MCE cores. However,
the cold start time of the tightly-coupled FPGA is worse, so the authors do not
investigate this solution further.

In [2], a comparison of a network protocol load balancer between Virtual
Machine (VM)-based software and NAA, which needs an extra serial port for
control purposes, is shown. The VM already experiences packet drops and latency
variance starting at 25 MBps. In contrast, the NAA can operate up to 100 MBps
without losses and constant latency variance.

In addition, there are some applications that have not been implemented on
standalone NAAs, but can probably be easily adapted. Due to space limitations,
they are not presented in detail such as tightly-coupled accelerators with direct
network access [4,12] or FPGA-based switches for In-Network data Processing
(INP) [9].

The presented use cases for the NAAs reveal the throughput, latency, and
energy efficiency advantages of the distributed NAA architecture in a hetero-
geneous DC for certain problems, which motivates us to also investigate this
architecture in terms of resource efficiency and manufacturing phase impact.

3 Exemplary NAA Framework

For the NAAs, we adopt the hardware abstraction layer described in [20] as an
exemplary hardware framework that divides the FPGA into a static shell and up
to N roles (cf. Fig. 2). The shell provides a 40 GbE with UDP/IP stack as com-
munication interface and Routable RDMA over Converged Ethernet (RRoCE)
protocol stack based on it, which is introduced in more detail in [16]. RRoCE is
intended for reliable, connection-oriented RDMA communication via one-sided
WRITE transfers, especially between servers and NAAs. This permits scalable
and interoperable communication in a heterogeneous DC with a low processor
load on the server side. A 512-bit Advanced eXtensible Interface Bus (AXI)-4
interconnect is used to access external memory. The roles are managed by a

254 F. Steinert and B. Stabernack

Heterogeneous
Data Center

NAA FPGA node

NAA FPGA node

NAA FPGA node

40 Gbps

x86 node

ARM node

RISC-V node

GPGPU node

Resource
Management System

Energy
Monitoring

System Management
Software

GPGPU(s)

Storage

40 Gbps

CPU-based nodes

Fig. 3. Heterogeneous DC with NAA nodes.

lightweight AXI-4-Lite system, that can only be controlled by a manager from
within the shell to prevent unwanted control of one role by another. Further
possibilities of the framework such as partial reconfiguration or streaming com-
munication of the network stack with the roles are not used for performance
reasons, even though these functionalities are important in a real DC environ-
ment.

4 Environmental Life Cycle Assessment of NAA Nodes

4.1 Initial KPI4DCE Observations

For the LCA, a heterogeneous cluster accelerated by NAA nodes (cf. Fig. 3) is
compared against a homogeneous cluster as baseline architecture, which relies on
classical CPU-based nodes typically found in DCs. The comparison is based on
the indicator set KPI4DCE and the advancements in [8]. KPI4DCE applies the
integer portion of the Standard Performance Evaluation Corporation (SPEC)-
2006 benchmark as a measure of beneficial computing power. This benchmark
contains 12 individual benchmarks [19], which are not readily executable on
an application-specific FPGA accelerator. Instead of abstract benchmarks, we
apply real life benchmarks that represent relevant applications, as described
below. According to [8], the adoption of own benchmarks instead of SPEC-
2006 provides comparable results as long as the benchmarks are adopted on all
compared systems.

MobileNetV2: MobileNetV2, as a current Deep Neural Network (DNN) for image
classification on 224 × 224 images, is part of an important application category
and was thus considered as benchmark. We rely on the work introduced in [16]
with two MobileNetV2 roles per NAA. The images to be classified are aggregated
and transmitted via RRoCE to the NAA nodes for classification. From there,
the results are sent back to a server via RRoCE for further processing. For
our tests we used the Imagenet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) validation data set with 50000 images.

FPGA-Based NAAs – An Environmental Life Cycle Perspective 255

H.264 Encoder: Video transcoding is needed for internet video platforms or
social media to adapt video resolution and quality to different devices. Encoding
with for example H.264/Advanced Video Coding (AVC) is the computationally
intensive part, which is an element of SPEC-2006. The employed NAA imple-
mentation with two parallel H.264 High Definition (HD) encoders running at
30 frames per second (fps) is based on the work presented in [21]. The decoded
video data is transmitted via 40 GbE using RRoCE to the NAAs, where they
are encoded and then sent to a server via RRoCE for further playout. The func-
tionally identical C reference software is used as the software encoder. As test
sequence (SteamLocomotive) with 1920 × 1080 pixels, YUV 4:2:0, 8-bit color
depth and 300 frames targeting 5 Mbps was encoded.

The total manufacturing expenses in all categories (CED, GWP, ADP and
water consumption) are distributed over the expected service periods in years
given in Tables 1 and 2 [8,17]. In the majority of DCs examined in both studies,
the ADP is dominated by the manufacturing phase, even when excluding signif-
icant portions of building services due to their low impact in the analysis [8,17].
The remaining ADP in the usage phase is caused by the combustion of fossil fuels
to generate electricity. To increase resource efficiency, it is advisable to maximize
the lifespan of IT equipment. But this creates a trade-off with energy footprint,
as more efficient IT devices help reduce that consumption. However, in the other
categories (CED, GWP, and water consumption), the usage phase dominates.

In an LCA for electronic products, just 10% of the components contribute
90% to the GWP, which is used as a simplified indicator in [22]. Therefore, the
consideration of the main contributions is particularly relevant, which are in
descending order in a DC context [22]:

1. Integrated Circuits (ICs): active semiconductors like memory (DRAM, Solid-
State Drive (SSD), HDD) or logic (CPU, GPU, FPGA).

2. Printed Circuit Board (PCB): material (substrate, finish and solder).
3. Ports: power and communication interfaces such as electrical/optical connec-

tors and cables.
4. Chassis: housing materials plus cooling.

Despite numerous uncertainties, such as the assessment of the benefit of IT
operations, the usage of accelerators, the neglect of internal network traffic or,
in particular, the very incomplete data basis for the resource consumption of
IT components, the authors in [17] consider KPI4DCE as robust and reliable
in trend. The authors of [8,17] see further research required to improve the
database, especially for the determination of ADP, since the number of data
sets in the electronic area is small, complex to create, and they also quickly
become outdated. For the calculation of KPI4DCE, an Excel-based tool has
been published [7], which is subsequently used in version 2.5.

4.2 CPU-Based Nodes

For the examination of the homogeneous CPU-based cluster as a baseline archi-
tecture, the resources shown in Table 1 are assumed. Due to the absence of

256 F. Steinert and B. Stabernack

Table 1. CPU-based cluster resources.

Qty. Type Lifetime Description

1 80 compute nodes 5 years Intel Xeon Silver 4114, 10C@2.2GHz, 13.75 MiB L3
Cache, 6× 8 GiB DDR4 SDRAM, 1 TB HDD, 40
GbE, 2×PWS-1K43F-1R power supply

2 1 control server 5 years same as #1

3 1 storage server 6 years same as #1 but 8× 4 TB HDD

4 3 40 GbE switch 7 years with 32 ports

a server cluster, the software implementations are run on a single node (run-
ning a bare metal Ubuntu 20.04.5 LTS) and the results are extrapolated. In
our experience, this extrapolation leads to a negligible error for the application
type used, since the applications are embarrassingly parallel. In addition, the
energy requirements of the infrastructure were taken into account with PUE=1.2
according to a typical PUE of an energy-efficient DC [10]. For modeling the
GWP of electricity consumption, the medium-voltage electricity mix of Ger-
many is assumed based on environmental LCA database Ecoinvent V3.5 (pub-
lished 2018) [8]. The power measurement of the servers was carried out via the
Power Management Bus (PMBus) of the power supply via the Baseboard Man-
agement Controller (BMC). The measured idle power of a computing node is
100W. A typical power consumption of 150W with passive copper cabling is
reported per switch [18]. For classical DCs without accelerators, we believe that
the KPI4DCE tool can be applied well. No additional assumptions had to be
taken regarding the servers, the storage servers or the network infrastructure.

MobileNetV2: The CPU-based MobileNetV2 runs on 10 physical cores, using
thread pinning, by means of ONNX runtime. Using more cores did not result
in more throughput due to hyperthreading overhead. Per compute node, using
a batch size of 20 frames, MobileNetV2 classifies 182.67 fps (measured with 10
iterations), which is the benefit. This yields a system performance of 14613.6 fps
or 414.77 billion frames/year assuming a cluster utilization over the year of 90%
The energy consumption amounts to 111 MWh per year. With the DC compo-
nents and infrastructure, this adds up to a demand of 142.84 MWh, resulting in
an electrical energy expenditure of 1239.78mJ per frame during the usage phase.

H.264 Encoder: Each compute node encodes 20 parallel HD video streams
employing all CPU cores. The benefit is defined as the number of encoded fps.
A frame rate of 4.06 fps per node is achieved and 166W is consumed dur-
ing encoding measured with 10 iterations. The 80 nodes thus encode 9.21 bil-
lion images/year at an assumed average CPU utilization of 90%, consuming
112.92MWh during this time. The remaining components of the cluster increase
the energy consumption along with an energy consumption of 24 MWh to sim-
ulate the PUE to 145.24 MWh per year. Per image, this corresponds to an
electrical energy expenditure of 56718.4mJ in usage phase.

FPGA-Based NAAs – An Environmental Life Cycle Perspective 257

Table 2. Resources of NAA-accelerated cluster.

Qty. Type Lifetime Description

1 1 control server 5 years Intel Xeon Silver 4114, 10C@2.2GHz, 13.75 MiB L3
Cache, 6× 8 GiB DDR4 SDRAM, 1 TB HDD, 40
GbE, 2×PWS-1K43F-1R power supply

2 1 NAA 5 years 8 NAAs (10AX115N3F40E2SG), each with 2×4GiB
DDR3 SDRAM and 40 GbE, ASPOWER
R2A-DV0800-N with 2 redundant power supplies

3 1 storage server 6 years same as #1 but 8× 4 TB HDD

4 1 40 GbE switch 7 years with 12 ports

4.3 NAA-Based Nodes

The heterogeneous cluster accelerated with NAA-based nodes consists of the
components shown in Table 2. Compared to Table 1, the compute nodes have
been replaced by 8 NAAs in a chassis equipped with simple backplanes (just 2
layers) and components for power supply and cooling. The same assumptions
regarding PUE and electricity supply of the DC are made as in Table 1. The idle
power averages at 260W after a few minutes of runtime. The 385A PCB from
Bittware was selected as NAA [1]. The switches were substituted with a scaled-
down model with a measured average power of 40W, since the NAA cluster
requires fewer ports. A more detailed description of the NAA node can be found
in [16].

For the adaptation of KPI4DCE to standalone NAA chassis, some assump-
tions have to be stated for the application of the KPI4DCE tool. To determine
the effort in the manufacturing phase for logic ICs, KPI4DCE applies the for-
mula Eq. (2), which takes the number of CPU cores as a measure of the die
size [8]. The die size is used to infer the effort using manufacturing data from an
Intel factory in Ireland from 2017 and 2018.

CPUDieSize[cm2] = 0.24584 · CoresNumberPerCPU + 0.49157 (2)

When modeling the NAA architecture for KPI4DCE, it should be noted that an
FPGA as a spatial architecture cannot be compared with the invariant cores of
a CPU. However, to enable modeling nevertheless, we have inferred an equiva-
lent number of CPU cores based on the die size of the FPGA according to the
formula Eq. (3):

CoresNumberPerCPU = (CPUDieSize[mm2]/100 − 0.49157)/0.24584 (3)

The die area of FPGAs is usually not publicly known, in contrast to the pack-
age size. However, for the 10AX115N3F40I2SGES FPGA, which is part of the
Arria 10 GX family, this information was published in a forum by the manu-
facturer [11]. This FPGA is the equivalent of the 10AX115N3F40E2SG used in
the environmental assessment except for the temperature range and that it is an
engineering sample. Neither factor should affect the die area. The stated die area

258 F. Steinert and B. Stabernack

is 337.9mm2, which results in an equivalent number of 11.7 CPU cores, rounded
up to 12, according to Eq. (3). The estimate is subject to large uncertainties
due to insufficient data, since other process technologies are applied for FPGA
manufacturing, so equating them with CPUs is only a rough approximation.
Also, even the database for manufacturing CPUs based on only one fab from 2
years is very poor. The influence of the external memory on the FPGA PCB is
modeled by specifying it as a RAM module, and the flash memory for booting
the FPGA is modeled as an SSD.

The influence of the FPGA PCB, each with 115.48 cm2 and unknown number
of layers [1], is not modeled by the chosen approach. However, the impact can
be modeled approximately through the backplane, which is considered with the
fixed area 1006.5 cm2 and 6 layers for all server types in the KPI4DCE tool [8,17].
Together with our backplane, which is 508.5 cm2 in area with 2 layers, this gives
a total PCB area of 1432.3 cm2. To accurately reflect the impact of the PCBs,
a correction factor for the PCB area compared to the static PCB area of the
modeled servers was added to the KPI4DCE tool and set to 1.423 for the PCBs
of the NAA chassis including 8 NAAs.

The power distribution is modeled through the NAA enclosure, which cor-
responds to a server enclosure. Network cables are not part of the calculation
tool [17], but since the required number for the NAA-accelerated DC is lower
due to the smaller node count, this simplification is slightly unfair towards the
heterogeneous DC. No further assumptions need to be made for the NAA chassis
regarding housing and cooling compared to the modeled server chassis, since it
consists of the same components as the latter.

Overall, we can only agree with the authors of [8,17] and see major research
required in the adoption of accelerator technologies such as GPUs and FPGAs.

MobileNetV2: The classification performance of the 8 NAAs is 10340 fps employ-
ing a batch size of 128 at a consumption of 420W. Due to the higher throughput,
the classification was carried out in a continuous loop and the measurement was
performed over a period of 15min after a startup phase of 5min. This results in
an annual output of 293.5 billion frames/year at 90% utilization with an electrical
energy consumption of 140.6 mJ/frame including the DC overhead (classification
only needs mJ/frame). Compared to the CPU-based classification, the energy
consumption per frame in the utilization phase was reduced by a factor of 8.82.

H.264 Encoder: The 8 NAAs, with an assumed power consumption of 450W,
can encode 480 HD frames per second. At an expected workload of 90%, this
corresponds to 13.6 billion frames/year and an electrical energy consumption of
3098,6mJ per encoded frame, which equates to an efficiency increase of 18.31 in
the usage phase.

FPGA-Based NAAs – An Environmental Life Cycle Perspective 259

Fig. 4. Absolute ADP and CED for CPU-based cluster (C) and NAA-accelerated clus-
ter (N) for H.264 (H) and MobileNetV2 (M). Relative shares of the manufacturing and
usage phases per year.

4.4 KPI4DCE Evaluation

The PUE is assumed to be constant at 1.2 for both clusters, since the infras-
tructure of the DC can potentially be reduced to the same extent due to the
lower requirements of fewer computing nodes. The simplification is not relevant
for the comparison of the two clusters with each other. The same service life is
assumed for NAAs as for servers for better comparability. However, due to the
typically lower energy consumption in the usage phase and the slower product
cycle for FPGAs, longer lifetimes are reasonable. It is evident from Fig. 4a that
the heterogeneous cluster accelerated with NAAs (cf. Table 2) has a reduced
absolute ADP compared to the homogeneous CPU-based cluster (cf. Table 1).
Note that the CPU-based cluster provides higher benefit for MobileNetV2, but
lower benefit for H.264. Normalizing the indicators to effort following Eq. (1)
restores comparability, as seen in Table 3. Thus, for MobileNetV2, the ADP of
the NAA-accelerated cluster is 10.8x better and H.264 even 22.6x. Due to the
high system performance of the NAAs and the high energy efficiency, a targeted
performance can be achieved with a lower node number. The smaller compute
node number as well as the generally smaller resource requirements of a NAA
node, caused by saving the host server, are the main reasons for the improvement
of the resource efficiency. The same compute resources are used for both bench-
marks (H.264, MobileNetV2), which explains why the ADP is nearly identical.
It differs only by the ADP part of the electrical supply. The relative allocation
of the ADP to the manufacturing and usage phase for one year is also shown
in Fig. 4a. It can be seen that the manufacturing phase dominates for all use
cases. This is consistent with the initial considerations presented in Sect. 4.1.

In Fig. 4b, the CED of the clusters is shown for the different use cases. It is
evident that the NAA-accelerated cluster consumes significantly less energy due
to the much improved energy efficiency as well as the infrastructure adapted to
the smaller node number. In contrast to ADP, CED is dominated by the usage

260 F. Steinert and B. Stabernack

Table 3. To effort normalized KPI4DCE for CPU-based cluster (C) and NAA-
accelerated cluster (N) for H.264 (H) and MobileNetV2 (M). Higher is better.

[effort]
ADP Im. CED Im. GWP Im. water Im.
[kg Sb eq./a] [MJ/a] [CO2 eq./a] [m3]

C/M [frames] 268.6 G 1x 254793 1x 3983644 1x 103692 M 1x

N/M [frames] 2905.7 G 10.8x 2302931 9x 21876557 5.5x 73369 M 0.7x

C/H [frames] 6.0 G 1x 5576 1x 87266 1x 2305 M 1x

N/M [frames] 134.9 G 22.6x 104603 18.8x 1003059 11.5x 3406 M 1.5x

Fig. 5. Absolute GWP and water usage for CPU-based cluster (C) and NAA-
accelerated cluster (N) for H.264 (H) and MobileNetV2 (M). Relative shares of the
manufacturing and usage phases per year.

phase in all cases. The clarity of the relative distribution is due to the high uti-
lization of the DC, which optimally exploits the fixed effort of the manufacturing
phase.

In Fig. 5a the GWP of the clusters is depicted, which is fed from coolant leak-
ages and from the fossil shares of the DC energy supply according to the applied
electricity mix. Compared to the homogeneous cluster, the NAA-accelerated
cluster emits fewer greenhouse gases due to lower CED. From the normalized
numbers in Table 3, it is evident that the unchanged rate of coolant leakage
decreases the GWP for the NAA accelerated cluster less than the CED. As
expected, the usage phase dominates the GWP in all cases. In order to reduce
the CED and thus the GWP, it is particularly worthwhile to optimize the usage
phase, for example by taking advantage of energy-efficient sleep states for unused
components both at the system level (energy-saving mode for complete nodes)
and within a node (e.g., shutting down unused DRAM).

Figure 5b reports the direct water consumption of the DC. This is determined
by the cooling systems, which is allocated by the KPI4DCE tool (with rounding
errors) into the categories infrastructure, network, storage systems and compute

FPGA-Based NAAs – An Environmental Life Cycle Perspective 261

nodes on a percentage basis. Therefore, the water consumption for the NAA-
accelerated cluster tends to be overestimated. The reduced number of nodes is
expected to result in lower cooling requirements and thus, after adjusting the
cooling capacity, in reduced water consumption.

5 Conclusion

For the given examples, we can summarize that the NAA-accelerated cluster per-
forms significantly better than the homogeneous cluster with CPU-based com-
pute nodes in terms of resource efficiency (improved by up to 22.6), energy
efficiency (improved by up to 18.8), and greenhouse gas emissions (improved by
up to 11.5), as evident in Table 3. Therefore, we consider standalone NAA as an
ideal addition to a heterogeneous DC to increase energy and resource efficiency
and thus reduce GWP.

Our future work will focus on the development of a software framework
with hardware support for energy measurement of NAAs. In addition, we will
investigate further use cases, possibly with other FPGAs, such as Agilex, using
KPI4DCE.

