
Catherine Dubois
Manfred Kerber (Eds.)

 123

LN
AI

 1
41

01

16th International Conference, CICM 2023
Cambridge, UK, September 5–8, 2023
Proceedings

Intelligent Computer
Mathematics

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14101
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Catherine Dubois ·Manfred Kerber
Editors

Intelligent Computer
Mathematics
16th International Conference, CICM 2023
Cambridge, UK, September 5–8, 2023
Proceedings

Editors
Catherine Dubois
ENSIIE
Evry, France

Manfred Kerber
University of Birmingham
Birmingham, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-42752-7 ISBN 978-3-031-42753-4 (eBook)
https://doi.org/10.1007/978-3-031-42753-4

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9477-8109
https://doi.org/10.1007/978-3-031-42753-4

Preface

This volume contains the papers presented at the 16th Conference on Intelligent Com-
puter Mathematics (CICM 2023), held during 5–8 September 2023, in Cambridge, UK,
organized in hybrid mode.

With the continuing, rapid progress of digital methods in communications, knowl-
edge representation, processing, and discovery, the special character and needs of math-
ematical information require special approaches. Separate communities have developed
theoretical and practical solutions for these challenges including computation, deduc-
tion, narration, and datamanagement. CICMbrings these communities together, offering
a venue for discussing and developing solutions to problems posed by the integration of
these diverse areas.

CICM was initially formed in 2008 as a joint meeting of communities involved
in computer algebra systems, theorem provers, and mathematical knowledge manage-
ment, as well as those involved in a variety of aspects of scientific document archives.
Since then, the conference has been held annually: Birmingham (UK, 2008), Grand
Bend (Canada, 2009), Paris (France, 2010), Bertinoro (Italy, 2011), Bremen (Germany,
2012), Bath (UK, 2013), Coimbra (Portugal, 2014), Washington D.C. (USA, 2015),
Białystok (Poland, 2016), Edinburgh (UK, 2017), Hagenberg (Austria, 2018), Prague
(Czech Republic, 2019), Bertinoro (Italy, 2020, online), Timisoara (Romania, 2021,
online) and Tbilisi (Georgia, 2022, hybrid).

CICM 2023 received 31 formal submissions. Each submission was assigned to
at least three Program Committee (PC) members and was reviewed in single-blind
mode. The committee decided to accept 23 papers including 14 regular ones, two
project/survey papers, six short papers describing software systems and datasets, and
one paper highlighting the development of systems and tools in the last year.

The reviewing process included a response period inwhich the authors could respond
and clarify points raised by the reviewers. In addition to the main sessions, a doctoral
program was organized, providing a forum for PhD students to present their research
and get advice from senior members of the community.

The conference featured four invited talks:

– Frédéric Blanqui (Inria):
“Progress on proof systems interoperability”,

– Mateja Jamnik (University of Cambridge):
“How can we make trustworthy AI?”,

– Lawrence C. Paulson (University of Cambridge):
“Large-Scale Formal Proof for the Working Mathematician - Lessons learnt from the
Alexandria Project”,

– Martina Seidl (Johannes Kepler University Linz):
“Never trust your solver: Certificates for SAT and QBF”.

vi Preface

Additionally, the following workshops were scheduled:

– the 3rd Workshop on Natural Formal Mathematics (NatFoM 2023),
organized by Peter Koepke, Adrian De Lon and Dennis Müller,

– the 14th Workshop on Mathematical User Interaction (MathUI 2023),
organized by Abhishek Chugh and Andrea Kohlhase,

– the 2nd Workshop on Interoperable Knowledge Representation (Tetrapod 2023)
organized by Katja Bercic, William Farmer, Michael Kohlhase, Dennis Müller and
Florian Rabe.

The EuroProofNetWorkshop on Libraries of Formal Proofs and Natural Mathemati-
cal Language, organized byAngeliki KoutsoukouArgyraki and Claudio Sacerdoti Coen,
was co-located with CICM 2023. NatFoM 2023 was also affiliated as an EuroProofNet
workshop.

We thank the PCmembers and the additional reviewers for their timely and thorough
reviewing work, and for contributing to an animated and informed discussion. Their
names are listed on the following pages. The EasyChair conference management system
was set up for CICM2023, supporting submission, review and volume editing processes.

We thank the conference chair James Davenport and his colleagues in Cambridge for
the successful organization of the conference. We are grateful to Serge Autexier for his
publicity work, Jesús María Aransay Azofra for serving as the doctoral program chair,
and Florian Rabe for serving as the workshop chair. We also thank the authors of the
submitted papers, the workshop organizers, the invited speakers and the participants of
the conference.

August 2023 Catherine Dubois
Manfred Kerber

Organization

Program Committee Chairs

Catherine Dubois ENSIIE, France
Manfred Kerber University of Birmingham, UK

Program Committee

Jesús Aransay Universidad de La Rioja, Spain
Mauricio Ayala-Rincón Universidade de Brasilía, Brazil
Haniel Barbosa Universidade Federal de Minas Gerais, Brazil
Jasmin Blanchette Ludwig-Maximilians-Universität München,

Germany
Kevin Buzzard Imperial College London, UK
Isabela Drãmnesc West University of Timisoara, Romania
Mǎdǎlina Eraşcu West University of Timisoara, Romania
William Farmer McMaster University, Canada
John Harrison Amazon Web Services, USA
Tetsuo Ida University of Tsukuba, Japan
Moa Johansson Chalmers University of Technology, Sweden
Fairouz Kamareddine Heriot-Watt University, UK
Daniela Kaufmann TU Wien, Austria
Peter Koepke University of Bonn, Germany
Michael Kohlhase Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Angeliki Koutsoukou-Argyraki University of Cambridge, UK
Temur Kutsia Johannes Kepler University Linz, Austria
Micaela Mayero Université Paris Nord, France
Bruce Miller NIST, USA
Adam Naumowicz University of Białystok, Poland
Claudio Sacerdoti Coen University of Bologna, Italy
Sofiène Tahar Concordia University, Canada
Olaf Teschke FIZ Karlsruhe, Germany
Josef Urban Czech Technical University in Prague,

Czech Republic
Stephen Watt University of Waterloo, Canada
Freek Wiedijk Radboud University, The Netherlands

viii Organization

Wolfgang Windsteiger Johannes Kepler University Linz, Austria
Abdou Youssef George Washington University, USA

Additional Reviewers

Aksoy, Kubra
Arielly de Lima, Thaynara
Barhoumi, Oumaima
Davenport, James H.
Deniz, Elif
Elleuch, Maissa
Gauthier, Thibault
Kameyama, Yukiyoshi
Müller, Dennis
Schaefer, Jan Frederik
Schmidt-Schauss, Manfred
Wong, Thomas

Abstracts of Invited Talks

Progress on Proof System Interoperability

Frédéric Blanqui

Université Paris-Saclay, ENS Paris-Saclay, LMF, CNRS, Inria, France
frederic.blanqui@inria.fr

https://blanqui.gitlabpages.inria.fr/

Proof system interoperability is a research topic which started about 30 years ago, and
received some attention with the formalization of Hales’ proof of the Kepler Conjecture
in the 2000s as parts of this proofwere initially formalized in two different provers. Then,
proof system interoperability received new interest in the 2010s with the increasing use
of automated theorem provers in proof assistants.

At about the same time a new logical framework appeared, called Dedukti, which
extends LF by allowing the identification of types modulo some equational theory. It has
been shown that various logical systems can be nicely encoded in Dedukti, and various
tools have been developed to actually represent proofs from various provers in Dedukti,
and to translate them to other provers.

In this talk, I will review some of these works and tools, and present recent efforts
to handle entire libraries of proofs.

Partly supported by the COST action 20111 EuroProofNet.

https://orcid.org/0000-0001-7438-5554

How Can We Make Trustworthy AI?

Mateja Jamnik

University of Cambridge, UK
mateja.jamnik@cl.cam.ac.uk

https://www.cl.cam.ac.uk/~mj201/

Not too long ago most headlines talked about our fear of AI. Today, AI is ubiquitous,
and the conversation has moved on from whether we should use AI to how we can trust
the AI systems that we use in our daily lives. In this talk I look at some key technical
ingredients that help us build confidence and trust in using intelligent technology. I argue
that intuitiveness, adaptability, explainability and inclusion of human domain knowledge
are essential in building this trust. I present some of the techniques and methods we are
building for making AI systems that think and interact with humans in more intuitive
and personalised ways, enabling humans to better understand the solutions produced
by machines, and enabling machines to incorporate human domain knowledge in their
reasoning and learning processes.

https://orcid.org/0000-0001-7438-5554

Contents

Invited Talks

Large-Scale Formal Proof for the Working Mathematician—Lessons
Learnt from the ALEXANDRIA Project . 3

Lawrence C. Paulson

Never Trust Your Solver: Certification for SAT and QBF . 16
Martina Seidl

Regular Papers

Evasiveness Through Binary Decision Diagrams . 37
Jesús Aransay, Laureano Lambán, and Julio Rubio

Nominal AC-Matching . 53
Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva,
Temur Kutsia, and Daniele Nantes-Sobrinho

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 69
Jonas Bayer, Alexey Gonus, Christoph Benzmüller, and Dana S. Scott

Learning Support Systems Based on Mathematical Knowledge
Management . 84

Marc Berges, Jonas Betzendahl, Abhishek Chugh, Michael Kohlhase,
Dominic Lohr, and Dennis Müller

Isabelle Formalisation of Original Representation Theorems 98
Marco B. Caminati

Teaching Linear Algebra in a Mechanized Mathematical Environment 113
Robert M. Corless, David J. Jeffrey, and Azar Shakoori

HighlightingNamedEntities in Input for Auto-formulation ofOptimization
Problems . 130

Neeraj Gangwar and Nickvash Kani

Formalization Quality in Isabelle . 142
Fabian Huch and Yiannos Stathopoulos

xvi Contents

Formalizing Free Groups in Isabelle/HOL: The Nielsen-Schreier Theorem
and the Conjugacy Problem . 158

Aabid Seeyal Abdul Kharim, T. V. H. Prathamesh, Shweta Rajiv,
and Rishi Vyas

Morphism Equality in Theory Graphs . 174
Florian Rabe and Franziska Weber

Towards an Annotation Standard for STEM Documents: Datasets,
Benchmarks, and Spotters . 190

Jan Frederik Schaefer and Michael Kohlhase

Verified Correctness, Accuracy, and Convergence of a Stationary Iterative
Linear Solver: Jacobi Method . 206

Mohit Tekriwal, Andrew W. Appel, Ariel E. Kellison, David Bindel,
and Jean-Baptiste Jeannin

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 222
Eric Wieser

CoProver: A Recommender System for Proof Construction 237
Eric Yeh, Briland Hitaj, Sam Owre, Maena Quemener,
and Natarajan Shankar

Project and Survey Papers

Proving an Execution of an Algorithm Correct? . 255
James Harold Davenport

Proving Results About OEIS Sequences with Walnut . 270
Jeffrey Shallit

System and Dataset Descriptions

ProofLang: The Language of arXiv Proofs . 285
Henry Hammer, Nanako Noda, and Christopher A. Stone

True Crafted Formula Families for Benchmarking Quantified Satisfiability
Solvers . 291

Simone Heisinger and Martina Seidl

Contents xvii

An Augmented MetiTarski Dataset for Real Quantifier Elimination Using
Machine Learning . 297

John Hester, Briland Hitaj, Grant Passmore, Sam Owre,
Natarajan Shankar, and Eric Yeh

VizAR: Visualization of Automated Reasoning Proofs (System
Description) . 303

Jan Jakubův and Cezary Kaliszyk

Extending Numeric Automation for Number Theory Formalizations
in Mizar . 309

Adam Naumowicz

Extracting Theory Graphs from Aldor Libraries . 315
Florian Rabe and Stephen M. Watt

System Entry

GeoGebra Discovery . 323
Christopher W. Brown, Zoltán Kovács, Tomás Recio, Róbert Vajda,
and M. Pilar Vélez

Author Index . 325

Invited Talks

Large-Scale Formal Proof for the Working
Mathematician—Lessons Learnt
from the ALEXANDRIA Project

Lawrence C. Paulson(B)

Computer Laboratory, University of Cambridge, Cambridge, UK
lp15@cam.ac.uk

https://www.cl.cam.ac.uk/~lp15/

Abstract. ALEXANDRIA is an ERC-funded project that started in
2017, with the aim of bringing formal verification to mathematics. The
past six years have seen great strides in the formalisation of mathemat-
ics and also in some relevant technologies, above all machine learning.
Six years of intensive formalisation activity seem to show that even the
most advanced results, drawing on multiple fields of mathematics, can
be formalised using the tools available today.

Keywords: Isabelle · formalisation of mathematics · ALEXANDRIA
project

1 Introduction

In the summer of 2017, the Newton Institute at Cambridge held a programme
entitled Big Proof (BPR) “directed at the challenges of bringing proof technology
into mainstream mathematical practice”. It was held in recognition of the formal-
isations that had already been done (which were indeed big). The programme
webpage1 specifically lists the proofs of the Kepler conjecture [19], the odd order
theorem [17] and the four colour theorem [16]. That summer also saw the start
of my ERC project, ALEXANDRIA. Big Proof represented an acknowledge-
ment that the formalisation of mathematics could no longer be ignored, but also
an assertion that big problems remain to be solved. These included “novel prag-
matic foundations” and large-scale “formal mathematical libraries” and “inference
engines”, and also the “curation” of formalised mathematical knowledge.

ALEXANDRIA was conceived in part to try to identify those big problems.
By hiring professional mathematicians and asking them to formalise advanced
mathematics, we would get a direct idea of the obstacles they faced. We would
also try to refine our tools, extend our libraries and investigate other technologies.
We would have only five years (extended to six due to COVID-19).

The need for formalisation had been stressed by Vladimir Voevodsky, a Fields
medallist, who pointedly asked “And who would ensure that I did not forget
something and did not make a mistake, if even the mistakes in much more simple
1 https://www.newton.ac.uk/event/bpr/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-42753-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_1&domain=pdf
http://orcid.org/0000-0003-0288-4279
https://www.newton.ac.uk/event/bpr/
https://doi.org/10.1007/978-3-031-42753-4_1

4 L. C. Paulson

arguments take years to uncover?” [38]. He advocated a new sort of formalism,
homotopy type theory, which was the subject of much excitement. However,
the most impressive formalisations by that time had been done in Coq (four
colour theorem, odd order theorem), HOL Light (Kepler conjecture and much
else) or Isabelle/HOL (part of the Kepler proof, and more). Lean, a newcomer,
was attracting a user community. Perhaps our project would shed light on the
respective values of the available formalisms: calculus of constructions (Coq,
Lean), higher-order logic or homotopy type theory. Voevodsky would never find
out, due to his untimely death in September 2017.

Since that date, research into the formalisation of mathematics has plunged
ahead. Kevin Buzzard, a number theorist at Imperial College London, followed
some of the Big Proof talks online. This resulted in his adoption of Lean for
his Xena Project, with the aim of attracting students to formalisation.2 Xena
has had a huge impact, but here I’d like to focus on the work done within
ALEXANDRIA.

2 A Brief Prehistory of the Formalisation of Mathematics

Mathematics is a work of the imagination, and the struggle between intuition
and rigour has gone on since classical times. Euclid’s great contribution to Greek
geometry was the unification of many separate schools through his system of
axioms and postulates. Newton and Leibniz revolutionised mathematics, but
the introduction of infinitesimals was problematical. During the 19th centuries,
the “arithmetisation of analysis” carried out by Cauchy and Weierstrass replaced
infinitesimals by rigorous ε–δ arguments. (We would not get a consistent theory
of infinitesimals until the 1960 s,s, under the banner of non-standard analysis.)
Dedekind and Cantor promulgated a radical new understanding of sets and func-
tions that turned out to be inconsistent until Zermelo came up with his axioms.
It is notable that Zermelo set theory (which includes the axiom of choice but
lacks Fraenkel’s replacement axiom) is approximately equal in logical strength
to higher-order logic.

Only axiomatic mathematics can be formalised. The first attempt was by
Frege, whose work (contrary to common belief) was not significantly impacted by
Russell’s paradox [1]. Russell and Whitehead in their Principia Mathematica [40]
wrote out the proofs of thousands of mathematical propositions in a detailed
axiomatic form. The work of Bourbaki can also be seen as a kind of formalised
mathematics. The philosopher Hao Wang wrote on the topic and also coded the
first automatic theorem prover [39] for first-order logic, based on what we would
now recognise as a tableau calculus.

This takes us to NG de Bruijn, who in 1968 created AUTOMATH [5], and
to his student’s formalisation [24] of Landau’s Foundations of Analysis in 1977.
This takes us to the birth of Mizar [18], in which a truly impressive amount
of mathematics was formalised in a remarkably readable notation. More recent

2 https://www.ma.imperial.ac.uk/~buzzard/xena/.

https://www.ma.imperial.ac.uk/~buzzard/xena/

Large-Scale Formal Proof—Lessons from ALEXANDRIA 5

history—analysis in HOL Light, the four colour theorem in Coq, etc.—is pre-
sumably familiar to readers. But it is appropriate to close this section with a
prescient remark by de Bruijn back in 1968:

As to the question what part of mathematics can be written in
AUTOMATH, it should first be remarked that we do not possess a
workable definition of the word “mathematics”. Quite often a mathemati-
cian jumps from his mathematical language into a kind of metalanguage,
obtains results there, and uses these results in his original context. It seems
to be very hard to create a single language in which such things can be
done without any restriction [[4], p. 3].

And so we have two great scientific questions:

– What sort of mathematics can be formalised?
– What sort of proofs can be formalised?

We would investigate these questions—mostly in the context of
Isabelle/HOL—by formalising as much mathematics as we could, covering as
many different topics as possible. I expected to run into obstacles here and
there, which would have to be recorded if they could not be overcome.

3 ALEXANDRIA: Warmup Formalisation Exercises

The ERC proposal called for hiring research mathematicians, who would bring
their knowledge of mathematics as it was practised, along with their inexperience
of Isabelle/HOL. Their role would be to formalise increasingly advanced math-
ematical material with the twin objectives of developing formalisation method-
ologies and identifying deficiencies that might be remedied by extending Isa-
belle/HOL somehow. The project started in September 2017. We hired Anthony
Bordg and Angeliki Koutsoukou-Argyraki. A third postdoc was required to
undertake any necessary Isabelle engineering, and Wenda Li was hired.

One of the tasks for the first year was simply to reorganise and consolidate
the Isabelle/HOL analysis library, which had mostly been translated from HOL
Light. But we were also supposed to conduct pilot studies. The team set to work
enthusiastically, and already in the first year they created a number of impressive
developments:

– Irrational rapidly convergent series, formalising a 2002 proof by J. Hančl [20]
– Projective geometry, including Hessenberg’s theorem and Desargues’s theorem
– The theory of quantum computing (which identified a significant error in one

of the main early papers)
– Quaternions, octonions and several other small exercises
– Effectively counting real and complex roots of polynomials, and the Budan-

Fourier theorem [30,31]
– The first formal proof that every field contains an algebraically closed exten-

sion [37]

Koutsoukou-Argyraki wrote up her reactions to Isabelle/HOL from the perspec-
tive of a mathematician in her paper “Formalising Mathematics —in Praxis” [25].

6 L. C. Paulson

4 Advanced Formalisations

As noted above, Kevin Buzzard had taken an interest in formalisation through
participation in Big Proof, and by 2019 had marshalled large numbers of enthu-
siastic students to formalise mathematics using Lean. He had also made tren-
chant criticisms of even the most impressive prior achievements: that most
of it concerned simple objects such as finite groups, or was just 19th-century
mathematics. Nobody seemed to be working with sophisticated objects. He
expressed astonishment that Grothendieck schemes—fundamental objects in
algebraic geometry and number theory—had not been formalised in any tool. His
criticisms helped focus our attention on the need to tackle difficult, recent and
deep mathematics. Team members proposed their own tasks, but we also con-
tributed to one another’s tasks, sometimes with the help of interns or students.
We completed three notable projects during this middle period:

– Irrationality and transcendence criteria for infinite series [27], extending the
Hančl work mentioned above with material from two more papers: Erdős–
Straus [13] and Hančl–Rucki [21].

– Ordinal partition theory [9]: infinite forms of Ramsey’s theorem, but for
order types rather than cardinals. We formalised relatively papers by Erdős–
Milner [14] and Larson [29], and as a preliminary, the Nash-Williams partition
theorem [36]. These were deep results in the context of Zermelo–Fraenkel set
theory, involving highly intricate inductive constructions. One of the papers
contained so many errors as to necessitate publishing a second paper [15] with
a substantially different proof. This material was difficult even for Erdős!

– Grothendieck Schemes [3]. Buzzard had formalised schemes in Lean [6] (three
times), and even claimed that Isabelle was not up to the job due to its simple
type system. We took the challenge and it was straightforward, following a
new approach based on locales to manage the deep hierarchies of definitions.

We were aiming for a special issue devoted to formalisation in the journal
Experimental Mathematics, and were delighted to see these projects take up
three of the six papers ultimately accepted.

5 Seriously Deep Formalisation Projects

Inspired by the success of the previous projects—conducted under the difficult
circumstances of COVID-19 lockdown—team members continued to propose the-
orems to formalise, and we continued to collaborate in small groups. By now we
had the confidence to take on almost anything. There are too many projects to
describe in full, so let’s look at some of the highlights.

5.1 Szemerédi’s Regularity Lemma and Roth’s Theorem
on Arithmetic Progressions

Szemerédi’s regularity lemma is a fundamental result in extremal graph theory.
It concerns a property called the edge density of two given sets of vertices X,

Large-Scale Formal Proof—Lessons from ALEXANDRIA 7

Y ⊆ V (G), and a further property of (X,Y) being an ε-regular pair for any
given ε > 0. The lemma itself states that for a given ε > 0 there exists some M
such that every graph has an ε-regular partition of its vertex set into at most
M parts. Intuitively, (X,Y) is an ε-regular pair if the density of edges between
various subsets A ⊆ X and B ⊆ Y is more or less the same for all possible A
and B; an ε-regular partition enjoys that property for all but an insignificant
number of pairs (X,Y) of vertex sets taken from the partition. Intuitively then,
the vertices of any graph can be partitioned into most M parts such that the
edges between the various parts are uniform in this sense.

We used Szemerédi’s regularity lemma to prove Roth’s theorem on arithmetic
progressions, which states that every “sufficiently dense” set of natural numbers
includes three elements of the form k, k + d, k + 2d.

We used a variety of source materials and discovered a good many significant
infelicities in the definitions and proofs. These included confusion between ⊂
and ⊆ (which are often synonymous in combinatorics) and between a number of
variants of the lemma statement. One minor claim was flatly incorrect. To make
matters worse, the significance of these issues only became clear in the applica-
tion of the regularity lemma to Roth’s theorem. Much time was wasted, and yet
the entire formalisation project [10] took under six months.3 By a remarkable
coincidence, a group based in the mathematics department at Cambridge for-
malised a slightly different version of Szemerédi’s regularity lemma, using Lean,
around the same time [8].

5.2 Additive Combinatorics

Let A and B be finite subsets of a given abelian group (G,+), and define their
sumset as

A + B = {a + b : a ∈ A, b ∈ B}.

Write nA for the n-fold iterated sumset A + · · · + A. Additive combinatorics
concerns itself with such matters as the relationship between the cardinality of
A+B and other properties of A and B. Angeliki proposed this field as the natural
successor to the formalisation of Szemerédi’s regularity lemma because it’s fairly
recent (many results are less than 50 years old) and significant (providing a route
to Szemerédi’s theorem, a much stronger version of the Roth result mentioned
above).

Here’s an overview of the results formalised, all within the 7-month period
from April to November 2022:

– The Plünnecke–Ruzsa inequality : yields an upper bound on the difference set
mB − nB

– Khovanskii’s theorem: for any finite A ⊆ G, the cardinality of nA grows like
a polynomial for all sufficiently large n.

3 An email from Angeliki proposing to prove Szemerédi’s regularity lemma is dated 8
July 2021. The formalisation was done by 5 November; Roth, 28 December.

8 L. C. Paulson

– The Balog-Szemerédi-Gowers theorem is a deep result bearing on Szemerédi’s
theorem. The formalisation combines additive combinatorics with extremal
graph theory and probability [26].

– Kneser’s theorem and the Cauchy-Davenport theorem yield lower bounds for
the size of A + B.

These are highly significant results by leading mathematicians. They can all
be found in Isabelle’s Archive of Formal Proofs (AFP).4

5.3 Other Formalisation Projects

The members chose a variety of large and small projects with a variety of specific
objectives:

– Combinatorial structures. This is the PhD project of Chelsea Edmonds, who
has used Isabelle’s locale system to formalise dozens of varieties of block
designs, hypergraphs, graphs and the relationships among them [11]. Results
proved include Fisher’s inequality [12].

– Number theory. We have formalised several chapters of Modular Functions and
Dirichlet Series in Number Theory, a graduate textbook by Tom M. Apostol.

– Wetzel’s problem is a fascinating small example, due to Erdős, where the
answer to a question concerning complex analysis depends on the truth or
falsity of the continuum hypothesis. The formal proof illustrates analysis and
axiomatic set theory smoothly combined into a single argument [33].

– Turán’s graph theorem states a maximality property of Turán graphs. This
was a Master’s student project.

This is a partial list, especially as regards contributions from interns, students
and other visitors.

5.4 On Legibility of Formal Proofs

A proof is an argument, based on logical reasoning from agreed assumptions,
that convinces mathematicians that a claim is true. How then do we understand
a computer proof? To follow the analogy strictly, a computer proof convinces
computers that a claim is true. But computers, even in this age of clever chatbots,
are not sentient. We need to convince mathematicians.

Of the early efforts at the formalisation of mathematics, only Mizar aimed
for legibility. Even pre-computer formal proofs such as Principia Mathematica
are unreadable. Isabelle’s proof language (Isar) follows the Mizar tradition, as
in the following example:

lemma deriv_sum_int:
"deriv (λx.

∑
i=0..n. real_of_int (c i) * x^i) x

= (if n=0 then 0 else (
∑

i=0..n-1. of_int((i+1) * c(Suc i)) *
x^i))"
4 https://www.isa-afp.org.

https://www.isa-afp.org

Large-Scale Formal Proof—Lessons from ALEXANDRIA 9

(is "deriv ?f x = (if n=0 then 0 else ?g)")
proof -

have "(?f has_real_derivative ?g) (at x)" if "n > 0"
proof -

have "(
∑

i = 0..n. i * x ^ (i - Suc 0) * (c i))
= (

∑
i = 1..n. (real (i-1) + 1) * of_int (c i) * x ^ (i-1))"

using that by (auto simp: sum.atLeast_Suc_atMost intro!: sum.cong)
also have " . . . = sum ((λi. (real i + 1) * c (Suc i) * x^i) ◦ (λn.

n-1))
{1..Suc (n-1)}"

using that by simp
also have " . . . = ?g"

by (simp flip: sum.atLeast_atMost_pred_shift [where m=0])
finally have §: "(

∑
a = 0..n. a * x ^ (a - Suc 0) * (c a)) = ?g" .

show ?thesis
by (rule derivative_eq_intros § | simp)+

qed
then show ?thesis

by (force intro: DERIV_imp_deriv)
qed

Only a little training is required to make some sense of this. The lemma claims
that the derivative of a certain summation equals a certain other summation.
The proof refers of the variables ?f and ?g, which are defined by the pattern
provided in the lemma statement: ?f denotes the original summation, and we
prove that ?g is its derivative. Within that proof we can see summations being
manipulated through changes of variable. Since we can see these details of the
reasoning, we have reasons to believe that the proof is indeed correct: we do not
simply have to trust the computer.

Not all Isabelle proofs can be written in a structured style. Page-long for-
mulas often arise when trying to verify program code, and sometimes just from
expanding mathematical definitions. Then we must use the traditional tactic
style: long sequences of proof commands. However, most mathematical proofs
that humans can write go into the structured style with ease. We have aimed for
maximum legibility in all our work.

6 Library Search and Machine Learning Experiments

The focus of this paper is achievements in the formalisation of mathematics, but
the ALEXANDRIA proposal also called for investigating supporting technolo-
gies. The name of the project refers to the library of Alexandria, and Isabelle’s
AFP already has nearly 4 million lines of proof text and well over 700 separate
entries. How can we take advantage of all this material when developing new
proofs?

In May 2019, the team acquired a new postdoc: Yiannos Stathopoulos. He
came with the perfect background to tackle these objectives. After much labour,

10 L. C. Paulson

he and Angeliki produced the SErAPIS search engine,5 which searches both
the pre-installed Isabelle libraries and the AFP, offering a great many search
strategies based on anything from simple keywords to abstract mathematical
concepts [35]. It is not easy to determine the relevance or significance of a formal
text to an abstract concept, but a variety of query types can be combined to
explore the libraries.

Also mentioned in the proposal was the aim of Intelligent User Support. I
had imagined that common patterns of proofs could be identified in the existing
libraries and offered up to users, but with no idea how. To generate structured
proofs automatically would require the ability to generate intermediate math-
ematical assertions. Six years of dramatic advances in machine learning have
transformed our prospects. Language models can generate plausible texts given
a corpus of existing texts. And as the texts we want would be inserted into
Isabelle proofs, we can immediately check their correctness.

An enormous amount of work is underway, particularly by a student in our
group, Albert Qiaochu Jiang, working alongside Wenda Li and others. It is now
clear that language models can generate formal Isabelle proof skeletons [32]
and can also be useful for identifying relevant lemmas [22]. We can even envis-
age automatic formalisation [23,41]: translating informal proofs into formal lan-
guages, by machine. Autoformalisation is easier with a legible proof language
like ours, because the formal proof can have the same overall structure as the
given natural language proof; a project currently underway is to develop the
Isabelle Parallel Corpus, pairing natural language and Isabelle texts.6 The next
few years should see solid gains through machine learning.

7 Evaluation

At the start of this paper, I listed two scientific questions: what sort of math-
ematics, and what sort of proofs, can be formalised? And the answer so far is,
everything we attempted, and we attempted a great variety of mathematical top-
ics: number theory, combinatorics, analysis, set theory. The main difficulties have
been errors and omissions in proofs. A vignette illustrates this point. Chelsea
was formalising a probabilistic argument where the authors wrote “these prob-
abilities are clearly independent, and therefore the joint probability is obtained
by multiplying them.” The problem is that this multiplication law is the mathe-
matical definition of independent probabilities, which the authors had somehow
confused with the real-world concept of unconnected random events. Frequently
we have found proofs that are almost right: they need a bit of adjustment, but
getting everything to fit takes effort.

Effort remains the main obstacle to the use of verification tools by mathe-
maticians. Obvious claims are often tiresome to prove, which is both discouraging
and a waste of an expert’s time. But we might already advocate an approach
of formalising the definitions and the proofs, stating the obvious claims without
5 https://behemoth.cl.cam.ac.uk/search/.
6 https://behemoth.cl.cam.ac.uk/ipc/.

https://behemoth.cl.cam.ac.uk/search/
https://behemoth.cl.cam.ac.uk/ipc/

Large-Scale Formal Proof—Lessons from ALEXANDRIA 11

proofs (using the keyword sorry). Even for this idea to be feasible, much more
library material is needed, covering at least all the definitions a mathematician
might expect to have available.

Another key scientific question is the role of dependent types. People in
the type theory world seem to share the conviction that dependent types are
necessary to formalise nontrivial mathematics. But in reality it seems to be
Lean users who repeatedly fall foul of intensional equality : that i = j does not
guarantee that T (i) is the same type as T (j). Falling foul of this can be fatal: the
first definition of schemes had to be discarded for this reason. Intensional equality
is adopted by almost all dependent type theories, including Coq and Agda:
without it, type checking becomes undecidable. But with it, type dependence
does not respect equality.

The main limitation of simple type theory is that axiomatic type classes are
less powerful than they otherwise would be. Isabelle/HOL has type classes for
groups, rings, topological spaces among much else, but they are not useful for
defining the theories of groups, rings or topological spaces. Rather they allow us,
for example, to define the quaternions, prove a dozen or so laws and immediately
inherit entire libraries of algebraic and topological properties. Abstract groups,
rings, etc., need to be declared with an explicit carrier set (logically, the same
thing as a predicate) rather than using the corresponding type class. It’s a small
price to pay for a working equality relation.

Having said this, one must acknowledge the enormous progress made by the
Lean community over roughly the same period, 2017–now. Lean users, inspired
by Buzzard, have taken on hugely ambitious tasks. The most striking is probably
the Liquid Tensor Experiment [7]: brand-new mathematics, by a Fields medallist
(Peter Scholze) who was concerned about its correctness, formalised over about a
year and a half. This one accomplishment, more than anything else, demonstrates
that formalisation can already offer real value to professional mathematicians.

We have from time to time looked at type issues directly. De Vilhena [37]
describes an interesting technique for defining the n-ary direct product of a finite
list of groups, iterating the binary direct product; his trick to avoid type issues
involves creating an isomorphism to a suitable type. However, here one could
avoid type issues (and handle the infinite case) by defining the direct product of
a family in its own right as opposed to piggybacking off of the binary product.
Anthony Bordg has done a lot of work on the right way to express mathematics
without dependent types [2,3]. Ongoing work, still unpublished, is exploring
the potential of the types-to-sets framework [28] to allow a smooth transition
between type-based and carrier-set based formalisations.

One can also compare formalisms in terms of their logical strength. Higher-
order logic is somewhat weaker than Zermelo set theory, which is much weaker
than ZFC, which in turn is much weaker than Tarski-Grothendieck set theory:

HOL < Z � ZF � TG

The Calculus of Inductive Constructions, which is the formalism of Lean and
Coq, is roughly equivalent to TG. The advantage of a weaker formalism is bet-
ter automation. The power of ZF set theory, when it is required, can be obtained

12 L. C. Paulson

simply by loading the corresponding library from the AFP [33]. It’s highly likely
that a similar library could be created for Tarski-Grothendieck. And yet, remark-
ably, everything we have tried to formalise, unless it refers explicitly to ZF, sits
comfortably within HOL alone. Since HOL is essentially the formalism of Prin-
cipia Mathematica [40], we can conclude that Whitehead and Russell were right
all along.

The AFP entries contributed by the project authors are too many to list,
but they can be consulted via the on-line author indices:

– Anthony Bordg
https://www.isa-afp.org/authors/bordg/

– Chelsea Edmonds
https://www.isa-afp.org/authors/edmonds/

– Angeliki Koutsoukou-Argyraki
https://www.isa-afp.org/authors/argyraki/

– Wenda Li
https://www.isa-afp.org/authors/li/

– Lawrence C. Paulson
https://www.isa-afp.org/authors/paulson/

8 Conclusions

We set out to tackle serious mathematics with a combination of hope and trep-
idation. We were able to formalise everything we set out to formalise and were
never forced to discard a development part way through. As Angeliki has pointed
out, “we have formalised results by two Fields medalists (Roth and Gowers), an
Abel prize winner (Szemerédi) and of course Erdős too!”

We’ve also seen impressive advances in search and language models to assist
users in proof development. Although the effort required to formalise mathemat-
ical articles remains high, we can confidently predict that formalisation will be
playing a significant role in mathematical research in the next few years.

Acknowledgements. This work was supported by the ERC Advanced Grant
ALEXANDRIA (Project GA 742178). Chelsea Edmonds, Angeliki Koutsoukou-
Argyraki and Wenda Li provided numerous helpful comments and suggestions.

For the purpose of open access, the author has applied a Creative Commons Attri-
bution (CC BY) licence to any Author Accepted Manuscript version arising from this
submission.

References

1. Boolos, G.S.: Saving Frege from contradiction. In: Logic, Logic, and Logic, pp.
171–182. Harvard University Press (1998)

2. Bordg, A., Doña Mateo, A.: Encoding dependently-typed constructions into simple
type theory. In: Proceedings of the 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2023, pp. 78–89. Association for Comput-
ing Machinery (2023). https://doi.org/10.1145/3573105.3575679

https://www.isa-afp.org/authors/bordg/
https://www.isa-afp.org/authors/edmonds/
https://www.isa-afp.org/authors/argyraki/
https://www.isa-afp.org/authors/li/
https://www.isa-afp.org/authors/paulson/
https://doi.org/10.1145/3573105.3575679

Large-Scale Formal Proof—Lessons from ALEXANDRIA 13

3. Bordg, A., Paulson, L., Li, W.: Simple type theory is not too simple: Grothendieck’s
schemes without dependent types. Exp. Math. 31(2), 364–382 (2022). https://doi.
org/10.1080/10586458.2022.2062073

4. de Bruijn, N.G.: AUTOMATH, a language for mathematics. Tech. Rep. 68-WSK-
05, Technical University Eindhoven (Nov 1968)

5. de Bruijn, N.G.: The mathematical language AUTOMATH, its usage, and some of
its extensions. In: Laudet, M. (ed.) Proceedings of the Symposium on Automatic
Demonstration, pp. 29–61. Springer LNM 125, Versailles, France (Dec 1968)

6. Buzzard, K., Hughes, C., Lau, K., Livingston, A., Mir, R.F., Morrison, S.: Schemes
in lean. Experim. Math. 31(2), 355–363 (2022). https://doi.org/10.1080/10586458.
2021.1983489

7. Castelvecchi, D.: Mathematicians welcome computer-assisted proof in ‘grand uni-
fication’ theory. Nature 595, 18–19 (2021)

8. Dillies, Y., Mehta, B.: Formalizing Szemerédi’s regularity lemma in Lean. In:
Andronick, J., de Moura, L. (eds.) 13th International Conference on Interactive
Theorem Proving, pp. 9:1–9:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022)

9. Džamonja, M., Koutsoukou-Argyraki, A., Paulson, L.C.: Formalising ordinal par-
tition relations using Isabelle/HOL. Exp. Math. 31(2), 383–400 (2022). https://
doi.org/10.1080/10586458.2021.1980464

10. Edmonds, C., Koutsoukou-Argyraki, A., Paulson, L.C.: Formalising Szemerédi’s
regularity lemma and Roth’s theorem on arithmetic progressions in Isabelle/HOL.
J. Autom. Reasoning 67(1) (2023), https://doi.org/10.1007/s10817-022-09650-2

11. Edmonds, C., Paulson, L.C.: A modular first formalisation of combinatorial design
theory. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) CICM 2021. LNCS (LNAI),
vol. 12833, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81097-9_1

12. Edmonds, C., Paulson, L.C.: Formalising Fisher’s inequality: formal linear alge-
braic proof techniques in combinatorics. In: Andronick, J., de Moura, L. (eds.)
13th International Conference on Interactive Theorem Proving (ITP 2022), vol.
237, pp. 11:1–11:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.ITP.2022.11

13. Erdős, P., Straus, E.G.: On the irrationality of certain series. Pacific J. Math. 55(1),
85–92 (1974). https://doi.org/pjm/1102911140

14. Erdős, P., Milner, E.C.: A theorem in the partition calculus. Can. Math. Bull.
15(4), 501–505 (1972). https://doi.org/10.4153/CMB-1972-088-1

15. Erdős, P., Milner, E.C.: A theorem in the partition calculus corrigendum. Can.
Math. Bull. 17(2), 305 (1974). https://doi.org/10.4153/CMB-1974-062-6

16. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87827-8_28

17. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_14

18. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom.
Reasoning 55(3), 191–198 (Oct 2015). https://doi.org/10.1007/s10817-015-9345-1

19. Hales, T., et al.: A formal proof of the Kepler conjecture. Forum Math. Pi 5, e2
(2017). https://doi.org/10.1017/fmp.2017.1

20. Hančl, J.: Irrational rapidly convergent series. Rendiconti del Seminario Matem-
atico della Università di Padova 107, 225–231 (2002). http://eudml.org/doc/
108582

https://doi.org/10.1080/10586458.2022.2062073
https://doi.org/10.1080/10586458.2022.2062073
https://doi.org/10.1080/10586458.2021.1983489
https://doi.org/10.1080/10586458.2021.1983489
https://doi.org/10.1080/10586458.2021.1980464
https://doi.org/10.1080/10586458.2021.1980464
https://doi.org/10.1007/s10817-022-09650-2
https://doi.org/10.1007/978-3-030-81097-9_1
https://doi.org/10.1007/978-3-030-81097-9_1
https://doi.org/10.4230/LIPIcs.ITP.2022.11
https://doi.org/pjm/1102911140
https://doi.org/10.4153/CMB-1972-088-1
https://doi.org/10.4153/CMB-1974-062-6
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/s10817-015-9345-1
https://doi.org/10.1017/fmp.2017.1
http://eudml.org/doc/108582
http://eudml.org/doc/108582

14 L. C. Paulson

21. Hančl, J., Rucki, P.: The transcendence of certain infinite series. Rocky Mountain
J. Math. 35(2), 531–537 (2005). https://doi.org/10.1216/rmjm/1181069744

22. Jiang, A.Q., et al.: Thor: Wielding hammers to integrate language models and
automated theorem provers. In: Neural Information Processing Systems (NeurIPS)
(2022)

23. Jiang, A.Q., et al.: Draft, sketch, and prove: guiding formal theorem provers with
informal proofs. In: Eleventh International Conference on Learning Representations
(2023). https://openreview.net/forum?id=SMa9EAovKMC

24. Jutting, L.: Checking Landau’s “Grundlagen” in the AUTOMATH System.
Ph.D. thesis, Eindhoven University of Technology (1977). https://doi.org/10.6100/
IR23183

25. Koutsoukou-Argyraki, A.: Formalising mathematics — in praxis; a mathemati-
cian’s first experiences with Isabelle/HOL and the why and how of getting
started. Jahresbericht der Deutschen Mathematiker-Vereinigung 123(1), 3–26
(2021). https://doi.org/10.1365/s13291-020-00221-1

26. Koutsoukou-Argyraki, A., Bakšys, M., Edmonds, C.: A formalisation of the Balog-
Szemerédi-Gowers theorem in Isabelle/HOL. In: 12th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2023, pp. 225–238.
Association for Computing Machinery (2023). https://doi.org/10.1145/3573105.
3575680

27. Koutsoukou-Argyraki, A., Li, W., Paulson, L.C.: Irrationality and transcendence
criteria for infinite series in Isabelle/HOL. Exp. Math. 31(2), 401–412 (2022)

28. Kunčar, O., Popescu, A.: From types to sets by local type definition in higher-
order logic. J. Autom. Reasoning 62(2), 237–260 (2019). https://doi.org/10.1007/
s10817-018-9464-6

29. Larson, J.A.: A short proof of a partition theorem for the ordinal ωω. Annals Math.
Logic 6(2), 129–145 (1973). https://doi.org/10.1016/0003-4843(73)90006-5

30. Li, W., Paulson, L.C.: Counting polynomial roots in Isabelle/HOL: a formal proof
of the Budan-Fourier theorem. In: 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, pp. 52–64. Association for Computing
Machinery (2019). https://doi.org/10.1145/3293880.3294092

31. Li, W., Paulson, L.C.: Evaluating winding numbers and counting complex roots
through Cauchy indices in Isabelle/HOL. J. Autom. Reasoning (Apr 2019).
https://doi.org/10.1007/s10817-019-09521-3

32. Li, W., Yu, L., Wu, Y., Paulson, L.C.: Isarstep: a benchmark for high-level
mathematical reasoning. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021. OpenReview.net (2021). https://openreview.net/forum?
id=Pzj6fzU6wkj

33. Paulson, L.C.: Wetzel: formalisation of an undecidable problem linked to the con-
tinuum hypothesis. In: Intelligent Computer Mathematics: 15th International Con-
ference, CICM 2022, pp. 92–106. Springer (2022). https://doi.org/10.1007/978-3-
031-16681-5_6

34. Peltier, N., Sofronie-Stokkermans, V. (eds.): IJCAR 2020. LNCS (LNAI), vol.
12166. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9

35. Stathopoulos, Y., Koutsoukou-Argyraki, A., Paulson, L.: Developing a concept-
oriented search engine for Isabelle based on natural language: technical challenges.
In: 5th Conference on Artificial Intelligence and Theorem Proving (2020). http://
aitp-conference.org/2020/abstract/paper_9.pdf

36. Todorčević, S.: Introduction to Ramsey Spaces. Princeton University Press (2010)

https://doi.org/10.1216/rmjm/1181069744
https://openreview.net/forum?id=SMa9EAovKMC
https://doi.org/10.6100/IR23183
https://doi.org/10.6100/IR23183
https://doi.org/10.1365/s13291-020-00221-1
https://doi.org/10.1145/3573105.3575680
https://doi.org/10.1145/3573105.3575680
https://doi.org/10.1007/s10817-018-9464-6
https://doi.org/10.1007/s10817-018-9464-6
https://doi.org/10.1016/0003-4843(73)90006-5
https://doi.org/10.1145/3293880.3294092
https://doi.org/10.1007/s10817-019-09521-3
https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=Pzj6fzU6wkj
https://doi.org/10.1007/978-3-031-16681-5_6
https://doi.org/10.1007/978-3-031-16681-5_6
https://doi.org/10.1007/978-3-030-51074-9
http://aitp-conference.org/2020/abstract/paper_9.pdf
http://aitp-conference.org/2020/abstract/paper_9.pdf

Large-Scale Formal Proof—Lessons from ALEXANDRIA 15

37. de Vilhena, P.E., Paulson, L.C.: Algebraically closed fields in Isabelle/HOL. In:
Peltier and Sofronie-Stokkermans [34], pp. 204–220

38. Voevodsky, V.: The origins and motivations of univalent foundations. The Insti-
tute Letter, pp. 8–9 (Summer 2014). https://www.ias.edu/ideas/2014/voevodsky-
origins

39. Wang, H.: Toward mechanical mathematics. IBM J. Res. Dev. 4(1), 2–22 (1960)
40. Whitehead, A.N., Russell, B.: Principia Mathematica. Cambridge University Press

(1962), paperback edition to *56, abridged from the 2nd edition (1927)
41. Wu, Y., et al.: Autoformalization with large language models. In: Neural Informa-

tion Processing Systems (NeurIPS) (2022)

https://www.ias.edu/ideas/2014/voevodsky-origins
https://www.ias.edu/ideas/2014/voevodsky-origins

Never Trust Your Solver: Certification
for SAT and QBF

Martina Seidl(B)

Institute for Symbolic Artificial Intelligence, Johannes Kepler University,
Linz, Austria

martina.seidl@jku.at

Abstract. Many problems for formal verification and artificial intelli-
gence rely on advanced reasoning technologies in the background, often
in the form of SAT or QBF solvers. Such solvers are sophisticated and
highly tuned pieces of software, often too complex to be verified them-
selves. Now the question arises how one can one be sure that the result
of such a solver is correct, especially when its result is critical for proving
the correctness of another system. If a SAT solver, a tool for deciding
a propositional formula, returns satisfiable, then it also returns a model
which is easy to check. If the answer is unsatisfiable, the situation is more
complicated. And so it is for true and false quantified Boolean formulas
(QBFs), which extend propositional logic by quantifiers over the Boolean
variables. To increase the trust in a solving result, modern solvers are
expected to produce certificates that can independently and efficiently
be checked. In this paper, we give an overview of the state of the art on
validating the results of SAT and QBF solvers based on certification.

Keywords: SAT · QBF · Certification

1 Introduction

Many reasoning tasks depend on the efficiency and the correctness of SAT and
QBF solvers. Especially SAT solving, i.e., deciding the decision problem of propo-
sitional logic, is a “killer app” in various domains [44] ranging from verification
tasks [64], to solving hard mathematical problems [32]. Despite the NP-hardness
of SAT and the intractability of this problem, advanced pruning techniques allow
SAT solvers to find answers to many SAT encodings of practical interest within a
reasonable time frame. The answer “satisfiable” is easy to validate because SAT
solvers return a satisfying variable assignment as the solution of the given for-
mula. Then it only needs to be checked if the formula evaluates to true under the
assignment. However, when the answer is “unsatisfiable”, i.e., the given formula
does not have any solution, it is not feasible to enumerate all possible assign-
ments in order to show that none of them satisfies the formula. While several
powerful testing techniques have been developed that help to increase the trust

Supported by the LIT AI Lab Funded by the State of Upper Austria
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 16–33, 2023.
https://doi.org/10.1007/978-3-031-42753-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_2&domain=pdf
http://orcid.org/0000-0002-3267-4494
https://doi.org/10.1007/978-3-031-42753-4_2

Certificates for SAT and QBF 17

Fig. 1. Certification workflow for SAT and QBF. The dashed part shows the QBF-
specific solution extraction.

in a SAT solver implementation [1,13,51], these techniques can never exhaus-
tively guarantee the correctness of a SAT solver. There are fully verified SAT
solvers like IsaSAT [11], but such solvers are in general less performant than
non-verified solvers as shown in SAT Competition 2022.1 Fortunately, there is
another way of certifying the correctness of an unsatisfiability result: modern
SAT solvers are able to produce proofs of unsatisfiability which can be checked
efficiently by independent, possibly verified proof checkers. While a SAT solver
can still be buggy, proof checking ensures that the result of a specific formula
is correct. The general certification workflow is shown in Fig. 1 (for SAT only
the upper part with solid lines is relevant). Over the last years, much work has
been dedicated to the generation of proofs and nowadays the ability to produce
proofs of unsatisfiability is mandatory for the participation at certain tracks at
the SAT competition. A detailed discussion of various proof systems and proof
formats can be found in [15,30].

Quantified Boolean Formulas (QBFs) extend propositional logic by univer-
sal and existential quantification over the Boolean variables [8]. With universal
quantifiers, certain problems can be represented more succinctly than it would be
possible with propositional logic. Moreover, quantifiers allow for natural encod-
ings of two-player games as found, for example, in the context of reactive synthe-
sis. A recent survey of QBF applications can be found in [60]. In contrast to SAT,
the decision problem of QBF is PSPACE-complete. As a consequence, in QBF
correctness checking works in a dual manner for true and false formulas. There
is no simple case as the checking of satisfying assignments in propositional logic.
Furthermore, for QBF, the solving landscape is more heterogeneous as it is in
SAT. While conflict-driven clause learning (see Sect. 3 for a short introduction) is

1 https://satcompetition.github.io/2022/.

https://satcompetition.github.io/2022/

18 M. Seidl

the predominant solving paradigm in SAT, for QBF several approaches showed
to be very successful in the past [50,55]. These approaches rely on different proof
systems and are provably orthogonal in their strength [8]. For QBFs, proofs play
also an important role for extracting models and counter-models for true and
false formulas. These (counter-)models are usually represented as Boolean func-
tions and encode the solutions of the application problem, like the plan of a
planning problem or the generated circuit of a hardware synthesis problem. If
the functions are plugged into the propositional part of the solved QBF, they
can be validated by calling a SAT solver, even more increasing the trust in the
solving result (see lower dashed part of Fig. 1).

In this paper, we give an overview of certification in the context of SAT
and QBF solving. In Sect. 2, we introduce the necessary preliminaries before
discussing certification for SAT in Sect. 3 and for QBF in Sect. 4. We conclude
our paper with a summary and an outlook in Sect. 5.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF). A for-
mula is in CNF if it is a conjunction of clauses. A clause is a disjunction of
literals and a literal is a possibly negated Boolean variable. If literal l = x or
l = ¬x, then var(l) = x. Further, l̄ = x if l = ¬x and l̄ = ¬x if l = x. By var(φ),
we denote the set of variables occuring in CNF φ. The empty clause is denoted
by ⊥. Let φ be a CNF and X ⊆ var(φ). An assignment σ is a set of literals such
there is no variable x with x ∈ σ and ¬x ∈ σ. A CNF φ is true under σ if every
clause C ∈ φ is true under σ. A clause is true under σ if it contains at least one
literal l with l ∈ σ. Given a propositional formula φ and an assignment σ, then
φσ denotes the formula obtained when setting all variables x ∈ var(σ) to true
if x ∈ σ and to false if ¬x ∈ σ, respectively. Boolean Constraint Propagation
(BCP) is an important propagation mechanism that propagates truth values
induced by literals in unit clauses, i.e., in clauses of size one. BCP repeats unit
propagation until a fixpoint is reached. The fixpoint is denoted by BCP (φ)) and
defined as follows: Let (l) ∈ φ be a unit clause. Then BCP (φ, l) is obtained from
φ by removing all clauses D with l ∈ D and by removing all occurrences of l̄.

Quantified Boolean Formulas extend propositional formulas with a quanti-
fiers and have the form Π.φ, where Π = Q1X1 . . . QnXn is called quantifier prefix
(with Qi ∈ {∀,∃}, Qi �= Qi+1, and X1, . . . , Xn are pairwise disjoint, non-empty
sets of Boolean variables). The matrix φ is a propositional formula in CNF. The
prefix Π induces an ordering on the variables: xi <Π xj if xi ∈ Xi, xj ∈ Xj

and i < j. If prefix Π is clear from the context, we just write xi < xj . A QBF
∀xΠ.φ is true iff Π.φ{x} and Π.φ{¬x} are true. A QBF ∃xΠ.φ is true iff Π.φ{x}
or Π.φ{¬x} is true. For example, the QBF ∀x∃y.(x ↔ y) is true, while the QBF
∃y∀x.(x ↔ y) is false.

A model F of a true QBF Φ is a set of Boolean functions (called Skolem
functions) such that for each existential variable y of Φ, there is a function
fy(x1, . . . , xn) ∈ F where x1, . . . , xn are the universal variables of Φ with xi < y.
If we take the matrix of Φ and replace all the existential variables by their Skolem

Certificates for SAT and QBF 19

Fig. 2. High-level workflow of a CDCL solver.

functions, we obtain a valid propositional formula over the universal variables of
Φ. A model for the true QBF ∀x∃y.(x ↔ y) is {fy = x}. If we replace y by fy,
we obtain the valid formula (x ↔ x). For false QBFs, functions for the universal
variables (called Herbrand functions) are defined dually.

3 Certification for SAT

In order to explain how a modern SAT solver generates an unsatisfiability proof
during the search for a solution, we shortly revisit the conflict-driven clause
learning solving paradigm (CDCL) [62] which is implemented in most state-of-
the-art SAT solvers. In the following, we discuss CDCL only on a higher level
and omit many technical details that are not relevant for our purposes. By an
example, we illustrate the connection between solving and certification. We refer
to [30] for a detailed introduction of CDCL.

3.1 CDCL-Based SAT Solving

The high-level workflow of a CDCL-based SAT solver is shown in Fig. 2. The
main concepts involve propagation (BCP), conflict detection (Conflict?), deci-
sion making (Decision), conflict analysis and clauses learning (Analysis), and
backtracking (Backtrack). In the main loop, all variable assignments are enu-
merated by decision making and BCP.

First, all unit clauses are removed from the input CNF φ by applying BCP
as introduced in Sect. 2. Initially, assignment σ is empty, if BCP is applicable,
it is updated accordingly. If the resulting formula φ′ contains the empty clause,
i.e., there is a conflict, then the conflict analysis returns the empty clause to be
learned (CL = ⊥) and the formula is immediately decided to be unsatisfiable.
Otherwise, the solver checks if there is a variable that has not been assigned
a value. If all variables have been assigned, then the current assignment is a
model of the formula, as there was no contradiction. The solver returns satis-
fiable. If there are unassigned variables, the solver picks one variable according

20 M. Seidl

to some branching heuristics [45]. At this point it is also decided whether the
variable is set to true or to false. In Fig. 2, this decision is reflected by adding
the literal l with var(l) = x to the assignment σ if x is to be assigned next. For
setting x to true, x is added to σ, otherwise σ is extended by ¬x. Under the
updated assignment, BCP is applied again for checking if assignments of further
variables are implied. If now a conflict is found, then those decisions are identi-
fied which caused the conflict. In order to avoid that unfavorable decisions are
made again, a clause CL is learned that is added to the CNF. This clause also
provides information necessary for undoing decisions during backtracking, and
for generating a new current assignment. The following example illustrates the
concept of clause learning by a small example.

Example 1 (Clause Learning2). We consider a CNF φ that consists of the fol-
lowing eight clauses:

C1 : (¬a ∨ ¬b ∨ ¬c) C3 : (a ∨ ¬b ∨ ¬c) C5 : (¬a ∨ b ∨ ¬c) C7 : (a ∨ b ∨ ¬c)
C2 : (¬a ∨ ¬b ∨ c) C4 : (a ∨ ¬b ∨ c) C6 : (¬a ∨ b ∨ c) C8 : (a ∨ b ∨ c)

We now show a possible solver run.

1. Variable a is set to true. Clauses C1, C2, C5, C6 become binary clauses, the
other clauses are removed.

2. Variable b is set to true. By BCP a conflict between C1 and C2 is derived.
Obviously, φ∧ a∧ b |= ⊥ and in consequence, φ |= ¬(a∧ b). Hence, the clause
(¬a ∨ ¬b) can be learned and we get φ′ = φ ∧ (¬a ∨ ¬b).

3. When undoing the assignment of b, but keeping variable a set to true dur-
ing backtracking, the newly learned clause becomes a unit clause (¬b). The
application of BCP results in a conflict between clauses C5 and C6. Only one
variable (namely a) was set by a decision. Following the same argumenta-
tion as before, ¬a can be learned and the solver continues with the formula
φ′′ = φ′ ∧ ¬a.

4. Backtracking undoes setting a to true and by BCP a is set to false. Prop-
agation does not decide the formula, hence a further decision is necessary.
Assume that the decision is setting variable c to false. Then BCP results in
a conflict between C4 and C8. Now the solver learns clause (c).

5. When applying BCP after undoing all decisions, a conflict is derived and the
empty clause is learned proving the unsatisfiability of φ.

Based on this example, we will now introduce the generation of certificates
by CDCL-based SAT solvers.

3.2 Certificates Based on Resolution

One of the best-studied propositional proof systems is resolution [57]. Resolu-
tion provides the theoretical framework for modern CDCL-based SAT solvers as

2 This example is inspired by an example presented in [10]

Certificates for SAT and QBF 21

Fig. 3. Derivation of learned clauses (dotted boxes) via propositional resolution.

described above. The two rules of the Resolution Calculus are shown in Fig. 4.
The axiom rule allows to download clauses from the given formula φ. With the
resolution rule a new clause can be derived from two already derived clauses
(called antecedents) if one clause contains a literal l and the other clause con-
tains a literal l̄. The newly derived clause is also called resolvent. Resolution
is a sound and complete proof system for propositional logic. An example of a
resolution derivation is shown in Fig. 3. For better readability, we represent the
proof as a directed acyclic graph (DAG).

Fig. 4. Rules of the Resolution Calculus
(CNF φ is the input formula).

If the unsatisfiability of a for-
mula is proven in terms of a reso-
lution proof, the correctness of the
result can be checked efficiently. To
this end, the proof has to be tra-
versed once, and it has to be shown
that the two rules are correctly
applied in every derivation step. For
the axiom rule, it needs to be shown
that the downloaded clause indeed
occurs in the input formula. For the
resolution rule, the two antecedents
need to be clauses that have already been derived, they need to contain l and
l̄, respectively, and the resolvent has to contain all literals of the antecedents
except for l and l̄. In the following example, we illustrate how clause learning
and resolution are connected.

Example 2 (Clause Learning and Resolution). Consider again the formula of
Example 1. The shown run of the CDCL solver enriched the formula with four
learned clauses which can also be justified by resolution. The full resolution proof
is shown in Fig. 3. The learned clauses are highlighted by dotted boxes.

1. The first learned clause L1 = (¬a∨¬b) excludes all assignments where a and
b are both set to true. In terms of resolution this clause can be derived from
C1 and C2. Note that c and ¬c of C1 and C2 lead to the conflict.

22 M. Seidl

2. Clause ¬a is learned by two applications of the resolution rule. In one reso-
lution step, the previously learned clause L1 is an antecedent. For the solver,
a is set to true by a decision and b is set to false by BCP. This leads to a
conflict between C5 and C6.

3. Also clause c is derived by two applications of the resolution rule.
4. Finally, ⊥ can be derived by multiple resolution steps using learned clauses

¬a and c.

Already for early CDCL-based SAT solvers the need to check unsatisfiabil-
ity results was recognized. Van Gelder showed how to build resolution proofs
during solving [20] that can be checked efficiently. Also the SAT solver zchaff
was equipped with logging resolution proofs [67]. Both of these approaches pro-
vide explicit hints from which antecedents a clause was derived. As such proofs
can get very large, a different approach was implemented in the solver Berk-
Min [24]. Here a proof is represented as a chronologically ordered set of conflict
clauses without any hits. Hence, the checker has to figure out how to derive the
clause. Although this can be done in polynomial time, it might become costly in
practice.

3.3 Certificates Based on Reverse Unit Propagation

To overcome the restrictions of resolution proofs, reverse unit propagation (RUP)
was introduced [21]. It exploits the property that for a clause CL = (l1 ∨ . . .∨ ln)
that is learned for a formula φ, it holds that BCP (φ∧ C̄L) = ⊥ where C̄L is the
conjunction of unit clauses l̄1 ∧ . . . ∧ l̄n obtained by negating CL. Formula φ is
said to imply CL via unit propagation (written as φ �1 CL) and CL is a RUP
clause. A RUP proof of a formula φ is a sequence of clauses C1, . . . , Cn such
that φ ∧ C1 ∧ . . . ∧ Ci−1 �1 Ci for all 1 ≤ i ≤ n. Obviously, Cn = ⊥ for proving
unsatisfiability.

Example 3 (RUP Proof). In the following we use the learned clauses of Exam-
ple 1 in a RUP proof which is shown below.

RUP proof Checking

input clauses: ¬a ∨ ¬b ∨ c
¬a ∨ ¬b ∨ ¬c

a ∨ ¬b ∨ c
a ∨ ¬b ∨ ¬c

¬a ∨ b ∨ c
¬a ∨ b ∨ ¬c

a ∨ b ∨ c
a ∨ b ∨ ¬c

learned clauses: ¬a ∨ ¬b BCP (φ ∧ a ∧ b) = ⊥
¬a BCP (φ ∧ (¬a ∨ ¬b) ∧ a) = ⊥

c BCP (φ ∧ (¬a ∨ ¬b) ∧ ¬a ∧ ¬c) = ⊥
⊥ BCP (φ ∧ (¬a ∨ ¬b) ∧ ¬a ∧ c ∧) = ⊥

Certificates for SAT and QBF 23

Using RUP proofs has the advantages that they are compact and that they
are easy to generate. To improve checking performance, the solver may anno-
tate clauses that become irrelevant for a proof such that they are not further
considered. The proof format that provides a deletion rule is called DRUP.

3.4 Certificates Based on Resolution Asymmetric Tautologies

There are techniques applied in pre- and inprocessing [27] that cannot be effi-
ciently represented with RUP. To overcome this limitation, a more powerful
proof system based on Resolution Asymmetric Tautologies (RAT) has been intro-
duced [37] leading to a proof system that is equivalent to extended resolution [41].
A clause C is a RAT w.r.t. a CNF φ on a literal l if for all clauses D ∈ φ with
l̄ ∈ D, it holds that φ �1 C \ {l} ∪ D \ {l̄}, i.e., all possible resolvents upon l
are implied by unit propagation. RAT clauses are redundant in the sense that
their addition or removal does not affect the truth value of a formula. More-
over, RAT generalizes RUP, because every non-empty RUP clause has the RAT
property on every literal. The empty clause is usually considered a RAT clause
by definition. Hence, the proof of Example 3 is also a RAT proof. The DRAT
proof system as applied in current SAT competitions, allows the deletion of arbi-
trary clauses. Since those proofs are certificates of unsatisfiability, the removal of
arbitrary clauses which are not necessarily redundant does not affect the sound-
ness of the proof. The deletion of clauses is necessary for reasons of efficiency.
If the solver marks those clauses not needed for deriving the empty clause, this
information is valuable for the proof checker: clauses marked for deletion do not
need to be considered for proof checking. For RAT, efficient verified checkers are
available [19,28,46]. Generalizations of RAT include Propagation Redundancy
(PR) [31] and Substitution Redundancy (ST) [16].

4 Certification for QBF

Over the last two decades, several orthogonal solving approaches have been pre-
sented for QBFs. These approaches are founded on different proof systems. In
the following, we review three of those proof systems that are well investigated
in the field of proof complexity and for which proof-producing solvers and proof
checkers exist. A recent survey on QBF proof complexity can be found in [5].

4.1 Certificates Based on Q-Resolution

Conflict-driven clause learning which is the most successful solving paradigm
for SAT has also been lifted to QBFs [23,47,66]. On a higher level, the general
workflow is similar as shown in Fig. 2, with the important difference that the
QBF variant (usually called QCDCL) derives not only learned clauses during
the search, but it can also produce learned cubes (a cube is a conjunction of
literals). Furthermore, there are several technical details to be considered like a

24 M. Seidl

redefinition of BCP that takes quantification into account (a detailed example
is shown in [8]).

For deriving learned clauses, the underlying proof system for QCDCL is Q-
resolution [43], the QBF-specific variant of resolution consisting of the rules
shown in Fig. 5. In addition to the axiom and resolution rules, Q-resolution also
include the universal reduction rule which is necessary for handling universal
quantification. It basically says that if the literals of a clause are sorted according
to their occurrence in the quantifier prefix, and the last literal is universal, then
it can be safely omitted.

Example 4 (Q-Resolution Refutation). Consider the QBF ∃a∀b∃c.ψ where ψ con-
tains the following clauses:

(¬a ∨ ¬b ∨ ¬c) (a ∨ ¬b ∨ ¬c) (¬a ∨ b ∨ ¬c) (a ∨ b ∨ ¬c)
(¬a ∨ ¬b ∨ c) (a ∨ ¬b ∨ c) (¬a ∨ b ∨ c) (a ∨ b ∨ c)

This formula is the same formula as discussed in the previous examples, but now
it is extended by the prefix ∃a∀b∃c. With the rules of Fig. 5 it is not possible,
to resolve over b which can only be eliminated by universal reduction. The Q-
resolution refutation is shown in Fig. 6. From the clause ¬b, the empty clause is
derived by universal reduction.

For proving true QBFs, an almost dual variant of Q-resolution has been
introduced. Here, the resolution rule is defined for cubes over a universal lit-
eral. Instead of universal reduction, existential reduction is performed on cubes,
removing existential literals that are not succeeded by any universal literal when
the cube is sorted. The main difference is in the axiom rule, because a formula in
PCNF does not contain any cubes. The cubes are obtained from partial assign-
ments that satisfy the matrix of the formula.

Several powerful extensions to Q-resolution have been presented like resolu-
tion over universal literals [22], long-distance Q-resolution [3,65], their combina-
tion [4], relaxed dependencies for universal reduction [49,54,58], as well as the

Fig. 5. Rules of the basic Q-Resolution Calculus for PCNF Π.ψ.

Certificates for SAT and QBF 25

Fig. 6. Refutation via Q-Resolution (a dotted box indicates that the clause has been
derived by applying the universal reduction rule).

Fig. 7. Rewritten Q-Resolution proof where variable a is set to true (left) and false
(right). The dotted box indicates that the clause has been derived by applying the
universal reduction rule.

integration of a symmetry rule [38,39,61]. All these extensions result in provably
stronger proof systems.

Q-resolution was also the first proof system for which it was shown that
Skolem and Herbrand functions can be extracted from proofs. In the round-based
approach presented in [25], the prefix is processed from left to right. The Q-
resolution refutation of a QBF ∃X∀A∃Y ∀B∃Z.ψ is rewritten based on provided
values of the existential variables X of the first quantifier block. The rewritten
proof does not contain any variables from X and each variable of A occurs in
at most one polarity. This polarity indicates how to set the variable in order to
falsify the formula. Then the variables of Y are assigned which induces values
for the variables in B. This is repeated until all variables are assigned. The
rewritten proofs for the formula of Example 4 is shown in Fig. 7. The proof tree
on the left is obtained by setting variable a to true, the proof tree on the right
is obtained by setting a to false. An other approach for function extraction was
proposed in [3]. Here the Q-resolution proof is traversed in reverse topological
order. The functions are build as decision lists from clauses in which universal
reduction is applied. Assume that in a proof universal reduction is applied on
universal variable x three times in clauses C1 ∨x,C2 ∨¬x,C3 ∨x (in this order),
then the Herbrand function for x is the following if-then-else chain: if C1 is false
then ⊥ else (if C2 is false then else (if C3 is false then else ∗)) where ∗
denotes a don’t care. Note that sub-clauses C1, C2, C3 only contain literals that
precede x in the prefix. If for example in Fig. 6 universal literal ¬b is universally

26 M. Seidl

Fig. 8. The rules of ∀Exp+Res (adapted from [8]). The annotation x[τ] considers only
the universal variables that precede x in the prefix.

reduced from clause ¬a ∨ ¬b, then it is stored in the decision list that b has
to be set to true if a is set to true to falsify this clause. This approach works
dually for true formulas and cube Q-resolution proofs. The full certification and
function extraction workflow is implemented in the QBFCert framework [52].
The efficient checking approach was presented in [53].

4.2 Certificates Based on ∀Exp+Res

Expansion-based solver reduce the QBF decision problem to SAT. Consider for
example the QBF ∃X∀a, b∃z.φ. To eliminate the universal variables it can be
expanded to

φ[z/zab]{a,b} ∧ φ[z/zāb]{¬a,b} ∧ φ[z/zab̄]{a,¬b} ∧ φ[z/zāb̄]{¬a,¬b}

where each possible assignment of a, b is considered and for each assignment of a
and b a fresh variable for z is introduced to take the quantifier dependencies into
account. As true formulas could only be proven by full universal expansion which
is practically infeasible, existentially quantified variables are partially expanded
and the validity of the resulting formula is shown. Early expansion-based solvers
fully expanded certain variables and called a SAT solver once [2,9,48]. To avoid
a blow-up in memory, refinement-based approaches have been presented, first
for 2-QBFs [35], then recursive approaches for arbitrary QBFs [34], and later a
non-recursive one [12].

The proof system behind expansion-based solving is ∀Exp+Res [36]. This
calculus consists of two rules: the axiom rules that assigns values to universal
variables and annotates the remaining existential variables with the assignment
of the preceding universal variables and the propositional resolution rule. Hence,
a ∀Exp+Res proof consists of two parts: the expansion part in which the clauses
relevant for the proof are expanded to a propositional formula and the resolution
part which derives the conflict.

Example 5 (∀Exp+Res Proof). Consider the false QBF

∃a∀b∃c.((¬a ∨ b ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ ¬b ∨ ¬c)).

Certificates for SAT and QBF 27

Fig. 9. Example of a ∀Exp+Res proof.

The ∀Exp+Res refutation is shown in Fig. 9. In the first two clauses, b is set to
false, hence c and ¬c are annotated with b̄. In the last two clauses b is set to true,
leading to an annotation of c and ¬c with b. As a has no preceding universal
variables, it is not annotated. The empty clause is derived from the annotated
clauses by propositional resolution.

Generalizations of ∀Exp+Res have been presented in [7]. The extensions
include for example an instantiation rule that allows to extend annotations
within the proof. In ∀Exp+Res, fixed annotations can only be introduced with
the axiom rule. Another extension introduces a merging rule that allows for the
combination of two distinct annotations of a literal. Dynamic instantiation and
merging make the proof system stronger than ∀Exp+Res. Round-based strategy
extraction for ∀Exp+Res is discussed in [6]. For the example above, the rewrit-
ten proof contains only cb̄ when variable a is set to true. Hence, b has to set
to false in order to falsify the formula. If a is set to false, then the rewritten
proof contains only cb, hence b has to be set to true. An algorithm for function
extraction is proposed in [59]. A certification and function extraction framework
for ∀Exp+Res unsatisfiability proofs is presented in [26].

4.3 Certificates Based on QRAT

The QRAT proof [33] system generalizes propositional RAT (see also Sect. 3.4).
To obtain a sound proof system, the quantifiers need to be taken into account.
As consequence, QRAT has not only rules for clause addition and removal as
RAT, but it also has rules for literal addition and removal. Furthermore, the
QRAT proof system also provides an extension of universal reduction that relies
on a relaxed notion on quantifier dependencies. Like RAT, redundancy detection
in QRAT builds upon implication via unit propagation which is easy to check.
While in RAT all literals of a resolvent can be considered for checking if this
resolvent is implied via unit propagation, in QBF only a certain subset of the
literals may be taken into account. For the full definition of QRAT, we refer to [8,
33] for the details. The following example shows a QRAT proof of satisfiability
(clauses that are deleted are marked by letter “d”). Satisfiability is proven by
deleting all clauses and obtaining the empty formula.

28 M. Seidl

Example 6 (QRAT Proof). The QBF ∀a∃b∃c.((a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (b ∨ c)) has
the following QRAT proof:

clause comment
(a ∨ ¬b) input clause C1

(¬a ∨ ¬c) input clause C2

(b ∨ c) input clause C3

(a ∨ c) add clause C4 (QRAT on c)
d (a ∨ ¬b) delete C1 (QRAT on ¬b)
d (b ∨ c) delete C3 (QRAT on b)
d (¬a ∨ ¬c) delete C2 (QRAT on ¬c)
d (a ∨ c) delete C4 (QRAT on c)

Like RAT, QRAT is very powerful, because it can introduce new variables.
Originally, it was introduced to capture recent preprocessing techniques, which
are crucial for the performance of most state-of-the-art QBF solvers [29] and
implemented for the preprocessor Bloqqer together with the proof checker qrat-
trim [29]. A BDD-based QBF solver able to produce QRAT proofs was pre-
sented in [14]. It turns out that QRAT is able to simulate very strong variants
of Q-resolution [40] and also ∀Exp+Res [42]. Function extraction from QRAT
satisfiability proofs was shown in [33] which build if-then-else chains from the
clauses that are deleted. In [17] it is shown that strategy extraction from QRAT
unsatisfiability proofs works only for restricted versions of QRAT [17,18].

5 Conclusion

While it is very hard to fully verify that implementations of modern SAT and
QBF solvers are correct, the results for specific formulas can be trusted when
independently checkable certificates are provided. For this purpose, powerful
propositional proof systems have been presented to witness the correctness of
unsatisfiability results even when advanced solving techniques are applied. For
SAT, verified proof checkers are available and producing certificates is supported
by almost all state-of-the-art SAT solvers. Also in QBFs much work has been
done in this direction. Proof systems for QBFs are strongly inspired by their
propositional counter-parts. In addition, there are proof systems that are QBF
specific, leading to a more heterogeneous proof complexity landscape than in
SAT. In QBF solving proofs play also an important role for solution extraction.

Despite the progress made over the last years, proof checking is still expen-
sive. Examples for open challenges concern the reduction of proof sizes and
parallelization of proof checking. Furthermore, for QBFs more emphasis needs
to be spent on the certification of true formulas and on finding a unified proof
format that is supported by all state-of-the-art QBF solvers in a similar man-
ner as DRAT is supported by state-of-the-art SAT solvers. In particular, there
are techniques like clausal abstraction as implemented in the successful solver
Caqe [56] with a proof system described in [63] that need tighter integration in
the proof complexity landscape.

