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Abstract. ALEXANDRIA is an ERC-funded project that started in
2017, with the aim of bringing formal verification to mathematics. The
past six years have seen great strides in the formalisation of mathemat-
ics and also in some relevant technologies, above all machine learning.
Six years of intensive formalisation activity seem to show that even the
most advanced results, drawing on multiple fields of mathematics, can
be formalised using the tools available today.
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1 Introduction

In the summer of 2017, the Newton Institute at Cambridge held a programme
entitled Big Proof (BPR) “directed at the challenges of bringing proof technology
into mainstream mathematical practice”. It was held in recognition of the formal-
isations that had already been done (which were indeed big). The programme
webpage1 specifically lists the proofs of the Kepler conjecture [19], the odd order
theorem [17] and the four colour theorem [16]. That summer also saw the start
of my ERC project, ALEXANDRIA. Big Proof represented an acknowledge-
ment that the formalisation of mathematics could no longer be ignored, but also
an assertion that big problems remain to be solved. These included “novel prag-
matic foundations” and large-scale “formal mathematical libraries” and “inference
engines”, and also the “curation” of formalised mathematical knowledge.

ALEXANDRIA was conceived in part to try to identify those big problems.
By hiring professional mathematicians and asking them to formalise advanced
mathematics, we would get a direct idea of the obstacles they faced. We would
also try to refine our tools, extend our libraries and investigate other technologies.
We would have only five years (extended to six due to COVID-19).

The need for formalisation had been stressed by Vladimir Voevodsky, a Fields
medallist, who pointedly asked “And who would ensure that I did not forget
something and did not make a mistake, if even the mistakes in much more simple
1 https://www.newton.ac.uk/event/bpr/.
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arguments take years to uncover?” [38]. He advocated a new sort of formalism,
homotopy type theory, which was the subject of much excitement. However,
the most impressive formalisations by that time had been done in Coq (four
colour theorem, odd order theorem), HOL Light (Kepler conjecture and much
else) or Isabelle/HOL (part of the Kepler proof, and more). Lean, a newcomer,
was attracting a user community. Perhaps our project would shed light on the
respective values of the available formalisms: calculus of constructions (Coq,
Lean), higher-order logic or homotopy type theory. Voevodsky would never find
out, due to his untimely death in September 2017.

Since that date, research into the formalisation of mathematics has plunged
ahead. Kevin Buzzard, a number theorist at Imperial College London, followed
some of the Big Proof talks online. This resulted in his adoption of Lean for
his Xena Project, with the aim of attracting students to formalisation.2 Xena
has had a huge impact, but here I’d like to focus on the work done within
ALEXANDRIA.

2 A Brief Prehistory of the Formalisation of Mathematics

Mathematics is a work of the imagination, and the struggle between intuition
and rigour has gone on since classical times. Euclid’s great contribution to Greek
geometry was the unification of many separate schools through his system of
axioms and postulates. Newton and Leibniz revolutionised mathematics, but
the introduction of infinitesimals was problematical. During the 19th centuries,
the “arithmetisation of analysis” carried out by Cauchy and Weierstrass replaced
infinitesimals by rigorous ε–δ arguments. (We would not get a consistent theory
of infinitesimals until the 1960 s,s, under the banner of non-standard analysis.)
Dedekind and Cantor promulgated a radical new understanding of sets and func-
tions that turned out to be inconsistent until Zermelo came up with his axioms.
It is notable that Zermelo set theory (which includes the axiom of choice but
lacks Fraenkel’s replacement axiom) is approximately equal in logical strength
to higher-order logic.

Only axiomatic mathematics can be formalised. The first attempt was by
Frege, whose work (contrary to common belief) was not significantly impacted by
Russell’s paradox [1]. Russell and Whitehead in their Principia Mathematica [40]
wrote out the proofs of thousands of mathematical propositions in a detailed
axiomatic form. The work of Bourbaki can also be seen as a kind of formalised
mathematics. The philosopher Hao Wang wrote on the topic and also coded the
first automatic theorem prover [39] for first-order logic, based on what we would
now recognise as a tableau calculus.

This takes us to NG de Bruijn, who in 1968 created AUTOMATH [5], and
to his student’s formalisation [24] of Landau’s Foundations of Analysis in 1977.
This takes us to the birth of Mizar [18], in which a truly impressive amount
of mathematics was formalised in a remarkably readable notation. More recent

2 https://www.ma.imperial.ac.uk/~buzzard/xena/.
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history—analysis in HOL Light, the four colour theorem in Coq, etc.—is pre-
sumably familiar to readers. But it is appropriate to close this section with a
prescient remark by de Bruijn back in 1968:

As to the question what part of mathematics can be written in
AUTOMATH, it should first be remarked that we do not possess a
workable definition of the word “mathematics”. Quite often a mathemati-
cian jumps from his mathematical language into a kind of metalanguage,
obtains results there, and uses these results in his original context. It seems
to be very hard to create a single language in which such things can be
done without any restriction [[4], p. 3].