References

1. Bittware 385a. https://www.bittware.com/fpga/385a/. Accessed 06 Apr 2023
2. Byma, S., Steffan, J.G., Bannazadeh, H., Leon-Garcia, A., Chow, P.: FPGAs in the

cloud: booting virtualized hardware accelerators with OpenStack. In: 2014 IEEE
22nd FCCM. IEEE (2014). https://doi.org/10.1109/fccm.2014.42

3. Caulfield, A.M., Chung, E.S., Putnam, A., Angepat, H., et al.: A cloud-scale accel-
eration architecture. In: 2016 49th IEEE/ACM MICRO, Taipei, Taiwan, pp. 1–13.
IEEE (2016). https://doi.org/10.1109/MICRO.2016.7783710

4. Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., et al.: Serving DNNs in
real time at datacenter scale with project brainwave. IEEE Micro 38, 8–20 (2018).
https://doi.org/10.1109/MM.2018.022071131

5. Diamantopoulos, D., Polig, R., Ringlein, B., Purandare, M., et al.: Acceleration-
as-a-µService: a cloud-native Monte-Carlo option pricing engine on CPUs, GPUs
and disaggregated FPGAs. In: 2021 IEEE 14th CLOUD, Chicago, IL, USA, pp.
726–729. IEEE (2021). https://doi.org/10.1109/CLOUD53861.2021.00096

6. Escobar, F.A., Chang, X., Valderrama, C.: Suitability analysis of FPGAs for het-
erogeneous platforms in HPC. IEEE TPDS 27, 600–612 (2016). https://doi.org/
10.1109/TPDS.2015.2407896

7. Gröger, J., Liu, R.: Green cloud computing. https://www.oeko.de/publikationen/
p-details/green-cloud-computing. Accessed 29 Mar 2023

8. Gröger, J., Liu, R., Stobbe, L., et al.: Green cloud computing. Technical report,
UBA (2021). https://www.umweltbundesamt.de/sites/default/files/medien/5750/
publikationen/2021-06-17_texte_94-2021_green-cloud-computing.pdf

9. Hartmann, M., Weber, L., Wirth, J., Sommer, L., Koch, A.: Optimizing a hard-
ware network stack to realize an in-network ML inference application. In: 2021
IEEE/ACM H2RC, St. Louis, MO, USA, pp. 21–32. IEEE (2021). https://doi.
org/10.1109/H2RC54759.2021.00008

https://www.bittware.com/fpga/385a/
https://doi.org/10.1109/fccm.2014.42
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1109/CLOUD53861.2021.00096
https://doi.org/10.1109/TPDS.2015.2407896
https://doi.org/10.1109/TPDS.2015.2407896
https://www.oeko.de/publikationen/p-details/green-cloud-computing
https://www.oeko.de/publikationen/p-details/green-cloud-computing
https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-06-17_texte_94-2021_green-cloud-computing.pdf
https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-06-17_texte_94-2021_green-cloud-computing.pdf
https://doi.org/10.1109/H2RC54759.2021.00008
https://doi.org/10.1109/H2RC54759.2021.00008

262 F. Steinert and B. Stabernack

10. High-Performance Computing Data Center Power Usage Effectiveness. https://
www.nrel.gov/computational-science/measuring-efficiency-pue.html. Accessed 06
Apr 2023

11. How tall is the die for the 10ax115n3f40i2sges? https://community.intel.com/t5/
Programmable-Devices/How-tall-is-the-die-for-the-10AX115N3F40I2SGES/m-
p/592124. Accessed 05 Apr 2023

12. Javaid, H., Yang, J., Santoso, N., Upadhyay, M., et al.: Blockchain machine:
a network-attached hardware accelerator for hyperledger fabric. In: 2022 IEEE
42nd ICDCS, Bologna, Italy, pp. 258–268. IEEE (2022). https://doi.org/10.1109/
ICDCS54860.2022.00033

13. Kachris, C., Soudris, D.: A survey on reconfigurable accelerators for cloud com-
puting. In: 2016 26th IEEE FPL. IEEE (2016). https://doi.org/10.1109/fpl.2016.
7577381

14. Ofenbeck, G., Steinmann, R., Caparros, V., Spampinato, D.G., Püschel, M.: Apply-
ing the roofline model. In: 2014 IEEE ISPASS, pp. 76–85 (2014). https://doi.org/
10.1109/ISPASS.2014.6844463

15. Ringlein, B., Abel, F., Ditter, A., Weiss, B., et al.: Programming reconfigurable het-
erogeneous computing clusters using MPI with transpilation. In: 2020 IEEE/ACM
H2RC, GA, USA, pp. 1–9. IEEE (2020). https://doi.org/10.1109/H2RC51942.
2020.00006

16. Schelten, N., Steinert, F., Knapheide, J., Schulte, A., Stabernack, B.: A high-
throughput, resource-efficient implementation of the RoCEv2 remote DMA pro-
tocol and its application. ACM Trans. Reconfigurable Technol. Syst. 1–23 (2022).
https://doi.org/10.1145/3543176

17. Schödwell, B., Zarnekow, R., Liu, R., Gröger, J., Wilkens, M.: Kenn-
zahlen und Indikatoren für die Beurteilung der Ressourceneffizienz von
Rechenzentren und Prüfung der praktischen Anwendbarkeit. Technical report,
UBA (2018). https://www.umweltbundesamt.de/sites/default/files/medien/1410/
publikationen/2018-02-23_texte_19-2018_ressourceneffizienz-rechenzentren.pdf

18. Sn2700 open ethernet switch. Technical report, Mellanox Technologies (2019)
19. SPEC CINT2006: Integer component of spec CPU2006 (2006). https://www.spec.

org/cpu2006/CINT2006/
20. Steinert, F., Schelten, N., Schulte, A., Stabernack, B.: Hardware and software

components towards the integration of network-attached accelerators into data
centers. In: 2020 23rd Euromicro DSD, Kranj, Slovenia, pp. 149–153. IEEE (2020).
https://doi.org/10.1109/DSD51259.2020.00033

21. Steinert, F., Stabernack, B.: Architecture of a low latency h.264/AVC video codec
for robust ML based image classification. J. Sign. Process. Syst. 94(7), 693–708
(2022). https://doi.org/10.1007/s11265-021-01727-2

22. Stobbe, L.: Workshop: Grundlagen der Ökobilanzierung und methodisches vorge-
hen für die umweltpotenzialbewertung. Technical report, Fraunhofer IZM (2023).
https://owncloud.fraunhofer.de/index.php/s/IzOQHShUbTMbMX5#pdfviewer

23. Weerasinghe, J., Abel, F., Hagleitner, C., Herkersdorf, A.: Disaggregated FPGAs:
network performance comparison against bare-metal servers, virtual machines and
Linux containers. In: 2016 IEEE CloudCom, Luxembourg, Luxembourg, pp. 9–17.
IEEE (2016). https://doi.org/10.1109/CloudCom.2016.0018

24. Weerasinghe, J., Polig, R., Abel, F., Hagleitner, C.: Network-attached FPGAs
for data center applications. In: 2016 IEEE FPT, Xi’an, China, pp. 36–43. IEEE
(2016). https://doi.org/10.1109/FPT.2016.7929186

https://www.nrel.gov/computational-science/measuring-efficiency-pue.html
https://www.nrel.gov/computational-science/measuring-efficiency-pue.html
https://community.intel.com/t5/Programmable-Devices/How-tall-is-the-die-for-the-10AX115N3F40I2SGES/m-p/592124
https://community.intel.com/t5/Programmable-Devices/How-tall-is-the-die-for-the-10AX115N3F40I2SGES/m-p/592124
https://community.intel.com/t5/Programmable-Devices/How-tall-is-the-die-for-the-10AX115N3F40I2SGES/m-p/592124
https://doi.org/10.1109/ICDCS54860.2022.00033
https://doi.org/10.1109/ICDCS54860.2022.00033
https://doi.org/10.1109/fpl.2016.7577381
https://doi.org/10.1109/fpl.2016.7577381
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1109/H2RC51942.2020.00006
https://doi.org/10.1109/H2RC51942.2020.00006
https://doi.org/10.1145/3543176
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-02-23_texte_19-2018_ressourceneffizienz-rechenzentren.pdf
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-02-23_texte_19-2018_ressourceneffizienz-rechenzentren.pdf
https://www.spec.org/cpu2006/CINT2006/
https://www.spec.org/cpu2006/CINT2006/
https://doi.org/10.1109/DSD51259.2020.00033
https://doi.org/10.1007/s11265-021-01727-2
https://owncloud.fraunhofer.de/index.php/s/IzOQHShUbTMbMX5#pdfviewer
https://doi.org/10.1109/CloudCom.2016.0018
https://doi.org/10.1109/FPT.2016.7929186

FPGA-Based NAAs – An Environmental Life Cycle Perspective 263

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Optimization of OLAP In-Memory
Database Management Systems

with Processing-In-Memory Architecture

Shima Hosseinzadeh1(B) , Amirhossein Parvaresh2 , and Dietmar Fey1

1 Department Computer Science, Chair of Computer Architecture,
Friedrich-Alexander-Universitat Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany

{shima.hosseinzadeh,dietmar.fey}@fau.de
2 Ilmenau University of Technology, Ilmenau, Germany

amirhossein.parvaresh@tu-ilmenau.de

Abstract. With the growing popularity of Processing-In-Memory
(PIM) technology, many sectors of the industry are willing to take advan-
tage of this new technology. However, the state-of-the-art applications
are not optimized to fully utilize the PIM capabilities. In this paper,
an in-memory database is analyzed and its functions whose executions
cause the majority of CPU clock cycles are identified. Factors such as
running time and cache locality are studied and processes causing long
running times are accelerated with the PIM technology. The results show
that by utilizing the proposed optimization methods, there is an overall
speedup of 110.94% in the selected functionalities in the database man-
agement system. Furthermore, a deep analysis of the results is provided,
summarizing key observations and programming recommendations for
the in-memory database developers, and providing guidelines on where
to take advantage of this new memory technology, and where to avoid it.

Keywords: In-Memory Database · Processing-In-Memory · Profiling ·
3D-stacked Memory · Benchmarking · Workload Characterization ·
Memory Systems

1 Introduction

In-memory databases are designed to accumulate the entire data in the main
memory. With the increasing storage capacity of Dynamic Random Access Mem-
ory (DRAM), it is now affordable to have a hardware system that can store a
very large amount of data. The main downside of the in-memory databases is
that the latency and bandwidth of DRAM have become a bottleneck in data
centers; a problem better known as the “memory wall” [2]. In fact, in a tradi-
tional database system, on average half of the execution time is spent on memory
stalls [4].

Although DRAM’s cost-per-bit has been decreasing at a rapid rate, its
latency has remained almost constant. An emerging technology to tackle these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 264–278, 2023.
https://doi.org/10.1007/978-3-031-42785-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_18&domain=pdf
http://orcid.org/0000-0003-0766-5972
http://orcid.org/0009-0000-9369-4096
http://orcid.org/0000-0002-6077-4732
https://doi.org/10.1007/978-3-031-42785-5_18

Optimization of OLAP In-Memory DB Management Systems with PIM 265

challenges is the 3D-stacked memory, such as High Bandwidth Memory (HBM)
[13] and Hybrid Memory Cube (HMC) [12]. The basic idea of this technology
is to stack up DRAM and logic dies with Through-Silicon Vias (TSVs), which,
in nature, implements the idea of Processing-In-Memory (PIM). This technol-
ogy enables designers to build a low-power, high-performance in-memory system
that potentially moves the data-intensive computation to the memory side.

From the application point of view, a PIM in the computer system does not
boost performance, unless the application is adjusted to take advantage of the
new memory features. Therefore, it is necessary to scrutinize the functionality of
the application and specify the areas in the code that cause long running time,
in order to instruct the system to execute the functions with long running time,
known as hot spots, inside the memory.

One of the key applications in database management systems is query pro-
cessing. This area has gained a lot of attention recently due to the exponential
growth of data and its diversity, and the fact that it should be handled efficiently.
As a result, PIM has been used to improve the performance of query process-
ing. In particular, [26] designed a ReRAM-based PIM architecture based on the
dot-product computation of crossbar ReRAM that mainly supports three query
operations: aggregation (mainly for GROUPBY and SUM methods), restriction,
and projection (for SELECT function). In [10], pointer chasing inside the memory
is implemented. One of the areas where pointer chasing is heavily used is in
B/B+-trees which can effectively index large data sets. High memory access in
this work is alleviated by traversing linked data structures inside the memory
instead of sending the data to the CPU and waiting to receive it. Note that only
the final node is sent to the CPU for decreasing data movement between RAM
and CPU.

The study [19] investigates the challenges posed by data movement between
CPU and main memory in computer systems and compares traditional and
emerging techniques for mitigating data movement bottlenecks, and involves
a large-scale characterization of applications.

In this paper, a thorough analysis of an Online Analytical Processing (OLAP)
in-memory database is presented to find its functions with a long running time.
These functions are further studied and accelerated by using in-memory process-
ing technology. The results show that by optimizing the database management
systems with in-memory processing, an overall speedup of 110.94% is achieved
in comparison with the case where all the processing is performed on the CPU.
Moreover, functions that cannot be accelerated with the PIM technology are
identified. Finally, guidelines are presented for the database developers about
how to use the new PIM technology in the best way possible.

The remainder of this paper is organized as follows. In Sect. 2, the terms and
technologies used in this paper are described. Section 3 describes the database
setup and how the experiment is done using the simulation environment. In
Sect. 4, the experimental data is investigated, and some key observations are
discussed. In Sect. 5, the results are demonstrated and their behavior are justi-
fied. Finally, in Sect. 6, a quick summary of the observations made in this paper
are presented.

266 S. Hosseinzadeh et al.

2 Preliminaries

2.1 3D-DRAM

The 3D high-capacity memories were designed by stacking DRAM dies on top of
each other, in order to provide higher capacity and bandwidth for the era of big
data. Bandwidth barriers and parallelism capability of Double Data Rate (DDR)
interface for high-speed computing motivated memory manufacturers to develop
high-performance RAM by utilizing TSV-stacked DRAM. There are some good
examples of manufactured 3D-DRAM, such as Micron’s HMC [6], and Samsung’s
HBM-PIM [13].

Most 3D-DRAM devices consist of multiple DRAM dies plus one logic die
stacked on top of each other. These dies are connected via TSVs and there
are vaults that are vertical memory organizations within each cube. The vaults
comprise a set of memory portions from various DRAM dies that are connected
with a vault controller within the logic die.

There are numerous advantages that come with 3D-DRAM when compared
with conventional DRAM. These advantages can be summarized as follows:

– Capacity: In stacked DRAM dies, one cube can hold more capacity with the
same package footprint as the traditional DRAM device.

– Aggregated bandwidth and parallelism: A 3D-DRAM accomplishes its
high bandwidth by combining numerous TSVs in each cube with a high trans-
fer rate.

– Energy efficiency: Shorter TSV buses trim the capacitance and length of
connections between the memory controller and DRAM devices, making the
3D-DRAM more efficient than DDRx memories. The work [27] has demon-
strated that 3D-stacked memories, such as HBM and HMC, can be up to 15×
more energy efficient than an equivalent DDRx manufactured by Micron.

– Abstracted interface: In contrast to DDRx-based systems, a generalized
protocol is necessary to communicate with single or multiple cubes, separating
the memory controller function from the CPU. By employing a logical layer
within the cubes, the CPU can issue read and write commands instead of
device-specific CAS (Column Address Strobe) and RAS (Row Address Strobe)
commands, effectively concealing silicon variation and bank conflicts within
each cube.

– Near-memory computation: With regards to HMC [6] and HBM-PIM [13]
specifications, the logic die is not only used as the vault controller but also
supports some atomic operational instructions. The instructions operate in
read-modify-write sequence, in the sense that they operate on 16-bytes mem-
ory operands and they write back the results to DRAM layers.

2.2 Processing-In-Memory (PIM)

One of the bottlenecks in conventional computing systems is the data movement
between processing units and memory devices. The state-of-the-art PIM tech-
nique has recently emerged as a promising solution to this challenge [3,5,21,30]
by a range of technologies from 3D memory technology to within memory com-
putation logic such as PIM in nonvolatile memories [9].

Optimization of OLAP In-Memory DB Management Systems with PIM 267

Classification of PIM Logic. There are two main categories of processing
units with regard to their execution model, namely, fully programmable PIM,
and fixed-function PIM [16].

In fully programmable PIM logic, a processor fetches, decodes, and exe-
cutes instructions from the code loaded onto the PIM accelerator. This approach
enables compatibility with conventional compilers but requires the programmer
to manage communication between the host processor and the PIM unit.

Fixed-function PIM involves a defined processing unit or established opera-
tions based on memory access instructions. This method can encode PIM opera-
tions in modified LOAD and STORE instructions or through special prefixes in
a general-purpose processor’s ISA. It further categorizes into Bounded-operand
PIM Operation (BPO), applying a fixed number of operations to data, and Com-
pound PIM Operation (CPO), involving a changing number of operations and
memory locations.

2.3 PIM Simulation Environment

HMC-Sim is one of the first HMC simulators that feature cycle-accurate sim-
ulation, but it lacks scalability for PIM support. PIMSim [28] is a trace-based
simulator for PIM architecture that supports both host-side and memory-side
simulation. It allows users to configure PIM units and offers three input types
to accommodate varying simulation requirements. PIMSim aims to support new
memory types, such as HMC and HBM.

Another tool for 3D-DRAM simulation is Ramulator-PIM which is a combi-
nation of ZSim [24] and Ramulator [14] for a design space exploration of general-
purpose PIM architectures. In this simulation framework, a host CPU is con-
sidered alongside PIM cores that are located in the logical layer of 3D stacked
memory. This tool has the ability to simulate the host CPU and PIM cores in
order to compare their performance on parts of or on the entire application.
This is a trace-driven simulation, in which a modified version of ZSim provides
memory traces for feeding the Ramulator.

3 Experimental Setup

In this work, a thorough experiment on the PIM for query processing acceleration
is conducted, which sheds light on how this technology can be used to make
database management systems faster.

Fig. 1. Specifying Region Of Interest (ROI) in Code

268 S. Hosseinzadeh et al.

3.1 Database Management System

In this paper, DuckDB is used in the experiments, which is an embedded OLAP
database management system [22]. For benchmark execution, DuckDB has a
built-in benchmark runner that takes the query name of the benchmark, gener-
ates TPC-H [1] data tables, loads them into the database, and runs the query on
them. The TPC-H benchmark is a decision support benchmark that measures the
performance of database systems in executing ad-hoc analytical queries against
a realistic and scalable dataset. It consists of a set of standardized queries that
represent typical business operations. In this study, a scaling factor (SF) of 0.01
was used, which means the dataset used for the benchmark represents 1% of the
full TPC-H dataset.

3.2 Profiler

To conduct the experiment for profiling purposes, Perf [7], a Linux-based per-
formance analysis and profiling tool, is selected. Perf offers a comprehensive set
of functionalities for measuring and analyzing various aspects of system perfor-
mance. For this study, two specific events are utilized. Firstly, the cpu-clock
event is employed to measure the program’s execution time, providing insights
into different code segments and aiding in identifying performance bottlenecks.
Secondly, the page-fault event captures the occurrence of page faults dur-
ing program execution, helping analyze memory usage and identifying potential
optimization opportunities by minimizing disk I/O-induced performance degra-
dation.

With the general knowledge acquired about the execution time and the num-
ber of page faults, the next step is to find the “hot spots” in the program. Hot
spots are regions of code that take the most execution time and optimizing them
has a huge impact on the overall performance. These regions are executed inside
the memory. Since this analysis deals with the execution time, the cpu-clock
event can be utilized for this purpose.

3.3 Profiling the Database

A profile is an annotated code that indicates hot spot execution time. It also
indicates the parts of code in which specific hardware/software events occur. In
order to have accurate results, the number of samples in the recorded file should
be high enough, so that a correct judgment on the hot spot can be made. There
are usually two ways to increase the number of samples; either by enlarging the
execution time or by increasing the resolution at which samples are taken.

3.4 Simulation Environment

In the Ramulator-PIM simulation environment, a computer system is considered
that consists of host CPU cores and general-purpose PIM cores. Since the HMC
model is chosen for the PIM simulation, PIM cores are designated in the logic
layer of the HMC 3D-stacked memory. This type of simulation enables us to

Optimization of OLAP In-Memory DB Management Systems with PIM 269

simulate both host CPU cores and PIM cores, with the aim of comparing the
performance of both for a specific application, or even a part of an application.

With hot spot regions identified in the profiling step, these regions, which
are also known as offload regions in PIM simulation, are executed in PIM cores.
ZSim provides a library that facilitates the instrumentation and can be used by
adding its header to the program we want to test. Then, the region of interest
(ROI) is marked in the code using hooks (see Fig. 1).

4 Analysis

4.1 Finding the Hot Spots

The profiling procedure was done in a non-virtualized environment, mainly due
to the high potential for value contamination, which can negatively impact the
reliability and accuracy of the collected performance data. Easy access to pro-
gram counters and performance registers may not be readily available in such
environments, further complicating the profiling process.

4.2 Observations and Discussion

Based on the profiling results, it can be seen that most of the speed bottle-
necks in the database execution are caused by data movement between the main
memory and the CPU. Two important functions that cause high data move-
ment are memcpy() and memset(), which are the focus of acceleration in this
paper. Figure 2 shows the result of running each TPC-H query and verifies the
percentage of cache misses caused by functions used to implement SELECT.

The result in Fig. 2 indicates that a large portion of cache misses in most
TPC-H queries are caused by either the Linux kernel or function calls for the
SELECT operator. While it is true that cache misses caused by the Linux kernel
are prevalent, it is important to note that they are not entirely inevitable. The
kernel’s behavior is largely influenced by user mode programs through system
calls, implying that cache misses can be influenced and potentially minimized
by optimizing the interaction between user programs and the kernel1.

Fig. 2. Cache Miss Rate With TPC-H Workload

1 Q1, Q2, etc. represents the query names in the TPC-H workload.

270 S. Hosseinzadeh et al.

Note that a multi-level cache hierarchy is beneficial for applications that have
hierarchical reuse patterns, in which higher and smaller cache levels respond to
most accesses to later levels. However, it is worth mentioning that in conventional
systems, where data processing predominantly occurs within processor cores,
data often necessitates traversal through the memory hierarchy before it can
undergo processing. In such systems, only applications whose data can be fitted
in small caches can benefit from speed-ups, whereas other applications with large
data footprints should spend a large portion of their time shuffling data to and
from cache levels.