Certificates for SAT and QBF 29

References

1. Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In:
Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 39–55. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38916-0_3

2. Ayari, A., Basin, D.: Qubos: deciding quantified Boolean logic using propositional
satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 187–201. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-36126-X_12

3. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

4. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12

5. Beyersdorff, O.: Proof complexity of quantified boolean logic-a survey. In: Mathe-
matics for Computation (M4C), pp. 397–440. World Scientific (2023)

6. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS,
vol. 8635, pp. 81–93. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44465-8_8

7. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory 11(4), 26:1–26:42 (2019)

8. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified boolean formulas. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
2nd edn. Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1177–
1221. IOS Press (2021)

9. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005). https://doi.org/10.1007/
11527695_5

10. Biere, A.: SAT. Tutorial at the 5th Indian SAT and SMT Winter School (2020)
11. Biere, A., Fleury, M.: Gimsatul, IsaSAT and Kissat entering the SAT competition

2022. In: Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Procedings
of SAT Competition 2022 - Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2022-1, pp. 10–11. University of
Helsinki (2022)

12. Bloem, R., Braud-Santoni, N., Hadzic, V., Egly, U., Lonsing, F., Seidl, M.: Two
SAT solvers for solving quantified boolean formulas with an arbitrary number of
quantifier alternations. Formal Methods Syst. Des. 57(2), 157–177 (2021)

13. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-
7_6

14. Bryant, R.E., Heule, M.J.H.: Dual proof generation for quantified boolean formulas
with a BDD-based solver. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS
(LNAI), vol. 12699, pp. 433–449. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79876-5_25

15. Buss, S., Nordström, J.: Proof complexity and SAT solving. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, 2nd edn. Frontiers
in Artificial Intelligence and Applications, vol. 336, pp. 233–350. IOS Press (2021)

https://doi.org/10.1007/978-3-642-38916-0_3
https://doi.org/10.1007/3-540-36126-X_12
https://doi.org/10.1007/3-540-36126-X_12
https://doi.org/10.1007/978-3-319-09284-3_12
https://doi.org/10.1007/978-3-662-44465-8_8
https://doi.org/10.1007/978-3-662-44465-8_8
https://doi.org/10.1007/11527695_5
https://doi.org/10.1007/11527695_5
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-030-79876-5_25
https://doi.org/10.1007/978-3-030-79876-5_25

30 M. Seidl

16. Buss, S., Thapen, N.: DRAT proofs, propagation redundancy, and extended res-
olution. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 71–89.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_5

17. Chew, L., Clymo, J.: The equivalences of refutational QRAT. In: Janota, M., Lynce,
I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 100–116. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9_7

18. Chew, L., Heule, M.J.H.: Relating existing powerful proof systems for QBF. In:
Meel, K.S., Strichman, O. (eds.) Proceedings of the 25th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2022). LIPIcs, vol. 236,
pp. 10:1–10:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

19. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5_14

20. Gelder, A.V.: Extracting (easily) checkable proofs from a satisfiability solver that
employs both preorder and postorder resolution. In: International Symposium on
Artificial Intelligence and Mathematics, (AI&M 2002) (2002)

21. Gelder, A.V.: Verifying RUP proofs of propositional unsatisfiability. In: Proceed-
ings of the International Symposium on Artificial Intelligence and Mathematics
(ISAIM 2008) (2008)

22. Gelder, A.: Contributions to the theory of practical quantified boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7_47

23. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic
satisfiability. In: Dechter, R., Kearns, M.J., Sutton, R.S. (eds.) Proceedings of the
Eighteenth National Conference on Artificial Intelligence and Fourteenth Confer-
ence on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2002), pp.
649–654. AAAI Press/The MIT Press (2002)

24. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of the 2003 Design, Automation and Test in Europe Conference
and Exposition (DATE 2003), pp. 10886–10891. IEEE Computer Society (2003)

25. Goultiaeva, A., Gelder, A.V., Bacchus, F.: A uniform approach for generating
proofs and strategies for both true and false QBF formulas. In: Walsh, T. (ed.)
Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI 2012), pp. 546–553. IJCAI/AAAI (2011)

26. Hadzic, V., Bloem, R., Shukla, A., Seidl, M.: FERPModels: a certification frame-
work for expansion-based QBF solving. In: Proceedings of the 24th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2022), pp. 80–83 (2022)

27. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

28. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended reso-
lution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_24

29. Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocess-
ing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI),
vol. 8562, pp. 91–106. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08587-6_7

30. Heule, M.J.H.: Proofs of unsatisfiability. In: Biere, A., Heule, M., van Maaren,
H., Walsh, T. (eds.) Handbook of Satisfiability, 2nd edn., Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 635–668. IOS Press (2021)

https://doi.org/10.1007/978-3-030-24258-9_5
https://doi.org/10.1007/978-3-030-24258-9_7
https://doi.org/10.1007/978-3-030-24258-9_7
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.1007/978-3-642-38574-2_24
https://doi.org/10.1007/978-3-319-08587-6_7
https://doi.org/10.1007/978-3-319-08587-6_7

Certificates for SAT and QBF 31

31. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven
clause learning. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427,
pp. 41–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_3

32. Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8),
70–79 (2017)

33. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF
preprocessing. J. Autom. Reason. 58(1), 97–125 (2017)

34. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

35. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-21581-0_19

36. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

37. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28

38. Kauers, M., Seidl, M.: Short proofs for some symmetric quantified boolean formu-
las. Inf. Process. Lett. 140, 4–7 (2018)

39. Kauers, M., Seidl, M.: Symmetries of quantified boolean formulas. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 199–216. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_13

40. Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In:
Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 281–297. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_18

41. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H., Biere, A.: Simulating strong practi-
cal proof systems with extended resolution. J. Autom. Reason. 64(7), 1247–1267
(2020)

42. Kiesl, B., Seidl, M.: QRAT polynomially simulates ∀-Exp+Res. In: Janota, M.,
Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 193–202. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24258-9_13

43. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

44. Knuth, D.: Handbook of Satisfiability (Quote on Backcover) (2021)
45. Kullmann, O.: Fundaments of branching heuristics. In: Biere, A., Heule, M., van

Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, 2nd edn. Frontiers in
Artificial Intelligence and Applications, vol. 336, pp. 351–390. IOS Press (2021)

46. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020)

47. Letz, R.: Lemma and model caching in decision procedures for quantified boolean
formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 160–175. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45616-3_12

48. Lonsing, F., Biere, A.: Nenofex: expanding NNF for QBF solving. In: Kleine Bün-
ing, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-79719-7_19

49. Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-Based QBF
Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_14

https://doi.org/10.1007/978-3-030-17462-0_3
https://doi.org/10.1007/978-3-642-21581-0_19
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-94144-8_13
https://doi.org/10.1007/978-3-319-66263-3_18
https://doi.org/10.1007/978-3-030-24258-9_13
https://doi.org/10.1007/3-540-45616-3_12
https://doi.org/10.1007/3-540-45616-3_12
https://doi.org/10.1007/978-3-540-79719-7_19
https://doi.org/10.1007/978-3-642-14186-7_14

32 M. Seidl

50. Lonsing, F., Seidl, M., Gelder, A.V.: The QBF gallery: behind the scenes. Artif.
Intell. 237, 92–114 (2016)

51. Manthey, N., Lindauer, M.: SpyBug: automated bug detection in the configuration
space of SAT Solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 554–561. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2_36

52. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 430–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31612-8_33

53. Peitl, T., Slivovsky, F., Szeider, S.: Polynomial-time validation of QCDCL cer-
tificates. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol.
10929, pp. 253–269. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94144-8_16

54. Peitl, T., Slivovsky, F., Szeider, S.: Long-distance q-resolution with dependency
schemes. J. Autom. Reason. 63(1), 127–155 (2019)

55. Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16
and QBFEVAL’17). Artif. Intell. 274, 224–248 (2019)

56. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Kaivola, R., Wahl, T.
(eds.) Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas,
USA, 27–30 September 2015, pp. 136–143. IEEE (2015)

57. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

58. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. J. Autom.
Reason. 42(1), 77–97 (2009)

59. Schlaipfer, M., Slivovsky, F., Weissenbacher, G., Zuleger, F.: Multi-linear strategy
extraction for QBF expansion proofs via local soundness. In: Pulina, L., Seidl, M.
(eds.) SAT 2020. LNCS, vol. 12178, pp. 429–446. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51825-7_30

60. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified
boolean formulas. In: Proceedings of the 31st IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2019), pp. 78–84. IEEE (2019)

61. Shukla, A., Slivovsky, F., Szeider, S.: Short Q-resolution proofs with homomor-
phisms. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 412–428.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_29

62. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD 1996), pp. 220–227.
IEEE Computer Society/ACM (1996)

63. Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 475–494.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_25

64. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

65. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM
International Conference on Computer-aided Design (ICCAD 2002), pp. 442–449.
ACM / IEEE Computer Society (2002)

https://doi.org/10.1007/978-3-319-40970-2_36
https://doi.org/10.1007/978-3-319-40970-2_36
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-319-94144-8_16
https://doi.org/10.1007/978-3-319-94144-8_16
https://doi.org/10.1007/978-3-030-51825-7_30
https://doi.org/10.1007/978-3-030-51825-7_30
https://doi.org/10.1007/978-3-030-51825-7_29
https://doi.org/10.1007/978-3-319-63390-9_25

Certificates for SAT and QBF 33

66. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46135-3_14

67. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In: Proceedings of the
2003 Design, Automation and Test in Europe Conference and Exposition (DATE
2003), pp. 10880–10885. IEEE Computer Society (2003)

https://doi.org/10.1007/3-540-46135-3_14
https://doi.org/10.1007/3-540-46135-3_14

Regular Papers

Evasiveness Through Binary Decision
Diagrams

Jesús Aransay(B), Laureano Lambán, and Julio Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja,
Logroño, Spain

{jesus-maria.aransay,lalamban,julio.rubio}@unirioja.es

Abstract. In this paper, we explore whether a data structure for rep-
resenting Boolean functions (namely, Binary Decision Diagrams) can be
useful to detect, in an efficient way, the acyclicity of simplicial complexes.
This is approached by means of the concept of evasiveness, allowing us to
study the relation with Alexander duality. Furthermore, as main result,
we prove that the (depth) complexity of a kind of acyclic simplicial com-
plexes (dismantlable complexes) can be determined by means of Reduced
Ordered Binary Decision Diagrams. As the subject has shown itself error
prone, we have carried out the proof by using the Isabelle proof assistant,
providing a rewarding combination of informal and formal mathematics.

Keywords: Evasiveness · BDD · Alexander dual · Simplicial
complex · Dismantlability

1 Introduction

Computational Algebraic Topology, as any other algorithmic discipline, has a
direct relation with complexity issues. From the well-known results about the
non-computability of homotopy groups (based on the famous unsolvability of
the word problem [11,13]; see also [16] for the case of homology groups), sev-
eral results about the hardness of the computation of combinatorial invariants
have been documented in the literature (see, for instance, [1] and [15] dealing
with homotopical and homological problems, respectively). Beyond this classical
study of the complexity of algorithms, Forman [7], in the context of his success-
ful Discrete Morse Theory [8], described a rather unexpected relation between
complexity of Boolean functions and Simplicial Topology.

Forman introduced a deep relationship between non-evasiveness of a mono-
tone Boolean function and the acyclicity of a simplicial complex canonically
associated to the Boolean function. A Boolean function is evasive when there is
an input that requires to evaluate each argument to get the corresponding out-
put of the function. The fact that this concept coming from complexity theory

Partially supported by projects PID2020-115225RB-I00 and PID2020-116641GB-I00
financed by MCIN/ AEI /10.13039/501100011033.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 37–52, 2023.
https://doi.org/10.1007/978-3-031-42753-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_3

38 J. Aransay et al.

could be related with homological issues opens the path to translate ideas from
Boolean functions to Topology and vice versa.

From a different point of view, Binary Decision Diagrams (BDDs), and more
concretely ROBDDs (Reduced Ordered BDDs) [6], are the preferred data struc-
tures to deal with Boolean functions in practical applications. So, it is natural to
ask if BDDs could be efficiently used to determine evasiveness (and, then, to get
homological information in an optimal manner, from a complexity point of view).
This is the problem tackled in this paper. More concretely, we explore whether
ROBDDs are sufficient to decide evasiveness. We do not give an answer in the
general case, but we prove that for a large class of acyclic simplicial complexes
(namely, dismantlable complexes) using ROBDDs is enough.

In order to describe the main contribution of this work, let us recall this
well-known chain of implications between simplicial complexes [3,5]:

dismantlable =⇒ non-evasive =⇒ collapsible =⇒ contractible =⇒ acyclic.

All these implications are known to be strict and none of them is formalised
in our work. Instead, in this paper, we introduce a new concept (that is to say, a
new class of simplicial complexes) coined ligneous, and we enhance the previous
chain of implications with:

dismantlable =⇒ ligneous & non-evasive =⇒ non-evasive,

where the first implication is the main contribution of this paper (the sec-
ond one being simply a straightforward tautology) and has been formalised in
Isabelle/HOL. The first implication is strict, and to know whether it is the case
for the second implication is the main open problem of this research line.

Even if this field of research is easy to introduce and very combinatorial in
nature, it has been shown to us very error prone. After detecting several faulty
steps in our reasoning, we decided to formalise our efforts by using the Isabelle
proof assistant. This experience has been quite enlightening and to communicate
it is another goal of this paper. When writing this text, we have chosen to
keep the standard level of detail in the exposition of the mathematical and
algorithmic material, even if the Isabelle code is much more verbose (this fact
is dramatically illustrated when comparing Definition 7, of dismantling, with its
Isabelle counterpart in Sect. 5). Once the formalisation has been achieved, it is
tempting to write a paper mimicking the Isabelle code when introducing the
mathematical concepts and results. We consider this (natural) trend a mistake:
overwhelming the reader with cumbersome details can, in our humble opinion,
discourage the adoption of interactive theorem proving technology among the,
let us say, “standard” mathematicians. We attempt in this paper to combine the
informal and the formal way of writing, trying to get the best of both worlds.

The paper is organized as follows. We start with preliminaries, and in Sect. 3
we introduced our main working concept, ligneous Boolean function, and we
explore its behaviour with respect to Alexander duality. In the next section
we state our main result (that dismantlable implies ligneous), but its proof is
delayed to Sect. 5 where it is carried out formally in Isabelle/HOL. The paper
ends with conclusions, future work and the bibliography. The complete Isabelle
code is accessible at [2].

Evasiveness Through BDDs 39

2 Preliminaries

2.1 Boolean Functions, BDDs, Evasiveness

In this subsection we recall the main definitions, starting with the first concepts
related to Binary Decision Diagrams, and Boolean functions.

Definition 1. A binary decision diagram (BDD) on X = {x1, . . . , xn}, X being
its variable set, is a directed acyclic graph with one source and sinks labeled by
the constants 0 and 1; furthermore, the source and each internal node is labeled
by a variable from X and has two outgoing edges, one labeled by 0 and the other
by 1.

A complete path in a BDD is a directed path of edges joining the source to
a sink.

An input b = (b1, . . . , bn) ∈ {0, 1}n activates an edge in a BDD if the edge
starts at a node labeled by xi and the edge is labeled by bi.

A computation path for an input b in a BDD is the complete path of edges
activated by the input b.

A computation path for an input b that leads to the 1-sink is called the accept-
ing path for b.

A BDD represents the Boolean function f (on n variables) for which f(b) = 1
if and only if there exists an accepting path in the BDD for the input b.

The depth of a BDD is the maximum of the lengths of complete paths in the
BDD. The (BDD) depth of a Boolean function f is the minimum of the depths
of the BDDs representing f .

Now, we specialize the BDD notion to several variants, which are important
in practical applications.

Definition 2. (i) A free binary decision diagram (FBDD) is a BDD where each
complete path contains for each variable at most one node labeled by this variable.

(ii) An ordered binary decision diagram (OBDD) is a BDD where on each
complete path the node labels of the internal nodes are a subsequence of a given
variable ordering xπ(1), xπ(2), ..., xπ(n), where π is a permutation on {1, . . . , n}.

Note that each OBDD is, in particular, a FBDD.
It is not difficult to design an algorithm removing a repetition of a variable

in a complete path, representing the same Boolean function and keeping or
decreasing the depth of the output BDD. Therefore, the depth of a Boolean
function can be realised through a FBDD; that it to say, there exists a FBDD φ
representing f such that depth(f) = depth(φ).

In its full generality the problem explored in this paper is whether the depth
of a Boolean function can be realised (in the previous sense) through OBDDs.

It is clear, too, that if depth can be realised through OBDDs it can also be
realised through ROBDDs, reduced OBDDs, the hegemonic data structure to
encode efficiently Boolean functions [6]. We introduce the notion of ROBDD by
means of the classical Knuth approach [10]. Given a permutation of the variable

40 J. Aransay et al.

set X of a Boolean function f , we can identify the truth table of f (with respect
to the global ordering of variables defined by the initial permutation) with a
2n-tuple tt ∈ {0, 1}2n , where n is the number of variables, the cardinality of
X (the tuple tt is obtained by sorting the inputs b = (b1, . . . , bn) ∈ {0, 1}n in
lexicographical order). According to Knuth, a 2m-tuple τ is a bead if it can be
written as a concatenation τ = τ1τ1 (this implies that τ1 is a 2m−1-tuple). Then,
fixing an ordering of X, we can build a canonical OBDD where each node is
associated to a non-bead in the truth table tt (see a formalisation of this idea in
Sect. 5). This kind of OBDDs are the ROBDDs, the reduced OBDDs.

Instead of focusing on the question of whether the depth of a Boolean func-
tion can be realised through OBDDs (or, equivalently, ROBDDs), we study the
problem in the particular case of evasiveness.

Definition 3. A Boolean function on n variables is called evasive if its depth
is n.

Evasiveness is important in complexity theory, because it measures when
it is needed to know the value of every variable for obtaining the output of a
Boolean function (see, for instance, [12]). In addition, when the Boolean function
is monotone, the concept has, rather surprisingly, deep topological outcomes.

To finish this subsection, let us remark that a ROBDD has maximal depth,
n, if and only if there is an entry in the corresponding truth table not contained
in any bead. Such an entry is called an evader. Let us also note that evaders
appear in pairs: an entry b is an evader if and only if the entry obtained from b by
negating the value of xn (the last variable in the global ordering) is an evader,
too. Furthermore, if a ROBDD φ has no evaders, then the Boolean function
represented by φ is non-evasive. We collect this fact in the following theorem,
because it is the terminology used in our Isabelle formalisation in Sect. 5.

Theorem 1. If a Boolean function f has a ROBDD with no evaders, then f is
non-evasive.

2.2 Alexander Dual, Dismantling

A Boolean function over a variable set X can be interpreted as a test (or charac-
teristic) function of a set of sets of X: an input b = (b1, . . . , bn) ∈ {0, 1}n denotes
a subset S(b) of X (bi = 1 if and only if the variable xi is in the subset S(b));
then the value of the Boolean function on the input b is 1 if and only if the set
S(b) belongs to the set of sets of X being specified. Thus, there is a canonical
bijection between Boolean functions over X and the set P(P(X)) (where P(Y)
denotes the power set of a set Y). The elements of P(P(X)) are called hyper-
graphs [4] (since the case of graphs can be recovered by means of P(P2(X)),
where P2(−) denotes the family of sets with 2 elements). Now, a simplicial com-
plex is a hypergraph which is closed by the operation “taking the subsets of a
set”. When returning to the corresponding Boolean functions, it turns out that
the functions defining simplicial complexes are exactly the monotone decreasing

Evasiveness Through BDDs 41

Boolean functions (where the inputs are ordered lexicographically considering
0 < 1). That is to say, each monotone decreasing Boolean function on variables
X defines canonically a simplicial complex where the set of vertices is X (if
the function is monotone increasing, it is also possible to get from it a simpli-
cial complex; see [17] for details). Reciprocally, each simplicial complex over X
defines a decreasing Boolean function (or increasing, depending on our choice),
producing a canonical bijection between the set of decreasing Boolean functions
and the set of simplicial complexes over the same variable set X.

Thus, when working with monotone Boolean functions, we can inherit con-
cepts and techniques from combinatorial topology and apply them to algorithms
and complexity in Boolean logic. The next definition is a typical example.

Definition 4. The Alexander dual of a Boolean function f(x1, . . . , xn) is the
Boolean function fd defined by:

fd(x1, . . . , xn) := ¬f(¬x1, . . . ,¬xn).

When f is monotone and then determines a simplicial complex, this definition
corresponds to the notion of simplicial Alexander duality.

In the same vein, it is well-known that if a monotone Boolean function is
non-evasive, then the corresponding simplicial complex is collapsible (then con-
tractible, then acyclic; see Sect. 1). In addition, the concept of non-evasive mono-
tone Boolean function (or non-evasive simplicial complex) can be layered by a
notion of m-collapsibility [3]. In the case m = 0, the complexes are called dis-
mantlable. Before introducing this definition, we need to recall the notions of
link and co-star.

Definition 5. The link of a Boolean function f(x1, x2, . . . , xn) with respect to
the variable x1 is the Boolean function f lnk(x1) defined by:

f lnk(x1)(x2, . . . , xn) := f(1, x2, . . . , xn).

The co-star of a Boolean function f(x1, x2, . . . , xn) with respect to the vari-
able x1 is the Boolean function f cost(x1) defined by:

f cost(x1)(x2, . . . , xn) := f(0, x2, . . . , xn).

Let us note that in the previous definitions the variable set of f lnk(x1) and
f cost(x1) is {x2, . . . , xn} (that is to say: their variable set is X \ {x1} if X is the
variable set of f).

These two functions are the well-known projections giving rise to the Shannon
decomposition:

f(x1, x2, . . . , xn) = x1f(1, x2, . . . , xn) + ¬x1f(0, x2, . . . , xn).

Nevertheless, we have chosen to call them link and co-star because, when
the function f is monotone (and then f lnk(x1) and f cost(x1) are monotone, too),
the constructions over the corresponding simplicial complexes coincide with the
simplicial link and co-star. Along the same line, we define the notion of cone
over Boolean functions, emulating the definition on simplicial complexes.

42 J. Aransay et al.

Definition 6. A Boolean function f(x1, x2, . . . , xn) is a cone with respect to the
variable x1 if f lnk(x1) = f cost(x1).

Let us note that this property is equivalent to the fact that the output of f
does not depend on the value of the argument x1.

The definitions of link, co-star and cone can be generalized in the obvious
way to any other variable xi, with 1 < i ≤ n, and then we can talk about
link, co-star or cone with respect to any variable x ∈ X, the variable set of the
Boolean function f .

Now, we are ready to introduce the concept of dismantlable (or 0-collapsible)
Boolean function.

Definition 7. A Boolean function f over a variable set X is dismantlable if
either X = {x}, a singleton, and f(x) = 1, a tautology, or there exists a variable
x ∈ X such that f lnk(x) is a cone and f cost(x) is dismantlable.

The previous definition mimics the following well-known characterisation
(see [3], for instance) of non-evasiveness for simplicial complexes.

Theorem 2. A monotone Boolean function f is non-evasive if and only if either
X = {x}, a singleton, and f(x) = 1, a tautology, or there exists a variable x ∈ X
such that f lnk(x) and f cost(x) are both non-evasive.

In Sect. 5 we prove formally that a cone is non-evasive (applying Theorem 1).
Then, the fact that dismantlable implies non-evasive, in the monotone case,
follows from the very definition.

3 Ligneous Boolean Functions

We focus now on monotone Boolean functions where the evasiveness can be
determined by means of OBDDs. This idea is covered by the following for-
mal definition. But, first, let us observe that the depth of an OBDD may
depend on the ordering of the variables: there are monotone Boolean func-
tions where two different orderings of variables produce ROBDDs of different
depth. Figure 1 shows two ROBDDs for the monotone decreasing Boolean func-
tion f(x1, x2, x3, x4) = x1x2 + x2x3 + x3x4. The first one, on the left (Fig. 1a),
corresponds to the ordering x1 < x2 < x3 < x4 and its depth is 4. The second
one, on the right (Fig. 1b), corresponds to the ordering x2 < x3 < x1 < x4 and
its depth is 3. In this kind of figure, the sinks are denoted by a boxed 0 or 1,
and from each source or internal node (circled variables) the right (solid) edges
are labeled with 1 and the left ones with 0.

Definition 8. A Boolean function f over n variables is ligneous if f is mono-
tone and either f is evasive or there exists a permutation of the n variables
and an OBDD φ with respect to that permutation representing f and such that
depth(φ) < n.

Evasiveness Through BDDs 43

Fig. 1. Two ROBDDs of different length for the same monotone Boolean function.

The previous definition imposes the constraint of being monotone because
we know that there are Boolean functions f on n variables where every OBDD
representing f has depth n but there is a FBDD representing f and with depth
strictly less than n. As an example, in Fig. 2 we show two BDDs for the non-
monotone Boolean function

f(x1, x2, x3, x4) = ¬x1¬x2x3 + ¬x1x2x4 + x1¬x3x4 + x1x2x3.

The one on the left (Fig. 2a) is a ROBDD corresponding to the ordering x1 <
x2 < x2 < x4 and has depth 4. The one on the right (Fig. 2b) is a FBDD of
depth 3. A small Lisp program allows us to check that for any of the 24 possible
orderings of {x1, x2, x3, x4} the corresponding ROBDDs for this function are of
depth 4. Thus, this example proves that, in the non-monotone case, the depth
of a Boolean function cannot be realised through OBDDs.

Let us now explore how the ligneous notion is related to Alexander duality.
First, we place ourselves in the general case of a BDD φ representing a Boolean
function f . Then, we can construct a new BDD φd from φ with the following
procedure:

– In the source and in each internal node of φ, the 0-branch and the 1-branch
are swapped.

– In the sink nodes, 0 and 1 are swapped.

It is clear that this new BDD φd represents the Alexander dual fd. In addi-
tion, by construction, depth(φ) = depth(φd). From this observation the next
theorem follows. Furthermore, let us remark that this construction is robust
with respect to the different classes of BDD; that is to say, the dual of a FBDD
is a FBDD, the dual of an OBDD is an OBDD with respect to the same variable
ordering, and so on.

44 J. Aransay et al.

Fig. 2. Two BDDs of different length for a non-monotone Boolean function.

Theorem 3. The depth of a Boolean function is equal to the depth of its Alexan-
der dual.

Corollary 1. A Boolean function is ligneous if and only if its Alexander dual
is ligneous.

The corollary is not really a consequence of Theorem 3 but of its proof.
Effectively, since the dual of a ROBDD has the same depth (the structure of
the dual of a ROBDD admits a neat reading from its truth table: the beads in
the truth table are in canonical bijection with the beads in the dual truth table;
it is, in particular, a ROBDD too), it is clear that the ligneous properties are
preserved when passing to the Alexander dual (since it is simple to check that a
Boolean function is monotone if and only if its Alexander dual is monotone).

4 Dismantlable Implies Ligneous

Since in the definition of ligneous Boolean function we have imposed the mono-
tonicity condition, we can export the concept to the topological setting and con-
sider ligneous simplicial complexes, too. Once the concept of ligneous Boolean
function (or simplicial complex) is introduced, one can wonder if there are enough
instances of it. The following theorem describes that, in the non-evasive case
(several large classes of non-evasive simplicial complexes are known [3]), there
are many ligneous functions.

Theorem 4. If a Boolean monotone function is dismantlable, then it is ligneous.

Let us stress here that, since we have already observed that dismantlable
implies non-evasive, the proof of the previous theorem consists in building an
ordering of the variables such that the corresponding truth table has no evaders.

Evasiveness Through BDDs 45

As the topic is very error-prone (as explained in the introduction), it was
undertaken in a formal setting, and it is described in the following section. In fact,
this error-prone nature was confirmed when trying to formalise our arguments
in Isabelle/HOL: namely, the two concepts of external and internal links were
missing in our paper&pencil approach, and the very definition of dismantlable
was refined interactively by using the proof assistant.

From a methodological point of view, we try to delay the introduction of the
constraint of being monotone and develop the proof in a set-theoretic manner.
This implies that instead of working with simplicial complexes, we deal with
hypergraphs. So, proofs flow more naturally, and just in the last steps we impose
the monotonicity of the Boolean functions.

5 Formalisation in Isabelle/HOL

In this section we introduce the Isabelle formalisation of part of the results
presented in the previous sections. In order to make it clear which parts have
been formalised, let us enumerate the meta-theoretical results we are assuming
and the concrete scope of our formalisation:

– The bijection between Boolean functions and hypergraphs is not formalised,
and we work directly over hypergraphs.

– Theorem 1 is not formalised. It is used to explain the result that we prove
in Isabelle/HOL (that is to say, that a dismantlable complex can be defined
through a ROBBD without evaders, implying it is non-evasive). In fact, we
didn’t define in Isabelle/HOL a general notion of non-evasiveness.

– Theorems 2 and 3 are not formalised, the first one being well-known [3,5], and
the second one, being original from this paper and feasible in Isabelle/HOL,
requires the general definition of depth of a Boolean function, which is not
included in our formalisation.

– Theorem 4 is fully formalised, with the hypergraph language and with the
notion of non-evasiveness evoked in the statement of Theorem 1.

In Definition 5, we introduced the notion of link of a variable in a Boolean
function and we explained there that this notion corresponds to the simplicial
link from Algebraic Topology. Nevertheless, it is only true when we are work-
ing with monotone Boolean functions. In the non-monotone case, the case of
hypergraphs, two possible definitions of link appear.

Definition 9. Let K be a hypergraph over a variable set X (that is: K ∈
P(P(X))) and let x be a variable from X.

– The external link of K over the variable x is the hypergraph: lnkext(K, x) :=
{S ∈ P(X) | x /∈ S ∧ S ∪ {x} ∈ K}.

– The internal link of K over the variable x is the hypergraph: lnkint(K, x) :=
{S ∈ K | x /∈ S ∧ S ∪ {x} ∈ K}.

46 J. Aransay et al.

Let us note that for the co-star only a definition is possible (namely:
cost(K, x) := {S ∈ K | x /∈ S}). Definition 5 of f lnk(x) corresponds, in the
general case, to the external link.

The Isabelle definitions of the external link, the internal link (or simply link)
and the co-star of a hypergraph follow:

definition link_ext :: "nat ⇒ nat set ⇒ nat set set ⇒ nat set set"
where "link_ext x X K = {s. s ∈ powerset X ∧ x /∈ s ∧ insert x s ∈

K}"

definition link :: "nat ⇒ nat set ⇒ nat set set ⇒ nat set set"
where "link x X K = {s. s ∈ powerset (X - {x}) ∧ s ∈ K ∧ insert x s

∈ K}"

definition cost :: "nat ⇒ nat set ⇒ nat set set ⇒ nat set set"
where "cost x X K = {s. s ∈ powerset (X - {x}) ∧ s ∈ K}"

We also introduce the notion of simplicial complex (over a vertex set A),
which can be seen as a particular case of hypergraph satisfying the condition of
being closed under the operation parts of any set that belongs to the simplicial
complex (a property that we have introduced in pow-closed):

definition pow_closed :: "'a set set ⇒ bool"
where "pow_closed S ≡ (∀ s∈S. ∀ s'⊆s. s'∈ S)"

inductive_set cc_s :: "(nat set × nat set set) set"
where "({}, {}) ∈ cc_s"
| "(A, {}) ∈ cc_s"
| "A �= {} =⇒ K ⊆ powerset A =⇒ pow_closed K =⇒ (A, K) ∈ cc_s"

Simplicial complexes can be characterised also as hypergraphs where lnkext

and lnkint (or simply link in our Isabelle code) coincide:

lemma cc_s_link_eq_link_ext:
assumes cc: "(X, K) ∈ cc_s"
shows "link x X K = link_ext x X K"

lemma link_eq_link_ext_cc_s:
assumes v: "X �= {}"

and f: "finite X"
and k: "K ⊆ powerset X"
and l: "∀ x∈X. link x X K = link_ext x X K"

shows cc: "(X, K) ∈ cc_s"

The definition of a cone of a hypergraph follows:

definition cone :: "nat set ⇒ nat set set ⇒ bool"
where "cone X K = ((∃ x∈X. ∃ T. T ⊆ powerset (X - {x})

Evasiveness Through BDDs 47

∧ K = T ∪ {s. ∃ t∈T. s = insert x t}))"

It can be noted that the previous definition does not mimic the one introduced
for Boolean functions in Definition 6. The following lemmas show the equivalence
between the definition formalised in Isabelle and Definition 6:

lemma cone_impl_cost_eq_link_ext:
assumes x: "x ∈ X"

and cs: "T ⊆ powerset (X - {x})"
and kt: "K = T ∪ {s. ∃ t∈T. s = insert x t}"

shows "cost x X K = link_ext x X K"

lemma cost_eq_link_ext_impl_cone:
assumes c: "cost x X K = link_ext x X K"

and x: "x ∈ X" and p: "K ⊆ powerset X"
shows "cone X K"

Now we can introduce the notion of 0-collapsible (or dismantlable) hyper-
graph (see Definition 7). It is worth mentioning that the Isabelle formalisation
has to consider various cases that do not show up in the mathematical definition,
since Isabelle/HOL does not have dependent types and we must define explicitly
how the predicate zero_collapsible behaves for a set K whose elements are not
sets over V :

function zero_collapsible :: "nat set ⇒ nat set set ⇒ bool"
where
"V = {} =⇒ zero_collapsible V K = False"
| "V = {x} =⇒ K = {} =⇒ zero_collapsible V K = True"
| "V = {x} =⇒ K = {{},{x}} =⇒ zero_collapsible V K = True"
| "V = {x} =⇒ K �= {} =⇒ K �= {{},{x}} =⇒ zero_collapsible V K =

False"
| "2 ≤ card V =⇒ zero_collapsible V K =

(∃ x∈V. cone (V - {x}) (link_ext x V K) ∧ zero_collapsible (V - {x})
(cost x V K))"

| "¬ finite V =⇒ zero_collapsible V K = False"

Our main formalised results will be to prove that both cones and 0-collapsible
hypergraphs are non-evasive. First we must introduce the notions that permit
us to present our formalisation of evasiveness. In order to evaluate a Boolean
function for a given set of variables, we introduce sorted-variables, that represents
an ordering over a given set of variables (variables are represented by natural
numbers):

inductive_set sorted_variables :: "(nat set × nat list) set"
where "({}, []) ∈ sorted_variables"
| "(A, l) ∈ sorted_variables =⇒ x /∈ A =⇒ (insert x A, Cons x l) ∈

sorted_variables"

48 J. Aransay et al.

Two relevant results about sorted-variables are that the length of the list of
variables and the cardinality of the set of variables are equal, and also that the
list contains the same elements as the set:

lemma sorted_variables_length_coherent:
assumes al: "(A, l) ∈ sorted_variables" shows "card A = length l"

lemma sorted_variables_coherent:
assumes al: "(A, l) ∈ sorted_variables" shows "A = set l"

If we are now interested in computing or evaluating the result of a given
Boolean function for a particular ordering of variables, we can do so as follows. Do
note that the Boolean function is encoded by means of its associated hypergraph
K and the definition is done by induction over the list of variables. For a given
list containing n variables, its evaluation will contain 2n Boolean values:

function evaluation :: "nat list ⇒ nat set set ⇒ bool list"
where "evaluation [] {} = [False]"
| "K �= {} =⇒ evaluation [] K = [True]"
| "evaluation (x # l) K =

(evaluation l (link_ext x (set (x # l)) K)) @
(evaluation l (cost x (set (x # l)) K))"

Finally, we have to state what we consider for an evaluation not to contain
evaders, and thus (Theorem 1) being non-evasive. A function will be non-evasive
whenever it contains beads.

inductive_set not_evaders :: "(bool list) set"
where "l1 = l2 =⇒ l1 @ l2 ∈ not_evaders"
| "l1 ∈ not_evaders =⇒ l2 ∈ not_evaders =⇒ length l1 = length l2

=⇒ l1 @ l2 ∈ not_evaders"

From the previous definitions we can now state and prove in Isabelle that
the evaluation of a list of vertexes over a hypergragh which is also a cone does
not contain any pair of evaders, and thus (Theorem 1) cones are non-evasive:

lemma evaluation_cone_not_evaders:
assumes k: "K ⊆ powerset X" and c: "cone X K" and X: "X �= {}"

and f: "finite X" and xl: "(X, l) ∈ sorted_variables"
shows "evaluation l K ∈ not_evaders"

The proof proceeds by induction on the cardinality of the vertex set X. The
case where cardX is equal to 0 can be automatically discarded since X is not
empty. Then, when cardX is equal to sucn, we use our Isabelle definition of
cone to obtain T and a vertex x such that:

"K = T ∪ {s. ∃ t∈T. s = insert x t}"

Evasiveness Through BDDs 49

Accordingly, and making use of the previous result obdt-list-length-coherent
we also obtain a decomposition of the list l.

obtain y l' where l: "l = y # l'" and y: "y ∈ X"

The proof now distinguishes the cases where x = y or x �= y. If x = y we
take advantage of the fact that, since we are in a cone, costx X K is equal to
link-extx X K and thus both parts of the evaluation are equal, and therefore
there are no evaders.

If x and y are distinct, we use two intermediary results that state that the
cost of a cone over a given vertex x and vertex set X is also a cone for a vertex
y and vertex set X \ {x}, and so is the link-ext :

lemma cost_cone_eq:
assumes x: "x ∈ X" and xy: "x �= y"

and cs: "T ⊆ powerset (X - {x})"
and kt: "K = T ∪ {s. ∃ t∈T. s = insert x t}"

shows "cost y X K =
(cost y (X - {x}) T) ∪ {s. ∃ t∈(cost y (X - {x}) T). s = insert x t}"

lemma link_ext_cone_eq:
assumes x: "x ∈ X" and xy: "x �= y"

and cs: "T ⊆ powerset (X - {x})"
and kt: "K = T ∪ {s. ∃ t∈T. s = insert x t}"

shows "link_ext y X K =
(link_ext y (X - {x}) T) ∪
{s. ∃ t∈(link_ext y (X - {x}) T). s = insert x t}"

Incidentally, the previous equality also holds for the internal link.
The crucial point here is that the cones obtained have one vertex fewer than

the original ones, and thus we can take advantage of the induction hypothesis
to prove that link-ext over y and the vertex set X \ {x} and cost over y and
the vertex set X \ {x} do not contain evaders, and since their evaluations both
have the same length, thanks to the definition of no-evaders, appending them
also does not produce any evaders.

The same property of not containing pairs of evaders also holds for 0-
collapsible hypergraphs:

theorem
zero_collapsible_implies_not_evaders:
assumes k: "K ⊆ powerset X"

and x: "X �= {}" and f: "finite X" and cc: "zero_collapsible X K"
shows "∃ l. (X, l) ∈ sorted_variables ∧ evaluation l K ∈ not_evaders"

The proof again proceeds by induction on the cardinality of the set of vertexes
X. The case where the number of vertexes is 0 can be automatically discarded.
For cardX = sucn we first consider the case where K = ∅. Then, we obtain a
list of variables for the (finite, and not empty) set of vertexes X and we make

50 J. Aransay et al.

use of the following result (based on the fact that both cost and the link-ext of
the empty set are empty):

lemma evaluation_empty_set_not_evaders:
assumes a: "l �= []" shows "evaluation l {} ∈ not_evaders"

If K �= ∅, we have to distinguish the case where X is a singleton. Let X = {x}.
Then we have to prove that ‘evaluation [x] K’ does not contain evaders. In
this case there are only three possible hypergraphs, namely K = {{}}, K =
{{x}}, and K = {{}, {x}}. The first and second cases are proven obtaining a
contradiction with the fact that [x] and K are 0-collapsible. In the third case we
obtain the evaluation [True, True], which is not an evader. For the case where
cardX > 1, we can obtain some vertex x satisfying that:

obtain x where x: "x ∈ X" and cl: "cone (X - {x}) (link_ext x X K)"
and ccc: "zero_collapsible (X - {x}) (cost x X K)" and xxne: "X - {x}

�= {}"

With the previous facts we use the induction hypothesis to obtain some list
l′ such that:

obtain l' where xxb: "(X - {x}, l') ∈ sorted_variables"
and ec: "evaluation l' (cost x X K) ∈ not_evaders" by auto

Now we make use of the fact that link-extx X K is a cone over the vertex set
X \ {x} (labelled as cl in the code snippet above) and therefore its evaluation
over l′ neither has evaders (thanks to the previous lemma evaluation-cone-not-
evaders).

Finally, we are now ready to prove that there exists a list l = x#l′ such
that (X, l) is a sorted-variables element and the evaluation of K over l does not
contain evaders. The proof is completed by using the second introduction rule
in definition not-evaders, since the evaluation of both cones (costx X K and
link-extx X K) do not contain evaders and moreover both lists have the same
length.

Now, because we have proved in Isabelle/HOL that when we are working
with simplicial complexes (equivalently, with monotone Boolean functions), the
external and internal links coincide, we get the proof of Theorem 4.

6 Conclusions and Further Work

In this paper, the notion of ligneous Boolean function has been introduced. It
is a decreasing monotone Boolean function (so defining canonically a simplicial
complex) such that a ROBDD is a witness for its non-evasiveness. We prove
that a function is ligneous if and only if it is the case for its Alexander dual. Our
main result is: dismantlable implies ligneous. Furthermore, and we consider it as
a major achievement of our research, the proof of this main result is implemented
in the Isabelle/HOL proof assistant.

Evasiveness Through BDDs 51

In relation to our future work, let us repeat that the main concern has not
been solved: whether the depth of a Boolean function can be realised through
OBDDs (in fact, the notion of ligneous complex is simply a technical tool that
allowed us to state the main properties we detected around this problem). To
complete the research, it would be necessary to prove that if all the ROBDDs of
a monotone Boolean function are of maximal depth n (the number of variables)
then the Boolean function is evasive, or to find a counterexample: a monotone
Boolean function such that all its ROBDD are of depth n but there is a FBDD
of depth less than n. We have heuristics to make both cases plausible:

– To lean towards the first case:
• The canonical examples of m-collapsible complexes that are not (m − 1)-

collapsible [3] are ligneous (but, turning the argument around, we have not
been able to prove that every 1-collapsible complex is ligneous; it seems
there is some obstruction to pass from the 0-collapsible or dismantlable
case, to the 1-collapsible one).

• The statistical argument: in 1976, Rivest and Vuillemin [14] proved that
almost all Boolean functions are evasive, in the sense that the number of
functions on n variables that are non-evasive goes very rapidly to 0, as
n → ∞. Then, one can wonder that imposing the tight constraint that all
the ROBDDs are of depth n one could escape from the rare case of non-
evasiveness (but then let us remark that monotonicity would be essential
in this case, because of our counterexample displayed in Fig. 2).

– In favour of the existence of a counterexample: we could follow the technique
used in several papers (see [9], for instance) to construct ROBDDs of expo-
nential size (the size is the number of nodes in a BDD) but with FBDDs of
polynomial size. The technique consists in building two ROBDDs of polyno-
mial size but with incompatible orderings, in such a way that adding a fresh
source variable produces a polynomial size FBDD, but any re-ordering of
variables produces an exponential ROBDD. Nevertheless, we have not been
capable of translating to the depth of a BDD this argument relative to the
size of BDDs.

Unfortunately, it seems that the counterexamples, if they exist, would have
a number of variables that excludes the possibility of making an exhaustive
computer search (as the mentioned one about the counterexample of Fig. 2:
generating all the ROBDDs to compute their depths).

Another line of further research is to continue with the formalisation efforts in
proof assistants inside this area where complexity, Boolean functions and topol-
ogy interplay, since our preliminary work illustrate the benefits of this approach.

References

1. Anick, D.J.: The computation of rational homotopy groups is #P-hard. Comput.
Geome. Topol. Lect. Notes Pure Appl. Math. 114, 1–56 (1989)

2. Aransay, J.: Isabelle code for “Evasiveness through Binary Decision Diagrams”.
https://github.com/jmaransay/morse/blob/Isabelle_2022/BDT.thy

https://github.com/jmaransay/morse/blob/Isabelle_2022/BDT.thy

52 J. Aransay et al.

3. Barmak, J.A., Minian, E.G.: Strong homotopy types, nerves and collapses. Discrete
Comput. Geom. 47(2), 301–328 (2012)

4. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd. (1985)
5. Björner, A.: Topological methods. In: Handbook of Combinatorics, pp. 1819–1872.

Elsevier (1995)
6. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE

Trans. Comput. 35, 677–691 (1986)
7. Forman, R.: Morse theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)
8. Forman, R.: Morse theory and evasiveness. Combinatorica 20(4), 489–504 (2000)
9. Hayase, K., Imai, H.: OBDDs of a monotone function and its prime implicants.

Theory Comput. Syst. 31, 579–591 (1998)
10. Knuth, D.E.: The Art of Computer Programming, vol. 4, fascicle 1, Bitwise Tricks

& Techniques; Binary Decision Diagrams. Addison-Wesley (2009)
11. Markov, A.A.: Unsolvability of homeomorphy problem. In: Proceedings Interna-

tional Congress of Mathematicians 1958, pp. 300–306. Cambridge University Press
(1960)

12. Milner, E.C., Welsh, D.J.A.: On the computational complexity of graph theoretical
properties. In: Proceedings Fifth British Combinatorial Conference, Congressus
Numerantium XV, pp. 471–487 (1975)

13. Novikov, P.S.: Algorithmic unsolvability of the word problem in group theory. J.
Symb. Log. 23(1), 50–52 (1958)

14. Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matri-
ces. Theor. Comput. Sci. 3(3), 371–384 (1976)

15. Roune, B.H., Sáenz-de-Cabezón, E.: Complexity and algorithms for Euler charac-
teristic of simplicial complexes. J. Symb. Comput. 50, 170–196 (2013)

16. Rubio, J., Sergeraert, F.: Computing with locally effective matrices. Int. J. Comput.
Math. 2(10), 1177–1189 (2005)

17. Scoville, N.A.: Discrete Morse theory. Student Mathematical Library, vol. 90.
American Mathematical Society (2019)

Nominal AC-Matching

Mauricio Ayala-Rincón1 , Maribel Fernández2 , Gabriel Ferreira Silva1(B) ,
Temur Kutsia3 , and Daniele Nantes-Sobrinho1,4

1 University of Brasília, Brasília, Brazil
ayala@unb.br, gabrielfsilva1995@gmail.com

2 King’s College London, London, UK
maribel.fernandez@kcl.ac.uk

3 Johannes Kepler University Linz, Linz, Austria
kutsia@risc.jku.at

4 Imperial College London, London, UK
dnantess@ic.ac.uk

Abstract. The nominal syntax is an extension of the first-order syn-
tax that smoothly represents languages with variable bindings. Nominal
matching is first-order matching modulo alpha-equivalence. This work
extends a certified first-order AC-unification algorithm to solve nominal
AC-matching problems. To our knowledge, this is the first mechanically-
verified nominal AC-matching algorithm. Its soundness and completeness
were verified using the proof assistant PVS. The formalisation enriches
the first-order AC-unification algorithm providing structures and mech-
anisms to deal with the combinatorial aspects of nominal atoms, per-
mutations and abstractions. Furthermore, by adding a parameter for
“protected variables” that cannot be instantiated during the execution,
it enables nominal matching. Such a general treatment of protected
variables also gives rise to a verified nominal AC-equality checker as
a byproduct.

Keywords: Nominal Matching · Nominal AC-Matching · Formal
Methods · PVS

1 Introduction

The nominal approach to the specification of systems with binders [20,25]
extends first-order syntax with notions of name and binding that allow us to
represent systems with binders smoothly. Such systems frequently appear in the
formalisation of mathematics and when reasoning about the properties of pro-
gramming languages. Taking into account α-equivalence is essential to represent
bindings correctly. For example, the formulas ∀x : x + 1 > 0 and ∀y : y + 1 > 0
should be considered equivalent despite being syntactically different. From the
user point of view it is easier to use systems with variable names than systems
with indices. Hence, instead of using indices to represent bound variables, as
in explicit substitution calculi à la de Bruijn, the nominal theory uses atoms,
atom permutations and freshness constraints to represent binders more natu-
rally [19,25].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 53–68, 2023.
https://doi.org/10.1007/978-3-031-42753-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_4&domain=pdf
http://orcid.org/0000-0003-0089-3905
http://orcid.org/0000-0001-8325-5815
http://orcid.org/0000-0003-1679-3597
http://orcid.org/0000-0003-4084-7380
http://orcid.org/0000-0002-1959-8730
https://doi.org/10.1007/978-3-031-42753-4_4

54 M. Ayala-Rincón et al.

Given terms t and s, syntactic unification is the problem of finding a sub-
stitution σ such that σt = σs and syntactic matching is the problem of finding
a substitution σ such that σt = s. Algorithms to solve matching problems are
an essential component of functional languages and equational theorem provers:
matching is used to decide if an equation can be applied to a term. The problem
of syntactic matching can be generalised to consider an equational theory E. In
this case, called E-matching, we must find a substitution σ such that σt and s are
equal modulo E, which we denote σt ≈E s. For example, if the system includes
associative and commutative (AC) operators, such as + in the example above,
then the matching algorithm should consider the AC axioms. Furthermore, equa-
tional programming languages, such as Maude, require efficient implementations
of AC-matching to deal with AC-theories (see [16]).

If the system under study includes binders and AC operators, then α-equiva-
lence should also be considered: for example, ∀x : x+1 > 0 should be considered
equivalent to ∀y : 1 + y > 0. This paper focuses on the matching problem for
languages that include binders and AC operators.

Nominal matching is the extension of first-order matching to the nominal syn-
tax, replacing the notion of syntactic equality by α-equivalence. It has applica-
tions in rewriting, functional programming, and metaprogramming. For instance,
various versions of matching modulo α-equivalence are used in functional pro-
gramming languages that provide constructs for manipulating abstract syntax
trees involving binders (e.g. [26,29]). In this work, we specify a nominal match-
ing algorithm modulo AC function symbols (nominal AC-matching, for short)
and prove its correctness and completeness using the proof assistant PVS.

Related Work. Nominal syntactic (i.e. modulo α-equivalence) equality-check,
matching and unification were solved since the beginning of the development
of the nominal approach; more than twenty years ago, Urban et al. [34] devel-
oped the first rule-based algorithm for nominal syntactic unification and further,
Urban mechanised its correctness and completeness in Isabelle/HOL as part of
the formalisation of the nominal approach in this proof assistant [32,33]. Fur-
thermore, different approaches were designed to deal with nominal syntactic uni-
fication efficiently. Calvès and Fernández [11,12] and Levy and Villaret [22,23]
developed efficient nominal syntactic unification algorithms to solve nominal
unification problems. Furthermore, Ayala-Rincón et al. [6] developed a nominal
syntactic unification algorithm specified as a functional program and verified
it in the proof assistant PVS. Enriching the nominal equational analysis with
equational theories started with developing rule-based techniques for commuta-
tive operators. Such developments were initially checked in the proof assistant
Coq and further in PVS [1,4]. Remarkable differences between nominal unifi-
cation and nominal C-unification were discovered, such as the fact that when
expressing solutions as pairs consisting of a freshness context and substitutions,
nominal unification is unitary whereas nominal C-unification is not finitary [2,3].

Avoiding freshness constraints through a fixed-point approach was also stud-
ied as a mechanism to obtain finite complete sets of solutions [5]. Such fixed-point

Nominal AC-Matching 55

equations also appear in nominal techniques designed to deal with higher-order
recursive let operators [27,28].

First-order AC-unification algorithms were proposed almost half a century
ago, when Stickel [30,31] showed the connection between solving this problem
and computing solutions to linear Diophantine equations until a certain bound.
Almost a decade later, Fages [17,18] fixed a mistake in Stickel’s proof of termi-
nation. Since then, ideas to obtain more efficient AC-unification algorithms have
been proposed, either by using a smaller bound when computing the solutions
to the linear Diophantine equation [14], or by solving those equations more effi-
ciently [14], or even by solving whole systems of linear Diophantine equations and
using suitable data structures to represent the problem [8,10]. First-order AC-
unification algorithms were not formalised until recently when a version of Fages’
AC-unification algorithm was proved correct and complete using the proof assis-
tant PVS [7]. This mechanisation applies the linear-Diophantine AC unification
method discovered and fixed in works by Stickel and Fages [17,18,30,31], and can
easily be adapted to deal with AC-equality and AC-matching problems as well.
It is important to stress that such mechanisation was not a routine-formalisation
effort; before this formalisation, only a formalisation of AC-matching (which has
simpler combinatorics) was reported in the proof assistant Coq [15].

Contributions. Adapting first-order syntactic AC unification to the nominal set-
ting is challenging since the new variables included in the Diophantine systems
(used to generate new possible AC combinations) give rise to new AC-unification
problems of the same complexity as the input problems. This paper shows that
such cyclicity is not possible when only nominal AC-matching problems are con-
sidered. We present a novel nominal AC-matching algorithm adapted from the
Stickel-Fages linear-Diophantine approach and prove its termination, correctness
and completeness in the proof assistant PVS.

Organisation. Section 2 recalls the main concepts and notations needed in the
paper. In Sect. 3, we present and explain the pseudocode for the algorithm
specified in PVS. Section 4 discusses the main features of the formalisation,
while Sect. 5 discusses the challenges in adapting our approach to nominal AC-
unification. Finally, in Sect. 6, we conclude the paper and suggest possible paths
for future work. We assume familiarity with PVS (see [24]) and include hyper-
links (with the � icon) to specific points of interest of the PVS formalisation.
An extended version of this paper is available at https://www.mat.unb.br/ayala/
publications.html.

2 Background

2.1 Nominal Terms, Permutations and Substitutions

Assume disjoint countable sets of atoms A = {a, b, c, . . .} and of variables X =
{X,Y,Z, . . .}, and a signature Σ of function symbols which contains associative-
commutative function symbols. A permutation π is a bijection of the form π :

https://github.com/gabriel951/nominal_ac_match_CICM
https://www.mat.unb.br/ayala/publications.html
https://www.mat.unb.br/ayala/publications.html

56 M. Ayala-Rincón et al.

A → A such that the domain of π (i.e., the set of atoms modified by π) is
finite. Permutations are usually represented as a list of swappings, where the
swapping (a b) exchanges atoms a and b and fixes all the other atoms. Therefore,
a permutation is represented as π = (a1 b1) :: ...:: (an bn) :: nil. The inverse of this
permutation, denoted by π−1, can be computed simply by reversing the list. The
identity permutation is denoted by id.

Definition 1 (Nominal Terms �). The set T (Σ,A,X) of nominal terms is
generated according to the grammar:

s, t :: = a | π · X | 〈〉 | [a]t | 〈s, t〉 | f t | fAC t (1)

where 〈〉 is the unit, a is an atom term, π·X is a moderated variable or suspension
(the permutation π is suspended on the variable X), [a]t is an abstraction (a term
with the atom a abstracted), 〈s, t〉 is a pair, f t is a function application and
fAC t is an associative-commutative function application.

Remark 1. We represent moderated variables of the form id ·X simply as X. We
follow Gabbay’s name convention, which says that atoms differ in their names.
Therefore, if we consider atoms a and b, it is redundant to say a �= b.

Definition 2 (Well-formed Terms �). We say that a term t is well-formed if
t is not a pair and every AC-function application that is a subterm of t has at
least two arguments.

As was done in [7], we have restricted the terms that our algorithm receives
to well-formed terms to ease our formalisation (more details in the extended
version). Excluding pairs is a natural decision since they are used to encode a
list of arguments to a function.

Definition 3 (PermutationAction).The action of permutations on atoms �
is defined recursively: nil ·c = c and ((a b) :: π) ·c = a, if π ·c = b; ((a b) :: π) ·c = b,
if π · c = a; ((a b) :: π) · c = π · c otherwise. The action of permutations on terms�
is defined recursively:

π · 〈〉 = 〈〉 π · (π′ · X) = (π ::π′) · X π · [a]t = [π · a]π · t
π · 〈s, t〉 = 〈π · s, π · t〉 π · f t = f π · t π · fACt = fACπ · t

Notation 1. When convenient, we may mention that a function symbol f is an
AC-function symbol, omit the superscript and write simply f instead of fAC .

A substitution σ is a function from variables to terms, such that σX �= id ·X
only for a finite set of variables, called the domain of σ and denoted as dom(σ).
The image of σ is then defined as im(σ) = {σX | X ∈ dom(σ)}. We denote the
identity substitution by id. From now on, when composing substitution σ with
δ we may omit the composition symbol and write σδ instead of σ ◦ δ.

A well-formed substitution � only instantiates variables to well-formed
terms. In the proofs of soundness and completeness of the algorithm, we restrict

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L1-L11
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L638-L643
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/atoms.pvs#L13-L23
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L669-L680
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L127-L130

Nominal AC-Matching 57

ourselves to well-formed substitutions. Let V be a set of variables. If dom(σ) ⊆ V
and Vars(im(σ)) ⊆ V we write σ ⊆ V . In our PVS code, substitutions are rep-
resented by a list, where each entry of the list is called a nuclear substitution
and is of the form {X → t}.

Definition 4 (Nuclear substitution action on terms �). A nuclear substitu-
tion {X → t} acts over a term by induction as shown below:

{X → t}〈〉 = 〈〉 {X → t}〈s1, s2〉 =
{X → t}([a]s) = [a]({X → t}s) 〈{X → t}s1, {X → t}s2〉

{X → t}(f s) = f ({X → t}s) {X → t}π · Y =
{

π · Y if X �= Y
π · t otherwise

{X → t}a = a {X → t}(fAC s) = fAC ({X → t}s)

Definition 5 (Substitution acting on terms �). Since a substitution σ is a
list of nuclear substitutions, the action of a substitution is defined as:

– nil t = t, where nil is the null list, used to represent the identity substitution.
– cons({X → s}, σ) t = {X → s}(σt).

Remark 2. The notion of substitution used here differs from the more traditional
view of a substitution as a simultaneous application of nuclear substitutions,
although both are correct. The way we defined substitution here is closer to tri-
angular substitutions [21]. In the definition of action of substitutions the nuclear
substitution in the head of the list is applied last. This lets us, given substitutions
σ and δ, obtain the substitution σ ◦ δ in our code simply as append(σ, δ).

2.2 Freshness and α-Equality

Freshness and α-equality are two valuable notions in nominal theory and are
represented by the predicates # and ≈α. Intuitively, a#t means that if a occurs
in t then it does so under an abstractor [a], and s ≈α t means that s and t
are α-equivalent, that is, they are equal modulo the renaming of bound atoms.
These concepts are given in Definitions 6 and 7.

Definition 6 (Freshness �). A freshness context ∇ is a set of constraints of
the form a#X. We denote contexts by letters Δ,Γ,∇, . . . An atom a is said to
be fresh on t under a context ∇, denoted by ∇ � a#t, if it is possible to build a
proof using the rules:

(#〈〉)∇ � a#〈〉 (#atom)∇ � a#b
(π−1 · a#X) ∈ ∇

(#X)∇ � a#π · X

(#[a]a)∇ � a#[a]t
∇ � a#t

(#[a]b)∇ � a#[b]t
∇ � a#s ∇ � a#t

(#pair)∇ � a#〈s, t〉

∇ � a#t
(#app)∇ � a#f t

∇ � a#t
(#AC)

∇ � a#fAC t

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L25-L40
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L49-L58
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L15-L29

58 M. Ayala-Rincón et al.

Definition 7 (α-equality with AC operators �). Let f be an AC function
symbol, Sn(f t) be an operator that selects the nth argument of f t (considering
the flattened form) and Dn(f t) be an operator that deletes the nth argument of f t
(considering the flattened form). If there exist i and j such that Δ � Si(fACs) ≈α

Sj(fACt) and Δ � Di(fACs) ≈α Dj(fACt), then Δ � fACs ≈α fACt. In other
words, the rule of α-equality for an AC-function application is:

Δ � Si(fACs) ≈α Sj(fACt) Δ � Di(fACs) ≈α Dj(fACt)
(≈α AC)

Δ � fACs ≈α fACt

Two terms t and s are said to be α-equivalent under the freshness context Δ
(Δ � t ≈α s) if it is possible to build a proof using rule (≈α AC) and the rules:

(≈α 〈〉)
Δ � 〈〉 ≈α 〈〉 (≈α atom)

Δ � a ≈α a

Δ � s ≈α t
(≈α app)

Δ � f s ≈α f t

Δ � s ≈α t
(≈α [a]a)

Δ � [a]s ≈α [a]t

Δ � s ≈α (a b) · t, Δ � a#t
(≈α [a]b)

Δ � [a]s ≈α [b]t
ds(π, π′)#X ⊆ Δ

(≈α var)
Δ � π · X ≈α π′ · X

Δ � s0 ≈α t0, Δ � s1 ≈α t1 (≈α pair)
Δ � 〈s0, s1〉 ≈α 〈t0, t1〉

Notation 2. We define the difference set between two permutations π and π′ as
ds(π, π′) = {a ∈ A|π ·a �= π′ ·a}. By extension, ds(π, π′)#X is the set containing
every constraint of the form a#X for a ∈ ds(π, π′).

2.3 Solution to Quintuples and Additional Notation

For the proofs of soundness and completeness of the algorithm, we need the
notion of a solution to a quintuple (Definition 8). This definition depends on a
parameter X , a set of “protected variables”, i.e., variables that cannot be instan-
tiated.

Let P be a finite set of equational constraints. We denote the left-hand side
of P by lhs(P)� and the right-hand side of P by rhs(P)�. The set of variables
in t ≈? s is denoted as Vars(t, s)�. Finally, if Γ is a context then we denote by
Vars(Γ)� the set {X | a#X ∈ Γ, for some atom a}.

Notation 3. Let ∇ and ∇′ be freshness contexts and σ and σ′ substitutions.
We need the following notation to define a solution to a quintuple:

– ∇′ � σ∇ denotes that ∇′ � a#σX holds for each (a#X) ∈ ∇.
– ∇ � σ ≈V σ′ denotes that ∇ � σX ≈α σ′X for all X in V . When V is the

set of all variables X, we write ∇ � σ ≈ σ′.

Definition 8 (Solution for a Quintuple �). Suppose that Γ is a context, P
is a set of freshness constraints (of the form a#?t) and equational constraints
(of the form t ≈? s), σ is a substitution, V is a set of variables and X is a

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/equality.pvs#L16-L45
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L54-L54
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L55-L55
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L64-L66
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L123-L128
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L132-L136

Nominal AC-Matching 59

set of protected variables that cannot be instantiated. A solution for a quintuple
(Γ, P, σ, V,X) is a pair (Δ, δ), where the following conditions are satisfied:
1. Δ � δΓ.
2. if a#?t ∈ P then Δ � a#δt.
3. if t ≈? s ∈ P then Δ � δt ≈α δs.

4. there exists λ such that
Δ � λσ ≈V δ.

5. dom(δ) ∩ X = ∅.

Remark 3. Note that if (Δ, δ) is a solution of (Γ,nil, σ,X,X) this corresponds to
the notion of (Δ, δ) being an instance of (Γ, σ) that does not instantiate variables
in X .

Definition 9 (Solution for an AC-unification/matching/equality prob-
lem). A solution for an AC-unification problem with protected variables
(Γ, P,X) is a solution for the associated quintuple (Γ, P, id,Vars(P),X). When
X = Vars(rhs(P)), we have the definition for an AC-matching problem and
when X = Vars(P) we have the definition of solution to an AC-equality check-
ing problem.

3 Algorithm

We present the algorithm’s pseudocode instead of the actual PVS code for read-
ability. We developed a nominal algorithm (Algorithm 1�) for matching terms
t and s. The algorithm is recursive and needs to keep track of the current con-
text Γ, the equational constraints P that we have to unify, the substitution σ
computed so far, the set of variables V that are/were in the problem and the set
of protected variables X . Hence, its input is a quintuple (Γ, P, σ, V,X). The out-
put is a list of solutions, each of the form (Γ1, σ1). The freshness constraints are
treated by auxiliary functions (see Sect. 3.1), and the equational constraints P
are represented as a list in our PVS code, where each element of the list is a pair
(ti, si) that represents an equation ti ≈? si. The first call to the algorithm, in
order to match t to s, is done with P = {t ≈? s}; Γ = ∅ and σ = id (because we
have not computed any freshness constraint or substitution yet); V = Vars(t, s)
and X = Vars(s).

Although extensive, Algorithm 1 is simple. It starts by analysing the list P of
terms to match. If it is empty (line 2), it has finished and can return the answer
computed so far, a list with a unique element: (Γ, σ). Otherwise, the algorithm
calls the auxiliary function chooseEq (line 4), which returns a pair (t, s) and
a list of equational constraints P1 such that P = {t ≈? s} ∪ P1. Then, P is
updated by simplifying {t ≈? s} and it does so by seeing the form of t (an atom,
a moderated variable, a unit, and so on).

3.1 Functions CHOOSEEQ and DECOMPOSE

The function chooseEq(P)� selects an equational constraint t ≈? s in P ,
picking the equation with the biggest size. This heuristic aims to aid us in the
proof of termination (see Sect. 4.2).

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification_alg.pvs#L24-L93
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L65-L73

60 M. Ayala-Rincón et al.

Algorithm 1. Nominal AC-Matching Algorithm 1�
1: procedure ACMatch(Γ, P, σ, V, X)
2: if nil?(P) then cons((Γ, σ),nil)
3: else
4: let ((t, s), P1) = chooseEq(P) in
5: if t matches a and s matches a then ACMatch(Γ, P1, σ, V, X)
6: else if t matches π · X and X �∈ Vars(s) and X �∈ X then
7: let σ1 = {X �→ π−1s},
8: (Γ1,flag) = freshSubs?(σ1, Γ) in
9: if flag then ACMatch(Γ1 ∪ Γ, σ1P1, σ1σ, V, X)

10: else nil
11: else if t matches π · X and s matches π′ · X then
12: let Γ1 = ds(π, π′)#X ∪ Γ in ACMatch(Γ1, P1, σ, V, X)
13: else if t matches 〈〉 and s matches 〈〉 then ACMatch(Γ, P1, σ, V, X)
14: else if t matches f t1 and s matches f s1 then
15: let (P2,flag) = decompose(t1, s1) in
16: if flag then ACMatch(Γ, P2 ∪ P1, σ, V, X)
17: else nil
18: else if t matches [a] t1 and s = [a] s1 then
19: let (P2,flag) = decompose(t1, s1) in
20: if flag then ACMatch(Γ, P2 ∪ P1, σ, V, X)
21: else nil
22: else if t matches [a] t1 and s = [b]s1 then
23: let (Γ1,flag1) = fresh?(a, s1),
24: (P2,flag2) = decompose(t1, (a b) · s1) in
25: if flag1 and flag2 then ACMatch(Γ ∪ Γ1, P2 ∪ P1, σ, V, X)
26: else nil
27: else if t matches fAC t1 and s matches fAC s1 then
28: let InputLst = applyACStep (Γ, cons((t, s), P1), σ, V, X),
29: LstResults = map(ACMatch, InputLst) in flatten(LstResults)
30: else nil

The function decompose � (lines 15, 19 and 24) receives two terms t and
s, and if they are both pairs, it recursively tries to decompose them, returning a
tuple (P,flag), where P is a list of equational constraints and flag is a boolean
that is True if the decomposition was successful. This function guarantees that
only well-formed terms are in the matching problem.

Example 1. Examples of the function decompose are given below.

– decompose(〈a, 〈b, c〉〉, 〈c, 〈X,Y 〉〉) = ({a ≈? c, b ≈? X, c ≈? Y }, True).
– decompose(a, Y) = ({a ≈? Y }, True).
– decompose(X, 〈c, d〉) = (nil, False).

3.2 Handling Freshness Constraints - Functions FRESHSUBS?
and FRESH?

Following the approach of [6], freshness constraints are handled separately by
the auxiliary functions fresh? � and freshSubs? �. These functions were

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification_alg.pvs#L24-L93
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L231-L242
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L78-L91
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/fresh_subs.pvs#L19-L32

Nominal AC-Matching 61

already implemented in [6], and extending them to handle AC-functions is
straightforward. freshSubs?(σ,Γ) returns the minimal context (Γ1 in Algo-
rithm 1) in which a#?σX holds, for every a#X in the context Γ. fresh?(a,
t) computes and returns the minimal context (Γ1 in Algorithm 1) in which a is
fresh for t. Both functions also return a boolean (flag in Algorithm 1), indicating
if it was possible to find the aimed context.

3.3 The Function APPLYACSTEP

The function applyACStep � was adapted from the formalisation of first-
order AC-unification (see [7]). It handles equations t ≈? s, where t and s are
rooted by the same AC function symbol. This function returns a list (InputLst
in line 28 of Algorithm 1) with each entry in this list corresponding to a branch
ACMatch will explore. ACMatch explores every branch generated by calling
itself recursively on every input in InputLst (line 29 of the algorithm). The
algorithm’s output is a list of solutions of the form (Γ, σ), where Γ is a con-
text and σ is a substitution. In addition, the result of calling map(ACMatch,
InputLst), LstResults in line 29 of Algorithm 1, is a list of lists of solutions.
Hence, LstResults is flattened and then returned.

Remark 4 (solveAC and instantiateStep). applyACStep relies on two
functions: solveAC � and instantiateStep �, which are fully described in
[7]. In synthesis, the function solveAC finds the linear Diophantine equational
system associated with the AC-matching equational constraint, generates the
basis of solutions, and uses these solutions to generate the new AC-matching
equational constraints. The function instantiateStep instantiates the moder-
ated variables that it can.

3.4 An Example of First-Order AC-Unification and How We
Adapted It to the Nominal Setting

We give a very high-level example (taken from [31] and more detailed in the
extended version) of how we would solve the first-order AC-unification prob-
lem {f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)}. The first step is to eliminate common
arguments. Next we associate our unification problem with a linear Diophantine
equation (2U1+U2+U3 = 2V1+V2 in our case) and generate a basis of solutions
to this equation, associating a new variable (Z1, Z2, . . . , Z7 in our case) to each
solution. The algorithm may branch into (possibly) many unification problems
and these new variables will be the building blocks for these unification prob-
lems. Finally, before proceeding to unify the new unification problems, we can
drop the cases where a variable term is paired with an AC-function application.
In the end, the solutions computed are:

σ1={Y �→ f(b, b), Z �→ f(a,X,X)} σ2={Y �→ f(Z2, b, b), Z �→ f(a, Z2,X,X)}
σ3={X �→ b, Z �→ f(a, Y)} σ4={X �→ f(Z6, b), Z �→ f(a, Y, Z6, Z6)}

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L242-L256
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/aux_unification.pvs#L196-L210
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/inst_step.pvs#L89-L117

62 M. Ayala-Rincón et al.

With this example in mind, there are four main modifications (more details
in the extended version) when moving from first-order AC-unification to nom-
inal AC-matching. When eliminating common arguments we do not eliminate
arguments ti and sj of t and s if they are equal modulo AC, we eliminate them
if they are α-equivalent (modulo AC) under the context Γ that we are working
with. Regarding the new variables introduced: the permutation suspended on
them is always the identity. Additionally, we drop the cases where a moderated
variable π · X, with X ∈ X , is paired with an AC-function application. Finally,
we must guarantee that the new variables Zis introduced by the algorithm can
be instantiated, i.e. Zi �∈ X .

4 Formalisation

As is done in [7], to help us in the proofs of termination (Sect. 4.2), sound-
ness (Sect. 4.3) and completeness (Sect. 4.4) we define the notion of a nice input
(Sect. 4.1).

4.1 Nice Inputs

Nice inputs are invariant under the action of the ACMatch function with valu-
able properties. Notice that Item 7 of Definition 10 would need to be removed for
the proofs of termination, soundness, and completeness to be used in unification.

Definition 10 (Nice input�). An input (Γ, P, σ, V,X) is said to be nice if:
1. σ is idempotent.
2. Vars(P) ∩ dom(σ) = ∅.
3. σ ⊆ V .
4. Vars(P) ⊆ V .

5. Vars(Γ) ⊆ V .
6. X ⊆ V .
7. Vars(rhs(P)) ⊆ X .

4.2 Termination

For the lexicographic measure used in the proof of termination, we need the
definition of the size of an equational constraint t ≈? s (Definition 11).

Definition 11 (Size of an Equational Constraint�). The size of an equa-
tional constraint t ≈? s is size(t) + size(s), where the size of a term t� is
recursively defined as follows:

– size(a) = 1.
– size(π · X) = 1.
– size(〈〉) = 1.

– size(〈t1, t2〉) = 1 + size(t1) + size(t2).
– size(f t1) = 1 + size(t1).
– size(fAC t1) = 1 + size(t1).
– size([a]t1) = 1 + size(t1)

Although the nominal AC-matching algorithm is based on the first-order
AC-unification algorithm ([7]), the proof of termination was much easier for
nominal AC-matching than for first-order AC-unification. Instead of the intricate
lexicographic measure used in [7] (which came from the work of [17]), it was

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L33-L38
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L154-L156
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L48-L59

Nominal AC-Matching 63

possible to prove that for the particular case of matching (unlike unification)
all the new moderated variables introduced by solveAC are instantiated by
instantiateStep.

Hence, the lexicographic measure used has as its first component the number
of variables in the equational constraints P and as a second component the
multiset order of the size of each equation t ≈? s ∈ P . Although PVS does not
directly implement multiset orders, this part can be emulated easily by analysing
the maximum size n of all equations t ≈? s in P and the number of equations
t ≈? s in P with maximal size (in this order). The algorithm selects an equation
with maximal size to simplify (the heuristic selection is enforced by the function
chooseEq).

4.3 Soundness

As mentioned, to match terms t and s we first call the Algorithm 1 with param-
eters Γ = ∅, P = {t ≈? s}, σ = id, V = Vars(t, s) and X = Vars(s). However,
since the parameters of ACMatch change after recursive calls, the proof of
soundness (Corollary 1) cannot be done directly by induction, and we must
instead prove first the Theorem 1 with generic parameters Γ, P , σ, V and X .
Once the Theorem 1 is proved, it is also immediate to adapt the algorithm to
solve nominal AC-equality checking and to prove its soundness (Corollary 2).

Theorem 1 (Soundness for Nice Inputs �). Let the pair (Γ1, σ1) an output of
ACMatch(Γ, P, σ, V,X) and suppose that (Γ, P, σ, V,X) is a nice input. If (Δ, δ)
is a solution to (Γ1,nil, σ1,X,X) then (Δ, δ) is a solution to (Γ, P, σ,X,X).

Corollary 1 (Soundness for AC-Matching �). Let the pair (Γ1, σ1) an out-
put of ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(s)). If (Δ, δ) is an instance of
(Γ1, σ1) that does not instantiate the variables in s, then (Δ, δ) is a solution to
(∅, {t ≈? s}, id,X,Vars(s)).

Corollary 2 (Soundness for AC-Equality Checking �). Let (Γ1, σ1) be an
output of ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(t, s)). If (Δ, δ) is an
instance of (Γ1, σ1) that does not instantiate the variables in t or s, then (Δ, δ)
is a solution to (∅, {t ≈? s}, id,X,Vars(t, s)).

Remark 5. An interpretation of Corollary 1 is that if (Δ, δ) is an AC-matching
instance to one of the outputs of ACMatch, then (Δ, δ) is an AC-matching solu-
tion to the original problem. Corollary 2 has a similar interpretation, replacing
AC-matching with AC-equality checking.

4.4 Completeness

Completeness of Algorithm 1 is given by the Corollary 3 and similarly to the
soundness proof, it is derived easily after proving the Theorem 2.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L24-L29
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L32-L36
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L38-L42

64 M. Ayala-Rincón et al.

Theorem 2 (Completeness for Nice Inputs �). Let (Γ, P, σ, V,X) be a nice
input. Suppose that (Δ, δ) is a solution to (Γ, P, σ,X,X), that δ ⊆ V and that
Vars(Δ) ⊆ V . Then, there exists (Γ1, σ1) ∈ ACMatch(Γ, P, σ, V,X) such that
(Δ, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables in X .

Corollary 3 (Completeness for AC-Matching �). Suppose that (Δ, δ) is a
solution to (∅, {t ≈? s}, id,X,Vars(s)), that δ ⊆ V and that Vars(Δ) ⊆ V .
Then, there exists (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(s)) such that
(Δ, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables of s.

Corollary 4 (Completeness for AC-equality Checking �). Suppose (Δ, δ) is
a solution to (∅, {t ≈? s}, id,X,Vars(t, s)) satisfying δ ⊆ V and Vars(Δ) ⊆ V .
Then, there exists (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(t, s)) such that
(Δ, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables of t or s.

Remark 6. An interpretation of Corollary 3 is that if (Δ, δ) is an AC-matching
solution to the initial problem, then (Δ, δ) is an AC-matching instance of one
of the outputs of ACMatch. Corollary 4 has a similar interpretation, replacing
AC-matching with AC-equality checking.

As was the case for first-order AC-unification (see [7]), the hypothesis δ ⊆ V
in the proof of completeness is merely a technicality that was put in order to
guarantee the new variables introduced by the algorithm in the AC-part do not
clash with the variables in dom(δ) or in the terms in im(δ). This mechanism
could be replaced by a different one that assures that the variables introduced
by the AC-part of ACMatch are indeed new. When going from the first-order
setting to the nominal setting, we go from having a unifier δ to a pair (Δ, δ) and
hence we must add the hypothesis Vars(Δ) ⊆ V .

Remark 7. (High-level description of how to remove hypotheses δ ⊆ V and
Vars(Δ) ⊆ V). The critical step to prove a variant of Corollary 3 with
V = Vars(t, s) and without the hypothesis δ ⊆ V and Vars(Δ) ⊆ V is to prove
that the outputs computed when we call ACMatch with input (Γ, P, σ, V,X)
“differ only by the name of the new variables” from the outputs computed when
we call ACMatch with input (Γ, P, σ, V ′,X). However, this cannot be proved
directly by induction because if V and V ′ differ and ACMatch enters in the AC-
part, the new variables introduced for each input may “differ only by a renaming”
and once we instantiate those variables, it may happen that the substitutions
computed so far (the third component in the input quintuple) will also “differ
only by the name of the new variables”. Similar to what was done in first-order
AC-unification, the solution is to prove the more general statement that if the
inputs (Γ, P, σ, V,X) and (Γ, P, σ′, V ′,X ′) “differ only by the name of the new
variables”, then the output of ACMatch with the first input “differ only by
the name of the new variables” from the output of ACMatch with the second
input.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L45-L52
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L54-L61
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L63-L70

Nominal AC-Matching 65

5 Towards a Nominal AC-Unification Algorithm

Stickel’s AC-unification algorithm relies on solving Diophantine equations where
new variables are used to represent arguments of AC operators. Using the same
approach to solve nominal AC-unification problems leads to non-termination in
cases where the same variable occurs as an argument of an AC operator multiple
times with different suspended permutations.

As an example, suppose that we are working under an empty context (i.e. Γ =
∅) and want to solve the equational constraint f(X,W) ≈? f(π · X,π · Y), with
X = ∅. Additionally, assume that we apply Stickel’s AC-unification algorithm
to this equational constraints and let Z1,W1, Y1,X1 be the name of the new
variables introduced (we choose these names deliberately to make the loop in
nominal AC-unification clearer). Then, 7 branches (more details in the extended
version) are generated and one of them is:

{X ≈? Y1 + X1,W ≈? Z1 + W1, π · X ≈? W1 + X1, π · Y ≈? Z1 + Y1}

After instantiating the variables we obtain

σ = {X �→ f(Y1,X1), W �→ f(Z1,W1), Y �→ f(π−1 · Z1, π
−1 · Y1)}

and one equational constraint remain: f(X1,W1) ≈? f(π ·X1, π ·Y1). Notice that
our final problem is essentially a renaming of our initial problem:

f(X,W) ≈? f(π · X,π · Y)
f(X1,W1) ≈? f(π · X1, π · Y1)

This problem does not arise in first-order AC-unification because, in the
corresponding first-order problem, we would not have two different permutations
(id and π in this case) suspended on the same variable (X in this case). Instead,
we would have the same variable X as an argument to both terms and eliminate
it. Finally, this problem also does not arise in nominal AC-matching because X
would be a protected variable. Hence, we would not compute the substitution
σ = {X �→ f(Y1,X1),W �→ W1, Y �→ π−1 · Y1}, we would instead discard
this branch. In future work, we will consider the alternative approach to AC-
unification proposed by Boudet, Contejean and Devie [8,10], which was used
to define AC higher-order pattern unification [9]. To our knowledge, this AC
unification approach has not been formalised yet. However, it has the advantage
of generating simpler Diophantine systems, which could simplify the task of
nominal AC-unification.