And so we have two great scientific questions:

– What sort of mathematics can be formalised?
– What sort of proofs can be formalised?

We would investigate these questions—mostly in the context of
Isabelle/HOL—by formalising as much mathematics as we could, covering as
many different topics as possible. I expected to run into obstacles here and
there, which would have to be recorded if they could not be overcome.

3 ALEXANDRIA: Warmup Formalisation Exercises

The ERC proposal called for hiring research mathematicians, who would bring
their knowledge of mathematics as it was practised, along with their inexperience
of Isabelle/HOL. Their role would be to formalise increasingly advanced math-
ematical material with the twin objectives of developing formalisation method-
ologies and identifying deficiencies that might be remedied by extending Isa-
belle/HOL somehow. The project started in September 2017. We hired Anthony
Bordg and Angeliki Koutsoukou-Argyraki. A third postdoc was required to
undertake any necessary Isabelle engineering, and Wenda Li was hired.

One of the tasks for the first year was simply to reorganise and consolidate
the Isabelle/HOL analysis library, which had mostly been translated from HOL
Light. But we were also supposed to conduct pilot studies. The team set to work
enthusiastically, and already in the first year they created a number of impressive
developments:

– Irrational rapidly convergent series, formalising a 2002 proof by J. Hančl [20]
– Projective geometry, including Hessenberg’s theorem and Desargues’s theorem
– The theory of quantum computing (which identified a significant error in one

of the main early papers)
– Quaternions, octonions and several other small exercises
– Effectively counting real and complex roots of polynomials, and the Budan-

Fourier theorem [30,31]
– The first formal proof that every field contains an algebraically closed exten-

sion [37]

Koutsoukou-Argyraki wrote up her reactions to Isabelle/HOL from the perspec-
tive of a mathematician in her paper “Formalising Mathematics —in Praxis” [25].
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4 Advanced Formalisations

As noted above, Kevin Buzzard had taken an interest in formalisation through
participation in Big Proof, and by 2019 had marshalled large numbers of enthu-
siastic students to formalise mathematics using Lean. He had also made tren-
chant criticisms of even the most impressive prior achievements: that most
of it concerned simple objects such as finite groups, or was just 19th-century
mathematics. Nobody seemed to be working with sophisticated objects. He
expressed astonishment that Grothendieck schemes—fundamental objects in
algebraic geometry and number theory—had not been formalised in any tool. His
criticisms helped focus our attention on the need to tackle difficult, recent and
deep mathematics. Team members proposed their own tasks, but we also con-
tributed to one another’s tasks, sometimes with the help of interns or students.
We completed three notable projects during this middle period:

– Irrationality and transcendence criteria for infinite series [27], extending the
Hančl work mentioned above with material from two more papers: Erdős–
Straus [13] and Hančl–Rucki [21].

– Ordinal partition theory [9]: infinite forms of Ramsey’s theorem, but for
order types rather than cardinals. We formalised relatively papers by Erdős–
Milner [14] and Larson [29], and as a preliminary, the Nash-Williams partition
theorem [36]. These were deep results in the context of Zermelo–Fraenkel set
theory, involving highly intricate inductive constructions. One of the papers
contained so many errors as to necessitate publishing a second paper [15] with
a substantially different proof. This material was difficult even for Erdős!

– Grothendieck Schemes [3]. Buzzard had formalised schemes in Lean [6] (three
times), and even claimed that Isabelle was not up to the job due to its simple
type system. We took the challenge and it was straightforward, following a
new approach based on locales to manage the deep hierarchies of definitions.

We were aiming for a special issue devoted to formalisation in the journal
Experimental Mathematics, and were delighted to see these projects take up
three of the six papers ultimately accepted.

5 Seriously Deep Formalisation Projects

Inspired by the success of the previous projects—conducted under the difficult
circumstances of COVID-19 lockdown—team members continued to propose the-
orems to formalise, and we continued to collaborate in small groups. By now we
had the confidence to take on almost anything. There are too many projects to
describe in full, so let’s look at some of the highlights.