4.3 Analysis of the Bottlenecks

After scrutinizing the functions that cause bottlenecks in each query, they are
classified into three main categories:

– Hash Join functions: Functions such as Probe, InsertHashes,
ApplyBitmask, SerializeVectorData, etc. are all members of this category.

– Select functions: Consists of functions such as Copy in vector utility class,
Select, and AppendData in vector operations class, which are used implicitly
in the SELECT operation.

– Other functions: The functions that could not fit into the other two cate-
gories fall under this one. These are functions for string analysis and manipu-
lation, and time and date settings. Examples of this category are Analyze in
the UTF8 utility class, FromCString in the date utility class, and string_t.

In the following section, some of the important functions mentioned above are
further analyzed and are designed to be executed inside the memory. Afterward,
the performance of PIM and non-PIM execution are compared to verify PIM
enhancements.

5 Results

5.1 PIM Implementation

We have used the system configuration listed in Table 1 for evaluation purposes.
The PIM logic for each vault consists of a general-purpose PIM core, which has
ISA compatibility with the baseline CPU. The memory bandwidth allocated to
the PIM core is derived from the memory bandwidth available to the logic layer
of 3D-stacked memory.

PIM Implementation in Hash Join Functions. The first function analyzed
in this category is the Probe which probes the engaging tables in a hash join
using their join key (the input parameter). After a thorough analysis, it was
concluded that there are two parts in this function that are taking a huge chunk
of CPU clocks, namely the ApplyBitmask function utilized for initializing the
pointers of the scan structure based on the hashes, and a for loop for creating

Optimization of OLAP In-Memory DB Management Systems with PIM 271

Fig. 3. Total Running Time Comparison of the Hash Join functions

Table 1. Evaluated System Configuration

Host CPU 4 Out-of-Order Cores at 2.2 GHz, 22 nm, x86_64 ISA
Baseline Caches L1 I/D Cache, 32 KB, 8-way, 4-cycle; L2 Cache, 256 KB, 8-way, 4-cycle; L3 Cache, 6 MB, 12-way, 27-cycle
Baseline Memory 16 GB DDR3-1600, Bus Bandwidth 25.6 GB/s
PIM Core 1 Out-of-Order processing unit per vault at 2.4 GHz, L1 I/D Cache 32 KB 8-way, L2 Cache 256 KB 8-way
3D-Stacked Memory 8 GB total size, 32 vaults (per cube), DRAM with 166 MHz Frequency

the selection vector. According to the Perf report on Query, 18.87% of the CPU
clocks were dedicated to these two parts in the Probe function.

Figure 3a demonstrates the total time of running the Probe in host-only and
PIM mode. It should be noted that only Q02, Q03, Q05, Q07, Q09, Q18, and
Q21 were chosen for benchmarking since the Probe function was heavily utilized
in these queries.

The results show that on average 96.9% speedup is gained when the Probe
function is executed inside the memory. By analyzing the Probe function, it can
be seen that the bottlenecks of this function were mostly simple, yet repetitive,
operations such as linked-list pointer chasing and simple addition, and running
them inside the memory resulted in an acceptable speedup. From the other point
of view, the Probe function does not fully utilize cache locality, which makes it
more compelling to be executed inside the memory.

Next in this category, the InsertHashes function is verified. As the name
implies, this function is used to add a new entry in the hash table, and the
bottleneck consists of a call to ApplyBitmask function to get the appropriate
position to add, and a for loop to adjust pointers in the vector when the new
item (node) is added. After running Q07, Q09, Q12, and Q18 TPC-H queries
they showed high running time in Perf, as depicted in Fig. 3b.

The PIM results in the InsertHashes were promising, due to their ease of
operation, and low cache locality. Based on the results, 278.6% speedup was
achieved when this function was executed inside the memory.

PIM Implementation in Select Functions. In this section, bottleneck func-
tions that were used in the process of the SELECT operation will be examined.
These functions are mainly used to scan through a table, copy the results, and
add them to the final data structure.

272 S. Hosseinzadeh et al.

The first function to analyze is the Select function, which is responsible for
selecting a segment in DuckDB. A big portion of the CPU cycles is spent in this
function for traversing the selection vector and comparing the selected value to
each node.

Fig. 4. Total Running Time Comparison of Select functions

Because of the similar nature of this function with the ones already discussed,
the speedup was expected, which is on average 69.1%.

The next function is the Copy in the vector operations class, which is heav-
ily used in the SELECT, and other database operations. The main duty of this
function is to copy the content of one vector to another, and it is used in a
variety of use cases in DuckDB. As can be seen in Fig. 4b, a significant speedup
was achieved when the Copy function was executed in the PIM mode. Functions
such as Copy, which spend a large number of CPU cycles on memory latency,
can benefit from PIM by eliminating the data movement from CPU to RAM
and vice versa. The average speedup achieved in this experiment is 351.3%.

Finally, the last function is the AppendData in the string segment class.
Although this function is not a specific function used in the SELECT operation,

Fig. 5. Total Running Time Comparison of the AppendData function in String Seg-
ment

Optimization of OLAP In-Memory DB Management Systems with PIM 273

according to the Perf analysis, it is heavily used implicitly in the SELECT opera-
tion. This function consists of pointer manipulation, verification on added value
(if it is null or not), verification on overflow block, and finally appending the
data to the desired vector or dictionary. The comparison result of running time
when this function is executed in PIM and host-only mode can be seen in Fig. 5.

The average speedup achieved in running AppendData in PIM mode is
75.2%. It is notable to mention that the speedup here is not as great as the
one achieved in Copy since the operations in the AppendData are more complex
and they benefit more from cache locality.

PIM Implementation in Other Functions. In this section, other functions
that could not be fitted in either of the previous two categories but still are
bottlenecks are verified.

The example here is the FromCString function in the date utility class, which
as its name implies, is used to convert the C-formatted date strings into the Date
class. The result of the simulation can be seen in Fig. 6a.

Fig. 6. Total Running Time Comparison of other functions

Not only this function did not gain any benefits from the PIM mode, but
also it lost on average −53.2% of its performance. The reason behind this neg-
ative result could be justified by the way this function works; its operations
are complex and after cache analysis, it could be seen that it benefited from
cache locality. As a result, running it inside the memory caused performance
degradation.

The other function chosen for this category is the Analyze function in the
UTF utility class. The function consists of an algorithm to check if a string is a
valid UTF8. Based on the analysis done with Perf, it seems that this function
benefits from the cache hierarchy. The results can be seen in Fig. 6b.

Due to the complex algorithm and high cache locality, some degradation in
speed compared to the host-only scenario can be seen. On average, −41.3%
speed loss was achieved when the code was executed inside the memory.

274 S. Hosseinzadeh et al.

The last function in this category is the string_t function. This is the mem-
ber function of the proprietary string type in the DuckDB that uses low-level
functions such as memset() and memcpy() for efficient creation and modifica-
tion of strings in DuckDB. In order to accelerate this function, the underlying
memset() and memcpy are executed inside the memory so that the overhead of
moving data to the CPU and back to the memory is eliminated. The results of
running this function in host-only and PIM mode are demonstrated in Fig. 7. It
can be seen that the speed up is about 76.0% when running this function inside
the memory.

5.2 Database Design Considerations with PIM

Looking at the results achieved by database system analysis and the simulation
results on Ramulator-PIM, there are many interesting facts learned from this
simulation. Among them, there are three important points that can be very
helpful for database designers. These points are elaborated in this section.

Pointer Chasing in PIM. Linked data structures like hash tables, linked lists,
and trees are crucial in database systems. They aid in indexing large data (using
B/B+ trees) and handling collisions in hash tables (using key-value structures).
These structures store pointers to the next (and/or previous) nodes in each node,
enabling traversal through the structure by retrieving the address stored in the
next field of the current node.

Pointer chasing, performed by CPU cores within an application thread, expe-
riences degradation as the linked data structure grows larger. This deterioration
is due to serialized memory access caused by dependencies among linked nodes,
irregular access patterns resulting from irregular node allocation, and limited
cache reuse in applications like hash tables and B/B+ trees. These factors con-
tribute to a significant memory bottleneck and long latency between the CPU
and memory during linked data structure traversal [8,17,18].

The PIM mechanism can be used here to avoid moving data to the CPU.
PIM has the advantage of reducing the latency, as an address does not need to be
brought to the CPU before de-referencing, and also the process of node traversal
would not rely on caching and pre-fetching. Since database systems heavily use
linked data structures, PIM can bring a huge performance boost as is proven by
the results of this section.

Bulk Bitwise Operations Using PIM. One of the bottlenecks of the
database system that is verified in this section is the bit-wise operation (AND,
OR, NOT, etc.) on large bit vectors. The example of a bulk bitwise operation
in this study is the ApplyBitmask function, which caused a bottleneck for both
Probe and InsertHashes functions. In fact, many modern databases are utilizing
bulk bitwise operations to support bitmap indices. As an example, the recent
work called “WideTable” [15] designed the complete database system geared
around a technique called BitWeaving [29], which speeds up the scan operation

Optimization of OLAP In-Memory DB Management Systems with PIM 275

Fig. 7. Total Running Time Comparison of the string_t

using bulk bitwise operation. In commodity systems, a bulk bitwise operation
needs a large amount of data to be transferred to the memory channel. This high-
volume data transfer could result in high energy and bandwidth consumption,
and high memory latency. Although there have been some studies on acceler-
ating bulk bitwise operation using GPUs and field-programmable gate arrays
(FPGAs), their throughput is limited due to the limited memory bandwidth.

The benefit of using a 3D-stacked memory such as HMC is that thanks to its
high memory bandwidth between its banks, and a logic layer, processing bulk
bitwise operations would be significantly accelerated. According to the results of
the experiments done on the ApplyBitmask function, it is evident that running
a bulk bitwise operation inside memory can achieve high acceleration.

Bulk Data Copy and Initialization with PIM. There are numerous oper-
ations in database systems that trigger bulk data copy and data initialization.
Although these types of operations do not need any sort of computation, with
the current system, a large amount of data must be transferred back and forth to
the memory controller to perform these operations. All the bulk data operations
can result in high energy, bandwidth, and latency consumption, which in turn
degrades system performance and energy efficiency.

There are two reasons behind this inefficiency caused by the bulk data oper-
ations. First, current systems perform these operations one word or cache line
at a time, which directly results in high latency. Second, due to a large amount
of data transfer across memory channels caused by bulk operations, a significant
amount of bandwidth is consumed, leaving less bandwidth for other operations,
which consequently results in high latency [25].

Accelerating bulk data copy and initialization is crucial for improving overall
database system performance. Previous studies [20,23] have demonstrated that
a significant amount of time is wasted in the operating system due to these oper-
ations. Despite some enhancements, such as enhanced copy and move instruc-
tions (ERMSB) in x86 ISA [11], the underlying architecture remains largely
unchanged, resulting in limited improvements.

276 S. Hosseinzadeh et al.

Performing operations in main memory reduces latency, energy, and band-
width issues. PIM is advantageous as it requires a simple core design and can
achieve significant speedup, especially with bulk operation-specific cores ([25],
Fig. 7).

6 Conclusion

Modern databases are transitioning from disk to main memory, due to low
DRAM price and their low latency. All the transition from disk to DRAM has
made the bandwidth and latency of DRAM a bottleneck. Processing In Mem-
ory is a new promising technology that can mitigate this bottleneck by avoiding
bulk data migration to CPU and backward and also is able to handle simple
operations in the main memory.

In this study, first, a thorough database profiling was performed to find the
hot spots in the DuckDB database. Then, a PIM simulator was used to accelerate
these bottlenecks. The hot spots were caused by three types of functions; SELECT
functions, Hash Join functions, and other functions such as string creation and
manipulation.

This paper showed how a database designer can benefit from PIM technology
to achieve the best out of this technology. Pointer chasing is one of the areas that
is widely used in the database systems, such as in B/B+ trees, key-value data
structures, and hash tables. It was demonstrated that running pointer chasing
inside the memory can significantly accelerate database operations. In addition,
bulk bitwise operations such as AND, OR, and NOT can be well performed
inside the memory, as was seen in functions such as ApplyBitmask. Finally, bulk
data initialization and copy can benefit from PIM, since the data does not have
to move to the CPU and back to perform such operations.

Acknowledgement. We would like to acknowledge Dr. Seyyed Ali Hashemi for his
valuable feedback and suggestions that improved this work.

References

1. TPC-H Benchmark. http://www.tpc.org/tpch/. Accessed 11 Dec 2022
2. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.

ACM SIGARCH Comput. Archit. News 23, 20–24 (1995)
3. Ahn, J., Hong, S., et al.: A scalable processing-in-memory accelerator for parallel

graph processing. In: Proceedings of the 42nd Annual International Symposium on
Computer Architecture, pp. 105–117 (2015)

4. Ailamaki, A., DeWitt, D., et al.: DBMSs on a modern processor: where does time
go? In: VLDB 1999, Proceedings of 25th International Conference on Very Large
Data Bases, 7–10 September 1999, Edinburgh, Scotland, UK, pp. 266–277 (1999)

5. Akin, B., Franchetti, F., et al.: Data reorganization in memory using 3D-stacked
dram. ACM SIGARCH Comput. Archit. News 43, 131–143 (2015)

6. Hybrid Memory Cube Consortium: HMC specification 2.0 (2015)

http://www.tpc.org/tpch/

Optimization of OLAP In-Memory DB Management Systems with PIM 277

7. De Melo, A.: The new Linux ‘perf’ tools. In: Slides from Linux Kongress, pp. 1–42
(2010)

8. Ebrahimi, E., Mutlu, O., et al.: Techniques for bandwidth-efficient prefetching of
linked data structures in hybrid prefetching systems. In: 2009 IEEE 15th Interna-
tional Symposium on High Performance Computer Architecture, pp. 7–17 (2009)

9. Hosseinzadeh, S., Klemm, M., et al.: Optimizing multi-level ReRAM memory for
low latency and low energy consumption. it-Inf. Technol. 65(1–2), 52–64 (2023)

10. Hsieh, K., Khan, S., et al.: accelerating pointer chasing in 3D-stacked memory:
challenges, mechanisms, evaluation. In: 2016 IEEE 34th International Conference
on Computer Design (ICCD), pp. 25–32 (2016)

11. Intel: Intel 64 and IA-32 architectures optimization reference manual. Intel Corpo-
ration (2014)

12. Jeddeloh, J., Keeth, B.: Hybrid memory cube new dram architecture increases
density and performance. In: 2012 Symposium on VLSI Technology (VLSIT), pp.
87–88 (2012)

13. Kim, J., Kang, S., et al.: Aquabolt-XL: Samsung HBM2-PIM with in-memory pro-
cessing for ML accelerators and beyond. In: 2021 IEEE Hot Chips 33 Symposium
(HCS), pp. 1–26 (2021)

14. Kim, Y., Yang, W., et al.: Ramulator: a fast and extensible DRAM simulator.
IEEE Comput. Archit. Lett. 15, 45–49 (2015)

15. Li, Y., Patel, J.: Widetable: an accelerator for analytical data processing. Proc.
VLDB Endow. 7, 907–918 (2014)

16. Loh, G., Jayasena, N., et al.: A processing in memory taxonomy and a case for
studying fixed-function PIM. In: Workshop on Near-Data Processing (WoNDP),
pp. 1–4 (2013)

17. Luk, C., Mowry, T.: Compiler-based prefetching for recursive data structures. In:
Proceedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 222–233 (1996)

18. Mutlu, O., Kim, H., et al.: Address-value delta (AVD) prediction: increasing the
effectiveness of runahead execution by exploiting regular memory allocation pat-
terns. In: MICRO 2005, pp. 12-pp (2005)

19. Oliveira, G., Gómez-Luna, J., et al.: DAMOV: a new methodology and benchmark
suite for evaluating data movement bottlenecks. IEEE Access 9, 134457–134502
(2021)

20. Ousterhout, J.: Why aren’t operating systems getting faster as fast as hardware.
In: Summer USENIX 1990 (1990)

21. Pugsley, S., Jestes, J., et al.: NDC: analyzing the impact of 3D-stacked memory+
logic devices on MapReduce workloads. In: 2014 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 190–200 (2014)

22. Raasveldt, M., Mühleisen, H.: DuckDB: an embeddable analytical database. In:
Proceedings of the 2019 International Conference on Management of Data, pp.
1981–1984 (2019)

23. Rosenblum, M., Bugnion, E., et al.: The impact of architectural trends on operating
system performance. ACM SIGOPS Oper. Syst. Rev. 29, 285–298 (1995)

24. Sanchez, D., Kozyrakis, C.: ZSim: fast and accurate microarchitectural simulation
of thousand-core systems. ACM SIGARCH Comput. Archit. News 41, 475–486
(2013)

25. Seshadri, V., Kim, Y., et al.: RowClone: fast and energy-efficient in-DRAM bulk
data copy and initialization. In: Proceedings of the 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pp. 185–197 (2013)

278 S. Hosseinzadeh et al.

26. Sun, Y., Wang, Y., et al.: Energy-efficient SQL query exploiting RRAM-based
process-in-memory structure. In: 2017 IEEE 6th Non-Volatile Memory Systems
and Applications Symposium (NVMSA), pp. 1–6 (2017)

27. Weis, C., Wehn, N., et al.: Design space exploration for 3D-stacked DRAMs. In:
2011 Design, Automation Test in Europe, pp. 1–6 (2011)

28. Xu, S., Chen, X., et al.: PIMSim: a flexible and detailed processing-in-memory
simulator. IEEE Comput. Archit. Lett. 18, 6–9 (2018)

29. Li, Y., Patel, J.: Bitweaving: fast scans for main memory data processing. In:
Proceedings of the 2013 ACM SIGMOD, pp. 289–300 (2013)

30. Zhang, D., Jayasena, N., et al.: TOP-PIM: throughput-oriented programmable
processing in memory. In: Proceedings of the 23rd International Symposium on
High-Performance Parallel and Distributed Computing, pp. 85–98 (2014)

Organic Computing Applications 2 (OC)

Real-Time Data Transmission
Optimization on 5G Remote-Controlled

Units Using Deep Reinforcement
Learning

Nikita Smirnov(B) and Sven Tomforde

University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{nsm,st}@informatik.uni-kiel.de

https://www.ins.informatik.uni-kiel.de/

Abstract. The increasing demand for real-time data transmission for
the remote-controlled units and the complexity of 5G networks pose sig-
nificant challenges to achieving optimal performance in device-based sce-
narios, when the 5G network cannot be controlled by its users. This paper
proposes a model-free Deep Reinforcement Learning approach for this
task. The model learns an optimal policy for maximizing the data trans-
mission rate while minimizing the latency and packet loss. Such an app-
roach aims to investigate the applicability of the environment-agnostic
agents driven purely by the transmission statistics of the acknowledged
packets. The evaluation is done with the help of a 5G simulation based on
the OMNeT++ network simulator and the obtained results are compared
to a classic throughput-based adaptive bitrate streaming approach. Mul-
tiple questions and challenges that arose on the way to the final model
and evaluation procedure are highlighted in detail. The resulting findings
demonstrate the effectiveness of Deep Reinforcement Learning for opti-
mizing real-time data transmission in 5G networks in an online manner.

Keywords: deep reinforcement learning · data transmission · adaptive
bitrate streaming · 5G networks · remote-controlled unit · organic
computing

1 Introduction

Organic Computing (OC) is a research field that aims to maintain the control-
lability of technical systems in the face of ever-increasing complexity by shifting
tasks from the developer to the system itself [10]. The result is typically collec-
tives of self-adaptive and self-organizing systems using machine learning technol-
ogy that makes independent decisions based on objective functions. Especially
learning technology from the field of Deep Learning (DL) and Deep Reinforce-
ment Learning (DRL) has been proven as key-enablers for OC-capabilities.

A highly topical area of application for OC technology is autonomous sys-
tems, such as those found in the context of autonomous shipping. In this paper,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 281–295, 2023.
https://doi.org/10.1007/978-3-031-42785-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_19&domain=pdf
http://orcid.org/0000-0001-6955-830X
http://orcid.org/0000-0002-5825-8915
https://doi.org/10.1007/978-3-031-42785-5_19

282 N. Smirnov and S. Tomforde

we consider the scenario of an autonomous ferry navigating within the overloaded
maritime areas, see e.g. [19]. As full autonomy is currently restricted due to legal
issues, either an onboard or a remote control by a human is required. As part
of current research projects, the unmanned ferry (see Fig. 1) is equipped with
fifth-generation (5G) wireless communication technology to transfer its sensor
data such as video and 3D point cloud flows to the shore-based remote control
center.

The rapid development of 5G technology has increased the potential reli-
ability of remote-controlled units (RCUs). The real-time data transmission in
5G-based RCUs is crucial for ensuring seamless communication between the
operator and the unit, which demands low latency, high reliability, and efficient
use of network resources. Since in our ferry scenario, dramatically more data is
generated than 5G capacity is available, the system has to select and adapt the
communicated data at runtime based on changing conditions.