6 Conclusion and Future Work

We propose the first (to the best of our knowledge) nominal AC-matching algo-
rithm, together with proofs of its termination, soundness and completeness. All
proofs were formalised in the proof assistant PVS. As a byproduct, we also

66 M. Ayala-Rincón et al.

obtained a formalised nominal AC-equality checking algorithm. Nominal AC-
matching has applications for nominal AC-rewriting, being the first step towards
a nominal AC-unification algorithm.

Our formalisation extends the formalisation of first-order AC-unification by
Ayala-Rincón et al. [7] to nominal terms and uses the functions that deal with
freshness constraints from [6], extending them to deal with AC-function sym-
bols. Furthermore, by adding a parameter X for protected variables, it enables
both AC-matching and AC-equality checking, according to whether X is the set
of variables in the right-hand side of the problem or the set of variables in the
problem. The .pvs files have a combined size of 290 KB and contain the speci-
fication of functions and the statements of the theorems. The .prf files contain
the proofs of the theorems and have a combined size of 22 MB.

Future work will explore ways to define a nominal AC-unification algorithm,
avoiding the loop described in Sect. 5. We will consider alternative AC-unifi-
cation algorithms as a starting point [9,10] and explore the connection between
higher-order pattern unification and nominal unification (e.g., [13,23]).

A nominal AC-unification algorithm would have applications in logic pro-
gramming languages that employ the nominal paradigm, such as α-Prolog. A
second possible future work path is to use this formalisation to formalise a more
efficient nominal AC-matching algorithm. Finally, a third future work path would
be formalising matching/unification algorithms for different equational theories
and a fourth path would be investigating if/how nominal unification algorithms
can be used for term indexing.

Acknowledgments. Partially supported by the Austrian Science Fund (FWF)
Project P 35530, Brazilian FAP-DF Project DE 00193.00001175/2021-11, Brazilian
CNPq Project Universal 409003/2021-2, and Georgian Rustaveli National Science
Foundation Project FR-21-16725. First author was partially funded by a CNPq pro-
ductivity research grant 313290/2021-0.

References

1. Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
Nominal C-unification. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017.
LNCS, vol. 10855, pp. 235–251. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94460-9_14

2. Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
On solving nominal fixpoint equations. In: Dixon, C., Finger, M. (eds.) FroCoS
2017. LNCS (LNAI), vol. 10483, pp. 209–226. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66167-4_12

3. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho,
D., Oliveira, A.C.R.: A formalisation of nominal α-equivalence with A, C, and AC
function symbols. Theor. Comput. Sci. 781, 3–23 (2019). https://doi.org/10.1016/
j.tcs.2019.02.020

4. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Silva, G.F., Nantes-
Sobrinho, D.: Formalising nominal C-unification generalised with protected vari-
ables. Math. Struct. Comput. Sci. 31(3), 286–311 (2021). https://doi.org/10.1017/
S0960129521000050

https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1017/S0960129521000050

Nominal AC-Matching 67

5. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: On nominal syntax and
permutation fixed points. Log. Methods Comput. Sci. 16(1) (2020). https://doi.
org/10.23638/LMCS-16(1:19)2020

6. Ayala-Rincón, M., Fernández, M., Oliveira, A.C.R.: Completeness in PVS of a
nominal unification algorithm. In: Proceedings of the 10th Workshop on Logical
and Semantic Frameworks, with Applications, LSFA. ENTCS, vol. 323, pp. 57–74.
Elsevier (2015). https://doi.org/10.1016/j.entcs.2016.06.005

7. Ayala-Rincón, M., Fernández, M., Silva, G.F., Sobrinho, D.N.: A certified algorithm
for AC-unification. In: 7th International Conference on Formal Structures for Com-
putation and Deduction, FSCD. LIPIcs, vol. 228, pp. 8:1–8:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.FSCD.
2022.8

8. Boudet, A.: Competing for the AC-unification race. J. Autom. Reasoning 11(2),
185–212 (1993). https://doi.org/10.1007/BF00881905

9. Boudet, A., Contejean, E.: AC-unification of higher-order patterns. In: Smolka, G.
(ed.) CP 1997. LNCS, vol. 1330, pp. 267–281. Springer, Heidelberg (1997). https://
doi.org/10.1007/BFb0017445

10. Boudet, A., Contejean, E., Devie, H.: A new AC unification algorithm with an
algorithm for solving systems of diophantine equations. In: Proceedings of the
5th Annual Symposium on Logic in Computer Science, LICS, pp. 289–299. IEEE
Computer Society (1990). https://doi.org/10.1109/LICS.1990.113755

11. Calvès, C.F., Fernández, M.: Matching and alpha-equivalence check for nominal
terms. J. Comput. Syst. Sci. 76(5), 283–301 (2010). https://doi.org/10.1016/j.jcss.
2009.10.003

12. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theor.
Comput. Sci. 403(2–3), 285–306 (2008). https://doi.org/10.1016/j.tcs.2008.05.012

13. Cheney, J.: Relating nominal and higher-order pattern unification. In: Proceedings
of the 19th International Workshop on Unification, UNIF, pp. 104–119 (2005)

14. Clausen, M., Fortenbacher, A.: Efficient solution of linear Diophantine equa-
tions. J. Sym. Comput. 8(1–2), 201–216 (1989). https://doi.org/10.1016/S0747-
7171(89)80025-2

15. Contejean, E.: A certified AC matching algorithm. In: van Oostrom, V. (ed.) RTA
2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-25979-4_5

16. Eker, S.: Associative-commutative rewriting on large terms. In: Nieuwenhuis, R.
(ed.) RTA 2003. LNCS, vol. 2706, pp. 14–29. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-44881-0_3

17. Fages, F.: Associative-commutative unification. In: Shostak, R.E. (ed.) CADE
1984. LNCS, vol. 170, pp. 194–208. Springer, New York (1984). https://doi.org/
10.1007/978-0-387-34768-4_12

18. Fages, F.: Associative-commutative unification. J. Sym. Comput. 3(3), 257–275
(1987). https://doi.org/10.1016/S0747-7171(87)80004-4

19. Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205(6), 917–965
(2007). https://doi.org/10.1016/j.ic.2006.12.002

20. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects Comput. 13(3), 341–363 (2002). https://doi.org/10.1007/
s001650200016

21. Kumar, R., Norrish, M.: (Nominal) unification by recursive descent with triangular
substitutions. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172,
pp. 51–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-
5_6

https://doi.org/10.23638/LMCS-16(1:19)2020
https://doi.org/10.23638/LMCS-16(1:19)2020
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.4230/LIPIcs.FSCD.2022.8
https://doi.org/10.4230/LIPIcs.FSCD.2022.8
https://doi.org/10.1007/BF00881905
https://doi.org/10.1007/BFb0017445
https://doi.org/10.1007/BFb0017445
https://doi.org/10.1109/LICS.1990.113755
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1016/j.tcs.2008.05.012
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1007/978-3-540-25979-4_5
https://doi.org/10.1007/978-3-540-25979-4_5
https://doi.org/10.1007/3-540-44881-0_3
https://doi.org/10.1007/3-540-44881-0_3
https://doi.org/10.1007/978-0-387-34768-4_12
https://doi.org/10.1007/978-0-387-34768-4_12
https://doi.org/10.1016/S0747-7171(87)80004-4
https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/978-3-642-14052-5_6
https://doi.org/10.1007/978-3-642-14052-5_6

68 M. Ayala-Rincón et al.

22. Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Proceedings of
the 21st International Conference on Rewriting Techniques and Applications, RTA.
LIPIcs, vol. 6, pp. 209–226. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2010). https://doi.org/10.4230/LIPIcs.RTA.2010.209

23. Levy, J., Villaret, M.: Nominal unification from a higher-order perspective. ACM
Trans. Comput. Log. 13(2), 10:1–10:31 (2012). https://doi.org/10.1145/2159531.
2159532

24. Owre, S., Shankar, N.: The formal semantics of PVS. Technical report. 97-2R, SRI
International Computer Science Laboratory, Menlo Park CA 94025 USA (1997,
revised 1999)

25. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, Cambridge (2013)

26. Pottier, F.: An overview of CαML. In: Benton, N., Leroy, X. (eds.) Proceedings
of the ACM-SIGPLAN Workshop on ML, ML. Electronic Notes in Theoretical
Computer Science, vol. 148, pp. 27–52. Elsevier (2005). https://doi.org/10.1016/j.
entcs.2005.11.039

27. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of
higher order expressions with recursive let. In: Hermenegildo, M.V., Lopez-Garcia,
P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 328–344. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63139-4_19

28. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M., Kutz, Y.D.K.: Nominal
unification and matching of higher order expressions with recursive let. Fundam.
Informaticae 185(3), 247–283 (2022). https://doi.org/10.3233/FI-222110

29. Shinwell, M.R., Pitts, A.M., Gabbay, M.: FreshML: programming with binders
made simple. In: Proceedings of the 8th ACM SIGPLAN International Conference
on Functional Programming, ICFP, pp. 263–274. ACM (2003). https://doi.org/10.
1145/944705.944729

30. Stickel, M.E.: A complete unification algorithm for associative-commutative func-
tions. In: Advance Papers of the Fourth International Joint Conference on Artificial
Intelligence, IJCAI, pp. 71–76 (1975). https://ijcai.org/Proceedings/75/Papers/
011.pdf

31. Stickel, M.E.: A unification algorithm for associative-commutative functions. J.
ACM 28(3), 423–434 (1981). https://doi.org/10.1145/322261.322262

32. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356
(2008). https://doi.org/10.1007/s10817-008-9097-2

33. Urban, C.: Nominal unification revisited. In: Proceedings of the 24th International
Workshop on Unification, UNIF. EPTCS, vol. 42, pp. 1–11 (2010). https://doi.
org/10.4204/EPTCS.42.1

34. Urban, C., Pitts, A.M., Gabbay, M.: Nominal unification. Theor. Comput. Sci.
323(1–3), 473–497 (2004). https://doi.org/10.1016/j.tcs.2004.06.016

https://doi.org/10.4230/LIPIcs.RTA.2010.209
https://doi.org/10.1145/2159531.2159532
https://doi.org/10.1145/2159531.2159532
https://doi.org/10.1016/j.entcs.2005.11.039
https://doi.org/10.1016/j.entcs.2005.11.039
https://doi.org/10.1007/978-3-319-63139-4_19
https://doi.org/10.3233/FI-222110
https://doi.org/10.1145/944705.944729
https://doi.org/10.1145/944705.944729
https://ijcai.org/Proceedings/75/Papers/011.pdf
https://ijcai.org/Proceedings/75/Papers/011.pdf
https://doi.org/10.1145/322261.322262
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.4204/EPTCS.42.1
https://doi.org/10.4204/EPTCS.42.1
https://doi.org/10.1016/j.tcs.2004.06.016

Category Theory in Isabelle/HOL
as a Basis for Meta-logical Investigation

Jonas Bayer1(B), Alexey Gonus1(B), Christoph Benzmüller2,1,
and Dana S. Scott3,4

1 Freie Universität Berlin, Berlin, Germany
jonas.bayer@fu-berlin.de

2 Otto-Friedrich-Universität Bamberg, Bamberg, Germany
3 University of California, Berkeley, CA, USA

4 Topos Institute, Berkeley, CA, USA

Abstract. This paper presents meta-logical investigations based on cat-
egory theory using the proof assistant Isabelle/HOL. We demonstrate the
potential of a free logic based shallow semantic embedding of category the-
ory by providing a formalization of the notion of elementary topoi. Addi-
tionally, we formalize symmetrical monoidal closed categories express-
ing the denotational semantic model of intuitionistic multiplicative linear
logic. Next to these meta-logical-investigations, we contribute to build-
ing an Isabelle category theory library, with a focus on ease of use in
the formalization beyond category theory itself. This work paves the way
for future formalizations based on category theory and demonstrates the
power of automated reasoning in investigating meta-logical questions.

Keywords: Formalization of mathematics · Category theory · Proof
assistants · Formal methods · Shallow embeddings

1 Introduction

Category theory is a very abstract and general theory of mathematical struc-
tures [15] that next to being used for organizing mathematical theories can also
serve as an axiomatic basis of mathematics. It has a myriad of use cases in fields
ranging from topology and algebra to the foundations of mathematics.

A good understanding of categorical notions and methods can provide a
mathematician with a generic framework to unify and describe concepts. The
results obtained on a category theoretical level might later be applied to partic-
ular mathematical objects collected under a specific categorical setting. By this
approach, many findings and ideas in one theory of mathematical structures can
possibly be translated to the other.

Formalizing Category Theory. Given its special standing in mathematics it is
only natural to ask for a formalization of category theory, hoping that the
benefits of the categorical perspective will carry over to formal mathematics.

J. Bayer and A. Gonus—Contributed equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 69–83, 2023.
https://doi.org/10.1007/978-3-031-42753-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_5&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_5

70 J. Bayer et al.

Concretely, one would not only wish to be able to formally use certain theorems
from category theory but also utilize its power in the organization of formal
mathematical libraries.

Yet, the formalization of category theory poses significant challenges. Many
experts consider first-order logic and the Zermelo-Fraenkel axioms of set theory
as a suitable foundation for mathematics. However, e.g., topologists often work
with the (large) category of topological spaces, which cannot be easily repre-
sented within this system of axioms, since large categories in standard formal-
izations within such a system are (obviously) not sets. It is thus not immediately
clear how category theory should best be done formally.

Next to this, significant challenges in the formalization of category theory
stem from the double position that it carries in mathematics. Ideally, a formal-
ization of category theory would not only lend itself to use cases in algebra but
also enable meta-logical investigations that use categories as a foundation of
mathematics. We refer to [8,16,17] for a deeper discussion on category-theoretic
versus set-theoretic foundations of mathematics.

Meta-logical Investigations. In this paper we intend to demonstrate the potential
of a (shallow semantical embeddings based) formalization of category theory for
the investigation of meta-logical questions. This will be done using the proof
assistant Isabelle/HOL which is naturally suited for such work due to its strong
support for automation.

Concretely, we give a formalization of the notion of elementary topoi that
carry an important role in fundamental mathematics. We build up category
theoretical concepts in order to eventually provide an elegant definition of a
topos. Moreover, we formalize all necessary concepts allowing for future work
that could implement the internal language of a topos.

As a second meta-logical result, we present a formalization of linear logic
(LL). Linear logic carries the idea of treating mathematical “truths” as infor-
mation resources and has found a large number of theoretical and practical
applications, ranging from computer science to linguistics. Categories come with
the inherent property of representing denotational semantical models for dif-
ferent logics. We develop symmetrical monoidal closed categories that express
the denotational semantical model of intuitionistic multiplicative linear logic
(IMLL).

In addition, at an orthogonal, methodological level, we study the scalability
of an approach to universal meta-logical reasoning [7], that is based on shallow
semantical embeddings of (layers of) object logics in classical higher-order logic,
aka Church’s simple type theory.

Further Contributions. Next to our main focus on meta-logical investigation, we
aim at contributing to the build up of a category theory library in Isabelle. At
the time of writing, we are not aware of cases where the existing formalizations
in the Isabelle Archive of Formal Proofs [13,21,26,30] have been used for the
purpose of verification in other fields of mathematics. Our work cannot (yet)
compete with the extent of concepts verified in the aforementioned AFP entries.

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 71

However, we pay a lot of attention to closely mimicking mathematical notation,
cleanly organizing our theories, and giving examples of how to use the concepts
we provide. Thereby, we hope to facilitate the use of category theoretical notions
in future formalizations in other fields, too. Moreover, the paper is embedded
in a larger project context, namely the exploration of the Benzmüller and Scott
[6] approach to the axiomatic modeling (in the tradition also of the early work
of Saunders Mac Lane, although with more emphasis on Dana Scott, Freyd
an Scedrov works) of category theory based on free-logic using the LogiKEy
meta-logical/logico-pluralistic KR&R [4] methodology. It was important for us
to study the scalability, advantages and disadvantages of this distinguished app-
roach. In the end, we obtain a high degree of automation and a high level of
abstraction.

2 Category Theory from a Free Logic Perspective

Our work exploits a shallow semantic embedding of free logic in Isabelle/HOL
(or, more generally, in Church’s simple type theory [3] aka. classical higher-order
logic HOL), that is subsequently used for defining a notion of category theory,
which then provides the basis for further formalization studies on top of it.

2.1 Free Logic and Its SSE into Isabelle/HOL

Free Logic (FL) is a logic that comes with less existential assumptions than
its classical counterpart. Terms in free logic might denote so-called non-existent
objects, i.e., terms that refer to objects outside the domain of discourse [24]. Exis-
tential and universal quantifiers are assumed to range over the existent terms,
i.e., those that denote objects within the domain of discourse. Such a logic is
particularly interesting because it helps to reason about partiality.

Therefore, free higher-order logic (FHOL) is ideal for an axiomatization of
category theory since the composition of morphisms in a category is a partial
function. In order to distinguish existent and non-existent objects we use the dual
domain approach, i.e., we consider a domain D of all objects which has a subset E
of objects that are considered to be the existent objects. Alternatively, one could
consider two disjoint sets for the non-existent and existent objects. We will follow
the first approach as has been previously discussed by Cocchiarella [22] and
also in the early work of Scott [28]. The issue of properly defining free (higher-
order) logic within the simple theory of types has been addressed in the works of
Schütte [27] and Farmer [9] whose approach we follow with some modifications.
It should also be noted that free logic could be implemented with exactly one
undefined value (Benzmüller and Scott have also shown that before [5]). Here
we decided to go without this additional requirement (of having one undefined
value) and to focus more on the “existence” part of the category theory without
carrying about “non-existing” area.

72 J. Bayer et al.

Shallow Semantical Embedding. In order to reason formally and interactively
within free logics without building a new theorem prover from scratch, a transla-
tion of logics is necessary. In Isabelle/HOL one can implement alike using a shal-
low semantical embedding (SSE), which is based on logic translation approaches
as discussed by Gabbay, Nonnengart, Ohlbach and de Rijke [11,25] for translat-
ing e.g. propositional modal logics to first-order logic. Exploiting the expressivity
and compositionality of the simply typed λ-calculus in HOL, the SSE approach
encodes such logic translations directly in HOL itself, which makes external
translation mechanisms superfluous. This HOL-internal translation approach
has been successfully extended for various quantified non-classicals logics and
applied, under the name universal meta-logical reasoning [7], amongst others, to
encode free first-order logic [5] in Isabelle/HOL. This approach was then further
extended to embed FHOL in HOL [18] which, in this paper, we will rely on to
implement our higher-level categorical constructions.

In SSE, the semantics of the language of interest, e.g. (positive) FHOL1 is
mapped to the corresponding syntax constructs of the target language. It may be
viewed as a translation between the logics, where only semantical differences are
targeted, for example, these could be the existential features of free semantics.
The SSE approach showed itself as a readily available way for implementing the
translation of a variety of nonclassical logics. It also enables the use of automation
from the target system which is not as well supported with a deep semantical
embedding.

A shallow semantic embedding is to be contrasted with a deep semantic
embedding, in which the syntax of the target language is represented using an
inductive data structure (e.g., following the BNF of the language) and the seman-
tics of a formula is evaluated by recursively traversing the data structure. Shal-
low semantic embeddings, by contrast, define the syntactic elements of the target
logic while reusing as much of the infrastructure of the meta-logic as possible;
cf. also [14]. In particular, the degree of proof automation that can be achieved
is much better in the case of shallow semantic embeddings, since e.g. inductive
proofs on the structure of the embedded logic are omitted.

Formalization in Isabelle/HOL. Concretely, we represent the domain of objects
D through a type α in Isabelle/HOL. The notion of existence is then given
through a predicate E : α → bool. Therefore, every function will be total when
viewed on the level of Isabelle terms. However, from the free logic perspective
non-partial maps can still be observed as such since they are modelled as func-
tions that map some objects to “non-existent” objects outside E.

At the level of free logic, one can immediately define several notions of equal-
ity, which are used in the definition of categories and reappear in the course of
the development of the formalizations.

Definition 1 (Equalities with Existence). Given x, y ∈ D define three
notions of equality as follows:
1 Positive FHOL refers to a semantics for FHOL where formulas built from non-

existing objects are allowed to be true [18].

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 73

1. We write x � y if and only if x = y ∧ Ex ∧ Ey (Existing Identity).
2. We also write x ∼= y if and only if (Ex ∨ Ey) −→ x = y (Kleene Equality).
3. Finally, we write x ≥ y precisely when Ex −→ x = y (Directed equality).

2.2 Formalization of Axiomatic Category Theory

In Isabelle/HOL, concepts from category theory have been formalized as early
as 2005 [26]. The original formalization could be improved and extended signif-
icantly as indicated by subsequent research [13,21,30].

In addition to these, Benzmüller and Scott presented an alternative app-
roach for formalizing category theory in Isabelle/HOL [6], which is based on an
axiom system in free logic originally proposed by Scott [29]. This work models
on one-sorted categories, i.e., it only refers to morphisms without mentioning
objects. This approach was first expanded upon by Tiemens who defined inverse
categories in order to generalize so-called modeloids [31].

Categories. Our formalization of categories follows the approach by Benzmüller
and Scott [6] with slight modifications2. Firstly, when declaring the categorical
notions of domain, codomain and composition, polymorphic types are employed
which allow the use of higher-level constructions later. Secondly, an additional
axiom is added that states the existence of a “non-existent object”. This means
that D is required to be a strict superset of E which is advantageous in the
definition of certain concepts as it enables referring to an explicit non-existent
element. On the implementation side, we represent categories through an Isabelle
locale.

Functors. Functors are the morphisms between categories. The next definition
is slightly adapted from Freyd and Scedrov’s textbook [10]:3

Definition 2 (Functor). A functor F between two categories C and D is a
function F : C −→ D which satisfies the following axioms: (1) Ex −→ E(F (x)),
(2) ¬Ex −→ ¬E(F (x)), (3) F(domC(x)) ∼= domD(F(x)), (4) F(codC(x)) ∼=
codD(F(x)), (5) F(x ·C y) ≥ F(x) ·D F(y).

Natural Transformations. Morphisms between functors are called natural trans-
formations. There can be two different formulations, resp. formalizations, of this
notion, and both are used in our work. The first definition is taken from [23] (the
one which is directly based on the idea of one-sorted categories and is heavily

2 It should be noted that all categories considered in this paper are one-sorted cat-
egories and, therefore, all free variables appearing in the definitions refer to “mor-
phisms”, although, they might be seen as “objects” in a usual sense when they satisfy
specific (identity) predicates.

3 The first and second axioms result from the totality of functions in Isabelle/HOL
and are used for the separation of existing and non-existing morphisms. This part
of the paper, where we have to deal with the proper preservation of existence, has
been one of the main difficulties in the subsequent formulation of the concepts.

74 J. Bayer et al.

exploited in this formalization) and modified according to the equalities that
were introduced earlier:

Definition 3 (Natural Transformation). A natural transformation η
between the functors F: C −→ D and G: C −→ D is a function η : C −→ D
such that: (1) Ex −→ E(η(x)), (2) ¬Ex −→ ¬E(η(x)), (3) domD(η(x)) ∼=
domD(F(x)), (4) codD(η(x)) ∼= codD(F(x)), (5) Ex · y −→ η(x) ·D F(y) �
G(x) ·D η(y).

The monoidal category characterization is partly based on the notion of
inverse natural transformation, which is more naturally described with the fol-
lowing second definition:

Definition 4 (Natural Transformation through Identities). A natural
transformation η : F ⇒ G between the functors F: C −→ D and G: C −→ D
assigns to every object A a morphism η(A) : F(A) −→ G(A), such that for any
morphism x : A −→ B in C G(x) ·D η(domC(x)) ∼= η(codC(x)) ·D F(x).

This second definition can be (and was) extended to the former via a specifi-
cation of how this function operates in the more general case for all morphisms,
i.e. for x : A −→ B we have η(x) = G(x) ·D η(domC(x)). Starting with these
definitions we proceed further to define natural isomorphisms and inverse natu-
ral transformations. The later concept might be an example of a module system
advantage as it is easily defined as a locale built on top of the natural isomor-
phism locale with the specification of the inverse mapping. Invoking Isabelle’s
unfold locales method during proving then allows to split the conditions into
simpler parts.

3 Formalization of Elementary Topoi

In order to perform the intended meta-logical investigations it is necessary to
define additional structures on top of categories. In particular, we formalize
notions like categories with binary (co)products, exponential categories and
cartesian closed categories. Our implementation makes heavy use of Isabelle’s
locales that allow to elegantly model the layered character of these definitions. To
validate the correctness of the implementation we also formalize certain exam-
ples including the category of categories and the category of sets. The Isabelle
code of all concepts that will be presented in this section can be found in a
gitlab repository.4 Our formalization of elementary topoi generally follows the
book “Elementary categories, elementary topoi” by Colin McLarty [19].

Formalization of Elementary Notions. To build up the necessary constructions,
we first formalize various elementary structures that can be defined within a cat-
egory. This includes initial and final objects, (co)products, equalizers, a generic
implementation of limits, monomorphisms and epimorphisms, and pullbacks.
4 https://permalink.jonasbayer.de/bachelorthesis.

https://permalink.jonasbayer.de/bachelorthesis

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 75

Not only do we define these notions, but we also formalize the elementary equiv-
alences and relations between them. Each of these categorical structures received
their own Isabelle theory in order to increase clarity, with definitions made in a
multi-layered style and custom notation introduced for ease of use.

As an example, consider the beginning of the theory on pullbacks shown
in Fig. 1. There, we first introduce the preliminary notions of is corner and
is pullback before defining pullback diagrams. The latter is given in custom
syntax that allows a presentation in diagram format. Although such syntax can
become cluttered during proving and therefore is not the most useful represen-
tation in that context, it still allows for a very readable presentation of results
within the theorem prover. This approach is continued throughout the formaliza-
tion, further examples include product diagrams or even commutative diagrams
with multiple squares.

Fig. 1. The implementation of pullbacks in Isabelle

Next to these constructions, we also give an implementation of several basic
categories. Most notably, this includes the category of sets, the category of cat-
egories and the poset category. All these examples are formalized following the
same scheme of first defining a custom type which will correspond to the type α
in the category definition. Consequently, the existence predicate E followed by
definitions for (co)domain and composition can be declared. In all three cases,
the instance proof can essentially be handled by Isabelle’s automatic tools. When
using Isabelle2021 (February 2021), which is the version this development started
with, occasional help is only necessary for proving associativity of composition.
In Isabelle2022 even this part can be tackled by automated tools within less than
5 s when employed on an average personal computer.

Categories with Additional Structure. Refering back to the elementary structures
defined previously, we implement categories that have additional structures. We

76 J. Bayer et al.

start with categories that have binary products and/or binary coproducts. To
validate these definitions, it is also formalized that the poset category has binary
products and coproducts when the poset is a lattice. In this case, products
correspond to meets and coproducts correspond to joins.

Having defined binary products one can continue to declare exponential
objects and exponential evaluation maps in a category which we collect into
an Isabelle record. Exponentials are then used to specify cartesian closed cat-
egories after having defined cartesian categories. For the precise mathematical
definitions, we refer the reader to McLarty [19] whose presentation we follow
closely.

Formalization of Topoi. With all these preliminary notions at hand, the defini-
tion of a topos can finally be formalized (Fig. 2):

Fig. 2. The implementation of an elementary topos in Isabelle

A topos is a special case of a cartesian closed category that also has a so-
called subobject classifier and a designated object t representing the boolean
value true. Here we make use of the aforementioned custom syntax to present
the pullback diagram in a very intuitive form. Moreover, we formalize that in
a topos all monomorphisms are equalizers, which does not hold in arbitrary
categories.

To conclude, the formalization we give provides a basis for further meta-
logical investigations related to category theory. In particular, an interesting
continuation of this work would be the implementation of the internal language
of an elementary topos including topos axioms.

4 Formalization of the Categorical Model of IMLL

Another direction that has been explored in the proposed approach to cate-
gorical formalizations is the one laying down a translation layer between the
HOL/FHOL and intuitionistic multiplicative linear logic (IMLL) semantics. The
motivation behind the IMLL formalization (or its semantics, to be more precise)
was to investigate practical capabilities of Isabelle/HOL in the field of meta-
logical questions, i.e., to derive tools that would formulate IMLL theorems and

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 77

proofs through its encoded semantical language that talk about morphisms. It is
important to emphasize the word “practical” in this context, since it is of course
generally possible to model a wide range of constructions with the help of a proof
assistant such as Isabelle/HOL. However, it is not a priori clear if this can be
done with a reasonable effort with respect to the logic “translations” as exploited
in our SSE approach. In this paper we have chosen (a fragment of) linear logic
as our object of study, since it has a plethora of applications in various domains.
The Isabelle implementation and certification of all constructions presented in
this section (which make use of the “locales” feature of Isabelle/HOL) can be
found in a GitHub repository.5

4.1 IMLL and Its Categorical Model

Linear Logic (LL) was proposed by Girard in 1987 [12] as a refinement of classical
as well as intuitionistic logic. Within LL the two different notions of conjunction
and disjunction are introduced together, i.e., multiplicative and additive types of
connectives. They behave distinctly in derivations (through inference rules), but
their intrinsic difference can be revealed with a computational interpretation of
proofs [2]. Within this work we deal with a particular fragment of LL, which
is intuitionistic multiplicative linear logic (IMLL), by restricting the syntax and
adapting inference rules.

The categorical denotational model of IMLL is built around the notion of a
monoidal category.6 The key part of a semantical translation is a function [[·]]
that assigns some categorical construct to a proof-theoretical piece. Moreover,
the construction of categories using only one sort of objects, i.e., morphisms,
determines our main interest in modeling proofs (rather than formulas) with
categorical denotational semantics. In order to briefly present the general idea,
one assigns a morphism f : [[A]] −→ [[B]] to a proof of a sequent A
 B.7 Here,
[[A]] means an identity morphism. The final goal within this part of the work is to
translate all the inference rules we have in IMLL to theorems about morphisms
in a special category, i.e., symmetrical monoidal closed category (SMCC), and to
show practical feasibility of these meta-logical translations.

4.2 Isabelle/HOL Formalization of the IMLL Categorical Model

To fully represent IMLL connectives, such as linear intuitionistic implication and
multiplicative conjunction, we need to incorporate their corresponding inference
rules into our categorical setting. These rules describe the connectives’ behavior
as well as their structural and non-logical inference rules. To do so, we must make
use of monoidal categories, braidings and symmetries, and closed structures.
5 https://github.com/HaskDev0/Linear-Logic-Cat-semantics.
6 For more information, see Mellies [20]. It provides a thorough description of the topic

as well as lists all the inference rules for IMLL that are formalized and proved within
our framework.

7 All the translations of proofs are carried out under proof-theoretic normalization
invariance.

https://github.com/HaskDev0/Linear-Logic-Cat-semantics

78 J. Bayer et al.

The shift towards monoidal categories for modeling IMLL semantics is cru-
cial due to the necessity to move away from diagonal maps in categories which
allow the duplication of the objects, or, equivalently, resources [1].8 Moreover,
the locales environments of Isabelle/HOL are used to develop formalizations of
translated IMLL concepts for their convenience of presentation and of working
with algebraic theories.

Definition 5 (Monoidal Category). A monoidal category C is a category
C equipped with: (1) a bifunctor ⊗ : C × C −→ C, (2) a natural isomorphism9

αA,B,C : (A ⊗ B) ⊗ C −→ A ⊗ (B ⊗ C), (3) a special identity morphism, or
object in our meaning, e, which is a unit, and (4) two natural isomorphisms
e⊗A −→ A and ρA : A⊗e −→ A, which satisfy the triangular identity (C.Id A)∧
(C.Id B) −→ (A⊗λB) ·αA,e,B � ρA ⊗B and the pentagonal identity (C.Id A)∧
(C.Id B) ∧ (C.Id C) ∧ (C.Id D) −→ (A ⊗ αB,C,D) · (αA,B⊗C,D · αA,B,C ⊗ D) �
αA,B,C⊗D · αA⊗B,C,D.10

Here it is essential to understand that the natural isomorphism α acts
between functors (•⊗•)⊗• : C ×C ×C −→ C and •⊗ (•⊗•) : C ×C ×C −→ C of
domain C × C × C and codomains C. There exist similar interpretations for the
other two isomorphisms occurring in the definition.

Definition 6 (Braided Monoidal Category). A braided monoidal category
is a monoidal category C equipped with a braiding, i.e. a natural isomorphism
γA,B : A ⊗ B −→ B ⊗ A, making two hexagonal axioms hold: (1) (C.Id A) ∧
(C.Id B)∧(C.Id C) −→ αB,C,A ·(γA,B⊗C ·αA,B,C) � (B⊗γA,C)·(αB,A,C ·(γA,B⊗
C)), and (2) (C.Id A) ∧ (C.Id B) ∧ (C.Id C) −→ α−1

C,A,B · (γA⊗B,C · α−1
A,B,C) �

(γA,C ⊗ B) · (α−1
A,C,B · (A ⊗ γB,C)).

Definition 7 (Symmetric Monoidal Category). A symmetric monoidal
category is a braided monoidal category C, whose braiding is a symmetry, i.e.
(C.Id A) ∧ (C.Id B) −→ γA,B � γ−1

B,A.

These notions already allow one to reason about the multiplicative conjunc-
tion and exchange inference rules in IMLL, and the final step is to properly
describe closed structures. There are three equivalent definitions of these terms,
and the way to define one chooses depends on the goals and the frame one works
in due to the ease of use in some cases. We will give two variations here and
we will provide some comments on their connection. The first one was chosen
since it will directly be used in further developments of IMLL semantics, and
the second one will deliver a clearer view of the notion and the understanding
of why we introduced an evaluation morphism eval later (see Definition 10) to
describe the translation of formulas to categorical constructs.

8 The definitions that are needed to describe the model of IMLL are taken from Mellies
[20] and adopted to our framework.

9 A family of natural isomorphisms.
10 C.Id denotes an identity morphism predicate.

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 79

Definition 8 (Left Closed Monoidal Category). A left monoidal closed
category is a monoidal category C endowed with a left closed structure, i.e. with
a data of: (1) a bifunctor �: Cop × C −→ C, and (2) a bijection C(A ⊗ B,C) ∼=b

C(B,A � C), which is natural in A,B and C.11

The second point in the definition should be understood as the natural trans-
formation between the functors C(⊗ex ,) and C(, �) which act between
categories Cop×Cop×C and Set. Therefore, the encoding of Hom-functors should
have been encoded first, which would have added additional layer of complex-
ity. Instead, we decided to translate it to the language of sets directly with the
help of two function Φ and Ψ acting as inverses of each other and having more
inputs than just one, namely, the morphism itself. The functions, thus, have the
following types:

Φ::′a ⇒′ a ⇒′ a ⇒′ a and Ψ ::′a ⇒′ a ⇒′ a ⇒′ a.

The reason we are using two functions describing the bijection lies in the
fact that in the Isabelle/HOL system functions are total, but in our framework
we are working with the so-called existent morphisms which constitute only a
subdomain of some type. Moreover, two additional arguments need to be speci-
fied when we want to apply the mentioned bijection, in order to know the exact
structure of the domain of the input morphism for the bijection going right in
the Definition 8 (2) and the same for the codomain of the input morphism for
the bijection going left. In other words, given some morphism f , and a necessity
to check whether the domain of f is exactly A ⊗ B, we cannot merely apply the
dom function to find the hidden parts. Therefore, this additional information
recovers the missing data. The same reasoning clarifies the equivalent features
of Ψ . This encoding process also reveals the actual compressed information that
is needed to talk about IMLL semantical constructs within Isabelle/HOL. There-
fore, formalization of this definition in Isabelle/HOL looks as follows:

Definition 9 (Left Closed Monoidal Category in Isabelle/HOL). A
left monoidal closed category is a monoidal category C endowed with a bifunctor
�: Cop × C −→ C and functions Φ and Ψ , that satisfy:
(1) (f : A⊗B → C)∧(C.IdEx A)∧(C.IdEx B) −→ Φ(A,B, f) : B → (A � C),
(2) (g : B → A � C) ∧ (C.IdEx A) ∧ (C.IdEx B) −→ Ψ(A,C, g) : A ⊗ B → C,
(3) (f : A ⊗ B → C) ∧ (C.IdEx A) ∧ (C.IdEx B) −→ Ψ(A,C,Φ(A,B, f)) � f ,
(4) (g : B → A � C) ∧ (C.IdEx A) ∧ (C.IdEx B) −→ Φ(A,B, Ψ(A,C, g)) � g,

and the requirement for Ψ for being natural in f :
(5) (f : A ⊗ B → C) ∧ (C.IdEx A) ∧ (C.IdEx B) ∧ (cod x = A) ∧ (cod y = B) ∧

(dom z = C) −→ Φ(dom x, dom y, z ·(f ·(x⊗y))) � (z � y) ·(Φ(A,B, f) ·y).

We have proved (in our formalization) that this function Ψ is a natural trans-
formation. As was pointed out above, the other definition of left closed structure
is the following:
11 The sign ∼=b here means the bijection between the sets and we introduced it in order

to distinguish it from the Kleene duality.

80 J. Bayer et al.

Definition 10 (Left Closed Structure). A left closed structure in a
monoidal category C is composed of: (1) an identity morphism A � B, and
(2) a left evaluation morphism evalA,B : A⊗ (A � B) −→ B, for every identity
morphisms A and B. The evalA,B morphism satisfies the following universal
property: ∀f : A ⊗ X −→ B.(∃!h : X −→ A � B) ∧ (f � evalA,B · (A ⊗ h)).12

The evaluation morphism eval is a translation of the elimination rule for �
if the proof system is designed with it instead of the left rule for �. The former
definition entails the latter for a left closed structure (this is formalized as a
theorem in Isabelle/HOL). In the same way, with slight modifications, one may
define the right closed structure.

At this point we are able to describe the categorical model of IMLL.

Definition 11 (Symmetric Monoidal Closed Category). A symmetric
monoidal closed category (SMCC) is a monoidal category C equipped with a sym-
metry γ and a left closed structure �.

We proved in our formalization that in any such monoidal category there is
also a right closed structure as well, which confirms theoretical expectations. To
demonstrate this, define the functions • �r • = • � •, Φr(f) = Φ(f ·γA,B) and
Ψr(g) = Ψ(g) ·γB,A for morphisms f : B⊗A −→ C and g : B −→ A � C, which
would exhibit the desired properties.13 Provided that we described through
locales tensor product T, left closed structure Impl, natural isomorphisms α, μ, ρ,
natural isomorphisms between Hom-functors via Φ, Ψ and a symmetry γ, the
corresponding encoding of a SMCC inside Isabelle/HOL would look as in Fig. 3:

At this point we are ready to give the formalization of IMLL formulas in
SMCC. For that, we start with the discussion of the well-known principle in
intuitionistic logic, which in particular holds in IMLL, that every formula A
implies its double negation ¬¬A. For this purpose there should be some formula
⊥, which helps to define the negation of a formula as A � ⊥ [20]. Thus, the
mentioned principle translates to the fact in SMCC as:

Proposition 1 (Existence of Double Negation Morphism). There is
always a morphism δA : A −→ (A � ⊥) � ⊥ for every identity A in any
SMCC.

Note that this is not a new result, but a proposition that we used to test our
encoding with and which we certified within the Isabelle/HOL SSE framework.

It is worth mentioning that in a sequent style proof there is no difference how
we derive the formula (A2 � ⊥) � ⊥ given a formula A1 and a derivation π
of A1
 A2. In other words, we could have derived to it via double negating A1

and then applying the derivation π translated for double negation, or we double
negate A2. In SMCC this fact corresponds to:
12 Here, we exploited a new abbreviation ∃!h.P (h) for unique existence, which means

∃h.(P (h) ∧ (∀t.P (t) → t = h)).
13 That is exactly the place where we use in the encoding those additional first two

parameters of Φ and Ψ to specify the morphisms.

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 81

Fig. 3. The implementation of a symmetric monoidal closed category

Proposition 2 (Double Negation as a Natural Isomorphism). In every
SMCC the constructed morphism δA is, in fact, a natural transformation.

Propositions 1, 2 already quite firmly indicate the possibility of applying the
chosen categorical axiomatization and formalization approach to logical ques-
tions expressed in a denotational (categorical) framework. As long as everything
above is formalized in Isabelle/HOL, it is now possible to translate all the infer-
ence rules of IMLL as theorems about the morphisms in SMCC. For this step one
has to be slightly creative in terms of finding the most appropriate translations,
i.e., relying only on automated tools for this step would be a very naive way,
leading to an explosion of “search space”, while human interference with “rea-
sonable” assumptions and ideas solves the problem of finding suitable morphisms
that represent specific IMLL sequents. The task was successfully accomplished,
as can be seen in the full encoding. This provides some evidence for the practi-
cal feasibility of using readily available higher-order theorem provers to support
even very abstract and complex meta-logical investigations for IMLL within a
categorical language suitably encoded in free logic embedded in HOL.

5 Conclusions

This article has outlined an option for, and the potential of, formalizing cat-
egory theory in higher-order logic to investigate meta-logical questions. The

82 J. Bayer et al.

Isabelle/HOL proof assistant was used to formalize the notion of elementary
topoi and to subsequently develop and formalize symmetrical monoidal closed
categories expressing the denotational semantical model of intuitionistic mul-
tiplicative linear logic. This was carried out on the basis of (layered) shallow
semantical embeddings, exploiting at the base layer a shallow semantical embed-
ding of positive free higher-order logic in classical higher-order logic.

In addition to these meta-logical investigations, we outline with our work a
possible way of building-up a category theory library in Isabelle to support reuse
and application. We optimized our formalization to closely resemble mathemat-
ical notation and provided examples of how to use our formalized concepts. We
hope that this will facilitate the future use of category theoretical notions in
formalizations beyond just category theory itself.

References

1. Abramsky, S., Tzevelekos, N.: Introduction to categories and categorical logic. In:
Coecke, B. (ed.) New Structures for Physics, pp. 3–94. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-12821-9 1

2. Beffara, E.: Introduction to linear logic, August 2013. https://hal.archives-
ouvertes.fr/cel-01144229, lecture

3. Benzmüller, C., Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy, Summer 2019 edn., pp. 1–62 (in pdf version).
Metaphysics Research Lab, Stanford University (2019). https://plato.stanford.
edu/entries/type-theory-church/

4. Benzmüller, C., Parent, X., van der Torre, L.: Designing normative theories for
ethical and legal reasoning: LogiKEy framework, methodology, and tool support.
Artif. Intell. 287, 103348 (2020). https://doi.org/10.1016/j.artint.2020.103348

5. Benzmüller, C., Scott, D.: Automating free logic in Isabelle/HOL. In: Greuel, G.-
M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp.
43–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3 6

6. Benzmüller, C., Scott, D.S.: Automating free logic in HOL, with an experimental
application in category theory. J. Autom. Reason. 64(1), 53–72 (2020). https://
doi.org/10.1007/s10817-018-09507-7

7. Benzmüller, C.: Universal (meta-)logical reasoning: recent successes. Sci. Comput.
Program. 172, 48–62 (2019). https://doi.org/10.1016/j.scico.2018.10.008

8. Ernst, M.: Category theory and foundations. In: Categories for the Working
Philosopher, pp. 69–89. Oxford University Press (2017). https://doi.org/10.1093/
oso/9780198748991.003.0005

9. Farmer, W.M.: A partial functions version of church’s simple theory of types. J.
Symb. Logic 55(3), 1269–1291 (1990). https://www.jstor.org/stable/2274487

10. Freyd, P., Scedrov, A.: Categories, Allegories, North-Holland Mathemati-
cal Library, vol. 39. Elsevier Science (1990). https://books.google.de/books?
id=fCSJRegkKdoC

11. Gabbay, D.M.: Introduction to labelled deductive systems. In: Gabbay, D.M.,
Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 17, pp. 179–266.
Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-6600-6 3

12. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

https://doi.org/10.1007/978-3-642-12821-9_1
https://hal.archives-ouvertes.fr/cel-01144229
https://hal.archives-ouvertes.fr/cel-01144229
https://plato.stanford.edu/entries/type-theory-church/
https://plato.stanford.edu/entries/type-theory-church/
https://doi.org/10.1016/j.artint.2020.103348
https://doi.org/10.1007/978-3-319-42432-3_6
https://doi.org/10.1007/s10817-018-09507-7
https://doi.org/10.1007/s10817-018-09507-7
https://doi.org/10.1016/j.scico.2018.10.008
https://doi.org/10.1093/oso/9780198748991.003.0005
https://doi.org/10.1093/oso/9780198748991.003.0005
https://www.jstor.org/stable/2274487
https://books.google.de/books?id=fCSJRegkKdoC
https://books.google.de/books?id=fCSJRegkKdoC
https://doi.org/10.1007/978-94-007-6600-6_3
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4

Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation 83

13. Katovsky, A.: Category theory. Arch. Formal Proofs 2010 (2010)
14. Kirchner, D., Benzmüller, C., Zalta, E.N.: Computer science and metaphysics:

a cross-fertilization. Open Philos. 2(1), 230–251 (2019). https://doi.org/10.1515/
opphil-2019-0015

15. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5. Springer, New York (1971)

16. Maddy, P.: Set-theoretic foundations. Contemp. Math. 690, 289–322 (2017)
17. Maddy, P.: What do we want a foundation to do? In: Centrone, S., Kant, D.,

Sarikaya, D. (eds.) Reflections on the Foundations of Mathematics. SL, vol. 407, pp.
293–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15655-8 13

18. Makarenko, I., Benzmüller, C.: Positive free higher-order logic and its automation
via a semantical embedding. In: Schmid, U., Klügl, F., Wolter, D. (eds.) KI 2020.
LNCS (LNAI), vol. 12325, pp. 116–131. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-58285-2 9

19. McLarty, C.: Elementary Categories. Elementary Toposes. Clarendon Press, New
York (1992)

20. Melliès, P.A.: Categorical semantics of linear logic, pp. 1–196. No. 27 in Panoramas
et Synthèses, Société Mathématique de France (2009)

21. Milehins, M.: Category theory for ZFC in HOL I: Foundations: Design patterns,
set theory, digraphs, semicategories. Archive of Formal Proofs, September 2021.
https://isa-afp.org/entries/CZH Foundations.html, Formal proof development

22. Morscher, E., Simons, P.: Free logic: a fifty-year past and an open future. In:
Morscher, E., Hieke, A. (eds.) New Essays in Free Logic. In Honour of Karel Lam-
bert, pp. 1–34. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-
9761-6 1

23. nLab authors: single-sorted definition of a category, April 2021. https://ncatlab.
org/nlab/show/single-sorted+definition+of+a+category

24. Nolt, J.: Free logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy,
Winter 2020 edn. Metaphysics Research Lab, Stanford University (2020)

25. Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.M.: Encoding two-valued
nonclassical logics in classical logic. In: Robinson, J.A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning (in 2 volumes), pp. 1403–1486. Elsevier and MIT
Press (2001). https://doi.org/10.1016/b978-044450813-3/50023-0

26. O’Keefe, G.: Category theory to yoneda’s lemma. Archive of Formal Proofs, April
2005. https://isa-afp.org/entries/Category.html, Formal proof development

27. Schütte, K.: Syntactical and semantical properties of simple type theory. J. Symb.
Logic 25(4), 305–326 (1960). https://www.jstor.org/stable/2963525

28. Scott, D.: Existence and description in formal logic. In: Schoenman, R., Russell,
B. (eds.) Philosopher of the Century, pp. 181–200. George Allen & Unwin, London
(1967). Reprinted with additions. In: Lambert, K. (ed.) Philosophical Application
of Free Logic, pp. 28–48. Oxford University Press (1991)

29. Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey,
C., Scott, D. (eds.) Applications of Sheaves. LNM, vol. 753, pp. 660–696. Springer,
Heidelberg (1979). https://doi.org/10.1007/BFb0061839

30. Stark, E.W.: Category theory with adjunctions and limits. Archive of For-
mal Proofs, June 2016. https://isa-afp.org/entries/Category3.html, Formal proof
development

31. Tiemens, L., Scott, D.S., Benzmüller, C., Benda, M.: Computer-supported explo-
ration of a categorical axiomatization of modeloids. In: Fahrenberg, U., Jipsen, P.,
Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 302–317. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43520-2 19

https://doi.org/10.1515/opphil-2019-0015
https://doi.org/10.1515/opphil-2019-0015
https://doi.org/10.1007/978-3-030-15655-8_13
https://doi.org/10.1007/978-3-030-58285-2_9
https://doi.org/10.1007/978-3-030-58285-2_9
https://isa-afp.org/entries/CZH_Foundations.html
https://doi.org/10.1007/978-94-015-9761-6_1
https://doi.org/10.1007/978-94-015-9761-6_1
https://ncatlab.org/nlab/show/single-sorted+definition+of+a+category
https://ncatlab.org/nlab/show/single-sorted+definition+of+a+category
https://doi.org/10.1016/b978-044450813-3/50023-0
https://isa-afp.org/entries/Category.html
https://www.jstor.org/stable/2963525
https://doi.org/10.1007/BFb0061839
https://isa-afp.org/entries/Category3.html
https://doi.org/10.1007/978-3-030-43520-2_19

Learning Support Systems Based
on Mathematical Knowledge Management

Marc Berges1 , Jonas Betzendahl1 , Abhishek Chugh2 ,
Michael Kohlhase1 , Dominic Lohr1 , and Dennis Müller1(B)

1 Computer Science, FAU Erlangen Nürnberg, Erlangen, Germany
dennis.mueller@fau.de

2 Sophize Foundation, Bangalore, India

Abstract. To cater to the increasingly diverse student bodies, higher
education has to personalize education. In times of stagnant educational
budgets and staffing problems, this can only be achieved via adaptive,
interactive learning support services. In this paper we show how these can
be generated by modeling the domain, the learner competencies, and the
rhetoric and didactic relations among learning objects, re-using existing
technologies and systems of mathematical knowledge management.

This paper uses STEX3. The semantically annotated XHTML version of this
paper is available at https://url.mathhub.info/CICM23ALEA

1 Introduction

STEM education in universities and high-schools faces the problem that i) the
student population becomes more and more diverse – and thus we can less and
less rely on a uniform educational background – and ii) students expect to be
able to learn everything, anytime, anywhere, ideally on their mobile devices.
Ideally, each student would have their personal, online teacher/tutor/mentor
(we will use the shorthand “educator” and analogous for this in the following
text), but this is not something the education system can provide due to funding
and staffing constraints. Instead institutions of higher education are increasingly
turning to online delivery of course materials and video lectures even though this
is often ill-suited for coping with individual student needs.

Domain
Model

Learner
Model

Formulation
Model

Rhetoric/Didactic
Model

Fig. 1. Models for Teaching.

In this paper we want to explore the pos-
sibility of automating – relevant abilities of
– a personal educator as a possible solution
to the situation described above using and
critically profiting from methods and sys-
tems from mathematical knowledge man-
agement.

We contend that a good educator relies
on and maintains four models (see Fig. 1)
that inform the interactions with the educatee:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 84–97, 2023.
https://doi.org/10.1007/978-3-031-42753-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_6&domain=pdf
http://orcid.org/0000-0002-9982-547X
http://orcid.org/0000-0001-6659-5308
http://orcid.org/0000-0001-6765-5229
http://orcid.org/0000-0002-9859-6337
http://orcid.org/0000-0002-6330-2327
http://orcid.org/0000-0002-4482-4912
https://url.mathhub.info/CICM23ALEA
https://doi.org/10.1007/978-3-031-42753-4_6

Learning Support Systems Based on Mathematical Knowledge Management 85

1. A fine-grained domain model that contains detailed knowledge about the
concepts, objects, and their relations relevant to the domain of discourse,

2. a collection of ready-made “formulations”1 of this knowledge – they are often
called learning objects2 – that can be assembled/adapted into a tutorial dia-
logue,

3. a didactic model that classifies the formulations wrt. their rhetoric role (where
can they go into a structured text) and didactic potential (how can they
change competencies) and how they are related to each other.

4. a learner model that estimates the educatee’s competency distribution by
monitoring their interaction with the learning objects and the educator.

Following [Ull08] we posit that constructing e.g. an educating dialogue is an
online planning process assembling suitably adapted learning objects based on
the competency predictions by the learner model. We further posit that this
process must optimize the epistemic constraints from the domain model and
the rhetoric/didactic constraints from the didactic model. We observe that the
three models involved in the generation of educational materials profit from the
structure of the domain model, which serves as the – enabling – foundation of
the four models (see the arrows representing the “references/uses” relation in
Fig. 1). Note that even though we cast such a dialogue as a directed interaction
where knowledge flows from teacher to student, it applies to nearly all academic
communication, only that the role of teacher/student can fluctuate in every
dialogue turn.

Contribution. We present the ALeA system (Adaptive Learning Assistant),
which is realized as an extension of the mmt system which supplies mathematical
knowledge management functionality based on a domain model expressed as a
Mmt/OMDoctheory graph. We show how a surprising variety of user-adaptive
and interactive teaching materials with embedded learning support services can
be realized from the information in the three remaining models and remark that
the heavy lifting in all of this is provided by CICM technologies.

Overview. In Sect. 2 we evaluate how the 4-models idea from Fig. 1 contributes
to the automated assembly of an educational dialogue. In Sect. 3 we present
the architecture of the ALeA system which implements this approach. This is
followed by an elaboration on the rhetoric/didactic model in Sect. 4. Finally,
Sect. 5 concludes this paper, evaluates the approach and discusses ongoing and
future work.

The design of the ALeA system shares/inherits a lot of the intuitions
from the ActiveMath/LeActiveMath system [Mel+01] (∼2000–2010), which was
1 Note that we use the concept of a “formulation of knowledge” very inclusively: it

should cover any modality: textual representations – in any language – as well as
images, and even – say – a ballet choreography of the concept of “spring”.

2 As a note of caution: while in the didactic literature a learning object is defined as
anything that is useful in the context of education, for the purposes of the ALeA
system we will understand learning object as semantically annotated formulation in
the sense of footnote 1.

86 M. Berges et al.

based on a very early version of OMDoc [Koh06], which turned into STEX and
Mmt/OMDoc over the last two decades. So the ALeA system and approach
presented in this paper can be thought of as a successor of ActiveMath system
based on more evolved mathematical knowledge management technology, but
lacking the educational scope that massive EU grants bring about.

2 Assembling an Educational Dialogue

We will now evaluate the 4-models analysis introduced in the introduction via
a Gedankenexperiment: can it be used to explain an educational dialogue – a
key task to automate in the envisioned personalized learning environment? We
will use this dialogue as a running example in the rest of the paper; a more
complete version of the dialogue below is at https://courses.voll-ki.fau.de/exp/
pp dialogue tour.

Say a learner using the system would like to know about the Pythagorean
Theorem3. A dialogue with the system about that might look like the following:

My records show that you are already familiar with triangles and angles.
The Pythagorean Theorem concerns right triangles. Do you already feel
comfortable with that topic?

Here, we assume that the learner model already indicates a sufficient famil-
iarity with some of the prerequisites for the educational target, but it does not
have any data on the learner’s competency of right triangles, so the dialogue
defers to the user’s self-evaluation.

I’m not sure...

Okay. Let’s find out! Please solve the following problem:

As the learner indicated uncertainty about their competency, the system
opens a short tangent to evaluate it empirically by selecting one of the available
problems that test this knowledge.

In a right triangle, one of the angles at the longest side is 60◦. What would
that make the other angle on the longest side?

30◦

That is correct! Let’s talk about the Pythagorean Theorem then.

The prerequisite is met, so the system moves on. At this point the learner
model would also have been updated to include the demonstrated knowledge. If
the learner had answered incorrectly, the system would refocus on understanding
right triangles first. So it is time to move to the statement of the Pythagorean
Theorem:
3 We have chosen this example for general familiarity, its simplicity does not restrict

the scope of the analysis.

https://courses.voll-ki.fau.de/exp/pp_dialogue_tour
https://courses.voll-ki.fau.de/exp/pp_dialogue_tour

Learning Support Systems Based on Mathematical Knowledge Management 87

Theorem (Pythagoras). In a right triangle, the square of the hypotenuse
is equal to the sum of the squares of the other two sides. Often, this is
expressed as the formula a2 + b2 = c2.

Again, the learner model does not have an indication
whether the learner knows about the proof, so it appeals
to their self-assessment again.

Do you see why this is true?

No

No problem! There are multiple proofs of this theorem. Here is one of them:

Here we present a geometric proof of the theorem4. This learning object has
been selected because it is annotated to be relevant to the current educational
goal of understanding the Pythagorean Theorem.

Did that help you understand?

Yes

It would also be possible to further differentiate what the educational goal of
such a dialogue would be. In this example, we want the learner to gain a working
understanding of the Pythagorean Theorem, but – to that end – also present
them with materials showing why exactly it is true. In a different context or at
a later date we might also want to insist they are able to recreate the steps of a
proof. Ultimately, the system can make recommendations, but users have final
say about what topics and what aspects thereof they choose to learn about.

Good. Let’s put it to the test. Please solve the following problem:

In a right triangle, the hypotenuse is 5 units long. One of the shorter sides
is 4 units long. Using the Pythagorean Theorem, calculate the length of the
remaining side.

4 In the interactive version of the dialogue, the diagram is actually an animation,
which is much easier to understand for the learner. The diagram is licensed CC-BY,
attribution William B. Faulk.

88 M. Berges et al.

3 units

You’re right! Seems like you understand the Pythagorean Theorem well
enough now. What do you want to do next?

Here, the user asserts that they understand the theorem statement, so the
system asks them to solve another problem (demonstrating that the student
knows how to apply their asserted competence) that needs to be solved before
it updates the learner model to include knowledge about the Pythagorean The-
orem.

In conclusion, this dialogue shows us that all the material in the dialogue can
be traced either to a dialogue template (that corresponds to the rhetorical/di-
dactic model) or content from one of the other three models. In the following we
will see how we can build on these ideas to realize a concrete learning assistant
system.

3 The VoLL-KI ALeA System

In the VoLL-KI project (Von Lernenden Lernen mit KI – Learning from Learners
with AI) we have instantiated the 4-models approach from Fig. 1 with concepts
developed in the CICM and EdTech communities:

1. The domain model is realized as an Mmt/OMDoctheory graph,
2. the formulation model by the OMDoc/STEX document model,
3. the learner model as a function from the symbols in the theory graph into a

six-dimensional probability distribution, keyed by a revised Bloom taxonomy!
[AK09]. We use this to classify both a learner’s competency and the objectives
of learning objects with respect to a given subject matter along the cogni-
tive dimensions remember, understandard, apply, analyze, evaluate and
create.

4. the rhetoric/didactic model classifies learning objects and domain model con-
cepts by the role they can play in a (to be generated) educational discourse;
see Sect. 4 for details.

For the dialogue we will employ the active documents paradigm [Koh+11]
(see Fig. 2) where the part of the content commonsis played by the domain model,
that of the document commons by the formulation model from Fig. 1 and the
active document player is implemented by the ALeA front-end with the help of
the mmt system [MMT].

Concretely, this translates into the ALeA system architecture in Fig. 3:

1. The information from the domain-, formulation-, and rhetoric/didactic mod-
els and the knowledge management algorithms pertaining to them are com-
bined into a learning object server (LOS; see Subsect. 3.1) that serves learn-
ing objects – both atomic ones like individual statements or problems and
aggregated ones like guided tours (aggregated mini-courses that lead up to a
particular topic).

Learning Support Systems Based on Mathematical Knowledge Management 89

Fig. 2. The Active Documents Paradigm

Fig. 3. The ALeA System Architecture

2. The course fragment server (CFS; see Subsect. 3.3) serves as the front-end
to the ALeA application, it serves course fragments directly to the educa-
tee, hosts all learning support services, and monitors all interactions. In a
standalone version of ALeA, the CFS serves the course fragments directly
to learners. Alternatively ALeA can be embedded into institutional learning
management systems like Moodle or Ilias.

3. The learner model server (LMS; see Subsect. 3.2) encapsulates the
learner model, it receives and logs interaction information from the CFS and
informs the LOS about competency levels, needed for the learner-adapted
learning object generation.

In the scope of the VoLL-KI project, the ALeAv system interfaces with the infras-
tructure of the participating universities. The CEUS system is a joint Bavarian
data warehousing system that manages all curriculum, cohort, and eventually

90 M. Berges et al.

also exam grade data, and the CFS integrates into Moodle/Ilias learning man-
agement systems. All these systems can provide data about learners that can
e.g. inform the learner model. But the system can also be used in a stand-alone
fashion without these learner data streams.

We will now look at the components in detail.

3.1 The Learning Object Server (LOS)

Both the domain and formulation models are provided by STEX document frag-
ments [KM,KM22]. The symbols, modules, and imports therein constitute the
theory graph of the domain model, whereas the individual definitions, examples,
theorem statements and problems constitute the learning objects.

Fig. 4. An Example STEX Fragment

Consider the fragment in Fig. 4, which is a (slightly simplified) version of the
STEX sources for the theorem statement in the dialogue in Sect. 2. It declares
a new symbol “Pythagorean Theorem”, and provides it with a (flexiformal)
definiens. The mmt system can convert this fragment to semantically annotated
HTML and extract the symbols declared therein as Mmt/OMDoc [MK22].
Additionally, the HTML corresponding to the theorem statement (via the
sassertion environment) is extracted as a learning object “defining” the sym-
bol. The semantically marked up concepts occurring in the statement (using the
\symname and \symref macros that mark up references to symbols) are known
to be direct dependencies of the learning object. Additionally, the symbols occur-
ring in the definiens are known to be direct dependencies of the symbol itself.

Note that as a consequence, we obtain two knowledge graphs: The theory
graph of symbols with the usual relations from the Mmt/OMDoc ontology,
and a separate graph of learning objects consisting of whole documents, chap-
ters/sections, slides (in a presentation) and document snippets, but also (seman-
tically annotated) definitions, theorems, statements, problems, examples, etc.
learning objects are connected with each other via relations from the Upper
Library Ontology (ULO) [Con+19] such as occurs-in or references, but also
relate to the Mmt/OMDoctheory graph via relations such as defines or
is-an-example-for or 〈theorem〉concerns〈symbol〉. Notably, while the ULO

Learning Support Systems Based on Mathematical Knowledge Management 91

was previously only used for formal libraries, we are now in the process of
extending it to (flexi-)formal libraries of natural language document fragments.5

To test a learner’s competency with respect to some concept, we can pro-
vide problems and semantically annotate them with i) learning objectives (the
concepts and competencies tested by the problem) and ii) (known – fully or par-
tially, correct or wrong – answers learners typically give), that we can associate
with particular competency levels. learning objectives are pairs 〈D,S〉, where
S is a symbol and D a cognitive dimension in the revised Bloom taxonomy.
Importantly, problems and other learning objects can have multiple objectives.
For example, we can annotate the first problem in the dialog above with the
objectives 〈remember, right triangle〉 and 〈apply, triangle angle sum〉.

Particularly for the kinds of problems that can be evaluated automatically
(e.g. single/multiple choice), the answer classes can provide us with updates to
the learner model corresponding to the answer, and, in case of a wrong answer,
the likely cause and missing competency.

To interface with the remaining component of the architecture, mmt pro-
vides a REST API to query the system for symbols and learning objects; both
in general as well as restricted to those being introduced in a specific course
document or sections therein. The ALeA frontend uses this API via the learner
model server to restrict functionality to the relevant learning objects both with
respect to a certain context (e.g. a university course) and the current state of a
user’s learner model.

The Dialogue Planner. This is sufficient to realize the dialogue above: Upon
a user wanting to learn about the symbol “Pythagorean Theorem” (and not
knowing anything about it yet), the mmt system can retrieve all known learning
objects defining it from the formulation model. It can determine the dependen-
cies of those learning objects, select the one with the smallest number of concepts
predicted to be still unknown by the learner from the learner model, and then
ask them about their familiarity with the dependencies (basically recursing into
them). Analogously, we can mark up and retrieve proofs, if, when, and where
desired.

When subsequently wanting to test a user’s competency with respect to a
symbol (e.g. right triangles or Pythagorean Theorem), we can query mmt specif-
ically for problems with the corresponding learning objective. From the list of
problems, we filter those with the minimal dependencies known to be (sufficiently
well) known by the learner. In our running example, both problems are multiple
choice exercises, so the system can automatically evaluate the provided answers.
Upon answering, the learner model is updated accordingly.

3.2 The Learner Model Server (LMS)

Learner Model structure and semantics. At the core of the learner model lies
a server component that can interface with both the front- and backend of the

5 The precise relational ontology is subject to ongoing research and experimentation.

92 M. Berges et al.

system. Part of this Learner Model Server (LMS) is a database that stores all
explicit knowledge about (estimated) learnercompetencies. For a given element
of the theory graph and a given learner (identified only by a token), the data
that is stored is a sextuple of numerical values between 0 and 1, inclusive. Every
value is representative of the system’s current best guess as to the competencies
along a certain cognitive dimension (see Sect. 3)6.

The intended semantics for these values are of a statistical nature which
enables an empirical process for evaluation and correction: For a given element
of the theory graph, a learner, and a cognitive dimension, the stored value repre-
sents the (system’s estimate of the) probability that the student will be able to
successfully solve a randomly selected problem from the pool of problems that
are annotated to require both the given symbol and the cognitive dimension. A
score of 0 would indicate that we expect them to be able to solve none of them
and a score of 1, all of them.

Interaction Logs. Beyond the explicit current state of the learner model as
described above, the LMS also keeps a detailed log about every meaningful
learner interaction with the system. This includes learners giving self-evaluations
on specific symbols, taking guided tours, answering questions (no matter if their
answers are correct or not) and can be extended if another feature becomes
available. The data we store includes all educationally relevant information (e.g.
the learning object that was interacted with or precise answers that were given)
as well as which learner was involved in the interaction and when exactly it
happened.

Keeping the aforementioned records in addition to just the explicit state
at any given time allows us to experiment, even retroactively, with different
ideas of what exactly every interaction means (or should mean) for the learner
model– after all, the exact effects of an interaction are not given a priori. It is
clear that answering a difficult question correctly should increase the relevant
scores in the learner model. Additionally, we can exploit the structure of the
underlying theory graph to update learner model values for related symbols as
well for various relations. But by how much exactly and which ones? Should
competency values stay constant in the absence of interaction or decay over
time?

There is a multitude of different approaches to these questions and finding
the “best” or even just a good one is subject to ongoing research. Hence, we
use the interaction logs to be able to re-create a version of the learner model
with a new learning function that we can then compare with the previous model
(say, on their ability to accurately predict students’ exam scores at the end of a
semester).

6 It should be noted that not every cognitive dimension necessarily plays well with
every type of learning object. For example, it would be difficult to coherently assign
a student a competency in create-ing for Pythagorean Theorem. But in this case,
the value will simply not be used.

Learning Support Systems Based on Mathematical Knowledge Management 93

Given the required data (in future work), we can also use latent trait anal-
ysis to identify relevant clusters of symbols whose values should be updated in
concert, if their competencies can be found to be sufficiently correlated.

3.3 The Course Fragment Server (CFS)

The ALeA frontend is realized as lightweight, responsive, client-side web appli-
cation via the React library/framework. The CFS serves the educational con-
tent – which it receives from the LOS– as JSON to the browser. The CFS has
three main purposes: establishing the ALeAtrust zone, packaging/theming the
learning objects received from the LOS into learning situations, and integrating
learning support services into these.

Personally Identifiable Information and Data Privacy. Learner model data and
learner interaction logs are highly sensitive personal data, therefore the LMS and
the CFS are enclosed in a trust zone(the yellow bubble in Fig. 3) operationalized
by a single sign on regime: when a learner logs into the ALeA system7, they also
authorize the LMS to log interactions (e.g. answers to problems in the education
dialogue) and provide the CFS with (personal) competency data. The learning
support services hosted by the CFS pass competency data – but without personal
data – to the LOS, which then assembles the course fragments, which the CFS
then passes on to the learner. Thus personally identifiable information never
leaves the trust zone.

Storing data securely is, however, not enough by itself. We also strive to give
all learners a high degree of control over their data. This includes functionality
to easily access, visualize, and download (in JSON format) their current learner
model. Every learner can also at any time initiate a purge of their data, resetting
their learner model to zero and deleting all saved interaction logs. The only thing
that remains is a record of the purge itself. Of course a purge will negatively affect
personalization and the overall quality of the learning experience in ALeA.

Learning Support Services. We have already seen the most ubiquitous learn-
ing support services in Sect. 2 above: a guided tour– a generated, user-adaptive
course dialogue leading up to a particular competency given a learner model
state. In the ALeA system, every content term (any phrase annotated by a
\symname macro in STEX) directly induces a target competency.

Another learning support service is modeled on the time-tried technique of
writing definitions (and associated knowledge) for concepts on the back of file
cards and drilling them by eliminating “known” cards. In ALeA, all learning
objects directly induce flash cards from existing semantic annotations. learners
can select a scope (e.g. a selection of sections in the course notes) and a com-
petency target (a 6-tuple of competency values) up to which cards should be
selected, and then learners can drill, assessing competency – and updating the
learner model. Note that – like most other learning support services – the drill

7 We employ eduGAIN authentication for global academic authentication and access.

94 M. Berges et al.

cards feature are generated from the same STEX representations and therefore
basically “come for free” for the educator’s authoring course materials.

4 The Rhetoric/Didactic Model

The Rhetoric/Didactic model consists of classifications and relational annota-
tions to and between symbol from the domain model and learning objects from
the formulation model.

For the rhetoric part we follow the idea of the Rhetorical Structure Theory
(RST) [MT88], but specialize the relations and classes to the mathematical/ed-
ucational setting. Following the general STEX setup, we allow RST annotations
as optional arguments.
1 \begin{sparagraph}[type=introduction,to=Pythagorean Theorem]
2 One of the most useful theorems in geometry is the following:
3 \end{sparagraph}

RST is traditionally used in natural language generation for (hierarchically)
planning coherent documents. The paragraph marked as an introduction to the
Pythagorean theorem might – not in a dialogue as the one in Sect. 2 but e.g. in
course notes – be used to make more naturally flowing text.

For didactic information we use the Y-model classifications and relations
[Loh+22]. A very simple example is
1 \objective{apply}{Pythagorean Theorem}

in the source of the problem about the length of the remaining side posed in the
dialogue from Sect. 2. This STEX annotation states that this problem “tests” the
learner’s competency of applying the theorem. This information can be used by
the dialogue planner to ensure that a prerequisite 〈apply, pythagorean theorem〉
is actually met. Such prerequisites can often be derived from the STEX sources
of a learning object: if a learning object with cognitive dimension D contains
a symbol reference S (e.g. via \symname{S}), then we know (at the very least)
that 〈remember, S〉 is a prerequisite. Additional prerequisites can be provided as
annotations to the learning object.

But the didactic relations are not restricted to learning objects. Consider the
situation in Fig. 5, where the lower part consists of a theory graph in the domain
model and the upper part of a “occurs-in graph” of learning objects from the
formulation model (a lecture structured into slides sli with fragments ni). In
Fig. 5 the lecture introduces a new concept via the didactic trick of a “straw-
man”: it first introduces a naive, reduced approximation N of the real theory
F , only to show an example EN of where this is insufficient. Then it proposes a
first (straw-man) solution S, and show an example ES of why this does not work
either. Based on the information gleaned from this failed attempt, it builds the
eventual version F of the concept or theory and demonstrates that this works on
EF . The (lower) domain theory graph and the straw-man relation shown as the
thick arrow in Fig. 5 can be thought of as a didactic pattern that can be registered
in the rhetoric/didactic model. Given a sufficiently expressive relational ontology,
the dialogue planner could automatically generate the learning object structure

Learning Support Systems Based on Mathematical Knowledge Management 95

Fig. 5. Introducing a Concept via a Straw-Man Theory

in the upper part; resulting in didactically more sophisticated learning materials
in the future.

5 Conclusion, Evaluation, and Future Work

We have presented the ALeA system, an adaptive learning assistant based
largely on existing MKM technologies. The method feeds on semantic anno-
tations of (mathematical) knowledge in existing learning materials, and employs
the induced theory graph – the centerpiece of the domain model– and the learner
model to guide the didactic algorithms. The ALeA system is open source and
is deployed to over 1000 students in 6 courses at FAU; see https://courses.voll-
ki.fau.de.

Note that user-adaptive features that make use of learner models require a
user to be logged into the system, which can be done using eduGAIN.

Evaluation of the 4-Models Concept. The system development and deployment in
active courses has informed the 4-models conceptualization. Initially, the domain,
formulation, and didactic models were just STEX annotations to the sources of
existing course materials – slides, problems, and course notes. But the use of
the definitions in slides as sources of dependency information for guided tours
led to an increasing “formalization” of the course materials, sometimes to the
detriment of didactic concerns – e.g. overloading students with “everything, all
at once” rather than gently easing them into understanding. Separating the
learning objects (fragments in course materials, that are optimized for play-
ing a particular didactic role there) from ontological definitions (a “platonic”
representation of the underlying domain knowledge) has allowed to collect and
curate the “full story” in the domain model in a unique location and reference
it as “the underlying meaning” in many learning objects that may only give

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de

96 M. Berges et al.

didactically condensed versions of “the story”. Separating out the rhetorical/-
didactical classifications and relations out from the learning objects make the
latter into much more re-usable components that can be automatically assem-
bled into learner/cohort-adapted learning materials along the former, as we have
seen in the thought experiment in Sect. 2.

Ongoing and Future Work. We are currently working on shaping the semantic
annotations of the initial six courses currently in the ALeA system (covering
AI, logic, and CS tools for humanities and social sciences) more fully into the
4-models concept, mainly by separating out the domain model. At the same
time we are expanding the course repertoire to cover more of the CS curriculum:
currently we are working on the canonical courses: Programming, Algorithms
& Data structures, and Theoretical CS. Again, the separation of domain and
formulation models starts paying off: there is considerable overlap in the domain
models between the courses, even though the learning objects are quite distinct
due to the progression of overall student competency. One of the bottlenecks in
this endeavour is the provisioning of “quiz questions” like the two in the dialogue
above – simple problems that can be solved in less than a minute – where we
can determine the answer class automatically, which in turn can be used for
feedback and learner model updates. We have the markup format, but literally
need thousands of them per course.

The further development of the rhetoric/didactic model and its influence on
the automated generation of guided tours, quizzes, exam preparation materials
will be the next big step; we expect that the current learning support services –
which have been very positively evaluated by students who used them – are just
a first step towards more complete, data-driven, personalized tutoring support.

Finally, we have only concentrated on tutoring individual learners so far. But
there is no reason why the learning support services cannot be tailored to cohorts
of learners based on aggregated learner data and – based on this – be extended
to “instructor support services”, giving instructors up-to-date information on
the state of learning in a course or even degree program – rather than only the
grade averages after the exams.

Acknowledgements. The work reported in this article was conducted as part of the
VoLL-KI project (see https://voll-ki.de) funded by the German Research/Education
Ministry under grant 16DHBKI089.

References

[AK09] Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman,
New York (2009)

[CICM22] Kamareddine, F., Sacerdoti Coen, C. (eds.): CICM 2021. LNCS (LNAI),
vol. 12833. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-81097-9

[Con+19] Condoluci, A., Kohlhase, M., Müller, D., Rabe, F., Sacerdoti Coen, C., Wen-
zel, M.: Relational data across mathematical libraries. In: Kaliszyk, C., Brady, E.,

https://voll-ki.de
https://doi.org/10.1007/978-3-030-81097-9

Learning Support Systems Based on Mathematical Knowledge Management 97

Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617,
pp. 61–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4 5.
https://kwarc.info/kohlhase/papers/cicm19-ulo.pdf

[KM] Kohlhase, M., Müller, D.: The STEX3 package collection. https://github.com/
slatex/sTeX/blob/main/doc/stex-doc.pdf. Visited 24 Apr 2022

[KM22] Kohlhase, M., Müller, D.: System description: STEX3 -A LATEX based
ecosystem for semantic/active mathematical documents. In: Buzzard, K., Kutsia, T.
(eds.) Intelligent Computer Mathematics. LNAI, vol. 13467, pp. 184–188. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-16681-5 13. https://kwarc.info/
people/dmueller/pubs/cicm22stexsd.pdf

[Koh+11] Kohlhase, M., et al.: The planetary system: web 3.0 & active documents
for STEM. Procedia Comput. Sci. 4 (2011). Sato, M., Matsuoka, S., Sloot, P.M.,
van Albada, G.D., Dongarra, J. (eds.) Special Issue: Proceedings of the Interna-
tional Conference on Computational Science (ICCS). Finalist at the Executable
Paper Grand Challenge, pp. 598–607. https://doi.org/10.1016/j.procs.2011.04.063.
https://kwarc.info/kohlhase/papers/epc11.pdf

[Koh06] Kohlhase, M.: OMDoc - An Open Markup Format for Mathematical Docu-
ments [Version 1.2]. LNAI 4180. Springer, Heidelberg (2006). https://doi.org/10.
1007/11826095. http://omdoc.org/pubs/omdoc1.2.pdf

[Loh+22] Lohr, D., Berges, M., Kohlhase, M., Müller, D., Rapp, M.: The Y model - for-
malization of computer-science tasks in the context of intelligent tutoring systems
(2022). https://kwarc.info/kohlhase/submit/kali22.pdf

[Mel+01] Melis, E.: The ActiveMath learning environment. Artif. Intell. Educ. 12(4)
(2001)

[MK22] Müller, D., Kohlhase, M.: Injecting formal mathematics into LaTeX. In: Buz-
zard, K., Kutsia, T. (eds.) Intelligent Computer Mathematics. LNAI, vol. 13467, pp.
168–183. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16681-5 12.
https://kwarc.info/people/dmueller/pubs/cicm22stexmmt.pdf

[MMT] MMT - Language and System for the Uniform Representation of Knowledge.
Project web site. https://uniformal.github.io/. Visited 15 Jan 2019

[MT88] Mann, W.C., Thompson, S.A.: Rhetorical structure theory: toward a func-
tional theory of text organization. Text - Interdisc. J. Study Discourse 8(3), 243–
281 (1988). https://doi.org/10.1515/text.1.1988.8.3.243. https://doi.org/10.1515/
text.1.1988.8.3.243

[Ull08] Ullrich, C.: Pedagogically Founded Courseware Generation for Web-Based
Learning. LNCS. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88215-2. https://link.springer.com/book/10.1007/978-3-540-88215-2

https://doi.org/10.1007/978-3-030-23250-4_5
https://kwarc.info/kohlhase/papers/cicm19-ulo.pdf
https://github.com/slatex/sTeX/blob/main/doc/stex-doc.pdf
https://github.com/slatex/sTeX/blob/main/doc/stex-doc.pdf
https://doi.org/10.1007/978-3-031-16681-5_13
https://kwarc.info/people/dmueller/pubs/cicm22stexsd.pdf
https://kwarc.info/people/dmueller/pubs/cicm22stexsd.pdf
https://doi.org/10.1016/j.procs.2011.04.063
https://kwarc.info/kohlhase/papers/epc11.pdf
https://doi.org/10.1007/11826095
https://doi.org/10.1007/11826095
http://omdoc.org/pubs/omdoc1.2.pdf
https://kwarc.info/kohlhase/submit/kali22.pdf
https://doi.org/10.1007/978-3-031-16681-5_12
https://kwarc.info/people/dmueller/pubs/cicm22stexmmt.pdf
https://uniformal.github.io/
https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/10.1007/978-3-540-88215-2
https://doi.org/10.1007/978-3-540-88215-2
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-540-88215-2

Isabelle Formalisation of Original
Representation Theorems

Marco B. Caminati(B)

School of Computingm and Communications, Lancaster University in Leipzig,
Nikolaistrasse 10, 04109 Leipzig, Germany

m.caminati@lancaster.ac.uk

Abstract. In a recent paper, new theorems linking apparently unrelated
mathematical objects (event structures from concurrency theory and full
graphs arising in computational biology) were discovered by cross-site
data mining on huge databases, and building on existing Isabelle-verified
event structures enumeration algorithms. Given the origin and newness
of such theorems, their formal verification is particularly desirable. This
paper presents such a verification via Isabelle/HOL definitions and the-
orems, and exposes the technical challenges found in the process. The
introduced formalisation completes the verification of Isabelle-verified
event structure enumeration algorithms into a fully verified framework
to link event structures to full graphs.