5.1 Szemerédi’s Regularity Lemma and Roth’s Theorem
on Arithmetic Progressions

Szemerédi’s regularity lemma is a fundamental result in extremal graph theory.
It concerns a property called the edge density of two given sets of vertices X,
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Y ⊆ V (G), and a further property of (X,Y ) being an ε-regular pair for any
given ε > 0. The lemma itself states that for a given ε > 0 there exists some M
such that every graph has an ε-regular partition of its vertex set into at most
M parts. Intuitively, (X,Y ) is an ε-regular pair if the density of edges between
various subsets A ⊆ X and B ⊆ Y is more or less the same for all possible A
and B; an ε-regular partition enjoys that property for all but an insignificant
number of pairs (X,Y ) of vertex sets taken from the partition. Intuitively then,
the vertices of any graph can be partitioned into most M parts such that the
edges between the various parts are uniform in this sense.

We used Szemerédi’s regularity lemma to prove Roth’s theorem on arithmetic
progressions, which states that every “sufficiently dense” set of natural numbers
includes three elements of the form k, k + d, k + 2d.

We used a variety of source materials and discovered a good many significant
infelicities in the definitions and proofs. These included confusion between ⊂
and ⊆ (which are often synonymous in combinatorics) and between a number of
variants of the lemma statement. One minor claim was flatly incorrect. To make
matters worse, the significance of these issues only became clear in the applica-
tion of the regularity lemma to Roth’s theorem. Much time was wasted, and yet
the entire formalisation project [10] took under six months.3 By a remarkable
coincidence, a group based in the mathematics department at Cambridge for-
malised a slightly different version of Szemerédi’s regularity lemma, using Lean,
around the same time [8].

5.2 Additive Combinatorics

Let A and B be finite subsets of a given abelian group (G,+), and define their
sumset as

A + B = {a + b : a ∈ A, b ∈ B}.

Write nA for the n-fold iterated sumset A + · · · + A. Additive combinatorics
concerns itself with such matters as the relationship between the cardinality of
A+B and other properties of A and B. Angeliki proposed this field as the natural
successor to the formalisation of Szemerédi’s regularity lemma because it’s fairly
recent (many results are less than 50 years old) and significant (providing a route
to Szemerédi’s theorem, a much stronger version of the Roth result mentioned
above).

Here’s an overview of the results formalised, all within the 7-month period
from April to November 2022:

– The Plünnecke–Ruzsa inequality : yields an upper bound on the difference set
mB − nB

– Khovanskii’s theorem: for any finite A ⊆ G, the cardinality of nA grows like
a polynomial for all sufficiently large n.

3 An email from Angeliki proposing to prove Szemerédi’s regularity lemma is dated 8
July 2021. The formalisation was done by 5 November; Roth, 28 December.
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– The Balog-Szemerédi-Gowers theorem is a deep result bearing on Szemerédi’s
theorem. The formalisation combines additive combinatorics with extremal
graph theory and probability [26].

– Kneser’s theorem and the Cauchy-Davenport theorem yield lower bounds for
the size of A + B.

These are highly significant results by leading mathematicians. They can all
be found in Isabelle’s Archive of Formal Proofs (AFP).4

5.3 Other Formalisation Projects

The members chose a variety of large and small projects with a variety of specific
objectives:

– Combinatorial structures. This is the PhD project of Chelsea Edmonds, who
has used Isabelle’s locale system to formalise dozens of varieties of block
designs, hypergraphs, graphs and the relationships among them [11]. Results
proved include Fisher’s inequality [12].

– Number theory. We have formalised several chapters of Modular Functions and
Dirichlet Series in Number Theory, a graduate textbook by Tom M. Apostol.

– Wetzel’s problem is a fascinating small example, due to Erdős, where the
answer to a question concerning complex analysis depends on the truth or
falsity of the continuum hypothesis. The formal proof illustrates analysis and
axiomatic set theory smoothly combined into a single argument [33].

– Turán’s graph theorem states a maximality property of Turán graphs. This
was a Master’s student project.

This is a partial list, especially as regards contributions from interns, students
and other visitors.

5.4 On Legibility of Formal Proofs

A proof is an argument, based on logical reasoning from agreed assumptions,
that convinces mathematicians that a claim is true. How then do we understand
a computer proof? To follow the analogy strictly, a computer proof convinces
computers that a claim is true. But computers, even in this age of clever chatbots,
are not sentient. We need to convince mathematicians.

Of the early efforts at the formalisation of mathematics, only Mizar aimed
for legibility. Even pre-computer formal proofs such as Principia Mathematica
are unreadable. Isabelle’s proof language (Isar) follows the Mizar tradition, as
in the following example:

lemma deriv_sum_int:
"deriv (λx.