The main contribution of this paper is the application, setup and testing
of a general-purpose Deep Reinforcement Learning (DRL) for optimizing the
real-time data transmission on the RCUs in 5G networks, where DRL agent
learns to make optimal decisions based on the network conditions while so far
avoiding using 5G environmental data and any knowledge about the problem.
A simulation-based testbed is developed to verify the proposed approach while
using both simulated and real data. This paper contributes to the growing body
of research on OC and the application of DRL to wireless communication net-
works and it provides insights into the potential benefits of using DRL solutions
in 5G networks or OC systems in general.

This paper is organized as follows: Sect. 2 shortly reviews the related work,
Sect. 3 presents the optimization problem, Sect. 4 describes the proposed app-
roach, Sect. 5 addresses evaluation and results and Sect. 6 briefly recaps the con-
tent of previous parts and concludes the paper with possible future work.

Fig. 1. Design of a 5G remote-controlled passenger ferry “Wavelab” for the Bay of
Kiel.

Real-Time Data Transmission Optimization on 5G RCUs Using DRL 283

2 Related Work

Considering optimization problems in 5G networks with machine and/or deep
learning applications, there is a huge trend towards network-based solutions [14].
Unlike device-based problems, it is assumed that a developer has partial or
even full control over a 5G network and may change the hardware or software
parts of it so that optimization problems are more concentrated on the network-
management aspects rather than on the data transmission ones. Typical exam-
ples of such problems could be network slicing, power allocation and control,
scheduling, handover management, etc. [16].

A standard approach to optimize data transmission is known as adaptive
bitrate streaming (ABR). Current edge- and cloud-solutions are very diverse and
are massively used in everyday streaming, especially by popular video streaming
services like YouTube, Netflix and other popular services. Standard techniques
are based on controlling two main features: a) video bitrate, i.e., the amount of
data send in the current period and b) playback stability, i.e., how smooth and
continuous is the video playing on the consumer side [3].

Intelligent solutions enhance standard techniques with smart retransmission
mechanisms [12], with DL-based predictive assistance [1] and also with DRL
integration by introducing an agent with a state including bitrate, downloading
time of the previous stream chunks and buffer occupancy [2,8]. Almost all of the
existing approaches for adaptive bitrate streaming assume that the data is on-
demand and is transmitted over the popular contemporary streaming protocols
like MPEG-DASH, HLS, WebRTC and others [7] so that they try to optimize
both throughput and playback smoothness. A pure bitrate-based approach with
DRL assistance is used in [15] without directly taking into account latency and
packet loss factors, which are very important in 5G networks.

Another important factor is that the sensors on remote-controlled units are
usually heterogeneous, not only cameras but often other remote sensing devices
like LiDARs and RADARs that produce 3D point clouds. Although there is a
way how to reduce point clouds to a video flow by using classic MPEG video
encoders as a compression tool [18], the most popular approach still involves
space-partitioning trees [4], so that a generalization of adaptive bitrate streaming
solutions for all possible types of data with their encoding options is needed.

3 Real-Time Data Transmission Problem

Improving performance for real-time data transmission is a more complicated
and challenging task in comparison to a standard adaptive bitrate streaming
since the consumer’s buffer cannot be filled for some time in advance, otherwise,
a human operator of the controlled unit will deal with outdated data and play-
back delays. Therefore, the only way is to try to optimize the bitrate directly.
Due to this constraint, it is not possible to use standard HTTP algorithms like
throughput-based FESTIVE [6] or buffer-based BOLA [20], since they all pre-
suppose that: a) the consumer’s buffer is used and could be manipulated, b) it is

284 N. Smirnov and S. Tomforde

possible to have simultaneous streams with different bitrate presets. While the
second condition can be so far neglected since the data, especially video data,
can be encoded on-the-fly relatively fast, the first one remains unfeasible.

Given the above, the optimization problem designated in this article as “real-
time data transmission” could be formulated as follows:

try to maximize the uplink goodput (GPT) while at the same time
minimize the round-trip-time (RTT) and minimize the packet loss
rate (PLR) by selecting a proper bitrate for one or multiple streams for
a certain period without holding the data in some buffer neither on the
sender nor the receiver side.

It is assumed that goodput, as well as RTT, are measured at the application level,
and the processing delays for unpacking and decoding the data are neglected.
It is also assumed that all optimization happens directly on the RCU,
therefore, there is no information about the packet as long as the receiver’s
acknowledgment does not come back. A unit uses “best-effort” transport proto-
cols (UDP-based ones) since retransmission mechanisms are not required.

There is no ready-made formula for selecting the optimal bitrate for the next
period based on the previously used bitrate and collected network feedback. It
may be even unfeasible in general due to the complexity of relations between these
parameters. The only known connection between throughput, RTT and PLR is
Mathis formula for TCP congestion algorithm [9]:

BW <
MSS
RTT

1√
p

(1)

where BW is a bandwidth of a TCP connection, MSS is the maximum segment
size (usually equals to 1460 bytes considering IP MTU of 1500 bytes) and p is a
probability of a packet loss. This formula only gives an upper bound in realistic
scenarios, requires a predictable loss rate and is tailored for a TCP congestion
window.

There is a wide range of interconnected factors that can impact the overall
performance of the data transmission and the network feedback and not all of
them could be controlled by a unit itself. For example, RTT can vary depend-
ing on the uplink or downlink congestion induced by other 5G devices as well
as the number of network hops in between, while PLR is strongly influenced
by the distance and the orientation towards the nearest 5G base stations and
physical channel quality at the moment. And since all optimization happens on
a unit and a public 5G network is used, the middle layers of the core network
as well as the intern computations of the base stations are hidden. Temporal
relations between GPT, RTT and PLR could be studied only by observing the
transmission behavior.

In summary, the absence even of an approximate formula in the general
case that describes complex relationships between the key parameters and the
overall complexity of a problem was the initial motivation to try to learn it with
a model-free DRL approach: to investigate how far the agent could discover these

Real-Time Data Transmission Optimization on 5G RCUs Using DRL 285

relations, how well it responds to their changing behavior and can optimize its
own decisions based on the observed experience of real-time data transmission
in the 5G network.

4 Approach: Deep Reinforcement Learning

As mentioned above, model-free DRL was chosen as the main approach in this
paper. The main advantage in comparison to the supervised learning is that it
does not require any labeled data or the expert knowledge, which are both hard
to be obtained for this problem. As a disadvantage, the results are dependent on
the manual fine-tuning of agent’s behavior control encoded through the reward
function. It was also so far consciously decided not to use any device-available
5G information to help to train the agent to investigate the limits of applicability
of environment-agnostic feedback-driven approach, i.e., the agent learns
so far independently from the actual communication technology, location, etc.
so that the achieved knowledge is easier to be transferred to other scenarios.

4.1 Background and Model

Reinforcement Learning is a type of machine learning that involves training an
agent to learn through interaction with the environment. The agent receives
feedback in the form of rewards or penalties for each action it takes. Markov
Decision Process (MDP) is a mathematical framework used to model decision-
making problems. It assumes that the current state of the environment contains
all relevant information necessary to make a decision and that the environment
follows the so-called Markov property, meaning that the process is memoryless:
the probability of selecting the next state depends only on the current one.
DRL is a further development of this strategy that utilizes deep neural networks
(DNN) to approximate the agent’s policy and value functions in MDP, see Fig. 2.

Proximal Policy Optimization (PPO) [17] was selected as a primary model
among different contemporary DRL algorithms. It is an on-policy algorithm that
employs a clipped surrogate objective function that constrains policy updates to
prevent large policy changes that could negatively impact learning stability. One

Fig. 2. Deep Reinforcement Learning workflow.

286 N. Smirnov and S. Tomforde

big advantage is its ability to handle both discrete and continuous action spaces.
Furthermore, PPO is commonly used not only with fully-connected DNNs but
also with Long Short-Term Memory (LSTM) layers, which could increase the
ability to learn complicated temporal relations in sequential data and opens a
perspective for further improvements.

4.2 Setup and Hyperparameters

Real-time data transmission could be always formulated as a single-agent prob-
lem by fixing the interval between two consecutive actions (transition). If a
remote-controlled unit has multiple sensors and consequently multiple simulta-
neous streams, they could be seen as a single flow, where the current common
bitrate is spread between the streams either equally or according to some pri-
oritization scheme. It was found after some experiments that the interval equal
to one second provides the best trade-off between a) a sufficient amount of sent
packets together with received transmission feedback and b) a sufficiently fre-
quent reaction of the DRL model. The first point eliminates a credit assignment
problem, which would inevitably arise if the next action is applied too early,
even maybe before the acknowledgments for the previous packets are delivered
through a congested network. The second point provides enough flexibility for
the DRL agent to control the transmission process.

The only negative drawback of this approach is the time it takes to train
the agent. Since the agent waits some time to observe enough transmission with
selected action, the training cannot be accelerated with modern GPUs. Even in
the simulated environment, it is needed around 20–30 s to train the agent for
100 steps with one second transition period because a simulation consumes only
CPU resources. On the other hand, it could be easily parallelized horizontally
by training several different DRL setups simultaneously on a multi-CPU system.
This drawback additionally highlights the importance of fine-tuning the DRL
setup.

State. A state represents the most essential agent’s parameters and the current
agent’s perception of the data transmission. It contains both values for a current
period as well as global average values for the whole run:

S = {Grx
p , Grx

g , Rp, Rg, Jp, Jg, Pp, Pg, Vp, Q} (2)

where low indexes denote either a value for the current period, p or the global
average g, and the upper index rx means the receiver side. G means goodput,
R - round-trip-time, J - jitter, P - packet loss rate, V is the relative standard
deviation of the chunks, i.e., how much is the difference between the sizes of
generated chunks within a period and Q means the quality stability, it measures
how often the bitrate has been changed over the previous ten steps.

Action Space. Action space in this article is discrete and fixed so far to a
size of six to compare it with standard ABR solutions: five values correspond to

Real-Time Data Transmission Optimization on 5G RCUs Using DRL 287

meaningful bitrate values and the last action turns the transmission completely
off, it is the “last hope action”. A set of bitrate values in kilobits per second
could look like that for one video stream: {800, 1500, 3000, 6500, 10000} reflecting
typical presets from SD to 4K. It should be noted that real-world encoders cannot
guarantee that they will precisely fit into the set bitrate value, there are always
oscillations. This peculiarity is also transferred to the simulated streams, they
may exceed with some chance an average packet size assumed for that bitrate.

Reward Function. Designing a reward function (RF) was the most challenging
task due to the complex and dynamic nature of the network environment. RF
needs to balance the competing objectives, such as maximizing GPT and mini-
mizing RTT and PLR. Additionally, it should be robust to changes in network
conditions and should adapt to new situations and scenarios. The function takes
the current state as an argument and consists of three subparts, each of which is
“responsible” for regulating one of the main optimization targets (GPT, RTT,
PLR):

R(S) = 0.33Rgpt(S) + 0.33Rrtt(S) + 0.33Rplr(S) (3)

Below is an explanation of all the parts presented in Eq. 3:

Rgpt = 0.33
Grx

p

Gmax
+ 0.33

Grx
g

Gmax
+ 0.33min(

Grx
p

Grx
g

, 1) (4)

0.5 ≤ Vp < 0.75 → Rgpt = 0.95Rgpt, Vp ≥ 0.75 → Rgpt = 0.9Rgpt

Rgpt = Rgpt(1 − Q

10
),

Rgpt in Eq. 4 is a combination of three parts, first two examine a current global
and periodic goodput at the receiver side in comparison with the maximum
possible, and the last part estimates how good the agent intents not to perform
worse than it already has. Having all three parts allow to control the goodput
from all the sides and adjusting weights 0.33 were found to be the most optimal
during the training. Two additional regulative mechanisms reduce the price for
a goodput if a relative standard deviation of packet sizes is too big (compensates
a key-frame difference) and if a bitrate is switched too often.

Rrtt =:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 5Rp 0 < Rp ≤ 0.1
0.6 − Rp 0.1 < Rp ≤ 0.5
0 0.5 < Rp < 0.9
−1 otherwise

Jp ≥ 0.1 ∧ Rrtt > 0 → Rrtt = 0.9Rrtt (5)

Rrtt in Eq. 5 is built on the top of “expert knowledge”. Specifications for RTTs
are very tight to maintain reliability: zero is given for the RTT below half a
second, and for more than 0.9 it is a constant maximum punishment. The idea

288 N. Smirnov and S. Tomforde

is to give an extremely high reward for RTT below 100 ms., proportional reward
for the RTT that is considered to be enough to provide a “good” quality of
experience and harshly punish otherwise. The additional punishment is added
for having a too-big jitter.

Rplr = 1 − 2Pp

if no packets received → R = −0.25 (6)

Rplr in Eq. 6 is a linear function over a PLR, which is very vulnerable to a
changed loss rate allowing to quickly punish in case of big packet drops. The last
condition controls a case, when there are no packets received. It could be due to
the turned-off stream as well as due to extreme congestion. It also softens the
punishment from the RTT part to encourage the agent to select lower qualities.

Finally, RF is clipped in the interval [−1, 1] and is equally weighted over each
of the three subparts. This makes it easier to analyze and interpret a cumulative
reward over multiple episodes as well as to analyze a reward distribution itself.

Hyperparameters. Hyperparameters were adjusted during multiple experi-
ments. The main idea was to encourage the model for more exploration while
still keeping a good balance. Therefore values for learning rate, entropy and clip
range are changed from default ones. The size of one update was chosen to be
equal to the number of steps in a single episode, the latter was chosen to be
long enough (more than 10 min of data transmission) while also divisible by a
batch size of 64. Network architecture is the same for both actor and critic with
two hidden layers each consisting of 128 neurons. The PPO implementation was
taken from stable-baselines3 library [13]. The full list of hyperparameters and
the default values are presented in Table 1.

Table 1. Selected hyperparameters for the PPO model in comparison to default values.

Hyperparameter Value Default Value

Episodes 100 10

Steps 640 2048

Batch Size 64 256

Learning Rate 0.00025 0.0003

Gamma (discount factor) 0.99 0.99

GAE λ 0.95 0.95

Clip Range 0.1 0.2

Entropy Coef 0.01 0.0

Value Coef 0.5 0.5

Max Grad Norm 0.5 0.5

Policy Network Architecture MLP (2 layers, 128 units each) MLP (2 layers, 64 units each)

Value Network Architecture MLP (2 layers, 128 units each) MLP (2 layers, 64 units each)

Real-Time Data Transmission Optimization on 5G RCUs Using DRL 289

4.3 Challenges

To overcome the survivorship bias, this sub-section presents the main challenges
that arose on the way to the final design resulting also in rejected DRL setups
that showed worse results. Some are caused by the environment, and some by
the DRL setup itself:

– Stochasticity of the environment. The 5G network itself is very volatile, the
next state of the DRL agent might depend not only on its actions but also
on how the network behaves as a whole. That is why it has been decided to
start with simulations - to minimize this factor at the beginning considering
the more predictable behavior of other 5G devices.

– Low actions variation, i.e., the agent doesn’t show an adaptation. It might be
stuck with the maximum quality even facing extreme congestion with the hope
of compensating current punishments with forthcoming rewards for maximiz-
ing a goodput or it might be too careful by not increasing the quality when the
network is free. The reward function presented in this paper tries to neutralize
this problem.

– “Irrational behavior” due to the cumulative nature of DRL. The agent learns
a policy to maximize the cumulative reward over an episode, so it elaborates a
strong bias towards certain actions or strategies, which may seem not optimal
in current circumstances and may be even considered “irrational” by a human
expert. An underrepresentation of “good” or “bad” network situations during
the training also belongs to this problem.

– Downlink congestion. RCU waits until the package makes the full round to
register it as “received” and update the statistic. If there is strong congestion
in the downlink direction, the agent may misinterpret the quality of current
data transmission.

5 Evaluation

5.1 5G Simulation and Scenario

The evaluation of the presented approach was conducted by developing a 5G
playground using the open-source Simu5G library: the OMNeT++-based 3GPP-
compliant 5G simulation written in C++ [11]. Additional modules were devel-
oped to enable working with real video and point cloud data together with encod-
ing/decoding on-the-fly. Another implemented feature is the inter-process com-
munication of a simulation in C++ with DRL modules from stable-baselines3
library in Python [13]. Such an approach allows to bring together multiple advan-
tages: a) use OMNeT++ discrete events and message scheduling infrastructure,
b) leverage well-developed python DL-stack, c) ease further transfer to the real
RCUs, where the inter-process communication with C++-based simulation will
be replaced with the external communication with the real world, leaving all
other parts unchanged.

The main scenario represents a sandbox, where a unit transmits the data to a
server within the 5G network. The setup is adapted to a maritime field: a unit is

290 N. Smirnov and S. Tomforde

a ferry, which sends the data from its cameras and LiDAR sensors, and a server
is a shore-based station. The other 5G devices are spread over the base stations.
There are also background cells imitating 5G base stations from other providers
in the area, producing signal interference and noise. A full run configuration is
given in Table 2, a schematic illustration of a sandbox is given in Fig. 3.

The idea of the presented sandbox scenario is to train the DRL agent with
different network experiences from almost perfect to loss rates of over 70% by
increasing the number of devices and their data rates as well as selecting the
areas, where the agent is moving during the run. If it moves towards the bottom
and right-bottom areas, then it suffers from strong congestion. On the contrary,
it enjoys perfect 5G coverage, minimal delays and scheduling priority in the top
and top-left areas.

Simulated streams were used during the training of the DRL model to speed
up the process. Apart from saving time on reading and visualizing, they dif-
fer from the real data only by skipping the encoding, the bitrate is regulated
numerically. However, the real video and LiDAR data are often used during the
testing phase to verify the transmission “tolerance level” through the visualiza-
tion. Sometimes “bad” transmission may be even acceptable if it still allows a
human operator to adequately perceive the situation. For example, the artifacts
of lost frames could be more tolerable than prolonged stalling. This process is
illustrated in Fig. 4.

Table 2. A full configuration for the “sandbox” 5G scenario for DRL training.

Parameter Value Description

Number of gNBs 2 Number of 5G base stations (gNBs)

Number of BgCells 3 Number of background cells (BgCells)

Number of UEs 80–130 Number of other 5G devices (UEs)

Mobility Model Random waypoints Random trajectories for UEs

Playground area 1.5 km2 The area for a playground

UL traffic main UE [2.5, 20] mbit/s Uplink traffic range for a DRL-controlled device

UL traffic other UEs [4, 8] mbit/s Uplink traffic range for other UEs

DL traffic other UEs [2, 6] mbit/s Downlink traffic range for other UEs

Simulation time 640 sec Maximum length of one simulation run in seconds

Carrier frequency 3.6 GHz Frequency used for transmission and reception

Bandwidth 100MHz Amount of frequency spectrum

Scheduling discipline MAX C/I Allocate resources according to signal-to-noise ratio

Antenna configuration 2× 2 MIMO Antenna configuration

NR scenario Urban macro-cellular 3GPP-based 5G scenario for outdoor urban areas

The repeating OMNeT++ seeds were used to provide a reproducibility of
a simulation process. The maximum bitrate was set to 10 mbit/s and constant
bitrate mode (CBR) was turned on. However, PPO model itself is stochastic
and always estimates actions’ probability and then samples accordingly. To over-
come this, it is instructed to take the argmax on each step. It does not make a

Real-Time Data Transmission Optimization on 5G RCUs Using DRL 291

Fig. 3. OMNeT++ visualization of the “sandbox” scenario.

learned policy deterministic, on the contrary, it shrinks the variability of possi-
ble decisions, which often results in worse predictions [5], however for the first
proof-of-concept it was considered an acceptable reduction.

5.2 Results

The analysis of obtained results consists of several stages. First, the training
results are analyzed. Next, the agent is tested on three unseen validation sce-

Fig. 4. Visualization of a test run with one video and one LiDAR stream. The data
is taken from a regular ferry and loaded into a simulation. 1 illustrates a segment loss
in LiDAR stream, 2 demonstrates an artifact, 3 is a blurring effect originating from a
too-big delay. One can see on 4 a console with the current transmission statistic.

292 N. Smirnov and S. Tomforde

narios roughly labeled as “easy”, “moderate” and “hard” depending on the area
and workload. Finally, its performance is compared with the simple throughput-
based ABR algorithm, which selects the next bitrate by analyzing the goodput
of the previous step. If it is stable for three steps in a row, it selects the next
available higher quality until the maximum one is reached and downgrades it
immediately in case the goodput is reduced. The idea is to compare: a) a DRL
solution with an ABR one, and b) a model-free DRL approach with a rule-based
one.

Figure 5 illustrates a mean episodic reward (MER) collected during the
training. It is a classic learning curve: first MER explodes exponentially, then
decreases a bit and finally stabilizes on some plateau. As stated in Sect. 4.2,
the maximum step reward is equal to 1, then taking an episode equal to 640 s
(see Table 1) results in the maximum reward for one episode being 640. How-
ever, episodes are very diverse, and for some of them it is simply impossible to
achieve even half of the reward due to the extreme network conditions. Figure 6
shows the cumulative rewards collected during the three validation cases, which
makes it clear that MER from training is mostly influenced by the scenario’s
complexity and the network’s unpredictability.