1 Introduction

In [4], the first machine-verified contribution to the Online Encyclopedia of Inte-
ger Sequences (OEIS) [22] was presented, through an Isabelle/HOL-verified algo-
rithm enumerating all labeled prime event structures (or just event structures, or
even only ES’s). In [7], a mining technique over massive sets of documents permit-
ted to unearth unforeseen connections between apparently unrelated mathemati-
cal domains. One particular connection was, in the same paper, explored, linking
event structures (via the algorithm from [4]) to full graphs (FGs). Event structures
are originated in the study of concurrent computational systems, while full graphs
arise in the field of computational biology [12]. In [7], the deeper motivation of this
connection was found as being given rise by a new representation theorem for event
structures and a set of derived results, cross-fertilising between the two fields and
permitting to obtain new theorems for both the related objects (ES’s and FGs).
The two papers [4] and [7], therefore, complement each other to provide enumer-
ating algorithms and new connections found using the former. However, only the
results from [4] have been mechanically checked. The present paper completes the
work by providing a Isabelle/HOL (from now on, just Isabelle) [18] formalisation
of the representation theorem, the theorem connecting ES’s and FGs, a number
of related Isabelle definitions and tools, and a computable Isabelle isomorphism
providing the connection between ES’s and FGs.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 98–112, 2023.
https://doi.org/10.1007/978-3-031-42753-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_7&domain=pdf
http://orcid.org/0000-0002-4529-5442
http://oeis.org/
https://doi.org/10.1007/978-3-031-42753-4_7

Isabelle Formalisation of Original Representation Theorems 99

Section 2 introduces the subjects of the discourse (e.g., event structures and
full graphs), Sect. 3 provides the pen-and-paper version of the theorems for-
malised, Sect. 4 illustrates the main formalised theorems and definitions, Sects. 5
and 6, respectively, illustrate the formalisation of the two main theorems, while
Sect. 7 contains overall consideration about the formalisation process. Section 8
concludes.

2 Event Structures and Full Graphs

This section formally introduces the objects of our theorems. To make this paper
self-contained, it summarises, together with the subsequent one, the main ele-
ments of Sections IV and VI of [7].

2.1 Event Structures

A prime event structure (or simply event structure, ES) describes a concurrent
computation by identifying the computational events that are causally related
and those that exclude one another. According to the following definition, this
is achieved via two relations: ≤ (causality) and # (conflict).

Definition 1. An event structure is a pair of relations (≤,#) where ≤ is a
partial order, # is irreflexive and symmetric, (fie ≤) ⊇ (fie #) is called the set
of events, and for any three events x0, x1, y: x0#y ∧ x0 ≤ x1 → x1#y.

The last condition is referred to as conflict propagation. In Definition 1,
fie denotes the field of a relation: that is, the union of its domain (dom) and
range (ran). The usual infix notation for the relations in Definition 1 can become
inconvenient, therefore we also introduce an additional notation representing the
relations with letters, writing, e.g., (x, y) ∈ D instead of x ≤ y and (x, y) ∈ U
in lieu of x#y. We will typically use the letters D and U as above to suggest
the reader what they encode: D stands for “directed” and U for “undirected”.
Indeed, ≤, as a partial order, is naturally viewable as a directed graph and #,
being symmetric, as an undirected graph. See also the comment immediately
after Definition 2. Since any finite relation is a graph having its vertices (or
nodes) coinciding with the field of the relation, and since, for any finite partial
order, that graph can be naturally made a directed graph, it is easy to represent
any finite ES via diagrams such as the one in Fig. 1.

2.2 Full Graphs

Any family of sets can be used to build a graph where each vertex represents a
set of the family, an undirected edge connects overlapping sets, and a directed
edge connects a superset to a subset. Such a construction occurs when studying
the following problem: given n subsets of a given set of m elements, is there
a way of labeling the elements with natural numbers such that the element

100 M. B. Caminati

Fig. 1. An example event structure, with eight events related by causality (denoted by
an arrow standing for ≤) and conflict (denoted by a dashed line).

occur consecutively (with respect to this labeling) in each subset? One practical
application of this labeling problem arises in bioinformatics, where the elements
of subsets represent observed blemishes to parts of a gene, which are supposed
to be more likely to affect parts of the gene which are connected: therefore,
finding such a labeling can provide essential information about the topology
of a gene [2,12]. The graphs that can be created in this way are specified by
Definition 2.

Definition 2. A full graph (FG) is a mixed, unweighted, simple1 graph over
vertices V , of directed edges D, and undirected edges T such that there is an
injective function f on V yielding non-empty sets and with the property

∀x, y ∈ V. ((x, y) ∈ D ↔ f x ⊇ f y) ∧ (1)
((x, y) ∈ T ↔ f x and f y overlap) ; (2)

here, we say that two sets A and B overlap (written A � B) when A ∩ B /∈
{A,B, ∅}. We call f an fg-representation of the full graph (D,T). Alterna-
tively, we will say that T makes a full graph of D (through f) when such an
fg-representation f exists.

Having insisted in Definition 2 in encoding T via ordered pairs, even though
is an undirected graph, makes that encoding redundant; however, this is conve-
nient because we can then regard T as a (symmetric) relation, as all the other
components in the definitions of ES’s and FGs, also thanks to the fact that all
these components are simple graphs, making the encoding as relations adequate.

3 Connecting ES’s and FGs

In [7], a systematic way of looking for matches between entries in the OEIS
and free text search results across Google and Google Scholar is introduced,
1 Recall that a graph is simple when it has no self loops and no multi-edges; it is mixed

when it has both directed and undirected edges. See [13, Section 1.1].

Isabelle Formalisation of Original Representation Theorems 101

producing thousands of unexplored and potentially interesting matches. One of
them relates the enumerations of ES’s (introduced in OEIS by [4]) and of FGs
(in [9, Section 4]): the number of (labeled) ES’s and of FGs over a fixed number of
vertices n coincide for small n. In the same paper [7], this connection is explored,
motivated and proven by providing a one-to-one map between ES’s and FGs,
which is an isomorphism once framed as a mapping between representations of
ES’s and FGs.

To introduce the ideas in the latter paper, we start by looking at the evalu-
ation, through this isomorphism, of the ES in Fig. 1, giving the FG in Fig. 2.

Fig. 2. The full graph isomorphic to the event structure of Fig. 1. This is the full graph
example originally featured in Section 3 of [12]. Here, the arrows represent ⊇, and the
dashed lines the overlapping relation.

To make more precise the similarity between the figures, we must under-
stand how they are generated: in Fig. 2, the edges are determined by looking
at operations on sets associated to each node. In this sense, we have a repre-
sentation of the FG in terms of set-theoretical notions, indirectly dictating the
structure of the FG itself by definition. In the case of event structures, however,
such a representation is absent in the definition, which dictates the property of
the structure directly by imposing relationships between ≤ and #. To formally
link the connection we are looking at, we must find a representation for the ES
as well, through a suitable definition of ES-representation and a representation
theorem establishing that an equivalent definition of ES can be given in terms
of such a representation, as done with FGs. This is an interesting endeavour in
general, not limited to the specific task of finding connections between differ-
ent domains: see [7, Section III], which also discusses and details the notion of
representation.

The following definition will turn out to yield adequate representations for
ES’s.

102 M. B. Caminati

Definition 3. Given two binary relations D and U , the set-valued function f
is a representation for (D,U) if

∀x y ∈ dom f. ((x, y) ∈ D ↔ f (x) ⊇ f (y)) ∧ (3)
∀x y ∈ dom f. ((x, y) ∈ U ↔ f (x) ∩ f (y) = ∅) . (4)

Here, we say that, given D and any U with fieU ⊆ fieD, any such a f (if it
exists) is called admissible.

And by adequate we mean that the following representation theorem holds.

Theorem 1 (Representation theorem). Consider two binary relations D
and U , with D finite and fieU ⊆ fieD. Then (D,U) is an event structure if and
only if there is an injective representation f : fieD → 2N\ {∅} for (D,U),

where 2X denotes the finite subsets of X.
Our second representation theorem for event structures, Theorem 2, offers a

bijective construction connecting them to full graphs.

Theorem 2. Consider a finite relation D and a function FD mapping working
as follows on its argument R:

FD := R �→ (fieD × fieD) \ (
D ∪ D−1

) \R.

A bijection between
X := {T |T makes a full graph of D} and
Y := {U |U is admissible for D}
is given by FD|X .

Figure 3 attaches a representation (always existing, according to Theorem 1)
to the ES of Fig. 1. Using FD as in Theorem 3, one can now promptly relate that
ES to the FG of Fig. 2.

4 Formalisation and Verification: Introduction

We start from the top level, that is, the Isabelle renditions of the main theorems.
Theorem 1 is stated as

Listing 1.1. Isabelle rendition of Theorem 1

theorem representation: assumes "finite D"

"Field U ⊆ Field D" shows

"(isLes D U) = (∃ f. isInjection f & Domain f = Field D &

({}:: nat set) /∈Range f & finite ((Union o Range) f)

& isRepresentation f D U)",

Isabelle Formalisation of Original Representation Theorems 103

Fig. 3. A representation for the event structure of Fig. 1. Now, the arrows represent ⊇
and the dashed lines the disjointness relation. Theorem 1 states that any set of events
is an event structure if and only if such a representation is constructible.

while Theorem 2 reads

Listing 1.2. Isabelle rendition of Theorem 2

theorem bijection: assumes "finite D"

"F=(λR. ((Field D × Field D) - (D ∪ D^-1)- R))"

"X={T|T. Field T ⊆ Field D & (∃ f. isInjection f &

({}:: nat set) /∈Range f & Domain f=Field D &

isFgRepr f D T)}"

"Y={U|U. Field U ⊆ Field D & (∃ f. isInjection f &

({}:: nat set) /∈Range f & Domain f=Field D &

isRepresentation f D U)}" shows

"F‘X=Y & F‘Y=X & inj_on F X & inj_on F Y & card X=card Y",

where inj_on F X returns true when the total function F is injective over the set
X, while the notation ^-1 denotes the converse of a relation.

The reader might have noticed a subtle difference between f occurring in
Listing 1.1 and F occurring in Listing 1.2: while both are functions, they are
implemented very differently within Isabelle/HOL. Indeed, F is a standard HOL
function, a primitive notion in higher order logic [16]; on the other hand, f is
implemented as a set of ordered pairs, in the way standard set theory (e.g.,
ZF, Zermelo-Fraenkel set theory [11]) represents functions. The verification pre-
sented here extensively exploits this duality, choosing one construct or the other
depending on the particular function at hand and on the theorem it appears in.
There are several reasons for this approach: one is that the totality of functions
imposed by HOL is sometimes an inconvenience [16] which can be worked around
by choosing the second construct; another one is that set theoretical operations
on functions, such as union, subtraction, conversion (^-1) are sometimes useful,
and are unavailable with the first construct; as an example of this usefulness,
let us take the +< infix operator, which grows a relation P with another one Q,
performing overriding if necessary, and is defined as

(P - (Domain Q × Range P)) ∪ Q.

104 M. B. Caminati

One advantage of this definition is that it works for any pair of relations P and
Q, and at the same time preserves right-uniqueness if P and Q are right-unique
(that is, functions). Additionally, existing facts about the building blocks of +<

(-, ×, Domain, Range, ∪) typically makes proofs about +< easier, helped by the
simplicity of its definition. This operator can be conveniently overloaded to the
point-wise special case:

abbreviation singlepaste where "singlepaste f pair ==

f +< {(fst pair , snd pair)}"

notation singlepaste (infix "+<" 75)

Note that the type of g in f+<g avoids ambiguity for the overloaded +< operator.
On the other hand, set-theoretical functions are actually relations and, as

such, need to be shown to be right unique (by showing they satisfy a dedicated
Isabelle predicate runiq) before they can be treated as functions. Overall, keeping
both constructs has the upside of being able to take advantage of the best of
both worlds [8].

The price to pay for this upside is that we have duplicated versions of most
operations on functions, one for each construct. For example, if F is a stan-
dard HOL function and f is a set theoretical function, then the application
operation on an argument x is written F x for F and f,,x for f; the operation
yielding the image of a set X through the function is F‘X versus f‘‘X, the range
operation is range F versus Range f; the property of injectivity is inj_on ver-
sus isInjection, etc. Other operations, such as union, intersection, domain, ^-1,
restriction (denoted ||), and others, only make sense for set-theoretical functions,
although a restriction operating on HOL functions (and denoted |||) was also
introduced. In this case, naturally, the result is a set-theoretical functions, since
in HOL all functions are total and cannot therefore be restricted directly [16].

In practice, the reader needs not to worry about these subtle differences
deriving from the duality between HOL functions and set-theoretical functions,
which were nevertheless discussed in the digression above to prevent confusion.

The first theorem above, in Listing 1.1, equates the definition of being an
event structure (isLes) to the existence of a representation (whose definition
is contained in isRepresentation), while the second theorem shows that F (the
Isabelle rendition of FD occurring in Theorem 2) is indeed a bijection between
the set Y of admissible conflicts for D and the set X of undirected graphs making
D a full graph. Since this holds for all finite Ds, we have a verified proof of the
mined matches illustrated in Sect. 1 and in [7].

isLes, isRepresentation, isFgRepr are all straightforward from the pen-and-
paper definitions, with the first already used in previous formalisations regarding
event structures [4–6]:

definition "isLes causality conflict =

propagation conflict causality & sym conflict &

irrefl conflict & trans causality &

antisym causality & reflex causality",

Isabelle Formalisation of Original Representation Theorems 105

definition "isRepresentation f D U = ∀x∈Domain f.

(∀y∈Domain f. ((((x, y)∈D)=(f,,x ⊇ f,,y)) &

(((x,y)∈U) = ((f,,x ∩ f,,y)={}))))"

definition "isFgRepr f D T = ∀x∈Domain f.

(∀y∈Domain f. ((((x, y)∈D)=(f,,x ⊇ f,,y)) &

(((x,y)∈T) = ((f,,x) overlaps (f,,y)))))" ,

with the definition of overlapping also very close to the paper version and taking
advantage of the infix notation definition capabilities of Isabelle:

definition "Overlap X Y = (X ∩ Y /∈ {X, Y, {}})"

notation "Overlap" ("_ overlaps ")

Moreover, propagation is a synonym for the following:

definition "isMonotonicOver conflict causality =

∀ x y. (x,y) ∈ causality → conflict ‘‘{x} ⊆ conflict ‘‘{y}",

while reflex was introduced as follows:

definition "reflex P = refl_on (Field P) P",

where refl_on A R returns true when the relation R is reflexive over a subset A

of its domain and range.
All the other Isabelle objects occurring above are part of Isabelle’s standard

library.

5 Formalisation and Verification: Proof Structure
for bijection

We start from the second theorem introduced above, which is the simpler of the
two, in that it relates full graphs to sets of admissible conflict relations for a given
partial order, while the link between ES representations and ES’s is provided by
representation.

The idea for the proof is simple: we just note that the definition of fg-
representation (Definition 2) and of event structure representation (Definition 3)
are very similar, mainly differing by the substitution of the overlapping relation
with that of disjointness; therefore, we introduce the following operator to map
between them:

λR. (unRel ’ D - R),

where the helper unRel’ takes the complement of a relation:

abbreviation "unRel ’ D==(Field D × Field D) - (D ∪ D^-1)".

Now, the idea is to show that we can pass from event structures to full graphs
by applying the above operator to the conflict relation. To show that, it suffices
to show that the set of valid undirected edges for a given D can be obtained from
the set of valid conflict relations for D by applying the operator above: this is
exactly the thesis F‘X=Y & F‘Y=X appearing in the bijection theorem’s thesis. By
bijectivity, it suffices to show the weaker relations F‘X ⊆ F‘Y and F‘Y ⊆ F‘X,
which is done by l53a and l53b below, respectively:

106 M. B. Caminati

lemma l53a: assumes "F=(λR. (unRel ’ D - R))" shows

"F‘{T|T. Field T ⊆ Field D & (∃ f. isInjection f

& ({}:: nat set) /∈Range f & Domain f=Field D

& isFgRepr f D T)} ⊆
{U|U. Field U ⊆ Field D & (∃ f. isInjection f &

({}:: nat set) /∈Range f & Domain f=Field D

& isRepresentation f D U)}"

lemma l53b: assumes "F=(λR. (unRel ’ D - R))" shows

"F‘{U|U. Field U ⊆ Field D & (∃ f. isInjection f &

({}:: nat set) /∈Range f & Domain f=Field D &

isRepresentation f D U)} ⊆
{T|T. Field T ⊆ Field D & (∃ f. isInjection f &

({}:: nat set) /∈Range f & Domain f=Field D &

isFgRepr f D T)}"

l53a and l53b are sufficient to draw the thesis of bijection thanks to the fol-
lowing general propositions (the latter provided by Isabelle’s standard library):

proposition l52a: assumes "finite (X ∪ Y)" "inj_on f X"

"inj_on f Y" "f‘X ⊆ Y" "f‘Y ⊆ X" shows "f‘X=Y & f‘Y=X"

lemma card_image:

assumes "inj_on f A"

shows "card (f ‘ A) = card A"

Finally, the hypotheses inj_on f X and inj_on f Y can be deduced when X

and Y are, respectively, the sets appearing in l53b by another general result:

proposition l55: "inj_on (λX. Y-X) (Pow Y)"

(where Pow takes the power set), which applies when X and Y take the particular
values above thanks to

lemma l54bb: assumes "isFgRepr f D T" "Domain f = Field D"

"Field T ⊆ Field D" shows "T ⊆ (Field D × Field D)-(D∪D^-1)"

and

lemma l54aa: assumes "isRepresentation f D U"

"({}:: nat set) /∈Range f" "runiq f" "Domain f = Field D"

"Field U ⊆ Field D" shows "U ⊆ (Field D × Field D)-(D∪D^-1)",

where the runiq predicate was introduced in the discussion after Listing 1.2.

6 Formalisation and Verification: Proof Structure
for representation

The proof is in the two directions; that is, having a representation implies being
an event structure (theorem main1) and being an event structure implies having
a representation (theorem main2):

Isabelle Formalisation of Original Representation Theorems 107

theorem main1: assumes "runiq f"

"Field D ∪ Field U ⊆ Domain f"

"isRepresentation ’ f D U"

shows

"isPreorder D & isMonotonicOver U D & sym U &

(luniq f → antisym D) & ({} /∈(Range f) → irrefl U)"

theorem main2: assumes "finite D" "isLes D U" obtains

f::"(’a × nat set)set" where "Domain f=Field D &

isInjection f & {} /∈Range f &

finite ((Union o Range) f) & isRepresentation f D U"

6.1 Proof of main2

The proof for main2 is arguably among the most complex in the project, since
it needs to provide a representation for any given ES. It is done by induction
on the cardinality of D, starting with the base case which can be proved by
Sledgehammer [3]:

proposition ll50a: assumes "f={}" "D={}" shows

"isRepresentation f D U & Domain f=Field D &

isInjection f & runiq f & {} /∈Range f"

The induction step now requires to somehow pass from a representation f

of a D’ smaller than a given D to a representation for D itself. This requires to
determine two things:

1. in which sense D’ is smaller than D;
2. how to construct the new representation from f.

For (1), we set D’ and D to differ by exactly one terminal event: that is, D’ is
obtained from D by removing one event s with no children in D.

For (2), we obtain the new representation for D by just growing f with one
new set RA representing s; this growth is done by the +< operator seen in Sect. 4.
Note that this growth does not affect the values f has on the old events. Theorem
extension2 below does exactly that, showing that the function resulting from the
+< operation is still a representation for D. However, for this thesis to hold, there
are three fundamental requirements on RA, the set representing the new event
s; these requirements must hold for any existing event x, and appear in the
hypotheses of extension2 labeled as hypOverlap, hypCausality and hypConflict.
The remaining hypotheses are merely technical, expressing obvious requirements
such as f needing to be a function, s having no children, s being fresh, etc.

theorem extension2: assumes "runiq f" "(s,s)∈D"

"D‘‘{s}⊆{s}" "s /∈Domain f" assumes

hypOverlap: "∀x∈Domain f. ¬(f,,,x ⊆ RA)" assumes

hypCausality: "∀x∈Domain f. RA ⊆ f,,,x = (x∈D^-1‘‘{s}-{s})"

assumes

hypConflict: "∀x∈Domain f. ((f,,,x)∩RA ={})=(x∈U^-1‘‘{s})"

108 M. B. Caminati

"∀x∈Domain f. ((x,s)∈U) = ((s,x)∈U)"

"isRepresentation f (D---s s) (U---s s)"

"F=f+<(s,RA)" "RA �={}" "(s,s) /∈U"

shows

"isRepresentation ’ F D U"

extension2 presents a couple of new constructs: first, the operator --- allows
to remove a pair from a relation, so that, in this case, D and U are extensions
of D---s s and U---s s. Secondly, the operator ,,, is very similar to ,, seen
in Sect. 4, but with a slightly more general definition which is technically more
convenient in some cases. Let us start with the definition of ---:

definition "bouthside P X Y =

P - ((X×Range P) ∪ ((Domain P)×Y))"

notation "bouthside" ("_\\")

definition "singlebouthside P x y = bouthside P {x} {y}"

notation "singlebouthside" ("_---")

This definition uses a special case of \\, which merely removes portions of
domain and range from any relation using elementary set-theoretical operations.

extension2 is what we need to obtain our representation theorem. How-
ever, as we mentioned above, it dictates three conditions on RA (hypOverlap,
hypCausality and hypConflict) for its validity. We therefore need to build a set
RA satisfying them. The following result, one of the most technical, builds a suit-
able RA, by transforming the representation f occurring in extension2 into an
intermediate representation g before inducting.

lemma l46: assumes "isRepresentation f (D---s s) (U---s s)"

"runiq f & D‘‘{s}={s} & sym U &

(let dm=Domain in let R=Range in {} /∈R f &

finite ((Union o R) f) & (Domain D)-{s} ⊆ dm f &

(let d=D---s s in dm f ⊆ Range d & trans d))"

"let d=D---s s in let sparents=d^-1‘‘(D^-1‘‘{s}) in

let sconfl=U^-1‘‘{s} in

let sconcurs=Range d-(sparents ∪ sconfl) in

finite sconcurs & sconcurs⊆fixPts D &

sparents=D^-1‘‘{s}-{s} &

irrefl (U||(sconcurs ∪ Domain f)) &

sconfl ∩ D^-1‘‘{s}={} &

d‘‘sconfl⊆sconfl &

isMonotonicOver U (D|^(D^-1‘‘{s} ∪ (Range d - sconfl)))"

shows

"∃ l. let N=Max ((Union o Range) f)+1+ size l in

let d=Domain in let R=Range in

let RA=(Union o set)((map (Union o R) l)@[{N}]) in

let g=foldl pointUnion f (l@[(D^-1‘‘{s}-{s})×{{N}}]) in

let h=g+<(s,RA) in d g=d f & d h=d f∪{s} & {} /∈R g &

{} /∈R h & isRepresentation g (D---s s) (U---s s) &

isRepresentation h D U & runiq g & runiq h &

(Union o R) h ⊆ {0.. <1+N} &

(luniq f → (isInjection g & isInjection h))"

Isabelle Formalisation of Original Representation Theorems 109

Although harder to read than extension2, l46 has the advantage of having
moved all the requirements on RA back to the given event structure (D,U). This
comes at the price of passing through g, which is obtained from f by repeatedly
applying the following operator pointUnion to the given f over a suitable list of
sets, through the standard functor foldl:

definition "pointUnion ff A =

ff +< ((λx. ff,,,x ∪ A,,,x)|||(Domain A))".

Recall that ||| is the restriction operator, see Sect. 4.

6.2 Proof of main1

The proof of theorem main1 is less technical, and is nicely broken into sublem-
mas each providing a part of the thesis. The following lemma takes care of the
transitivity:

lemma l49a: assumes "runiq f" "Field D ⊆ Domain f"

"∀x0∈Domain f. (∀x1∈Domain f. (((x0, x1)∈D)=(f,,x0⊇f,,x1)))"

shows "Field D ⊆ fixPts D & trans D",

(where definition "fixPts P=Domain(Id∩P)"), while this other proposition takes
care of conflict propagation:

proposition l49bb: assumes "Field D ∪ Range U ⊆ Domain f"

"∀x∈Domain f. (∀y∈Domain f. ((((x, y)∈D)→(f,,x ⊇ f,,y)) &

(((x,y)∈U) = ((f,,x ∩ f,,y)={}))))"

shows "isMonotonicOver U D"

The reflexivity is then granted by combining l49a with this simple but useful
fact:

proposition l45e: "(∀x∈Field P. (x,x)∈P)= reflex P".

When writing the formalisation, a guiding principle was to always try to
derive particular results from weaker results (whether the latter already exist in
some library or not) applicable to more general objects, which can be strength-
ened to be applied to more particular objects needed in the specific formalisation
one is carrying out. This resulted in over 300 lemmas, propositions and theorems,
and around 50 new objects defined.

Isabelle was also used to work out minimal requirements for particular results.
For example, in main1, no finiteness is required over D, and the particular irreflex-
ivity property is explicitly bound to the additional requirement of f not yielding
the empty set as a representation. Similarly, in theorem main1 the antisymmetry
property of event structures is linked to the representation being an injection.
These details add proof-theoretical information to any development, and are
usually hard to keep track of manually with a pen-and-paper proof.

110 M. B. Caminati

7 The Formalisation Process

The code is available at2 https://gitlab.com/users/mbc8/contributed. The for-
malisation of the mathematical objects and results introduced above is roughly
2.7kSLOC and 151Kb (36Kb gzipped) of Isabelle code; a bit more due to spawned
additions to the theories created for event structures for previous papers such
as [4–6]. To quantitatively assess the formalisation, the length of the mathe-
matical parts appearing in [7] was computed by converting the relevant pdf to
text, obtaining 21502 bytes (8229 gzipped) as a result. This gives an apparent de
Bruijn factor of 7, and an intrinsic one of 4.3. There are about 4 pages of mathe-
matical content in [7], whereas the time spent to formalise it has been estimated
in around two weeks of work, giving a formalisation cost of 0.5 weeks per page.
All these numerical parameters are approximate, but help giving an idea of the
process itself [1,17]. It should also be noted that, although Isabelle/HOL imple-
mentations of graph theory abound [15,19–21], the present formalisation used
none of them, for two reasons: first, although the theorems relate event struc-
tures and full graphs, they don’t really need much graph theory. Not even basic
notions as walks, paths, etc. are even mentioned. Secondly, our formalisation
deals with mixed graphs (i.e., having both directed and undirected edges), thus
restricting the available libraries. The theorem representation uses 141 facts
(including lemmas, propositions, theorems and definitions) included in the file
fullGraph.thy. The proofs can be divided into automatically generated ones and
one with an explicit Isar proof (starting with the proof keyword). A minority of
those explicit proofs were generated by Sledgehammer’s isar_proof feature, but
most of them were manually written. In general, the preference is to have small
general facts with simple, usually automatic proofs, which are then put together
for the more complex, manual proofs. This yields a proliferation of lemmas which
are hopefully reusable. This approach goes hand-in-hand with the one provid-
ing definitions built in blocks on top of more general definitions. For example,
pointUnion is defined in terms of ||| and +<, which are in turn defined in terms
of elementary set theoretical operations (cartesian product, union, intersection,
set difference, etc.). One of the longest proof is that of l46 (see Sect. 6.1), which
is 139 lines and about 10Kb. About 10 results have proof longer than 20 lines,
usually substantially longer, and a number of them has to do with the problem of
suitably constructing RA using a reiterated (via foldl) pointUnion operation (see
Sect. 6.1). Most proofs are non-constructive; for example, they do not provide an
algorithm to build representations. However, the operator F appearing in theo-
rem bijection and allowing to pass from representations to fg-representations
and vice-versa is computable.

8 Conclusions

This paper has presented a rare instance of original theorems having been
formalised natively: they were born formalised. More than that, they were
2 The link requires a reasonably recent browser.

https://gitlab.com/users/mbc8/contributed

Isabelle Formalisation of Original Representation Theorems 111

discovered thanks to existing formalisations. Such theorems provide new repre-
sentations for event structures and unexpectedly link the latter to the unrelated
field of computational biology through the notion of full graphs. This permits to
apply results from one domain to another to immediately obtain new theorems
(some such examples are reported in [7]) Therefore, an obvious idea for future
work is to formally verify these new theorems, which would imply a formalisa-
tion for the domain which is currently not formalised: that of full graphs. Indeed,
while event structures have now a reasonable amount of results formalised, no
formalisation exists for more advanced results applicable to full graphs, for exam-
ple those in [9,14].

Looking at automated theorem proving, the origin of the presented results
(obtained via data mining, as explained in [7]), can provide avenues to both
develop new techniques and test existing ones: thousands of potentially inter-
esting matches similar to the one giving rise to the results presented here were
found.

Another future work direction will seek the generalisation of the original the-
orems presented here: one natural idea is the extension of Theorem 1 to infinite
event structures, which is comparable to how Priestley’s representation theorem
generalises (in a by no means trivial manner!) Birkhoff’s [10, Theorem 11.23].

Acknowledgements. I wish to thank the anonymous reviewers and the shepherd for
their time and useful input.

References

1. Asperti, A., Sacerdoti Coen, C.: Some considerations on the usability of interac-
tive provers. In: Intelligent Computer Mathematics: 10th International Conference,
AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference,
MKM 2010, Paris, France, 5–10 July 2010, Proceedings, p. 147 (2010)

2. Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci.
45(11), 1607–1620 (1959)

3. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013)

4. Bowles, J., Caminati, M.B.: A verified algorithm enumerating event structures. In:
Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017.
LNCS (LNAI), vol. 10383, pp. 239–254. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-62075-6 17

5. Bowles, J.K.F., Caminati, M.B.: Balancing prescriptions with constraint solvers.
In: Liò, P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and
Medicine. CB, vol. 30, pp. 243–267. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17297-8 9

6. Bowles, J.K., Caminati, M.B., Cha, S.: An integrated framework for verifying mul-
tiple care pathways. In: Eleventh International Symposium on Theoretical Aspects
of Software Engineering (TASE). IEEE Computer Society, United States (2017)

7. Caminati, M.B., Bowles, J.K.F.: Representation theorems obtained by mining
across web sources for hints. In: 6th International Conference on Information and
Computer Technologies (ICICT). IEEE (2023, in press). https://eprints.lancs.ac.
uk/id/eprint/185196/

https://doi.org/10.1007/978-3-319-62075-6_17
https://doi.org/10.1007/978-3-319-62075-6_17
https://doi.org/10.1007/978-3-030-17297-8_9
https://doi.org/10.1007/978-3-030-17297-8_9
https://eprints.lancs.ac.uk/id/eprint/185196/
https://eprints.lancs.ac.uk/id/eprint/185196/

112 M. B. Caminati

8. Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.): CICM
2014. LNCS, vol. 8543. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-08434-3

9. Cowen, L.J., Kleitman, D.J., Lasaga, F., Sussman, D.: Enumeration of full graphs:
onset of the asymptotic region. Stud. Appl. Math. 96(3), 339–350 (1996)

10. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge Mathe-
matical Textbooks. Cambridge University Press, Cambridge (2002)

11. Enderton, H.B.: Elements of Set Theory. Academic Press, Cambridge (1977)
12. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math.

15(3), 835–855 (1965)
13. Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC Press, Boca Raton (2003)
14. Kleitman, D.J., Lasaga, F.R., Cowen, L.J.: Asymptotic enumeration of full graphs.

J. Graph Theory 20(1), 59–69 (1995)
15. Koutsoukou-Argyraki, A., Bakšys, M., Edmonds, C.: A formalisation of the Balog-

Szemerédi-Gowers theorem in Isabelle/HOL. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs, pp. 225–
238 (2023)

16. Müller, O., Slind, K.: Treating partiality in a logic of total functions. Comput. J.
40(10), 640–651 (1997)

17. Naumowicz, A.: An example of formalizing recent mathematical results in Mizar.
J. Appl. Log. 4(4), 396–413 (2006)

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, London (2002). https://doi.org/10.1007/3-540-
45949-9

19. Nordhoff, B., Lammich, P.: Dijkstra’s shortest path algorithm. Archive of Formal
Proofs (2012)

20. Noschinski, L.: Proof pearl: a probabilistic proof for the girth-chromatic number
theorem. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 393–404.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-8 27

21. Noschinski, L.: A graph library for Isabelle. Math. Comput. Sci. 9(1), 23–39 (2015)
22. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. In: Annales Mathe-

maticae et Informaticae, vol. 41, pp. 219–234 (2013)

https://doi.org/10.1007/978-3-319-08434-3
https://doi.org/10.1007/978-3-319-08434-3
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-32347-8_27

Teaching Linear Algebra in a Mechanized
Mathematical Environment

Robert M. Corless1 , David J. Jeffrey1 , and Azar Shakoori2(B)

1 University of Western Ontario, London, ON, Canada
{rcorless,djeffrey}@uwo.ca

2 Ontario Tech University, Oshawa, ON, Canada
Azar.Shakoori@ontariotechu.ca

Abstract. This paper outlines our ideas on how to teach linear algebra
in a mechanized mathematical environment, and discusses some of our
reasons for thinking that this is a better way to teach linear algebra
than the “old fashioned way”. We discuss some technological tools such
as Maple, Matlab, Python, and Jupyter Notebooks, and some choices
of topics that are especially suited to teaching with these tools. The
discussion is informed by our experience over the past thirty or more
years teaching at various levels, especially at the University of Western
Ontario.

Keywords: mechanization · linear algebra · teaching

1 Overview

“Linear algebra is the first course where the student encounters algebra,
analysis, and geometry all together at once.”

—William (Velvel) Kahan,
to RMC at the 4th SIAM Linear Algebra Conference in Minneapolis 1991

This paper describes the current state of our ongoing practice of teaching linear
algebra in mechanized environments. We report our thoughts, arrived at after
several decades of history in differing technological and administrative support
structures. Some of our teaching philosophy is laid out in [2] and the references
therein (especially for active teaching), but to keep this paper self-contained we
will give a precis of our approach in Sect. 1.1.

We believe that this paper will be of interest for this conference both for its
use of various computational environments (Jupyter notebooks, Maple, Matlab,
and historically the HP48 series of calculators) and for its recommendations of
what is needed for future environments for mechanized mathematics.

Linear algebra as a mathematical subject is second only to Calculus in terms
of overall teaching effort at secondary institutions, accounting for many millions

Supported in part by NSERC and by the MICINN.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 113–129, 2023.
https://doi.org/10.1007/978-3-031-42753-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_8&domain=pdf
http://orcid.org/0000-0003-0515-1572
http://orcid.org/0000-0002-2161-6803
http://orcid.org/0009-0003-6181-4665
https://doi.org/10.1007/978-3-031-42753-4_8

114 R. M. Corless et al.

of dollars spent every year. There are those who believe that we should devote
even more money and effort to it, because linear algebra is foundational for so
many applications: optimization (linear programming), scientific computing, and
analysis of data, for examples.

We take as fundamental that the vast majority of people taking these enor-
mous numbers of courses are not going to choose careers as pure mathemati-
cians. Rather, they are going to become engineers, biologists, chemists, physi-
cists, economists, computer scientists, or something else1. They will likely need
probability, and methods to solve linear equations, and the understanding of
what an eigenvalue is (and perhaps what a singular value is). By and large they
will not need to reason their way out of tricky artificial problems. They will need
graph theory, and how to solve algebraic equations. They will need to learn how
to use computers to help with the drudgery of the computations involved, so
that they can be free to think about what the answers mean, instead of how
they are arrived at. They will need to learn when they can rely on computers to
help, and when they should be suspicious.

Our favourite introductory textbook—out of the myriad possible choices—
arose from an NSF-funded educational project, namely [6]. The book is [14].
Yet this choice is not uncontroversial, and the book is not an especially good
match for a mechanized environment. We see a need for a specialized textbook
to support active learning of linear algebra in a mechanized environment.

1.1 Active Learning in a Mechanized Environment

Within the mathematics mechanization community, it is uncontroversial to assert
that the tools available and being developed will make the learning and practice
of mathematics better. In theory, this is obvious. In practice, there are devils in
the details. For one thing, students (and researchers in industrial environments)
must be trained in the use of the new tools, and the time spent learning these
tools cannot also be spent on learning the mathematical topics. For this reason,
we advocate at least some “re-use” of tools, namely that teaching of mechanized
mathematics should use tools that will also be used for something else in the
student’s or researcher’s career.

Nowadays this largely means Jupyter notebooks and Python, which are both
very popular in data science and neuroscience. In a few years this might mean
a replacement for Jupyter together with Julia (perhaps). The one thing that we
can say about the software environment for mathematics is that it is changing
as rapidly now as it ever has been.

However, it will not be surprising to the attendees of this conference that
there are lessons to be learned from attempts to use mechanized mathematics in
teaching in the past. Indeed the “deep structure” of Python is not so different

1 The diversity of where our students go afterwards makes it tricky to choose motivat-
ing applications. Network flow problems will appeal to a subset of people; electrical
circuits might appeal to another subset. Markov chains are fun for some. Very few
applications are interesting to everybody.

Teaching Linear Algebra 115

from that of Maple, and many aspects of programming in the one language
transfer readily to the other (for instance, dictionaries in Python are analogous
to tables in Maple). More to the point, learning to program in any language
exercises some of the same mental muscles that writing a mathematical proof
does. The analogy between recursion and mathematical induction is very close,
indeed. So, at least some of the material that has been developed with older
technology can be given some syntactic re-sugaring and used in much the same
way. We will give examples.

The most important use of technology, however, is to increase the activity
level of the student. One needs to engage the student’s attention, and get them
to do more than just passively read a text, attend a lecture, watch a video, or
regurgitate on an exam. In some ways, fashion helps with this. The students are
more likely to want to learn Python than (say) C.

1.2 How to Teach with Technology

There are many papers, and indeed books, written on how to teach with tech-
nology. We mention the influential paper [3], which introduced the “White
Box”/“Black Box” model, which we have used with some success. The idea there
is that when teaching a particular technique (for instance, what a determinant
is) the student is not allowed to use the Determinant command; but after they
have understood that topic, whenever they are using determinants in a future
topic (say, Cramer’s Rule) they are allowed to use it. The psychological and
pedagogical point is that people need a certain amount of human action with a
concept before it is internalized. We tend to say that at that point, the concept
has become an answer to the student instead of a question. At that point, the
students can use the technology with assurance, and the feeling that they know
what is going on.

This rule can be used in other ways, and even backwards: use a tool as
a mysterious Black Box for a while, probing its output by giving it various
inputs until some sense of what is going on arises. We have used this reverse
strategy with some success, as well, most commonly with the Singular Value
Decomposition (SVD). See [2] for more strategies for teaching with technology
that have been tested in practice.

1.3 What to Teach, When Technology Is Involved

A much more interesting question arises when one considers that the curriculum
must be continually curated as new tools come available. New topics may be
added (for instance, the SVD), and old topics dropped (for instance, condensa-
tion, or perhaps Gauss–Seidel iteration). Indeed a certain amount of room must
be made in the course for instruction in the responsible use of the new tools.
This is by no means easy, and the students will resist such instruction if they
are not also assessed on the use of the tools. The fact that they will be expected
to use these tools later in life as a matter of course is sometimes not enough to
encourage the students to learn them now. However, society appears to expect

116 R. M. Corless et al.

that we as instructors will be teaching the students the best way to actually
use the material we teach, and (as a matter of course) this means that we must
be teaching the students to use the tools of modern mechanized mathematics.
Those of us who are actually in the classroom know that sometimes compromises
are necessary.

1.4 Outline of the Paper

In Sect. 2, we discuss some of the tools that are available. In Sect. 3 we mention
a few necessary topics that work well with these tools (we do not give a full
syllabus, because of space limitations). In Sect. 4 we discuss methods of assess-
ment. In Sect. 5 we discuss some reactions from colleagues and students to these
changes from a traditional syllabus, and then conclude.

2 Tools

The members of this community will have their own preferred computational
tools, which may not be the same as ours. We will not fully justify our choices
here, but instead sketch only some of the reasons for our choices.

2.1 Proprietary Tools

We do use some proprietary tools, namely Maple and Matlab. Our Universi-
ties have site licences for these, and we have a significant body of experience
with using these tools both for research and for teaching. Many engineering stu-
dents will graduate into work environments that have Matlab, and by the usual
feedback mechanism from other students and other professors, most engineering
students are well-motivated to learn Matlab. Matlab has some especially nice
tools for sparse matrices, and its live scripts are quite usable.

Maple is less well-used in industry, but in some countries it does have a
presence; nonetheless it is a harder “sell” to students, and if the course does
not explicitly give marks for knowing how to use Maple, students are sometimes
reluctant to spend time learning it. But it is powerful enough that students do
appreciate it, once they have made the effort.

There are other proprietary products which also could be used. Maple Learn
is a new one, for instance; but we do not yet have experience with it.

Other places will use Mathematica instead of Maple, but the concerns and
affordances are similar.

2.2 Free Software

Within the free software ecosystem, Python and Jupyter stand out as tools of
choice for a lot of scientists and engineers. For linear algebra, Matlab and Maple
are both superior in terms of capability and in terms of ease of use (in our

Teaching Linear Algebra 117

opinion), especially for sparse matrices, but there is no doubt whatever that
Python and Jupyter are more popular.

Python is remarkable for its support for long integer arithmetic (although
its quiet casting of types behind the scenes can cause problems, especially when
things unexpectedly contain 32 bit unsigned integers instead of the expected
long integers). Learning to program in Python is perhaps easier in the beginning
than is learning any other language (we are aware that opinions differ in this
regard, but surely the statement “the easy parts of Python are easy to learn”
would be uncontroversial).

Julia is newer, more exciting, and extremely impressive for its speed as well
as its ease of use. We anticipate that use of Julia will eclipse that of Python.

2.3 Visualization

Linear algebra might not seem to need visualization tools as much as Calculus
does, but there are several instances where we have found dynamic visualizations
to be extremely helpful. One is exemplified by the old Matlab command eigshow

(which, curiously, has been deprecated and moved into a relatively obscure loca-
tion inside the Matlab environment) which is extremely effective in giving stu-
dents “aha!” moments about both eigenvalues and singular values. One of the
keys to that tool’s effectiveness is (was) the kinesthetic use of the mouse, by the
student, to move the input vectors around. The immediate visual feedback of
where the output eigenvectors (and singular vectors) move to in response is, in
our experience, much more effective than simple animations (or static pictures).

More simply, getting the students to plot eigenvalue distributions, or to plot
eigenvector components, is valuable as an action.

An opportunity, neglected in most courses and textbooks, is the making of
a connection between equation solving and linear transformations. Typically, a
course or book opens with an algebraic account of equation solving. The ques-
tion of how many solutions an equation has is answered by row reduction and the
defining of column space. When transformations are introduced, equation solving
is not reconsidered. The equation Ax = b is a transformation of the unknown x, in
the domain of A, to the range, containing b. The reverse journey is equation solv-
ing, and can be the subject of visualization. In 2-D, everything is rather trivial2,
so software allowing 3-D interactive plotting is much better. Transforming a cube
using a singular matrix, we observe that the cube is squashed flat. An equation,
or the reverse transform, is solvable only if b lies in the plane. See Fig. 1.

2.4 Programming

One of the most venerable introductory programming tasks is to write code for
LU factoring. One can then add partial pivoting, complete pivoting, or rook
pivoting. The topic is accessible, but difficult enough that students will really
feel a sense of accomplishment when they have succeeded.

2 We resisted the temptation to call it “2” trivial.

118 R. M. Corless et al.

Fig. 1. Transformation of the cube with a singular matrix. The three images are an
attempt to show in a static medium a student rotating the plot to see that the cube
is now flat. Ax = b has no solution because b is not in the plane. We show, however, a
projection of b onto the plane, if least-squares is part of the course.

The hard part is to get them actually to do it and not to copy someone else’s
code. This is especially true in engineering classes, where the students are so
heavily pressured that they feel that they must cut corners wherever they can.
One needs to be creative, here, in finding ways to encourage them not to cheat
themselves.

One method that we have found effective is to allow them to work in small
groups, and to allow them to use code that they find on the internet or copy
from other groups provided that they give proper credit and cite where they
found it. Students are frequently surprised that their instructors know about
Stack Overflow or Chegg as well; but then, in a work environment, any and
all tools will be allowed. With some creativity in problem assignment, enough
novel features can be used so that the online resources will only help, not solve
the complete problem for them. That’s unless they use the outright cheating
resources where the students post the problems and pay other people to give
them the solutions, of course. To combat that, you have to encourage a culture
of honesty by being honest yourself and by actually punishing people caught
cheating in that way, so that the honest students feel that they can benefit more
by remaining honest. However, that’s a very hard problem to deal with.

It is however something that people in the mathematics mechanization com-
munity need to be aware of. For some decades now, some fully automatic servers
have been giving step-by-step solutions to math homework problems. This is only
going to get harder for educators to deal with. The statement “if anything can
be automated, it should be automated” ignores the need for the “White Box”
part of education. Some concepts need human manual work to be internalized.

Remark 1. Many students are only comfortable using computers where they
simply enter the data into prescribed fields, and push buttons to achieve pre-
programmed aims. One of the things that we want them to do is to get their
“keyboards dirty” and engage with a programming language. Doing this at the
same time as teaching them the concepts of linear algebra is a stretch. One
should expect only minimal success with getting them to write programs, and
then only if you assess them (give them marks) on their ability to do so. Time

Teaching Linear Algebra 119

spent on that is time that cannot be spent on linear algebra topics. The topics
that we discuss below are chosen in part for their aptness to programming.

3 Topics

In this section we sketch some of the topics that we feel should be encountered
in a modern, mechanized, first course in linear algebra, together with how we
think that some of the described tools can help with the concepts.

3.1 The Language of Matrices

There is a nontrivial transition from systems of equations such as

3x + 4y = 7
2x − 8y = 1 (1)

to the equivalent matrix equations, and most mechanized systems do not have
features to help with this transition. Matlab, for instance, expects the user to
enter the matrices. We spend some time on this transition, and the conventions
that lead to the natural rules for matrix-vector multiplication and thence to
matrix-matrix multiplication. The use of elementary matrices to encode opera-
tions on equations (especially elimination of a variable) is a crucial feature.

With beginning students, this takes time. Hand manipulation is best for this
at the beginning, but after experiencing a certain amount of tedium, the students
begin to appreciate the ability to construct and manipulate equations through
the algebraic rules of matrix multiplication3. The simple syntax of Matlab is
likely the most appreciated: A*b for matrix-vector multiplication is close to A·b, a
common human notation; omitting the · seems natural. Maple’s A.b is somewhat
less natural.

Python’s notation is similar, except for one thing. The issue is transpose.
Some linear algebra approaches are very snobbish, and insist that there is no
such thing as a row vector or column vector, only abstract vectors. Python is
like this. This can be very confusing for students. We have found it best to be
explicit and consistent about dimensions in our teaching, and to treat vectors
normally as column vectors and to treat these as basically indistinguishable from
n × 1 matrices (even that convention needs to be taught: one of our colleagues
memorably put it as “you row with columns (oars) when you row a boat”).

The “four ways” of interpreting matrix-matrix multiplication is something
we explicitly teach. For instance, in one of these four ways, the matrix-matrix
product AB can be usefully thought of by first thinking of B = [b1,b2, . . . ,bn]

3 They quite like Maple’s GenerateMatrix command, which transforms linear equa-
tions with variables into matrix-vector equations. We try to be careful to introduce
this only after the students have some experience in doing the transformation by
hand.

120 R. M. Corless et al.

as a collection of columns, and then AB = [Ab1,Ab2, . . . ,Abn] is then a collec-
tion of the column vectors Abk. Technological support for this can be as simple
as asking the students to construct the matrix on the right hand side explic-
itly, and verifying that the internal matrix multiplication routine produces the
same result. An advanced question is to consider parallelism in matrix-matrix
multiplication using this partition.

We also begin with complex numbers. They will be needed, so we introduce
them first thing. Without technological support, students hate complex numbers.
With technological support, complex numbers become routine.

3.2 Parametric Linear Algebra

One important feature of our course is that it is not purely numerical. Mathemat-
ical modelling frequently involves unknown parameters. One wants the solution
in terms of those parameters (if possible) to make it possible to identify those
parameters by comparing to experimental data. There is also the pedagogical
value of strengthening student’s understanding of formulas, when the answers
are not numbers but instead are formulas.

As is well-known in the computer algebra community, this can make computa-
tions much more costly and indeed some problems are known to have exponential
cost or, worse, combinatorial cost. There is significant literature on the topic,
starting with [19]. Recent work includes [4,8,10] and [11]. We will address this
issue as it comes up in the various topics. The paper [11] raises the important
point that for many practical problems with only a few parameters, perhaps only
one or two, and for problems with structure or low dimension or both, solutions
are perfectly feasible using modern computers and infrastructure.

3.3 Factoring Matrices

Factoring matrices, whether it is the Turing factoring PA = LDUR which
gives the reduced row echelon form [9], or A = QR into an orthogonal factor
Q and upper (right) triangular factor R, or any of several other factorings, is
fundamental for modern linear algebra. There is the Schur factoring A = QTQH

which gives the eigenvalues in a numerically stable way.
We teach the notion of factoring matrices as a method of solving linear sys-

tems of equations (and of eigenvalue problems). This represents a conceptual
advance over Gaussian Elimination, and has several important consequences in
a symbolic context [9,13]. The most important feature in a symbolic context is
that a factoring preserves special cases.

Students can factor matrices by hand (and in the beginning, they should).
This gives them something useful to do. Elementary matrices encoding row oper-
ations, column operations, and row exchanges are all useful to teach because they
consolidate students’ knowledge into a modern framework of understanding of
linear algebra, and they do so in a way that allows the student to be active.

Teaching Linear Algebra 121

Then one can introduce block matrix manipulation and block factoring, with
noncommuting elements. This gives the Schur complement and the Schur deter-
minantal formula.

Interestingly, Maple has recently begun to support matrices over noncom-
muting variables via the Physics package by Edgardo Cheb–Terrab. This allows
students to manipulate block matrices with technology, although they still have
to think about dimensions. This is apparently also possible in SageMath. Here
is an example, showing the Schur complement, in Maple.
>with(Physics):
>Setup(mathematicalnotation = true):
>Setup(noncommutativeprefix = {B}):
>with(LinearAlgebra):
>A := Matrix ([[B[1, 1], B[1, 2]], [B[2, 1], B[2, 2]]])

A :=
[

B1,1 B1,2

B2,1 B2,2

]
(2)

>L := Matrix ([[1, 0], [B[2, 1] · B[1, 1]−1, 1]])

L :=
[

1 0
B2,1B1,1

−1 1

]
(3)

>U := Matrix ([[B[1, 1], B[1, 2]], [0, B[2, 2] − B[2, 1] · B[1, 1]−1 · B[1, 2]]])

U :=
[

B1,1 B1,2

0 B2,2 − B2,1B1,1
−1B1,2

]
(4)

>L · U

[
B1,1 B1,2

B2,1 B2,2

]
(5)

This illustrative usage of simple noncommuting scalar variables to represent
blocks inside matrices, where 1 represents an appropriately-sized identity matrix
and 0 represents a zero block, might disconcert people intent on formalizing the
computations involved. One of the things that would be necessary to properly
formalize this would be a notion of dimension of each block; in practice one
would want the dimensions to be symbolic but to match appropriately. We are
not aware of any widely-available system at present that can deal properly with
this, although there has been research in the area, such as [17,18]. Making a
package widely available that could do such computations correctly would be
very welcome.

122 R. M. Corless et al.

3.4 Determinant

Approaching linear algebra via the determinant is a historically valid approach.
It is pedagogically valid, also, because the students are happier (and better off)
with having something to do, not just think about. We feel that it is “fair game”
that the students be required to memorize the formulas for the determinant and
the inverse of a 2×2 matrix (and in fact this memorization is surprisingly useful
for them, later). Laplace expansion (determinant by minors) can be costly and
numerically dubious but is extremely useful for sparse symbolic matrices. More,
it is crucial in the one “gem” proof that we include in the course simply because
it is so pretty, namely the proof of Cramer’s Rule4 which we learned from [5].

Asking them to memorize a formula for a three-by-three determinant serves
no useful purpose, in our opinion, and letting them use technology for compu-
tation of third or higher-order determinants seems perfectly justified.

We also demonstrate combinatorial growth by showing the determinant of
fully symbolic matrices, for a few small dimensions. Asking them to program
Laplace expansion recursively is also useful for this. One can also ask them to
program the recursive computation of determinant by the Schur determinantal
formula detA = detB11 det(B22 − B21B−1

11 B12). Explicit computation of the
inverse of B11 should be avoided, and can be, by using a suitable factoring. The
end result can be significantly more efficient than Laplace expansion.

We spend time on the geometry of determinant and its relationship to how
area transforms under linear transformations; this is needed in calculus, and
can be motivating for the students as well because it makes a connection to
something that they already know. Computer visualizations help, here. The ones
freely available on YouTube, especially the very professionally produced ones
by 3Blue1Brown such as https://youtu.be/Ip3X9LOh2dk, are hard to compete
with. So, we do not compete, and instead share our favourites (such as that one)
with the student.

With determinant in hand, the students have a worthwhile test for linear
dependence. We extend this using the SVD because in the context of data error
(which our clientele will surely encounter), the notion of exact singularity or
dependence is less useful than that of ill-conditioning or near-dependence.

Least Squares. Matlab will silently return a least-squares solution to overdeter-
mined problems. Or, even, inconsistent problems. Therefore it is incumbent on
us as instructors to teach least squares solutions, in order that the user may
understand and appreciate what the system has done.

3.5 Eigenvalues and Floating-Point

We teach eigenvalues more by the “Black Box”/“White Box” approach, because
computing eigenvalues by first computing the determinant of λI −A and then
4 One of us teaches Cramer’s Rule only because of this beautiful proof. Cramer’s Rule

itself is not particularly useful computationally nowadays, except in very special
situations. But that proof is so beautiful. The students seem to like it, too.

https://youtu.be/Ip3X9LOh2dk

Teaching Linear Algebra 123

solving the polynomial is a pretty brutal hand computation for anything more
than 2 × 2 matrices. We show them what eigenvalues and eigenvectors are by
the use of eigshow or similar, and then set them to compute eigenvalues by the
technology. For instance in Fig. 2 we see how to do this using Maple (from inside
a Jupyter notebook). This requires a discussion of floating-point arithmetic and
backward error analysis, which we do not shy away from. Again, our clientele
will encounter data error and they must learn tools such as the condition number
(which is really just the derivative) to deal with it; putting numerical error on
the same footing as data error gives them the tools to deal with that, as well.
The computation of eigenvalues of small matrices (say, of dimension less than
1000) is a solved problem nowadays.

Indeed we view eigenvalues as answers nowadays because the algorithms are
so good in practice (and have recently been shown to be globally convergent
in theory, as well [1]). We have had units (in some of our courses) where we
talk about companion matrices of various kinds, as tools for solving polynomial
equations and systems of polynomial equations. We discuss this in Sect. 3.6.

Fig. 2. Using Maple from a Jupyter notebook

Eigenvalues of parametric matrices are important, for instance in dynamical
systems, and their study leads directly to bifurcation theory. We do not include
many such problems, but we have used one in particular, namely a perturbation
of Matlab’s gallery(3) matrix to examine the sensitivity of its eigenvalues to
perturbations. This is an advanced topic, however, and occurs only toward the
end of the first course (and much more frequently in the second or later course).

3.6 Special Matrices

There are countless kinds of special matrices. Likely the most important in prac-
tice are symmetric (Hermitian) positive definite matrices; others include orthogo-
nal (unitary) matrices, triangular matrices, banded matrices, circulant matrices,
Toeplitz matrices, Hankel matrices, and totally positive matrices. Getting the
students to write programs that generate some of these, or factor some of these
in special ways, is quite interesting. The Cayley transform is quite important

124 R. M. Corless et al.

nowadays (see e.g. [15]) in control theory and in some kinds of scientific comput-
ing, and getting students to parameterize orthogonal matrices using symmetric
matrices and the Cayley transform may teach several lessons.

While this course should include some of the most common and useful kinds
of special matrices, we feel it is also important to let the students invent some
of their own kinds of matrices. Examples of student-generated matrices include
“checkerboard” matrices which alternate nonzero entries with zero entries and
“anti-tridiagonal” matrices. We have found it fun to let the students play, as
they program. Sometimes even their bugs give rise to interesting developments.

Symmetric Positive Definite Matrices

“Symmetric positive definiteness is one of the highest accolades to which
a matrix can aspire.”

—Nicholas J. Higham, in [12, p. 196]

Symmetric Positive Definite (SPD) matrices arise very often in practice. For an
enlightening discussion of just why this is so, see [20]. The inductive proof of
unicity of the Cholesky factoring for SPD matrices (see e.g. [12, p. 196]) can
be turned into a recursive program for its computation, and this is a useful
programming exercise for the students. The many applications of SPD matrices
can be motivating for students, but having the technology to solve them is clearly
essential.

Companion Matrices

“What does this all have to do with matrices? The connection is through
the companion matrix.”

—Cleve Moler, in [16].

Another thing technology really makes possible is the use of companion matrices
and resultants in the solution of polynomial equations. The topic is surprisingly
rich, not just useful. Algebraically, companion matrices for a monic polynomial
p(z) are matrix representations of multiplication by z in the ideal generated by
p(z). Companion matrices are not unique, and indeed there are open problems as
to which is the “best” companion for a given polynomial p(z), as we will discuss.
Extending the idea to non-monic polynomials leads to generalized eigenvalue
problems p(z) = det(λB−A) where now B is not necessarily the identity matrix
(or of full rank). Using other polynomial bases (e.g. Chebyshev, Bernstein, or
Lagrange interpolational bases) leads again to surprisingly deep waters. Given a
(monic) polynomial over the integers, one can ask which companion matrix over
the integers has minimal height? The “height” of a matrix is the infinity norm
of the matrix made into a vector; that is, the largest absolute value of any entry.
No good algorithms for this problem are known [7]. In the case of Mandelbrot
polynomials p0 = 0 and pn+1(z) = zp2n(z) + 1 there are companions of height 1,
while the maximum coefficient of pn(z) is exponential in the degree of pn(z) (and
therefore doubly exponential in n). Smaller height matrices seem to be easier to
compute eigenvalues for.

Teaching Linear Algebra 125

3.7 Proof and Formal Methods

“I have absolutely no interest in proving things that I know are true.”

—the American physicist Henry Abarbanel, at a conference in 1994

Entering students in North America have long since been deprived of an intro-
ductory course on proof (which was, classically, Euclidean geometry). Typically
the first course in which they encounter “proof” nowadays is their first linear
algebra class. For the clientele described previously, we feel it is more important
to motivate proof at this stage. Students who are asked to listen to a proof of
something they consider obvious (or for which they would be happy to take the
professor’s word, such as detAB = detA · detB) do not learn much. Ed Bar-
beau put it thus: “there should be no proof without doubt” (on the part of the
student).

Asking students to write programs is, we believe, a useful intermediate step.
In addition to developing the necessary habit of precise thinking, writing pro-
grams makes students receptive to the idea of proving their programs correct
(after they have witnessed a few failures, which are somehow always surprising
to beginning programmers).

4 Assessment

Assessment is critical for the success of a course. Students want bribes (marks)
in order to spend time on any particular topic. If a topic is not assessed, then it
can be safely skipped and the student can rationally spend their effort on topics
that actually will be assessed.

The recent introduction of chat AIs that generate plausible-sounding answers
has thrown a further monkey wrench into assessment of courses by project, a
method that we have heretofore favoured. It is even the case that these chat AIs
can, perhaps by plagiarising GitHub and other software sources, provide readable
(and sometimes even working) software to students. We may have to go back
to individual exams with direct supervision: essentially, oral examinations. This
is so labour intensive that it seems impractical for the very large linear algebra
classes that our Universities want us to teach, however.

There are several strategies for written exams that still may be of interest,
however, and we give some of them here. The first is the venerable multiple-
choice exam. Constructing good multiple-choice exams is a skill that can be
taught, and there is significant research on it.

A second assessment strategy is to use computer-generated individual ques-
tions, where the student is expected to work at their computer (or at a locked-
down lab computer) and provide full notes on their work. These kinds of
exams are very stressful for students, however. They are even more stressful
if intrusively-monitoring software is involved (and there may be human rights
abuses committed by those pieces of software which the instructor or adminis-
tration will be responsible for).

126 R. M. Corless et al.

Since we want to include the use of mechanized tools into the assessment,
testing in a computational environment is quite natural. If the students know
that they will be tested on their competence in (say) Python, then they will
spend some effort to learn it. Incorporating personalized questions into such
exams then becomes both feasible and informative.

5 Promoting Agreement on Syllabus Change

Some of our colleagues and administrative structures have been very support-
ive of innovation along these lines. Others have been, well, reactionary. Using
technology is more labour intensive than is re-using the same old linear algebra
textbooks, problem sets, and exam questions. Using technology also requires con-
tinual re-training because the technologies keep changing. Some people resent
being told that they have to change in order to do their jobs well in a changing
environment.

We give an example here of a suboptimal linear algebra exam question, taken
from last year’s multi-section course at Western5, taught both by progressive and
regressive colleagues. The exam took place without notes, books, calculators, or
computers. Students are allowed by law (in some parts of the world) to have
access to their phones, but many universities will attempt to restrict that, too.
The exams at Western typically have quite alarming language on the cover sheet
saying that students caught with a cell phone will be given a zero. We feel that
this is a lamentable state.

The question was: Find the inverse of the matrix

A =

⎡
⎣ 2 1 0

1 0 −1
0 1 1

⎤
⎦ . (6)

This question does have a few virtues. For one, it is something the students can
do. It was worth three marks, which the students could grind out.

But it also has some serious flaws. Probably the most serious is that it does
not test anything that the students will really need in their future use of linear
algebra. There were calculators thirty years ago that could solve this problem
in under a second. No one is going to invert 3 × 3 matrices by hand any more,
unless there is something special about it. [There is something special about
this matrix; it is unimodular, so that the elements of the inverse are all integers.
That didn’t happen by chance, so we suspect the examiners chose the question
so as not to strain the student’s arithmetic overmuch.]

More, not only will students not need to invert by hand, they usually will not
need to invert at all. The inversion of matrices is really only of very specialized
concern nowadays. There are statistical applications where the elements of the
inverse are what is wanted; but for the most part, “Anything that you can do

5 A simple web search for “Math 1600 Western” brings the entire exam up, if you wish
to see the entire context.

Teaching Linear Algebra 127

with the matrix inverse can be done without it.” Matrix factorings are much
more important.

Students are rational creatures. If this is the kind of question that they have
to answer in order to pass, then they will spend their time trying to find strategies
to give good answers to this kind of question. They will do that at the expense
of time spent learning to program (for instance).

This represents a significant lost opportunity for the student and for this
University. Indeed, the absolute explosion in on-line courses (for instance, at
brilliant.org, where they claim that interactive learning is six times more effective
than lectures) is a direct response to the failure of many universities to adapt
their courses. Students resent having to pay twice to get the knowledge they
actually want and need. The next few years are going to be “interesting.”

One way to repair that particular question might be to ask if the matrix
factors into a lower triangular and upper triangular factor, without pivoting.
The matrix is tridiagonal, so this variation has fewer computations, although
this time involving fractions (just 1/2 though). This is something that could
be asked even if the student has access to technology during the exam. The
details of the computation are not that important—it is just arithmetic—but
the question of whether or not the factoring can be done without pivoting would
require some understanding of the process involved.

6 Concluding Remarks

The state of the art for learning linear algebra is, to our minds, unsatisfactory,
though getting better. Technological platforms are split: some are proprietary,
while some others are unsupported at the level needed for reliable use. Methods
and syntax are not standardized (or, rather, there are too many standards). The
textbooks largely do not integrate mechanized mathematical tools into the learn-
ing process. [A very notable exception is [21], which uses Matlab extensively.]
Yet failing to use a mechanized approach does a true disservice to students who
will go on to practice linear algebra in some kind of mechanized environment.

The role of technology, including formal methods, is therefore multiplex. We
believe that people must be trained in its use. In particular, people must be
trained to want proof, and to want formal methods. We feel that having students
write their own programs plays a motivating role in that training as well as a
developmental role. The first linear algebra course is important not only because
its tools and concepts are critical for science, but also as a venue for teaching
the responsible use of mathematical technology.

Acknowledgements. This work was partially supported by NSERC under RGPIN-
2020-06438 and RGPIN-2018-06670 and by the grant PID2020-113192GB-I00 (Math-
ematical Visualization: Foundations, Algorithms and Applications) from the Spanish
MICINN. We also acknowledge the support of the Rotman Institute of Philosophy. We
thank the referees for their thoughtful and constructive comments.

https://brilliant.org

128 R. M. Corless et al.

References

1. Banks, J., Garza-Vargas, J., Srivastava, N.: Global convergence of Hessenberg
shifted QR I: Dynamics (2022)

2. Betteridge, J., Chan, E.Y.S., Corless, R.M., Davenport, J.H., Grant, J.: Teach-
ing programming for mathematical scientists. In: Richard, P.R., Vélez, M.P., Van
Vaerenbergh, S. (eds.) Mathematics Education in the Age of Artificial Intelligence,
vol. 17, pp. 251–276. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
86909-0 12

3. Buchberger, B.: Should students learn integration rules? ACM SIGSAM Bull.
24(1), 10–17 (1990)

4. Camargos Couto, A.C., Moreno Maza, M., Linder, D., Jeffrey, D.J., Corless, R.M.:
Comprehensive LU factors of polynomial matrices. In: Slamanig, D., Tsigaridas,
E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol. 11989, pp. 80–88. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-43120-4 8

5. Carlson, D., Johnson, C.R., Lay, D., Porter, A.D.: Gems of exposition in elemen-
tary linear algebra. Coll. Math. J. 23(4), 299–303 (1992). https://doi.org/10.1080/
07468342.1992.11973473

6. Carlson, D., Johnson, C.R., Lay, D.C., Porter, A.D.: The linear algebra curriculum
study group recommendations for the first course in linear algebra. Coll. Math. J.
24(1), 41–46 (1993)

7. Chan, E.Y., Corless, R.M.: Minimal height companion matrices for Euclid polyno-
mials. Math. Comput. Sci. 13, 41–56 (2019)

8. Corless, R.M., Giesbrecht, M., Rafiee Sevyeri, L., Saunders, B.D.: On parametric
linear system solving. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov,
E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 188–205. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60026-6 11

9. Corless, R.M., Jeffrey, D.J.: The Turing factorization of a rectangular matrix. ACM
SIGSAM Bull. 31(3), 20–30 (1997)

10. Corless, R.M., Moreno Maza, M., Thornton, S.E.: Jordan canonical form with
parameters from Frobenius form with parameters. In: Blömer, J., Kotsireas, I.S.,
Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 179–194.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72453-9 13

11. Deng, S., Reid, G., Jeffrey, D.: Parametric linear algebra in maple: reduced row
echelon form. In: Proceedings of SYNASC, pp. 33–36. IEEE (2021)

12. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM,
Philadelphia (2002)

13. Jeffrey, D.J., Corless, R.M.: Linear algebra in maple R©. In: Hogben, L. (ed.) Hand-
book of Linear Algebra, 2nd edn., pp. 89–1. Chapman and Hall/CRC, Boca Raton
(2013)

14. Lay, D.C., Lay, S.R., McDonald, J.: Linear Algebra and Its Applications. Pearson
Education, New York (2016)

15. Mehrmann, V.: A step toward a unified treatment of continuous and discrete time
control problems. Linear Algebra Appl. 241, 749–779 (1996)

16. Moler, C.: Roots–of polynomials, that is (1991). https://www.mathworks.com/
company/newsletters/articles/roots-of-polynomials-that-is.html

17. Sexton, A., Sorge, V.: Abstract matrices in symbolic computation. In: Proceedings
of ISSAC. ACM, July 2006. https://doi.org/10.1145/1145768.1145820

18. Sexton, A.P., Sorge, V., Watt, S.M.: Computing with abstract matrix structures.
In: Proceedings of ISSAC, pp. 325–332 (2009)

https://doi.org/10.1007/978-3-030-86909-0_12
https://doi.org/10.1007/978-3-030-86909-0_12
https://doi.org/10.1007/978-3-030-43120-4_8
https://doi.org/10.1080/07468342.1992.11973473
https://doi.org/10.1080/07468342.1992.11973473
https://doi.org/10.1007/978-3-030-60026-6_11
https://doi.org/10.1007/978-3-319-72453-9_13
https://www.mathworks.com/company/newsletters/articles/roots-of-polynomials-that-is.html
https://www.mathworks.com/company/newsletters/articles/roots-of-polynomials-that-is.html
https://doi.org/10.1145/1145768.1145820

Teaching Linear Algebra 129

19. Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comput.
13(4), 353–394 (1992)

20. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley (1986)

21. Van Loan, C.F., Fan, K.Y.D.: Insight Through Computing - A MATLAB Intro-
duction to Computational Science and Engineering. SIAM, Philadelphia (2010)

Highlighting Named Entities in Input
for Auto-formulation of Optimization

Problems

Neeraj Gangwar(B) and Nickvash Kani

Electrical and Computer Engineering, University of Illinois Urbana-Champaign,
Urbana, IL, USA

{gangwar2,kani}@illinois.edu

Abstract. Operations research deals with modeling and solving real-
world problems as mathematical optimization problems. While solving
mathematical systems is accomplished by analytical software, formulat-
ing a problem as a set of mathematical operations has been typically
done manually by domain experts. Recent machine learning methods
have shown promise in converting textual problem descriptions to corre-
sponding mathematical formulations. This paper presents an approach
that converts linear programming word problems into mathematical for-
mulations. We leverage the named entities in a problem description and
augment the input to highlight these entities. Our approach achieves
the highest accuracy among all submissions to the NL4Opt competition,
securing first place in the generation track.

1 Introduction

Operations research deals with modeling and solving real-world problems as
mathematical optimization problems [1,2,8,14]. There exist optimization solvers
powered by efficient algorithms [5,9] that can be used to solve these problems.
However, these solvers do not directly take problem descriptions as input, and
domain experts are required to model a problem into a mathematical formula-
tion. Ramamonjison et al. [12] described an interactive system that can suggest
a formulation based on the natural language description of a linear programming
problem. Their system consists of two main components – an entity tagger to tag
the named entities in an input problem description and a formulation generator
to generate a mathematical formulation. They also published a dataset of linear
programming problems with two tasks – named entity tagging and mathematical
formulation generation.

In this paper, we focus on formulation generation. Figure 1 shows an overview
of the task. The input to formulation generation consists of a word problem,
labeled semantic entities, and the order mapping of variables. We propose a
novel approach that leverages the labeled semantic entities. In particular, we
highlight the named entities in a problem description using XML-like start and
end tags. Our results show that a sequence-to-sequence (Seq2Seq) model, like
BART [6], can leverage this information while generating a mathematical formu-
lation. Our approach achieves the highest accuracy among all submissions to the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 130–141, 2023.
https://doi.org/10.1007/978-3-031-42753-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_9

Highlighting Named Entities for Auto-formulation of Optimization Problems 131

generation track of the NL4Opt competition.1 Unlike the NL4Opt Generation
dataset, labeled named entity information is not available in most applications.
We show that these applications may still benefit by using an existing named
entity recognition (NER) system to predict and highlight the named entities
in an input. Lastly, we present an ablation study, highlighting the impact of
different components of our model. Though our approach fails in certain cases,
the results indicate that deep learning methods may prove helpful in automat-
ing the formulation generation process. Furthermore, it may be used to provide
suggestions to users, reducing manual effort, similar to a system described in
Ramamonjison et al. [12]. Our source code is available on GitHub.2

2 Related Work

The problem of identifying the named entities in linear programming word prob-
lems and generating their mathematical formulation was proposed by Ramamon-
jison et al. [12]. In their work, they provided a baseline model for the formulation
generation task, which used a two-step mapping approach. They used BART-
base with copy mechanism [6,13] to generate an intermediate representation
of the problem, which was then parsed into a canonical formulation. Jang [4]
used entity tag embeddings with BART-large [6] to leverage the named entity
information and introduced data augmentation in their approach. Ning et al. [10]
used prompt-guided inputs along with adversarial learning. Their approach used
BART-base and achieved competitive performance compared to the approaches
utilizing BART-large. On the other hand, He et al. [3] used multitask learning
and input pre-processing. They augmented the input problem description by
encapsulating the named entities in tags corresponding to their labels. Their
approach used prompt-guided inputs and generated either an objective or a con-
straint at a time. Prasath and Karande [11] used CodeT5-base [17] to generate an
intermediate representation and a custom beam search with rule-based scoring.
They trained their model on auxiliary tasks, such as predicting the number of
constraints, variable names, parameter values, and objective direction, in addi-
tion to the primary task.

Our approach utilizes named entity information and augments the input
problem description by encapsulating the named entities in tags corresponding
to their labels. We use BART with copy mechanism to generate an interme-
diate representation, which is then parsed into a canonical formulation. Differ-
ing from He et al. [3], Ning et al. [10], and Ramamonjison et al. [12], we use
“all-at-once” strategy and generate the objective and constraints for an input
problem at once. We do not use multitask learning or adversarial learning in
our approach. Unlike Jang [4], our approach does not have an additional hyper-
parameter. Despite its simplicity, our approach achieves better results than the
more complex approaches, suggesting all that is needed for optimal performance
is well-tagged data and a large model.
1 https://nl4opt.github.io.
2 https://github.com/mlpgroup/nl4opt-generation.

https://nl4opt.github.io
https://github.com/mlpgroup/nl4opt-generation

132 N. Gangwar and N. Kani

Fig. 1. (Top) An example input-output pair from the dataset consists of a problem
statement, labeled named entities, and the order mapping of variable mentions. (Bot-
tom) The algebraic and the corresponding canonical formulations are shown on the
right and left, respectively. We use the canonical formulation to represent a mathemat-
ical formulation in our implementation for evaluation. In a canonical formulation, it is
assumed that the objective is always minimized, and the constraints are upper bounds.
For a maximization objective or a lower bound constraint, the signs of the parameters
are inverted.

3 Proposed Approach

Named entities carry important semantic information. For generating mathe-
matical formulations from linear programming word problems, the highlighted
named entities can be utilized to form the objective and constraints for an input
problem (Fig. 1). We leverage this information and hypothesize that this addi-
tional information can help a Seq2Seq model in generating mathematical for-
mulations. In our proposed approach, we highlight the named entities in an input
problem description before passing it to a Seq2Seq model.

Named Entity-Based Augmentation. We use XML-like start and end tags
to highlight the named entities in an input problem description. We create XML-

Highlighting Named Entities for Auto-formulation of Optimization Problems 133

Fig. 2. An example of the named entity-based augmentation. In an input problem
description, the named entities are encapsulated inside XML-like start and end tags of
their respective types.

Fig. 3. Objectives and constraints are converted to an XML format to form interme-
diate representations. This figure shows the conversion for an objective.

like tags for all named entity labels and encapsulate each entity in the input
within these tags. Figure 3 shows an example of this augmentation.