∑
i=0..n. real_of_int (c i) * x^i) x

= (if n=0 then 0 else (
∑

i=0..n-1. of_int((i+1) * c(Suc i)) *
x^i))"
4 https://www.isa-afp.org.

https://www.isa-afp.org
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( is "deriv ?f x = (if n=0 then 0 else ?g)")
proof -

have "(?f has_real_derivative ?g) (at x)" if "n > 0"
proof -

have "(
∑

i = 0..n. i * x ^ (i - Suc 0) * (c i))
= (

∑
i = 1..n. (real (i-1) + 1) * of_int (c i) * x ^ (i-1))"

using that by (auto simp: sum.atLeast_Suc_atMost intro!: sum.cong)
also have " . . . = sum ((λi. (real i + 1) * c (Suc i) * x^i) ◦ (λn.

n-1))
{1..Suc (n-1)}"

using that by simp
also have " . . . = ?g"

by (simp flip: sum.atLeast_atMost_pred_shift [where m=0])
finally have §: "(

∑
a = 0..n. a * x ^ (a - Suc 0) * (c a)) = ?g" .

show ?thesis
by (rule derivative_eq_intros § | simp)+

qed
then show ?thesis

by (force intro: DERIV_imp_deriv)
qed

Only a little training is required to make some sense of this. The lemma claims
that the derivative of a certain summation equals a certain other summation.
The proof refers of the variables ?f and ?g, which are defined by the pattern
provided in the lemma statement: ?f denotes the original summation, and we
prove that ?g is its derivative. Within that proof we can see summations being
manipulated through changes of variable. Since we can see these details of the
reasoning, we have reasons to believe that the proof is indeed correct: we do not
simply have to trust the computer.

Not all Isabelle proofs can be written in a structured style. Page-long for-
mulas often arise when trying to verify program code, and sometimes just from
expanding mathematical definitions. Then we must use the traditional tactic
style: long sequences of proof commands. However, most mathematical proofs
that humans can write go into the structured style with ease. We have aimed for
maximum legibility in all our work.

6 Library Search and Machine Learning Experiments

The focus of this paper is achievements in the formalisation of mathematics, but
the ALEXANDRIA proposal also called for investigating supporting technolo-
gies. The name of the project refers to the library of Alexandria, and Isabelle’s
AFP already has nearly 4 million lines of proof text and well over 700 separate
entries. How can we take advantage of all this material when developing new
proofs?

In May 2019, the team acquired a new postdoc: Yiannos Stathopoulos. He
came with the perfect background to tackle these objectives. After much labour,
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he and Angeliki produced the SErAPIS search engine,5 which searches both
the pre-installed Isabelle libraries and the AFP, offering a great many search
strategies based on anything from simple keywords to abstract mathematical
concepts [35]. It is not easy to determine the relevance or significance of a formal
text to an abstract concept, but a variety of query types can be combined to
explore the libraries.

Also mentioned in the proposal was the aim of Intelligent User Support. I
had imagined that common patterns of proofs could be identified in the existing
libraries and offered up to users, but with no idea how. To generate structured
proofs automatically would require the ability to generate intermediate math-
ematical assertions. Six years of dramatic advances in machine learning have
transformed our prospects. Language models can generate plausible texts given
a corpus of existing texts. And as the texts we want would be inserted into
Isabelle proofs, we can immediately check their correctness.

An enormous amount of work is underway, particularly by a student in our
group, Albert Qiaochu Jiang, working alongside Wenda Li and others. It is now
clear that language models can generate formal Isabelle proof skeletons [32]
and can also be useful for identifying relevant lemmas [22]. We can even envis-
age automatic formalisation [23,41]: translating informal proofs into formal lan-
guages, by machine. Autoformalisation is easier with a legible proof language
like ours, because the formal proof can have the same overall structure as the
given natural language proof; a project currently underway is to develop the
Isabelle Parallel Corpus, pairing natural language and Isabelle texts.6 The next
few years should see solid gains through machine learning.

7 Evaluation

At the start of this paper, I listed two scientific questions: what sort of math-
ematics, and what sort of proofs, can be formalised? And the answer so far is,
everything we attempted, and we attempted a great variety of mathematical top-
ics: number theory, combinatorics, analysis, set theory. The main difficulties have
been errors and omissions in proofs. A vignette illustrates this point. Chelsea
was formalising a probabilistic argument where the authors wrote “these prob-
abilities are clearly independent, and therefore the joint probability is obtained
by multiplying them.” The problem is that this multiplication law is the mathe-
matical definition of independent probabilities, which the authors had somehow
confused with the real-world concept of unconnected random events. Frequently
we have found proofs that are almost right: they need a bit of adjustment, but
getting everything to fit takes effort.