ABR and DRL solutions were tested on the three validation scenarios and the
average outcomes were compared, see Fig. 7. DRL outperforms ABR in terms of
RTT and PLR in each of the three scenarios by sacrificing some bitrate. However,
for the “Moderate” and “Hard” scenarios DRL lowers GPT not so much in
percentage as improves the other two parameters. It is also worth saying that an
improvement of average RTT from, e.g., 80 to 60 ms is more valuable than the
proportional decrease in GPT from 5 to 4 mbit/s since the RCU is controlled
more reliably.

Fig. 5. Mean episodic reward during the
training.

Fig. 6. Rewards for each validation sce-
nario.

The only problem occurs with the “Easy” scenario: the agent sacrifices here
too much bitrate without a need. It could be explained that the environment-
agnostic agent learns more about how to find trade-offs in problematic cases:

Real-Time Data Transmission Optimization on 5G RCUs Using DRL 293

Fig. 7. The results of comparison between ABR (red) and DRL (blue) solutions on
“easy”, “moderate” and “hard” scenarios. (Color figure online)

if there is no loss and no strong congestion, then two of three optimization
parameters (RTT, PLR) are already almost at minimum, the algorithm just
needs to concentrate on keeping the transmission at the maximum rate. Such
scenarios happened during the training, but they are rare because if the agent
is trained on “Easy” scenarios too much, it starts losing its adaptive knowledge
too fast and always selects the highest bitrate. As the result, the agent has some
sort of a “fear” in “Easy” scenarios: it trembles between the two highest bitrates
expecting the packet loss that may come if it stays at the maximum rate too
long which will result in penalties. It is concluded that it requires adding some
additional expert knowledge in its state to both perceive the adaptivity and to
behave at the most optimal in all cases. This knowledge could be learned via
behavioral cloning on the expert dataset.

6 Summary

The main goal of this paper was to apply the environment-agnostic and model-
free DRL agent in an attempt to learn the real-data transmission problem in 5G
networks and to perform better than rule-based ABR solutions without imitating
their behavior. As an example problem for OC technology, it is the first step
towards a data management system that could adapt to every possible network
condition and control the data flow between an RCU and a human operator most

294 N. Smirnov and S. Tomforde

optimally. The results demonstrate the ability of the DRL agent to find in most
cases an effective balance between lowering the latency and loss rate without
lowering the amount of transferred data too much, therefore making a remote
control more reliable. While the DRL model was trained and tested only in a
simulation, its design enables easy deployment on real devices in the assistance
mode: a human operator might accept or ignore the suggested action at every
time step.

Apart from positive results, the limits of the pure environmental-agnostic
DRL approach were also clearly indicated. To be able to solve the problem in a
more general way, the agent’s state and reward function need to be enriched with
some environmental knowledge but only to some point to avoid overfitting. That
constitutes a possible future work, namely: a) to add some form of (imitated)
ABR rule-based strategy to the reward function deviating from the “model-free”
property, b) to add 5G channel indicators to the state that increases the quality
of predictions deviating from the “environment-agnostic” property, and c) to
transfer the task to a continuous action space to extend the diversity of possible
actions for more optimal strategies.

Acknowledgment. This research has been partly funded by the German Federal Min-
istry for Digital Affairs and Transport (Bundesministerium für Digitales und Verkehr)
within the project “CAPTN Förde 5G”, funding guideline: “5G Umsetzungsförderung
im Rahmen des 5G-Innovationsprogramms”, funding code: 45FGU139 H. The authors
acknowledge the financial support of the BMDV.

References

1. Biernacki, A.: Improving streaming video with deep learning-based network
throughput prediction. Appl. Sci. 12(20), 10274 (2022). https://doi.org/10.3390/
app122010274

2. Cui, L., Su, D., Yang, S., Wang, Z., Ming, Z.: TCLiVi: transmission control in live
video streaming based on deep reinforcement learning. IEEE Trans. Multimedia
23, 651–663 (2021). https://doi.org/10.1109/TMM.2020.2985631

3. Dao, N.N., Tran, A.T., Tu, N.H., Thanh, T.T., Bao, V.N.Q., Cho, S.: A contempo-
rary survey on live video streaming from a computation-driven perspective. ACM
Comput. Surv. 54(10), 1–38 (2022). https://doi.org/10.1145/3519552

4. Feng, Y., Liu, S., Zhu, Y.: Real-time spatio-temporal lidar point cloud compression
(2020)

5. Huang, S., Dossa, R.F.J., Raffin, A., Kanervisto, A., Wang, W.: The 37 imple-
mentation details of proximal policy optimization (2022). https://iclr-blog-track.
github.io/2022/03/25/ppo-implementation-details/. Accessed 08 Aug 2023

6. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming with FESTIVE. In: Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technologies,
pp. 97–108 (2012). https://doi.org/10.1145/2413176.2413189

7. Kaur, A., Singh, S.: A survey of streaming protocols for video transmission. In:
Proceedings of the International Conference on Data Science, Machine Learning
and Artificial Intelligence, pp. 186–191. Association for Computing Machinery, New
York (2022). https://doi.org/10.1145/3484824.3484892

https://doi.org/10.3390/app122010274
https://doi.org/10.3390/app122010274
https://doi.org/10.1109/TMM.2020.2985631
https://doi.org/10.1145/3519552
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1145/3484824.3484892

Real-Time Data Transmission Optimization on 5G RCUs Using DRL 295

8. Mao, H., Chen, S., Dimmery, D., Singh, S., Blaisdell, D., Tian, Y., et al.: Real-world
video adaptation with reinforcement learning (2020)

9. Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP
congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev. 27(3), 67–82
(1997). https://doi.org/10.1145/263932.264023

10. Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Systems for Sur-
vival in the Real World. Birkhäuser (2017)

11. Nardini, G., Sabella, D., Stea, G., Thakkar, P., Virdis, A.: Simu5G-An OMNeT++
library for end-to-end performance evaluation of 5G networks. IEEE Access 8,
181176–181191 (2020). https://doi.org/10.1109/ACCESS.2020.3028550

12. Nguyen, M., Lorenzi, D., Tashtarian, F., Hellwagner, H., Timmerer, C.: DoFP+: an
HTTP/3-based adaptive bitrate approach using retransmission techniques. IEEE
Access 10, 109565–109579 (2022). https://doi.org/10.1109/ACCESS.2022.3214827

13. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res.
22(268), 1–8 (2021)

14. Rekkas, V.P., Sotiroudis, S., Sarigiannidis, P., Wan, S., Karagiannidis, G.K.,
Goudos, S.K.: Machine learning in beyond 5G/6G networks - state-of-the-art
and future trends. Electronics 10(22), 2786 (2021). https://doi.org/10.3390/
electronics10222786

15. del Ŕıo Ponce, A., Serrano Romero, J., Jimenez Bermejo, D., Contreras, L.,
Alvarez, F.: A deep reinforcement learning quality optimization framework for
multimedia streaming over 5G networks. Appl. Sci. 12, 10343 (2022). https://doi.
org/10.3390/app122010343

16. Santos, G.L., Endo, P.T., Sadok, D., Kelner, J.: When 5G meets deep learn-
ing: a systematic review. Algorithms 13(9), 208 (2020). https://doi.org/10.3390/
a13090208

17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017)

18. Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P.A., et al.:
Emerging MPEG standards for point cloud compression. IEEE J. Emerg. Sel. Top.
Circ. Syst. 9(1), 133–148 (2019). https://doi.org/10.1109/JETCAS.2018.2885981

19. Smirnov, N., Tomforde, S.: Navigation support for an autonomous ferry using
deep reinforcement learning in simulated maritime environments. In: 2022 IEEE
Conference on Cognitive and Computational Aspects of Situation Management
(CogSIMA), pp. 142–149 (2022). https://doi.org/10.1109/CogSIMA54611.2022.
9830689

20. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: BOLA: near-optimal bitrate adap-
tation for online videos. IEEE/ACM Trans. Networking 28(4), 1698–1711 (2020).
https://doi.org/10.1109/TNET.2020.2996964

https://doi.org/10.1145/263932.264023
https://doi.org/10.1109/ACCESS.2020.3028550
https://doi.org/10.1109/ACCESS.2022.3214827
https://doi.org/10.3390/electronics10222786
https://doi.org/10.3390/electronics10222786
https://doi.org/10.3390/app122010343
https://doi.org/10.3390/app122010343
https://doi.org/10.3390/a13090208
https://doi.org/10.3390/a13090208
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1109/CogSIMA54611.2022.9830689
https://doi.org/10.1109/CogSIMA54611.2022.9830689
https://doi.org/10.1109/TNET.2020.2996964

Autonomous Ship Collision Avoidance
Trained on Observational Data

Raphael Schwinger(B) , Ghassan Al-Falouji , and Sven Tomforde

Christian-Albrechts-Universität zu Kiel, Kiel, Germany
{rsc,gaf,st}@informatik.uni-kiel.de

Abstract. Marine Autonomous Surface Ships (MASS) are gaining
interest worldwide with the potential to reshape mobility and freight
transport at sea. Collision avoidance and path planning are central com-
ponents of the intelligence of a MASS. While Deep Reinforcement Learn-
ing (DRL) techniques often learn these abilities in a simulated envi-
ronment, this article explores an alternative approach: learning collision
avoidance and path planning solely from observational data, thus min-
imizing the need for simulator-based training. A state-action dataset of
ship trajectories is constructed from recorded Automatic Identification
System (AIS) messages. Using this data, we examine the application
of the Prediction and Policy-learning Under Uncertainty (PPUU) tech-
nique, which involves training an action-conditional forward model and
learning a policy network by unrolling future states and back-propagating
errors from a self-defined cost function. To evaluate the learned policy,
FerryGym, a Gymnasium environment is developed for evaluating the
policy network using observational data.

Keywords: Interwoven Systems · Autonomous navigation ·
Reinforcement learning · Self-supervised learning · Autonomous vessels

1 Motivation

Maritime transportation has long been a crucial element in global trade and com-
merce, facilitating the movement of goods, people, and resources across the seas
and oceans of the world [14]. However, in the era of globalisation, the maritime
industry has been facing numerous challenges, including the increasing demand
for goods [18], safety concerns [15], and environmental issues [11]. To address
these challenges, there has been growing interest in developing autonomous mar-
itime operations, driven by efforts from fields such as Organic Computing [12].

More than 80% of marine collision accidents are caused by or mediated
through improper human decisions due to a lack of situational awareness and

This research has been partly funded by the German Ministry for Transport and Dig-
ital Infrastructure within the project “CAPTN FördeAreal - Erprobung einer (teil-)
autonomen, emmissionsfreien Fährschifffahrt im digitalen Testfeld” (45DTWV007B).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 296–310, 2023.
https://doi.org/10.1007/978-3-031-42785-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_20&domain=pdf
http://orcid.org/0009-0001-8519-3571
http://orcid.org/0000-0001-9458-6759
http://orcid.org/0000-0002-5825-8915
https://doi.org/10.1007/978-3-031-42785-5_20

Autonomous Ship Collision Avoidance Trained on Observational Data 297

failure to comply with the Convention on International Regulations for Prevent-
ing Collisions at Sea (COLREG) [24]. COLREG outlines enforceable marine
traffic rules that ships must adhere to in order to avoid collisions.

The operation of Marine Autonomous Surface Ships (MASS) in the con-
text of collectives of marine vessels can be considered as an Interwoven System
(IwS). An IwS is a complex multiplex of interconnected, self-organized systems,
operating independently of central control and characterized by interactively
coupled components. The openness and heterogeneity of the networked system
components can lead to constant changes in the topology and structure of IwS
components from a system-wide perspective. According to Tomforde et al. [21],
the key characteristics of an Interwoven System (IwS) can be summarized as
follows: (i) The ability of the system components and their federations to self-
organize. The challenges associated with the networked components and federa-
tions align with the Organic Computing (OC) initiative, cf. [22] (ii) The existence
of diverse administrative domains, as individual system components do not fall
under a single authority. (iii) The geographical separation of IwS components,
which defines their spread within the system. (iv) The operational independence
(i.e. self-organisation) and local interaction of system components can result in
unforeseen (emergent) behaviour [3]. IwS can recognise this emergent behaviour
and act accordingly. (v) The evolutionary development of the IwS system due
to the continuous change of its components during runtime. (vi) The uncer-
tainty in the system’s behaviour and decision-making results from the system
heterogeneity, self-organisation, and continuous evolution.

The operation of Marine Autonomous Surface Ships (MASS) requires inte-
gration within a constantly evolving, time-varying environment that comprises
heterogeneous components. Accordingly, the characteristics of Interwoven Sys-
tems (IwS) are highly relevant to the design, development, and operation of
MASS. A key aspect of this integration is ensuring safe navigation within the
marine environment, encompassing both voyage planning from a global per-
spective and collision avoidance with static and dynamic obstacles. This article
presents the adaptation of the Prediction and Policy-learning Under Uncertainty
(PPUU) method [4] for learning collision-free path planning in dense marine
environments from observational data.

The remainder of this paper is organized as follows: Sect. 2 provides back-
ground information on collision avoidance in MASS. Section 3 presents the adap-
tation of PPUU for MASS collision avoidance. Subsequently, Sect. 4 illustrates
the experimental setup and evaluates the results, followed by a discussion in
Sect. 5. The final section summarizes the approach adopted for developing MASS
navigation.

2 Background

MASS can be considered as mobile robots with six degrees of freedom [20],
i.e. three translational degrees (surge, sway and heave) and three rotational
degrees (roll, pitch and yaw). In the context of autonomous navigation, the
architecture of autonomous robots can, according to [26], be categorized into

298 R. Schwinger et al.

Traditional Architectures and Learning Architectures. Learning Architectures use
machine learning techniques to create a representation of the world model. The
trained model enables the mapping of input features into a sequence of nav-
igation actions. In the context of path planning for mobile robots, including
MASS, navigation plans generated by traditional algorithms often reach their
limits as problem complexity increases. Machine learning-based path planners,
in contrast, are notable for their adaptability to environmental changes, their
ability to handle uncertainty in complex environments, and their capacity for
multi-objective optimization. As a result, they provide enhanced generalization.

2.1 Learning Based Strategies

With an emphasis on Learning Architectures, Zhao et al. [24,25] proposed a
method that directly maps the states of encountered ships to the rudder angle
steering of the autonomous (own) ship (OS) using a deep neural network model
trained over trajectories of multiple ships using a policy-gradient-based deep
reinforcement learning (DRL) algorithm. This approach assumes that the states
of all agents have homogeneous manoeuvrability capabilities and are fully observ-
able by OS at every time step.

Zhai et al. [23] employ a single-agent Double Deep Q-learning network
(DDQN) model-free RL technique to steer a ship in a simulated environment.
The agent is trained on synthetic data for collision-free manoeuvres. However,
this model is not trained on other obstacle types than vessels, such as waterway
restrictions. As a result, this approach can be applied in open waters, but not
in coastal or harbour areas.

While these reinforcement learning (RL)-based methods have demonstrated
impressive results [17,26], they primarily rely on simulated environments with
synthetic or simulated scenarios for learning. This allows the trained agents
to manoeuvre and adapt within these confines. However, such an approach can
prove exhaustive and potentially unfeasible when applied to real-world scenarios,
given the wide array of uncertainties and unpredictable elements inherent in
these environments.

Behaviour cloning (BC) and RL are two popular techniques used for achieving
autonomy in maritime vessels. While both techniques have their own advantages
and disadvantages, BC has emerged as a promising approach for training naviga-
tional models for autonomous vessels. A key advantage is that it is a supervised
learning technique and only depends on the availability of labelled training data.
This makes it relatively straightforward to implement and allows it to adapt to
the context of complex environments. It’s capable of encoding the knowledge
of experts by imitating their actions for a given status. BC has proven to be
effective in handling complex tasks such as navigation and collision avoidance
[1,8,16], where it can leverage the vast amounts of data available from human
expert demonstrations. In contrast, RL may struggle to achieve optimal perfor-
mance in complex tasks due to the trial-and-error nature of its training. As such,
training an RL agent can be time-consuming and requires careful design of the
RL model, including the actions, states, policy, environment, and perhaps most
challenging of all, the appropriate reward functions.

Autonomous Ship Collision Avoidance Trained on Observational Data 299

Both BC and RL come with unique advantages and challenges. However, a
distinguishing strength of BC lies in its ability to learn policies - mappings from
states to actions - directly from observational data. This bypasses the RL require-
ment of designing an appropriate environment and reward function to train a
policy. Therefore, BC presents a compelling pathway towards autonomous mar-
itime vessels, especially in intricate scenarios where human experts can provide
labelled training data. Nevertheless, the performance of models trained using
a BC approach heavily depends on the quality of expert demonstrations. As a
result, BC can suffer from issues like distribution mismatch and lack of explo-
ration [10].

Prediction and Policy learning under Uncertainty (PPUU) developed by
Henaff et al. [4] is a technique to learn a policy in an RL setting from observa-
tional data. PPUU tries to address both the issues of RL and BC by learning an
action-conditional forward model that predicts future states depending on past
states and actions. This mitigates the need for a simulator. A policy then can be
learned by unfolding a couple of future states in the forward model and back-
propagating the gradients of a computed cost function to efficiently improve the
policy parameters. While training, the model can explore states not included
in the observational data and therefore reduce potential distribution mismatch.
However, PPUU has mostly been considered in the context of vehicular traffic
and not in maritime environments.

3 Approach

This section discusses the methodology used for adapting PPUU to generate
navigational paths for MASS using observational data. The anticipated result
is a policy capable of mapping the current state of the agent to an action that
navigates a collision-free route. The actions in this model are defined as straight-
forward accelerations and changes in direction. This approach does not account
for specific ship controls like rudder angle or propeller speed, or factors such as
weather conditions.

3.1 Automatic Identification System (AIS) as Training Data

The Automatic Identification System (AIS) is a system for broadcasting infor-
mation to other ships and shore stations. It has become an integral part of
maritime navigation and safety. AIS enables real-time monitoring of vessels,
providing critical information such as their identity, position, speed, and course.
This information is used by vessel operators to avoid collisions [6]. The Interna-
tional Maritime Organisation (IMO) has made AIS mandatory for vessels above
a certain size [5,7]. However, AIS can still be subject to errors and cyberattacks.
The accuracy and integrity of positions transmitted by AIS are, for example,
examined in [2]. Nonetheless, AIS continues to be used in many studies as the
most cost-effective source for tracking maritime vessels [13,19].

300 R. Schwinger et al.

3.2 MASS Collision Avoidance Using PPUU

Navigation MASS can be defined as an RL problem. The agent under control,
the own ship (OS), receives information about its state s from the environment.
This state needs to encapsulate all the necessary information to steer the ship
successfully towards its target. Hence, s is structured to include the following
attributes: (1) The position of the agent on a 2D plane, its velocity, and direc-
tion, represented as a vector u = (px, py, v, d) ∈ R

4. This vector encompasses the
attributes that the agent can directly control with its actions. (2) The surround-
ing neighbourhood of the agent, which includes waterways, obstacles, and the
positions and sizes of other vessels within the environment. The neighbouring
vessels are anticipated to adhere to the International Regulations for Preventing
Collisions at Sea (COLREGs) to avoid collisions. As OS is the only control-
lable agent, the other ships within the environment are presumed to follow their
trajectories as observed in the Automatic Identification System (AIS) training
set.

The design of the neighbourhood is relative to the ship’s position, to include
only the most pertinent information for navigation. An RGB image of fixed size
3 × w × h with width w ∈ N>0 and height h ∈ N>0 encodes the necessary
information. The agent is placed in the middle of the image in the blue channel
while considering its size in the representation. The red channel encodes parts
of the environment that the agent is restricted to traverse. The green channel
encodes other vessels and obstacles. In summary, a tuple of the state vector u
and the neighbourhood image i, represent the state s = (u, i). Figure 1 provides
an example of a neighbourhood image from the training dataset.

To encapsulate the dynamic behaviours of other vessels, a sequence of k states
sk:t, rather than a single state st, is utilised. In this manner, the movements
of other vessels are implicitly captured. Here, k signifies the number of past
states from the temporal index t, and sk:t defines the sequence of states from
st−k through to st. Given this sequence of states, the policy π calculates the
subsequent action at = π(sk:t) that the agent should take to reach its destination.
The action space is represented by a two-dimensional vector a = (Δv,Δd), which
encodes both acceleration and change in direction.

Action-Conditional Forward Model. An action-conditional forward model
fθ, with parameters θ, is learned from observational data. This model predicts
the subsequent state st+1 given a sequence of prior states sk:t, an action at,
and a latent variable zt. Training is carried out in a self-supervised fashion,
contrasting the network’s outcomes with observed samples from the training set,
with a particular emphasis on predicting the position, and thus the movement,
of vessels in proximity to the OS agent. As such, the forward model aims to learn
and understand the dynamics of the other ships.