Output. Similar to Ramamonjison et al. [12], we follow a two-stage approach
for generating a canonical representation. We use BART to generate an inter-
mediate representation, which is then parsed into a canonical representation for
evaluation. The intermediate representation consists of a set of declarations in
an XML format, where a declaration corresponds to either an objective or a con-
straint. Figure 3 shows an example of converting an objective to an intermediate
representation. A similar approach is followed for constraints.

The canonical form always minimizes an objective. In the case of a maxi-
mization objective, the sign of each objective parameter is inverted. Similarly,
inequality constraints are always assumed to have a “≤” operator. In the case of
a “≥” operator, the sign of each constraint parameter is inverted.

Model. Our model is similar to the one presented in Ramamonjison et al. [12].
We use BART with copy mechanism in our experiments. The copy mechanism is
useful in cases where certain tokens in the input need to be directly copied to the
output. The mechanism allows for the preservation of specific information, for
example, parameters, limits, etc. in the formulation generation task. The model
uses the mean of the cross attention weights to generate a probability distribution
over the input tokens, Pinput, and combines it with the output distribution,
Pvocab, to compute the final distribution of a token as

P = pgenPvocab + (1 − pgen)Pinput (1)

134 N. Gangwar and N. Kani

Table 1. Different constraint types and their mathematical form. Here, x and y are
variables and a, b, and c are constants. Refer to Table 4 in Ramamonjison et al. [12]
for details.

Constraint Type Mathematical Form

sum x+ y ≤ c, x+ y ≥ c

upper bound x ≤ c

lower bound x ≥ c

linear ax+ by ≤ c, ax+ by ≥ c

ratio x ≤ c(x+ y), x ≥ c(x+ y)

xy x ≤ y, x ≥ y

xby x ≤ by, x ≥ by

Here, pgen ∈ [0, 1] is a soft switch to decide between generating a token from the
vocabulary or copying it from the input. It is computed using other learnable
parameters of the model. We find that the copy mechanism has a small impact on
the performance when the input problem description is augmented to highlight
the named entities.

Lastly, we add new tokens, corresponding to the XML tags for the named
entity labels, to the tokenizer and initialize their weights randomly at the time
of training. At inference, we use greedy decoding to generate an output.

4 Experiments

4.1 Dataset

We use the NL4Opt Generation dataset for our experiments.3 This dataset con-
sists of 1101 examples, divided into the train, dev, and test splits composed
of 713, 99, and 289 examples, respectively. Each example consists of a linear
programming word problem, labeled semantic entities, and the order mapping
of named variables. These problems are from the advertising, investment, sales,
production, science, and transportation domains. The training split consists of
problems from the first three domains. The dev and test splits contain problems
from all six domains to evaluate the model’s ability to generalize for domains it
has not seen during training. The dataset divides constraints into different cat-
egories. Table 1 shows different constraint types and their mathematical form.
Refer to Ramamonjison et al. [12] for more details.

4.2 Training Details

The PyTorch transformers library implementation of the base and large versions
of BART is used [18]. We use the AdamW optimizer [7] with a learning rate of

3 Available at https://github.com/nl4opt/nl4opt-competition.

https://github.com/nl4opt/nl4opt-competition/

Highlighting Named Entities for Auto-formulation of Optimization Problems 135

Table 2. Accuracy achieved by our approach on the test set and a comparison with
the existing approaches. For our approach, we report the best and mean (shown in
brackets) accuracy values. The values for our approach are with greedy decoding.

Approach Accuracy

Jang [4] 0.878
Ning et al. [10] 0.867
He et al. [3] 0.780
Prasath and Karande [11] 0.896
Our Approach
w/ BART-base 0.834 (0.812 ± 0.019)
w/ BART-large 0.929 (0.896 ± 0.025)

5×10−5 and a weight decay of 10−5. Batch sizes of 16 with gradient accumulation
for two steps and 32 with no gradient accumulation are used for BART-large
and BART-base, respectively. The models are fine-tuned for 400 epochs and are
evaluated at the end of every epoch. We use a learning rate schedule with a linear
warm-up for the first five epochs and a linear decay after that. The experiments
are run on one A100 40 GB GPU.

4.3 Evaluation Metrics

The model is evaluated on declaration-level accuracy [12]. The accuracy is
defined as

Accuracy = 1 −
min

{∑N
i=1 FPi + FNi,Di

}

∑N
i=1 Di

(2)

where N is the number of test examples. For ith example, Di is the number of
ground truth declarations, FPi is the number of non-matched predicted decla-
rations and FNi is the number of excess ground truth declarations.

4.4 Results

Table 2 shows the accuracy achieved by our approach. We initialize the training
using five seeds and report the best and mean accuracies achieved by our models
on the test set. Our approach achieves the best accuracy among approaches that
use Seq2Seq models and fine-tune them on the generation dataset.

4.5 Error Analysis

To understand the errors made by our model, we analyze examples from the test
set for which our best model makes a mistake in either an objective, a constraint,
or both. For a few examples, the ground truth output is not correct, hence we do

136 N. Gangwar and N. Kani

not consider them for the analysis. It should be noted that the model predicts
the output correctly for half of these examples.

The model makes a mistake in predicting the objective for 11 examples. While
these errors are caused by incorrect parameter predictions, for five examples, the
model considers all variables as part of the objective, even though the objective
is defined only on a subset of the variables. The train set contains a very small
number of such examples, which may explain the model’s inability to handle
these cases during evaluation.

For 41 examples, the model makes an error while predicting one or multiple
constraints. These errors fall into different buckets:

– The predicted constraint operators are incorrect. For example, the ≤ operator
is predicted instead of the ≥ operator or vice versa.

– The model does not generate all constraints or generates excess constraints.
– The predicted constraint type is incorrect. For example, sum is predicted

instead of linear.
– The constraint parameters are incorrect. For example, 2x+ 3y ≤ 100 is pre-

dicted instead of x+ y ≤ 100.

Almost half the errors are caused by an incorrect constraint operator pre-
diction. It is interesting that these errors stem from the model predicting the
“≤” operator instead of the “≥” operator. We only notice one example for which
the model outputs the “≥” operator instead of the “≤” operator, and it is not
part of the 41 examples due to a missing constraint in the ground truth output.
Furthermore, the majority of the constraint operator errors are in xy and lin-
ear constraints. It may be attributed to the fact that the “≤” operator occurs
in 693 linear and 45 xy constraints, whereas the “≥” operator occurs in 323
linear and 4 xy constraints in the train set. But this imbalance is present for
other constraint types. Another possible reason for this behavior may be the
overall imbalance in the train set which contains 1245 constraints with the “≤”
operator and 743 constraints with the “≥” operator, causing the model to lean
more towards the former.

4.6 Ablation Study

This section discusses the impact of the named entity-based augmentation, copy
mechanism, and model size on the model performance. We experiment with
BART-base and BART-large and fine-tune the models by removing the named
entity-based augmentation and copy mechanism one at a time. We fix the other
hyperparameters, initialize the training with five seed values, and report the best
and mean accuracies. The results of the ablation study are shown in Table 3.

It can be observed from these results that the named entity-based augmen-
tation plays a major role in improving the performance of both BART-base and
BART-large. This shows that highlighting named entities in the input text helps
the model generate output formulations correctly. Furthermore, while the copy
mechanism improves the best accuracy, it does not have a positive effect on the

Highlighting Named Entities for Auto-formulation of Optimization Problems 137

Table 3. Results of the ablation study. We report the best and mean accuracy values
achieved by the models with greedy decoding on the test set. Here, NEA and CM stand
for the named entity-based augmentation and copy mechanism, respectively.

BART-base BART-large

w/o CM 0.827 (0.812 ± 0.012) 0.908 (0.902 ± 0.007)
w/o NEA 0.681 (0.663 ± 0.016) 0.863 (0.849 ± 0.015)
w/o NEA and CM 0.681 (0.657 ± 0.015) 0.865 (0.839 ± 0.021)

mean accuracy. It should also be noted that the performance improves signifi-
cantly by adding the named entity-based augmentation and copy mechanism on
top of BART-base, making its performance comparable to the vanilla version
of BART-large. These results indicate that data pre-processing and specialized
architectures may offset the need for a larger architecture.

5 Datasets Without Labeled Named Entities

In most applications, the labeled named entities are not available with the
datasets. For these datasets, NER systems may be used to identify the named
entities. The state-of-the-art NER systems achieve >90% accuracy on the
CoNLL 2003 and NL4Opt NER tasks [3,12,15,16]. In this section, we inves-
tigate whether using these systems to label the named entities can be helpful in
formulation generation.

5.1 Noisy Named Entities

The existing NER systems can identify the named entities with a certain accu-
racy. The errors from these systems fall into one of the following buckets:

1. A named entity span is missed by the system.
2. A named entity span is identified correctly but labeled incorrectly.
3. An excess named entity span is identified by the system.

To simulate this behavior, for a fraction of labeled spans, p, we either drop
the span, mislabel it, or change its start and end positions, with an equal mix.
We ensure that no two spans overlap. For our experiments, two datasets with
noisy named entities are generated for p = 0.2 and p = 0.5. To quantify the
extent of the noise, we use the micro-averaged F1 score to compare the named
entities in the generated and original datasets. Table 4 shows these scores, and
Fig. 4 shows an example from the noisy datasets.

138 N. Gangwar and N. Kani

Table 4. Comparison of noisy named entities with the original ground-truth labels
(micro-averaged F1).

p Train Dev Test

0.2 0.8333 0.8397 0.8353
0.5 0.5783 0.5742 0.5822

Fig. 4. An example of the input from the noisy dataset generated using p = 0.5. See
Fig. 1 for the ground truth named entity spans and their labels.

5.2 Results

We train and evaluate our approach on the noisy datasets generated through
the process mentioned in the previous section. Table 5 shows the results of this
experiment for p = 0.2 and p = 0.5. It can be observed that the named entity-
based augmentation improves the performance even with a noisy named entity
tagging compared to the vanilla BART models (See Sect. 4.6 for the vanilla
BART results). BART-base is affected more by the noise compared to BART-
large. This is expected as BART-base also benefits more from the named entity-
based augmentation.

5.3 Generality of the Proposed Approach

The experiments with noisy datasets indicate that the named entity-based aug-
mentation may prove helpful even with noisy named entity labels. However, the
noise introduced in Sect. 5.1 may not reflect the true behavior of an imperfect
named entity recognition (NER) system. To understand this behavior further,
we train an NER model from Ramamonjison et al. [12] on the NL4Opt NER
dataset and use it to predict the named entity spans and their labels.4 As the
NL4Opt NER dataset contains the same linear programming problems as the
generation dataset, the model predictions are almost perfect for the training set.
It achieves F1 scores of 0.9871, 0.8796, and 0.9049 on the train, dev, and test
sets for named entity prediction. A near-perfect named entity tagging for the
train set and a noisy one for the dev and test sets may not represent a real-
world NER system trained independently of the NL4Opt dataset. To alleviate
this issue, we drop a fraction of the predicted named entities from the train set

4 Refer to https://github.com/nl4opt/nl4opt-subtask1-baseline for training an NER
model. We use the default configuration for training.

https://github.com/nl4opt/nl4opt-subtask1-baseline/

Highlighting Named Entities for Auto-formulation of Optimization Problems 139

Table 5. Accuracy achieved by our approach on the datasets with noisy named entities.
A lower value of p implies more accurate named entity labeling.

BART-base BART-large

Synthetic Noise
p = 0.2 0.771 (0.746 ± 0.015) 0.900 (0.887 ± 0.015)
p = 0.5 0.724 (0.711 ± 0.011) 0.902 (0.887 ± 0.010)
Predicted NERs
Train Set (F1 = 0.9871) 0.670 (0.663 ± 0.007) 0.844 (0.827 ± 0.021)
Train Set (F1 = 0.9062) 0.703 (0.684 ± 0.012) 0.885 (0.860 ± 0.022)

so that the resulting F1 score for the train set becomes 0.9062. This simulates an
independent NER tagger that has not seen examples from the NL4Opt dataset
during training.

The results of this experiment are shown in Table 5. It is evident that a
disparity between the F1 scores for the predicted named entities in the train
and test sets plays a crucial role in the final performance of the model. The
advantage of the named entity-based augmentation diminishes when a model is
trained on a dataset with near-perfect named entities and evaluated on a dataset
with noisy named entities. In this case, the model fails to outperform a model
that does not use named entities. However, if the F1 scores of the train and
test sets are made comparable, the model benefits from the named entity-based
augmentation. These results indicate that the proposed approach may not benefit
the datasets where an NER predictor behaves differently for the training and test
sets. Furthermore, they support the hypothesis that the proposed approach may
be helpful even with the noisy named entities but with an NER predictor that
exhibits similar behavior across train and test sets. However, the experimental
setting has some bias as the NER predictor is trained on the examples that
are present in the generation dataset, and synthetic noise is introduced in the
predicted named entities of the train set to make the F1 score comparable to
the dev and test sets. To substantiate these findings, an NER model must be
trained independently of the generation dataset.

6 Conclusion

In this paper, we proposed a novel approach based on highlighting the named
entities in the input text to generate the mathematical formulations of linear pro-
gramming word problems. Our approach produced the highest accuracy among
all submissions to the generation track of the NL4Opt competition. We also
found that the “all-at-once” strategy works well with the named entity-based
augmentation. Lastly, we showed that applications without labeled named enti-
ties might use the proposed approach by first identifying named entities using
an existing NER system. We believe that this augmentation may prove useful

140 N. Gangwar and N. Kani

in other natural language processing applications. However, these findings must
be investigated further to establish the generality of the proposed approach. We
leave these avenues for future work.

Acknowledgements. We thank Prof. Shaloo Rakheja (University of Illinois Urbana-
Champaign) for providing computing resources for this work. This work also utilizes
resources supported by the National Science Foundation’s Major Research Instru-
mentation program, grant #1725729, as well as the University of Illinois Urbana-
Champaign. We also thank the CICM reviewers for their insightful comments.

References

1. Beairsto, J., Tian, Y., Zheng, L., Zhao, Q., Hong, J.: Identifying locations for new
bike-sharing stations in glasgow: an analysis of spatial equity and demand factors.
Annals GIS 28(2), 111–126 (2022)

2. Bitran, G., Caldentey, R.: An overview of pricing models for revenue management.
IEEE Eng. Manage. Rev. 44(4), 134–134 (2016)

3. He, J., Mamatha, N., Vignesh, S., Kumar, D., Uppal, A.: Linear programming
word problems formulation using ensemblecrf ner labeler and t5 text generator
with data augmentations. ArXiv abs/2212.14657 (2022)

4. Jang, S.: Tag embedding and well-defined intermediate representation improve
auto-formulation of problem description. ArXiv abs/2212.03575 (2022)

5. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Pro-
ceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp.
302–311 (1984)

6. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880,
Association for Computational Linguistics, July 2020. https://doi.org/10.18653/
v1/2020.acl-main.703, https://aclanthology.org/2020.acl-main.703

7. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

8. Ma, Y., Qin, X., Xu, J., Zou, X.: Research on pricing method of public bicycle ser-
vice: a case study in guangzhou. In: 2016 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), pp. 156–161, IEEE (2016)

9. Nash, J.C.: The (dantzig) simplex method for linear programming. Comput. Sci.
Eng. 2(1), 29–31 (2000)

10. Ning, Y., et al.: A novel approach for auto-formulation of optimization problems.
arXiv preprint arXiv:2302.04643 (2023)

11. Prasath, G., Karande, S.: Synthesis of mathematical programs from natural lan-
guage specifications. arXiv preprint arXiv:2304.03287 (2023)

12. Ramamonjison, R., et al.: Augmenting operations research with auto-formulation
of optimization models from problem descriptions. arXiv preprint arXiv:2209.15565
(2022)

13. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-
generator networks. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, Associ-
ation for Computational Linguistics, Vancouver, Canada, July 2017. https://doi.
org/10.18653/v1/P17-1099, https://aclanthology.org/P17-1099

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2302.04643
http://arxiv.org/abs/2304.03287
http://arxiv.org/abs/2209.15565
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://aclanthology.org/P17-1099

Highlighting Named Entities for Auto-formulation of Optimization Problems 141

14. Tao, D.Q., Pleau, M., Akridge, A., Fradet, O., Grondin, F., Laughlin, S., Miller,
W., Shoemaker, L.: Analytics and optimization reduce sewage overflows to protect
community waterways in kentucky. INFORMS J. Appl. Anal. 50(1), 7–20 (2020)

15. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: language-independent named entity recognition. In: Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147
(2003). https://aclanthology.org/W03-0419

16. Wang, X., et al.: Automated concatenation of embeddings for structured predic-
tion. In: Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pp. 2643–2660, Association for Compu-
tational Linguistics, August 2021. https://doi.org/10.18653/v1/2021.acl-long.206,
https://aclanthology.org/2021.acl-long.206

17. Wang, Y., Wang, W., Joty, S., Hoi, S.C.: Codet 5: identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. arXiv
preprint arXiv:2109.00859 (2021)

18. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Association for Computational Lin-
guistics, October 2020. https://doi.org/10.18653/v1/2020.emnlp-demos.6, https://
aclanthology.org/2020.emnlp-demos.6

https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/2021.acl-long.206
https://aclanthology.org/2021.acl-long.206
http://arxiv.org/abs/2109.00859
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

Formalization Quality in Isabelle

Fabian Huch1(B) and Yiannos Stathopoulos2

1 Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany
huch@in.tum.de

2 Department of Computer Science and Technology, University of Cambridge,
Cambridge, UK
yas23@cam.ac.uk

Abstract. Little is known about the quality of formalizations in interac-
tive theorem proving. In this work, we analyze the relationship between
static analysis warnings (lints) and maintenance effort for 6470 Isabelle
theories, create models to predict lints based on structural features, and
compare the results to a small ground-truth dataset collected with the
help of domain experts. We find that for the majority of lints, there is a
significant but low-strength correlation between frequency of occurrence
and churn in maintenance change-sets. In particular, for proofs using tac-
tic methods (which can be brittle), the Spearman correlation is highest
with a strength of 0.16, p < 0.005. Furthermore, when classifying theo-
ries as lint-prone based on their formal entity graphs (which capture the
dependencies between underlying logical entities), random forests out-
perform even deep learning models on our data, achieving 58 % precision
and 21 % recall. Finally, in our ground-truth dataset of 35 good and
35 problematic theories, our pre-defined criterion that identifies theories
with more than one lint every 100 lines achieves 95 % precision and 51 %
recall. Remarkably, this is very close to the optimal criterion, which we
observe at one lint every 109 lines. Moreover, the random forest model
trained for lint-proneness even achieves perfect accuracy at 43 % recall,
providing additional evidence of its effectiveness.

Keywords: Isabelle · Formalization quality · Static analysis · Linter ·
Code smell · Change frequency · Machine learning · Deep learning

1 Introduction

Interactive theorem proving is a powerful technique for verifying the correctness
of mathematical proofs and software systems. In this field, the quality of the
resulting formalization code is crucial for several reasons. Firstly, understand-
ability is essential to ensure that practitioners can use existing material, as code
that is easy to understand is more likely to be helpful in proofs and employable
as a building block for further constructions. Secondly, maintainability is impor-
tant, particularly for large libraries such as the Isabelle Archive of Formal Proofs
(AFP). As those grow in size, more and more maintenance effort is required to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 142–157, 2023.
https://doi.org/10.1007/978-3-031-42753-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_10&domain=pdf
http://orcid.org/0000-0002-9418-1580
https://doi.org/10.1007/978-3-031-42753-4_10

Formalization Quality in Isabelle 143

ensure that all the existing material remains interoperable with updated Isabelle
and AFP versions. Hence, developments that are less prone to break decrease
the amount of maintenance required, and understandable material is easier to
adapt. Thirdly, while in theorem proving the traditional notion of a software
error is not applicable, errors in another sense can still occur: for instance, a
library might not be usable because its assumptions are too strict.

While various tools and techniques have been developed to improve code
quality in other fields, such as software engineering, there is currently little
research that addresses formalization quality in interactive theorem proving.
On one hand, most systems employ style guides, but those do not help much in
the context of large libraries as they lack automation. On the other hand, there
are static analysis tools (called linters) which detect common anti-patterns, but
they are available for few systems and limited in scope.

Problem. While currently linters only exist for the Isabelle and Lean systems,
they have the potential to be very effective. However, it is still unclear how much
of an impact linters have on formalization quality in practice.
Solution. The effectiveness of linters can be judged by analyzing the relation-
ships between lint results and ground-truth for various aspects of formalization
quality. This also allows to develop more comprehensive metrics and models for
formalization quality.
Contribution. In this work, we devise several quality models based on syn-
tactical and dependency graph features, and compare results with ground-truth
data for change frequencies as well as hand-derived quality estimates.
Organization. In Sect. 2, we give an overview of software engineering concepts
related to code quality and discuss approaches and findings of the related work in
that field. In Sect. 3, we discuss how methods in software quality can be adapted
to theorem proving and present our analysis and findings.

2 Code Quality in Software Engineering

Code quality in software engineering is the measure of how well-designed, effi-
cient, and maintainable the code is, and whether it meets its intended purpose.
The topic has been subject to a vast amount of research, but most work is
focused on software defects—observable errors in executed software.

In contrast, Code smells are specific patterns or structures in the source
code that indicate the existence of deeper problems such as poor design, lack
of maintainability, or potential faults [8, Ch. 3]. Code smells are more direct
indicators of quality than actual faults in the code, which can usually only be
identified by observing defects from the program behaviour.

In software engineering, much effort is put into measuring the effect of code
smells and defects by quantifiable project and source code characteristics. For
instance, the number of changes to a source file in a given time (change frequency)
or the amount of lines changed (churn) are considered to be important charac-
teristics of interest [12]. They are usually measured by analyzing the change-sets
(also called commits) from the underlying version control system.

144 F. Huch and Y. Stathopoulos

In systematic literature reviews, Amancio et al. analyzed 64 studies on the
effects of code smells [19], and Kaur later analyzed 74 studies on the effect on
software quality attributes [11]. Both reviews observed that findings are divergent
and results largely depend on the exact smells considered.

However, many investigations on the effect of code smells on change frequency
and manual maintenance effort find positive correlations, but do not control for
file size [3–5,12,15,18,27], or consider size only (log-)transformed [25]. Decou-
pling these variables from file size is important because larger bodies of code will
exhibit more occurrences of those phenomena, thus it is important to untangle
the variables of interest from file size. In fact, when size is controlled for in the
correlation, most code smells do not reflect on change frequency and size [21]
or maintenance effort [16,26] in a significant way, and the few that do only do
so weakly. Still, Khomh et al. as well as Palomba et al. conclude that size alone
also does not explain the relationship between code smells and change frequen-
cies [13,17], but do not compute strength of the correlations with size accounted
for. When separating maintenance effort into different tasks, Soh et al. found
that file size impacted maintenance effort more than code smells for reading and
searching activities, whereas code smells affected it more for editing and navi-
gation tasks (though change size of tasks performed had the most impact) [22].
Lastly, Bessghaier et al. found that change size is connected to smells but not
class size [6].

As for the prediction of code smells using machine learning approaches,
Azeem et al. give an excellent overview over the vast field in their systematic
literature review. Importantly, they find that research achieves F1-score (i.e.,
harmonic mean of precision and recall) of 0.81 on average, the dependent vari-
ables used play a major role in performance, and that overall, random forests
are the most reliable models [2]. However, it is important to note that some of
the best results (F1-scores of up to 0.97 [1]) were found not to generalize well
in a replication study by Nucci et al. [7], which might skew the results of the
review.

3 Analysis of Formalization Quality

In our previous work, we did not find metrics for detecting defects in software
systems suitable to detect lints in formalizations [10]. However, the concept of
code smells in software is more closely related to formalization code, because
the concept of code anti-patterns is transferable to formalizations. In fact, the
Isabelle linter offers detection for a wide range of different anti-patterns [14],
but not all of them are universally agreed on to have a detrimental effect on
quality—for instance, some are specifically designed for certain styles. With the
editors of the AFP, we discussed which of the available lints should be executed
on new submissions. A few checks were suitable only for new submissions (e.g.,
the use of phased-out Isabelle commands), and the following subset was agreed
on to indicate actual quality problems (even for existing material)1:
1 Some of those criteria are checked by a combination of multiple lints.

Formalization Quality in Isabelle 145

1. Switch between apply-style and Isar as such proofs are “hacked together” and
not written down properly (and hence hard to read).

2. Counter-example and proof-finder commands which are left over from inter-
active use, and only affect the proof-checking speed in the archive.

3. Diagnostic commands which are left over as well, though sometimes inten-
tionally for documentation purposes.

4. Changes of global lemma attributes as such changes should only be made in
a local context so as not to affect users of the formalization.

5. Unnamed lemmas in prover collections (e.g., the simplification set), as with-
out a name to address them, those lemmas can’t be disabled.

6. Use of auto-style methods as non-terminal proof methods, which makes the
following proof steps brittle as they rely on goals generated by aggressive
rewriting.

7. Structured proof starting with an auto-style method which is an especially bad
version of the former, as then the entire proof structure can change.

8. Overly complex methods as they make it very hard to read and follow a proof.
9. Tactic proofs since they allow to refer to system-generated names which are

arbitrary and could change at any point, so they should not be explicitly
referenced.

These lints have been adopted in the AFP submission process and appear to be
useful, but there is no quantifiable proof of their effectiveness yet.

To account for file size, we define lint frequency to be the number of lints
reported per line of Isabelle source code (without whitespace or comments).
Hence, lint frequency is independent of file size. To classify theories as good or
problematic, we use a pre-defined threshold of one lint per 100 lines. While this
threshold is a bit arbitrary, it seems appropriate given our previous experience
with lints in Isabelle and the AFP, where we found that one lint occurred every
200 lines in HOL and four times more often in other sessions [14] (albeit with a
different selection of lints).

Change-sets and churn can easily be measured for the Isabelle and AFP
repositories2. Of course, not all changes are due to maintenance problems—many
authors contribute further additions and improvements (e.g., better naming)
to their developments. We consider change-sets affecting more than a single
development to represent maintenance effort, assuming that developers generate
coherent change-sets that don’t put the codebase into an inoperable state—
under that assumption, change-sets affecting multiple developments correspond
to changes that break other entries which then need to be repaired, which is
maintenance effort by definition. It should be noted that maintenance effort is
not necessarily caused by poor maintainability of a theory: some edits induced by
upstream changes might be unavoidable, e.g., re-naming of a lemma that is later
explicitly mentioned. Still, change frequency should be a reasonable measure to
approximate maintainability.

We quantify the above metrics over the Isabelle and AFP libraries to answer
the following specific research questions:
2 Merge commits are omitted as they only exist for technical reasons.

146 F. Huch and Y. Stathopoulos

RQ1: Which of the problems uncovered by lints actually increase maintenance
effort?

RQ2: Are formalizations where many lints occur structurally different from
others?

RQ3: How much do lints reflect on perceived quality? Do other models?

Our data are based on the Isabelle2022 release, excluding tools as they are
mostly not written in Isabelle/Isar (and hence not covered by the Linter), exam-
ple theories since they could differ a lot from regular material, and particularly
slow developments due to computation time considerations. A total of 6470 the-
ory files remain. In the sections that follow we address each research question
individually.

3.1 Maintenance Effort

Since we rely on the notion of single or multiple AFP developments for change
frequencies, we do not consider theories of the Isabelle distribution itself here,
leaving us 6160 AFP theories. On average, such a theory file is changed every
506 days, and 139 lines are edited in a change. Figure 1 shows violin plots for
the distribution of change frequencies, separated by whether or not lints occur
frequently (more often than one lint every 100 lines) in the theory. The distribu-
tions for change-sets affecting a single development (i.e., possibly improvement
changes), and multiple developments (i.e., maintenance changes), are shown sep-
arately. The change frequency for maintenance change-sets is centered around
zero, whereas it is greater than zero for those affecting only a single development.
Also, while overall the distributions for frequent and infrequent lints are quite
similar, the peak at zero for maintenance change-sets is far more pronounced for
theories with infrequent lints.

Both the number of lints in a theory file and its change frequency are depen-
dent on the theory size (as measured in source lines of code) since larger theories
contain more code that can contain problems and can break. Hence, we need
to control for size when measuring the relationship between change frequency
(or churn) and number of lints. We do a partial analysis with Spearman corre-
lation (i.e., measuring how much one variable increases as the other increases,
while accounting for the third). Table 1 shows the result. The observed rela-
tionships are not very strong, but the results are significant at the p < 0.01
level or below (i.e., the likelihood of the variables being independent is less than
1%). When all change-sets are considered (where maintenance and improve-
ments are mixed), there is almost no significant correlation. For change-sets
affecting multiple entries (i.e., maintenance), most lints correlate positively with
the frequency of changes. Out of the three anti-patterns that would cause main-
tenance incidents, both auto as initial method and tactic proofs are positively
correlated—tactic proofs have the strongest relationship with change frequency
we observed with a value of 0.125—but auto as non-terminal method has no
significant impact. It is noteworthy that during the discussion with the AFP
editors, Paulson, who built auto, objected that the pattern would be problem-
atic, arguing that the usage was as designed (though his vote was overruled).

Formalization Quality in Isabelle 147

Multiple

Single

0.0000 0.0025 0.0050 0.0075 0.0100

Change Frequency [Number of changes per Day]

Lints

Infrequent

Frequent

Fig. 1. Probability density of change frequencies for change-sets affecting single and
multiple developments. Density functions are separated by lint frequency (more than
one lint every 100 lines is considered frequent), and scaled by count.

Table 1. Lint count and Spearman correlation with change and churn frequency for all
change-sets as well as change-sets affecting only multiple or single entries. Correlations
are only shown for p < 0.01, values significant at the p < 0.005-level are printed bold.

Change Frequency Churn Frequency

Count All Multi Single All Multi Single
Apply Isar Switch 1366 – – – – – –
Counterexample/Proof Finder 263 – – – – – .053

Diagnostic Commands 1426 – – – – – –
Global Attribute Changes 44 – – – – – –
Unnamed Lemma in Collection 872 – .044 – – .045 �.045
Non-terminal Auto 9087 – – .041 – �.038 .059

Auto as Initial Proof Method 4863 – .041 – – .043 –
Complex Methods 4585 – .058 – – .055 �.041
Tactic Proofs 15338 �.074 .125 �.136 �.074 .159 �.136

Bad Style 140 – .046 −.033 – .045 �.043
Lemma-transforming Attribute 1015 – .033 �.056 – .042 �.052
Short Name 425 – �.058 .067 – �.070 .078

Implicit Rule 2735 – .065 – – .058 �.051
Apply Style 190838 – .044 �.042 – – �.051

148 F. Huch and Y. Stathopoulos

For the change-sets concerning only single developments, there are fewer
significant correlations, of which most are negative. Again, tactic proofs are
most strongly correlated with a value of −0.136. One possible explanation is
that authors replace tactics as part of their improvements—this is even explicitly
mentioned four times in the AFP commit log.

Churn frequency is quite similar to change frequency overall, and the correla-
tion with tactic proofs is even a bit stronger with a value of 0.159. On the other
hand, the correlation to non-terminal auto calls is negative, which could be due
to the fact that when such a proof breaks, usually only a single line needs to be
touched. We also computed correlations for other lints not covered in our selec-
tion (in the bottom half of the table), and while the overall picture is the same,
the correlation with the warning about short names is negative for maintenance
change-sets. A possible explanation is that such identifiers are commonly used
when logical foundations are formalized, which is mostly done by experts who
usually produce high-quality and robust formalizations.

3.2 Lints and Formalization Structure

The advantage of lints as quality indicators is that they can be extracted directly
from source code, and the uncovered problems are easy to understand. Still, to
establish more metrics for formalization quality, it is important to know how
poor-quality formalizations are structurally different from good ones. In partic-
ular, we are interested to see whether code quality also reflects on the depen-
dency graph such that it can be detected without syntax. Hence, in our previous
work we analyzed graph metrics, such as number of neighbours, centrality scores,
etc., computed over the Isabelle formal entity graph (the dependency graph of
logically relevant entities in a formalization). Although graph metrics are used
successfully as quality indicators in software systems, we found that these metrics
are not good indicators of lint frequency for Isabelle code [10].

In this work, we investigate the feasibility of using these metrics with machine
learning models to differentiate between formalizations with frequent and infre-
quent lints. In our investigation, we consider nearest neighbours, multilayer per-
ceptron, decision tree, gradient-boosted tree, and random forest, as representa-
tives of classical models. Feature inputs for these models are produced per the-
ory and include size and aggregated formal entity graph properties, such as node
degree and centrality. Additionally, we consider graph neural networks as repre-
sentatives of deep learning models, motivated by successes for similar tasks [20].
We used graph convolutional networks, the GraphSAGE model [9], and graph
attention networks [24], trained purely on the underlying formal entity graphs
(node degree as single feature).

We consider two scenarios: treating the task as binary classification (i.e.,
using a binary label that stands for frequent or infrequent lints), and as a regres-
sion task (i.e., fitting the model directly to the lint frequency). We use 70% of our
data for training, 15% for validation (hyper-parameter tuning and model selec-
tion) and 15% final testing (to evaluate generalizability). Hyper-parameters (i.e.,

Formalization Quality in Isabelle 149

additional parameters of the models) were tuned by random search on appro-
priate parameter grids, which can be found in our published source code3. We
evaluate all models in the classification setting by computing the average preci-
sion (AP) over all thresholds for each model. To evaluate how well the final model
performs for different thresholds (i.e., the decision cut-off points of a model), we
analyze the curve of precision (how many of the theories predicted as problem-
atic were actually problematic) and recall (how many problematic theories were
found).

Figure 2 shows the validation performance of our trained models. It is evident
that the deep learning models do not perform better than classical models on
our dataset, which is not uncommon for a dataset of this size (6470 data points),
especially as we would expect quite some noise in the data given the scenario.
Overall, the random forest model trained as a classifier is the best model with

Gra
die

nt
-B

oo
ste

d
Tr

ee

Ran
do

m
Fo

res
t

Dec
isi

on
Tr

ee

k-
Nea

res
t Neig

hb
ou

r

M
ult

ila
ye

r Pe
rce

pt
ro
n

Gra
ph

Con
vo

lut
ion

s

Gra
ph

SA
GE

Gra
ph

Atte
nt
ion

Netw
or
k

0

0.2

0.4

0.6

A
ve

ra
ge

P
re

ci
si

on
(V

al
id

at
io

n)

Regression Target Classification Target

Fig. 2. Average precision values of different models on validation data when classify-
ing theories as problematic, for both regression (for lint frequency) and classification
training targets.

3 https://github.com/Dacit/isabelle-formalization-quality.

https://github.com/Dacit/isabelle-formalization-quality

150 F. Huch and Y. Stathopoulos

a validation AP of 0.47. Its precision-recall curve on the test data is shown in
Fig. 3. With a test AP of 0.51, the model generalizes quite well—for example,
58% precision and 21% recall can be reached at a default threshold of 0.5, and
the model is far better than random on the whole range. This shows that while
lints cannot be predicted very accurately, they do reflect strongly on the formal
entity graphs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Random Forest
Random

Fig. 3. Precision-recall curve for random forest model, with values for precision and
recall on test data plotted for varied thresholds.

To find out which features are most important, we perform an ablation study
with the random forest model, i.e., we iteratively re-train the model, removing
the feature that leads to the smallest decrease in validation AP. An explanation
of the features can be found in Appendix 1. Figure 4 shows the result. Initially,
the score fluctuates slightly, until it takes a steep decline when the features
betweenness centrality (median and max), out-degree (max), closeness centrality
(mean), and in-degree (mean) are removed.

Formalization Quality in Isabelle 151

In
-d

eg
re

e
(m

ed
ia

n)
C

lo
se

ne
ss

C
en

tr
al

it
y

(m
in

)
C

lu
st

er
in

g
C

oe
ffi

ci
en

t
(m

ax
)

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

(m
ed

ia
n)

O
ut

-d
eg

re
e

(m
ea

n)
So

ur
ce

L
in

es
of

C
od

e
B

et
w

ee
nn

es
s

C
en

tr
al

it
y

(m
in

)
C

lu
st

er
in

g
C

oe
ffi

ci
en

t
(m

ea
n)

E
ig

en
ve

ct
or

C
en

tr
al

it
y

(m
ax

)
C

lo
se

ne
ss

C
en

tr
al

it
y

(m
ax

)
In

-d
eg

re
e

(m
ax

)
C

lu
st

er
in

g
C

oe
ffi

ci
en

t
(m

in
)

E
ig

en
ve

ct
or

C
en

tr
al

it
y

(m
ed

ia
n)

C
lo

se
ne

ss
C

en
tr

al
it
y

(m
ed

ia
n)

E
ig

en
ve

ct
or

C
en

tr
al

it
y

(m
in

)
O

ut
-d

eg
re

e
(m

in
)

In
-d

eg
re

e
(m

in
)

B
et

w
ee

nn
es

s
C

en
tr

al
it
y

(m
ea

n)
O

ut
-d

eg
re

e
(m

ed
ia

n)
E

ig
en

ve
ct

or
C

en
tr

al
it
y

(m
ea

n)
B

et
w

ee
nn

es
s

C
en

tr
al

it
y

(m
ed

ia
n)

O
ut

-d
eg

re
e

(m
ax

)
C

lo
se

ne
ss

C
en

tr
al

it
y

(m
ea

n)
B

et
w

ee
nn

es
s

C
en

tr
al

it
y

(m
ax

)0

0.2

0.4

0.6

A
ve

ra
ge

P
re

ci
si

on
(V

al
id

at
io

n)

Random Forest
Random

Fig. 4. Average precision for best random forest model after tuning, when cumulatively
removing features with the least contribution to average precision (name of the removed
feature is on the x-axis). In-degree (median) is the first feature removed, In-degree
(mean) remains as last feature.

3.3 Comparison with Perceived Quality

Obtaining a dataset for perceived quality is quite difficult, since often only
domain experts are capable of judging the quality of a given formalization, espe-
cially when it comes to quality problems that are not obvious. By inquiring
Isabelle experts in various domains about theories or AFP developments they
would consider good and bad quality, we obtained a sample of 70 labelled theo-
ries (35 good and bad each). Importantly, we did not give a definition of quality
(relying on the experts’ intuition) nor did we contribute any data ourselves, so
as not to skew the dataset in any way. As an example, one expert classified a the-
ory as problematic because the assumptions on the main theorem were stronger
than needed, making it unusable to them. The sample can hence be considered
ground-truth for theory quality.

While 70 examples is not enough data to train any models on, the sample is
sufficiently large to evaluate both the lint results and our other machine learning

152 F. Huch and Y. Stathopoulos

model discussed previously. In addition, we evaluated the un-tuned capabilities
of a large language model: By prompting the pre-trained LLAMA (7 billion
parameters) transformer [23] about the quality of chunks of formalization code
(on a scale from 1 to 10) and averaging the scores for each theory, we obtained
quality predictions for the whole AFP. Even though we did not fine-tune the
model due to the prohibitive hardware requirements, we did get mostly coherent
results—an in-depth description of the prompting as well as qualitative analysis
can be found in Appendix 2.

For predicting poor-quality theories in our sample, the LLAMA model does
not have a pre-defined threshold, but we can analyze its precision-recall curve
where the threshold is varied. In contrast, the simple lint threshold approach of
one lint every 100 lines achieved 95% precision and 51% recall. The random for-
est model scored 43% precision and 100% recall at its default threshold. Figure 5
shows the full precision-recall curves for all three classifiers. The simple lint fre-
quency remains an excellent estimator even for high thresholds where recall goes
up to 77% (at 79% precision), and is outperformed by the random forest model
only in the low-recall regions (where the latter attains perfect precision for up to
43% recall). The large language model performs well in the low-recall regions,
which is surprising given that it has not been trained on Isabelle quality at all,
suggesting that textual structure alone (which is what the model understands)
can give a hint about overall quality. However, for higher thresholds, it is close
to random.

4 Discussion

We analyzed the relationship between warnings of the Isabelle linter and other
aspects of formalization quality, and found that frequency and churn of change-
sets affecting more than one AFP entry (which we assume connected to main-
tenance) were positively correlated with many lints. However, the effect was
rather weak when we controlled for file size, and there was almost no significant
effect when all change-sets were considered. In software engineering, there are
divergent findings regarding the influence of code smells on change frequency
and maintenance effort, though it appears that only few smells are (weakly) cor-
related when size is taken into account as well [16,21,26]. The performance we
obtained when predicting lints based on graph and source code features (F1-score
of 0.31) is much lower than what can be achieved when predicting code smells
from source code metrics (0.81 on average over multiple studies [2]), which leads
us to believe that other source code metrics would need to be derived for this
task on formalization code. Still, random forests performed best on our dataset,
which is in line with the results from code smell prediction. Finally, both the
linter and our prediction model can classify theories as good or problematic
quite well (F1-score of 0.66/0.60 without any fine-tuning to the task), and even
an un-tuned large language model can achieve better-than-random classification
accuracy. We found that when using the linter, a threshold of one lint every 109
lines was optimal.

Formalization Quality in Isabelle 153

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Lint frequency
Random Forest

LLM
Random

Fig. 5. Precision-recall curves on ground truth data set for different models.

4.1 Limitations

Our study has several potential threats to its validity that must be consid-
ered. Regarding internal validity, there is a risk that unknown factors may have
influenced our correlation analysis, thereby affecting our results. As a conse-
quence, the correlations we observed may not provide accurate representations
of the true relationships between the variables we examined. Our construct is also
slightly inaccurate in that lints were measured on the current Isabelle version
(for technical reasons), whereas frequently changed parts that were problematic
could have been improved in some of the changes, but those previous problems
might not be detected by the linter any more. Regarding external validity, the
use of only a single dataset limits the generalizability of our findings. However,
the AFP contains many heterogeneous developments, which mitigates the risk
somewhat. Another limitation is that the manual evaluation dataset we used is
relatively small, which increases the risk of obtaining biased results that do not
accurately represent the larger population. To reduce this risk, we obtained the
classifications from experts and did not contribute our own data. Finally, there
is a possibility that better areas of the model and parameter space exist in the
machine learning aspect of our study. As such, our findings may not be fully
optimized or representative of the best possible results that could be obtained.

154 F. Huch and Y. Stathopoulos

4.2 Future Work

In this work, we found the Isabelle linter to be highly effective. Hence, more
effort should be spent into developing a larger number of appropriate lints, for
example by instrumenting proof terms to find unused assumptions. Moreover,
other than lints, there still are no good metrics for formalization quality. More
research is needed to create appropriate code metrics for formalizations and to
assess whether they can be useful in judging quality.

Acknowledgements. A large part of this work would not have been possible with-
out the help of many Isabelle experts, who contributed to our ground-truth quality
dataset. The second author is supported by the ERC Advanced Grant ALEXANDRIA
(Project 742178).

Appendix

1 Graph Features

As a general metric, we use the Source lines of code in the theory file, without
comments and whitespace. Moreover, the following metrics (further explained in
our previous work [10]) were aggregated for each theory (using the minimum,
maximum, median, and mean value):

1. In-degree counts the number of incoming edges (how often the entity is used).
2. Out-degree is the number outgoing edges (how many other entities are used).
3. Clustering coefficient represents the likelihood that a node’s neighbours are

also connected.
4. Closeness centrality captures the average distance to all other reachable nodes

in the graph.
5. Betweenness centrality corresponds to the number of shortest paths through

the graph in which the node is contained.
6. Eigenvector centrality captures transitive importance in the graph.

2 Large Language Model Analysis

We used LLAMA [23] as a large language model (LLM) to obtain quality predic-
tions for Isabelle snippets. We generated the snippets from AFP theories (with-
out comments) such that they start with a command, truncated to a length that
fits into the context size (2048 tokens). As LLAMA is a raw transformer model
not fine-tuned on question answering tasks, we devised the following prompt
that the model should complete:

When assessing the quality of an Isabelle formalization, we can always be
totally assured that it is correct. However, quality can vary: Formaliza-
tions need to be understandable, maintainable, and easy to use. Unclear
definitions, proofs that are too hard to follow, and proofs that are likely

Formalization Quality in Isabelle 155

to break with future changes are all problematic and should be avoided.
Let us take the following snippet as an example:
SNIPPET end
Of course some definitions and lemmas are missing as this is just a snippet.
It works and is correct. As for the quality, on a scale of 1 to 10, I would
give it a

A proper response from LLAMA would be to complete this prompt starting with
a numeric score (hence, at most two characters need to be predicted). All 261207
snippets of the AFP yielded a response of this form, though some gave a score
not on the scale.

To evaluate the answers qualitatively, we generate longer responses for a sam-
ple of 100 snippets, truncate them to the first few full sentences, and categorized
them as shown in Table 2 (multiple categories possible).

Table 2. Categorization of LLM replies by manual interpretation of first few sentences
for 100 examples. Multiple categories are possible.

Category Count Example Snippet

Answering about
snippet quality 51

[...] the lemma ‘equivclp_least[OF hash]‘ is a bit
cryptic and I would prefer something more explicit [...]

Discussing general
quality 9

It is difficult to write a good formalization that is both
clear and maintainable [...]

Concern with elements
missing from snippet 7

[...] the function ‘hash_blindable’ is not introduced,
and therefore its type is not defined.

Questioning correctness 10
[...] it does not provide any indication of its
correctness.

No category 32
The Isabelle formalization of the above snippet was
verified by formalverification.org [...]

The majority of replies (51) answered the quality prompt. Of those, only
8 justifications were inconsistent with their scores (e.g., “10. The proof is quite
hard to follow.”). A total of 26 answers (in similar parts) either discussed general
quality, wrote about elements missing from the snippet, or questioned correct-
ness of the formalization—those could potentially be improved by further prompt
tuning. 32 answers did not fit any of the categories, i.e., failed the prompt com-
pletely.

References

1. Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A.: Comparing and exper-
imenting machine learning techniques for code smell detection. Empirical Softw.
Eng. 21(3), 1143–1191 (2015). https://doi.org/10.1007/s10664-015-9378-4

https://doi.org/10.1007/s10664-015-9378-4

156 F. Huch and Y. Stathopoulos

2. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for code
smell detection: a systematic literature review and meta-analysis (2019). https://
doi.org/10.1016/j.infsof.2018.12.009

3. Bán, D.: The Connection between antipatterns and maintainability in firefox. In:
Acta Cybernetica, vol. 23, pp. 471–490. University of Szeged (2017). https://doi.
org/10.14232/actacyb.23.2.2017.3

4. Bán, D., Ferenc, R.: Recognizing antipatterns and analyzing their effects on soft-
ware maintainability. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8583,
pp. 337–352. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09156-
3_25

5. Bessghaier, N., Ouni, A., Mkaouer, M.W.: On the diffusion and impact of code
smells in web applications. In: Wang, Q., Xia, Y., Seshadri, S., Zhang, L.-J. (eds.)
SCC 2020. LNCS, vol. 12409, pp. 67–84. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-59592-0_5

6. Bessghaier, N., Ouni, A., Mkaouer, M.W.: A longitudinal exploratory study on
code smells in server side web applications. Softw. Q. J. 29(4), 901–941 (2021).
https://doi.org/10.1007/s11219-021-09567-w

7. Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A., De Lucia, A.: Detect-
ing code smells using machine learning techniques: are we there yet? In: 25th
IEEE International Conference on Software Analysis, Evolution and Reengineer-
ing, SANER 2018 - Proceedings. vol. 2018, pp. 612–621. IEEE (2018). https://doi.
org/10.1109/SANER.2018.8330266

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Bad smells in code.
Addison-Wesley, Boston (1999)

9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs (2017). https://doi.org/10.48550/arXiv.1706.02216

10. Huch, F.: Formal entity graphs as complex networks: assessing centrality metrics of
the archive of formal proofs. In: Buzzard, K., Kutsia, T. (eds.) Intelligent Computer
Mathematics, pp. 147–161. Springer, Cham (2022). https://doi.org/10.1007/978-
3-031-16681-5_10

11. Kaur, A.: A systematic literature review on empirical analysis of the relationship
between code smells and software quality attributes. Arch. Comput. Methods Eng.
27(4), 1267–1296 (2019). https://doi.org/10.1007/s11831-019-09348-6

12. Khomh, F., Di Penta, M., Guéhéneuc, Y.G.: An exploratory study of the impact of
code smells on software change-proneness. In: Proceedings - Working Conference on
Reverse Engineering, WCRE, pp. 75–84 (2009). https://doi.org/10.1109/WCRE.
2009.28

13. Khomh, F., Penta, M.D., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of
the impact of antipatterns on class change- and fault-proneness. Empirical Softw.
Eng. 17(3), 243–275 (2012). https://doi.org/10.1007/s10664-011-9171-y

14. Megdiche, Y., Huch, F., Stevens, L.: A linter for isabelle: implementation and eval-
uation. In: Isabelle Workshop (2022). https://doi.org/10.48550/arXiv.2207.10424

15. Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N.: The evolution and impact of
code smells: a case study of two open source systems. In: 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, ESEM 2009,
pp. 390–400 (2009). https://doi.org/10.1109/ESEM.2009.5314231

16. Olbrich, S.M., Cruzes, D.S., Sjoøberg, D.I.: Are all code smells harmful? A study
of god classes and brain classes in the evolution of three open source systems. In:
IEEE International Conference on Software Maintenance, ICSM (2010). https://
doi.org/10.1109/ICSM.2010.5609564

https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.14232/actacyb.23.2.2017.3
https://doi.org/10.14232/actacyb.23.2.2017.3
https://doi.org/10.1007/978-3-319-09156-3_25
https://doi.org/10.1007/978-3-319-09156-3_25
https://doi.org/10.1007/978-3-030-59592-0_5
https://doi.org/10.1007/978-3-030-59592-0_5
https://doi.org/10.1007/s11219-021-09567-w
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.48550/arXiv.1706.02216
https://doi.org/10.1007/978-3-031-16681-5_10
https://doi.org/10.1007/978-3-031-16681-5_10
https://doi.org/10.1007/s11831-019-09348-6
https://doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.48550/arXiv.2207.10424
https://doi.org/10.1109/ESEM.2009.5314231
https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/10.1109/ICSM.2010.5609564

Formalization Quality in Isabelle 157

17. Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A.: On
the diffuseness and the impact on maintainability of code smells. In: Proceedings
of the 40th International Conference on Software Engineering, pp. 482–482. ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3180155.3182532

18. Romano, D., Raila, P., Pinzger, M., Khomh, F.: Analyzing the impact of antipat-
terns on change-proneness using fine-grained source code changes. In: Proceedings -
Working Conference on Reverse Engineering, WCRE, pp. 437–446 (2012). https://
doi.org/10.1109/WCRE.2012.53

19. Santos, J.A.M., et al.: A systematic review on the code smell effect. J. Syst. Softw.
144, 450–477 (2018). https://doi.org/10.1016/j.jss.2018.07.035

20. Sikic, L., Kurdija, A.S., Vladimir, K., Silic, M.: Graph neural network for source
code defect prediction. IEEE Access 10, 10402–10415 (2022). https://doi.org/10.
1109/ACCESS.2022.3144598

21. Sjoberg, D.I., Yamashita, A., Anda, B.C., Mockus, A., Dyba, T.: Quantifying the
effect of code smells on maintenance effort. IEEE Trans. Softw. Eng. 39(8), 1144–
1156 (2013). https://doi.org/10.1109/TSE.2012.89

22. Soh, Z., Yamashita, A., Khomh, F., Guéhéneuc, Y.G.: Do code smells impact the
effort of different maintenance programming activities? In: 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, vol. 1, pp. 393–402. IEEE (2016). https://doi.org/10.1109/SANER.2016.103

23. Touvron, H., et al.: Llama: open and efficient foundation language models (2023).
https://doi.org/10.48550/arXiv.2302.13971

24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018). https://doi.org/10.48550/arXiv.1710.10903

25. Yamashita, A.: Assessing the capability of code smells to explain maintenance prob-
lems: an empirical study combining quantitative and qualitative data. Empirical
Softw. Eng. 19(4), 1111–1143 (2013). https://doi.org/10.1007/s10664-013-9250-3

26. Yamashita, A., Counsell, S.: Code smells as system-level indicators of maintain-
ability: an empirical study. J. Syst. Softw. 86(10), 2639–2653 (2013). https://doi.
org/10.1016/j.jss.2013.05.007

27. Zazworka, N., Shaw, M.A., Shull, F., Seaman, C.: Investigating the impact of design
debt on software quality. In: Proceedings - International Conference on Software
Engineering, pp. 17–23. ACM, New York, NY, USA (2011). https://doi.org/10.
1145/1985362.1985366

https://doi.org/10.1145/3180155.3182532
https://doi.org/10.1109/WCRE.2012.53
https://doi.org/10.1109/WCRE.2012.53
https://doi.org/10.1016/j.jss.2018.07.035
https://doi.org/10.1109/ACCESS.2022.3144598
https://doi.org/10.1109/ACCESS.2022.3144598
https://doi.org/10.1109/TSE.2012.89
https://doi.org/10.1109/SANER.2016.103
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.1007/s10664-013-9250-3
https://doi.org/10.1016/j.jss.2013.05.007
https://doi.org/10.1016/j.jss.2013.05.007
https://doi.org/10.1145/1985362.1985366
https://doi.org/10.1145/1985362.1985366

Formalizing Free Groups in Isabelle/HOL:
The Nielsen-Schreier Theorem
and the Conjugacy Problem

Aabid Seeyal Abdul Kharim1, T. V. H. Prathamesh2(B), Shweta Rajiv2,
and Rishi Vyas2

1 Vayana Network, Pune 411016, MH, India
2 Krea University, Sri City 517646, AP, India

prathamesh.turaga@krea.edu.in

Abstract. Free groups are central to group theory, and are ubiquitous
across many branches of mathematics, including algebra, topology and
geometry. An important result in the theory of free groups is the Nielsen-
Schreier Theorem, which states that any subgroup of a free group is free.
In this paper, we present a formalisation, in Isabelle/HOL, of a combina-
torial proof of the Nielsen-Schreier theorem. In particular, our formalisa-
tion applies to arbitrary subgroups of free groups, without any restriction
on the index of the subgroup or the cardinality of its generating sets. We
also present a formalisation of an algorithm which determines whether
two group words represent conjugate elements in a free group.

To the best of our knowledge, our work is the first formalisation of a
combinatorial proof of the Nielsen-Schreier theorem in any proof assis-
tant; the first formalisation of a proof of the Nielsen-Schreier theorem in
Isabelle/HOL; and the first formalisation of the decision process for the
conjugacy problem for free groups in any proof assistant.

Keywords: group theory · free groups · Isabelle/HOL

1 Introduction

Free groups arose in the late 19th century as objects associated with interesting
geometries; their early theory was developed by von Dyck, Dehn, Nielsen, and
Schreier, amongst others [5,6,13,15]. These groups are fundamental to group the-
ory, and continue to be an area of active research with regard to their properties
and their connections with other branches of mathematics including geometry,
topology, analysis, combinatorics, and logic. Given this, the need for substantial
formalised libraries on free groups across proof assistants is apparent.

A foundational early result in the theory of free groups is the Nielsen-Schreier
theorem, which states that any subgroup of a free group is a free group itself [13,
15]. Though the statement of this theorem seems innocuous, all known proofs are
involved. Proofs of the Neilsen-Schreier theorem fall into two broad categories:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 158–173, 2023.
https://doi.org/10.1007/978-3-031-42753-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_11

Formalizing Free Groups in Isabelle/HOL 159

topological arguments involving ideas from algebraic topology and graph theory,
and a purely algebraic approach using the combinatorics of word cancellations. A
topological proof of the Nielsen-Schreier theorem stands formalised in Lean [12].

In this paper we describe a formalisation of a combinatorial approach to
the Nielsen-Schreier theorem in Isabelle/HOL. In addition, we describe formal-
isations, in Isabelle/HOL, of decision procedures for the word and conjugacy
problems in the context of free groups, as described by Dehn [5]. We expect our
work here to contribute to the formal libraries of key results and algorithms in
combinatorial group theory in Isabelle/HOL. It is also our hope that our work
will prove useful in exploring the potential for formally verified computational
tools in the domain. This work forms part of a larger project concerning formal-
isations in combinatorial group theory.

In Sects. 2 and 3, we discuss mathematical preliminaries and basic formal
constructions. Section 4 describes our formalisation of the word and conjugacy
problems for free groups, while Sect. 5 outlines our formalisation of the Nielsen-
Schreier theorem. In these sections, we provide key definitions and proof sketches
of the main results we are formalising followed by fragments of Isabelle code
illustrating the ideas that have been formalised: these fragments resemble the
formalisations in the machine proof, with some modifications to improve read-
ability. The listed definitions and theorems are by no means exhaustive. For
readability, we choose to informally describe rather than explicitly state formal
definitions at certain points. We broadly follow the proofs in [10], though at times
our arguments deviate slightly from those in the literature for reasons motivated
by the technical challenges of constructing formal proofs. We assume the reader
is familiar with some group theory. Our formalisation was carried out in Isabelle
2022 and the total length of our formalised code is approximately 8000 lines.
Our code is available at:

https://github.com/aabid-tkcs/groupabelle

2 Mathematical Preliminaries

Let S be a set, and S−1 := {s−1 | s ∈ S} a set of symbols in bijection with and
disjoint from S; define S± := S ∪ S−1. A group word w on S is a finite sequence
x1, . . . , xn where xi ∈ S±; we describe such a word by juxtaposing its terms
together. A subword of w is a substring of the word w. The word w is said to be
reduced if it does not contain a subword of the form xx−1 or x−1x. The set of
all group words on S can be given the structure of a monoid, with the product
of x1 . . . xn and y1 . . . ym defined as x1 . . . xny1 . . . ym and the empty word as
identity. Let FGS denote the quotient of this monoid by the smallest congruence
relation ∼ identifying xx−1 and x−1x, for x ∈ S, with the empty word: FGS is a
group, which we call the free group on S. Every equivalence class with respect to
∼ contains exactly one reduced group word. If w = x1 . . . xn is a reduced group
word on S, define the length of w to be n. If w ∈ FGS , define the length of w
(denoted by |w|) to be the length of the unique reduced word equivalent to w.

https://github.com/aabid-tkcs/groupabelle

160 A. S. A. Kharim et al.

There is a function iS : S → FGS sending x ∈ S to the equivalence class of the
word x. The group FGS and function iS satisfy the following universal property :
let G be a group and let f : S → G be a function. There exists a unique group
homomorphism ef : FGS → G such that ef ◦iS = f . A group G is said to be free
if it is isomorphic to FGS for some set S. Free groups admit many equivalent
definitions: in [10], for example, they are defined using the universal property
described above. We use e to denote the identity of a group.

Let G be a group, and let U ⊆ G. Define U± := U ∪ U−1, where U−1 :=
{x−1 | x ∈ U}. The subgroup generated by U (i.e. the span of U) is 〈U〉 := {g ∈
G | g = g1 . . . gn for some g1, . . . , gn ∈ U±}. This subgroup admits a characteri-
sation as the smallest subgroup of G which contains U . We say that U generates
G (i.e. is a generating set for G) if 〈U〉 = G. The subset U generates G if and only
if the homomorphism FGU → G induced by the inclusion i : U → G is surjective;
we say that U is a basis for G if this homomorphism is an isomorphism. If S is a
set, {iS(x) | x ∈ S} is a basis for FGS . As the map iS is injective, we identify an
element x ∈ S with iS(x), and thus consider S a basis for FGS .

3 Formalisation of Basic Constructions

The generating set of a group is often described with indices - e.g. {gα}α∈Λ. To
mirror this, we define the type of generating elements as follows:

type_synonym (’a,’b) monoidgentype = "’a × ’b"

Here, ’a denotes the type of labels, and ’b denotes the type of indices. It
is easy to see that any type can be embedded into a type of this form using
Isabelle’s unit datatype. In our formalization, a generator is an object of the
type ’a × ’b. A generating set or a set of a generators denotes a set containing
objects of the type ’a × ’b. We construct the type groupgentype in which
every object can be construed to denote an object of the type monoidgentype
(under an inclusion map) or its inverse. A group word can now be defined as a
list of the objects of groupgentype.

type_synonym (’a,’b) groupgentype = "(’a,’b) monoidgentype × bool"

type_synonym (’a,’b) word = "((’a,’b) groupgentype) list"

There exists a natural embedding of monoidgentype in groupgentype, where
x
→ (x, True); (x, False) can be interpreted as denoting x−1. Thus one can
represent the word g1g2

−1g3 using the list [(g1, True), (g2, False), (g3,
True)]. A function inverse is defined on groupgentype, which swaps True and
False in the second coordinate. The invgen function maps a set S to S± (as
defined in Sect. 2). Note that S is of the type monoidgentype and S± of the type
groupgentype.

definition invgen ("_±") where "S ± = S × {True,False}"

Formalizing Free Groups in Isabelle/HOL 161

To formalise the inverse of a word, we recursively define the wordinverse
function in terms of the inverse function in the following fashion. In this paper
we will often use w−1 for wordinverse w, where w is a word.

fun wordinverse::"(’a,’b) word ⇒ (’a, ’b) word" where
"wordinverse [] = []"
|"wordinverse (x#xs) = (wordinverse xs)@[inverse x]"

For constructing a free group, only the words in the span of a generating set
play a role. We construct the span as follows. First, the set of generators S is
mapped to the set S±, using the invgen function. The function words_on then
defines an inductive set of words, where all the letters of the word belong to a
given set. For the set S±, this returns the list of group words generated by S.

inductive_set words_on ("_�") for X::"(’a,’b) groupgentype set" where
empty:"[] ∈ (X�)"
|gen:"x ∈ X =⇒ xs ∈ (X�) =⇒ (x#xs) ∈ (X�)"

definition freewords_on: ("〈_〉") where "〈S〉 = words_on (invgen S)"

We define an equivalence relation on words such that words obtained by
adding or removing adjacent pair of inverses are equivalent. The relation
reln_tuple restricts this relation to words belonging a specified set.

inductive reln::"(’a,’b) word⇒(’a,’b) word⇒ bool" (infixr "~" 65)
where

refl[intro!]: "x ~ x" |
sym: "x ~ y =⇒ y ~ x" |
trans: "x ~ y =⇒ y ~ z =⇒ x ~ z" |
base: "[x, inverse x] ~ []" |
mult: "xs~xs’ =⇒ ys~ys’ =⇒ (xs@ys)~(xs’@ys’)"

definition reln_tuple where "reln_tuple X = {(x,y).x~y ∧ x∈X ∧ y∈X}"

It follows that reln_tuple is an equivalence relation on the set X. To define
the carrier as a quotient of the span of the set of generators by this equivalence
relation, we considered using quotient_type. This is challenging in the absence
of dependent types, since the set of words generated by a set S cannot form a
type. Moreover, using quotient type on the entire type rather than a set can lead
to equating words which do belong to the span of generators with those which
do belong to the span (e.g. [x] ∼ [x, y, y−1], where x ∈ S±, y /∈ S±). We thus
chose to deploy quotient, as formalised in Isabelle’s formalisation of equivalence
relations. The product of two elements in a free group is obtained by factoring
the concatenation of two words through the equivalence relation on the carrier.
The function proj_append induces a function on the equivalence classes of the
span of a set under reln_tuple, which corresponds to concatenation of words.

definition ProjFun2 where

162 A. S. A. Kharim et al.

"ProjFun2 r f = (λp q. (
⋃

x∈(p×q). r ‘‘ {f (fst x) (snd x)}))"

definition proj_append where
"proj_append A X Y = (ProjFun2 (reln_tuple A) append) X Y"

ProjFun2, when applied to a relation r and a binary operation f , returns the
function which maps a pair of sets X and Y to the set of those elements r−related
to f(x, y) for some (x, y) ∈ X × Y. It follows that proj_append 〈S〉 applied to a
pair of equivalence classes of words is the equivalence class of the concatenation
of their representative elements; this product was shown to satisfy closure and
associativity. The free group generated by a set S of the type monoidgentype is
then defined as the following record:

definition freegroup where
"freegroup S ≡ (| carrier = quotient 〈S〉 (reln_tuple 〈S〉),

mult = proj_append 〈S〉,
one = (reln_tuple 〈S〉) ‘‘ {[]} |)"

Every group word w in the span 〈S〉 can be embedded as an element in the
carrier of freegroup S by mapping w to reln_tuple 〈S〉 ‘‘ {w}. The iden-
tity element then naturally arises as the embedding of the empty list. We then
prove that the free group on S satisfies the group axioms, using the closure and
associativity properties of proj_append. The existence of inverses is proved by
first showing that for every word w in 〈S〉, the word w−1 is in 〈S〉 and that w
concatenated with w−1 is equivalent to the empty list.

theorem freegroup_is_group: "group (freegroup S)"

Finally, we define a free group as a group which is isomorphic to the free
group on some set of generators.

definition is_freegroup::"_ ⇒ bool" where
"is_freegroup G ≡ (∃ (S::(unit × ’a) set). G ∼= (freegroup S))"

The formalisation of the universal property posed some challenges. An impor-
tant concern was that carrier set of a group is not necessarily a type in HOL-
Algebra, and that the domain of homomorphisms includes all objects in the
underlying type and not just the carrier set. As a consequence, two distinct
homomorphisms may be extensionally equal when restricted to the carrier set,
and so the lift from the generating set to the group no longer remains unique. To
recover the universal property, we first prove the existence of a homomorphism
and then show that any two homomorphisms which are obtained by lifting the
map from S to H are extensionally equal when restricted to the generating set:

theorem (in group) exists_hom:
assumes "f ∈ S → carrier G"

Formalizing Free Groups in Isabelle/HOL 163

shows "∃ h ∈ hom (freegroup S) G. ∀ x ∈ S.
f x = h (reln_tuple 〈S〉 ‘‘ {ι x})"

theorem (in group) uniqueness_of_lift:
assumes "f ∈ S → carrier G"
and "h ∈ hom (freegroup S) G"

"g ∈ hom (freegroup S) G"
and "∀ x ∈ S. f x = h (reln_tuple 〈S〉 ‘‘ {ι x})"
and "∀ x ∈ S. f x = g (reln_tuple 〈S〉 ‘‘ {ι x})"

shows "∀ x ∈ carrier (freegroup S). h x = g x"

We need the notion of a subgroup generated by a subset. We use the for-
malisation of the span of a subset of a group in [4], which is defined as follows.

inductive_set gen_span ("〈_〉ı") for G and gens where
gen_one: "1G ∈ 〈gens〉G"

| gen_gens: "x ∈ gens =⇒ x ∈ 〈gens〉G"
| gen_inv: "x ∈ 〈gens〉G =⇒ invG x ∈ 〈gens〉G"
| gen_mult: " [[x ∈ 〈gens〉G; y ∈ 〈gens〉G]] =⇒ x ⊗G y ∈ 〈gens〉G"

Showing that 〈S〉G spans a subgroup of a group, when S ⊆ G, is straightfor-
ward. We then prove the following lemma, which is a mild variation (suggested
by the formalisation) of the universal property of free groups.

lemma (in group) exist_of_hom_implies_freegroup:
fixes S::"’a set"

assumes "(〈S〉G) = carrier G"
and "

∧
H::(unit × ’a) × bool) list set monoid).∧

f. (group H) ∧ (f ∈ S → (carrier H))
−→ (∃ h ∈ hom G H. (∀ x ∈ S. h x = f x))"

shows "∃ S_H. G ∼= (freegroup S_H)"

4 The Word and Conjugacy Problems for Free Groups

Let G be a group. Elements g, h ∈ G are said to be conjugate if there exists an
element k ∈ G such that h = kgk−1. Let S ⊆ G be a generating set for G. The
word problem for G asks if there is an algorithm which determines whether a
group word w in S is equal to e in G. The conjugacy problem for G asks if there
is an algorithm which determines whether group words w,w′ in S are conjugate
in G. A comprehensive discussion of these problems can be found in [10].

A group word w on a set S is equivalent to a reduced word w′ attained by
successively cancelling subwords of the form xx−1 or x−1x in w. Two reduced
group words w and w′ are equal in FGS if and only if they are identical. These
observations solve the word problem for free groups: if w is a group word in
S, successively cancel subwords of the form xx−1 or x−1x until we arrive at a
reduced word w′. Then w = e in FGS if and only if w′ is the empty word.

164 A. S. A. Kharim et al.

This decision procedure is formalised by defining an executable function
reduce on lists and proving that group words are equivalent if and only their
corresponding images after a finite number of iterations of reduce are equal.

fun reduce :: "(’a,’b) word ⇒ (’a,’b) word" where
"reduce [] = []"|
"reduce [x] = [x]"|
"reduce (x#y#wrd) = (if (x = inverse y)

then wrd
else (x#(reduce (y#wrd))))"

theorem word_problem_eq:
assumes "x ∈ 〈S〉" "y ∈ 〈S〉"
shows "reln_tuple 〈S〉 ‘‘ {x} = reln_tuple 〈S〉 ‘‘ {y}

←→ (reduce^^(length x)) x = (reduce^^(length y)) y"

Certain parts of the proof given above are adapted from the approach in [4].
A rewrite system on group words is defined, whose reflexive symmetric closure
is the canonical equivalence relation on words; we subsequently show that this
rewrite system is confluent, terminating, and admits a unique normal form. A
key difference is that we also construct the normal forms in terms of reduce,
thus rendering the normal form amenable to code generation.

We now turn to the conjugacy problem. Let w = x1 . . . xn be a group word on
S. A word w′ is said to be cyclically equivalent to w if w′ = xk . . . xnx1 . . . xk−1

for some k ∈ {1, . . . , n}. A reduced word w = xε1
1 . . . xεn

n , where xi ∈ S, is said
to be cyclically reduced if it is reduced and it is not the case that x1 = xn and
ε1εn = −1; then, any word cyclically equivalent to w is also reduced. An element
x ∈ FGS is said to be cyclically reduced if the reduced word representing it is
cyclically reduced.

Lemma 1. Let w be a group word on a set S. There exists a unique reduced
word z and a unique cyclically reduced word w′ such that zw′z−1 is reduced and
w = zw′z−1 in FGS. We call w′ the cyclic reduction of w.

Proof. We induct on the length of w. Let v = xε1
1 . . . xεn

n , where xi ∈ S, be the
reduced word equivalent to w. If v is not cyclically reduced, x1 = xn and ε1εn =
−1. It follows that there exists a reduced word v′ and an element x ∈ S ∪ S−1

such that v = xv′x−1. The argument now follows from applying the induction
hypothesis to v′. We omit the proof that z and w′ are unique.

Proposition 1. Let w and w′ be two cyclically reduced words on S. Then, w
and w′ are conjugate in FGS if and only if they are cyclically equivalent.

Proof. We sketch the proof. If w and w′ are conjugate, there exists a reduced
group word z in S such that zwz−1 = w′ in FGS . We can assume that z =
zη1
1 . . . zηk

k , where zi ∈ S, is not the empty word and does not contain w as a
terminal subword (a terminal subword of z is a word of the form zηm

m . . . zηk

k for
some m ≤ k). Let w = xε1

1 . . . xεn
n and w′ = yδ1

1 . . . yδm
m , where xi, yi ∈ S.

Formalizing Free Groups in Isabelle/HOL 165

In FGS , zη1
1 . . . zηk

k xε1
1 . . . xεn

n z−ηk

k . . . z−η1
1 = yδi

1 . . . yδm
m : thus yδi

1 . . . yδm
m is

the unique reduced word equivalent to zη1
1 . . . zηk

k xε1
1 . . . xεn

n z−ηk

k . . . z−η1
1 . Since

zη1
1 . . . zηk

k xε1
1 . . . xεn

n z−ηk

k . . . z−η1
1 is not cyclically reduced, it cannot be reduced.

The only cancellation in zη1
1 . . . zηk

k xε1
1 . . . xεn

n z−ηk

k . . . z−η1
1 is either between zηk

k

and xε1
1 , or between xεn

n and z−ηk

k . Since w is cyclically reduced, there must
be cancellation at exactly one of these places: we will assume that zk = x1 and
ηk = −ε1. If k = 1, then yδ1

1 . . . yδm
m = xε2

2 . . . xεn
n xε1

1 , which is cyclically equivalent
to x. If not, we continue. Iterating, we observe that k < m: otherwise, we would
have that w is a terminal subword of z. We also observe that zi = xk−(i−1) and
δi = εk−(i−1) for every 1 ≤ i ≤ k, and that yδi

1 . . . yδm
m = x

εk+1
k+1 . . . xεn

n xε1
1 . . . xεk

k . It
follows that w and w′ are cyclically equivalent. The converse is straightforward.

Lemma 1 and Proposition 1 solve the conjugacy problem for free groups.
Given words w and w′, reduce both to cyclically reduced words: the words w
and w′ are conjugate if and only if their cyclic reductions are cyclically equiva-
lent. To formalise these results, we begin with two observations. First, the steps
involved in the proof largely pertain to words, and the group structure is not
extensively employed. In addition, many of the definitions present in the liter-
ature are existentially defined over a finite set of natural numbers. These are
convenient for proofs, but not amenable to code extraction. We therefore define
executable versions of cyclic reduction and cyclic equivalence.

definition cyclic_reduce :: "(’a,’b) word ⇒ (’a,’b) word"
where "cyclic_reduce x = uncycle ((reduce^^(length x)) x)"

definition ccyclicp :: "(’a, ’b) word ⇒ (’a, ’b) word ⇒ bool"
where "ccyclicp x y = checkcycleeq (length x) x y"

The iterated reduce function returns the normal form of the word. The
uncycle function recursively eliminates the first and last elements of the word
if they form a pair of inverses, else it returns the original word. The function
cyclic_reduce combines these two functions to define cyclic reduction. The
checkcycleeq function recursively checks if two words are equal to each other,
else it cyclically permutes one of the words for a fixed number of times till it equals
the other, else it returns false. The function cycylicp, which defines cyclic equiv-
alence, restricts the number of such cyclic permutations to the length of the first
word. We then define the executable function check_conj on group words.

definition check_conj
where "check_conj x y =(ccyclicp (cyclic_reduce x) (cyclic_reduce y))"

As check_conj is an executable function, showing that check_conj is equiv-
alent to conjugacy on words amounts to formalising the decision procedure to
check conjugacy in free groups.

definition(in group) conjugate
where "conjugate x y ≡ (∃ z ∈ (carrier G). z ⊗ x ⊗ inv z = y)"

166 A. S. A. Kharim et al.

lemma conjugacy_problem_in_freegroups:
assumes "x ∈ 〈S〉" "y ∈ 〈S〉"
shows "conjugate (freegroup A)

(reln_tuple 〈A〉‘‘ {x})
(reln_tuple 〈A〉‘‘ {y})

= check_conj x y"

The formal proof of this lemma is along the lines of the arguments given
in Lemma 1 and Proposition 1. Formally adapting the argument in the proof
of Proposition 1 was particularly tedious as it involved a detailed case by case
analysis depending on where cancellations in certain non-reduced words occured.
Further care had to be taken while interpolating between group words and their
equivalence classes in the free group. The function conj_check is executable,
thus leading to a safe code generated from a verified formalisation.

5 The Nielsen-Schreier Theorem

The Nielsen-Schreier Theorem asserts that subgroups of free groups are free.
This statement is deceptive in its simplicity: it is not immediate why this
should be the case (for example, consider the subgroup of FG{a,b,c} generated
by {abc−1, cab−1, b−1a−1}). The proof we present here is organised as follows: A
property called N-reduced is defined on group words. It is then proved that every
subgroup of a free group admits an N-reduced generating set, and that subgroups
generated by N-reduced sets in free groups are free. Together, these give us the
result. Our arguments follow those in [10, Chapter 1], though some ideas have
been reorganised for clarity. To begin, in the following lemma we introduce a
relation on group words that will play a critical role in our argument.

Lemma 2. Let S be a set such that the S± is well-ordered via a relation
<′, and let < be the shortlex order on set of reduced group words on S. If
w = xε1

1 . . . xεn
n is a reduced word on S, define L(w) := xε1

1 . . . xεm
m , where

m = �(n + 1)/2. First, define a relation on the set of reduced group words
on S by setting w ≺′ u if either min{L(w), L(w−1)}) < min{L(u), L(u−1)}; or
min{L(w), L(w−1)} = min{L(u), L(u−1) together with max{L(w), L(w−1)} <
max{L(u), L(u−1)}. Define a second relation on the set of reduced group words
on S as follows: w ≺ u if either |w| < |u|, or |w| = |u| and w ≺′ u. The rela-
tion ≺ is transitive and well-founded. Moreover, for reduced words w,w′, neither
w ≺ w′ nor w′ ≺ w are true precisely when either w′ = w or w′ = w−1.

Lemma 2 is extracted from [10, Proposition 2.2], and is a minor modification
of the construction presented there: we omit its proof. This lemma essentially
states that ≺ is a well-order on the set of reduced group words, up to an identi-
fication of w and w−1 for any group word w. To formalise this relation, we begin
by defining lex_word.

Formalizing Free Groups in Isabelle/HOL 167

definition lex_word where "lex_word = lenlex (r_gen - Id)"

The relation r_gen is a well founded order on the type groupgentype. The
existence of such an order follows from the well_ordering theorem, which
stands formalised in Isabelle/HOL. The relation lenlex r, which is available
in Isabelle’s formalisation on lists, compares two lists first by length then lexico-
graphically using the order r. The formalisation of lex_word further allows us
to formalise ≺′ as lex_L2_word’, which compares two tuples of left subwords,
by first comparing the minimal elements of the tuples in the lexicographic order,
and then if they are equal, by comparing the maximal elements of tuples in a
similar fashion. Using lex_L2_word’, we formalise ≺ as lex_L2_word as follows:

definition lex_L2_word where
"lex_L2_word A = {(x,y).

x ∈ (〈A〉 // (reln_tuple 〈A〉))
∧ y ∈ (〈A〉 // (reln_tuple 〈A〉))
∧ ((λt. (length (red_rep A t), t)) x,

(λt. (length (red_rep A t), t)) y)
∈ (nat_less <*lex*> lex_L2_word’ A)}"

The relation lex_L2_word first compares the lengths of the reduced repre-
sentation of two words, and subsequently compares them using lex_L2_word’
if the lengths are equal.