Effort remains the main obstacle to the use of verification tools by mathe-
maticians. Obvious claims are often tiresome to prove, which is both discouraging
and a waste of an expert’s time. But we might already advocate an approach
of formalising the definitions and the proofs, stating the obvious claims without
5 https://behemoth.cl.cam.ac.uk/search/.
6 https://behemoth.cl.cam.ac.uk/ipc/.

https://behemoth.cl.cam.ac.uk/search/
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proofs (using the keyword sorry). Even for this idea to be feasible, much more
library material is needed, covering at least all the definitions a mathematician
might expect to have available.

Another key scientific question is the role of dependent types. People in
the type theory world seem to share the conviction that dependent types are
necessary to formalise nontrivial mathematics. But in reality it seems to be
Lean users who repeatedly fall foul of intensional equality : that i = j does not
guarantee that T (i) is the same type as T (j). Falling foul of this can be fatal: the
first definition of schemes had to be discarded for this reason. Intensional equality
is adopted by almost all dependent type theories, including Coq and Agda:
without it, type checking becomes undecidable. But with it, type dependence
does not respect equality.

The main limitation of simple type theory is that axiomatic type classes are
less powerful than they otherwise would be. Isabelle/HOL has type classes for
groups, rings, topological spaces among much else, but they are not useful for
defining the theories of groups, rings or topological spaces. Rather they allow us,
for example, to define the quaternions, prove a dozen or so laws and immediately
inherit entire libraries of algebraic and topological properties. Abstract groups,
rings, etc., need to be declared with an explicit carrier set (logically, the same
thing as a predicate) rather than using the corresponding type class. It’s a small
price to pay for a working equality relation.

Having said this, one must acknowledge the enormous progress made by the
Lean community over roughly the same period, 2017–now. Lean users, inspired
by Buzzard, have taken on hugely ambitious tasks. The most striking is probably
the Liquid Tensor Experiment [7]: brand-new mathematics, by a Fields medallist
(Peter Scholze) who was concerned about its correctness, formalised over about a
year and a half. This one accomplishment, more than anything else, demonstrates
that formalisation can already offer real value to professional mathematicians.

We have from time to time looked at type issues directly. De Vilhena [37]
describes an interesting technique for defining the n-ary direct product of a finite
list of groups, iterating the binary direct product; his trick to avoid type issues
involves creating an isomorphism to a suitable type. However, here one could
avoid type issues (and handle the infinite case) by defining the direct product of
a family in its own right as opposed to piggybacking off of the binary product.
Anthony Bordg has done a lot of work on the right way to express mathematics
without dependent types [2,3]. Ongoing work, still unpublished, is exploring
the potential of the types-to-sets framework [28] to allow a smooth transition
between type-based and carrier-set based formalisations.

One can also compare formalisms in terms of their logical strength. Higher-
order logic is somewhat weaker than Zermelo set theory, which is much weaker
than ZFC, which in turn is much weaker than Tarski-Grothendieck set theory:

HOL < Z � ZF � TG

The Calculus of Inductive Constructions, which is the formalism of Lean and
Coq, is roughly equivalent to TG. The advantage of a weaker formalism is bet-
ter automation. The power of ZF set theory, when it is required, can be obtained
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simply by loading the corresponding library from the AFP [33]. It’s highly likely
that a similar library could be created for Tarski-Grothendieck. And yet, remark-
ably, everything we have tried to formalise, unless it refers explicitly to ZF, sits
comfortably within HOL alone. Since HOL is essentially the formalism of Prin-
cipia Mathematica [40], we can conclude that Whitehead and Russell were right
all along.

The AFP entries contributed by the project authors are too many to list,
but they can be consulted via the on-line author indices:

– Anthony Bordg
https://www.isa-afp.org/authors/bordg/

– Chelsea Edmonds
https://www.isa-afp.org/authors/edmonds/

– Angeliki Koutsoukou-Argyraki
https://www.isa-afp.org/authors/argyraki/

– Wenda Li
https://www.isa-afp.org/authors/li/

– Lawrence C. Paulson
https://www.isa-afp.org/authors/paulson/

8 Conclusions

We set out to tackle serious mathematics with a combination of hope and trep-
idation. We were able to formalise everything we set out to formalise and were
never forced to discard a development part way through. As Angeliki has pointed
out, “we have formalised results by two Fields medalists (Roth and Gowers), an
Abel prize winner (Szemerédi) and of course Erdős too!”

We’ve also seen impressive advances in search and language models to assist
users in proof development. Although the effort required to formalise mathemat-
ical articles remains high, we can confidently predict that formalisation will be
playing a significant role in mathematical research in the next few years.
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