Given the uncertainty surrounding the potential trajectories of neighbouring
vessels, the latent variable zt is used to encode the exact trajectory. Averaging
all possible trajectories is not beneficial, as the result can become imprecisely
blurry and unreliable for decision-making after just a few time steps. During

Autonomous Ship Collision Avoidance Trained on Observational Data 301

Fig. 1. Example of a neighbourhood image, encoding the agent ship in blue, other
vessels in green and the restrictions of the waterway in red. (Color figure online)

training, the latent variable zt is sampled from a distribution, the parameters of
which are computed by a posterior network. The network parameters are trained
in tandem with the other components of the forward model. Consequently, the
latent variable used during training depends on the actual next state in the train-
ing set, allowing the trained forward model to predict trajectories as observed
in the training set. In subsequent model usage, the latent variable is sampled
from a prior distribution that is independent of the next state, facilitating the
computation of different trajectories for the neighbouring vessels.

In the dataset, different actions are not evenly distributed across the entire
positional state space. For example, sharp turns are rare in the middle of the
waterway but quite common near a ferry terminal. The network might learn
this bias to follow commonly observed paths, and as a result, may not respond
appropriately to the actions. Since it’s necessary to internally link the state
vector u and the image i to predict the next state st+1, it was observed that
the network fails to learn the straightforward state integration of the action for
computing the next state. Henaff et al. [4] did not encounter this issue as their
neighbourhood images are not detailed enough to deduce the agent’s position
from them.

To counter this, it is essential to train the model to integrate the action into
the current state to calculate the next state. Additional training is performed on
synthetic data. Here, a random position, velocity, and direction in the training
set space are sampled, and random actions are applied for random durations.
The target states can then be calculated using the same state integration that the
network is intended to learn. The inclusion of synthetic data has the advantage
of providing additional trajectories in a uniformly distributed manner, which
can reduce the bias effect in the training data. A hyperparameter is introduced
to control the frequency of training on synthetic data. As synthetic trajectories
do not include a proper image which the agent could infer its position from, this
technique is called image dropout.

302 R. Schwinger et al.

Policy Learning. The forward model can then be used to train a policy net-
work πψ with parameters ψ. Random state sequences sk:t are sampled from the
training set. Here, t represents a specific index of the training set, and sk:t repre-
sents the sequence of k ∈ N>0 consecutive states ending with state st. An action
from the policy network at = πψ(sk:t) is computed and used as input for the
forward model to predict the next state st+1 = fθ(sk:t, at, zt). In this case, the
latent variable zt is sampled from the prior distribution zt = p(z). This process
is repeated T ∈ N>0 times, and a scalar cost value is calculated to update the
parameters ψ by backpropagation.

To define a cost function, Model Predictive Policy learning with Uncertainty
Regulation (MPUR) [4] is adapted for MASS navigation. MPUR uses a cost func-
tion consisting of two terms. First, a task-specific cost function C(ŝt+1) evaluates
how bad the predicted next state st+1 is for reaching the agent’s objectives. This
includes three objectives: The target cost t(ŝt+1), which results in a lower cost
for states that are closer to the target. The proximity cost p(ŝt+1) penalises the
agent if it gets close to other ships. Lastly, the land cost function l(ŝt+1) quan-
tifies a high penalty cost if the agent gets near land or other obstacles in the
waterway. The task-specific cost function is then computed as the weighted sum,
with hyperparameters τ, ρ, ι ∈ [0, 1], of the individual parts.

C(ŝt+1) = τt(ŝt+1) + ρp(ŝt+1) + ιl(ŝt+1) (1)

The second term of the cost function is the uncertainty cost U(ŝt+1). This
term quantifies the uncertainty of the forward model by the variance of outputs
when predicting the state ŝt+1 on the same inputs with different dropout masks.

This results in minimising the following term to update the parameters of
the network:

argmin
ψ

[
T∑

i=1

C(ŝt+i) − λU(ŝt+i)

]
,

such that:

⎧⎨
⎩

zt+i−1 ∼ p(z)
at+i−1 ∼ πψ(ŝk:t+i−1)
ŝt+i = f(ŝk:t+i−1, ât+i−1, zt+i−1)

(2)

The hyperparameter λ controls the influence of the uncertainty cost com-
pared to the task-specific cost.

4 Evaluation

This section describes the experimental setup, followed by results and discussion.

4.1 Experimental Setup

In order to train a policy with PPUU, a dataset of state-action pairs is required.
Therefore, AIS messages within a specific time interval for the region of the Fjord

Autonomous Ship Collision Avoidance Trained on Observational Data 303

of Kiel were collected using a proprietary antenna, as AIS data is not freely
available. These filtered data were then interpolated at one-second intervals.
Speed and direction were calculated from the position data. The action a vessel
took to reach its next state was inferred from the difference between the current
and the next state, thereby calculating acceleration and change in direction.
The resultant dataset covers an observation period of 24 h, comprising a total
of 336,752 messages. For each of these messages, a neighbourhood image was
generated, as exemplified in Fig. 1, yielding a dataset size of 11 GB.

FerryGym1, a Gymnasium environment modelling the path planning prob-
lem in the Kiel Fjord is developed to test trained policies. The environment is
initialised with a starting- and destination position, as well as a dataset con-
taining trajectories of vessels. The state of the environment at a given time step
includes attributes of the agent ship, other vessels, the target, and the waterway.
Each vessel is modelled as an object with position, velocity, direction, length, and
width attributes. Figure 2 presents a screenshot of the simulator environment.

Action-Conditional Forward Model. To train an action-conditional for-
ward model, the dataset is processed in batches. Initiated with a data frame,
a data loader computes statistics for normalization and partitions the dataset
into training, testing, and validation sets. Following this, it constructs batches
of training data.

The same architecture as from Henaff et al. [4], consisting of three main com-
ponents: an encoder network, a hidden network, and a decoder network, is used.
The encoder encodes state sequences and actions into a hidden representation.
The hidden network receives this representation and outputs a tensor of the same
dimensionality. The decoder computes the prediction from the hidden represen-
tation. Two types of forward models are deployed. A deterministic DNN, and
a stochastic variational autoencoder (VAE) model with a sampled latent vari-
able. During training, the VAE model is initialised with the DNN and continues
training. A selection of important hyperparameters is presented in Table 1. The
Adam optimiser [9] is used.

Policy Learning. For the policy network, the same architecture as from Henaff
et al. [4] is used again. This network consists of an encoder network, with the
same architecture as in the forward model, a linear layered network, and another
linear layered network to output the two-dimensional action.

The MPUR adaptation approach uses a task-specific cost function. One com-
ponent is the target cost function that compares the direction of the agent with
the optimal direction towards the target. It also penalises the agent for not mov-

1 https://github.com/raphaelschwinger/FerryGym
https://github.com/raphaelschwinger/PPUU-FerryGym.

https://github.com/raphaelschwinger/FerryGym
https://github.com/raphaelschwinger/PPUU-FerryGym

304 R. Schwinger et al.

Table 1. A selection of hyperparameters used for training the forward model.

Hyperparameters

Parameter name Description Default value

ncond Number of input states 10

npred Number of predicted states 20

batch size Batch size 8

synthetic Fraction of synthetic training data 0.5

ing at the desired speed. The hyperparameter vdesired controls the influence of
the speed penalty. The target cost is calculated by the function t(ŝt+1):

Δd(ŝt+1) = |ŝt+1[dopt] − ŝt+1[v]|
dcost(ŝt+1) = | sin(0.5 · Δd(ŝt+1))|
vcost(ŝt+1) = | − 1

vdesired
∗ ŝt+1[v] + 1|

t(ŝt+1) = min(dcost(ŝt+1) + vcost(ŝt+1), 1)

(3)

In the notation above, ŝt+1[dopt] symbolizes the optimal direction towards
the target, ŝt+1[d] signifies the direction of the agent, and ŝt+1[v] denotes the
speed of the agent.

The proximity cost function p(ŝt+1) penalises the agent for getting close to
other ships using a 2D Gaussian kernel, as shown in Fig. 3. It is applied to the
green channel of the neighbourhood state’s image.

Finally, the land cost function l(ŝt+1) penalises the agent for getting close to
land, using the state’s image red channel encoding the waterway restrictions:

p(ŝt+1) = max ŝt+1[image][1] ∗ mask (4)
l(ŝt+1) = max ŝt+1[image][0] ∗ mask (5)

4.2 Results

Action-Conditional Forward Model. The action-conditional forward model
is tested on a validation dataset. It can predict states closely matching the target
states. However, anomalies can be observed where the ship is not responding to
given actions and instead follows trajectories commonly observed in the training
set. For instance, when the task is to predict the trajectory of doing a strict turn
in the middle of the waterway, the predicted states do not respond to the action
and follow the same path as in the training set, as shown in Fig. 5a. This is a
problem for our policy learning approach, as we need a correct response to our
actions to judge the actions for policy learning. For this reason, the image dropout
technique is used. As Fig. 5b demonstrates, this improves the performance of

Autonomous Ship Collision Avoidance Trained on Observational Data 305

Fig. 2. The FerryGym environment with
the waterway in dark blue as a back-
ground layer, the agent in blue and
other ships in yellow green. (Color figure
online)

Fig. 3. The Gaussian 2D mask used for
proximity and land cost function.

the forward model. The predicted neighbourhood images, as shown in Fig. 4,
demonstrate that the forward model predicts future neighbourhood images with
decent precision. Also, the turning movement where the waterway restrictions
move around OS is captured. Other ships are not present in this sample example.

As shown in Fig. 6, the forward model fails to predict the position of other
ships in the dataset. It is suspected that the reason for this is that the other
ships are sparsely present in the training dataset. Utilising a substantially larger
dataset and dedicating more training time will likely improve the predictions of
the forward model for the positions of other ships. An improvement by using the
VAE model compared to the DNN could not be observed.

Fig. 4. Neighbourhood images of the ship getting closer to the ferry terminal. The ship
is shown in blue, restrictions of the waterway are in red. (Color figure online)

306 R. Schwinger et al.

(a) Forward model trained without
image dropout.

(b) Forward model trained with image
dropout - trained alternating on the train-
ing set and synthetic data.

Fig. 5. Forward model predicting the next states when performing a left turn with the
actions (0,−5). The target states of the dataset with a different action are shown in
purple. OpenSeaMap data is used as a background layer.

Policy Learning. All experiments with the trained policies are assessed in the
FerryGym simulator environment. The environment is initialised by a start posi-
tion, speed and direction of the OS agent. The environment loads the trajectories
of other vessels from the dataset and updates their position accordingly.

Figure 7a visualises five trajectories of an agent steered with a trained MPUR
policy. The start position is set near a ferry terminal and an initial heading
toward the target is given. The agents stand still at the beginning, then they
accelerate towards the target. One agent reaches the target, two agents miss by a
few meters, and two sail past the target and then turn towards the target again.
The latter four are running aground. In Fig. 7c, the target cost is decreasing at
the beginning of the trajectory. This matches with the agents accelerating at
the beginning until reaching the defined maximal speed. After the acceleration,
the target cost is kept at a relatively low level. The heading of the agent directs
towards the destination. As seen in Fig. 7d, the agent is constantly steering right
and left to keep the optimal angle towards the target. Contrary to the plotted
trajectory in Fig. 7a, the differences in the direction states are visible in Fig. 7b.
When the agent is getting closer to the target, the land cost increases. Also, in
the first third of the trajectory, an increase in land cost is visible. The proximity
cost, indicating other vessels nearby, is not changing within the trajectory, other
ships are not close, and therefore, no collision had to be avoided.

Autonomous Ship Collision Avoidance Trained on Observational Data 307

(a) Prediction image of the forward model,
no other ships are present.

(b) Target image of the validation dataset,
other ships are present.

Fig. 6. Forward model predicting neighbourhood images with other ships in the neigh-
bourhood. The ego ship is shown in blue, the other ships in yellow-green and the
restrictions of the waterway in red. (Color figure online)

(a) Trajectories of five policy runs. (b) Speed and direction states of the agent
in the first trajectory.

(c) Target, proximity and
land cost in the first trajectory.

(d) Acceleration and direction change ac-
tions in the first trajectory.

Fig. 7. MPUR policy starts near the Reventlou ferry terminal. No initial speed but in
the direction of the target.

308 R. Schwinger et al.

5 Discussion

Learning to predict the future states of a MASS environment using an action-
conditional forward model poses considerable challenges. Our results indicate
that the method we used for training the forward model yields a model capable
of predicting the state vector with a degree of precision suitable for collision
avoidance tasks. Moreover, the predicted future neighbourhood images encap-
sulate the waterway’s constraints with acceptable accuracy. Implementing the
training technique of Henaff et al. [4] for MASS, using the collected AIS data, was
met with difficulties due to the model’s insensitivity to rare action behaviours
within the training dataset. Given the unequal distribution of actions across the
environment, the model tends to learn to perform specific actions in specific
areas only. In response to this issue, we incorporated the image dropout tech-
nique, which significantly enhanced the model’s action responsiveness. Unlike
the task of navigating dense traffic on a highway, as was the case in Henaff et
al.’s study, the task of sailing across the Kiel Fjord is more unconstrained. In
the highway scenario, all cars move in the same direction and the steering angles
are considerably more limited. In contrast, for MASS, ships can move in various
directions, adding to the complexity of predicting the next states.

However, the forward model we developed for MASS failed to produce sig-
nificant results in predicting other ship movements, largely due to the sparse
traffic in the AIS dataset. This sparsity afforded the model too little “active”
observational data to learn effectively from. Given the necessity of learning to
accurately respond to actions for model predictive policy learning, our focus was
primarily on this aspect. The improvement of trajectory predictions remains a
subject for further research.

The MPUR policy can effectively guide the agent towards the target, how-
ever, it sometimes fails to avoid waterway restrictions and frequently runs
aground when land obstructs the path to the target. Nevertheless, these results
demonstrate the forward model’s capacity to predict states with sufficient accu-
racy for model-predictive policy learning. The current hyperparameter configu-
ration undervalues the land cost, resulting in the policy’s incomplete learning of
static obstacle avoidance. The model does not demonstrate an ability to avoid
other ships, which is unsurprising given the forward model’s insufficient accuracy
in predicting the future positions of other vessels.

Potential improvements could be achieved through the expansion of the
dataset, although this would require significantly more training time and was not
feasible within the scope of this project. Experimenting with different hyperpa-
rameters could be conducted to explore the robustness of the approach. An addi-
tional area for future work could be the inclusion of the ships’ targets, which can
also be derived from the AIS data, as an input parameter. Once the model is ade-
quately improved, it would be worthwhile to compare it with other approaches,
such as BC or model-free RL.

Autonomous Ship Collision Avoidance Trained on Observational Data 309

6 Conclusion

This article aims at learning a path planning and collision avoidance policy for
autonomous ship navigation using PPUU. The state space of an agent includes
the position, velocity, heading, and image encoding of its neighbourhood. The
developed action-conditional forward model faces challenges in predicting ship
trajectories and future positions of other ships in the neighbourhood. To improve
the model performance, training alternates between the observational dataset
and synthetic trajectories. This significantly improves prediction results. Using
the trained forward model, the results of the policy learning indicate the ability
to avoid running aground, but collision avoidance with dynamic obstacles could
not be confirmed. These findings contribute to the overall understanding of the
problem and represent the initial steps in learning MASS collision avoidance
with PPUU.

References

1. Devi, T.K., Srivatsava, A., Mudgal, K.K., Jayanti, R.R., Karthick, T.: Behaviour
cloning for autonomous driving. Webology 17(2), 694–705 (2020)

2. Felski, A., Jaskólski, K.: The integrity of information received by means of AIS
during anti-collision manoeuvring. TransNav: Int. J. Mar. Navig. Saf. Sea Transp.
7(1), 95–100 (2013)

3. Fisch, D., Jänicke, M., Sick, B., Müller-Schloer, C.: Quantitative emergence-a
refined approach based on divergence measures. In: 2010 Fourth IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, pp. 94–103. IEEE
Computer Society (2010)

4. Henaff, M., Canziani, A., LeCun, Y.: Model-predictive policy learning with uncer-
tainty regularization for driving in dense traffic (2019)

5. Bundesamt für Seeschifffahrt und Hydrographie, B.: German Traffic Reg-
ulations for Navigable Maritime Waterways (2022). https://www.bsh.
de/DE/PUBLIKATIONEN/Anlagen/Downloads/Nautik und Schifffahrt/
Seehandbuecher ueberregional/SeeschStrO engl.pdf? blob=publicationFile&
v=16. Accessed 3 Oct 2022

6. IMO: Resolution A.1106(29) (2001). https://wwwcdn.imo.org/localresources/en/
KnowledgeCentre/IndexofIMOResolutions/AssemblyDocuments/A.917(22).pdf.
Accessed 3 Oct 2022

7. IMORULES: SOLAS regulation V/19 (2022). https://www.imorules.com/SOLAS
REGV.A.19.html. Accessed 3 Oct 2022

8. Kebria, P.M., et al.: Autonomous navigation via deep imitation and transfer learn-
ing: a comparative study. In: 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 2907–2912. IEEE (2020)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
doi.org/10.48550/ARXIV.1412.6980. https://arxiv.org/abs/1412.6980

10. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey.
Int. J. Robot. Res. 32(11), 1238–1274 (2013)

11. Lee, P.T.W., Kwon, O.K., Ruan, X.: Sustainability challenges in maritime trans-
port and logistics industry and its way ahead (2019)

https://www.bsh.de/DE/PUBLIKATIONEN/Anlagen/Downloads/Nautik_und_Schifffahrt/Seehandbuecher_ueberregional/SeeschStrO_engl.pdf?__blob=publicationFile&v=16
https://www.bsh.de/DE/PUBLIKATIONEN/Anlagen/Downloads/Nautik_und_Schifffahrt/Seehandbuecher_ueberregional/SeeschStrO_engl.pdf?__blob=publicationFile&v=16
https://www.bsh.de/DE/PUBLIKATIONEN/Anlagen/Downloads/Nautik_und_Schifffahrt/Seehandbuecher_ueberregional/SeeschStrO_engl.pdf?__blob=publicationFile&v=16
https://www.bsh.de/DE/PUBLIKATIONEN/Anlagen/Downloads/Nautik_und_Schifffahrt/Seehandbuecher_ueberregional/SeeschStrO_engl.pdf?__blob=publicationFile&v=16
https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/AssemblyDocuments/A.917(22).pdf
https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/AssemblyDocuments/A.917(22).pdf
https://www.imorules.com/SOLAS_REGV.A.19.html
https://www.imorules.com/SOLAS_REGV.A.19.html
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980

310 R. Schwinger et al.

12. Müller-Schloer, C., Tomforde, S.: Organic Computing-Technical Systems for Sur-
vival in the Real World. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68477-2

13. Nguyen, D., Vadaine, R., Hajduch, G., Garello, R., Fablet, R.: A multi-task deep
learning architecture for maritime surveillance using AIS data streams. In: 2018
IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA), pp. 331–340. IEEE (2018)

14. Pasha, J., et al.: Holistic tactical-level planning in liner shipping: an exact optimiza-
tion approach. J. Shipping Trade 5(1), 8 (2020). https://doi.org/10.1186/s41072-
020-00060-4

15. Rothblum, A.M.: Human error and marine safety. In: National Safety Council
Congress and Expo, Orlando, FL, vol. 7 (2000)

16. Saksena, S.K., Navaneethkrishnan, B., Hegde, S., Raja, P., Vishwanath, R.M.:
Towards behavioural cloning for autonomous driving. In: 2019 Third IEEE Inter-
national Conference on Robotic Computing (IRC), pp. 560–567. IEEE (2019)

17. Sarhadi, P., Naeem, W., Athanasopoulos, N.: A survey of recent machine learning
solutions for ship collision avoidance and mission planning (2022)

18. Schaefer, N., Barale, V.: Maritime spatial planning: opportunities & challenges
in the framework of the EU integrated maritime policy. J. Coast. Conserv. 15,
237–245 (2011)

19. Schwehr, K.D., McGillivary, P.A.: Marine ship automatic identification system
(AIS) for enhanced coastal security capabilities: an oil spill tracking application.
In: OCEANS 2007, pp. 1–9. IEEE (2007)

20. Singh, Y., Sharma, S., Sutton, R., Hatton, D., Khan, A.: Efficient optimal path
planning of unmanned surface vehicles. In: Navigation and Control of Autonomous
Marine Vehicles. Institution of Engineering and Technology (2019)

21. Tomforde, S., et al.: Engineering and mastering interwoven systems. In: ARCS
2014; 2014 Workshop Proceedings on Architecture of Computing Systems, pp. 1–
8. VDE (2014)

22. Tomforde, S., Sick, B., Müller-Schloer, C.: Organic computing in the spotlight.
arXiv preprint arXiv:1701.08125 (2017)

23. Zhai, P., Zhang, Y., Shaobo, W.: Intelligent ship collision avoidance algorithm
based on DDQN with prioritized experience replay under COLREGs. J. Mar.
Sci. Eng. 10(5), 585 (2022). https://doi.org/10.3390/jmse10050585. https://www.
mdpi.com/2077-1312/10/5/585

24. Zhao, L., Roh, M.I.: COLREGs-compliant multiship collision avoidance based on
deep reinforcement learning. Ocean Eng. 191, 106436 (2019)

25. Zhao, L., Roh, M.I., Lee, S.J.: Control method for path following and collision
avoidance of autonomous ship based on deep reinforcement learning. J. Mar. Sci.
Technol. 27(4), 1 (2019)

26. Zhou, C., Huang, B., Fränti, P.: A review of motion planning algorithms for intel-
ligent robots. J. Intell. Manuf. 1–38 (2021)

https://doi.org/10.1007/978-3-319-68477-2
https://doi.org/10.1007/978-3-319-68477-2
https://doi.org/10.1186/s41072-020-00060-4
https://doi.org/10.1186/s41072-020-00060-4
http://arxiv.org/abs/1701.08125
https://doi.org/10.3390/jmse10050585
https://www.mdpi.com/2077-1312/10/5/585
https://www.mdpi.com/2077-1312/10/5/585

Towards Dependable Unmanned Aerial
Vehicle Swarms Using Organic Computing

Jonas Diegelmann(B), Philipp Homann, Mathias Pacher, and Uwe Brinkschulte

Institut für Informatik, Goethe University Frankfurt, Frankfurt am Main, Germany
{J.Diegelmann,phomann}@em.uni-frankfurt.de, mpacher@uni-frankfurt.de,

brinks@es.cs.uni-frankfurt.de

Abstract. Organic Computing (OC) is a well-known research field aim-
ing to build dependable embedded systems. OC systems often employ
self-X properties such as self-configuration, self-healing, etc. These prop-
erties are inherent to several biological systems such as the human body
and offer a blueprint for technical systems.