Let S be a set, and let U be a subset of FGS . The set U is said to be N-
reduced if it satisfies the following three conditions: (N0) U does not contain
the identity; (N1) if x, y ∈ U± such that xy �= e, then |xy| ≥ |x|, |y|; (N2) if
x, y, z ∈ U± such that xy �= e and yz �= e, then |xyz| > |x| + |z| − |y|.

We formalise the properties N0, N1, and N2 as predicates on one, two, and
three words, respectively. A word x satisfies N0 if it is not the empty word.

definition N0 where "N0 x = (x �= [])"

Properties N1 and N2 are comparisons between the lengths of words and the
length of their product. Formalising these statements directly result in defini-
tions that are unwieldy. Therefore, we formalise these conditions in terms of
cancellation between words, as described in Lemmas 3, 4, and 5 below.

Lemma 3. Let w,w′ be reduced group words on a set S. There exist unique
reduced group words p, a and b such that w = ap, w′ = p−1b, and ab is reduced.

Proof. Induct on the length of w. If ww′ is reduced, then take p to be the empty
word. If not, there exists an element x ∈ S± such that w = cx and w′ = x−1d.
Then, ww′ = cd. By induction, there exists a reduced word q such that c = aq,
d = q−1b, and ab is reduced. Take p = qx. We omit the proof of uniqueness.

Let S be a set, and let w,w′ be reduced group words on S. The reduced word
p constructed in Lemma 3 is called the cancellation between the pair (w,w′).

168 A. S. A. Kharim et al.

Lemma 4. Let w,w′ be reduced group words on a set S. Let p be the cancellation
between the pair (w,w′). Then, |ww′| ≥ |w| and |ww′| ≥ |w′| if and only if
|w|/2 ≥ |p| and |w′|/2 ≥ |p|.
Proof. Observe that |ww′| = |a| + |b|, |w| = |a| + |p|, and |w′| = |b| + |p|.
Thus |ww′| ≥ |w|, |w′| if and only if |p| ≤ |a|, |b|, which is equivalent to |p| ≤
|w|/2, |w′|/2.
Lemma 5. Let S be a set, and let w,w′, w′′ be reduced group words on S.
Suppose |ww′| ≥ |w|, |w′| and |w′w′′| ≥ |w′|, |w′′|. Let p be the cancellation
between the pair (w,w′) and q the cancellation between the pair (w′, w′′). There
exist reduced group words a, b, and c on S such that w = ap, w′ = p−1cq,
w′′ = q−1b. If c is not the empty word, the word acb is reduced. Moreover,
|ww′w′′| > |w| + |w′′| − |w′| if and only if c is not the empty word.

Proof. By Lemma 3, there exist reduced words a, d, e, b, p and q such that w =
ap, w′ = p−1d, w′ = eq, and w′′ = q−1b. By Lemma 4, we also know that
|p|, |q| ≤ |w′|/2. Thus there exists a reduced word c such that w′ = p−1cq.
Observe that ww′w′′ = acb. If c is not the empty word, acb is reduced, and so
|ww′w′′| = |a| + |b| + |c|. A straightforward calculation proves that |w| + |w′′| −
|w′| = |a|+|b|−|c|. Since c is not empty, it follows that |ww′w′′| > |w|+|w′′|−|w′|.
Conversely, suppose that c is the empty word. Then, the word ww′w′′ = ab, while
|w| + |w′′| − |w′| = |a| + |b|. Thus |ww′w′′| ≤ |w| + |w′′| − |w′|.

The predicate N1 is now formally defined as follows:

definition N1 where
"N1 x y = ((x �= wordinverse y)
−→ ((length (π2 (x�2y))) ≤(length (π1 (x�2y)))

∧ (length (π2 (x�2y))) ≤ (length (π3 (x�2y)))))"

The expression x �2 y mentioned here returns the unique tuple w = (a,p,b)
such that x = ap, y = p−1b, and ab is reduced. The existence of such a tuple
follows from a formalisation of Lemma 3. The functions πi in the definition
above correspond to the ith projection of the tuple. For the property N2, our
formalisation is defined in the context of words already satisfying property N1:

definition N2 where
"N2 x y z =
((x �= wordinverse y ∧ y �= wordinverse z)−→(π3 (�3 x y z) �= []))"

The expression �3 x y z above returns the unique tuple w = (a,p,c,q,b)
with x = ap, y = p−1cq, z = q−1b, and acq and p−1cb are reduced. The exis-
tence of such tuples follows from our formalisation of Lemma 5. These construc-
tions allow us to formalise the property N-reduced, for a subset U of the free
group, as the property which asserts that the reduced representations of all the
elements in U± and their curried tuples satisfy the properties N0, N1 and N2.

Formalizing Free Groups in Isabelle/HOL 169

Proposition 2. Let S be a set such that the set S± is well-ordered, and let H
be a subgroup of FGS. If g ∈ H, define Tg := {y ∈ H | y ≺ x} (where ≺ is
as in Lemma 2), and Hg := 〈Tg〉. Let A = {g ∈ H | g /∈ Hg}. Then, A is an
N-reduced set, and H = 〈A〉.
Proof. Observe that A = A±. The proof that 〈A〉 = H is exactly as in [10,
Proposition 2.9]. To show that A is N-reduced, we extract the relevant arguments
from [10, Proposition 2.2]. Observe that e /∈ A; thus A satisfies (N0). Let x, y ∈ A
such that xy �= e, and suppose that |xy| < |x|. This implies that y �= x, and that
xy ≺ x. There are now two possibilities. If x ≺ y, then both xy and x belong
to Hy, which implies that y ∈ Hy, a contradiction. Similarly, if y ≺ x, then
both xy and y belong to Hx, and thus x ∈ Hx. Again, this is a contradiction.
An identical argument rules out the possibility that |xy| < |y|. Thus A satisfies
(N1).

To show that A satisfies (N2), we again argue exactly as in [10, Proposition
2.2]. Suppose x, y, z are elements of A such that xy �= 1, yz �= 1, and |xyz| ≤
|x|+ |z| − |y|. By Lemma 5, there exist reduced words a, b, and c in X such that
x = ap, y = p−1q, z = q−1b, where p and q are the cancellation between (x, y) and
(y, z) respectively. Since A satisfies (N1), we also observe that |p| = |q| = |y|/2.

If p−1 < q−1, consider yz = p−1b and z = q−1b. Suppose that |yz| = |z|.
Then, L((yz)−1) = L(z−1) and L(yz) < L(z); therefore yz ≺ z. This gives a
contradiction. On the other hand, suppose that q−1 < p−1. Here, we can consider
x−1 = p−1a−1 and y−1x−1 = q−1a−1. Again, we get a contradiction.

We formalise Hg and A as G‘ H S g and X‘ H S respectively via the following
definitions:

definition G‘ where "G‘ H S g = 〈{h∈carrier H. (h,g)∈(lex_L2_word S)}〉H"
definition X‘ where "X‘ H S = {g∈carrier H. g /∈(G H S g)}"

Proving that the set X‘ H S generates the group H is a simple proof by
contradiction which makes use of the well-ordering theorem.

lemma span_X‘_SG_eq_SG:
assumes "H ≤ freegroup S"
shows "(let SubGp = (freegroup S)(|carrier := H |) in

〈X‘ SubGp S〉SubGp = carrier SubGp)"

Note that (freegroup S)(|carrier:=H|) denotes the subgroup H (with
its group structure) as in Isabelle’s HOL-Algebra library. The following lemma
formalises the remainder of Proposition 2 (i.e. showing that the set X‘ H S is
N-reduced). Its proof is a tedious reproduction of the argument described in the
proof of that proposition. We make use of the fact that ≺ relates a word to any
other word, except itself and its inverse, and also that it is transitive.

lemma N_reduced_X: assumes "H ≤ freegroup S"
shows "N_reduced (X‘ (freegroup S)(|carrier := H |) S) S"

170 A. S. A. Kharim et al.

We are now in a position to complete the proof of the Nielsen-Schreier theo-
rem. We need the following proposition.

Proposition 3. (c.f. [10, Proposition 2.3]) Let S be a set, and let U be an
N-reduced set of elements in FGS. The subgroup H := 〈U〉 is free.

Proof. We sketch the proof. Using Zorn’s lemma, we can find V ⊆ U± such
that V ± = U± and V ∩ V −1 = ∅ (we call such V a minimal generating subset
corresponding to U). Consider the homomorphism ei : FGV → H induced by
the inclusion of V in H. Note that 〈U〉 = 〈V 〉 = H: thus ei is surjective. To
show H is free, it suffices to prove that ei is also injective. Let w = a1 . . . an

be a non-empty group word in V , such that ai �= a−1
i+1. We term such a word

non-reducible. It suffices to prove that ei(w) is not equal to identity in H. Let
pi denote the cancellation between the pair (ai, ai+1), where we now consider
the ai as reduced words in S. Since V ± = U±, V is N-reduced: therefore there
exist non-empty reduced words c1, . . . , cn such that a1 = c1p1, an = pn−1cn,
and ai = p−1

i cipi+1 for all i ∈ {2, . . . , n − 1}; thus w = a1 . . . an = c1 . . . cn and
that each word of the form cici+1 is reduced (Lemma 5). Thus w is a reduced
product of non-empty words, and is therefore not equal to the identity.

Theorem 1 (The Nielsen-Schreier Theorem). Let S be a set. Every sub-
group of FGS is free.

Proof. Well-order S±. Let H be a subgroup of FGS . By Proposition 2, there is
a set A such that A is N-reduced and 〈A〉 = H. By Proposition 3, H is free.

The remainder of the formal proof of the Nielsen-Schreier theorem broadly
follows the argument sketched in Proposition 3. Formally adapting this argu-
ment was quite involved, with almost every statement requiring a considerable
amount of work. For example, the existence of a minimal generating subset asso-
ciated to any given subset A ⊆ 〈S〉 was first proved as an application of Zorn’s
lemma, and then formalised in terms of a function minimal_set involving the
choice operator; this then allowed multiple proofs to access this construction.
Similarly, a sufficient condition for groups to be free in terms of homomorphisms
(arising from the universal property) mapping non-reducible words to non-trivial
elements was framed as a distinct lemma for arbitrary subsets of a group, and
then specified to the case of minimal generating subsets. This proof involved
constant navigation between the multiplicity of types involved.

The Nielsen-Schreier theorem formally appears in our work as:

theorem(in group) Nielsen_Schreier:
assumes "H ≤ (freegroup S)"
shows "is_freegroup ((freegroup S)(|carrier := H |))"

6 Discussion

The challenges we encountered during this work could be organised into three
broad categories. The first was reorganising the mathematical ideas involved in a

Formalizing Free Groups in Isabelle/HOL 171

manner that was amenable to a formalisation project. This included expanding
on tersely written arguments from our source material, and, on occasion, mak-
ing small modifications to some of the mathematics involved. The second broad
category of challenges concerned identifying and then resolving certain under-
specifications in the manner in which certain definitions and proofs are con-
ventionally presented. This included unraveling the distinction between objects
conventionally identified by abuse of notation (e.g. the identification of an ele-
ment and its image under an isomorphism, or the identification of isomorphic
groups), and also in formally structuring and writing certain arguments that
conventionally made use of intuition regarding the behaviour of iterative pro-
cesses in the presence of a large number of cases (e.g. the decision process for
the conjugacy problem). A final category of challenges emerged while adapting
certain mathematical ideas to the framework of simple type theory and in the
context of existent formalization of group theory (e.g. as in Sect. 3). In addition,
it may be worthwhile to note that locales were not employed in the course of our
formalisation beyond those already present in Isabelle’s HOL-Algebra library:
no major advantages were foreseen in defining additional locales for our work
as the main place they may have been used (i.e. defining N-reduced words) is a
definition used only in a specific proof.

7 Related Works

Definitions and basic results on free groups stand formalised in several theorem
provers, including Isabelle/HOL, Coq, Lean, Agda and ACL2 [3,11,14,17]. Free
group formalisations in Coq and Lean contain the word problem and the uni-
versal property of free groups [11,14]; a related implementation of the free word
problem and the universal property for free abelian groups is also available in
HOL Light [8]. A formalisation of free groups in ACL2 establishes an isomor-
phism between free groups of rank 2 and a certain group of rotation matrices
[3].

A complete topological proof of the Nielsen-Schreier theorem stands for-
malised in Lean [12]. In addition, a homotopy type theoretic proof of a restricted
case of the Nielsen-Schreier theorem for finite index subgroups, which draws
from the algebraic topological proof of the Nielsen-Schreier theorem (as in [2]),
was formalised in Agda [17]; while [17] also contains a proof of the general
Nielsen-Schreier theorem using homotopy type theory and the axiom of choice,
the proof there of the general case is not mechanised. Topological arguments for
the Nielsen-Schreier theorem, as formalised in Lean and Agda, rely on a very dif-
ferent set of techniques (involving the theory of groupoids, fundamental groups
of graphs, etc.) from those formalised in this work.

A formalisation, in Isabelle/HOL, of word combinatorics on monoids can be
found in [7]; however, our work does not overlap with this.

In Isabelle/HOL, a previous formalisation of free groups can be found in the
Archive of Formal Proofs [4]. This formalisation includes results on the existence
of unique normal forms, a formal proof of the invariance of rank, and the ping-
pong lemma. In our work, we develop a formalisation for free groups starting

172 A. S. A. Kharim et al.

from the basic definitions. While we follow some of the constructions and proofs
as developed in [4], our approach does diverge in certain ways. For instance,
the normal form of a word in [4] is not executable since it relies on the choice
operator, and the free group is defined on the set of reduced words. We choose to
work with a formal definition of a free group that resembles the most frequently
used definition in the mathematical literature. For this, we draw upon the def-
inition in Sect. 2, rather than other equivalent definitions which appear in the
literature. That said, the approach in [4] certainly proved useful to us, including
their formalisation of the span of a subset of a group. Our work also builds on
the formalised group theory content in the HOL-Algebra library of Isabelle [1].
The span of a subset of a group also stands formalised in HOL-Algebra, but we
found the notation in [4] better suited for our purposes.

8 Conclusions and Future Work

In this paper, we introduce an ongoing formalisation project in the theory of free
groups in Isabelle/HOL. After setting up a formalised context and foundation, we
construct a formalised proof Nielsen-Schreier theorem and a decision process for
the conjugacy problem. To the best of our knowledge, our work presents the first
mechanised proof of the Nielsen-Schreier in complete generality in any theorem
prover. In addition, our formalisation of a decision process for the conjugacy
problem allows for code execution. We were able to work entirely within the
framework of simple type theory for our constructions. While it might have
been convenient to have access to dependent types at certain points during our
formalisation, the lack thereof did not pose major challenges.

We consider this work as the start of a substantial project formalising various
aspects of combinatorial and geometric group theory. We expect future work to
build upon the formalised libraries that have been constructed as a part of this
project. We are currently working to formalise other algorithms on free groups
including Whitehead’s algorithm (which determines when two elements of a free
group are mapped to one another under an automorphism of the group). In
the longer term, we hope to work towards formalising results in the elementary
theory of free groups [9,16] and the cohomology of free groups.

Acknowledgements. This work was supported by the Krea Faculty Research Fel-
lowship “Computational Thought in Group Theory and Geometry”. In addition, we are
grateful to the annonymous reviewers for their throughful comments and suggestions.

References

1. Aransay, J., et al.: The Isabelle/HOL Algebra Library (2022). https://isabelle.in.
tum.de/library/HOL/HOL-Algebra/. Accessed 11 June 2023

2. Baer, R., Levi, F.: Freie Produkte und ihre Untergruppen. Compos. Math. 3, 391–
398 (1936)

https://isabelle.in.tum.de/library/HOL/HOL-Algebra/
https://isabelle.in.tum.de/library/HOL/HOL-Algebra/

Formalizing Free Groups in Isabelle/HOL 173

3. Bapanapally, J., Gamboa, R.: A complete, mechanically-verified proof of the
Banach-Tarski theorem in ACL2(R). In: Andronick, J., de Moura, L. (eds.)
13th International Conference on Interactive Theorem Proving (ITP 2022).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 237, pp. 5:1–
5:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.5. https://drops.dagstuhl.
de/opus/volltexte/2022/16714

4. Breitner, J.: Free groups. Archive of Formal Proofs (2010). https://isa-afp.org/
entries/Free-Groups.html. Formal proof development

5. Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71(1), 116–144
(1911)

6. Dyck, W.: Gruppentheoretische studien. Math. Ann. 20(1), 1–44 (1882)
7. Holub, Š., Starosta, Š.: Formalization of basic combinatorics on words. In: Cohen,

L., Kaliszyk, C. (eds.) 12th International Conference on Interactive Theorem
Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 193, pp. 22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ITP.2021.22. https://
drops.dagstuhl.de/opus/volltexte/2021/13917

8. JRH13: Simple formulation of group theory with a type of “(A)group”.
GitHub repository. https://github.com/jrh13/hol-light/blob/master/Library/
grouptheory.ml

9. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups.
J. Algebra 302(2), 451–552 (2006)

10. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory, vol. 188. Springer, Hei-
delberg (1977)

11. mathlib: Free Groups - Lean Mathematical Library. https://leanprover-community.
github.io/mathlib_docs/group_theory/free_group.html. Accessed 09 Apr 2023

12. mathlib: The Nielsen-Schreier theorem - Lean Mathematical Library. https://
leanprover-community.github.io/mathlib_docs/group_theory/nielsen_schreier.
html. Accessed 02 June 2023

13. Nielsen, J.: Om Regning med ikke-kommutative Faktorer og dens Anvendelse i
Gruppeteorien. Matematisk Tidsskrift. B 77–94 (1921)

14. Schepler, D.: Freegroups Coq contribution. GitHub repository (2011). https://
github.com/coq-contribs/free-groups

15. Schreier, O.: Die untergruppen der freien gruppen. Abhandlungen aus dem Math-
ematischen Seminar der universität Hamburg 5, 161–183 (1927)

16. Sela, Z.: Diophantine geometry over groups VI: the elementary theory of a free
group. Geom. Funct. Anal. 16(3), 707–730 (2006)

17. Swan, A.W.: On the Nielsen-Schreier theorem in homotopy type theory. Log. Meth-
ods Comput. Sci. 18 (2022)

https://doi.org/10.4230/LIPIcs.ITP.2022.5
https://drops.dagstuhl.de/opus/volltexte/2022/16714
https://drops.dagstuhl.de/opus/volltexte/2022/16714
https://isa-afp.org/entries/Free-Groups.html
https://isa-afp.org/entries/Free-Groups.html
https://doi.org/10.4230/LIPIcs.ITP.2021.22
https://drops.dagstuhl.de/opus/volltexte/2021/13917
https://drops.dagstuhl.de/opus/volltexte/2021/13917
https://github.com/jrh13/hol-light/blob/master/Library/grouptheory.ml
https://github.com/jrh13/hol-light/blob/master/Library/grouptheory.ml
https://leanprover-community.github.io/mathlib_docs/group_theory/free_group.html
https://leanprover-community.github.io/mathlib_docs/group_theory/free_group.html
https://leanprover-community.github.io/mathlib_docs/group_theory/nielsen_schreier.html
https://leanprover-community.github.io/mathlib_docs/group_theory/nielsen_schreier.html
https://leanprover-community.github.io/mathlib_docs/group_theory/nielsen_schreier.html
https://github.com/coq-contribs/free-groups
https://github.com/coq-contribs/free-groups

Morphism Equality in Theory Graphs

Florian Rabe(B) and Franziska Weber

University Erlangen-Nuremberg, Erlangen, Germany

florian.rabe@fau.de

Abstract. Theory graphs have theories as nodes and theory morphisms
as edges. They can be seen as generators of categories with the nodes as
the objects and the paths as the morphisms. But in contrast to generated
categories, theory graphs do not allow for an equational theory on the
morphisms. That blocks formalizing important aspects of theory graphs
such as isomorphisms between theories.

MMT is essentially a logic-independent language for theory graphs.
It previously supported theories and morphisms, and we extend it with
morphism equality as a third primitive. We show the importance of this
feature in several elementary formalizations that critically require stating
and proving certain non-trivial morphism equalities. The key difficulty of
this approach is that important properties of theory graphs now become
undecidable and require heuristic methods.

1 Introduction and Related Work

Theory Graphs and Motivation. Logical theories are an essential meta-level
concept for encapsulating a set of declarations and axioms. For example, the
theory Groupof first-order logic declares a base set U , a binary operation ◦ on
U , a unary operation −1, a neutral element e, and the usual axioms.

Theory morphisms extend this to a category. A theory morphism from S
to T interprets S in T or, equivalently, constructs a model of S if provided a
model of T . Formally, it maps every constant declared in S to a T -expression
in a way that the homomorphic extension preserves all types and theorems. For
example, we can define the theory DivGroupof division groups, an alternative
way to define groups, using a binary division operation /. Then we can define
a theory morphism GtoDG : Group −→ DivGroup by mapping x ◦ y to x/(e/y),
x−1 to e/x and e to e and proving all Groupaxioms of the thus-defined group.

The category of theories has proved extremely valuable in the large scale
structuring of mathematical formalizations, especially when combined with mod-
ule systems [FGT92,SW83,AHMS99]. A diagram in this category is also called a
theory graph. Many formal systems provide support for constructing large the-
ory graphs over various logics, including proof assistants such as IMPS [FGT93]
and PVS [ORS92], specification systems such as Hets [MML07] and Specware
[SJ95], and logical frameworks such as LF [RS09] and Isabelle [KWP99].1

1 The individual theory graphs are implicit in the respective libraries and usually not
the subject of specific publications.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 174–189, 2023.
https://doi.org/10.1007/978-3-031-42753-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_12&domain=pdf
http://orcid.org/0000-0003-3040-3655
http://orcid.org/0000-0003-3379-5922
https://doi.org/10.1007/978-3-031-42753-4_12

Morphism Equality in Theory Graphs 175

However, maybe surprisingly, none of these systems includes support for
morphism equality. In category theory, a diagram consists of three compo-
nents: a set of objects (nodes of the theory graph), a set of atomic morphisms
between objects (edges), from which the set of morphisms (paths) is generated
by composition, and a set of pairs of equal morphisms between the same objects
(equality of two paths between the same nodes). But practical systems for theory
graphs have restricted attention to the former two components even though the
latter is critical for the diagram chase–style arguments that are a hallmark of
category theory.

For example, we can give a second morphism DGtoG : DivGroup −→ Group
that maps (among others) x/y to x ◦ y−1. We can then see that DGtoG; GtoDG =
idDivGroup and GtoDG; DGtoG = idGroup, i.e., that Group and DivGroup are isomor-
phic. If we encode theories and morphisms in some type theory (e.g., as record
types and functions or as signatures and functors), it is often possible to encode
these equalities correspondingly.

But existing systems that specifically work with theory graphs and the cate-
gory induced by them, do not make it possible, let alone easy, to express, prove,
and use such equalities as a part of the theory graph development. Our goal is to
design a theory graph language that supports defining theories and morphisms
and proving equalities of morphisms.

Application to Realms. A parallel motivation of our work was provided by the
goal of formalizing realms.

Working with multiple isomorphic formalizations of the same mathematical
theory is often both unavoidable and cumbersome. In 2014, Carette, Farmer, and
Kohlhase introduced the concept of realms [CFK14] as a high-level structuring
feature for formal mathematics. Their basic idea is to provide an abstraction
layer at which multiple isomorphic formalizations are identified. For example,
users should be able to ignore the difference between Groupand DivGroup: when
creating a group, giving either ◦ or/should suffice; and when using a group, both
should be available.

However, while the idea of realms was well-received (best paper award), nei-
ther [CFK14] nor any follow-up work conducted a detailed investigation of how
realms should be implemented in a practical system.

In a work-in-progress paper [RW22], we partially formalized several examples
that were given informally in [CFK14]. A key result of these case studies was that
theory graph languages with morphism equality are needed to formalize realms.
This motivated the present paper, in which we introduce such a language.

Contribution and Overview. We start with the Mmt language [RK13], which
already allows defining theories and morphisms. Mmt is independent of the
base language, but some assumptions about the base language are needed to
state equalities—therefore, we work with Mmt’s instantiation with the logical
framework LF [HHP93].

Our main contribution is introducing, in Sect. 4, morphism equalities to
Mmt. Concretely, we add morphism equalities as a third kind of Mmt toplevel

176 F. Rabe and F. Weber

declaration in addition to theories and morphisms. To our knowledge, that yields
the first formal system for categories of theories in which users can state and
prove the equality of arbitrary morphisms.

We apply this language, in Sect. 5, to develop a pattern for formalizing realms.
Concretely, we formalize the realms of lattices and topological spaces. This shows
that Mmt with morphism equality can serve as a lightweight formalism for
realms, and we anticipate this formalism to be more practical than the more
involved definition of [CFK14].

A major technical hurdle was that many intuitively true morphism equalities
do not actually hold on the nose but depend on the choice of equality. Therefore,
to support practical morphism equalities, we first extend LF in Sect. 3 in a way
that allows flexibly choosing what logic-specific equality to consider.

We begin by introducing Mmt and LF in Sect. 2.

2 Preliminaries

2.1 LF-Expressions

We use LF [HHP93] as a logical framework for defining the logics, in which we
state the theories. This is a dependently-typed λ-calculus whose expressions are
the universes typeand kind, typed variables x, typed or kinded constants c,
dependent function types Πx : A.B, abstraction λx : A.t, and function applica-
tion t t′:

E,A,B, s, t ::= x | c | λx : A.t | Πx : A.B | t t | type | kind

Theories Σ declare constants c : A where A is a type or kind. Contexts Γ
declare variables x : A where A is a type. The type/kind of a constant and the
type of a variable may refer to previously declared constants resp. variables. We
usually use A,B as meta-variables for types, s, t for typed terms, E for arbitrary
expressions, and we write A → B for Πx : A.B if x does not occur in B and
E[x/t] for the substitution of t for x in E.

The judgments are typing Γ �Σ t : A and equality Γ �Σ E
expr
= E′. The rules

are standard, and we give the rules for expressions in Fig. 1.

Example 1 (Typed First-Order Logic). We sketch the definition of typed first-
order logic FOL as an LF-theory. This representation is routine [HHP93].

o : type
pf : o → type
⇔ : o → o → o
∀ : (ΠA : tp.tmA) → o

tp : type
tm : tp → type
FOL= : ΠA : tp.tmA → tmA → o

. . .

Here o is the type of propositions, pfF is the type of proofs of proposition F , tp
is the LF-type of FOL-types, and tm a is the LF-type of FOL-terms of FOL-type a.

Morphism Equality in Theory Graphs 177

Fig. 1. Typing and Equality Rules of LF

Note that FOL provides its own equality connective FOL= , which is different from
the LF-judgment

expr
= . We use higher-order abstract syntax for binders (e.g.,

∀A (λx : i.F) represents the proposition ∀x : A.F) and curried functions for
the connectives (e.g., ⇔ F G represents F ⇔ G), and we will use the common
notations in the sequel for those expressions.

2.2 Theory Graphs in Mmt

The grammar of the instantiation of Mmt with LF is given in Fig. 2, where A,E, t
are LF-expressions as above and ∅ denotes the empty theory graph.

Fig. 2. Mmt Grammar

A theory graph G consists of theory and morphism declarations. A primitive
theory declaration theory s = {σ} introduces the theory named s given
by the list of declarations σ. The declarations in the body of a theory are of
the form c : A where c is a name and A is the type/kind of c. Alternatively,
we can introduce a defined theory by theory s = S, which defines s as
an abbreviation for a theory expression S. Theory expressions S are either
references s to theory names or unions S ∪ T of theories.

178 F. Rabe and F. Weber

meta-vars thy morph
name s m
expression S M
body σ μ

The syntax of morphisms is analogous to that of
theories. The names we use for meta-variables are sum-
marized on the right. A primitive morphism decla-
ration morph m : S −→ T = {μ} introduces the
morphism named m from S to T given by the list of
declarations μ. The declaration is well-formed if μ con-
tains exactly one declaration c[: A′] = E for every constant c : A of S such
that E : m(A) holds over T . (The type A′ is redundant and must be equal to
m(A) if given.) m induces a compositional type-preserving mapping m(−) of S-
expressions to T -expressions by homomorphic extension, i.e., by replacing every
constant with the image provided by μ.

Alternatively, we can introduce defined morphisms by morph m : S −→
T = M for a morphism expression M . Morphism expressions M are ref-
erences m to morphism names, identity morphisms idS : S −→ S, compo-
sitions M ;N : R −→ T of M : R −→ S and N : S −→ T , or unions
M1 ∪ M2 : S1 ∪ S2 −→ T of M1 : S1 −→ T and M2 : S2 −→ T . Every morphism
expression M defines a compositional homomorphic mapping M(−) given by,
respectively, m(−), the identity map, the composition of M(−) and N(−), and
the union of M1(−) and M2(−). In particular, we have (M1 ∪ M2)(E) = Mi(E)
if E is an Si-expression.

In addition to the above, a primitive theory or morphism may contain
include declarations. In a theory with name t, the declaration include S[=
M] reuses all constants of S for t. A recent and previously unpublished feature
of Mmt that will prove critical for our formalizations is that such includes may
carry a definiens M : S −→ t. Defined includes can be seen as analogous to
defined constants: from the perspective of t, (i) a morphism M : S −→ t can be
seen as an object of “type” S, (ii) an include of S specifies that t is a subtype of
S, and (iii) a definiens M specifies that t can be viewed as an instance of S via
M . In terms of object-oriented programming an undefined include is inheritance
of S into t, and a defined include is delegation from t to M for interface S. Sim-
ilarly, in a primitive morphism m : S −→ T , the declaration include R = N for
a morphism N : R −→ T reuses all mappings of N , i.e., we have m(c) = N(c)
for every R-constant c.

Example 2. We spell out our running example in Mmt syntax in Fig. 3. We
omit the axioms for brevity and only remark that axioms are treated in the
same way as constants: they are declared as constants (of type pfF for some
F) and mapped by morphisms to appropriate FOL-proof terms. Note how the
morphisms include idCarrier. This makes explicit that, e.g., GtoDG is equal to the
identity when restricted to the smaller domain Carrier.

Relative to a theory graph G, the type system uses judgments given in
Fig. 4. Due to include declarations, the semantics of a theory now depends on the
entire theory graph. Therefore, we have to index the LF-judgments for expressions
with G as well.

Figure 5 gives the most important rules, which we explain in the remainder.
But before doing so, we state the main theorem about Mmt to solidify the

Morphism Equality in Theory Graphs 179

Fig. 3. Example Theory Graph in Mmt

Fig. 4. Mmt Judgments

intuition of morphisms: they preserve all judgments, i.e., the following rules are
admissible.

Γ �G
T t : A �G M : S −→ T

M(Γ) �G
S M(t) : M(A)

Γ �G
T t

expr
= t′ �G M : S −→ T

M(Γ) �G
S M(t)

expr
= M(t′)

The rules for well-formed theories are straightforward. Technically, we
need an equality judgment for theory expressions here with rules for definition
expansion and idempotence, commutativity, associativity of union, but we omit
that for brevity.

The rules for the inclusion judgment �G S
M
↪→ T build the category gen-

erated by the include declarations in theories. The morphism M is optional,
and if it is omitted, we assume M = idS . Its intuition is formalized in the
rule Lookup, which makes all constants from an included theory available to the
including theory. Consider a declaration include S in a primitive theory t. Then

we have �G S
idS
↪→ t, and Lookup makes any declaration c : A of S available to

T unchanged. The second conclusion of Lookup vacuously establishes c
expr
= c.

Alternatively, consider a declaration include S = M for �G M : S −→ t. Now

�G S
M
↪→ t, and Lookup makes the declaration c : M(A) available to T , and its

second conclusion makes c an abbreviation for M(c). Thus, defined includes are
always conservative and just add defined constants.

180 F. Rabe and F. Weber

Fig. 5. Typing Rules for Theory Graphs

The rules for well-formed morphisms build the category generated by the
named morphisms. If �G S ↪→ T , we do not introduce a name for the induced
embedding of S-expressions into T -expressions; instead, rule compIncl allows
composing morphisms with inclusions. In particular, if �G S ↪→ T , we have
�G idS : S −→ T .

The judgment for morphism equality comes in critically in the two rules
in Fig. 5 that involve morphisms out of a union theory. For example, the rule
for the morphism union M1 ∪ M2 : S1 ∪ S2 −→ T requires that the Mi agree on
the intersection of their domains. Formally, we define S1 ∩ S2 as the union of all
named theories t that are included without definition into both Si, i.e., all t for
which �G t ↪→ S1 and �G t ↪→ S2. Then to say that the Mi agree on S1 ∩ S2

means that �G M1
mor= M2 : t −→ T for every such t.

Morphism equality is also critical in the well-formedness of include declara-
tions. Include declarations in theories are only well-formed if for any S, T , there

is at most one M such that �G S
M
↪→ T , i.e., theories must not be included via

two different morphisms. Similarly, in a morphism m, include declarations are
only well-formed if no two different morphisms are included for the same theory.
In both cases, the formal condition checked by Mmt is that the declarations
include S1 = M1 and include S2 = M2 may only occur together in the same
primitive theory/morphism if �G M1

mor= M2 : S1 ∩ S2 −→ T , where T is the
containing theory or, respectively, the codomain of the containing morphism.

Morphism Equality in Theory Graphs 181

Figure 5 omits the rules for establishing morphism equality. Generally, two
morphisms are equal if they induce the same homomorphic mapping, which
is equivalent to mapping every constant of the domain to equal expressions.
But even if the equality of expressions is decidable (as for LF), this is a far
too expensive criterion in practice—morphism equality must be checked very
frequently, and each time an expression equality check would be needed for
every domain constant. Therefore, Mmt uses an incomplete sufficient criterion
that implements diagram chase–reasoning without ever inspecting the bodies of
primitive morphisms. We defer the presentation to Sect. 4, where we change the
rules anyway.

3 Propositional Equality of LF-Expressions

Example 3 (Failure of Morphism Equality). To prove

�G DGtoG; GtoDG mor= idDivGroup : DivGroup −→ DivGroup

we must show that both morphisms map each constant to equal expressions, e.g.,
we need the equality of GtoDG(DGtoG(/)) = GtoDG(λx, y.x◦y−1) = λx, y.x/y−1−1

and idDivGroup(/) = / (where we have silently applied the necessary β-reductions).
But these terms are only provably equal in the FOL-theory DivGroup. LF, which
only uses αβη-equality, does not consider them equal.

Example 3 shows that morphism equality cannot easily be defined generically
at the Mmt- or LF-level because it may depend on logic-specific equalities. For
example, FOL-constants can be type, function, predicate symbols, or axioms, and
FOL does not support equality for any of them out of the box. Consider functions
f, g of type tmU → tmU . The natural choice for equality is the formula ∀x :
tmU.f x

FOL= g x. For predicates p, q : tmU → o, it would be ∀x : tmU.p x ⇔ q x.
For types, FOL does not provide any equality, and we have to fall back to LF-
equality. For axioms, the simplest choice is a proof irrelevance rule, where any
expressions P,Q : pfF are considered equal.

Our key idea is to define LFQ by adding a propositional equality predicate to
LF that logic developers can use to spell out these equalities, so that Mmt can
consider them when checking the equality of two morphisms.

The idea of adding propositional equality to LF is not new. One approach is
to add rewriting as in Dedukti [CD07]. Another option is to add identity types
as in Martin-Löf type theory [ML74]. Our formulation below is essentially the
same as the one worked out in [Har21].

We add a kind E
LF=A E′ for the equality of terms E and E′ of type A.

We could make this a type, but that would amount to using identity types
and be much more expressive than needed for our purposes. Because LF can
quantify over types but not over kinds, E

LF=A E′ can only occur as the output
of LF-constants but not as input. Thus, users can declare new propositional
equalities but can never do anything with them—it remains the discretion of the

182 F. Rabe and F. Weber

system how to use them. That is important because user-declared propositional
equalities make typing in LFQ undecidable, and implementations will only be
able to handle them to a limited degree.

The LFQ grammar extends the one of LF with

E ::= E
LF=A E | refl | funExtE

Note that we now distinguish the kind E
LF=A E for equality of typed terms and

the judgment � E
expr
= E′ for the equality of expressions. LFQ adds the following

rules to LF
Γ �G

T A : type Γ �G
T E : A Γ �G

T E′ : A

Γ �G
T (E LF=A E′) : kind

Γ �G
T P : Πx1 : A1, . . . , xn : An.(E x1 . . . xn

LF=B E′ x1 . . . xn)

Γ �G
T funExtP : (E LF=Πx1:A1,...,xn:An.B E′)

Γ �G
T P : (E LF=A E′)

Γ �G
T E

expr
= E′

Γ �G
T A : type Γ �G

T E : A

Γ �G
T refl : (E LF=A E)

The first rule enables users to declare new propositional equalities. The second
allows using funExt to show the equality of two functions by functional exten-
sionality. The other two rules map back and forth between the judgment

expr
=

and the kind LF=.
From now on, we work in the instantiation of Mmt with LFQ. Because Mmt

allows the modular definition of logical frameworks, and LFQ only adds construc-
tors and rules to LF, any LF-theory graph is also an LFQ theory graph.

Example 4. (FOL-Specific Equality). We extend FOL from Example 1 to the logic
FOLQ in LFQ by adding propositional equalities that quotient FOL-expressions:

theory FOLQ =
include FOL

eqT : ΠA : tp.Πx, y : tmA.(pfx
FOL= y) → x

LF= tmA y

eqF : Πf, g : o.(pff ⇔ g) → f
LF= o g

eqP : Πf : o.Πp, q : pf f. p
LF= pf f q

eqTmakes terms LF-equal if they are provably equal in FOL. Using functional
extensionality, this implies, e.g., for two unary functions f, g : tmU → tmU

� f
LF= tmU→tmU g iff x : tmU � P : pf(f x

FOL= g x)

The constant eqFdoes the same for formulas and, e.g., for unary predicates p, q :
tmA → o. The constant eqP adds proof irrelevance.

Morphism Equality in Theory Graphs 183

FOLQ injects its undecidable equality into LFQ, thus rendering � E
expr
= E′

undecidable. But the deep research problems associated with that go way beyond
the purpose of this paper. Instead, our plan is to use FOLQ only as the codomain
of morphism equality judgments, in which case the undecidability is manageable:

Example 5 (Morphism Equality via a Stronger Codomain). Consider the theory
graph below that summarizes our running example

FOLQ

FOL

Group DivGroupGroup∪ FOLQ DivGroup∪ FOLQ
GtoDG

DGtoG

The judgment �G DGtoG; GtoDG mor= idDivGroup : DivGroup −→ DivGroup ∪
FOLQ holds. Here the same morphisms as in Example 3 are compared relative
to a bigger codomain in which additional propositional equalities are declared.
Thus, the resulting proof obligations (which are equalities of expressions over
the codomain) are checked relative to a stronger theory.

Indeed, we have a FOL-proof

x : tmU, y : tmU �DivGroup∪FOLQ I : pf
(
x/(y−1−1

) FOL= x/y
)

which we can use to show �DivGroup∪FOLQ λx, y.x/y−1−1 expr
= /. The corresponding

cases for the other constants of DivGroupas well as for the dual equality of
GtoDG; DGtoG and idGroup can be shown accordingly.

Thus, Group and DivGroup are not isomorphic in the category of theories
that include FOL, but Group ∪ FOLQ and DivGroup ∪ FOLQ are isomorphic in the
category of theories that include FOLQ.

Example 5 shows that we can model different equality relations on morphisms
by using different codomains. This is extremely valuable because it keeps the
formalism simple by retaining a single equality judgment and uses the modularity
of the theory graph to capture different levels of equality.

4 Propositional Equality of MMT-Morphisms

It remains to extend the Mmt language in a way that can utilize the proposi-
tional expression equality introduced in Sect. 3 to prove morphism equalities. We
extend the grammar as below and explain all new productions in the remainder:

G ::= . . . | G,morpheq k : M
mor= N : S −→ T = {κ}

| G,morpheq k : M
mor= N : S −→ T = K

κ ::= d∗ d ::= c[: A] = E | include S = K

K ::= k | reflM | (other proof terms)

184 F. Rabe and F. Weber

A morphism equality declaration is a theorem named k stating the equality
of two morphisms M and N , both from S to T . In the primitive case, k is
proved by giving a body κ. Just like the body σ of a primitive theory t gives the
constructors of t-expressions, and the body μ of a primitive morphism m with
domain t gives the cases of a compositional mapping of t-expressions, the body κ
of a primitive morphism equality gives the cases of the inductive equality proof
for two such morphisms.

A primitive morphism equality morpheq k : M
mor= N : s −→ T = {κ},

where s is a primitive theory with body σ, is well-formed if:

– For every constant c : A in σ, κ contains exactly one c[: A′] = E where
�G

T E : (M(c) LF=M(A) N(c)). (The expression A′ is redundant. If given, it
must be equal to the type of E.)

– For every include R in σ, κ contains exactly one include R = K where K
is a proof term for �G R

mor= T : M −→ N .

If the domain of k is a union theory S1 ∪ S2, κ must provide cases for the
declarations of each Si. If it is a defined named theory, we expand the definiens
first and apply the definition above.

Example 6. We show one of the two isomorphism properties of our example:

morpheq k : DGtoG; GtoDG mor= idDivGroup : DivGroup −→ DivGroup ∪ FOLQ =
include Carrier = refl idCarrier

e : e
LF= tmU e = refl

/ : λx, y.x/(y−1−1) LF= tmU→tmU→tmU / =
funExtλx, y. eqTU (x/(y−1−1)) (x/y) I

Both morphisms restrict to idCarrier on the theory Carrier. Consequently, we
use a reflexivity proof for �G idCarrier

mor= idCarrier : Carrier −→ DivGroup ∪
FOLQ. In the declaration for e, we have (DGtoG; GtoDG)(e) = e = idDivGroup(e) so
that the reflexivity proof for LF expressions suffices. In practical implementations,
those two cases could be omitted and filled in by the system as defaults. Finally,
the declaration for / discharges the proof obligation that failed in Example 3
using the proof I from Example 5.

If we had not omitted the axiom declarations from DivGroup, we would also
have to show the equality of the proofs assigned to the axioms. That would be
trivial due to the use of proof irrelevance in FOLQ.

In the defined case morpheq k : M
mor= N : s −→ T = K, we require that

K is a proof term for the morphism equality judgment �G M
mor= N : S −→ T .

Originally, we wanted to support only the primitive case. However, our case
studies showed that, apart from making the syntax of theories, morphisms, and
equalities analogous, the defined case is critically important in practice. Because
propositional equality is undecidable but must be called frequently, practical
implementations must employ cheap incomplete heuristics instead of running a

Morphism Equality in Theory Graphs 185

theorem prover to discharge a morphism equality. But incompleteness threatens
scalability—it is imperative that users are able to workaround situations where
the system runs into a proof obligation �G M

mor= N : S −→ T that it cannot
prove. We found defined morphism equalities to be the right compromise here:
if a morphism equality is implied by the given primitive morphism equalities
but the system cannot find the proof, the user can give a defined morphism
equality to show the proof to the system. Because K is a diagram chase-style
proof term, that is orders of magnitude easier than proving a new primitive
morphism equality. We give an example in Sect. 5.

For brevity, our grammar omits the productions for morphism equality
proof terms K. They arise as the straightforward proof term assignment to
the inference system for the judgment �G M

mor= N : S −→ T , whose rules we
give now. The key rules are

morpheq k : M
mor= N : S −→ T = in G

�G M
mor= N : S −→ T

base

morph m : S −→ T = M in G

�G m
mor= M : S −→ T

def

morph m : S −→ T = {μ} in G include R = L in μ

�G m
mor= L : R −→ T

morphIncl

�G M : S −→ T �G R ↪→ S �G M
mor= N : R −→ T

�G M
mor= M ∪ N : S −→ T

unionIncl

The first two rules are straightforward: base gives the base case of equalities
explicitly proved by the user, and def expands the definition of defined mor-
phisms. morphIncl gives the semantics of include R = L in a primitive mor-
phism m: L is the restriction of m to R. unionIncl is a subsumption rule that
allows removing redundant parts in a union of morphisms.

The remaining rules are routine, and we only sketch them for brevity:

– equivalence (reflexivity, symmetry, transitivity) and congruence (substitution
of equals by equals) of morphism equality

– category axioms (associativity of composition, neutrality of identity)
– semilattice properties of union (idempotence, commutativity, associativity)

Finally, we can obtain the main theorem that captures the soundness of the
morphism equality calculus: equal morphism induce equal expression mappings,
i.e., the following rule is admissible

�G M
mor= N : S −→ T Γ �G

S t : A

M(Γ) �G
T M(t)

expr
= N(t)

It is proved by induction on the derivations of �G M
mor= N : S −→ T .

186 F. Rabe and F. Weber

5 Case Studies

With morphism equality in place, we can now finish the two case studies that we
had to leave incomplete in [RW22].2 Both are essentially the same as in [RW22].
But we are now able to state and prove the various morphism equalities.

Topological Spaces. There are many isomorphic definitions of topological
space. Even more interestingly, many of them extend closure systems, for
which there are also multiple isomorphic definitions. Concretely, our formal-
ization consists of three isomorphic theories for closure systems and six iso-
morphic theories for topological spaces as shown in the theory graph below.
Here the inner triangle and the outer rectangle are isomorphism cycles.

OpenTop ClosedTop

ClosenessTop

ClosureTopInteriorTop

NeighborhoodTop

ClosureSystem

Closeness

ClosureOperator

Carrier

OpCd

CdCn

Cn
Cl

ClIn

InNb

Nb
Op

CsCn

CnCo

CoCs

The bodies of these theories and morphisms are inessential for our purposes here.
For example, ClosureSystem uses an intersection-closed set of subsets of the car-
rier set whereas ClosureOperator uses an idempotent mapping on subsets.

Crucially, the whole theory graph commutes. In particular, to show the iso-
morphisms, we have proved three primitive morphism equalities to show that
the inner triangle commutes and six to show that the outer hexagon commutes.
For example, we prove morpheq isoClosureSystem : CsCn;CnCo;CoCs

mor=
idClosureSystem : ClosureSystem −→ ClosureSystem = {. . .}. While we have not
fully implemented morphism equality in Mmt yet, all proofs in the bodies of
these morphism equalities were done in and checked by Mmt.

The commutativity of the rectangles connecting the inner with the outer ring
hold definitionally: for example, include ClosureSystem = CsCn is contained in
the body of CdCn, at which point the rule morphIncl yields �G CdCn

mor= CsCn :
ClosureSystem −→ ClosenessTop. Similarly, all edges of the inner triangle
include idCarrier, which makes the triangles involving Carriercommute.

The only rectangle whose commutativity requires a non-trivial proof term
is �G ClIn;InNb;NbOp;OpCd

mor= CoCs : ClosureOperator −→ ClosedTop (∗).
This equality follows from the other morphism equalities mentioned above by
diagram chase, i.e., by applying the rules given in Sect. 4, mostly tedious uses

2 Both (as well as our running example) are available at https://gl.mathhub.info/
MMT/LATIN2/-/tree/devel/source/casestudies/2023-morpheq.

https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/casestudies/2023-morpheq
https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/casestudies/2023-morpheq

Morphism Equality in Theory Graphs 187

of associativity and substitution. A concrete implementation of this undecidable
property may or may not manage to discharge (∗) automatically and swiftly.
If it fails, users can state a defined morphism equality to work around this
incompleteness.

To integrate all the isomorphic theories into a single realm in the sense of
[CFK14], we use Mmt’s defined includes as follows:

theory Closure =
include ClosureSystem
include ClosureOperator = CoCs
include Closeness = CnCo

theory Topology =
include Closure
include ClosedTop
include OpenTop = OpCd
include NeighborhoodTop = NbOp
include InteriorTop = InNb
include ClosureTop = ClIn
include ClosenessTop = CnCl

Here Topology can use all operations from any one of the six isomorphic the-
ories because they are all included. Critically, the definitions of the includes
ensure that all six includes refer to the same underlying topology. For example,
include ClosureTop = ClIn also includes the theory ClosureOperator, which
has already been included via Closure. Thus, checking the well-formedness of
Topology generates the proof obligation (∗). Previously, Mmt could not dis-
charge (∗), and users had no way to help it along.

Lattices. We give two isomorphic formalizations of lattices in the theory graph
below: Firstly, LatticeAlgebra is based on two copies of Semilattice (with
operation ◦) given by the two morphisms meet (mapping ◦ to �) and join
(mapping ◦ to �). Secondly, LatticeOrder is based on an order ≤ and arises
as the union of Infimum and Supremum. Even just giving the morphism OrdAlg
(without even trying to prove it to be an isomorphism) was previously impossible
in Mmt.

The issue is subtle. The isomorphism absorb defines an infimum relation for
every semilattice by mapping ≤ = λx, y.x ◦ y

FOL= x. By composing it with
meet, we obtain the infimum operation in algebraic lattices. Correspondingly,
we obtain the supremum by composing it with join and OpSup (which maps
≤ = λx, y.y ≤ x).

Thus, OrdAlg can be defined elegantly using include Infimum =
absorb;meet and include Supremum = OpSup;absorb;join. These two mor-
phisms now have to agree on Infimum∩Supremum = Order, i.e., we have the mor-
phism equality proof obligation �G (absorb;meet) mor= (OpSup;absorb;join) :
Order −→ LatticeAlgebra. That in turn generates the expression equality
proof obligation �LatticeAlgebra (x�y

FOL= x)
expr
= (y�x

FOL= y) (∗). But this holds
in LatticeAlgebra only up to ⇔.

We can remedy this by proving a morphism equalitymorpheq ordersAgree :
(absorb;meet) mor= (OpSup;absorb;join) : Order −→ LatticeAlgebra ∪
FOLQ = {≤ = funExtλx, y. eqF(. . .)}, where we use eqF to discharge

188 F. Rabe and F. Weber

(∗). With this equality in place, OrdAlg becomes well-formed as a morphism
LatticeOrder −→ LatticeAlgebra ∪ FOLQ. Order

SupremumInfimum

LatticeOrder

Semilattice

MeetSemilattice JoinSemilattice

LatticeAlgebra

OpSupabsorb

mee
t join

OrdAlg

6 Conclusion and Future Work

We showed how to extend theory graph formalisms with proofs of equality of
morphisms. Besides theories and morphisms, morphism equality is the third con-
stitutive component of categorical diagrams, but it had received little attention
in prior work on theory graphs. We showed that even elementary examples of
theory graphs, such as the definitions of lattices and topological spaces, require
a systematic treatment of morphism equality that had not been done before,
and we have shown how our design enables this treatment. We used the Mmt
language for theory graphs instantiated with the logical framework LF to present
our design in a concrete and logic-independent setting, and our ideas carry over
easily to other theory graph formalisms. Moreover, by combining our design
with defined includes, we have demonstrated a promising formalization pattern
for realms, a theory graph formalism feature that had previously been called for
[CFK14] but not realized by any practical system.

We are currently implementing our design by extending the Mmt tool for
theory graphs. To ensure the feasibility of this, we have taken care to evaluate our
approach in multiple case studies. These are already available in the anticipated
Mmt syntax, and all proofs in them have already been developed in and verified
by Mmt.

References

[AHMS99] Autexier, S., Hutter, D., Mantel, H., Schairer, A.: Towards an evolutionary
formal software-development using CASL. In: Bert, D., Choppy, C., Mosses,
P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 73–88. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-540-44616-3 5

[CD07] Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-
calculus modulo. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583,
pp. 102–117. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73228-0 9

https://doi.org/10.1007/978-3-540-44616-3_5
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1007/978-3-540-73228-0_9

Morphism Equality in Theory Graphs 189

[CFK14] Carette, J., Farmer, W.M., Kohlhase, M.: Realms: a structure for consoli-
dating knowledge about mathematical theories. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI),
vol. 8543, pp. 252–266. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08434-3 19

[FGT92] Farmer, W.M., Guttman, J.D., Javier Thayer, F.: Little theories. In: Kapur,
D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 192

[FGT93] Farmer, W., Guttman, J., Thayer, F.: IMPS: an interactive mathematical
proof system. J. Autom. Reason. 11(2), 213–248 (1993)

[Har21] Harper, R.: An equational logical framework for type theories (2021).
https://arxiv.org/abs/2106.01484

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
ACM 40(1), 143–184 (1993)

[KWP99] Kammüller, F., Wenzel, M., Paulson, L.C.: Locales a sectioning concept for
Isabelle. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C.
(eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 149–165. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48256-3 11

[ML74] Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Pro-
ceedings of the ’73 Logic Colloquium, pp. 73–118. North-Holland (1974)

[MML07] Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set,
Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 519–522. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71209-1 40

[ORS92] Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system.
In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8 217

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1),
1–54 (2013)

[RS09] Rabe, F., Schürmann, C.: A practical module system for LF. In: Cheney,
J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks:
Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press (2009)

[RW22] Rabe, F., Weber, F.: Three case studies on realms. In: Buzzard, K., Kutsia,
T. (eds.) Intelligent Computer Mathematics, Informal Proceedings, pp. 46–
51. Research Institute for Symbolic Computation (2022)

[SJ95] Srinivas, Y.V., Jüllig, R.: Specware: formal support for composing software.
In: Möller, B. (ed.) MPC 1995. LNCS, vol. 947, pp. 399–422. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60117-1 22

[SW83] Sannella, D., Wirsing, M.: A kernel language for algebraic specification
and implementation extended abstract. In: Karpinski, M. (ed.) FCT 1983.
LNCS, vol. 158, pp. 413–427. Springer, Heidelberg (1983). https://doi.org/
10.1007/3-540-12689-9 122

https://doi.org/10.1007/978-3-319-08434-3_19
https://doi.org/10.1007/978-3-319-08434-3_19
https://doi.org/10.1007/3-540-55602-8_192
https://arxiv.org/abs/2106.01484
https://doi.org/10.1007/3-540-48256-3_11
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-60117-1_22
https://doi.org/10.1007/3-540-12689-9_122
https://doi.org/10.1007/3-540-12689-9_122

Towards an Annotation Standard
for STEM Documents

Datasets, Benchmarks, and Spotters

Jan Frederik Schaefer(B) and Michael Kohlhase

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
jan.frederik.schaefer@fau.de

Abstract. When publishing papers, researchers in mathematics and
related disciplines typically focus on the presentation, i.e. type-setting,
of their ideas and provide little semantic information. This impedes the
development of services that benefit from semantic information, such as
semantic search and screen readers for vision-impaired researchers. As a
remedy, there have been attempts to infer semantic data from already
published papers using small programs that we call spotters. Unfortu-
nately, there is no standardized format for semantic annotations and
spotter authors typically invent their own format. This leads to two
problems: i) there is no ecosystem of tools for common tasks like the
visualization of results or the manual annotation of a gold standard, and
ii) re-using, evaluating and combining results becomes very difficult.

In this paper, we address these issues by describing a standardized,
flexible way to represent semantic annotations, using semantic web tech-
nologies and, in particular, the Web Annotation standard. Furthermore,
we describe SpotterBase, a set of tools to help with processing the anno-
tations and creating new ones.

1 Introduction

With the number of publications in STEM (Science, Technology, Engineering and
Mathematics) rising rapidly, the challenge of managing and efficiently accessing
the knowledge they carry becomes ever more relevant. A variety of services could
help, for example

– Specialized formula search engines can help discover formulae, which tra-
ditional search engines are notoriously bad at. For example, we might be
looking for a closed-form expression of

∑∞
n=0 n

2n

n! . A unification-based search
engine could unify that expression with the left-hand-side of the equation
∑∞

k=0 k
zk

k! = zez.
– Active documents provide functionality for interacting with a document. They

could, for example, convert units on demand, show where a variable was
declared, or allow inserting concrete values into formulae for computation.

– Screen readers can read out documents for vision-impaired researchers.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 190–205, 2023.
https://doi.org/10.1007/978-3-031-42753-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_13&domain=pdf
http://orcid.org/0000-0003-2545-4626
http://orcid.org/0000-0002-9859-6337
https://doi.org/10.1007/978-3-031-42753-4_13

Towards an Annotation Standard for STEM Documents 191

– A semantic document checker can help authors find certain types of errors,
e.g. by pointing out that in “a density of 12 g/m” the unit does not match the
expected SI dimension of mass per volume.

Such services are easy to realize if the semantic information implied in the text
is made explicit: a formula search engine delivers better results if it knows what
identifiers stand for and how they are quantified, an active document can only
convert units if it knows what the units are, screen readers can read formulae
better if they understand them (e.g. “ |x|” could be “the magnitude of x”), etc.
In practice, such information is rarely available because publications are typ-
ically type-set for human consumption with little regard for explicit semantic
annotations, and if such information is present in the source, e.g. by using LATEX
packages like siunitx.sty, it gets lost in the compilation to PDF.

A well-known remedy is to add semantic annotations to existing publications
with spotters: programs that search a corpus for occurrences of a particular
semantic phenomenon. A diverse collection of spotters can build up a large set
of semantic annotations, which can then be used to create or improve semantic
services. Over the years, a number of spotters has been implemented, but a
shared collection of semantic annotations that would allow to synergize remains
elusive. The main reason seems to be the lack of an agreed-upon standard for
annotations, which has led spotter authors to either share their annotations in a
custom format incompatible with other annotation sets, or to abandon the idea
of publishing a re-usable dataset altogether.

The lack of a standard leads to another problem: based on our experience
of supervising bachelor’s and master’s theses, a large part of their effort goes
into building tools for visualizing results, manually annotating a test dataset,
automatically evaluating their results against the test dataset, etc. A shared
standard for annotations would allow for the development of re-usable tools for
such tasks.

The natural language processing (NLP) community benefits from a long tra-
dition of annotation tasks and benchmarks, but very few of them exist for mathe-
matical language specifically. A note-worthy exception are the math information
retrieval tasks at NTCIR [AK20] and more recently at CLEF [Man+22]. An
annotation standard could facilitate the development of tasks and benchmarks
for processing STEM documents. Effectively, anything that we might want to
have a spotter for could be turned into a task. We hope that an ecosystem
of datasets, tools and benchmarks facilitated by a common representation will
incentivize others to adopt it.

Contribution. We present a flexible representation for semantic annotations
based on the Web Annotation Standard [Webb]. We have successfully used it for
different types of annotations on the arXMLiv corpus [Gin20]. Furthermore, we
present SpotterBase1, a collection of tools to create and work with annotations
in that format.

1 Open source; code at https://github.com/jfschaefer/spotterbase.

https://github.com/jfschaefer/spotterbase

192 J. F. Schaefer and M. Kohlhase

Overview. In Sect. 2, we discuss related work. Afterwards, we discuss our app-
roach of accumulating semantic information with spotters in Sect. 3, followed
by a discussion of what documents we are interested in (Sect. 4). In Sect. 5 we
will discuss the annotation format and in Sect. 6 SpotterBase, a set of tools to
create and work with such annotations. Section 7 discusses our experience with
this setup so far and Sect. 8 concludes the paper.

2 Related Work

Text Annotations for Natural Language Processing. When processing texts with-
out formulae, there is a more-or-less generally accepted plaintext representation.
This simplifies the processing and allows for either stand-off annotations via
string offsets or in-document annotations via simple markup. Furthermore, such
texts can be conveniently represented as a sequence of tokens (words), which can
then be annotated with tags. The family of CoNLL formats, which is often used
for NLP tasks (see e.g. [Con]), is based on this idea. Formulae complicate this as
there is no generally accepted way to represent complex formulae in plain text
or as a token sequence, and replacing entire formulae with a single token loses
relevant information.

Manual Annotation Tools. Even though our goal is to create annotations auto-
matically, it is also necessary to manually create annotations for evaluation and
training of machine learning models. We can distinguish between general-purpose
annotation tools and more specialized ones. General-purpose tools would, e.g., be
PDF viewers that support annotating documents or the hypothes.is tool [HYP],
which allows users to annotate web pages. More specialized tools were developed
for NLP tasks, such as part-of-speech tagging or named entity recognition. Exam-
ples of this are WebAnno [Cas+16] (not to be confused with the Web Annotation
recommendations) and brat [BR]. There are also tools that are specialized in the
annotation of mathematical language and can handle formulae: KAT [Gin+15]
uses semantic web technologies for annotating HTML documents and can be
customized for different annotation tasks. MioGatto [Asa+21] is a much more
recent system, specifically designed for annotating the grounding of identifiers.
KAT and MioGatto each have their own, custom format for representing and
storing annotations.

Semantic Authoring. Our work is based on the assumption that authors do
not put effort into providing semantic annotations. However, there are attempts
to enable authors to supply semantic markup, e.g. by using the sTeX pack-
age [CICM22], which can be used to annotate LATEX sources via semantic macros.

In-document Annotations. Annotations can be stored either in-document or in a
separate database that references the documents, which is the approach we follow
(Sect. 3). RDFa [Her+13] is a common approach to store metadata in HTML
documents. When it comes to formulae, another option is to use some of the

Towards an Annotation Standard for STEM Documents 193

features provided by MathML, the Mathematical Markup Language. MathML
is used to represent formulae in HTML5 and it provides Content MathML to
annotate formulae with a semantic representation. There is ongoing work to
extend MathML with “intents” as a way to describe the intended meaning of
a (sub-) formula to improve accessibility (e.g. to help screen readers read out
formulae properly). While we are primarily interested in stand-off annotations,
adding intent attributes to the documents from the semantic annotations would
be an interesting application once MathML intents have stabilized.

Full Formalization. Our goal is to accumulate annotations of different semantic
phenomena. A much more ambitious goal is the full formalization of publications,
i.e. translating them into a logic. A well-known example of this is the proof of the
Kepler conjecture, which has been fully formalized to the extent that its correct-
ness could be automatically verified [Hal+17]. A less ambitious variant is to only
formalize the key results of the paper, as e.g. envisioned by the formal abstracts
project [FA]. There have also been attempts to use deep learning approaches
for formalizing mathematics (e.g. [Wan+20]), but the automated formalizing of
STEM publications with reasonable accuracy appears to be beyond the state of
the art. While it is conceivable that semantic annotations could aid automated
formalization endeavours in the future, this is not our goal in this paper. Indeed,
we consider the semantic annotation approach largely independent of full for-
malization efforts. We observe that a full formalization does not immediately
satisfy all information needs for semantic services, unless it is tightly linked to
the original document for human consumption.

3 Accumulating Semantic Information

Our approach is centered around a shared collection of semantic annotations.
Figure 1 illustrates the setup. Using stand-off annotations—as opposed to in-
document annotations—has the advantage that there can be many independent
contributors of annotations.

When a corpus is imported, there is typically a lot of metadata resulting in
document-level annotations. Examples are: titles, authors, classifications, pub-
lication years, etc. The main contributor of annotations, though, are spotters,
of which we distinguish three different types:

– Simple spotters process documents and create annotations without using the
results of other spotters. An example of this would be a spotter that detects
references to mathematical objects in the text (e.g. that the string “Abelian
group” in a document refers to Abelian groups). Another example would be
a part-of-speech tagger.

– Hybrid spotters additionally consider annotations made by other spotters. For
example, a spotter for identifier declarations (“let G be an Abelian group”)
might benefit from the annotation that “Abelian group” refers to a mathe-
matical object.

194 J. F. Schaefer and M. Kohlhase

– Meta spotters only act on annotations. Such spotters can combine the results
of different spotters into a new set of annotations, resolving conflicts in the
process. Let us take the example of a text containing the identifier “C”. A
spotter for units might annotate it as referring to the unit Coulomb, while
a different spotter might link it to a previously declared variable C. A meta
spotter could resolve this, e.g., by always prioritizing the interpretation that it
references a declared variable. In this case it could also be reasonable to take
further annotations into consideration, such as the topic of the publication.

Hybrid and meta spotters tend to find more complex semantic information than
simple spotters. In the past, the lack of an agreed-upon annotation format made
it difficult to create anything other than simple spotters and prevented the build-
up of a dataset of diverse semantic annotations that could be harvested for
semantic services.

While spotters provide the bulk of annotations, we also need a small amount
of human-created annotations—to evaluate spotters and, if machine learning is
used, as training sets. As we can have different sources of the same kind of
annotation (a human, a spotter, a different spotter, etc.), we also need to track
where the annotations come from.

Fig. 1. Overview of the setup.

4 The Document Corpus

The setup sketched in Fig. 1 does not impose any restrictions on the types of
documents that are annotated and could, in principle, work for documents in
any format. Our focus, however, is on STEM publications in the HTML format.
HTML might seem like an unintuitive choice—after all, STEM publications are
mostly written in LATEX or Office and distributed as PDF documents. However,
neither format is particularly well suited for semantics extraction. Depending

Towards an Annotation Standard for STEM Documents 195

on the author, macro expansion (or rather a full TEX engine) is required to
reasonably process a LATEX document. PDF and Office documents, on the other
hand, are too focused on presentation, i.e. placing symbols on a page, which
makes text processing very difficult, especially, if formulae are involved. Another
advantage of HTML over LATEX and PDF is that it can be used much more easily
for the development of semantic services.

We have mostly worked with the arXMLiv corpus [Gin20], but none of
the presented ideas are specific to it. ArXMLiv has been created by processing
the LATEX sources of arxiv.org with the LaTeXML [Mil] tool to obtain HTML5
documents with MathML for the formulae. LaTeXML tries to carry any semantic
information from the TEX sources into the resulting HTML5 document, e.g. if
“semantic” macros like \sin are used. With about 1.6 million documents in the
last release, the corpus is large enough that scalability becomes a major concern.

5 Annotations as RDF Triples

The Resource Description Framework, short RDF, uses triples of URIs to rep-
resent data [RDF]. A triple (s, p, o) can be thought of as an edge from s to o
with label p. A collection of triples therefore encodes a directed graph. Triples
can be stored in specialized triple stores and queried with SPARQL queries. We
use this well-established framework to encode, store and retrieve annotations.
In particular, our encoding is based on the recommendations by the W3C Web
Annotation Working Group [Webb].

To illustrate the encoding of an annotation, let us assume that a document
doc00.html contains the text “it has a density of 1292.1 gm−3” and we want to
annotate that “1292.1 gm−3” is a quantity consisting of the scalar 1292.1 and the
unit grams per cubic meter. In the Web Annotation recommendations, the main
components of an annotation are the target, which describes what is annotated
(in this case a particular text fragment), and the body, which contains some
information about the target (in this case what the quantity is). Additionally,
the annotation may be associated with metadata indicating, for example, who
has created the annotation. Figure 2 sketches the RDF graph for the example
annotation. We use the oa: prefix for the Web Annotation vocabulary [Weba],
which is based on the Open Annotation vocabulary. The prefix sb: (SpotterBase)
is used for URIs from our extension.

In the following subsections, we will take a closer look at how the target
and the body of the annotation are represented and how a triple store of such
annotations can be queried using SPARQL (Sect. 5.4).

5.1 Annotation Targets

The annotation target describes what we want to annotate. That could be an
entire document, e.g. if we want to annotate its language, but often we only want
to annotate part of a document, like in the example shown in Fig. 2. The Web

196 J. F. Schaefer and M. Kohlhase

Fig. 2. An example annotation.

Annotation specification provides selectors to specify what part of the docu-
ment we are interested in. However, the provided selectors did not work well in
our setting as we need to select both text offsets and XML nodes with high pre-
cision. Instead, we specify three new selectors: sb:PathSelector, sb:OffsetSelector
and sb:ListSelector. It is imaginable that in the future yet another type of selector
should be supported, for example, to annotate figure contents.

The sb:PathSelector selects a continuous document fragment. The start and
end of the selection are specified as strings:

1. "char(p, n)" points to the n-th character in the node referenced by the XPath
p (an XPath [XPa10] is a standardized way to select an XML node in a
document).

2. "node(p)" points to the node that is referenced by the XPath p.
3. "after-node(p)" points to whatever comes right after the node that is refer-

enced by the XPath p.

after-node was introduced because the end is not included in the selected frag-
ment (to be compatible with similar selectors in the Web Annotation recom-
mendations). Note that it is necessary to be able to select HTML nodes, not
just text characters. For example, the formula “

√
x” has the MathML represen-

tation <msqrt><mi>x</mi></msqrt> and it makes a big difference whether
the <msqrt> or the <mi> (“math identifier”) node are selected.

The sb:OffsetSelector can select fragments with the same granularity as
the sb:PathSelector, but it specifies the beginning and end of the fragment with
integer offsets. Providing multiple, equivalent selectors improves the chances that
a consumer can process them. The sb:PathSelector is designed to be easy to use
by a wide range of tools, while the sb:OffsetSelector makes it possible to compare

Towards an Annotation Standard for STEM Documents 197

the order of annotations easily (and without the need to load the document).
For example, we can use it in SPARQL queries to check if an annotated range
lies inside another annotated range (see also Sect. 5.4).

Before discussing the sb:ListSelector, which can select discontinuous frag-
ments, we will take a look at the annotation body.

Fig. 3. Multiple annotations referencing the same identifier. For brevity, most targets
are omitted and the sb:∗ URIs are simplified.

5.2 Annotation Bodies

The body of an annotation describes what information is attached to the anno-
tation target. For some annotation tasks, we can develop a standardized repre-
sentation of the body. For example, many annotation tasks simply require a tag
as a body, such as the theorem tag to annotate a paragraph as a theorem. The
advantage of annotations with a standardized body is that we can develop tools
to process them without the need for customization. More complex annotations,
however, will require a custom representation. For the example shown in Fig. 2,
we use the Ontology of units of Measure (OM) [RVAT13] and associate a numer-
ical value and a unit with the body. The Ontology of units of Measure contains
further information about om:gramPerCubicmetre like its dimension (a density)
or how it can be converted to other units. In general, loading ontologies like the
Ontology of units of Measure into the triple store along with our annotations
allows us to perform more complex queries.

Sometimes, the body of an annotation should reference another annotation.
As an example, we will annotate the occurrences of k in the following theorem:

198 J. F. Schaefer and M. Kohlhase

“Let k ≤ n be positive integers. Then
(
n
k

)
=

(
n

n−k

)
”. Figure 3 visualizes the

resulting annotations. The first annotation, :anno0, targets the k in the first
sentence. It records that k is universally quantified (i.e. the theorem holds for all
values of k) and links it to a node :identifier0 that represents the newly introduced
identifier. That allows us to link the occurrences of k in the second sentence to
:identifier0 (annotations :anno1 and :anno2), which indirectly links them to the
declaration of k. Similarly, we can create further annotations to attach additional
information about k. For example, :anno3 indicates that “positive integer” is
something like a type constraint on k.

So far, we have linked annotations via their bodies. We can also link anno-
tations by referencing the same target. For example, we can additionally anno-
tate “positive integer” with the semantic concept it refers to (here the entry
wd:Q28920044 of the WikiData ontology).

5.3 Discontinuous Targets

In Sect. 5.1 we described selectors for continuous document fragments, but some-
times it is desirable to annotate a discontinuous fragment. For this we have
created the sb:ListSelector, which combines (lists) selectors for the continuous
fragments that make up the discontinuous fragment. For example, in “every
submonoid H of (Z,+) is . . . ”, we might want to annotate the discontinuous
fragment “submonoid of (Z,+)”, which means that the sb:ListSelector combines
selectors for “submonoid” and for “of (Z,+)”. We do not expect every tool to
support discontinuous ranges. Therefore, we attach this list of selectors as a
refinement to a selector for the surrounding continuous fragment (“submonoid
H of (Z,+)”) as shown in Fig. 4. A consumer of the annotation can then choose
to ignore the refinement and treat the selection as a continuous fragment.

Fig. 4. Example of an sb:OffsetSelector being refined with an sb:ListSelector to select
a discontinuous fragment. Using an RDF collection (rdf:rest, rdf:nil, . . .) allows us to
represent a closed collection despite the open world assumption of RDF.

Towards an Annotation Standard for STEM Documents 199

5.4 Querying Annotations with SPARQL

If annotations are stored in a triple store, we can query them with SPARQL
queries [HS13]. Usually, we use SPARQL queries to retrieve annotations in a
fairly straight-forward way. For example, a hybrid spotter (Sect. 3) could retrieve
all annotations for a particular document.

However, we can also use more interesting and complex queries to look for
particular phenomena in our corpus. An example of this would be a query to find
papers on group theory that have a theorem which mentions rational numbers:
prefix declarations ommitted for conciseness
SELECT DISTINCT ?paper WHERE {
make sure that ?paper is about group theory
?paper sb:isBasedOn/^oa:hasTarget/oa:hasBody/rdf:value arxivcat:math\.GR .
find theorems in ?paper and look up their offsets
?theorem_anno oa:hasBody/rdf:value sbp:Theorem .
?theorem_anno oa:hasTarget [
oa:hasSource ?paper ;
oa:hasSelector [a sb:OffsetSelector ; oa:start ?t_start ; oa:end ?t_end ;]

] .
Same with mentions of rational numbers (offsets ?q_start, ?q_end)
?q_anno oa:hasBody/rdf:value <http://www.wikidata.org/entity/Q1244890> .
?q_anno oa:hasTarget [
oa:hasSource ?paper ;
oa:hasSelector [a sb:OffsetSelector ; oa:start ?q_start ; oa:end ?q_end ;]

] .
make sure that mention is inside theorem
FILTER (?t_start < ?q_start && ?t_end > ?q_end)

}

Meta spotters (Sect. 3) could be realized via complex SPARQL queries similar
to the one above. For very complex queries, performance can be a concern, given
the large amounts of data involved.

6 SpotterBase

The success of our efforts hinges on how easily people of different backgrounds
can work with our annotations and create new ones. To support that, we have
created a collection of tools and libraries that we call SpotterBase. This section
discusses some of its features.

6.1 JSON Serialization of Annotations

Sometimes, working with RDF triples is rather inconvenient: a typical annota-
tion consists of 10–20 triples and RDF parsing or a SPARQL endpoint might not
be readily available for every task. Furthermore, not everyone is familiar with
RDF, which poses a substantial barrier of entry to potential users. To improve
accessibility, we provide a simple JSON format that can be used to import and
export annotations. It is a subset of JSON-LD (JSON Linked Data) [Jso], which

200 J. F. Schaefer and M. Kohlhase

is a format for representing RDF triples and is recommended by the Web Anno-
tation standard. Many triple stores support JSON-LD and require no additional
processing for importing data.

JSON-LD contexts make the JSON content more compact; in addition to
the context suggested by the Web Annotation recommendation, we created a
SpotterBase JSON-LD context. This context states e.g. that "val" is an abbre-
viation for http://www.w3.org/1999/02/22-rdf-syntax-ns#value and that the
value should be interpreted as a URI (and not e.g. a string literal). For example,
the annotation of a word as a noun would be exported as:

{
"type": "Annotation",
"id": ".../arxmliv/2020/1910.06709#spostag.anno.1089",
"target": ".../arxmliv/2020/1910.06709#spostag.target.1089",
"body": {
"type": "SimpleTagBody",
"val": "http://sigmathling.kwarc.info/spotterbase/universal-pos-tags#NOUN"

}
},

SpotterBase can create additional JSON objects to provide more information
about the target and the NOUN part-of-speech tag.

So far, we have mostly used the JSON serialization to export all annotations
for a single document, so that they can be visualized and edited in a separate
tool. Despite its convenience, the JSON format does not replace the need for a
triple store because we need the triple store’s querying capabilities.

6.2 Document Narrative Model

Non-STEM NLP tools typically act on plain text and not on HTML documents
with large amounts of markup. While converting HTML documents to plain text
is fairly straight forward, linking the discovered annotations back to the original
document tends to be somewhat tricky. To help with this, SpotterBase provides
the Document Narrative Model (DNM): a plain text representation that is
linked to the DOM (Document Object Model) of the original HTML document.
DNM generation is customizable: depending on the use case, we may ignore
certain nodes or process them in a different way. For example, if we want to find
identifier declarations with a simple, rule-based approach and have a sentence
“let F : C → D be an exact functor ”, then we might want to get the plain text
representation “let MATH be an exact functor” to make the processing easier.
Now we can use simple regular expressions to find potential declarations. Since
the DNM links “MATH” back to the DOM, we can still retrieve the MathML
node for further processing such as to extract the identifier F .

If we develop a hybrid spotter, we could even mark existing annotations in
the DNM. For example, if we have already annotated “exact functor” as referring
to a mathematical object, we can replace it with a token in the example above,
so that we get “let MATH be an MATH_OBJ”.

http://www.w3.org/1999/02/22-rdf-syntax-ns#value

Towards an Annotation Standard for STEM Documents 201

6.3 Document Pre-processing

The document narrative model described in the previous section requires spotter
authors to directly use SpotterBase as a library. Alternatively, SpotterBase can
also pre-process documents into different formats that are easier to work with.
Some of the previous annotation efforts (e.g. [Rab17,Asa+21]) pre-processed
the HTML documents by wrapping all words in a node with an iden-
tifier to make referencing easier. With SpotterBase, we can do the same thing,
except that we attach to every node offset information that allows the spotter to
easily create annotations for the original document (using the sb:OffsetSelector
described in Sect. 5.1, from which SpotterBase can then create the corresponding
sb:PathSelector).

SpotterBase also allows spotter authors to avoid the trouble of HTML pro-
cessing altogether with a converter to a JSON format. Essentially, each word in
the original document is represented as JSON object of the form

{"word": [THE WORD], "from": [OFFSET], "to": [OFFSET]}

As with the HTML pre-processing, the offsets allow to annotate the original
document. Formulae are represented the same way with a replacement token for
[THE WORD], but they have an additional field for the MathML representation.
In the future, it might be interesting to explore alternative ways to represent
formulae as token sequences.

7 Datasets, Spotters and Experiences

We have tested the annotation format and SpotterBase by creating several
datasets. Concretely, we have imported the following datasets:

1. A quantity expressions dataset [Rab17], which was created with a rule-based
spotter for finding physical quantities, i.e. pairs of a scalar and a unit.

2. A formula grounding dataset [AMA22], which annotates identifier occurrences
with a description of what the identifier stands for and, optionally, a source
of grounding in the document.

3. A paragraph classification dataset [GM20], which contains paragraph classi-
fications (theorem, definition, proof, . . .) inferred from markup based on the
amsthm LATEX package. Technically, we re-generated the annotations because
the original dataset does not link back into the corpus.

Furthermore, we have implemented a number of prototype spotters. Concretely,
we have the following spotters:

1. A spotter for part-of-speech tags. As it annotates every word in a document,
it produces many annotations (and thus RDF triples), which may stress-test
some triple stores.

2. A spotter for math concepts that references concepts in the WikiData ontol-
ogy.

202 J. F. Schaefer and M. Kohlhase

3. A spotter for variable declarations that delivers results similar to the one
shown in Fig. 3. It is a hybrid spotter as it uses the results of the spotter for
math concepts to find type constraints.

We have run the last two spotters over 100 000 documents, resulting in roughly 50
million annotations and 800 million triples. After loading them into a triple store,
which took a few hours, we can now run SPARQL queries like the one described
in Sect. 5.4 (looking for theorems in papers about group theory that mention
rational numbers). The example query takes roughly 350ms. By changing the
query to cover more papers/more common concepts, we determined that the
engine can produce roughly 200 results per second for such queries. It should be
noted that simpler queries without range comparisons run much more efficiently
(e.g. finding all papers that mention rational numbers at all).

As all the datasets are ultimately derived from arxiv.org, they inherit licens-
ing issues. The SIGMathLing project [SML] tries to work around these issues
with a data sharing cooperative based on mutual non-disclosure agreements.
As some of the created datasets are affected by the same licensing issues, they
are only accessible for SIGMathLing members. However, brief excerpts of the
annotations are available in a public repository2. As the spotters are merely
prototypes, the data sets are of limited practical use anyways.

Nevertheless, the prototype spotters allowed us to evaluate and adjust our
design decisions. For example, we abandoned an original plan to specify annota-
tion targets using the RangeSelector and FragmentSelector from the Web Anno-
tation specification as it resulted in substantially more triples. The development
of the example spotters has also informed and validated the design of Spotter-
Base features like the document narrative model (Sect. 6.2), which significantly
simplified the spotter implementation.

The ongoing development of a tool for manual annotation by a master’s stu-
dent allowed us to test how well the annotation format works in the context of
a web browser. The annotation tool uses the JSON serialization (Sect. 6.1) to
import existing annotations and export the results. While there were some chal-
lenges (such as the browser inserting additional nodes into the DOM while load-
ing a document), it was fairly easy to work around them and the sb:PathSelector
seems to work quite well. The annotation tool does not generate sb:OffsetSelectors
– instead, SpotterBase generates them afterwards from the sb:PathSelectors. In
the future, this could be taken further with SpotterBase supporting a variety of
selectors, optimized for different applications, and converting between them.

8 Conclusion, Ongoing and Future Work

We have presented a spotter-based approach for accumulating a large collection
of diverse semantic annotations to support or enable various semantic services
for STEM publications. We use various semantic web technologies to represent,
store, and query the annotations. Furthermore, we presented SpotterBase, a set
2 https://gl.kwarc.info/SIGMathLing/cicm23-spotterbase.

https://gl.kwarc.info/SIGMathLing/cicm23-spotterbase

Towards an Annotation Standard for STEM Documents 203

of tools to create and process annotations. We have tested the setup by importing
several existing datasets and creating a few new ones with simple spotters.

The most obvious next step is implementing many different spotters and,
afterwards, semantic services like the ones mentioned in the introduction. As
spotters are intended to be relatively simple, they can also be an attractive
topic for a bachelor’s or master’s thesis. We tried this in the past with mixed
results. A key problem was that a substantial effort of every thesis project was
to develop infrastructure for pre-processing, testing, etc. SpotterBase alleviates
all of that.

We also plan to grow an ecosystem of tools for working with annotations.
Currently, a student is developing a tool for manually creating and editing anno-
tations. While annotations have a standardized target representation, some tasks
may require a custom body representation (see also Sect. 5.2). While a manual
annotation tool may therefore support a set of standard representations, it also
has to be easily extensible for future annotation tasks. A related tool would be an
annotation visualizer that allows us to query the database for interesting anno-
tations and visualize them. For example, we might want to visualize annotations
where a spotter disagrees with a test dataset. We are also planning to explore
in-document annotations (e.g. via RDFa) as an alternative representation that
may be more suitable for certain applications.

In order to have more hybrid spotters and meta spotters, annotations must
be available to the community. The easiest way is to share RDF files with the
annotations, e.g. as part of the SIGMathLing [SML] effort. We also recently
created a SPARQL endpoint which can be used to query some of the annotations.
While this is still at a prototype stage, it could become a valuable resource in the
future that makes the annotations more accessible. Unfortunately, the prototype
SPARQL endpoint is only available to SIGMathLing members for the licensing
reasons discussed above.

References

[AK20] Aizawa, A., Kohlhase, M.: Mathematical information retrieval. In: Sakai, T.,
Oard, D.W., Kando, N. (eds.) Evaluating Information Retrieval and Access
Tasks. TIRS, vol. 43, pp. 169–185. Springer, Singapore (2021). https://doi.
org/10.1007/978-981-15-5554-1_12

[AMA22] Asakura, T., Miyao, Y., Aizawa, A.: Building dataset for grounding of for-
mulae - annotating coreference relations among math identifiers. In: Pro-
ceedings of the Language Resources and Evaluation Conference. Marseille,
France: European Language Resources Association, pp. 4851–4858 (2022).
https://aclanthology.org/2022.lrec-1.519

[Asa+21] Asakura, T., et al.: Miogatto: a math identifier-oriented grounding anno-
tation tool. In: 13th MathUI Workshop at 14th Conference on Intelligent
Computer Mathematics (MathUI 2021) (2021)

[BR] Brat rapid annotation tool. http://brat.nlplab.org. Accessed 06 Apr 2023

https://doi.org/10.1007/978-981-15-5554-1_12
https://doi.org/10.1007/978-981-15-5554-1_12
https://aclanthology.org/2022.lrec-1.519
http://brat.nlplab.org

204 J. F. Schaefer and M. Kohlhase

[Cas+16] de Castilho, R.E., et al.: A web-based tool for the integrated annotation
of semantic and syntactic structures. In: Proceedings of the Workshop on
Language Technology Resources and Tools for Digital Humanities (LT4DH),
Osaka, Japan: The COLING 2016 Organizing Committee, pp. 76–84 (2016).
https://www.aclweb.org/anthology/W16-4011

[CICM22] Kohlhase, M., Müller, D.: System description: sTeX3 - a LATEX-based
ecosystem for semantic/active mathematical documents. In: Buzzard, K.,
Kutsia, T. (eds.) CICM 2022. LNCS, vol. 13467, pp. 184–188. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-16681-5_13

[Con] CoNLL-U Format. https://universaldependencies.org/format.html
[FA] Formal Abstracts. https://formalabstracts.github.io/. Accessed 15 Feb 2020

[Gin+15] Ginev, D., et al.: KAT: an annotation tool for STEM documents. In:
Kohlhase, A., Libbrecht, P. (eds.) Mathematical User Interfaces Work-
shop (2015). http://www.cermat.org/events/MathUI/15/proceedings/Lal-
Kohlhase-Ginev_KAT_annotations_MathUI_15.pdf

[Gin20] Ginev, D.: arXMLiv:2020 dataset, an HTML5 conversion of arXiv.org. SIG-
MathLing - Special Interest Group on Math Linguistics (2020). https://
sigmathling.kwarc.info/resources/arxmliv-dataset-2020/

[GM20] Ginev, D., Miller, B.R.: Scientific Statement Classification over arXiv org.
English. In: Proceedings of the Twelfth Language Resources and Evaluation
Conference. European Language Resources Association, Marseille, France,
pp. 1219–1226 (2020). https://aclanthology.org/2020.lrec-1.153

[Hal+17] Hales, T., et al.: A formal proof of the Kepler conjecture. In: Forum of
Mathematics, Pi, vol. 5 (2017). https://doi.org/10.1017/fmp.2017.1

[Her+13] Herman, I., et al.: RDF 1.1 Primer (Second Edition). Rich Structured Data
Markup for Web Documents. W3CWorking Group Note. World Wide Web
Consortium (W3C) (2013). http://www.w3.org/TR/rdfa-primer

[HS13] Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommen-
dation. World Wide Web Consortium (W3C) (2013). https://www.w3.org/
TR/sparql11-query/

[HYP] Hypothes.is. http://hypothes.is. Accessed 06 Apr 2023
[Jso] JSON for Linking Data. https://json-ld.org/

[Man+22] Mansouri, B., et al.: Overview of ARQMath-3 (2022): third CLEF Lab
on answer retrieval for questions on math. In: Barrón-Cedeño, A., et al.
(eds.) CLEF 2022. LNCS, vol. 13390, pp. 286–310. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-13643-6_20

[Mil] Bruce Miller. LaTeXML: A LATEX to XML Converter. http://dlmf.nist.
gov/LaTeXML/. Accessed 22 Mar 2023

[Rab17] Rabenstein, U.: Meaning Extraction and Semantic Services in STEM-
Documents - A case study on Quantity Expressions and Units. Master’s
Thesis. Informatik, FAU Erlangen-Nürnberg (2017). https://gl.kwarc.info/
supervision/MSc-archive/blob/master/2017/urabenstein/Rabenstein.pdf

[RDF] World Wide Web Consortium (W3C), ed. Resource Description Framework
(RDF). http://www.w3.org/RDF/. Accessed 05 Apr 2023

[RVAT13] Rijgersberg, H., Van Assem, M., Top, J.: Ontology of units of measure and
related concepts. Semant. Web 4(1), 3–13 (2013)

[SML] SIGMathLing - Special Interest Group on Maths Linguistics. http://
sigmathling.kwarc.info. Accessed 07 Dec 2018

https://www.aclweb.org/anthology/W16-4011
https://doi.org/10.1007/978-3-031-16681-5_13
https://universaldependencies.org/format.html
https://formalabstracts.github.io/
http://www.cermat.org/events/MathUI/15/proceedings/Lal-Kohlhase-Ginev_KAT_annotations_MathUI_15.pdf
http://www.cermat.org/events/MathUI/15/proceedings/Lal-Kohlhase-Ginev_KAT_annotations_MathUI_15.pdf
http://arxiv.org/abs/org
https://sigmathling.kwarc.info/resources/arxmliv-dataset-2020/
https://sigmathling.kwarc.info/resources/arxmliv-dataset-2020/
https://aclanthology.org/2020.lrec-1.153
https://doi.org/10.1017/fmp.2017.1
http://www.w3.org/TR/rdfa-primer
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://hypothes.is
https://json-ld.org/
https://doi.org/10.1007/978-3-031-13643-6_20
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2017/urabenstein/Rabenstein.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2017/urabenstein/Rabenstein.pdf
http://www.w3.org/RDF/
http://sigmathling.kwarc.info
http://sigmathling.kwarc.info

Towards an Annotation Standard for STEM Documents 205

[Wan+20] Wang, Q., et al.: Exploration of neural machine translation in autoformal-
ization of mathematics in Mizar. In: Proceedings of the 9th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, pp. 85–
98 (2020)

[Weba] Web Annotation Ontology. https://www.w3.org/ns/oa
[Webb] Web Annotation Working Group. https://www.w3.org/annotation/

[XPa10] XPath Reference (2010). http://www.w3.org/TR/xpath/. Accessed 05 Apr
2023

https://www.w3.org/ns/oa
https://www.w3.org/annotation/
http://www.w3.org/TR/xpath/

Verified Correctness, Accuracy,
and Convergence of a Stationary Iterative

Linear Solver: Jacobi Method

Mohit Tekriwal1(B), Andrew W. Appel2, Ariel E. Kellison3, David Bindel3,
and Jean-Baptiste Jeannin1

1 University of Michigan, Ann Arbor, USA
{tmohit,jeannin}@umich.edu

2 Princeton University, Princeton, USA
appel@princeton.edu

3 Cornell University, Ithaca, USA
{ak2485,bindel}@cornell.edu

Abstract. Solving a sparse linear system of the form Ax = b is a com-
mon engineering task, e.g., as a step in approximating solutions of differ-
ential equations. Inverting a large matrix A is often too expensive, and
instead engineers rely on iterative methods, which progressively approxi-
mate the solution x of the linear system in several iterations, where each
iteration is a much less expensive (sparse) matrix-vector multiplication.

We present a formal proof in the Coq proof assistant of the cor-
rectness, accuracy and convergence of one prominent iterative method,
the Jacobi iteration. The accuracy and convergence properties of Jacobi
iteration are well-studied, but most past analyses were performed in real
arithmetic; instead, we study those properties, and prove our results,
in floating-point arithmetic. We then show that our results are prop-
erly reflected in a concrete implementation in the C language. Finally,
we show that the iteration will not overflow, under assumptions that we
make explicit. Notably, our proofs are faithful to the details of the imple-
mentation, including C program semantics and floating-point arithmetic.

Keywords: Formal Verification · Numerical Methods · Jacobi Method

1 Introduction

Many scientific and engineering computations require the solution x of large
sparse linear systems Ax = b given an n×n matrix A and a vector b. There are
many algorithms for doing this; Gaussian elimination is rare when n is large,
since it takes O(n3) time. The widely used stationary iterative methods have an
average time complexity of O(nsk), where sparseness s is the number of nonzeros
per row (often s � n) and k is the number of iterations (often small). Even where
iterative methods are not the principal algorithms for solving Ax = b, they are
often used in transformations of the problem (preconditioning) before using other
workhorses such as Krylov subspace methods [27].

When using a stationary iterative method, one starts with an initial vector
x0 and uses A and b to derive successive vectors x1, x2, . . . that—one hopes—will
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 206–221, 2023.
https://doi.org/10.1007/978-3-031-42753-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_14

Verified Correctness, Accuracy, and Convergence of Jacobi 207

converge to a value xk such that the residual Axk − b is small and xk is close
to the true solution. Because these methods are often used as subroutines deep
within larger computational libraries and solvers, it is quite inconvenient to the
end user if some such subroutine reports that it failed to converge—often, the
user has no idea what is the subproblem A, b that has failed. Thus it is useful
to be able to prove theorems of the following form: “Given inputs A and b with
certain properties, the algorithm will converge to tolerance τ within k iterations.”

Since these methods are so important, analyses of their convergence prop-
erties have been studied in detail. However, most of these analyses assume real
number arithmetic operations [27], whereas their implementations use floating-
point; or the analysis uses a simplified floating-point model that omits subnor-
mal numbers [14]; or the analysis is for a model of an algorithm [19] but not
the actual software. And when one reaches correctness and accuracy proofs of
actual software, it’s useful to have machine-checked proofs that connect in a
machine-checkable way to the actual program that is executed, for programs
can be complex and as programs evolve one must ensure that their correctness
theorems evolve with them.

We focus on Jacobi iteration applied to strictly diagonally dominant matri-
ces, i.e., in which in each row the magnitude of the diagonal element exceeds the
sum of the magnitudes of the off-diagonals. Strict diagonal dominance is a sim-
ple test for invertibility and guarantees convergence of Jacobi iteration in exact
arithmetic [27]. Strictly diagonally dominant matrices arise in cubic spline inter-
polation [1], analysis of Katz centrality in social networks [18], Markov chains
associated with PageRank and related network analysis methods [12], and mar-
ket equilibria in economic theory [24], among other domains.

We present both a Coq functional model of floating-point Jacobi iteration
(at any desired floating-point precision) and a C program (in double-precision
floating-point), with Coq proofs that:

– the C program (which uses efficient sparse-matrix algorithms) correctly imple-
ments the functional model (which uses a simpler matrix representation);

– for any inputs A, b and desired accuracy τ that satisfy the Jacobi preconditions
for a given natural number k, the functional model (and the C program) will
converge within k iterations to a vector xk such that ||Axk − b||2 < τ ;

– this computation will not overflow into floating-point “infinity” values;
– and the Jacobi preconditions are natural properties of A, b, τ, k that (1) are

easily tested and (2) for many natural engineering problems of interest (men-
tioned above), are guaranteed to be satisfied.

Software packages not written in C can still be related to our functional model
and make use of our floating-point convergence and accuracy theorems. And
even for inputs that do not satisfy the Jacobi preconditions, we have proved
that our C program correctly and robustly detects overflow.

Together, these theorems guarantee that a Jacobi solver deep within some
larger library will not be the cause of a mysterious “failed to converge” message;
and that when it does believe it has converged, it will have a correct answer.

208 M. Tekriwal et al.

Contributions. First convergence proof of Jacobi that takes into account
floating-point underflow or overflow; first machine-checked proof of a station-
ary iterative method; first machine-checked connection to a real program. Our
Coq formalization is available at:

https://github.com/VeriNum/iterative_methods/tree/v0.1.0

2 Overview of Iterative Methods and Our Proof
Structure

Stationary iterative methods [27] are among the oldest and simplest methods
for solving linear systems of the form Ax = b, for A ∈ R

n×n, b ∈ R
n. The non-

singular matrix A and vector b in such systems typically appear, for example, in
the solution of a partial differential equation. In stationary methods, matrix A is
decomposed into A = M +N where M is chosen such that it is easily invertible;
for Jacobi it is simply the diagonal of A and we will often call it D. Rather than
solving the system Ax = b exactly, one can approximate the solution vector x
using stationary iterations of the form

Mxm + Nxm−1 = b, (1)

where the vector xm is an approximation to the solution vector x obtained after
m iterations; we typically start with x0 = 0. The unknown xm is therefore

xm = M−1(b − Nxm−1) that is for Jacobi, xm = D−1(b − Nxm−1) (2)

This iterates until xk satisfies ‖Axk − b‖2 < τ , or until the program detects
failure: overflow in computing xk, or maximum number of iterations exceeded.
Throughout this paper, we let ‖·‖ denote the infinity vector norm and its induced
matrix norm, and we let ‖ · ‖2 denote the �2 norm on vectors.

For our model problem, the steps are as follows.

1. Write a C program that implements (2) by Jacobi iterations (and also imple-
ments an appropriate stopping condition).

2. Write a floating-point functional model in Coq (a recursive functional program
that operates on floating-point values) that models Jacobi iterations of the
form (2). This model must perform almost exactly (see Sect. 7.1) the same
floating-point operations as the C program. (As we will explain, we have two
statements of this model and we prove the two models equivalent.)

3. Prove that the program written in Step 1 implements the floating-point func-
tional model of Step 2, using a program logic for C.

4. Write a real functional model in Coq that performs Jacobi iteration xm =
D−1(b − Nxm−1) in the exact reals. Of course, it is impractical to compute
with this model, but it is useful for proofs.

5. Prove a relation between xk (the k-th iteration of the floating-point model)
and the real solution x of the real functional model: the Jacobi forward error
bound. If one could run the Jacobi method purely in the reals, this is obviously
contractive: ‖xk+1 − x‖ < ρ‖xk − x‖, where ρ < 1 is the spectral radius of
D−1N . But in the floats, there is an extra term caused by roundoff error.

https://github.com/VeriNum/iterative_methods/tree/v0.1.0

Verified Correctness, Accuracy, and Convergence of Jacobi 209

6. Prove floating-point convergence: under certain conditions (Jacobi precondi-
tions), this extra term does not blow up, and within a specified k iterations
the residual ‖Axk − b‖2 is less than tolerance τ .

7. Compose these to prove the main theorem: the C program converges to an
accurate result.

Fig. 1. Theorem dependency. Bottom row: models and definitions; middle row: theo-
rems relating models.

Figure 1 shows our correctness and accuracy theorem as a modular composi-
tion of reusable models and lemmas. We have two float-valued models: for prov-
ing the relation of the float-valued model to the real solution we use the Math-
Comp library (in Coq). For proving the C program implements the float-valued
model, we use the Verified Software Toolchain (in Coq). But MathComp [22] and
VST [10] prefer different notations and constructions for specifying data struc-
tures such as matrices and vectors; so we write the same functional model in each
of the two styles, and prove their equivalence. We used Coq for our formalization
because of Coq’s expressive general-purpose logic, with powerful libraries such as
MathComp, Flocq [8], VCFloat [3], LAProof [21], Coquelicot [7], VST, support
both high-level mathematical reasoning and low-level program verification.

The float-valued model will experience round-off errors compared to the real-
valued model; we prove bounds on these errors in a forward error bound lemma
(Sect. 4). Under certain “Jacobi preconditions” the float-valued model is guaran-
teed to converge to a result of specified accuracy without ever overflowing; this
is the Jacobi iteration bound lemma (Sect. 5).

3 Parametric Models and Proofs; Important Constants

We have proved accuracy bounds for any floating-point precision. That is, our
floating-point functional models, and the proofs about them, are parameterized
by a floating-point type, expressed in Coq as type:Type, with operations: [3]

210 M. Tekriwal et al.

fprec: type → Z (∗ number of mantissa bits ∗)
femax: type → Z (∗ maximum binary exponent ∗)
ftype: type → Type (∗ floating−point numbers ∗)
So for t:type, we have x:ftype(t) meaning that x is a floating-point number in
format t. We will write p for fprec(t) and emax for femax(t). The maximum rep-
resentable finite value is Fmax = 2emax(1 − 2−p). If |r| ≤ Fmax then rounding
r to the nearest float yields a number f such that f = r(1 + δf) + εf , where
|δf | ≤ δ = 1

22
1−p and |εf | ≤ ε = 1

22
3−emax−p.

Given a floating-point format t and matrix-dimension n, the following func-
tions will be useful in reasoning:

gδ(n) = (1 + δ)n − 1 gε(n) = nε(1 + gδ(n − 1)) (3)
For example, suppose t is double-precision floating-point (p = 53, emax = 1024),
n = 106 (Jacobi iteration on a million-by-million matrix), s = 5 (the million-
element sparse matrix has 5 nonzeros per row). Then some relevant quantities
are,

δ = 2−54 = 5.6 · 10−17 gδ(n) = 5.6 · 10−11 gε(n) = 2.5 · 10−318

ε = 2−1075 = 2.5 · 10−324 gδ(5) = 2.8 · 10−16 gε(5) = 1.2 · 10−323.

Our error analyses will often feature formulas with δ, ε, gδ, gε; remember that in
double-precision these are small quantities (in single- or half-precision, not so
small). Henceforth we will write gδ, gε for gδ(n), gε(n).

4 Forward Error Bound for Dot Product

In separate work, Kellison et al. [21] prove (in Coq) the correctness and accu-
racy of floating-point dot-product and sparse matrix-vector multiply, as Coq
functional models and as C programs.

Define dot-product 〈u, v〉 between two real vectors u and v as
∑

0≤i<n uivi.
A matrix-vector multiplication Av can be seen as the dot-product of each row
of A with vector v. Forward error bounds for a matrix-vector multiplication are
therefore based on forward error bounds for dot-product.

Our implementation and functional model of the dot-product use fused
multiply-add (FMA), which computes a floating-point multiplication and addi-
tion (i.e., a ⊗ b ⊕ c) with a single rounding error rather than two.
Definition dotprod {t: type} (u v: list (ftype t)) : ftype t :=
fold_left (fun z a ⇒ FMA (fst a) (snd a) z) (List.combine u v) (Zconst t 0).

The parameters to the dotprod functional model are the floating-point format t
and two lists of floating-point numbers. The algorithm zips the two lists into a
list of pairs (using List.combine) and then adds them from left to right, starting
with a floating-point 0 in format t.

We denote floating-point summation by
⊕

, so the floating-point dot product
is

⊕
0≤i<n uivi; real-valued summation is denoted as

∑
0≤i<n uivi. The notation

finite(z) signifies that the floating-point number z is within the range of the
floating-point format (not an infinity or NaN).

Verified Correctness, Accuracy, and Convergence of Jacobi 211

Theorem 1 (forward error + no overflow). Let u, v be lists of length n of
floats in format t = (p, emax), in which every element is ≤ vmax, and no more
than s elements of u are nonzero. The absolute forward error of the resulting dot
product is

∣
∣
∣
∣
∣
∣

⊕

0≤i<n

uivi −
∑

0≤i<n

uivi

∣
∣
∣
∣
∣
∣

≤ gδ(s)
∑

0≤i<n

|uivi| + gε(s). (4)

Proof. See Kellison et al. [21].

Subnormal Numbers. When some of the vector elements are order-of-magnitude
1, the term gε(s) is negligible. But if the u and v vectors are composed of sub-
normal numbers, then neglecting the underflow-error term would be unsound.
Most previous proofs about dot-product error (and about Jacobi iteration), and
all previous machine-checked proofs to our knowledge, omit reasoning about
underflow.

5 Jacobi Forward Error

We prove an explicit bound on the distance between the approximate solution xk

at step k and the exact solution x of the problem. Such bounds are commonly
studied in computational science, but rarely take into account the details of
floating-point arithmetic (including underflow and overflow). They also usually
have paper proofs while we provide a machine-checked proof.

Theorem 2 (jacobi_forward_error_bound). After k Jacobi iterations, if
no iteration resulted in an overflow, then the distance between the approximate
(floating-point) solution xk and the exact (real) solution x is bounded:

‖x − xk‖ ≤ ρk‖x − x0‖ +
1 − ρk

1 − ρ
dmag

where ρ is a bound on the spectral radius (largest eigenvalue) of D−1N , adjusted
for floating-point roundoff errors that arise in one iteration of the Jacobi method.
The (small) value dmag is the floating-point roundoff error in computing the
residual ‖Axk − b‖. In Coq,

Theorem jacobi_forward_error_bound {ty} {n:nat}
(A: ’M[ftype ty]_n.+1) (b: ’cV[ftype ty]_n.+1): ∀ x0: ’cV[ftype ty]_n.+1,
forward_error_cond A x0 b →
∀ k i, finite (x_{k, i})) ∧
(f_error k ≤ rho^k ∗ (f_error 0) + ((1 − rho^k) / (1−rho)) ∗ d_mag.

where f_error(k) is ‖x − xk‖, and the conditions on A ∈ F
(n+1)×(n+1), x0 ∈

F
(n+1)×1, b ∈ F

(n+1)×1 for n ≥ 0, are characterized as follows:

212 M. Tekriwal et al.

Definition forward_error_cond {ty} {n:nat}
(A: ’M[ftype ty]_n.+1) (x0 b: ’cV[ftype ty]_n.+1) :=
(∀ i, finite (A _{i,i}) ∧ (rho < 1) ∧ invertible A ∧ (∀ i, finite (1 / A_{i,i})) ∧
(∀ i, finite (x_{o,i}) ∧ (∀ i j, finite(N_{i,j})) ∧ (∀ i, finite (b_i) ∧
size_constraint n ∧ input_bound A x0 b.

size_constraint n is a constraint on the dimension n of the matrix A (in
double-precision, about 6 · 109). The predicate input_bound provides conditions
on the bounds for the inputs A, b, x0; it is implied by the Jacobi preconditions
(Definition 1) defined in the next section.

Proof. Assuming no overflow, the floating-point iteration satisfies

xk+1 = D̃−1 ⊗ (b � (N ⊗ xk))

where the operators ⊗, � represent the floating-point multiplication and sub-
traction operations respectively. D̃−1 is the floating-point (not exact) inverse of
the diagonal elements. The forward error at step k + 1 is defined as

fk+1 = ‖xk+1 − x‖ = ‖(D̃−1 ⊗ (b � (N ⊗ xk))) − (D−1(b − Nx))‖
Here, we write the true solution as x = D−1(b−Nx) which can be derived from
Ax = b. To move forward, we will be using the following auxiliary error bounds
on matrix-vector operations.

– Matrix-vector multiplication: ‖N ⊗x−Nx‖ ≤ ‖N‖‖x‖gδ + gε. This bound is
derived from the dot product error bound that we stated in Sect. 4. In the ‖·‖
norm, the dot product errors directly give the error bound for matrix-vector
multiplication.

– Vector subtraction: ||(b � (N ⊗ xk) − b(N ⊗ xk)|| ≤ (||b|| + ||N ⊗ xk||)δ.
Here, we use the fact that |x � y − (x − y)| ≤ (|x| + |y|)δ.

– Vector inverse: ||D̃−1 − D−1|| ≤ ||D−1||δ + ε. Here, we make use of the fact
that inverting each element of the vector D satisfies, |(1 � Di) − (1/Di)| ≤
|(1/Di)| δ + ε.

We use these norm-wise errors to expand the error definition fk+1:

fk+1 ≤ ((||D̃−1|| (||b|| + ||N || ||xk||(1 + gδ + gε))(1 + δ)gδ + gε)+

||D̃−1|| (||b|| + ||N || ||xk||(1 + gδ) + gε)δ+

||D̃−1|| (||N || ||xk||gδ + gε)+

(||D−1||δ + ε) (||b|| + ||N || ||xk||) + ||D−1|| ||N ||fk

We then collect the coefficients of ||xk|| and expand using the error relation for
fk as ||xk|| ≤ fk + ||x|| to get the error recurrence relation:

fk+1 ≤ ρfk + dmag

where dmag is a constant independent of k depending only on ||x||, δ, ε, gδ, gε.
We can then expand the above error recurrence relation to get

Verified Correctness, Accuracy, and Convergence of Jacobi 213

fk+1 ≤ ρk+1fo + (1 + ρ + ρ2 + ... + ρk)dmag

This geometric series converges if ρ < 1 with closed form

fk+1 ≤ ρk+1fo +
1 − ρk+1

1 − ρ
dmag

Note that if the above iterative process were done in reals, then we would only
require ρr := ||D−1N || to be less than 1. Thus, the presence of rounding errors
forces us to choose a more conservative convergence radius ρ.

6 Convergence Guarantee: Absence of Overflow

Theorem 2 had the premise, “if no iteration resulted in an overflow.” Most previ-
ous convergence theorems for Jacobi iteration [27] have been in the real numbers,
where overflow is not an issue: multiplying two finite numbers cannot “overflow.”
Higham and Knight [14] proved convergence (but not absence of overflow), on
paper, in a simplified model of floating-point (without underflows). Let us now
state a theorem, for an accurate model of floating-point, not conditioned on
absence of overflow.

Theorem 3 (jacobi_iteration_bound_lowlevel). If the inputs A, b, desired tol-
erance τ , and projected number of iterations k satisfy the (efficiently testable)
Jacobi preconditions, then the floating-point functional model of Jacobi iteration
converges, within j ≤ k iterations, to a solution xj such that ‖Axj − b‖2 < τ ,
without overflowing.

Proof. The proof for this theorem follows by the following cases:

– If A is diagonal then N is a zero matrix. Therefore, the solution vector at each
iteration is given by the constant vector xk = D̃−1 ⊗ b. Hence, the solution of
Jacobi iteration has already converged after the first step, assuming certain
bounds on b and A implied by the Jacobi preconditions.

– If A is not diagonal but the vector b is small enough, Jacobi iteration has
already converged, without even running the iteration.

– Suppose A is not diagonal and the vector b is not too small. Then
(a) The residual does not overflow for every iteration ≤ j. This follows from

the Jacobi preconditions and Theorem 2.
(b) We can calculate kmin such that the residual < τ within kmin iterations.

The Jacobi preconditions (Definition 1) are efficiently computable: a straight-
forward arithmetic computation with computational complexity linear in the
number of nonzero matrix elements.

Definition 1 (jacobi_preconditions_Rcompute). A, b, τ, k satisfy the
Jacobi preconditions when:

214 M. Tekriwal et al.

– All elements of A, b, and D̃−1 are finite (representable in floating-point);
– A is strictly diagonally row-dominant, that is, ∀i. Dii >

∑
j |Nij |;

– τ̃2 is finite;
– τ̃2 > gε + n(1 + gδ)(gε) + 2(1 + gδ)(1 + δ)‖D‖(d̂mag/(1 − ρ̂))2;

τ̃2 > n(1 + gδ)(‖D‖(‖D̃−1‖(‖A‖d̂mag/(1 − ρ̂) + gε)(1 + δ)(1 + gδ) + gε)(1 +
δ)(1 + gδ) + gε)2 + gε;

– kmin ≤ k;
– n < ((Fmax−ε)/(1+δ)−gε −1)/(g(n−1)+1); n < Fmax/((1+g(n+1))δ)−1
– ∀i. |Aii|(1 + ρ̂)xbound + 2d̂mag/(1 − ρ̂) + 2xbound < vmax − ε)/(1 + δ)2;
– ∀i, j. |Nij | < vmax;
– ∀i. |bi| + (1 + gδ)((2xbound + d̂mag/(1 − ρ̂))

∑
j |Nij |) + gε < Fmax/(1 + δ);

– ∀i. |D̃−1
ii |(|bi|+(1+gδ)(2xbound+ d̂mag/(1− ρ̂))

∑
j |Nij |)+gε < Fmax/(1+δ);

– (1 + ρ̂)xbound + 2d̂mag/(1 − ρ̂) + 2xbound < Fmax/(1 + δ);
– ∀i. |bi| < (Fmax − ε)/(1 + δ);
– ∀i. |D̃−1

ii ||bi| < (Fmax − ε)/(1 + δ);
– ∀i. |D̃−1

ii ||bi|(1 + δ) + ε < (Fmax − ε)/(1 + δ);
– ∀i. |Aii|(|D̃−1

ii ||bi|(1 + δ) + ε) < (vmax − ε)/(1 + δ).

where d̂ = (‖D̃−1‖ + ε)/(1 − δ) is a bound on ‖D−1‖. Defining R = d̂ ‖N‖, we
define an upper bound on the norm of the solution x to Ax = b as xbound =
d̂‖b‖/(1 − R). ρ̂ is the adjusted spectral radius (ρr = ‖D−1N‖) of the iteration
matrix, obtained by accounting for the floating-point errors in its computation.
For the iteration process to converge in presence of rounding, we want ρ̂ < 1.
d̂mag is a bound on the additive error in computing the residual ‖Axk − b‖, the
difference between computing the residual in the reals versus in floating-point.
τ̃2 = τ ⊗ τ is the floating-point square of τ . The minimum k for which we
guarantee convergence is calculated as

kmin = 1 +

⎡

⎢
⎢
⎢
⎢
⎢

ln
(

xbound(1+δ)

((
√

(τ̃2−gε)/(n(1+gδ))−gε)/((1+gδ)+‖D‖(1+δ)))−2d̂mag/(1−ρ̂)

)

ln(1/ρ̂)

⎤

⎥
⎥
⎥
⎥
⎥

Indeed these conditions are quite tedious – one might have difficulty trusting
them without a machine-checked proof. But they are all easy to compute in
linear time. And, although we state them here (mostly) in terms of operations on
the reals, they are all straightforwardly boundable by floating-point operations.

Remark 1 (not proved in Coq). The Jacobi preconditions can be computed in
time linear in the number of nonzero entries of A.

Proof. Let S be the number of nonzeros. Then n < S since the diagonal elements
are nonzero. The inverse diagonal D̃−1 is computed in linear time. The infinity
norm (‖N‖, ‖D‖, d̂, ‖b‖) is simply the largest absolute value of any row-sum (for
matrix) or element (for vector), which can be found in O(S) time. Then the
values xbound, ρ̂, d̂mag, vmax, kmin can all be computed in constant time. Then
each of the tests in Definition 1 can be done in O(S) time.

Verified Correctness, Accuracy, and Convergence of Jacobi 215

7 An Efficient and Correct C Program

Our C program uses standard numerical methods to achieve high performance
and accuracy: sparse matrix methods, fused multiply-add, efficient testing for
overflow, and so on. What’s not so standard is that we have proved it cor-
rect, with a foundational machine-checked proof that composes in Coq with the
numerical accuracy (and convergence) proof of our functional model.

7.1 Sparse Matrix-Vector Multiply

Many implementations of stationary iterative methods, including Jacobi, are on
large sparse matrices. A naive dense matrix-vector multiply would take O(n2)
time per iteration, while sparse representations permit O(sn) time per iteration,
there are s nonzeros per row. Our program uses Compressed Row Storage (CRS),
a standard sparse representation [4, §4.3.1].

Kellison et al. [21] describe the Coq floating-point functional model, an imple-
mentation in C, and the Coq/VST proof that the C dot-product program cor-
rectly implements the model. VST (Verified Software Toolchain) [10] is a tool
embedded in Coq for proving C programs correct. From that, here we prove that
the Jacobi program implements its model.

For sweep-form Jacobi iteration it is useful to have a function that com-
putes just one row of a sparse matrix-vector multiply, which in CRS form is
implemented as,

double crs_row_vector_multiply(struct crs_matrix ∗m, double ∗v, unsigned i);
/∗ compute dot−product of row i of matrix m with vector v ∗/

Separation of Concerns. The floating-point accuracy proof should be kept com-
pletely separate from the sparse-matrix data-structure-and-algorithm proof. This
function is proved to calculate (almost) exactly the same floating-point compu-
tation as the naive dense matrix multiply algorithm.

Almost exactly – because where Aij = 0, the dense algorithm computes
Aij · xi + s where the sparse algorithm just uses s. In floating-point it is not the
case that ∀y. 0 · y + s = s, for example when y is ∞ or NaN. Even when y and s
are finite, it is not always true that y · 0 + s is the same floating-point value as
s: it could be that one is +0 and the other is −0. And finally, even when matrix
A and vector x are all finite, we cannot assume that intermediate results s are
finite—there may be overflow.

So we reason modulo equivalence relations (using Coq’s Parametric Morphism
system for rewriting with partial equivalence relations). We define feq x y to
mean that either both x and y are finite and equal (with +0 = −0), or neither
is finite. Our function will have a precondition that A and x are all finite, and
postcondition that the computed result is feq to the result that a dense matrix
multiply algorithm would compute.

216 M. Tekriwal et al.

7.2 Jacobi Iteration

Listing 1.1. C program for a single iteration of Jacobi iteration

double jacobi2_oneiter(double ∗A1, struct crs_matrix ∗A2, double ∗b, double ∗x,
double ∗y) {

unsigned i, n=crs_matrix_rows(A2); double s = 0.0;
for (i=0; i<n; i++) {
double u = b[i] − crs_row_vector_multiply(A2,x,i);
double a1 = A1[i], new = (1/a1)∗u, r = a1∗(new − x[i]);
s = fma(r,r,s);
y[i] = new;
}

return s;
}

The C program in the Lisiting 1.1 loops over rows i of the matrix, which is also
elements i of the vectors b and x. For each i it computes a new element yi of the
result vector, as well as an element ri of residual vector. It returns s, the sum of
the squares of the ri. By carefully computing ri from yi, and not vice versa, we
can prove (in Coq, of course) that all overflows are detected: if s is finite, then
all the yi must be finite.

The program in the Listing 1.2 runs until convergence (s < τ2), giving up
early if there’s overflow (tested by s∗0=0.0, since if s overflows then s∗0 is NaN)
or if maxiter iterations is reached.

Listing 1.2. C program for Jacobi iteration until convergence

double jacobi2(double ∗A1, struct crs_matrix ∗A2, double ∗b, double ∗x, double τ2,
unsigned maxiter) {

unsigned i, n=crs_matrix_rows(A2);
double s, ∗t, ∗z=x, ∗y = (double ∗)surely_malloc(n∗sizeof(double));
do { s = jacobi2_oneiter(A1,A2,b,z,y);

t=z; z=y; y=t;
maxiter−−;

} while (s∗0==0.0 && s ≥ τ2 && maxiter);
if (y==x) y=z; else { for (i=0; i<n; i++) x[i]=y[i]; }
free(y);
return s;

}

This program starts with x(0) in x, computes x(1) into y, then x(2) back into x,
and so on. It mallocs y for that purpose and frees it at the end. Depending on
whether the number of iterations is odd or even, it may need to copy from y to
x at the end.

This program is conventional and straightforward. Our proof tools allow the
numerical analyst to use standard methods and idioms—and nontrivial data
structures—and still get an end-to-end correctness proof. For each of these func-
tions we prove in VST that the function exactly implements the functional model,

Verified Correctness, Accuracy, and Convergence of Jacobi 217

modulo equivalence relations on floating-point numbers. At this level there are no
accuracy proofs, the programs exactly implement the functional models, except
that one might have −0 where the other has +0, and one might have different
NaNs than the other, if any arise.

Correctness Theorem. The jacobi2 function is specified and proved with a VST
function-spec that we will not show here, but in English it says,

Theorem 4 (body_jacobi2). Let A be a matrix, let b and x(0) be vectors,
let A1p be the address of a 1-dimensional array holding the diagonal of A, let
A2p be the address of a CRS sparse matrix representation of A without its diag-
onal, let bp and xp be the addresses of arrays holding b and x(0), let τ be desired
residual accuracy, and let maxiter be an integer. Suppose these preconditions
hold: the dimension of A is n × n, b and x(0) have length n, 0 < n < 232,
0 < maxiter < 232, all the elements of A, b, x, acc2 (as well as the inverses of A’s
diagonal) are finite double-precision floating-point numbers; the data structures
A1p,A2p,bp have read permission and xp has read/write permission. Suppose one
calls jacobi2(A1p,A2p,bp,xp,acc,maxiter); then afterward it will satisfy this postcon-
dition: the function will return some s and the array at xp will contain some
x(k), such that (s, x(k)) � jacobiAbx τ2,maxiter, where � is the floating-point
equivalence relation and jacobi is our functional model in Coq of Jacobi iteration;
and the data structures at A1p,A2p,bp will still contain their original values.

8 The Main Theorems, Residuals, and Stopping
Conditions

The C program jacobi2() (and its functional model jacobi) satisfies either of two
different specifications:

Theorem 4 (above): if A, b, x satisfy the basic preconditions1 then perhaps
Jacobi iteration will return after maxiter iterations—having failed to converge—
or might overflow to floating-point infinities and stop early. But even so, the
result (s, y) will be such that the (squared) residual s = |Ay − b|22 accurately
characterizes the result-vector y: if y contains an ∞ then s = ∞, but if

√
s < τ

then y is indeed a “correct” answer. That’s because the functional model preserves
infinities in this way, and the C program correctly implements the model.

Theorem 5: if A, b, x,maxiter satisfy the Jacobi preconditions then the result
(s, y) will be such that s = |Ay − b|22, and

√
s < τ and indeed y is a “correct”

finite answer. In fact this is our main result:

Theorem 5 (main_jacobi). If the inputs satisfy the Jacobi preconditions, then
the C program will converge within k iterations to an accurate result.

Proof. Using Theorems 3 and 4, with some additional reasoning about the stop-
ping condition in the functional model of the C program.
1 A an n × n matrix; b and x dimension n; 0 < n < 232; A, b, x all finite; A, b, x stored

in memory in the right places—but nothing else about the values of A, b, x.

218 M. Tekriwal et al.

Jacobi Iteration on Inputs Not Known to Satisfy the Jacobi Preconditions. Theo-
rem 4 is useful on its own, since there are many useful applications of stationary
iterative methods where one has not proved in advance the convergence con-
ditions (e.g., Jacobi preconditions)—one just runs the program and tests the
residual. For such inputs we must take care to correctly stop on overflow.

The induction hypothesis, for 0 < k ≤ maxiter iterations, requires that xk

has not yet overflowed, otherwise our sparse-matrix reasoning cannot be proved
(see Sect. 7.1). Therefore the program must check for floating-point overflow in
xk after each iteration. In order to do that efficiently, the program tests s⊗0 = 0
(which is a portable and efficient way of testing that s is finite); and if so, then
xk+1 is all finite.

9 Related Work

Convergence of Jacobi Iteration. The standard error analysis for Jacobi iteration
in exact arithmetic is well-described in standard books on iterative solvers [27].
A floating-point error analysis of Jacobi and related iterations was carried out
by Higham and Knight in the early 90s [14], and is summarized along with
references to related work in [13, Ch. 17]. The style of analysis is similar to
what we present in this paper. However, earlier analyses implicitly assumed that
all intermediates remain in the normalized floating-point range, and did not
consider the possibility of underflow or overflow.

Formalization of numerical analysis has been facilitated by advancements in
automatic and interactive theorem proving [7,11,23,25]. Some notable works in
the formalization of numerical analysis are the formalization of Kantorovich the-
orem [26], matrix canonical forms by Cano et al. [9], Perron-Frobenius theorem
in Isabelle/HOL [30], Lax–equivalence theorem for finite difference schemes [28],
consistency, stability and convergence of a second-order centered scheme for
the wave equation [5,6], formalized flows, Poincaré map of dynamical systems,
and verified rigorous bounds on numerical algorithms in Isabelle/HOL [15–17].
However, these works do not study the problem of iterative convergence for-
mally. Even though the iterative convergence has been formalized in exact arith-
metic [29], the effect of rounding error on iterative convergence has not been
formalized before.

End-to-End Machine-Checked Proofs. There are few truly end-to-end (C code to
high-level accuracy) machine-checked formal proofs in the literature of numerical
programs. Our approach has been to prove that a C program exactly implements
a functional model (using VST), prove how accurately the functional model
approximates a real-valued model, prove the accuracy of the real-valued model;
and compose these results together. Something similar has been done for scalar
Newton’s method [2] and for ordinary differential equations [20], but those works
did not leverage the power of the Mathematical Components and MathComp
Analysis libraries for the upper-level proofs.

Verified Correctness, Accuracy, and Convergence of Jacobi 219

Other previous work [6] verified a C program implementing a second-order
finite difference scheme for solving the one-dimensional acoustic wave equation,
with a total error theorem in Coq that composes global round-off and discretiza-
tion error bounds; this was connected (outside of Coq) to a Frama-C correctness
proof of the C program. The inexpressiveness of Frama-C’s assertion language
was a challenge in that verification effort.

10 Conclusion and Future Work

In this paper, we have presented a formal proof in Coq of the correctness, accu-
racy, and convergence of Jacobi iteration in floating-point arithmetic. The same
type of analysis should generalize to many other iterative methods, for both lin-
ear and nonlinear problems. Even within the scope of stationary iterations for
linear problems, there are several avenues for future work.

We have not fully taken advantage of sparseness in our error bound; many
of our gδ(n) and gε(n) could be gδ(s), gε(s)—functions of the number of nonzero
elements per row. It would be useful to tighten the bound.

Jacobi iteration is one of the simplest stationary iterative methods. More
complicated stationary methods involve splittings A = M+N , where M is not a
diagonal matrix. Solving linear systems with such M is more complicated than
diagonal scaling, and requires algorithms like forward and backward substitution
that may require their own error analysis. Formalizing the floating-point error
analysis of these solvers is an important next step.

Strict diagonal dominance is not a necessary condition for the convergence
of Jacobi. We would like to formalize other sufficient conditions for con-
vergence of Jacobi and related iterations. For example, irreducible diagonal
dominance is sufficient for convergence of Jacobi in general, while positive defi-
niteness is sufficient for convergence of Gauss-Seidel. However, while these con-
ditions guarantee convergence, they do not guarantee an easy-to-compute rate
of convergence in the same way that strict diagonal dominance does, and hence
we expect the analysis to be more subtle.

Finally, we would like to extend our analysis to mixed precision methods,
in which computations with M are done in one precision, while the residual
is computed in a higher precision. These methods are often used to get errors
associated with a higher floating-point precision while paying costs associated
with a lower precision. However, the use of multiple precisions opens the door
for a host of potential problems related to overflow and underflow, and we see
formal verification as a particularly useful tool in this setting.

Efforts and Challenges: The formalization effort in this work includes about
1,826 lines of Coq proof script for C program verification and about 14,000 lines
of Coq proof script for the convergence and accuracy proofs. A total of about 60
lines of C code were verified, which includes 12 lines for header files, 5 lines for
surely_malloc, 14 lines of crs_row_vector_multiply, and about 31 lines for jacobi2
and jacobi2_oneiter. It took us about 5 person-months for the formalization of
accuracy and convergence of the functional model. The most time-consuming

220 M. Tekriwal et al.

part was the proof of absence of overflow, which involved deriving and formalizing
bounds on the input conditions. The proof of correctness of C programs with
respect to the functional model, including developing an understanding of what
the termination condition should be, determining best ways to compute residuals
such that the program properly detects overflow, developing functional models
and proving properties about termination of the functional model took us about
a couple of weeks.

The main challenge, in an end-to-end verification, is that each layer’s theo-
rem must be sufficiently strong to compose with the next layer. The published
theorems about Jacobi convergence were insufficient (no treatment of underflow,
error bounds relating the wrong quantities, no handling of -0, inadequate treat-
ment of overflow), and new methods were required, which we address in this
work.

Acknowledgement. We thank Yves Bertot for feedback on earlier drafts of this
paper. This research was supported in part by NSF Grants CCF-2219997 and CCF-
2219757, by a US Department of Energy Computational Science Fellowship DE-
SC0021110, and by the Chateaubriand fellowship program.

References

1. Ahlberg, J.H., Nilson, E.N.: Convergence properties of the spline fit. J. Soc. Indust.
Appl. Math. 11, 95–104 (1963)

2. Appel, A.W., Bertot, Y.: C-language floating-point proofs layered with VST and
Flocq. J. Formalized Reason. 13(1), 1–16 (2020)

3. Appel, A.W., Kellison, A.E.: VCFloat2: floating-point error analysis in Coq (2022).
https://github.com/VeriNum/vcfloat/blob/master/doc/vcfloat2.pdf

4. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM (1994)

5. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
J. Autom. Reason. 50(4), 423–456 (2013)

6. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Comput. Math. Appl. 68(3), 325–352 (2014)

7. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

8. Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algo-
rithms in Coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic, pp. 243–
252. IEEE (2011)

9. Cano, G., Dénès, M.: Matrices à blocs et en forme canonique. In: Pous, D., Tasson,
C. (eds.) JFLA - Journées francophones des langages applicatifs. Aussois, France
(2013). https://hal.inria.fr/hal-00779376

10. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: a sepa-
ration logic tool to verify correctness of C programs. J. Autom. Reason. 61(1–4),
367–422 (2018)

11. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs

https://github.com/VeriNum/vcfloat/blob/master/doc/vcfloat2.pdf
https://hal.inria.fr/hal-00779376

Verified Correctness, Accuracy, and Convergence of Jacobi 221

2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03359-9_23

12. Gleich, D.F.: Pagerank beyond the web. SIAM Rev. 57(3), 321–363 (2015)
13. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM (2002)
14. Higham, N.J., Knight, P.A.: Componentwise error analysis for stationary iterative

methods. In: Meyer, C.D., Plemmons, R.J. (eds.) Linear Algebra, Markov Chains,
and Queueing Models, pp. 29–46. Springer, New York (1993). https://doi.org/10.
1007/978-1-4613-8351-2_3

15. Immler, F.: A Verified ODE Solver and Smale’s 14th Problem. Dissertation, Tech-
nische Universität München, München (2018)

16. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in
Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
377–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32347-
8_26

17. Immler, F., Traut, C.: The flow of ODEs: formalization of variational equation and
Poincaré map. J. Autom. Reason. 62(2), 215–236 (2019)

18. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953)

19. Kellison, A., Tekriwal, M., Jeannin, J.B., Hulette, G.: Towards verified rounding
error analysis for stationary iterative methods. In: 2022 IEEE/ACM Sixth Inter-
national Workshop on Software Correctness for HPC Applications (Correctness),
pp. 10–17 (2022). https://doi.org/10.1109/Correctness56720.2022.00007

20. Kellison, A.E., Appel, A.W.: Verified numerical methods for ordinary differential
equations. In: 15th International Workshop on Numerical Software Verification
(2022)

21. Kellison, A.E., Appel, A.W., Tekriwal, M., Bindel, D.: LAProof: a library of formal
accuracy and correctness proofs for sparse linear algebra programs (2023). https://
www.cs.princeton.edu/~appel/papers/LAProof.pdf

22. Mahboubi, A., Tassi, E.: Mathematical components. Online book (2021)
23. Martin-Dorel, É., Rideau, L., Théry, L., Mayero, M., Pasca, I.: Certified, efficient

and sharp univariate Taylor models in Coq. In: 15th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, pp. 193–200. IEEE
(2013)

24. McKenzie, L.: Matrices with dominant diagonals and economic theory. In: Arroa,
K., Karlin, S., Puppes, S. (eds.) Mathematical Methods in the Social Sciences, pp.
47–60. Stanford University Press (1960)

25. O’Connor, R.: Certified exact transcendental real number computation in Coq. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
246–261. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-
7_21

26. Pasca, I.: Formal verification for numerical methods. Ph.D. thesis, Université Nice
Sophia Antipolis (2010)

27. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
28. Tekriwal, M., Duraisamy, K., Jeannin, J.-B.: A formal proof of the lax equivalence

theorem for finite difference schemes. In: Dutle, A., Moscato, M.M., Titolo, L.,
Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 322–339. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-76384-8_20

29. Tekriwal, M., Miller, J., Jeannin, J.B.: Formal verification of iterative convergence
of numerical algorithms (2022). https://doi.org/10.48550/arXiv.2202.05587

30. Thiemann, R.: A Perron-Frobenius theorem for deciding matrix growth. J. Log.
Algebraic Methods Program. 100699 (2021)

https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-1-4613-8351-2_3
https://doi.org/10.1007/978-1-4613-8351-2_3
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1007/978-3-642-32347-8_26
https://doi.org/10.1109/Correctness56720.2022.00007
https://www.cs.princeton.edu/~appel/papers/LAProof.pdf
https://www.cs.princeton.edu/~appel/papers/LAProof.pdf
https://doi.org/10.1007/978-3-540-71067-7_21
https://doi.org/10.1007/978-3-540-71067-7_21
https://doi.org/10.1007/978-3-030-76384-8_20
https://doi.org/10.48550/arXiv.2202.05587

Multiple-Inheritance Hazards
in Dependently-Typed Algebraic

Hierarchies

Eric Wieser(B)

Department of Engineering, University of Cambridge, Cambridge, UK

efw27@cam.ac.uk

Abstract. Abstract algebra provides a large hierarchy of properties that
a collection of objects can satisfy, such as forming an abelian group or
a semiring. These classifications can arranged into a broad and typically
acyclic directed graph. This graph perspective encodes naturally in the
typeclass system of theorem provers such as Lean, where nodes can be
represented as structures (or records) containing the requisite axioms.
This design inevitably needs some form of multiple inheritance; a ring is
both a semiring and an abelian group.

In the presence of dependently-typed typeclasses that themselves con-
sume typeclasses as type-parameters, such as a vector space typeclass
which assumes the presence of an existing additive structure, the imple-
mentation details of structure multiple inheritance matter. The type of
the outer typeclass is influenced by the path taken to resolve the type-
classes it consumes. Unless all possible paths are considered judgmentally
equal, this is a recipe for disaster.

This paper provides a concrete explanation of how these situations
arise (reduced from real examples in mathlib), compares implementation
approaches for multiple inheritance by whether judgmental equality is
preserved, and outlines solutions (notably: kernel support for η-reduction
of structures) to the problems discovered.

Keywords: Dependent types · Multiple inheritance · Typeclasses ·
Formalization · mathlib

1 Introduction

It becomes clear very early in the development of mathematical libraries that
a generalization over algebraic properties is essential; as soon as we are able to
speak about N and Z, we will want to have available that a+ b = b+ a whether
a, b : N or a, b : Z, and it would be strongly preferable that we can refer to this
property by a single name.

The generalization we seek is of course well-studied as the field of abstract
algebra, and the commutativity property above can be phrased as “N and Z are
both semirings”, or using language more precise to the specific property we care
about “N and Z are both abelian monoids”. At least when considering only those
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 222–236, 2023.
https://doi.org/10.1007/978-3-031-42753-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_15&domain=pdf
http://orcid.org/0000-0003-0412-4978
https://doi.org/10.1007/978-3-031-42753-4_15

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 223

which operate on a single carrier type, algebraic structures can be connected into
a directed graph; all rings are semirings and abelian groups, so we can draw a
pair of edges from “ring” to “semiring” and “abelian group”. An illustration of
the depth and breadth of such a graph can be seen in [19, fig. 1], while a reduced
example that we will use in this paper can be seen in Fig. 1.

Encoding this directed graph into the machinery of a particular theorem
prover can be done in multiple ways, which are outlined in [3, §1] and presented
with example code across a variety of languages in [6, fig. 1]. This paper focuses
on the typeclass approach used by mathlib [19] in the Lean 3 theorem prover
[14]; though the observations generalize to other implementations in dependent
type theory built upon “structure” types.

In this approach, the graph is pruned to be acyclic, and then a typeclass is
created for each node carrying its operators (data fields) and the properties they
satisfy (proof fields). The edges correspond to functions converting from stronger
structures to weaker structures, each registered as a typeclass instance. This
encodes naturally in “record” or “structure” types with multiple inheritance,
where we can write down the desired edges declaratively in the form of a list
of base structures, and have the language generate the necessary “forgetful”
instances automatically. A simple example of this can be found in [3, §4].

Unfortunately, the devil is in the details; in Lean, Coq, Agda, and Isabelle,
support for multiple inheritance is not part of the underlying type theory, so
types that use multiple inheritance have to be translated by the elaborator into
inductive types that do not. There are multiple ways to perform such a transla-
tion, and the choice is not inconsequential.

In Sect. 2 we outline two such approaches, and show how they can each be
used to construct a much-reduced version of mathlib’s abstract algebra library.
Section 3 introduces a more complex use of a typeclass from mathlib, and demon-
strates how in the absence of special kernel support for η-reduction on structure
types, its design is incompatible with “nested” approach to structures. Section 4
outlines some workarounds that permit the “nested” approach to be used even
in the absence of this support. Section 5 explains how the problem is not unique
to typeclass-based approaches.

The problems explored here are far from hypothetical; the migration of math-
lib from Lean 3 to Lean 4 [15] forces a switch from the approach in Sect. 2.1 to
that in Sect. 2.2, which has presented a significant stumbling block [5].

2 Types of Structure Inheritance

Lean 3 supports two types of structure inheritance: the default “new style”,
which we will refer to as “nested”, and does not support multiple inheritance;
and the legacy “old style” (enabled with set_option old_structure_cmd true) which
we will refer to as “flat”, and does support multiple inheritance. Lean 4 (as a
language) does away with the “flat” mode, but extends the “nested” mode to
support multiple inheritance.

To compare these approaches, this section demonstrates how to build the
miniature algebraic hierarchy shown in Fig. 1. If we permit ourselves to use the

224 E. Wieser

Fig. 1. A hierarchy of algebraic typeclasses, where arrows indicate a stronger
typeclass implying a weaker typeclass. Dotted arrows correspond to the “non-
preferred” typeclass paths which are relevant to Sect. 2.2.

class add_monoid (α : Type) :=
(zero : α) (add : α → α → α)

class add_comm_monoid (α : Type) extends add_monoid α

class semiring (α : Type) extends add_comm_monoid α :=
(one : α) (mul : α → α → α)

class add_group (α : Type) extends add_monoid α :=
(neg : α → α)

class add_comm_group (α : Type) extends add_group α, add_comm_monoid α

class ring (α : Type) extends semiring α, add_comm_group α

Listing 1: The hierarchy in Fig. 1 described using extends clauses.

builtin language support for multiple inheritance, we could write this as in listing
1. As they are not going to be relevant to the discussion in this paper, the proof
fields such as one_mul : ∀ a : α, mul one a = a have all been omitted.

To avoid this paper being about a specific implementation of inheritance in
a specific version of Lean, we will avoid the extends keyword, instead emulating
it via different possible encodings of inheritance into regular structures. For
simplicity this paper is largely presented as about Lean, but the supplemental
repository referenced in Sect. 7 demonstrates how the Lean 3 samples presented
here can be replicated in Coq1 and in Lean 42.

2.1 Flat Structures

The “flat” approach to structure inheritance is to copy all of the fields from
the base classes into the derived class. If multiple base classes share a field
of the same name, then these fields are merged3. The forgetful instances are
then implemented by unpacking all the relevant fields of the derived class and
passing them to each base class constructor (which in Lean can be written as
{ ..derived }).
1 Albeit somewhat non-idiomatically.
2 At least, in old versions without pertinent fixes!.
3 Unless they are of different types, which raises an error.

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 225

This can be seen for the toy example from listing 1 in listing 2a; ring extends
both semiring and add_comm_group, so inherits the union of the four fields of semir-
ing (zero, add, one, mul) and the three fields of add_comm_group (zero, add, neg). The
ring.to_semiring and ring.to_add_comm_group instances generate constructor appli-
cations that reassemble the corresponding fields.

This approach is straightforward to implement in a theorem prover, and is
the one used (via set_option old_structure_cmd true) in the majority of mathlib’s
algebraic hierarchy in Lean 3. A downside to this approach is that it can pro-
duce more work for unification (leading to poor performance) in long inheritance
chains [3, §10].

class add_monoid (α : Type) :=
(zero : α) (add : α → α → α)

class add_comm_monoid (α : Type) :=
(zero : α) (add : α → α → α)

instance add_comm_monoid.to_add_monoid
(α : Type) [i : add_comm_monoid α] : add_monoid α := { ..i }

class semiring (α : Type) :=
(zero : α) (add : α → α → α)
(one : α) (mul : α → α → α)

instance semiring.to_add_comm_monoid
(α : Type) [i : semiring α] : add_comm_monoid α := { ..i }

class add_group (α : Type) :=
(zero : α) (add : α → α → α)
(neg : α → α)

instance add_group.to_add_monoid
(α : Type) [i : add_group α] : add_monoid α := { ..i }

class add_comm_group (α : Type) :=
(zero : α) (add : α → α → α) (neg : α → α)

instance add_comm_group.to_add_group
(α : Type) [i : add_comm_group α] : add_group α := { ..i }

instance add_comm_group.to_add_comm_monoid
(α : Type) [i : add_comm_group α] : add_comm_monoid α := { ..i }

class ring (α : Type) :=
(zero one : α) (add mul : α → α → α) (neg : α → α)

instance ring.to_semiring
(α : Type) [i : ring α] : semiring α := { ..i }

instance ring.to_add_comm_group
(α : Type) [i : ring α] : add_comm_group α := { ..i }

(a) The flat approach (Sect. 2.1), copying
base fields to derived classes.

class add_monoid (α : Type) :=
(zero : α) (add : α → α → α)

class add_comm_monoid (α : Type) :=
(to_add_monoid : add_monoid α)

attribute [instance] add_comm_monoid.to_add_monoid

class semiring (α : Type) :=
(to_add_comm_monoid : add_comm_monoid α)
(one : α) (mul : α → α → α)

attribute [instance] semiring.to_add_comm_monoid

class add_group (α : Type) :=
(to_add_monoid : add_monoid α)
(neg : α → α)

attribute [instance] add_group.to_add_monoid

class add_comm_group (α : Type) :=
(to_add_group : add_group α)

attribute [instance] add_comm_group.to_add_group

@[priority 100] instance add_comm_group.to_add_comm_monoid
{α : Type} [i : add_comm_group α] : add_comm_monoid α :=

{ to_add_monoid := i.to_add_group.to_add_monoid, ..i }

class ring (α : Type) :=
(to_semiring : semiring α)
(neg : α → α)

attribute [instance] ring.to_semiring

@[priority 100] instance ring.to_add_comm_group
(α : Type) [i : ring α] : add_comm_group α :=

{ to_add_group :=
{ to_add_monoid :=

i.to_semiring.to_add_comm_monoid.to_add_monoid, ..i },
.. i }

(b) The nested approach (Sect. 2.2),
inserting the first parent as a field and
copying the remaining fields.

Listing 2: Two approaches to implementing inheritance, by elaborating the
extends clauses in listing 1 as the highlighted lines.

226 E. Wieser

2.2 Nested Structures

A näıve approach to multiple inheritance for ring would be simply to create a
structure containing a to_semiring field and a to_add_comm_group field. The problem
with this approach is that the resulting structure contains two separate add fields.
Compatibility of these fields could in principle be enforced with a proof field
along the lines of add_ok : to_semiring.add = to_add_comm_group.add, but this makes
the API very unpleasant to use as the user now has to rewrite between all the
different copies of add.

The way to modify this approach to avoid this pitfall is to add a field for
each base class that doesn’t overlap with any previous base classes, otherwise
fall back to the “flat” approach and add the non-overlapping fields directly.
We call these non-overlapping base-classes “preferred” instances, as the pro-
jections for these fields can be registered directly with the typeclass system
using attribute [instance] derived.to_base. What remains are the “non-preferred”
instances, which can be constructed in a similar way to what was done in Sect.
2.1, though with somewhat messier expressions. Note that unlike Sect. 2.1, this
approach is influenced by the order of the base classes.

This can be seen in listing 2b; ring contains a to_semiring field for
its first base class, but add_comm_group would overlap so its remaining non-
overlapping field (neg) is added separately. The “preferred” ring.to_semiring pro-
jection is then registered with the typeclass system, while the “non-preferred”
ring.to_add_comm_group is painstakingly assembled piece-by-piece. To encourage
Lean to avoid the “non-preferred” instance, we give it a low priority of 100 (the
default is 1000).

This approach is more complicated to implement (and indeed, was not imple-
mented in Lean until Lean 4), but can have performance advantages for unifica-
tion as the “preferred” instance paths do not introduce a constructor application.

The result of listing 2b is that the graph in Fig. 1 is imbued with an asym-
metry; the dotted edges are provided by “non-preferred” instances. These edges
can be chosen on any spanning tree4 of the overall graph, and indeed can be
optimized to fall on the paths most used by the library [11].

For the purpose of this paper, the opposite is true; their placement has been
pessimized to deliberately cause a failure, which we shall see in Sect. 3.2!

3 Typeclasses Depending on Typeclasses

In Sect. 2, we concerned ourselves with the typical examples of typeclasses which
depend on a single type. In Lean, it is possible for typeclasses to depend not
only on multiple types, but on typeclasses that constrain those types. A simple
typeclass of this form is module R M, which is used to declare that given a semiring
R and an abelian monoid M, there is an R-module structure on M. A more
complete explanation of this typeclass can be found in [20] and [3, §5]. For the
purpose of this paper, we can imagine the simpler definition as follows:

4 In general this is a spanning diamond-free directed acyclic graph, but for this paper
it suffices to consider a tree.

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 227

class module (R M : Type) [semiring R] [add_comm_monoid M] :=
(smul : R → M → M)
-- (one_smul : ∀ (x : M), smul 1 x = x)
-- (mul_smul : ∀ (r s : R) (x : M), smul (r * s) x = smul r (smul s x))
-- (add_smul : ∀ (r s : R) (x : M), smul (r + s) x = smul r x + smul s x)
-- (zero_smul : ∀ (x : M), smul 0 x = 0)

Here, the proof fields within the typeclass depend on the operators imbued
upon the types R and M. Just as in Sect. 2, we shall ignore these proof fields as
they are not relevant to the discussion other than providing motivation for the
[semiring R] [add_comm_monoid M] parameters.

3.1 Equality of Typeclass Arguments

A natural use of this typeclass is to record the fact that any semiring is a module
over itself, where the scalar action smul is just multiplication [20, §2.1]. This can
be written in Lean as

instance semiring.to_module (R) [iS : semiring R] : module R R :=
{ smul := semiring.mul }

The type of this instance is misleading; while a human reader could be forgiven
for assuming that the type is just module R R, to Lean the type is

@module R R iS (@semiring.to_add_comm_monoid R iS)

where @ is syntax to tell Lean that even the automatically-populated typeclass
arguments should be spelled out explicitly5. The expressions for these implicit
arguments are visualized graphically in Fig. 2a.

Lean can now tell us that a ring is a module over itself, as after all every
ring is also a semiring. We can ask this question with:

example (R) [iR : ring R] : module R R := by apply_instance

Once again, the type is misleading; the true type can be seen in Fig. 2b. Com-
paring the types for Fig. 2a and Fig. 2b, we see that the former unifies with
the latter by setting iS = @ring.to_semiring R iR; for this reason, Lean finds our
instance as @semiring.to_module R (@ring.to_semiring R iR).

3.2 Inequality of Typeclass Arguments

Let’s imagine now that we want to write a lemma that applies to a module
over a ring (as opposed to a semi-module over a semiring), and states that
(−r)m = −(rm). We write this as6

5 This style of display can be enabled with set_option pp.implicit true in Lean 3 and
set_option pp.explicit true in Lean 4.

6 Omitting the usual - and • notation to keep listing 2 short.

228 E. Wieser

lemma neg_smul {R M} [ring R] [add_comm_group M] [module R M] (r : R) (m : M) :
module.smul (add_group.neg r) m = add_group.neg (module.smul r m) := sorry

To complete our setup, let’s check that this lemma applies to the R-module
structure on R:

example {R} [iR : ring R] (r : R) (r' : R) :
module.smul (add_group.neg r) r' = add_group.neg (module.smul r r') :=

neg_smul r r'

If we use the “flat” design in listing 2a, then this continues to work as expected.
The same is not true of the “nested” design in listing 2b, which fails to synthesize
type class instance for

@module R R (@ring.to_semiring R iR)
(@add_comm_group.to_add_comm_monoid R (@ring.to_add_comm_group R iR))

which is shown graphically in Fig. 2c. The neg_smul lemma is an example of how
typeclass resolution can be steered through a specific node of the graph in Fig. 1.

In Lean 3, the reason this fails is nothing to do with typeclass search; the prob-
lem is that the type in Fig. 2c is not equal to type in Fig. 2b, due to the implicit
add_comm_monoid M arguments (shown in red) not being considered equal. Consider-
ations of equality between the red paths in Fig. 2 and 2c are often referred to as a
“typeclass diamonds” due to the shape they form when overlaid; though this is a
rather more subtle diamond problems than the ones described in [20, §5] and [2,
§3.1] as it is caused by code that would normally be invisible to the user.

To mathematicians, this diagram obviously commutes; weakening a ring to
an abelian monoid via a semiring is the same as doing so via an abelian group.
But Lean doesn’t care about “obviously”: when determining equality of types, it’s
not enough for them to just be provably the same; they need to be definitionally
(sometimes called judgmentally) so. A proof of rfl can be used to determine if two
terms are judgmentally equal; under listing 2b, we get an error confirming they
are not:

example (R) [iR : ring R] :
(@semiring.to_add_comm_monoid R (@ring.to_semiring R iR)) =
(@add_comm_group.to_add_comm_monoid R (@ring.to_add_comm_group R iR)) :=

rfl -- fails in Lean 3 with listing 2b

3.3 Impact of the Inheritance Strategy

The rfl in Sect. 3.2 that fails under listing 2b but not listing 2a tells us that
the nested inheritance is certainly to blame here. The underlying cause is the
difference between the “preferred” and “non-preferred” paths.

The “non-preferred” edges in listing 2b are implemented directly as a con-
structor application via the { } syntax; so by virtue of following “non-preferred”
edges, the red path in Fig. 2c unfolds to an application of the add_comm_monoid

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 229

(a) Instance to match (b) Matching paths (c) Mismatching paths

Fig. 2. Paths taken through the graph in Fig. 1 when filling the two implicit
arguments of the type of module R R. Dotted lines again refer to “non-preferred”
edges. (Color figure online)

constructor. The “preferred” edges correspond to a projection; unless applied to
something that unifies against a constructor, these operations themselves do not
unify against a constructor. As the red path in Fig. 2b consists of only “pre-
ferred” edges, it only unifies with this add_comm_monoid constructor if iR unifies
with a ring constructor.

If iR is a concrete instance such as instance int.ring : ring Z , then it will
almost certainly unify with a ring constructor, and the overall unification prob-
lem is solvable. However if iR is a free variable, it will only unify with a construc-
tor in systems which support “η-reduction for structures”. Lean 3 is not such a
system, which makes unification impossible.

3.4 Other Examples in mathlib

The module typeclass is far from the only typeclass in mathlib that follows the
pattern introduced in Sect. 3; some others typeclasses (all of which fall afoul of
the issue in Sect. 3.2) include

– algebra (R A : Type) [comm_semiring R] [semiring A], indicating that A is an R-
algebras.

– star_ring (R : Type) [non_unital_semiring R], indicating that there is a � oper-
ator compatible with the existing ring structure on R.

– cstar_ring (R : Type) [non_unital_normed_ring R] [star_ring R], indicating that
the existing norm, �, and ring structure are suitable to declare R a C�-ring.

Like the module example, the design of the first of these is brought on by a
need to work with two separate carrier types, and the need to avoid “dangerous
instances” [3, §5.1].

The other two can be described as “mixin” typeclasses, and are moti-
vated by a desire to avoid a combinatorial explosion of typeclass variations: an
attempt at star_ring without mixins could easily end up needing all 16 variations

230 E. Wieser

of unital/non-unital commutative/non-commutative normed? star rings/fields.
This motivation is largely a pragmatic one; the introduction of a tool like Coq’s
Hierarchy Builder [7] to mathlib would eliminate the cost of manually authoring
such an explosion of typeclasses.

4 Mitigation Strategies

4.1 Perform η-Reduction of Structures in the Kernel

A key difference between the type theory of Lean 3 and Lean 4 is that Lean 4
adds a kernel reduction rule that η-reduces structures7, which is precisely what
we concluded we needed in Sect. 3.3. The following example demonstrates what
this means:

structure point := (x y : Z)

-- fails in Lean 3, succeeds in Lean 4
example (p : point) : p = { x := p.x, y := p.y } := rfl

In essence, any value from a structure type is considered judgmentally equal to
its constructor applied to its projections.

This feature was motivated by various “convenience” definitional equalities
(as requested by [8]), such as wanting e.symm.symm = e for an equivalence e : α
� β ; but in a thankful coincidence happens to be precisely the tool needed to
resolve the trap in Sect. 3.2 that Lean 4 dropping support for “flat” structures
would otherwise have ensnared us in. In particular, the Lean 4 version of the
failing example ... := rfl above succeeds.

Until 2023-02-22, the structure η-reduction rule was disabled in Lean 4 dur-
ing typeclass search; both due to performance concerns, and an absence of any
evidence that it was necessary in the first place. As evidence mounted [5], a com-
promise was reached to unblock the Lean 4 version of mathlib that allowed it to
be temporary enabled8 in places where there was no other choice but taking the
performance hit. After some unification performance improvements which are out
of scope for this paper, this behavior was turned on globally on 2023-05-16 [9].

Lean 4 is not the only language to have taken an experimental approach
to structural η; Coq supports it too, under the disabled-by-default Primitive
Projections option. In contrast, Agda enables it by default for inductive types9,
but allows it to be disabled via no-eta-equality.

4.2 Use “Flat” Inheritance

The obvious approach to avoiding problems with “nested” inheritance is to sim-
ply not use it. Unfortunately, in the absence of elaborator support for translating
7 Strictly speaking, it η-reduces inductive types with one constructor; structures are

not native to the type theory of Lean, and instead just syntax for generating a
suitable inductive type.

8 Via set_option synthInstance.etaExperiment true.
9 Some motivating discussion can be found in [1].

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 231

(a) A hack to force the behavior of flat
inheritance when only nested inheritance
is available

(b) A variant of fig. 1 formed by swapping
the two black arrows, that prevents the
problem in fig. 2c.

Fig. 3. Alternate placements of the “preferred” spanning tree, with the diamond
discussed in Fig. 2 overlaid in red (Color figure online).

a variation of listing 1 into listing 2a (such as in Lean 4) this would have to be
done by hand, which can be rather tedious and error-prone.

There is however a trick; since the elaborator can translate listing 1 into
listing 2b, we can construct a pathological graph such that all the edges we care
about are forced to be “non-preferred”. We do this by adding an empty flat_hack
structure as the first base class of every structure, which ensures that the base
classes always overlap (due to the to_flat_hack field), and so the only “preferred”
base class is the unused to_flat_hack projection. The spanning tree of “preferred”
base classes across all such typeclasses is a star with flat_hack at its center, as
shown in Fig. 3a.

This forces all the typeclass resolution to go through the “non-preferred”
paths, which behave identically to their “flat” counterparts by unfolding to a
constructor application.

4.3 Carefully Select “Preferred” Paths

In Sect. 2.2, we mention that the choice of where to place the spanning tree
of “preferred” paths could be optimized for performance. In light of Sect. 3.2,
we could instead attempt to optimize to ensure that the problematic diamonds
never arise. Indeed, there are many arrangements of the “preferred” paths in
Fig. 1 that do not run into the specific example in Fig. 2c, such as Fig. 3b.

For our purposes, an adequate rule for why the red arrows of Fig. 3 commute
but the ones of Fig. 2 do not is that the paths commute only if their last segments
are either both “preferred” (as in Fig. 3b) or both “non-preferred” (as in Fig. 3a).

As discussed in [12] and visualized in Fig. 4, it is not in general possible
to choose a spanning tree for a set of 8 typeclasses arranged in a cube, while
simultaneously making the pairs of paths around each face commute. This can
be adapted into a working solution by inserting extra nodes in the style of Sect.
4.2’s flat_hack to force some additional paths to be “non-preferred”, but this is
far from an elegant solution.