The Artificial DNA (ADNA) system was developed in the scope of the
OC research. Its basic idea is to build a dependable embedded system
from a textual description (the artificial DNA – as a technical counter-
part to the DNA in biological cells).

Our contribution in this paper is to use the ADNA system to real-
ize a highly dependable drone swarm providing self-X properties. We
describe details of our drone demonstrator which we built for this pur-
pose. In addition, we describe the extensions on the ADNA system to
realize functions such as path planning and swarm control. The evalua-
tion considers time delays in the WiFi connection between drones and
Ground Control Stations (GCSs) and demonstrates that the real-time
requirements of the ADNA system mostly hold despite the delays.

Keywords: Organic Computing · Middleware · Artificial DNA ·
Dependable drone swarms

1 Introduction

Along with the increasing complexity of distributed computing systems in
today’s and tomorrow’s technical applications such as autonomous cars or
Unmanned Aerial Vehicles (UAVs), commonly known as drones, highly depend-
able and fault-tolerant computing systems are mandatory. An approach to estab-
lish dependable systems is proposed in [2]. Its main idea is that most embedded
systems are composed of a limited number of (simple) basic blocks such as ALUs,
memory cells, counters, etc. The authors define an ADNA as a textual descrip-
tion on (a) which basic blocks are needed to build a specific embedded system
and (b) which communication relations these basic blocks have. The ADNA is
then spread to all processors/computational nodes in the distributed system.
The processors use a task allocation system (i.e. the Artificial Hormone System
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 311–325, 2023.
https://doi.org/10.1007/978-3-031-42785-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42785-5_21&domain=pdf
https://doi.org/10.1007/978-3-031-42785-5_21

312 J. Diegelmann et al.

(AHS)) to instantiate the basic blocks. The ADNA system builds the embedded
system described in the ADNA in a self-organizing way and is robust to task
and processor failures, thus, employing self-X properties [2].

Drone swarms (i.e. autonomous guided vehicles) have a broad application
field: They can be used to monitor people, railway lines, and other critical infras-
tructure. Therefore, it is important that drone swarms are highly dependable and
can perform their missions even when some drones are failing.

Thus, our aim is to use the ADNA system for drone swarms. We adopted the
ADNA system to run on a GCS as well as on the companion computers on drones
thus providing the overall system with the dependability features mentioned
above. This scenario is shown in an example in Fig. 1: We have some processors
running the ADNA system (the ADNA processors). These processors might be
companion computers on the drones or computers in the GCS and communicate
by wireless LAN. The ADNA system guarantees high dependability and sends
the commands to the flight controllers which are on board of each drone.

ADNA
processor

1

ADNA
processor

n

Flight
controller

.

.

.

Flight
controller

Drone 1

Drone 2

Fig. 1. An ADNA-controlled drone swarm consisting of two drones

Our contributions in this paper are threefold:

– We present complex ADNA building blocks to control a drone or a drone
swarm. These new ADNA blocks are necessary for two reasons: (1) They
encapsulate specific functions such as a group controller to coordinate the
drone swarm or a path planner to compute a drone’s trajectory. (2) The
purpose of these blocks is so complex that it is not feasible to take the simple
basic blocks mentioned above (such as ALUs, multiplexers, and so on) to
compose the needed functionality.

Towards Dependable UAV Swarms Using OC 313

– The complex ADNA building blocks need to communicate with each other.
While the simple basic blocks just send float messages the complex blocks
need to send messages with more information. Therefore, we extended the
communication message format for ADNA blocks and present the extensions
here.

– We test our ADNA system on a real drone1 which is connected by WiFi to the
GCS. An important factor is the communication latency introduced by this
communication method as it affects the dependability of the overall system.
Therefore, we evaluated the communication latency between the drone and
GCS.

The paper is structured as follows: We describe the related work in Sect. 2.
The system architecture of our drones in combination with the ADNA system
is explained in Sect. 3. The new complex ADNA building blocks are described
in Sect. 4. They need new types of messages which are presented in Sect. 5. The
evaluation is provided in Sect. 6. Section 7 concludes the paper.

2 Related Work

The ADNA system’s real-world application is an ongoing research topic. The
utilization of organic computing principles enables new possibilities for robust
system design. The Autonomic Computing project [6], a joint effort by IBM
and DARPA, focuses on the self-organization of IT servers within networks.
The project postulates several self-X properties, including self-optimization, self-
configuration, self-protection, and self-healing.

The integration of new elements into the ADNA system holds significant
potential for enhancing the system’s performance. In [5] the authors introduce a
new ADNA element that extends the basic element library. The presented new
ADNA element can be generally used and introduces the functionality of task
dependencies. In contrast, the here presented complex ADNA elements fulfill a
dedicated role and are specifically designed to match a use case.

A similar approach to the integration of Organic Computing (OC) to a swarm
of UAVs is presented in the OCbotics project [7]. The authors use a multi-layer
system design and Learning Classifier Systems (LCSs) to achieve swarm-wide
objectives, such as cleaning the facades of tall buildings. The presented project
focuses on researching different learning algorithms to optimize swarm behavior.
Contrary to the here presented approach, this system does not regard self-X
properties on a processor level.

In [3] a real-world application of the ADNA system on a self-balancing vehicle
is presented. This approach directly applies the ADNA system to control the
vehicle hardware. The contribution in our paper aims to apply the ADNA system
on a swarm of UAVs to manage superordinate goals, rather than controlling
individual drone hardware.

1 Initial tests were performed in a simulation environment for safety reasons.

314 J. Diegelmann et al.

3 Architecture of the ADNA System for Drones

Hormone/Task Network
(Wireless, UDP)

UART,
MAVLink

ADNA
Processors

Ground Control Station

Active ADNA

ADNA
Processors Active ADNA

Onboard Processors

Flight Controller

Drone 1

...
UART,

MAVLink

ADNA
Processors Active ADNA

Onboard Processors

Flight Controller

Drone n

Fig. 2. Architecture of the ADNA system for drones

The integration of the ADNA system has the potential to greatly enhance the
resilience of UAV swarms against individual drone failures. The setup in which
the ADNA system is applied is depicted in Fig. 2. This system manages the
high-level control of a swarm of UAVs, each of which is equipped with at least
one onboard processor that can run multiple instances of the ADNA system
(referred to as ADNA processors). Additionally, a specialized GCS has been
integrated into the system, providing the user with the ability to control individ-
ual drones or groups of drones. To facilitate mid-flight communication between
individual swarm members and between swarm members and the GCS, ADNA
messages need to be transmitted through wireless means. Thus, new challenges
such as higher communication latencies and a higher packet loss ratio arise.
The onboard computer and the flight controller communicate through a Uni-
versal Asynchronous Receiver Transmitter (UART) connection. For the system
to interact with a multitude of autopilots without adjustments to the ADNA,
the widely adopted MAVLink [8] protocol is used as an interoperability interface.
MAVLink is a lightweight communication protocol for controlling and monitoring
UAVs and provides an open-source header-only library optimized for resource-
constrained systems. MAVLink messages are composed of a very lightweight

Towards Dependable UAV Swarms Using OC 315

header, a payload, and a checksum. Additionally, MAVLink 2.0 introduced an
optional signature, allowing for message authentication.

MAVLink is supported by several autopilots, such as the open-source autopi-
lots Ardupilot [1] and PX4 [9].

The interface layer between the autopilot and the ADNA system is imple-
mented using two ADNA elements, MAVLinkSensor and MAVLinkActor. The
former handles all incoming MAVLink messages, while the latter handles all
outgoing MAVLink messages. Messages received by the MAVLinkSensor are
evaluated and the relevant data is distributed to the respective ADNA tasks.
Complementary to the MAVLinkSensor, the MAVLinkActor receives messages
from other ADNA elements, translates them into MAVLink messages, and sends
them to the autopilot. For security reasons, our architecture mandates that the
autopilots only accept MAVLink messages transmitted via the UART port. Con-
sequently, both the MAVLinkSensor and the MAVLinkActor are limited to exe-
cution on a processor with direct access to the flight controller.

4 Novel ADNA UAV Elements

MAVLinkSensor

1

2

3

4

5

MultiSensor

1

2

3

4

5

PathPlanner

11

2

3

4
2

StateController

1

1

2

MAVLinkActor

1

2

3

MultiSensor

1

GroupController

1

2

3

4

5

1

2

3

4

U
A
V

AttitudeController

1

1

2

MultiActor7

G
e
n
e
ra
l

6
5
4
3
2
1

Fig. 3. Block diagram of the ADNA for a setup with a single UAV and a GCS. ADNA
elements inside the UAV block (blue) are replicated for each additional drone. (Color
figure online)

Controlling swarms of UAVs requires many complex functions, that can not be
feasibly built from the available basic blocks. For this reason, the introduction of
complex ADNA elements is necessary. Figure 3 shows the ADNA for a setup with
a single UAV and a GCS. The ADNA elements inside the blue box are vehicle-
specific, while the ADNA elements in the grey box are vehicle-unspecific. As the

316 J. Diegelmann et al.

number of swarm members increases, only the vehicle-specific ADNA elements
are replicated. Sensor and actor elements provide interfaces to components out-
side the ADNA system.

Elements such as GroupController, PathPlanner, StateController and Atti-
tudeController manage swarm and/or individual drone behavior. The StateCon-
troller ADNA element works as a state machine that receives the current and
target state of the drone and outputs state transitions to the flight controller. The
AttitudeController ADNA element is able to receive and process drone-specific
attitude commands. This includes changing the current yaw. In the following, we
will explain the new complex ADNA elements GroupController and PathPlanner
in detail.

4.1 GroupController

Many real-world applications of drone swarms require the division of swarm
members into groups so that each group can fulfill a dedicated role. The Group-
Controller allows the dynamic grouping of drones during run time and the
dynamic positioning of group member drones.

The element makes three important assumptions regarding drone behavior
with respect to groups, as well as the total number of available groups:

1. Group management is controlled by the central GroupController element.
2. Every drone is always assigned to exactly one group, in order to guarantee

that group management can always control each drone in the swarm.
3. For n drones in the swarm there are n groups g0...gn−1, where each group

can contain 0 to n drones. Each drone must be able to solely inhabit a group
to enable individual drone control by the GroupController.

Every processor in the drone swarm is able to execute the GroupController,
therefore the centralized approach does not cause a single point of failure. By
employing the ADNA system’s internal state saving mechanism StateTransfer,
the current state of the GroupController instance can be recovered in the case of
a failure. The centralized design was chosen to reduce the communication load
and complexity.

When the GroupController element is initially executed on any processor,
all drones are placed in group g0. Figure 4 shows all source- and destinationlink
channels of the GroupController element.

The first sourcelink channel receives movement commands for drones or
groups. The resulting output is dependent on the type of input command. Drone-
specific movement commands will move the affected drone to an empty group and
issue the command. Group-specific movement commands will generate output
for each group member individually. Since it is not possible for group members
to occupy the same position, the original target position of the group is altered,
so that the group members position themselves in a circle around the origi-
nal target position. This process is illustrated in Fig. 5 for groups of three and
four drones. This procedure can be extended to any number of drones, as long

Towards Dependable UAV Swarms Using OC 317

Fig. 4. Visualisation of the GroupController ADNA element and associated
sourcelink/destinationlink channels

as there remains enough space between group member drones. The calculated
target positions for the individual drones are communicated to the respective
PathPlanner elements.

Group affiliation of specific drones can be changed through the GroupID
sourcelink channel 2. The current group affiliation is then propagated on desti-
nationlink channel 1. This information is mainly used by the GCS for displaying
the correct group affiliation.

The remaining sourcelink channels 3 to 5 receive AutoGroupMode, radius and
target reached information respectively. This information is internally used to
dynamically alter swarm positioning, as well as verify that a movement command
has been executed. The current radius and AutoGroupMode values are saved and
output on destinationlink channels 2 and 3, respectively.

Fig. 5. Visualization of drone group formations and their transition with AutoGroup-
Mode

If AutoGroupMode is activated, drones that join a group will automatically
assume a position in the current circle formation of the group. Likewise, drones
that leave a group, will cause the remaining group members to dynamically
change their positions in the circle formation. This process is shown in Fig. 5.

318 J. Diegelmann et al.

4.2 PathPlanner

The PathPlanner element is another integral part of drone control in the ADNA
system. It is responsible for path planning and collision avoidance. The Path-
Planner is executed once per drone and receives movement commands from the
central GroupController instance. Figure 6 shows the PathPlanner sourcelink
and destinationlink channels. The PathPlanner element will only allow drone
movement once the distance sensor data (sourcelink channel 1), current posi-
tion (sourcelink channel 2), current state (sourcelink channel 4), and the other
drones’ positions (sourcelink channel 5) provide plausible data, to ensure that
collision avoidance is feasible.2

Movement commands are received on sourcelink channel 3. Once a command
has been received, the element will perform sanity checks on the movement
command data, concerning format, and acceptable value range. If the command
is accepted, the PathPlanner proceeds to the movement phase.

Distance sensor data is constantly updated and provides information about
obstacles in the vicinity of the drone. To find a collision-free path to the target
position the PathPlanner element applies a collision avoidance algorithm that
utilizes and builds upon ideas expounded in [4].

Fig. 6. Visualisation of the PathPlanner ADNA element and associated sourcelink/des-
tinationlink channels

5 Extension of the ADNA Message Types

In the original implementation of the system, all ADNA messages employed the
basic message type DNAClassFloatMessage, which only allows a single float
value in the message payload. Since communication between basic elements is
purposely held very simple, this small message size is sufficient.

In the context of highly heterogeneous communication patterns, the uni-
formly used ADNA message type DNAClassFloatMessage neither provides the
required efficiency nor the expected versatility. To match the rising variety in

2 Sourcelink channel 5 only receives data when the drone swarm has two or more
members.

Towards Dependable UAV Swarms Using OC 319

communication patterns introduced by complex ADNA elements, new use-case-
specific message types are introduced to the system, that allow dynamic alloca-
tion of payload memory.

5.1 Prerequisites

ADNA tasks communicate over their source- and destinationlink channels using
ADNA messages. The ADNA system is based upon the AHS, a distributed
middleware, that handles the inter-processor communication and dynamic task
allocation. The AHS uses message-based communication in the form of so-called
AHS messages. These messages have a limited size of 256 bytes and apply a
16-byte header, limiting the AHS message payload to 240 bytes. Each message
is sent in an individual User Datagram Protocol (UDP) package.

Each ADNA message contains a separate 4-byte header and can subsequently
contain up to 236 bytes of payload data. Figure 7a shows the segmentation of a
256-byte AHS message for an ADNA message.

An example of the segmentation of an AHS message can be seen in Fig. 7b.
This novel message type is called DNARotationCommandMessage and conveys
data related to drone rotation commands, resulting in a message payload size of
16 bytes.

Fig. 7. (a) Segmentation of a 256-byte AHS message for an ADNA message and (b)
Segmentation of an AHS message for a DNARotationCommandMessage

5.2 Implementation

The new, use-case-specific message types are defined in a central header file. For
each ADNA element exists an explicit mapping between source-/destinationlink
channels and corresponding message types. The original message type DNA-
ClassFloatMessage is part of the header definition and can thus be further used
by basic ADNA elements.

320 J. Diegelmann et al.

Table 1. Mapping between destinationlink channel and message type for the Group-
Controller ADNA element

Destinationlink Channel Message Type Payload Size (bytes)

1 DNAGroupIndicatorMessage 2
2 DNARadiusIndicatorMessage 4
3 DNAAutoGroupMessage 1
4... DNAClassFloatArray 4 to 236

Table 2. Mapping between destinationlink channel and message type for the Path-
Planner ADNA element

Destinationlink Channel Message Type Payload Size (bytes)

1 DNAClassFloatArray 4 to 236
2 DNATargetReachedMessage 2

Table 1 and 2 show the mapping between the destinationlink channel and
message type for the GroupController and PathPlanner ADNA elements, respec-
tively.

Most of the message types are kept sparse and only use the necessary bytes
of memory to convey their payload. An exception to this trend is DNAClass-
FloatArray, which is able to make use of an ADNA message’s entire 236-byte
payload in the form of 59 float values. While the advantages of a dynamically
usable message type are manifold, it should be used carefully, since it generates
considerable strain on the overall communication load.

5.3 Comparison Between Message Types

With the addition of specific message types to the ADNA-System, ADNA ele-
ments gain the ability to communicate complex data. To evaluate the impact
of the new message types on communication load, a comparison to the original
message type DNAClassFloatMessage is necessary. Since the new message types
allow sending of other datatypes than float (4-byte value), their overall memory
usage may lie below the value of the original message type.

Table 3 compares the individual sizes of the ADNA message types. The
DNAClassFloatMessage message type acts as a benchmark message size value.
The direct comparison between message sizes shows that there are message
types smaller than DNAClassFloatMessage. Message types like DNAMultiro-
torStateMessage are not only more memory efficient than DNAClassFloatMes-
sage, but also manage to convey multiple values due to the use of single-byte
datatypes.

Table 3 also shows message types that are significantly larger than DNA-
ClassFloatMessage. While these message types require more space in an AHS
message, they also transmit more values inside a single message. The advantage

Towards Dependable UAV Swarms Using OC 321

Table 3. Comparison of message type sizes (excluding header bytes)

Message Type Payload Size (bytes)

DNAClassFloatMessage 4
DNAClassFloatArray 4 to 236
DNAAttitudeMessage 13
DNARotationCommandMessage 14
DNAMultirotorStateMessage 2
DNAAutoGroupMessage 1
DNAMultirotorTargetReachedMessage 2
DNARadiusIndicatorMessage 4
DNAMultirotorDistanceSensorMessage 9

of larger ADNA message payloads becomes especially apparent in the direct
comparison between DNAClassFloatMessage and DNAClassFloatArray.

For this comparison, we consider a fully filled DNAClassFloatArray is sent
between two ADNA elements. The resulting AHS message uses the entirety of
the available 256-byte and is conveyed using a single UDP package. The mes-
sage includes 20 bytes of header data (4-byte ADNA message header and 16-byte
AHS message header). The same amount of payload data (59 float values) can
also be sent with separate DNAClassFloatMessages. In this scenario, each mes-
sage includes header data that account for a 20-byte additional communication
load for every message after the first. Additionally, each message is sent using a
separate UDP package, which adds an additional 8-byte header.

Generally, the sending of separate DNACLassFloatMessages results in a min-
imum communication overhead of 28 ∗ (n − � n

59�) bytes for n float values, over
sending a single DNAClassFloatArray message. For a fully filled DNAClass-
FloatArray (n = 59) this expression accounts for 1624 bytes less communication
load and is thus clearly more communication overhead efficient than DNAClass-
FloatMessage.

The same principle can be applied to all message types that are larger
than DNAClassFloatMessage, like DNAAttitudeMessage and DNARotationCom-
mandMessage.

6 Evaluation

The basic functionality of the ADNA system for drones was initially tested in
a simulation environment. However, the simulation did not incorporate effects
such as transmission delays and packet loss, which are inevitable in real-world
scenarios using wireless communication mechanisms. Subsequently, the influence
of these effects on the AHS needs to be analyzed.

In [10] the authors showed that upper bounds for the real-time behavior of
self-configuration and self-healing of the AHS can be guaranteed. These upper

322 J. Diegelmann et al.

bounds are expressed in multiples of the Hormone Loop Period (HLP), which
determines the frequency at which hormones are spread in the system. Further-
more, they provide the following constraint on the HLP that must be fulfilled to
guarantee correct system behavior:

tC ≥ 2tDS + 2tK
with tDS → 0 : tC ≥ 2tK ,

(1)

where tC is the HLP, tK the maximum communication distance and tDS the
time an AHS processor takes for making a decision.

Therefore, it is necessary to evaluate the WiFi latencies in the ADNA system,
which determine a lower limit for the HLP.

To measure the communication latencies of hormone telegrams in the ADNA
system, we conducted a real test flight. Our test setup consisted of a custom
UAV and a GCS. The UAV was carrying a Pixhawk flight controller running
Ardupilot. Furthermore, a Raspberry Pi 4 processor was mounted on the drone.
Three of its cores were used as ADNA processors. Finally, a Windows PC was
used as a GCS running another ADNA processor, resulting in a total of four
ADNA processors in the test setup.

The communication between the Raspberry Pi and the GCS was established
over a wireless connection (IEEE 802.11n standard in the 2.4GHz frequency
band) using the Raspberry Pi’s internal WiFi antenna. On the side of the GCS,
a portable router was employed, which was connected to the GCS over ethernet.

The test flight was conducted over a period of 10.5min on an open field with
the drone in direct sight of the router. After takeoff, the drone was moved to a
distance of 30m where it hovered for the remainder of the flight.

Measurements of communication latencies and packet losses were evaluated
post-flight, using logs of all four ADNA-processors. It is noteworthy, that due to
context changes of the processor, the timestamp in the log file can differ from
the actual time of sending and receiving the telegram. This can lead to negative
latencies in some cases. However, we believe that this effect is negligible in our
study due to the following reasons. Firstly, timestamp inaccuracies impact both
the sending and receiving timestamps, thus largely canceling each other out on
average. Secondly, we evaluated bidirectional communication between proces-
sors, thus nullifying any unilateral effects that might arise due to differences in
processor load.

Table 4. Communication delays and packet loss ratio measured during 10.5 min test
flight

Communication Mean (ms) Median (ms) Loss Ratio (%)

WiFi 6.87 2 1.32
Inter-Core 0.34 0 0.00

Towards Dependable UAV Swarms Using OC 323

Fig. 8. Measured latencies of WiFi hormone communication during the 10.5 min test
flight and resulting duplicate tasks executions

Fig. 9. Comparison of latency distribution for hormone communication for (a) inter-
core and (b) WiFi communication

The results of the test flight are presented in Table 4 and Figs. 8, and 9.
Figure 8 shows the measured latencies during the test flight for the WiFi com-
munication and the resulting duplicate executions of ADNA tasks. The x-axis of
the graph indicates the time at which a measurement was taken, represented as
the time that elapsed since the start of the system. The left y-axis of the graph
indicates the measured latency for each hormone telegram transmission. Each
data point represents the latency of a single hormone telegram message. The
right y-axis indicates the number of duplicate task executions. The number of
duplicate tasks is calculated by subtracting the number of unique active tasks
from the number of total active tasks. Therefore, the value does not distinguish
between more than two instances of a single task and multiple tasks that are
instantiated twice.

It is evident from Fig. 8 that the majority of measured latencies fall within
the lower single-digit millisecond range, which is affirmed by the median laten-
cies of 2 ms for WiFi presented in Table 4. Furthermore, Fig. 8 demonstrates an
accumulation of measured latencies in the range of 50 ms for WiFi communica-
tion. This pattern can be attributed to the design of the ADNA system, which
employs a resend mechanism to mitigate the effect of message losses. Specifi-

324 J. Diegelmann et al.

cally, hormone telegrams are automatically resent after 50 ms.3 In this study, we
define latency as the time between the first transmission and the first reception
of a hormone telegram message, and we consider it a successful transmission
if at least one message is received. We only count it as a packet loss if both
transmissions fail.

Figure 9a provides a detailed latency distribution for the hormone messages
transmitted over WiFi. In contrast to the observed communication delays and
message losses for WiFi communication, inter-core communication exhibits a
median latency of 0 ms and is free of message losses, as indicated by Table 4. The
distribution of inter-core latencies during the test flight is displayed in Fig. 9b,
which shows that the majority of messages were transmitted without significant
delay.

Our evaluation revealed a median latency of 2 ms over WiFi, which is notably
smaller than the typical HLPs range of 50–100 ms, and therefore, fulfills the con-
straint given in Eq. 1. Occasional spikes in latency, as seen in Fig. 8, as well as
isolated message losses had no significant effect on the system’s overall perfor-
mance. Prolonged periods of increased latency can lead to repeated execution of
tasks. Nevertheless, the ADNA system’s self-optimization capability facilitated
the efficient resolution of such instances.

7 Conclusion and Future Work

The application of the AHS and ADNA system to a drone swarm is achieved by
building a network of distributed processing nodes using companion computers
on the individual drones and the GCS. The nodes are interconnected using a
WiFi network, which makes real-time critical execution of tasks across vehicles
hard. The ADNA drone tasks operate with complex ADNA elements to coordi-
nate individual drones or drone swarms. The flight control of drones is handled
by established autopilots such as Ardupilot. To communicate with the autopi-
lot, the dedicated ADNA tasks MAVLinkActor and MAVLinkSensor provide a
UART interface that uses the standardized MAVLink protocol.

Complex swarm objectives such as path planning or handling of drone groups
are also performed by dedicated ADNA elements. The elements GroupController,
PathPlanner and StateController are integral for drone-swarm control and gen-
erate commands for the flight controller software.

Rising complexity in ADNA elements demands the introduction of use case
specific ADNA message types. A concept and implementation of novel message
types are given and the new message types are compared against the base imple-
mentation, regarding their communication load efficiency.

The system is demonstrated on a custom-built drone with an onboard com-
puter that executes the ADNA system. The drone is connected to a GCS that
also executes the ADNA system. Results show that the utilized WiFi connection

3 The message repeat delay can be adjusted based on the HLP In this study, we used
a repeat delay of 50 ms and a HLP of 100 ms.

Towards Dependable UAV Swarms Using OC 325

is sufficient to support the time requirements of the system. The ADNA system
can thus be successfully applied in a drone swarm environment.

The ADNA systems application over a WiFi connection exposes the system
to new attack vectors on a hormone- and task-level. Future work will focus on
researching these vulnerabilities. Two strategies for protecting ADNA systems
will be explored. First, the system can be secured by introducing processor-level
message authentication. Allowing only communication with authenticated part-
ners can protect the system against hostile hormone-level attacks. Second, we
seek to establish trust mechanisms between processing elements. Subtle, more
nuanced attacks against the ADNA system may not be detected through mes-
sage authentication, either because they are not obviously hostile or because
their hostile behavior expresses itself on a semantic level. Inter-processor trust
contributes to hardening the system against these attacks.

References

1. Ardupilot Web Page. https://ardupilot.org/
2. Brinkschulte, U.: An artificial DNA for self-descripting and self-building embedded

real-time systems. Concurr. Comput. Pract. Exp. 28(14), 3711–3729 (2015). ISSN
1532-0634

3. Brinkschulte, U.: Prototypic implementation and evaluation of an artificial DNA
for self-describing and self-building embedded systems. In: 19th IEEE International
Symposium on Real-Time Computing (ISORC 2016), York, UK (2016)

4. Casas Melo, V.F.: Implementable self-organized collision avoidance for UAVs flying
alone or in flocks. Dissertation, Technische Universität Ilmenau, 2021. Ph.D. thesis.
Ilmenau (2021). https://www.db-thueringen.de/receive/dbt_mods_00048692

5. Homann, P., Pacher, M., Brinkschulte, U.: Evaluation of conditional tasks in an
artificial DNA system. In: 2022 IEEE 25th International Symposium on Real-
Time Distributed Computing (ISORC), pp. 1–10 (2022). https://doi.org/10.1109/
ISORC52572.2022.9812764

6. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

7. von Mammen, S., et al.: OCbotics: an organic computing approach to collaborative
robotic swarms. In: 2014 IEEE Symposium on Swarm Intelligence, pp. 1–8 (2014).
https://doi.org/10.1109/SIS.2014.7011781

8. MAVLink Developer Guide. https://mavlink.io/en/
9. PX4 Autopilot Web Page. https://px4.io/

10. von Renteln, A., Brinkschulte, U., Pacher, M.: The artificial hormone system - an
organic middleware for self-organising real-time task allocation. In: Müller-Schloer,
C., Schmeck, H., Ungerer, T. (eds.) Organic Computing - A Paradigm Shift for
Complex Systems, pp. 369–384. Springer, Basel (2011). https://doi.org/10.1007/
978-3-0348-0130-0_24

https://ardupilot.org/
https://www.db-thueringen.de/receive/dbt_mods_00048692
https://doi.org/10.1109/ISORC52572.2022.9812764
https://doi.org/10.1109/ISORC52572.2022.9812764
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/SIS.2014.7011781
https://mavlink.io/en/
https://px4.io/
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-0348-0130-0_24

Author Index

A
Al-Falouji, Ghassan 296
Alvarez, Luis Bertran 105
Anthimopulos, Theologos 18

B
Brinkschulte, Uwe 63, 185, 200, 311

C
Ciemala, Tobias 37
Cifuentes, Jorge Alejandro Nocua 105

D
Dangl, Thomas 168
Diegelmann, Jonas 311
Dolbeau, Romain 105
Duchrau, Georg 94

E
Eichler, Christian 153

F
Falquez, Carlos 105
Feist, Melanie 200
Fey, Dietmar 264

G
Giersch, Oliver 153
Görlich-Bucher, Markus 37, 48
Gössel, Michael 94

H
Hähner, Jörg 37, 48
Heider, Michael 37, 48
Herkersdorf, Andreas 215
Ho, Nam 105
Hochberger, Christian 233
Homann, Philipp 311
Hönig, Timo 153
Hosseinzadeh, Shima 264

J
Janfaza, Vahid 120

K
Kansal, Arnav 120
Kelefouras, Vasilios 18
Keller, Jörg 81
Keramidas, Georgios 18
Koschowoj, Aleksey 63, 185

L
Langsdorf, Saskia 81
Ling, Tianheng 3
Lohmann, Daniel 139

M
Marazakis, Manolis 105
Maurer, Florian 215
Meckel, Simon 63
Mungra, Dhara 120
Muzahid, Abdullah 120

N
Nassyr, Stepan 105
Nguyen, Dustin 153
Nolte, Jörg 153

O
Obermaisser, Roman 63

P
Pacher, Mathias 63, 200, 311
Parvaresh, Amirhossein 264
Petrakis, Polydoros 105
Pleiter, Dirk 105
Portero, Antoni 105

Q
Qian, Chao 3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
G. Goumas et al. (Eds.): ARCS 2023, LNCS 13949, pp. 327–328, 2023.
https://doi.org/10.1007/978-3-031-42785-5

https://doi.org/10.1007/978-3-031-42785-5

328 Author Index

R
Rabenstein, Jonas 153
Raj, Utkarsh 63
Reiser, Hans P. 168

S
Schiele, Gregor 3
Schröder-Preikschat, Wolfgang 153
Schwinger, Raphael 296
Sentanoe, Stewart 168
Smirnov, Nikita 281
Stabernack, Benno 248
Stamoulis, Iakovos 18
Steinert, Fritjof 248
Suarez, Estela 105

T
Taur, Abhishek 120
Töllner, Dominik 139
Tomforde, Sven 281, 296

W
Weston, Kevin 120
Wild, Thomas 215
Wirsch, Ramon 233
Wrenger, Lars 139

Z
Zahran, Mohamed 120
Zyla, Klajd 215

	 Preface
	 Organization
	Keynote Talks
	 Reconfigurable Technologies in HPC and Data-Centers. Challenges and Opportunities
	 Optimizing the Memory Access Path Across the Computing Stack
	 Contents

	Accelerating Neural Networks
	Energy Efficient LSTM Accelerators for Embedded FPGAs Through Parameterised Architecture Design
	1 Introduction
	2 Related Work
	3 LSTM Background
	4 Solution Design
	4.1 8-Bit Fixed-Point Quantisation
	4.2 Activation Function Optimisation
	4.3 ALU Optimisation

	5 Implementation
	5.1 Activation Function Implementation
	5.2 Pipeline-Based ALU Implementation
	5.3 Parameterised Architecture

	6 Evaluation
	6.1 Experimental Settings
	6.2 Resource Utilisation
	6.3 Throughput
	6.4 Power Consumption and Energy Efficiency

	7 Conclusion and Future Work
	References

	A Comparative Study of Neural Network Compilers on ARMv8 Architecture
	1 Introduction
	2 Background
	2.1 The Three Categories of NN Optimizations
	2.2 The NN Compilers Landscape

	3 Basic Features of the Selected Toolchains
	4 Evaluation Methodology
	5 Evaluation Results
	6 Conclusions
	References

	Organic Computing Methodology (OC)
	A Decision-Theoretic Approach for Prioritizing Maintenance Activities in Organic Computing Systems
	1 Introduction
	2 Related Work
	3 Prerequisites
	4 Methodology
	4.1 Simple Stochastic Planing
	4.2 Complex Stochastic Planing
	4.3 Naive Planing

	5 Evaluation
	5.1 Datacenter Scenario
	5.2 Organic Production Line Scenario
	5.3 Results
	5.4 Discussion

	6 Conclusion and Outlook
	References

	Predicting Physical Disturbances in Organic Computing Systems Using Automated Machine Learning
	1 Introduction
	2 Related Work
	3 Prerequisites
	4 Methodology
	4.1 Data Collection and Labeling
	4.2 Bootstrap Phase
	4.3 Optimization Phase
	4.4 Production Phase

	5 Evaluation
	5.1 Implementation and Parametrisation
	5.2 Results
	5.3 Discussion

	6 Conclusion and Outlook
	References

	Self-adaptive Diagnosis and Reconfiguration in ADNA-Based Organic Computing
	1 Introduction
	2 Related Work
	3 Diagnosis Architecture
	3.1 Local Diagnosis
	3.2 System Diagnosis
	3.3 Alarms
	3.4 Probes

	4 Adaptive Diagnosis
	4.1 Processing Element Diagnosis
	4.2 Task Diagnosis
	4.3 Probing Based Diagnosis

	5 Quality of Service
	6 Application Reconfiguration
	6.1 Compute Resource Unit

	7 Use Case - Explorer Robot
	7.1 Physical Model
	7.2 Logical Model
	7.3 Initial Configuration
	7.4 Degraded Performance
	7.5 Reconfiguration
	7.6 Results and Evaluation

	8 Conclusion and Future Work
	References

	Dependability and Fault Tolerance (VERFE)
	Error Codes in and for Network Steganography
	1 Introduction
	2 Background
	2.1 Error Codes
	2.2 Network Steganography
	2.3 Related Work

	3 Combining Error Codes and Steganography
	3.1 Error Correction Codes in Covert Channels
	3.2 Covert Channels in Error Correction Codes
	3.3 Erasure Codes and Covert Channels

	4 Experimental Results
	5 Conclusions
	References

	Modified Cross Parity Codes for Adjacent Double Error Correction
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Decoding
	3.2 Checkbit Errors

	4 Burst Detection
	5 Conclusion
	References

	Computer Architecture Co-Design
	COMPESCE: A Co-design Approach for Memory Subsystem Performance Analysis in HPC Many-Cores
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 HPC Architecture
	5 Design Space Exploration Methodology
	5.1 Co-design Exploration: Memory Sub-system
	5.2 Model Validation

	6 Case Studies
	6.1 Unidirectional Approach

	7 Conclusions and Future Work
	References

	Post-Silicon Customization Using Deep Neural Networks
	1 Introduction
	2 Intuition
	3 Background and Related Work
	4 Main Idea: Forecaster
	4.1 Phase 1: Building a Predictive Model
	4.2 Phase 2: Prediction-Based Hardware Reconfiguration

	5 Implementation
	6 Experimental Setup
	7 Results
	8 Conclusions
	References

	Computer Architectures and Operating Systems
	TOSTING: Investigating Total Store Ordering on ARM
	1 Introduction
	1.1 About This Paper

	2 Memory Consistency Models
	2.1 Programming Model
	2.2 Total Store Ordering on x86
	2.3 Weak Ordering on ARM

	3 The Apple M1 Architecture
	4 Evaluation
	4.1 CPU Benchmarks
	4.2 Synthetic Benchmarks

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Back to the Core-Memory Age: Running Operating Systems in NVRAM only
	1 Introduction
	2 Fundamentals and Methodology
	2.1 Hardware Platform
	2.2 Operating Systems
	2.3 Evaluation Approach

	3 Performance Characterisation
	4 Discussion
	5 Related Work
	6 Conclusion
	References

	Retrofitting AMD x86 Processors with Active Virtual Machine Introspection Capabilities
	1 Introduction
	2 Background
	2.1 Hardware-Assisted Virtualization
	2.2 Virtual Machine Introspection

	3 State of the Art
	3.1 SLAT-Based Mechanisms
	3.2 Hyper-Single-Stepping

	4 Introspection on the AMD64 Architecture
	4.1 Design
	4.2 Implementation

	5 Evaluation
	5.1 Correctness
	5.2 Stealthiness
	5.3 Performance

	6 Summary
	References

	Organic Computing Applications 1 (OC)
	Abstract Artificial DNA's Improved Time Bounds
	1 Introduction
	2 Related Work
	3 AHS and ADNA
	4 A2DNA
	4.1 Relation to the ADNA
	4.2 Fundamental Idea
	4.3 Determinability

	5 Determinability Algorithms
	5.1 Naive Algorithm
	5.2 Towards Preprocessing
	5.3 Algorithm with Preprocessing
	5.4 Specification

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

	Evaluating the Comprehensive Adaptive Chameleon Middleware for Mixed-Critical Cyber-Physical Networks
	1 Introduction
	2 Related Work
	3 Middleware Architecture and Implementation
	3.1 Middleware Architecture
	3.2 Adaptation
	3.3 Middleware Implementation

	4 Evaluation
	4.1 Evaluation 1: Handling of Dynamic Load Changes
	4.2 Evaluation 2: Handling of Failures
	4.3 Evaluation 3: Effects of Learning
	4.4 Evaluation 4: Exploiting the Potential of CPN

	5 Conclusions
	References

	CoLeCTs: Cooperative Learning Classifier Tables for Resource Management in MPSoCs
	1 Introduction
	2 Related Work
	3 Background
	3.1 SOSA
	3.2 Challenges in SOSA
	3.3 Cooperation in LCTs

	4 Design
	5 Evaluation
	5.1 Simulation Setup
	5.2 Results

	6 Conclusion and Outlook
	References

	Hardware Acceleration
	Improved Condition Handling in CGRAs with Complex Loop Support
	1 Introduction and Motivation
	2 Related Work
	3 Condition Handling in CGRAs
	3.1 CBox
	3.2 CondPE Hardware
	3.3 Scheduler Application Representation - SCAR
	3.4 Scheduler Improvements

	4 Evaluation
	4.1 HW Synthesis
	4.2 Scheduling
	4.3 Combined Evaluation

	5 Conclusion
	5.1 Outlook

	References

	FPGA-Based Network-Attached Accelerators – An Environmental Life Cycle Perspective
	1 Introduction
	2 Related Work
	2.1 Communication Model for Network-Attached Accelerators
	2.2 Environmental Life Cycle Assessment for Data Centers
	2.3 Use Cases for Network-Attached Accelerators

	3 Exemplary NAA Framework
	4 Environmental Life Cycle Assessment of NAA Nodes
	4.1 Initial KPI4DCE Observations
	4.2 CPU-Based Nodes
	4.3 NAA-Based Nodes
	4.4 KPI4DCE Evaluation

	5 Conclusion
	References

	Optimization of OLAP In-Memory Database Management Systems with Processing-In-Memory Architecture
	1 Introduction
	2 Preliminaries
	2.1 3D-DRAM
	2.2 Processing-In-Memory (PIM)
	2.3 PIM Simulation Environment

	3 Experimental Setup
	3.1 Database Management System
	3.2 Profiler
	3.3 Profiling the Database
	3.4 Simulation Environment

	4 Analysis
	4.1 Finding the Hot Spots
	4.2 Observations and Discussion
	4.3 Analysis of the Bottlenecks

	5 Results
	5.1 PIM Implementation
	5.2 Database Design Considerations with PIM

	6 Conclusion
	References

	Organic Computing Applications 2 (OC)
	Real-Time Data Transmission Optimization on 5G Remote-Controlled Units Using Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Real-Time Data Transmission Problem
	4 Approach: Deep Reinforcement Learning
	4.1 Background and Model
	4.2 Setup and Hyperparameters
	4.3 Challenges

	5 Evaluation
	5.1 5G Simulation and Scenario
	5.2 Results

	6 Summary
	References

	Autonomous Ship Collision Avoidance Trained on Observational Data
	1 Motivation
	2 Background
	2.1 Learning Based Strategies

	3 Approach
	3.1 Automatic Identification System (AIS) as Training Data
	3.2 MASS Collision Avoidance Using PPUU

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Discussion
	6 Conclusion
	References

	Towards Dependable Unmanned Aerial Vehicle Swarms Using Organic Computing
	1 Introduction
	2 Related Work
	3 Architecture of the ADNA System for Drones
	4 Novel ADNA UAV Elements
	4.1 GroupController
	4.2 PathPlanner

	5 Extension of the ADNA Message Types
	5.1 Prerequisites
	5.2 Implementation
	5.3 Comparison Between Message Types

	6 Evaluation
	7 Conclusion and Future Work
	References

	Author Index