232 E. Wieser

Fig. 4. An algebraic hierarchy where no spanning tree placement can ensure all
squares commute, shown with one such inadequate spanning tree. The red paths
highight the one square that does not commute. na and nu are abbreviated from
mathlib’s non_unital and non_assoc(iative). (Color figure online)

4.4 Ban Non-root Structures in Dependent Arguments

The problem in Sect. 3.2 is caused by a typeclass argument to a typeclass being
inferable both via “preferred” and “non-preferred” routes. In Sect. 4.2, this can
be worked around by ensuring every path is maximally “non-preferred”. An
alternative is to ensure that every path is “preferred”, by only accepting typeclass
arguments that appear as roots of the spanning subgraph. This could look like

class module (R M : Type)
[has_zero R] [has_add R] [has_one R] [has_mul R]
[has_zero M] [has_add M] :=

(smul : R → M → M)
-- (one_smul : ∀ (x : M), smul 1 x = x)
-- (mul_smul : ∀ (r s : R) (x : M), smul (r * s) x = smul r (smul s x))
-- (add_smul : ∀ (r s : R) (x : M), smul (r + s) x = smul r x + smul s x)
-- (zero_smul : ∀ (x : M), smul 0 x = 0)

where each of the operators for R and M is taken as a separate typeclass
argument.

This approach has two main downsides: it results in larger proof terms,
because now it has 6 typeclass arguments instead of four, which have to be
resolved all the way down to the smallest typeclass instead of stopping part-way
along the graph; and it doesn’t extend to cases where not just the data fields
carrying the operators on the type arguments, but also the proof fields carrying
their properties, are needed to define the fields of the dependent typeclass.

5 Implications for Packed Structures

Up until this point we have focused only on typeclasses, as these are (at the
time of this paper) the idiomatic way to represent algebraic structure in Lean.
While Coq also supports typeclasses, and the previous examples can be faithfully
reproduced in it, this is not the idiomatic way to do things in MathComp.

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 233

Instead, Coq’s “Hierarchy builder” [7, §4] generates “packed” structures [10]
with a field for the type itself, rather than consuming the type as a parameter.
These structures are then ineligible for typeclass search, but can be located auto-
matically via “canonical structures” (or as they are known in Lean, “unification
hints”) instead. These can in fact be built on top of the typeclasses from Sect.
2.1 or Sect. 2.2:

structure packed_semiring := (carrier : Type) [semiring carrier]
structure packed_add_comm_monoid := (carrier : Type) [add_comm_monoid carrier]

A näıve encoding of a module in this packed view would be:

structure packed_module :=
(R : packed_semiring) (M : packed_add_comm_monoid) [module R.carrier M.carrier]

As packed_module has no parameters and is therefore not dependently-typed, it
cannot fall afoul of the problem in Sect. 3.2.

Unfortunately, this encoding is effectively useless mathematically [18, §3]; we
have no way to talk about two modules over the same ring without something
involving equality of types and operators10 like (V W : packed_module) (hVW : V.R
= W.R); a much worse version of the duplicate add fields described at the start of
Sect. 2.2.

A more reasonable representation that avoids this problem is to only partially
pack the structure, as

structure packed_module (R : packed_semiring) :=
(M : packed_add_comm_monoid M) [module R.carrier M.carrier]

which allows (V W : packed_module R). This is roughly analogous to the approach
taken in Coq’s MathComp [13] and in mathlib’s category theory library.

While this representation avoids the specific problem in Sect. 3.2 due to its
type not depending on the add_comm_monoid path (the red arrows in Fig. 2), it is
nonetheless dependently-typed. This make it vulnerable to an analogous problem
where the diamond is instead formed by the semiring path (the blue arrows in
Fig. 2) after adding two new comm_semiring and comm_ring nodes.

Fortunately for MathComp, the “Hierarchy builder” uses flat packed struc-
tures11, and so avoids these issues for the same reason that flat typeclasses do
in Sect. 3.1.

10 Or alternatively, by packing the ring and both modules into a single structure, as
(VW : packed_module2) (v : VW.1) (w : VW.2). This is a viable approach for a module
over two rings (as rarely are many rings needed), but doesn’t scale for n modules
over the same ring.

11 Presumably due to simplicity of implementation; there is no mention in [7] that using
nested inheritance instead would have run into the issues described here.

234 E. Wieser

6 Related Work

While this work is of course directly related to the work of porting Lean 3’s
mathlib to Lean 4, the lessons here are transferable to Coq (where [7] seem-
ingly correctly chose to use flat structures by coincidence) and Agda (which has
adopted structure η-reduction globally due to other motivations [1]); even if only
to provide further understanding of why the respective choices that have already
been made in those systems are the correct ones. To the author’s awareness, no
previously demonstrated algebraic motivations have been given for η-reduction
in the kernel. Some in-depth analysis of “coherence” in algebraic typeclass paths
is provided by [17, definition 3.3] (another name for our comparison in Fig. 2),
but it does not provide an example to show why η-reduction specifically should
be assumed.

The analysis in Sects. 3 and 4 is only relevant to systems that use dependent
type theory, as concerns of equalities between the values of type parameters
cannot arise in a language that does not permit those parameters in the first
place. The Isabelle proof assistant which uses simple type theory is therefore
immune to this class of problem; and at any rate [4, §5.4] advocates avoiding its
record types entirely for algebraic structure, in favor of using locales.

Algebraic hierarchies certainly do not only exist in proof assistants; they
are an essential part of computer algebra systems too. However, most computer
algebra systems do not make use of dependent types [16, §1], with a notable
exception being the Axiom Library Compiler, Aldor. Despite supporting depen-
dent types, the type system of Aldor is too restrictive for Sects. 3 and 4 to be
relevant. Aldor does not implement definitional equality of types (referred to as
“value-equality” by [16, §2.4]), and so falls at a much earlier hurdle than the
one in Sect. 3; it does not consider Vector(2+3) and Vector(5) to be the same type
[16, §2.3], meaning that even Fig. 2b would be considered a mismatch, and every
square in Fig. 4 would not commute.

This work focuses on how a seemingly innocuous implementation detail can
be crucial to ensuring the success of existing approaches to algebraic hierarchies
in dependently-typed proof assistants. The broader analysis of these hierarchies,
and possible alternative designs (for which computer algebra systems can provide
inspiration), is left to [3,6,7,18].

7 Conclusion

In this paper we have shown that for the “nested” approach to multiple inher-
itance to be viable in the context of dependently-typed typeclasses or packed
structures, either we have to severely restrict how such inheritance is used (Sects.
4.2 to 4.4), or the kernel of the theorem prover must implement η-reduction for
structures (Sect. 4.1).

This scenario was a major stumbling block for mathlib’s transition from
Lean 3 to Lean 4, as typeclasses of this form are used extensively in linear algebra.
This paper provides a clear explanation of exactly what was going wrong, and a

Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies 235

selection of various solutions that were considered before ultimately settling on
the kernel change.

The code examples throughout this paper, along with translations into Lean 4
and Coq, and the version information needed to run them, can be found at
https://github.com/eric-wieser/lean-multiple-inheritance.

Acknowledgments. The author is grateful to: Gabriel Ebner, for campaigning for η-
reduction support in Lean 4; Kazuhiko Sakaguchi, for providing insight into analogous
situations in Coq; the anonymous referees, as well as Yaël Dillies and Filippo A. E.
Nuccio, for valuable feedback on the manuscript; and the wider Lean community for
collaboratively diagnosing [5] that the diamond problems discussed in Sect. 3.2 existed.
The author is funded by a scholarship from the Cambridge Trust.

References

1. Abel, A.: On Extensions to Definitional Equality in Agda (2009). https://www.
cse.chalmers.se/∼abela/talkAIM09.pdf

2. Affeldt, R., Cohen, C., Kerjean, M., Mahboubi, A., Rouhling, D., Sakaguchi, K.:
Competing inheritance paths in dependent type theory: a case study in func-
tional analysis. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-51054-1 1

3. Baanen, A.: Use and abuse of instance parameters in the Lean mathematical
library. In: ITP 2022, Haifa, Israel (2022). https://arxiv.org/abs/2202.01629

4. Ballarin, C.: Exploring the structure of an algebra text with locales. J. Autom.
Reason. 64(6), 1093–1121 (2019). https://doi.org/10.1007/s10817-019-09537-9

5. Buzzard, K.: leanprover/lean4#2074: typeclass inference failure (2023). https://
github.com/leanprover/lean4/issues/2074

6. Carette, J., Farmer, W.M., Sharoda, Y.: Leveraging the information contained
in theory presentations. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS
(LNAI), vol. 12236, pp. 55–70. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53518-6 4

7. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy builder: algebraic hierarchies made
easy in Coq with Elpi (system description). In: Ariola, Z.M. (ed.) 5th Interna-
tional Conference on Formal Structures for Computation and Deduction (FSCD
2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 167, pp.
34:1–34:21. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.34. ISSN 1868-8969

8. Ebner, G.: leanprover/lean4#777: Definitional eta for structures (2021). https://
github.com/leanprover/lean4/issues/777

9. Ebner, G.: leanprover/lean4#2210: Skip proof arguments during unification, and
try structure eta last (2023). https://github.com/leanprover/lean4/pull/2210

10. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03359-9 23

11. Gouëzel, S.: leanprover-community/mathlib4#3840: tweak priorities for linear
algebra (2023). https://github.com/leanprover-community/mathlib4/pull/3840

https://github.com/eric-wieser/lean-multiple-inheritance
https://www.cse.chalmers.se/~abela/talkAIM09.pdf
https://www.cse.chalmers.se/~abela/talkAIM09.pdf
https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1007/978-3-030-51054-1_1
https://arxiv.org/abs/2202.01629
https://doi.org/10.1007/s10817-019-09537-9
https://github.com/leanprover/lean4/issues/2074
https://github.com/leanprover/lean4/issues/2074
https://doi.org/10.1007/978-3-030-53518-6_4
https://doi.org/10.1007/978-3-030-53518-6_4
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://github.com/leanprover/lean4/issues/777
https://github.com/leanprover/lean4/issues/777
https://github.com/leanprover/lean4/pull/2210
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://github.com/leanprover-community/mathlib4/pull/3840

236 E. Wieser

12. Gouëzel, S.: #mathlib4 Some observations on eta experiment (2023). https://
leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.
20observations.20on.20eta.20experiment/near/355336941

13. Mahboubi, A., Tassi, E.: Mathematical Components (2022). https://zenodo.org/
record/7118596. Zenodo Version Number: 1.0.2

14. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

15. Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 37

16. Poll, E., Thompson, S.: Integrating computer algebra and reasoning through the
type system of Aldor. In: Kirchner, H., Ringeissen, C. (eds.) FroCoS 2000. LNCS
(LNAI), vol. 1794, pp. 136–150. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720084 10

17. Sakaguchi, K.: Validating mathematical structures. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp. 138–157.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1 8

18. Spitters, B., Van Der Weegen, E.: Type classes for mathematics in type the-
ory. Math. Struct. Comput. Sci. 21(4), 795–825 (2011). https://doi.org/10.1017/
S0960129511000119

19. The mathlib Community: The lean mathematical library. In: Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs, New
Orleans, LA, USA, pp. 367–381. ACM (2020). https://doi.org/10.1145/3372885.
3373824

20. Wieser, E.: Scalar actions in Lean’s mathlib. In: CICM 2021, Timisoara, Romania
(2021). https://arxiv.org/abs/2108.10700

https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some. 20observations.20on.20eta.20experiment/near/355336941
https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some. 20observations.20on.20eta.20experiment/near/355336941
https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some. 20observations.20on.20eta.20experiment/near/355336941
https://zenodo.org/record/7118596
https://zenodo.org/record/7118596
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/10720084_10
https://doi.org/10.1007/10720084_10
https://doi.org/10.1007/978-3-030-51054-1_8
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2108.10700

CoProver: A Recommender System
for Proof Construction

Eric Yeh(B), Briland Hitaj, Sam Owre, Maena Quemener,
and Natarajan Shankar

SRI International, Menlo Park, CA 94025, USA
{eric.yeh,briland.hitaj,sam.owre,maena.quemener,

natarajan.shankar}@sri.com

Abstract. Interactive Theorem Provers (ITPs) are an indispensable
tool in the arsenal of formal method experts as a platform for construc-
tion and (formal) verification of proofs. The complexity of the proofs in
conjunction with the level of expertise typically required for the process
to succeed can often hinder the adoption of ITPs. A recent strain of
work has investigated methods to incorporate machine learning models
trained on ITP user activity traces as a viable path towards full automa-
tion. While a valuable line of investigation, many problems still require
human supervision to be completed fully, thus applying learning methods
to assist the user with useful recommendations can prove more fruitful.
Following the vein of user assistance, we introduce CoProver, a proof rec-
ommender system based on transformers, capable of learning from past
actions during proof construction, all while exploring knowledge stored in
the ITP concerning previous proofs. CoProver employs a neurally learnt
sequence-based encoding of sequents, capturing long distance relation-
ships between terms and hidden cues therein. We couple CoProver with
the Prototype Verification System (PVS) and evaluate its performance
on two key areas, namely: (1) Next Proof Action Recommendation, and
(2) Relevant Lemma Retrieval given a library of theories. We evaluate
CoProver on a series of well-established metrics originating from the rec-
ommender system and information retrieval communities, respectively.
We show that CoProver successfully outperforms prior state of the art
applied to recommendation in the domain. We conclude by discussing
future directions viable for CoProver (and similar approaches) such as
argument prediction, proof summarization, and more.

1 Introduction

Interactive theorem proving (ITP) is a well-entrenched technology for formalizing
proofs in mathematics, computing, and several other domains. While ITP tools
provide powerful automation and customization, the task of manually guiding
the theorem prover toward QED is still an onerous one. For inexperienced users,
this challenge translates to crafting mathematically elegant formalizations, iden-
tifying suitable proof commands, and diagnosing the root cause of failed proof
attempts. Whereas for the expert users, the challenge consists in navigating a
large body of formalized content to ferret out the useful definitions and the right

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 237–251, 2023.
https://doi.org/10.1007/978-3-031-42753-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_16

238 E. Yeh et al.

lemmas. Both novice and expert users can benefit from recommendations in the
form of proof commands and lemma retrieval that can guide proof construction.

The goal of the present project is to scale up proof technology by introduc-
ing CoProver as a proof recommender system that discerns suitable cues from
the libraries, the proof context, and the proof goal to offer recommendations for
ITP users. Building on the proof technology and proof corpora of the Proto-
type Verification System (PVS) a state-of-the-art proof assistant [37], we focus
on recommendations for two key tasks in ITP: Suggesting PVS commands and
lemmas. The first is to recommend the likely command an expert user would take
given the current proof state. As the number of possible commands can number
over 100, recommending steps an expert may take would be beneficial, particu-
larly for novices. The second is to identify lemmas for inclusion from a library
of lemmas that may help with forward progress on a proof. Currently, only lem-
mas from user-imported theories are considered and selection of a lemma relies
on user familiarity with candidate theories and their lemmas. For the problems
PVS is commonly employed on, there are usually several hundred theories with
thousands of possible lemmas combined to consider. At this scale, even expert
users with decades of experience may not be aware of all possible lemmas (or
even their names) that may be relevant for their proof. A mechanism that can
automatically identify relevant lemmas at scale would be desirable.

To develop these capabilities, we leverage the expert proof traces for NASA’s
PVS Library1 (PVSLib), a large collection of highly polished formal develop-
ments centered on safety-critical applications, and the PVS Prelude, a collection
of theories built into PVS. We aim to capture the expertise and intuition of
the developers by training systems to emulate user decisions on these completed
proofs. Key to our approach is the use of recent machine learning techniques
that can capture sequential information across a greater window than previously
possible. We show how these methods using a simple sequence-based encoding
of formulas better capture relationships between proof states with commands
and libraries than prior sequence encoding techniques such as bag-of-words or
graph-based representations [47].

We start with an overview in Sect. 2 of the CoProver system, describing
the core recommendation tasks. Section 3 contains implementation details of
how sequents and states are featurized into a common representation used to
provide inputs for the command prediction and lemma retrieval capabilities.
Sections 4 and 5 provide specific details of how these are implemented, along with
experiments detailing their effectiveness described in Sect. 6. Section 7 examines
and contrasts against prior work, and Sect. 8 concludes with a discussion of future
directions.

2 CoProver Overview

Figure 1 illustrates the CoProver system. Featurization converts the sequent
and previous commands into a token sequence for the transformer model.
1 https://shemesh.larc.nasa.gov/fm/pvs/PVS-library/.

https://shemesh.larc.nasa.gov/fm/pvs/PVS-library/

CoProver 239

Fig. 1. The CoProver system employs a common sequent featurization, which is used
to recommend commands and retrieve relevant lemmas.

This is provided to the Command Prediction and Lemma Retrieval modules.
Command Prediction identifies the next likely command an expert user would
take in successful proofs, given similar states. When a lemma is to be imported,
Lemma Retrieval examines the state and suggests the most relevant ones from a
given library, based off a history of human-selected lemmas that have progressed
their proofs.

Both of these use RoBERTa [30], a transformers-based neural language model
[46] capable of learning long-range sequences, to encode the proof state sequence
tokens. Unlike n-grams or other Markov window methods, transformers employ
a self-attention mechanism that allows features to derived from a significantly
wider window of tokens. Tokens are represented as real-valued vectors tailored as
inputs for a variety of tasks, and have been used to give state-of-the-art perfor-
mance across multiple tasks such as large language modeling, text classification,
and visual understanding. For command prediction, the RoBERTa-based encod-
ing of the proof state is used as input to a multinomial classifier for predicting
the next command an expert user would take. Backpropagated error from the
classifier is used to adjust, or to fine-tune these representations make them more
suitable for the classification task.

Lemma retrieval aims to make forward progress in a proof by identifying
relevant lemmas from a library of theories for inclusion. A major challenge is
the fact these lemmas may exist in theories that the user is not aware of, nor
remember. This is similar to the core problem of information retrieval (IR) [33],
where the goal is to retrieve documents from a collection most relevant to a query.
IR models rely on heuristics motivated by natural language, such as overlap and
term rarity to assess relevance. These assumptions may not hold in theorem-
proving, so CoProver is trained on user-made lemma import decisions to fine-
tune the proof state representations to learn combinations of sequent and lemma
symbols useful for identifying lemma relevance. This focus on human-driven
selection also differs from other work in premise selection, where the primary
aim is to identify lemmas that allow a hammer to automatically complete the
proof.

3 Data Generation

For both command prediction and lemma retrieval, we used proof sequences
from the PVSLib library, a large set of formal developments containing theorems

240 E. Yeh et al.

Fig. 2. Featurization converts formulas in PVS (left) into a more machine learning
friendly token stream (right).

proofs for a variety of mathematical and engineering areas. In total PVSLib
contains 184, 335 proof steps. We note that these are completed and polished
proofs so that backtracked sequences of steps are pared and only the successful
sequence of proof commands and imported lemmas are retained.

To make the logical formulas amenable to machine learning, we first tokenize
them and then use Byte Pair Encoding (BPE) [11,43] from the Huggingface
Library [49] to train a token vocabulary customized for PVS. BPE encodes words
as a sequences of byte pairs instead of singular tokens, reducing the size of the
vocabulary: Rare or unknown words can be encoded as constituent byte pairs,
while common words are encoded in their entirety to improve efficiency. Trans-
former models have fixed width inputs, so a more parsimonious encoding that
strips away boilerplate while retaining the original semantics will allow longer
formulas to work without truncating them. For this work, we used a window
of 1, 000 tokens, which was sufficient to capture the majority of the sequents
and lemmas in our experiments. Given this, all symbol names for functions and
operators are copied over as-is. Constant and variable names are replaced by a
placeholder, to generalize the model, while integer values are retained. Syntac-
tic constructs such as parentheses are excluded as the ordering of the above can
roughly capture the syntactic arrangement of the original form. Figure 2 provides
an example: Symbols such as the forall quantifier and implication operator are
preserved, while the variables f, high, and low are replaced with their type,
nat representing the natural numbers.

Following common practice in transformer-based encodings, we use special
tokens <ant>, <cons>, and <hid> to delimit the antecedent, consequent,
and hidden formulas (formulas reserved from being operated on by PVS com-
mands). The lefthand side of Fig. 3 gives an example of a featurized sequent with
no antecedents and one consequent.

Our current setup makes the Markov assumption, that only the current state
is sufficient for making our predictions. At least anecdotally knowing which com-
mands were performed can inform what steps are taken next, so incorporating
previous commands can capture some non-Markovian information. This is done
by prefixing the state representation with the previous three commands issued
by the user.

For the lemma retrieval experiments, we modified the above procedure to
allow constant and variables to be replaced with their type name. This was
done to allow matching by type, as arguments for imported lemmas also need
to match by type. Higher-order and custom types are currently represented by

CoProver 241

placeholders. Accounting for matches on higher-order types and on advanced
type operations such as predicate-based approaches is reserved for future work.

As with other transformers-based works, the model is first trained using
a series of self-supervised tasks, where supervised targets are generated from
unabeled data. Masked language modeling is one such task, where random tokens
are masked and the model is trained to predict its identity [8]. By conducting
this type of self-supervised training on a large corpus, the resulting representa-
tions can capture distributional information about the domain that makes train-
ing downstream components easier. For our experiments, the language model
was trained for 1, 100, 000 steps2 over our dataset, using the default set of self-
supervised language tasks used by RoBERTa.

We note that some works start from a model trained on natural language,
in order to capture correspondences based on human naming. In our experience
this applies for tasks where wider distributional knowledge of natural language is
required to perform the main task. At least for PVS and our tasks, the structure
of the formulas tends to be more important. Examination of the effect of human
language understanding is also reserved for future investigation.

4 Command Prediction

Fig. 3. The process for featurizing a sequent and then using repeated self-attention to
create representations capturing information for predicting the next command.

Command prediction’s task is to predict the command an expert would take
given the current step in the proof. We use the T5 sequence to sequence training
framework [39] implemented in Huggingface [49], with the RoBERTa encoding of
the proof state used as input to predict the user selected command (Fig. 3. The
sequent and command history are tokenized and converted into classification-
suitable vector representations via repeated applications of self-attention. These
are then integrated by the classifier to emit predicted command. The top-N most
confident hypotheses can be emitted, allowing for a window of predictions to be

2 A step is a single forward-predict pass over a training instance, and multiple steps
can be performed over the same data during the training phase.

242 E. Yeh et al.

generated. We note that as with other ITPs, PVS allows users to program their
own commands. For this work, we focus on the closed set of existing commands,
leaving the program synthesis aspect for future work.

5 Lemma Retrieval

Fig. 4. Siamese architecture used to determine whether a lemma is relevant to a given
sequent.

Following the information retrieval approach, the proof state acts as a query
against a library of available lemmas. We use user imported lemmas in PVS-
lib proof traces to train a neural information retrieval model [35], which learns
the best combination of features between sequents and lemmas to assess lemma
relevance. Figure 4 our lemma retrieval approach, which uses a Siamese Net-
work [6] implemented in the SBERT [40] framework to score the relevance of
a lemma to the sequent. The lemma and sequent token sequences are encoded
using RoBERTa encoder to construct token-level representations that are aver-
aged to give a single characterizing vector. The relevance of the lemma and
sequent vectors is scored using cosine similarity, with 0 indicating no relevance
and 1 indicating maximal relevance. The representation is tuned for the similar-
ity task with supervised training over known relevant and irrelevant pairs. These
approach scales well as the bulk of the representations can be pre-computed, and
has been used to learn ranking functions for tasks with a large amount of data,
such as using clickthrough data [18].

6 Experiments and Results

6.1 Command Prediction

From the full PVSLib library of proofs, we subsampled 20, 000 proof steps to
create a tractable command prediction training set3. From these we randomly
sampled 90% of these for the training data, and used the remaining 10% as a
3 Initial experiments with larger samples showed no difference in performance with a

system trained with the smaller set.

CoProver 243

held out test-set. We trained for 10 epochs on four NVIDIA GeForce RTX 3090
cards using distributed data parallel training (DDP) [28] implemented using
PyTorch Lightning4, selecting the model with the best validation error. We follow
prior literature on tactic prediction [13] and used classifiers trained over term-
frequency inverse document frequency (TF-IDF) [23,32] weighted feature counts
of the CoProver featurized tokenization observed in the sequent for our baseline.
TF-IDF incorporates frequency of occurrence of a term and its distinguishability
against the backdrop of the entire collection. We experimented with multiple
classifiers to strengthen this baseline: Linear support vector classifier (Linear
SVC), support vector machines using a radial basis kernel (RBF) and one using
a polynomial kernel (Poly), and a k-nearest neighbor classifier (k-NN). We used
the Scikit-Learn5 implementations with default parameters. For the k-nearest
neighbor classifier, we used a distance weighted variant with n = 5 following
prior literature [13].

Table 1. Command prediction test accuracies by method and combinations of sequent
and command history information.

Method Acc. cmdhist + sequent Acc., sequent only Acc., cmdhist only

Linear SVC 0.30± 1.1× 10−2 0.20± 9.1× 10−3 0.30± 1.1× 10−2

SVM (RBF) 0.29± 1.0× 10−2 0.22± 9.5× 10−3 0.30± 1.0× 10−2

SVM (Poly) 0.20± 8.9× 10−3 0.20± 8.9× 10−3 0.22± 1.0× 10−2

k-NN 0.28± 1.0× 10−2 0.19± 8.6× 10−3 0.27± 9.6× 10−3

CoProver 0.48± 7.3× 10−3 0.28± 9.8× 10−3 0.21± 9.3× 10−3

Table 1 shows the test command predication accuracy for each of the methods
on different combinations of the sequent and the command history. We find that
CoProver predictions are more significantly more accurate when the full sequent
and command histories are used. Most of baseline performance is from the com-
mand history, whereas CoProver is able to integrate the sequent and command
history together to score significantly better than the next-best baseline, k-NN.
Variances for each method were estimated using bootstrap resampling [9] and
significance was determined using a two-sample t-test with α = 0.001.

To assess the significance of structural information, we tested with TF-IDF
sequent featurizations of increasing maximum n-gram degree, where a n-gram
featurization consists of all symbol sequences of length n. Table 2 shows the
accuracies for each classification method by the maximum n-gram degree. With
the exception of the SVM using the polynomial kernel (SVM Poly), every method
benefits from increasing structural information. We suspect that model’s poorer
performance may be due to the greater number of hyperparameters given the
polynomial kernel, which greatly increases the risk of overfitting on sparse data
[16].
4 https://www.pytorchlightning.ai/.
5 https://scikit-learn.org/.

https://www.pytorchlightning.ai/
https://scikit-learn.org/

244 E. Yeh et al.

Table 2. Command prediction accuracy for baseline methods using features that incor-
porate more structural information (left to right).

Method n=1 n=2 n=3

Linear SVC 0.30 0.37 0.30

SVM (RBF) 0.29 0.32 0.33

SVM (Poly) 0.20 0.18 0.19

k-NN 0.28 0.30 0.32

Fig. 5. Command prediction test accuracies by method, with and without command
history information.

Recommender systems often present the top N -most relevant predictions,
as users can usually scan a set of candidates. To assess performance in this
regime, we score the top-N test set accuracy, where matches are made if the
correct prediction is within the top N predictions. Figure 5 shows CoProver
accuracy at different sizes of N using just the command history (cmdhist),
sequent (sequent) and both (cmdhist+sequent) for N ranging from 1 to 10.
As baseline we use the top-N most frequent commands in the training set as
the candidate window. We find combining the sequent and command history
information gives consistently higher accuracy than using either alone, while all
methods outperform the baseline.

6.2 Lemma Retrieval

For lemma retrieval, we examined PVSLib traces where users imported lemmas
using the lemma command. While other commands also import lemmas, this
is done implicitly and not a user-driven decision. From these 20, 221 imports,
12, 132 were randomly selected for training, with 8, 089 for testing. These refer-
ence both PVSLib and PVS Prelude, giving 9, 468 candidate lemmas.

CoProver 245

This model is trained on lemma commands in the training set of proof
sequences in the PVSLib. For each lemma invocation, we record the sequent
at that point in the proof and the name of the referenced lemma. PVSLib has
20, 221 such pairs in its proof traces, consisting of the sequent state when the
lemma command was entered by the user and the name of the lemma. We ran-
domly split them into 12, 132 train and 8, 089 test pairs. This is against a com-
bined library of PVS and PVSLib theories, with a total of 747 theories and 9, 468
available lemmas. For training the Siamese network, observed sequents and lem-
mas in the training invocations have a score of 1. An equal number of negative
sequent and lemma pairs were sampled, with their score set to 0, as a randomly
selected lemma is very unlikely to be relevant.

We evaluated the resulting network on the test pairs and measured perfor-
mance using mean reciprocal rank (MRR), an IR metric that assesses relevacne-
ranking ability [33]. MRR is computed from the rank position of the ground
truth lemma in the relevance-ordered scores given the sequent (Formula 1), with
higher values indicating better ranking ability.

MRR =
1
N

N∑

i

1
ri

(1)

For a given test pair consisting of a sequent s, selected lemma lgt and library of
lemmas L with lgt ∈ L, we score frel(s, l), the relevance of lemma l ∈ L to the
sequent. We derive a rank ordering over all lemmas L, where ri is the rank of
the ground truth lemma for the ith lemma pair.

Method MRR

Baseline 0.0015

Count 0.0030

TF-IDF 0.043

CoProver 0.51

We find that the CoProver approach to outperform the other methods includ-
ing representation used by previous work [5,12]. A MRR of 0.51 corresponds to
an average mean rank of 1.98, which corresponds to the relevant lemma appear-
ing around position 2 in a score-based rank ordering of all lemmas.

7 Related Work

In the last decade, there has been a significant amount of activity in applying
machine learning to automated deduction, and can be classified in terms of the
predictive goal of machine learning [38]:

246 E. Yeh et al.

1. Learning search heuristics (E-prover [41], SAT/SMT solvers [4]): The systems
ENIGMA [20], MaLeCoP [45] and FEMaLeCoP [24] augment a tableau-based
prover LeanCoP [36] with a naïve Bayes classifier for clause selection. Graph
neural nets have been used to predict the clauses that are in the unsatisfiable
core set of clauses from a clause set [42] and to guide SMT solvers [2].

2. Premise selection from a library of facts (DeepMath [19], CoqHammer, HOLy-
Hammer, HOList [3], Thor [21]): Several proof assistants invoke hammers
(theorem provers and SAT/SMT solvers) on each subgoal together with a
set of background lemmas (the premises). These hammers can fail if there
are too many premises. Machine learning has been used to identify the most
promising premises to pick from the background library [26]. As with tac-
tic selection below, a range of learning techniques have been employed for
premise selection, including sequence, tree, and graph representations [47].

3. Step or tactic selection (GPT-f, Holophrasm [48], CoqGym [51], HOL4RL [50],
HOList [31], GamePad [17], Tactic-Toe [13], proof synthesis [10,22,27]): Inter-
active proof assistants build proof trees by applying tactics to goals to gen-
erate zero or more subgoals. The SEPIA system [15] predicts tactics for the
Coq proof assistant based purely on analyzing proofs. GPT-f uses the GPT-3
transformer model to train on Goal/Proof pairs from the Metamath corpus
(augmented with synthesized proofs) to predict the proof given the goal. This
is used to construct a proof tree by applying the proof steps suggested by the
model to the open subgoals in the tree. The system was able to find shorter
proofs for 23 theorems in the Metamath corpus. CoqGym [51] uses a much
larger training corpus spanning 71,000 proofs from various Coq libraries.
TacticToe [14] is trained on proofs from HOL4 libraries and combines tac-
tic prediction using k-nearest neighbors with A* search, and in some cases
yields better (more perspicuous and maintainable) proofs than the alterna-
tives using Hammers. IsarStep [29] uses a transformer encoding to identify
intermediate formulas in a declarative Isar proof. ML4PG [25] extracts useful
statistical patterns from higher-order logic proofs using unsupervised learning
techniques like K-Means clustering.

Prior work in step selection focused on the ability of the system to fully auto-
mate the proof, with performance was measured in number of proofs that can
be automatically completed. CoProver’s focus is on the ability of the system to
capture human-selected proof steps. Prior work in this area featurized sequents
as histograms of tokens. As we have shown, structural information matters, and
using neural language modeling technology captures this over wider portions of
the formulas. Premise selection has been a topic of investigation, albeit focused
on selection of useful premises for application of hammers and evaluating based
on automatic completion [1,34,47]. In contrast, we focus on a broader use case,
retrieving useful recommendations that can progress the proof via additional
user interactions as well as application of hammers. Treating lemma retrieval as
an information retrieval problem has been done in prior work [5,13], which used
term-weighted histograms of the sequent (query) and lemma (document) for
comparison. While this “bag-of-words” approach removes sequentiality and thus

CoProver 247

structural information, vocabulary overlap between query and candidate docu-
ment is a good approximator for relevance. However, bag-of-words modeling and
the TF-IDF weighting scheme are assumptions targeting how relevance appears
for natural language queries and documents. Logical formula observed in lemmas
and sequents may not exhibit the same behavior, particularly for determining if
a lemma is relevant to moving proof progress in a sequent. Indeed, neural infor-
mation retrieval has focused on using supervised queries and document pairs
to learn relevance functions that may not be captured by assumptions taken in
standard IR modeling. Here, the Magnushammer approach is similar to ours [34],
leveraging a Transformer-based architecture to encode the string representation
of the proof-state and the lemma. However, we include variable type information
into the encodings and conduct an evaluation focusing on retrieval quality.

8 Conclusions

In this work, we have demonstrated how a simple featurization of proof state can
be used to perform two recommendation tasks, predicting next commands and
retrieving relevant lemmas. For command prediction, CoProver’s approach has
been shown to outperform prior methods, giving significantly higher accuracies.
In the context of recommendation systems, showing the top 3−5 commands is
a reasonable amount, with these windows capturing 50%−70% of the original
prediction correctly on the validation set. As with systems trained on user inter-
action traces, there are often cases where the system can learn a solution that
the user did not consider. As one internal user commented, the application of
an automated hammer (the grind command) in a convergence proof was unex-
pected, but lead to completion of the proof. Similarly, using a neural learning
approach with CoProver’s featurization can give significantly better performance
on lemma retrieval, in comparison with retrieval using IR-derived baselines.

In spite of these results, we note that the neural learning mechanism are not
necessarily learning deep reasoning structures, and may more likely be learning
complex structural cues. Indeed, an analysis of large language models found
them to be impressive memorization machines that are incapable of performing
arithmetic [7]. A cursory examination of the attention heads in the command
prediction task revealed the model’s attention weightings did not consistently
align with experienced users’ intuitions about what should govern the direction
of the proof.

Future directions of proof command recommendation include identification
of arguments used for these commands. These primarily consist of the formula
to use, but in some cases more complex arguments are needed. Of particular
interest is pairing this capability with explanation mechanisms. Perhaps the
simplest explanation capability is to run the top-N commands in the background
and displaying the results provides a look ahead capability that allows users to
see the envelope of outcomes. When paired with heuristics that measure proof
completion, this may be beneficial for developing an intuitive understanding.

To the best of our knowledge, we are the first work to treat lemma retrieval as
an information retrieval problem. Previous work focused on if a selected lemma

248 E. Yeh et al.

can progress a proof towards completion in an automated solver. For the type of
problems addressed by interactive theorem provers, automatic completion may
not be feasible in all cases. Importing a lemma to progress the proof becomes
useful, similar to how retrieving the right document can help a querying user
perform a task. To that end, we have demonstrated how a neurally trained
architecture can determine which lemma an expert user would have selected.
This approach can provide a better relevance ranking for lemmas, as opposed
to the representation and scoring methods discussed in previous work. We note
that setup only considers lemmas selected by the user as relevant for a given
sequent. This disregards the possibility that another lemma may be just as useful
for the proof as well. This is a well known issue in natural language information
retrieval corpora, and thus measures like MRR are used more to compare system
performance as opposed to acting as a standalone performance measure.

Possible future work in this area can focus on analyzing relevant structural
elements that trigger a match between a sequent and a lemma. While the final
comparison is performed using a cosine similarity computation, the nature of
the highest scoring feature matches can be hard to discern. In particular, it
is possible that the formula for the lemma and sequent may not have much
apparent overlap, but relevant token sequences may map to the same feature.

For future work, we are examining the application of CoProver’s transformer
based sequent representation towards tasks such as nominating witnesses, proof
repair, and developing a measure for proof progress. The code and the data used
for this work are open-sourced and will be available at https://github.com/SRI-
CSL/coproof.

Acknowledgement. This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract No. HR00112290064
and by the National Institute of Aeronautics. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Government or DARPA.

References

1. Alama, J., Kühlwein, D., Tsivtsivadze, E., Urban, J., Heskes, T.: Premise selec-
tion for mathematics by corpus analysis and kernel methods. CoRR abs/1108.3446
(2011). arXiv:1108.3446

2. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In:
NeurIPS, pp. 10338–10349 (2018)

3. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: Holist: An environment
for machine learning of higher order logic theorem proving. In: International Con-
ference on Machine Learning, pp. 454–463. PMLR (2019)

4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press (2009)

5. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

6. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a "siamese" time delay neural network. In: Advances in Neural Information
Processing Systems, vol. 6 (1993)

https://github.com/SRI-CSL/coproof
https://github.com/SRI-CSL/coproof
http://arxiv.org/abs/1108.3446

CoProver 249

7. Brown, T.B., et al.: Language models are few-shot learners. CoRR abs/2005.14165
(2020). arXiv:2005.14165

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019). 10.18653/v1/N19-1423, http://aclanthology.org/N19-1423

9. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Mono-
graphs on Statistics and Applied Probability, Chapman & Hall/CRC, Boca Raton,
Florida, USA (1993)

10. First, E., Brun, Y., Guha, A.: Tactok: semantics-aware proof synthesis. In: Pro-
ceedings of the ACM on Programming Languages 4(OOPSLA), pp. 1–31 (2020)

11. Gage, P.: A new algorithm for data compression. C Users J. D(2), 23–38 (1994)
12. Gauthier, T., Kaliszyk, C., Urban, J.: Learning to reason with hol4 tactics. arXiv

preprint arXiv:1804.00595 (2018)
13. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Learning to prove

with tactics. CoRR abs/1804.00596 (2018), arXiv:1804.00596
14. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Tactictoe: learning

to prove with tactics. J. Autom. Reason. 65(2), 257–286 (2021)
15. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred

automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 246–255. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6_16

16. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classifi-
cation. Tech. rep., Department of Computer Science, National Taiwan University
(2003). http://www.csie.ntu.edu.tw/~cjlin/papers.html

17. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: Gamepad: A learning environment
for theorem proving. arXiv preprint arXiv:1806.00608 (2018)

18. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: Proceedings of
the 22nd ACM International Conference on Information and Knowledge Manage-
ment, pp. 2333–2338. CIKM ’13, Association for Computing Machinery, New York,
NY, USA (2013). https://doi.org/10.1145/2505515.2505665

19. Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: Deepmath-
deep sequence models for premise selection. Adv. Neural. Inf. Process. Syst. 29,
2235–2243 (2016)

20. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6_20

21. Jiang, A.Q., et al.: Thor: Wielding hammers to integrate language models and
automated theorem provers (2022). https://doi.org/10.48550/ARXIV.2205.10893,
arXiv:2205.10893

22. Jiang, A.Q., et al.: Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs (2022). https://doi.org/10.48550/ARXIV.2210.12283,
arXiv:2210.12283

23. Jones, K.S.: A statistical interpretation of term specificity and its application in
retrieval. J. Document. 28, 11–21 (1972)

http://arxiv.org/abs/2005.14165
http://aclanthology.org/N19-1423
http://arxiv.org/abs/1804.00595
http://arxiv.org/abs/1804.00596
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16
http://www.csie.ntu.edu.tw/~cjlin/papers.html
http://arxiv.org/abs/1806.00608
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.48550/ARXIV.2205.10893
http://arxiv.org/abs/2205.10893
https://doi.org/10.48550/ARXIV.2210.12283
http://arxiv.org/abs/2210.12283

250 E. Yeh et al.

24. Kaliszyk, C., Urban, J.: Femalecop: Fairly efficient machine learning connection
prover. In: Logic for Programming, Artificial Intelligence, and Reasoning. pp. 88–
96. Springer (2015)

25. Komendantskaya, E., Heras, J., Grov, G.: Machine learning in proof general: Inter-
facing interfaces. arXiv preprint arXiv:1212.3618 (2012)

26. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39634-2_6

27. Lample, Get al.: Hypertree proof search for neural theorem proving (2022). https://
doi.org/10.48550/ARXIV.2205.11491, arXiv:2205.11491

28. Li, S., et al.: PyTorch Distributed: Experiences on accelerating data parallel train-
ing. CoRR abs/2006.15704 (2020), arXiv:2006.15704

29. Li, W., Yu, L., Wu, Y., Paulson, L.C.: Isarstep: a benchmark for high-level math-
ematical reasoning. arXiv preprint arXiv:2006.09265 (2020)

30. Liu, Y., et al.: RoBERTa: A robustly optimized BERT pretraining approach (2019).
https://doi.org/10.48550/ARXIV.1907.11692, arXiv:1907.11692

31. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
arXiv preprint arXiv:1701.06972 (2017)

32. Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary
information. IBM J. Res. Dev. 1(4), 309–317 (1957). https://doi.org/10.1147/rd.
14.0309

33. Manning, C.D., Raghavan, P., Schatze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK (2008). http://nlp.stanford.edu/IR-
book/information-retrieval-book.html

34. Mikuła, M., et al.: Magnushammer: A transformer-based approach to premise selec-
tion (2023)

35. Mitra, B., Craswell, N.: (2018)
36. Otten, J., Bibel, W.: leancop: lean connection-based theorem proving. J. Symb.

Comput. 36(1–2), 139–161 (2003)
37. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:

Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8_217

38. Rabe, M.N., Szegedy, C.: Towards the automatic mathematician. In: Platzer, A.,
Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 25–37. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_2

39. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR abs/1910.10683 (2019), arXiv:1910.10683

40. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using Siamese
BERT-Networks. CoRR abs/1908.10084 (2019). arXiv:1908.10084

41. Schulz, S.: E - a brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)
42. Selsam, D., Bjørner, N.: Guiding high-performance SAT solvers with Unsat-core

predictions. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 336–
353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_24

43. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725. Association
for Computational Linguistics, Berlin, Germany (Aug 2016). https://doi.org/10.
18653/v1/P16-1162, http://aclanthology.org/P16-1162

http://arxiv.org/abs/1212.3618
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.48550/ARXIV.2205.11491
https://doi.org/10.48550/ARXIV.2205.11491
http://arxiv.org/abs/2205.11491
http://arxiv.org/abs/2006.15704
http://arxiv.org/abs/2006.09265
https://doi.org/10.48550/ARXIV.1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1701.06972
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.1147/rd.14.0309
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-030-79876-5_2
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1908.10084
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://aclanthology.org/P16-1162

CoProver 251

44. Shankar, N.: Automated reasoning, fast and slow. In: Proceedings of the 24th inter-
national conference on Automated Deduction, pp. 145–161. CADE’13, Springer-
Verlag, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_10,
http://dx.doi.org/10.1007/978-3-642-38574-2_10

45. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover.
In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol.
6793, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22119-4_21

46. Vaswani, A.,et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

47. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. arXiv preprint arXiv:1709.09994 (2017)

48. Whalen, D.: Holophrasm: a neural automated theorem prover for higher-order
logic. arXiv preprint arXiv:1608.02644 (2016)

49. Wolf, T., et al.: Transformers: State-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, Online (Oct 2020), www.aclweb.org/anthology/2020.emnlp-demos.6

50. Wu, M., Norrish, M., Walder, C., Dezfouli, A.: Tacticzero: Learning to
prove theorems from scratch with deep reinforcement learning. arXiv preprint
arXiv:2102.09756 (2021)

51. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: International Conference on Machine Learning, pp. 6984–6994. PMLR
(2019)

https://doi.org/10.1007/978-3-642-38574-2_10
http://dx.doi.org/10.1007/978-3-642-38574-2_10
https://doi.org/10.1007/978-3-642-22119-4_21
https://doi.org/10.1007/978-3-642-22119-4_21
http://arxiv.org/abs/1709.09994
http://arxiv.org/abs/1608.02644
www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2102.09756

Project and Survey Papers

Proving an Execution of an Algorithm
Correct?

James Harold Davenport(B)

University of Bath, Bath BA2 7AY, UK
masjhd@bath.ac.uk

Abstract. Many algorithms in computer algebra and beyond produce
answers. For some of these, we have formal proofs of the correctness
of the algorithm, and for others it is easy to verify that the answer is
correct. Other algorithms produce either an answer or a proof that no
such answer exists. It may still be easy to verify that the answer is
correct, but what about the “no such answer” case. The claim of this
paper is that, at least in some cases, it is possible for the algorithm to
produce “hints” such that a theorem prover can prove that, in this case,
there is no such answer. This leads to the paradigm of “ad hoc UNSAT
verification”.

1 Introduction

We consider algorithms that solve problems of the following form:

Problem 1 (Generic). Given a question Q, produce

either an answer A of an appropriate form
or ⊥ indicating that no such answer A exists.

We assume that verifying that A answers Q is (comparatively) easy, and are
concerned rather with verifying ⊥. Of course, if the algorithm is proved correct,
then this isn’t a challenge, but if we don’t have a proof of complete correctness
(i.e. the correctness of ⊥ as well as A), then there is an issue, i.e. the following.

Research Question 1. Given an algorithm P solving a particular problem of
the format of Problem1, can we modify P such that, as well as outputting ⊥
when given Q, it outputs a proof, verifiable by tools such as Coq/Isabelle/Lean,
that ⊥ is correct, i.e. no such answer A to question Q exists.

2 SAT Solving

SAT solving is the quintessential NP-complete problem [Coo66].

Problem 2 (SAT). Given a Boolean statement Φ(x1, . . . , xn), produce

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 255–269, 2023.
https://doi.org/10.1007/978-3-031-42753-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_17

256 J. H. Davenport

either f : {xi} �→ {T, F} such that Φ(f(x1), . . . , f(xn)) = T (a satisfying
assignment)
or ⊥ indicating that no satisfying assignment exists.

The first can be verified easily enough: what about the second?
Since at least 2016, contestants in the annual SAT contests have been required

to produce proofs (occasionally 2PB!) of UNSAT in DRAT format [Heu18], which
can be checked, though [Heu23] states there are subtleties to “easy” checking,
and not all DRAT proofs are equally easy. This gives rise to a second question,
which we mention but won’t explicitly address here. [Heu18] states that their
computation took over 14 CPU-years to produce, and just over 36 CPU-years
to verify.

Research Question 2. Can we produce an “efficient” proof of ⊥?

This would require a definition of “efficient” (one might say that verification
took at most a constant multiple (depending on P) of the time taken to produce
the proof, and that the time taken to produce the proof was at most a constant
multiple (depending on P) of the time taken to produce the naked assertion of
⊥. But we might also want to understand issues such as the minimal length of
a proof of ⊥ in a particular case. See some remarks in Sect. 3.2.

3 Polynomial Factorisation

For simplicity we will consider factorisation over the integers of polynomials
with integer coefficients. Algebraic number fields add complications, but not, we
believe, fundamental ones. The problem of factorisation is normally stated as
follows.

Problem 3 (Factorisation). Given f ∈ Z[x1, . . . , xn], write f =
∏

fi where the
fi are irreducible elements of Z[x1, . . . , xn].

Verifying that f =
∏

fi is, at least relatively, easy. The hard part is verifying
that the fi are irreducible. The author knows of no implementation of polyno-
mial factorisation that produces any evidence, let alone a proof, of this. In the
framework of Problem 1, we could phrase this as

Problem 4 (Factorisation after Problem 1). Given f ∈ Z[x1, . . . , xn], produce

either a proper factor g of f ,
or ⊥ indicating that no such g exists.

3.1 Univariate Polynomials

We may as well assume f is square-free (else factor each square-free factor sepa-
rately). Then the basic algorithm goes back to [Zas69]: step M is a later addition
[Mus75], and the H’ variants are also later.

Proving an Execution of an Algorithm Correct? 257

1. Choose a prime p (not dividing the leading coefficient of f) such that f
(mod p) is also square-free.

2. Factor f modulo p as
∏

f
(1)
i (mod p).

M Take five p and compare the factorisations.
3. If f can be shown to be irreducible from modulo p factorisations, return f .
4. Let B be such that any factor of f has coefficients less than B in magnitude,

and n such that pn ≥ 2B.
5. Use Hensel’s Lemma to lift the factorisation to f =

∏
f
(n)
i (mod pn)

H Starting with singletons and working up, take subsets of the f
(n)
i , multiply

them together and check whether, regarded as polynomials over Z with coeffi-
cients in [−B,B], they divide f — if they do, declare that they are irreducible
factors of f .

H’ Use some alternative technique, originally [LLL82], but now e.g. [ASZ00] to
find the true factor corresponding to f

(n)
1 , remove f

(n)
1 and the other f

(n)
i

corresponding to this factor, and repeat.

� In practice, there are a lot of optimisations, which would greatly complicate
a proof of correctness of an implementation of this algorithm.

We found that, although the Hensel construction is basically neat and
simple in theory, the fully optimised version we finally used was as
nasty a piece of code to write and debug as any we have come across
[MN81].

Since if f is irreducible modulo p, it is irreducible over the integers, the factors
produced from singletons in step 5 are easily proved to be irreducible. Unfor-
tunately, the chance that an irreducible polynomial of degree n is irreducible
modulo p is 1/n. Hence the factorisation in step 2 is very likely to be an overes-
timate, in that we have more factors modulo p than over the integers.

Musser introduced step M, saying we should take five1 primes pi and compare
the factorisations. This is more than just taking the best (where the chance of
irreducibility would then be roughly 5/n). For example, if f factors as 3× 1 (i.e.
a factor of degree 3 times a linear factor) modulo p1 and 2 × 2 modulo p2, then
it must in fact be irreducible. For a generic polynomial (Galois group Sn) this
is very likely to prove f irreducible.

However, [SD69] showed that there are irreducible polynomials which factor
compatibly modulo every prime. The easiest example is x4 + 1, which factors
as 2 × 2 (or 2 × 12 or 14) modulo every prime, which is also compatible with a
2 × 2 factorisation over the integers, and the recombination part of step 5 may
be required.

Hence we can see that a factorisation algorithm could, even though no known
implementation does, relatively easily produce the required information for a
proof of irreducibility unless the recombination step is required. Note that veri-
fying the Hensel lifting, the “nasty piece” from [MN81] is easy: the factors just

1 Subsequently [LP97] showed that asymptotically the correct number is seven, not
Musser’s experimentally-derived five.

258 J. H. Davenport

have to have the right degrees from the factorisation of f (mod p) and multiply
to give f (mod pn).

3.2 Comments on Research Question 2

We have seen that the time required to produce the factorisation (and ⊥ that
each factor is irreducible) can vary widely, depending on whether or not recom-
bination after Hensel lifting is required. In fact there are several possibilities, as
in Table 1.

Table 1. Possible factorisation routes

Case description Times for

result result + proof verify

1: irreducible by Musser t1 t1 + ε O(t1)

2: factors, each irreducible as above t2 t2 + ε O(t2)

3: factors, but not trivially Musser t2 t2 + ε O(t2) with work

4: factors, needs recombining t4 t4 + ε O(t4), hard?

2. A typical example would be where, modulo some p, f factors into three irre-
ducible factors, of degrees 3,5,7, and the other primes are consistent with
this. Then we have to lift the factors to be modulo a suitable N = pn (time
O(N3) with classical arithmetic), when we will discover that these are indeed
factors. They are then irreducible by the Musser test. Verifying that this is a
factorisation takes time O(N2) with classical arithmetic), so in this case the
verification is asymptotically cheaper.

3. A typical example would be where, modulo some p, f factors into three irre-
ducible factors, of degrees 3,5,8, and the other primes are consistent with this.
Then we lift as above, and verify these are factors. The Musser test on the
original polynomial does not directly prove that the 8 is irreducible (because
a 3,5 split is feasible), but repeating the Musser test on that factor will actu-
ally prove it irreducible. With this change, the timings are the same as case
2.

4. Swinnerton-Dyer polynomials are the classic case. If we use classic recom-
bination [Zas69] then the verification is essentially equivalent to the initial
computation. More advanced methods [LLL82,ASZ00] would require proving
their results in the prover, but this would only need to be done once. This
might be hard, but is currently unknown.

There are many other possibilities, which depend essentially on the Galois groups
of the factors of the polynomial. To the best of the author’s knowledge, no
work has been done on extending the theory of factoring ([DS00,LP97, etc.]) to
retrospective verification.

Proving an Execution of an Algorithm Correct? 259

3.3 Multivariate Polynomials

The algorithm is basically similar, replacing primes by evaluations xi → vi.
The difference is that, if f(x1, . . . , xn) is irreducible, then with probability 1,
f(x1, v2, . . . , vn) ∈ Z[x1] is also irreducible. Hence this is probably not signifi-
cantly easier than the univariate case in terms of proving, unlike implementation
[MN81].

4 Integration “in Closed Form”

4.1 What Exactly Do We Mean?

In this dialogue, P is an algebra professor, and S is a questioning student.

P e−x2
has no integral.

S But in analysis the professor proved that every continuous function has an
integral.

P I meant that there was no formula for the integral.
S But in statistics the professor used erf(x) and everything seemed OK.
P I meant that there was no elementary formula, in terms of exp, log and the

solution of polynomial equations.
S How do you prove that?
P Differential Algebra!
S What’s that?
P The study of a field K equipped with a unary (postfix) operator ′ : K → K

such that (a + b)′ = a′ + b′ and (ab)′ = a′b + ab′.

Those two axioms are what calculus calls the “Sum Rule” and “Product Rule”:
the “Quotient Rule” is in fact an algebraic consequence of the product rule.

The study of such fields (generally assumed to be of characteristic 0: the
characteristic p case has peculiarities since (xp)′ = 0) is Differential Algebra
[Kol73]. In such a field, if f ′ = 0, we say that f is constant. The set of all
constants of F is denoted by constF , and is a subfield of F .

We need to define “elementary”.

Definition 1. Let K be a differential field (of characteristic 0) and θ ∈ L, where
L is a differential extension of K. θ is said to be elementary over K if it satisfies
(at least) one of the following cases:

algebraic θ satisfies a polynomial equation with coefficients in K.
logarithmic θ′ = u′

u , u ∈ K;
exponential θ′ = u′θ, u ∈ K;

Note that if θ′ = iθ, then θ corresponds to our intuitive eix, and then 1
2 (θ + 1/θ)

corresponds to our intuitive cos(x). Similarly, if θ′ =
i− x√

−x2+1

ix+
√−x2+1

, then θ corre-

sponds to log
(
ix +

√−x2 + 1
)

and −iθ corresponds to arcsin(x), differentiating
to 1√

1−x2 . Hence the above definition of “elementary” corresponds to the general
usage.

260 J. H. Davenport

Observation 2. The cases in Definition 1 are not mutually exclusive, in par-
ticular the fact that case logarithmic (or exponential) applies doesn’t mean that
θ is transcendental, or that we haven’t introduced a new constant rather than a
genuinely new non-constant.

Example 1. Suppose K = Q(φ) where φ′ = φ (intuitively φ = ex). Consider
θ′ = 1

2θ. Then this certainly satisfies the exponential clause. But
√

φ has
(√

φ
)′ = φ′

(
1

2
√

φ

)
= 1

2

√
φ, so

√
φ is one solution, which is also algebraic

over Q(φ). However, another possible solution would be θ = e
√

φ, which is not
algebraic over Q(φ).

Example 2. Suppose K = Q(φ1, φ2) where φ′
1 = 1

x−1 and φ′
2 = 1

x−2 . Con-
sider θ′ = 2x−3

(x−1)(x−2) . Then this certainly satisfies the logarithmic clause. But
(φ1 + φ2)

′ = 1
x−1 + 1

x−2 = 2x−3
(x−1)(x−2) , so φ1 + φ2 is one solution. However,

another possible solution would be θ = φ1 + φ2 + e, which is not algebraic over
Q(φ1, φ2).

Observation 3. The usual solution to the difficulties raised in Observation 2 is
two-fold:

1. to insert “and where clause algebraic does not apply” in the other clauses;
2. to insert a check that K(θ) has the same field of constants as K, relying on

the Risch Structure Theorem [Ris79].

The key point for us is that a proof of ⊥ would have to include a proof of
these statements. Hence we probably need a formal proof of the Risch Structure
Theorem.

4.2 The Algebraic Theory of Integration [Rit48,Rit50]

Problem 5. (Integration). Given f ∈ K = C(x, θ1, . . . , θn) where C is an alge-
braic extension of Q, x′ = 1 and each θi is elementary2 over C(x, θ1, . . . , θi−1)
produce

either F in some elementary extension L of K such that F ′ = f (an elementary
integral)

or ⊥ indicating that no such elementary integral exists.

The first can be verified: what about the second? Before we look at this, there
are a few observations we should make.

1. This verification isn’t necessarily trivial: there are issues of simplification of
elementary functions.

2. Although the student’s memory of analysis will say that an integral has to
be continuous, because of branch cuts, the formula F might not denote a
continuous function R → R [CDJW00].

3. As example, the Heaviside function differentiates to 0, so it’s a “constant” in
terms of differentiable algebra.

2 In fact we also need these fields C, K to be decidable [Ric68].

Proving an Execution of an Algorithm Correct? 261

4.3 Liouville’s Principle [Lio35,Rit50]

Looking for “an elementary extension L of K” might seem like “looking for a
needle in a haystack”, but there is substantial help.

Theorem 1 (Liouville’s Principle). Let f be a expression from some expres-
sion field K. If f has an elementary integral over K, it has an integral of the
following form:

∫

f = v0 +
n∑

i=1

ci log vi, (1)

where v0 belongs to K, the vi belong to K̂, an extension of K by a finite number
of constants algebraic over const(K), and the ci belong to K̂ and are constant.

Alternatively

f = v′
0 +

n∑

i=1

ci
v′

i

vi
. (2)

Hence we only need to search a single bale of hay! The proof of this is by
equating coefficients in f = F ′, which is turn relies on knowing whether expres-
sions are transcendental or not (see Observation 3).

4.4 Risch’s Idea [Ris69]

Let C be a fixed algebraic extension of Q. Suppose that f, g ∈ K :=
C(x, θ1, . . . , θn) where each θi is either

logarithmic θ′
i = u′

i

ui
, ui ∈ C(x, θ1, . . . , θi−1).

exponential θ′
i = u′

iθi, ui ∈ C(x, θ1, . . . , θi−1).

Suppose also that K has transcendence degree n + 1 over C, and that K has C
as field of constants (see Observation 3).

Induct on n, that we can:

Integration Given f , solve (or ⊥): write f in the form v′
0 +

∑m
i=1 ci

v′
i

vi
;

Risch ordinary differential equation Given f, g, solve (or ⊥) y′ + fy = g for
y ∈ K.

This essentially converts Problem 5 into two mutually recursive problems.
In both cases, the algorithm is a fairly messy “comparison of terms” argu-

ment, and the Risch ordinary differential equation case for exponential θn was a
“similarly”, which wasn’t quite as similar as I thought: see [Dav86].

The “mess” comes in showing that every case is covered, and that the “bug
fix” in [Dav86] is complete: each individual case is fairly straightforward.

262 J. H. Davenport

4.5 Producing a Proof of ⊥
So how might we produce a proof of ⊥?

1. Have a formal proof of Liouville’s Principle.

� I haven’t done this formally, but it doesn’t look outrageous: it’s all algebra in
[Rit48]. The main issue will probably be formalising Observation 3.

2. At each comparison of terms, spit this out in a form that a theorem-prover
can digest.

� Again, I haven’t done this, but I did have an implementation in Axiom which
produced a (very stylised) informal proof, hence I believe this is feasible,
subject again to formalising Observation 3.

Note that I am not considering the case of θi algebraic. θ1 algebraic is in [Dav81]
for integration (and [Dav84] for the Risch ordinary differential equation case),
but there is much more mathematics involved in finding the ci, vi or proving
they don’t exist. The more general cases are in [Bro90,Bro91], again requiring
more mathematics. “Mathematics” may reduce to “is a divisor on an algebraic
curve a torsion divisor”, and ⊥ here is hard. In the special case where C = Q
and the algebraic curve is elliptic, [Dav81] relied on the following theorem.

Theorem 2 ([Maz77]). The torsion subgroup of the Mordell–Weil groups of an
elliptic curve E over the rationals is isomorphic to one of the following:

⎧
⎨

⎩

Z/mZ, m ≤ 10
Z/12Z,

(Z/2Z) × (Z/2νZ) ν ≤ 4
.

Hence the torsion of an element is one of 1, . . . , 10, 12.

This is a fairly deep theorem, but one that might be formally provable by a
specialist [Baa23]: see [BBCD23].

5 Real Geometry and Quantifier Elimination

The following problem is known as “Quantifier-Free Nonlinear Real Arithmetic”
or QF NRA in SMTLIB terminology [BFT21].

Problem 6 (QF NRA). Given a statement ∃x1, . . . , xnΦ, where Φ is a Boolean
combination of polynomial equalities and inequalities in x1, . . . , xn, find a satis-
fying assignment of values ∈ R to x1, . . . , xn or prove that there is no such (i.e.
⊥).

This can be regarded as a special case of Real Quantifier Elimination (QE), since
eliminating these quantifiers would lead to “true” (in practice with a witness)
of ⊥. Though Real Quantifier Elimination is a common approach, we will see in
the rest of this section that it doesn’t answer the problem of proving ⊥, which
we will consider in the following section.

Proving an Execution of an Algorithm Correct? 263

5.1 Real Quantifier Elimination

Let each Qi be one of the quantifiers ∀,∃ (possibly applied to several variables).
Then the Real Quantifier Elimination problem is the following: given a statement

Φ0 := Q1x1,1, . . . , x1,k1 · · · Qa+1xa+1,1, . . . , xa+1,ka+1Φ(yi, xi,j), (3)

where Φ is a Boolean combination of equalities and inequalities between real
polynomials Pα(yi, xi,j), produce Ψ , a Boolean combination of equalities and
inequalities between polynomials P β(yi), which is equisatisfiable, i.e. Ψ is true
if and only Φ0 is true.

If all the polynomials P β(yi) in Ψ(yi) have integer coefficients, we call Ψ(yi)
a Tarski formula. One might think that we needed to express constructs such
as “the third real root of P (x)”, but in fact Thom’s Lemma [CR88] means that
this can be expressed in terms of the signs of P and its derivatives.

Real Quantifier Elimination was first proved decidable in the 1950s s [Tar51,
Sei54]. However, the complexity was infeasible, and the first feasible solution
was by Collins [Col75] through his Cylindrical Algebraic Decomposition (CAD)
algorithm, but we should note that [Wüt76] is essentially simultaneous.

5.2 The [Sampled] Cylindrical Algebraic Decomposition Algorithm

[Col75] talks about Cylindrical Algebraic Decomposition, but in fact a key com-
ponent to the decision procedure is that each cell has a sample point, hence we
add “Sampled” to the title. We need to fix coordinates in Rn consistent with
quantifier order. Let ProjRk denote the projection onto the first k coordinates.

Given a set of polynomials {pα} in Q[x1, . . . , xn], CAD produces a finite set
of cells Ci ⊂ Rn which is:

Cylindrical ∀i, j, k ProjRk(Ci),ProjRk(Ci) are equal or disjoint;
Algebraic Each cell is defined by polynomials in Q[x1, . . . , xn];
Decomposition The cells are disjoint and cover Rn;
Sampled each cell Ci has a sample point si (and these are cylindrical, in the

sense that if ProjRk(Ci) = ProjRk(Ci), the first k coordinates of si and sj

are equal);

such that on each cell every pα is sign-invariant (everywhere +,−, 0).
Then the truth of Φ is invariant on a cell, and if coordinate k is quantified

with ∃, a cell with sample point (s1, . . . , sk−1) is true for Φ if one of the sample
points (s1, . . . , sk−1, s

(i)
k) is true for Φ, whereas if coordinate k is quantified with

∀, a cell with sample point (s1, . . . , sk−1) is true for Φ if all of the sample points
(s1, . . . , sk−1, s

(i)
k) is true for Φ. Then we can write down Ψ as the union of those

cells where Φ0 is true at the sample point.
Unfortunately QE is doubly exponential in n [DH88], so CAD’s worst case

must be, and in practice CAD nearly always is.

264 J. H. Davenport

5.3 Challenges with Cylindrical Algebraic Decomposition

Note that, once we have a Cylindrical Algebraic Decomposition for a set of
polynomials, we can write down the solution to any Real Quantifier Elimination
problem with the variables in the same order. In particular ∃x1, . . . , xnΦ (the
SAT problem) isn’t treated as a special case. Similarly, as initially formulated,
or as improved by [McC84] or [MPP19], CAD doesn’t care about the Boolean
structure of Φ.

However, when Φ ≡ (p1 = 0)∧Φ′ we can do better [McC99b], and essentially
produce a decomposition of the variety p1 = 0 rather than the whole of Rn,
and this can be extended to several equational constraints [McC01]. Even if
(p1 = 0) ∧ Φ′ is only part of Φ, we can use the equality to reduce the cost of the
decomposition [EBD15].

It is well known that nested resultants (and discriminants) tend to fac-
tor [McC99a]. If f, g, h have degree d, R(x) := resy(resz(f, g), resz(f, h)) has
degree O(d4), even though there are only O(d3) common solutions f(x, y, z) =
g(x, y, z) = h(x, y, z), whose x-coordinates are roots of R. But those x values
such that ∃y, z1, z2 : f(x, y, z1) = g(x, y, z1); f(x, y, z2) = h(x, y, z2) with z1 �= z2
are also roots of R. Note that these points are relevant for cylindricity in the
worst case, and are used in [DH88].

5.4 Proving Cylindrical Algebraic Decomposition Correct

Despite attempts (e.g. [CM10]), there is no formal proof of correctness of even
basic Cylindrical Algebraic Decomposition [Col75]. Major improvements to CAD
import more mathematics, via [McC84]’s use of Zariski’s work [Zar65], up to
“Puiseux with parameters” used in [MPP19], and hence would require still harder
proofs.

5.5 Solving Problem 6 via CAD

If we have a sampled CAD, then we have a finite set of sample points, such that
the truth of Φ at any point x is the same as the truth of Φ(s), where s is the
sample point of the cell to which x belongs. So a solution to Problem6 is to
check Φ(si) at all the sample points si. If any of these Φ(si) are true, then we
have a witness of truth, and if none are true, then, subject to the correctness of
the CAD, we have a proof of ⊥. However, we don’t have such a proof, either for
the CAD algorithm as a whole, or, as far as is known, for a specific CAD. So if
we want such a proof, we need a different approach, given in the next section.

6 Cylindrical Algebraic Coverings (CAC)

This algorithm is given in [ADEK21a], and applies to the purely existential case
of quantifier elimination, in particular Problem6. Since ∃z(Φ1 ∨ Φ2) ≡ (∃zΦ1) ∨
(∃zΦ2), we can assume that Φ is a pure conjunction. This does not change the

Proving an Execution of an Algorithm Correct? 265

asymptotic complexity (Φ might already have been a pure conjunction), but may
well be useful in practice.

[ADEK21a] allows for σi,j ∈ {=, <,≤, >,≥}, but for simplicity of exposition
in this paper, we assume all σi,j ∈ {<,>}.

6.1 The Algorithm

1. Choose a sample point (s1, . . . , s
(1)
n).

2. If this satisfies Φi return SAT (and witness)
3. Otherwise ∃j : pi,j(s1, . . . , s

(1)
n) �σi,j0. Remember j with (s1, . . . , s

(1)
n).

4. Compute largest interval In,1 = (l, u) such that ∀xn ∈ (l, u)pi,j(s1, . . . , xn)
�σi,j0.

5. If In,1 �= R choose s
(2)
n /∈ I1. If (s1, . . . , s

(2)
n) satisfies Φi return SAT (and

witness).
6. Repeat steps 3–5 until (s1, . . . , sn−1,R) is covered.
* Some intervals might be redundant, so prune.
7. Each of In,i defines an oval in (s1, . . . , sn−2, x, y) space which cover (s1, . . . ,

, sn−1,R).
8. Compute largest interval In−1,1 = (l, u) such that ∀xn−1 ∈ (l, u) the In,i

cover (s1, . . . , sn−2, xn−1,R).
9. If In−1,1 �= R choose a different value of sn−1, /∈ In−1,1.

10. Repeat steps 2–9 until (s1, . . . , sn−2,R) is covered.
11. Repeat, decreasing the dimension, until we’re covered the whole of the x1-axis

(or we get SAT).

Termination isn’t entirely obvious, but each cell we compute contains at least
one cell (the cell its sample point is in) from a CAD for the same polynomials,
and the CAD itself is finite.

6.2 How Might a CAC Be Verifiable?

This section is based on [ADE+20,ADEK21b]. More accurately, the question
being considered is “How might a CAC be verifiable in the SAT/UNSAT con-
text?”, i.e. Problem 6. This question falls squarely in the context of this paper,
since verifying SAT, i.e. checking that a point satisfies the conditions is easy,
whereas verifying UNSAT isn’t obvious. The more general question, how one
might verify a Cylindrical Algebraic Covering when there are unquantified vari-
ables left, seems more like the general Cylindrical Algebraic Decomposition ver-
ification question, and is probably currently out of reach.

This is still work in progress, and there are at least two options.

A. Verifying each (non-redundant) calculation in reverse
1. For each I(1) = (l1, r1) as an interval of R1 prove that it’s covered because
2. For each I(2) = (l2, r2) covering the cylinder above I(1) prove that I(1) ×

I(2) is covered because
3. . . .

266 J. H. Davenport

4. For each I(n) = (ln, rn) covering the cylinder above I(1) × I(2) ×· · · prove
that I(1) × I(2) × · · · × I(n) is covered by the pj we remembered for that
sample point.

B Reverse-engineering a rough “CAD”.
1. For each sample point (s1, . . . , sn) check that the corresponding cuboid

I(1) × I(2) × · · · I(n) is contained within the pj �σj0 region.
2. Verify that these cuboids are arranged cylindrically, and are complete.

It is not clear how this method will adapt to the case where we do have
equalities as well as strict inequalities, but the method may still be useful for
the strict inequality case.

For both options, we need resultants, discriminants and inequalities, but no
topology (beyond arranging cuboids).

7 Conclusions

These thoughts are at an early stage, and readers can probably think of other
examples to which this paradigm of “ad hoc UNSAT verification” can apply.

1. Completeness proofs of algorithms can be challenging, and UNSAT, or its
equivalent, often relies on completeness, so can be a bigger challenge to prove
than positive answers.

2. But in some contexts, we may not need the general completeness proof: it is
sufficient in this case to know that the UNSAT is verified. This can be true
for integration, and the special QF_NRA case.

3. This may require more book-keeping in the algorithm, to keep the “hints”
that drove us this way.

4. Possibly (e.g. algebraic integration) we may not be able to prove UNSAT in
all circumstances: is it still valuable to have a more nuanced return, e.g.

⎧
⎪⎪⎨

⎪⎪⎩

F with proof
⊥ with proof
⊥ with proof but with assumptions
⊥ without proof

?

Acknowledgements. The author is supported by EPSRC grant EP/T015713. This
paper was motivated by an invitation to speak at Machine-Assisted Proof, held at the
Institute for Pure and Applied Mathematics at UCLA, and the author is very grateful
to the Institute, the organisers, those who discussed the talk, and to Anne Baanen
for some discussions. The author is grateful to Ali Uncu for his comments on several
drafts.

References

[ADE+20] Ábrahám, E., Davenport, J.H., England, M., Kremer, G., Tonks, Z.P.:
New opportunities for the formal proof of computational real geometry?

Proving an Execution of an Algorithm Correct? 267

In: SC2 ’20: Fifth International Workshop on Satisfiability Checking and
Symbolic Computation CEUR Workshop Proceedings, vol. 2752, pp. 178–
188 (2020)

[ADEK21a] Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the
consistency of non-linear real arithmetic constraints with a conflict driven
search using cylindrical algebraic coverings. J. Logical Algebr. Methods
Program. Article 100633, 119 (2021)

[ADEK21b] Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Proving UNSAT
in SMT: the case of quantifier free non-linear real arithmetic (2021).
http://arxiv.org/abs/2101.05320

[ASZ00] Abbott, J.A., Shoup, V., Zimmermann, P.: Factorization in Z[x]: the
searching phase. In: Traverso, C. (ed.) Proceedings ISSAC 2000, pp. 1–7
(2000)

[Baa23] Baanen, A.: Provability of Ogg’s Conjecture. Personal Communication at
“Machine Assisted Proofs 2023” (2023)

[BBCD23] Baanen, A., Best, A.J., Coppola, N., Dahmen, S.R.: Formalized class
group computations and integral points on Mordell Elliptic curves. In:
CPP 2023: Proceedings of the 12th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, pp. 47–62 (2023)

[Ber70] Berlekamp, E.R.: Factoring polynomials over large finite fields. Math.
Comput. 24, 713–735 (1970)

[BFT21] Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Ver-
sion 2.6 (2021). http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.
6-r2021-05-12.pdf

[Bro90] Bronstein, M.: Integration of elementary function. J. Symbol. Comput. 9,
117–173 (1990)

[Bro91] Bronstein, M.: The algebraic Risch differential equation. In: Proceedings
ISSAC 91, pp. 241–246 (1991)

[CDJW00] Corless, R.M., Davenport, J.H., Jeffrey, D.J., Watt, S.M.: According to
Abramowitz and Stegun, or arccoth needn’t be uncouth. SIGSAM Bull.
2(34), 58–65 (2000)

[CM10] Cohen, C., Mahboubi, A.: A formal quantifier elimination for algebraically
closed fields. In: Autexier, S., et al. (eds.) Proceedings CICM 2010, pp.
189–203 (2010)

[Col75] Collins, G.E.: Quantifier elimination for real closed fields by cylindrical
algebraic decompostion. In: Brakhage, H. (ed.) Automata Theory and
Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Berlin, Heidel-
berg (1975). https://doi.org/10.1007/3-540-07407-4 17

[Coo66] Cook, S.A.: On the minimum computation time of functions. PhD thesis,
Department of Mathematics Harvard University (1966)

[CR88] Coste, M., Roy, M.-F.: Thom’s lemma, the coding of real algebraic num-
bers and the computation of the topology of semi-algebraic sets. J. Sym-
bol. Comput. 5, 121–129 (1988)

[Dav81] Davenport, J.H.: On the Integration of Algebraic Functions. LNCS,
vol. 102. Springer, Heidelberg (1981). (Russian ed. MIR Moscow 1985).
https://doi.org/10.1007/3-540-10290-6

[Dav84] Davenport, J.H.: Intégration Algorithmique des fonctions
élémentairement transcendantes sur une courbe algébrique. Annales
de l’Institut Fourier 34, 271–276 (1984)

[Dav86] Davenport, J.H.: On the Risch differential equation problem. SIAM J.
Comput. 15, 903–918 (1986)

http://arxiv.org/abs/2101.05320
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-10290-6

268 J. H. Davenport

[DH88] Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly expo-
nential. J. Symbol. Comput. 5, 29–35 (1988)

[DS00] Davenport, J.H., Smith, G.C.: Fast recognition of alternating and sym-
metric groups. J. Pure Appl. Algebra 153, 17–25 (2000)

[EBD15] England, M., Bradford, R., Davenport, J.H.: Improving the use of equa-
tional constraints in cylindrical algebraic decomposition. In: Robertz, D.
(ed.) Proceedings ISSAC 2015, pp. 165–172 (2015)

[Heu18] Heule, M.J.H.: Schur number five. In: AAAI’18/IAAI’18/EAAI’18: Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
and Thirtieth Innovative Applications of Artificial Intelligence Confer-
ence and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence Article No.: 808, pp. 6598–6606 (2018)

[Heu23] Heule, M.J.: Organising SAT contests and DRAT proofs. Personal Com-
mun. 15, 2023 (2023)

[Kol73] Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic
Press, Cambridge (1973)

[Lio35] Liouville, J.: Mémoire sur l’intégration d’une classe de fonctions transcen-
dantes. Crelle’s J. 13, 93–118 (1835)

[LLL82] Lenstra, A.K., Lenstra Jun, H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261, 515–534 (1982)

[LP97] �Luczak, T., Pyber, L.: On random generation of the symmetric group. In:
Proceedings Combinatorics Geometry and Probability, pp. 463–470 (1997)

[Maz77] Mazur, B.: Rational points on modular curves. In: Modular Functions of
One Variable V, pp. 107–148 (1977)

[McC84] McCallum, S.: An improved projection operation for cylindrical algebraic
decomposition. Ph.D. thesis, University of Wisconsin-Madison Computer
Science (1984)

[McC99a] McCallum, S.: Factors of iterated resultants and discriminants. J. Symbol.
Comput. 27, 367–385 (1999)

[McC99b] McCallum, S.: On projection in CAD-based quantifier elimination with
equational constraints. In: Dooley, S. (ed.) Proceedings ISSAC ’99, pp.
145–149 (1999)

[McC01] McCallum, S.: On propagation of equational constraints in CAD-based
quantifier elimination. In: Mourrain, B. (ed.) Proceedings ISSAC 2001,
pp. 223–230 (2001)

[MN81] Moore, P.M.A., Norman, A.C.: Implementing a polynomial factorization
and GCD package. In: Proceedings SYMSAC 81, pp. 109–116 (1981)

[MPP19] McCallum, S., Parusiński, A., Paunescu, L.: Validity proof of Lazard’s
method for CAD construction. J. Symbol. Comput. 92, 52–69 (2019)

[Mus75] Musser, D.R.: Multivariate polynomial factorization. J. ACM 22, 291–308
(1975)

[Ric68] Richardson, D.: Some unsolvable problems involving elementary functions
of a real variable. J. Symbol. Log. 33, 514–520 (1968)

[Ris69] Risch, R.H.: The problem of integration in finite terms. Trans. A.M.S.
139, 167–189 (1969)

[Ris79] Risch, R.H.: Algebraic properties of the elementary functions of analysis.
Am. J. Math. 101, 743–759 (1979)

[Rit48] Ritt, J.F.: Integration in Finite Terms: Liouville’s Theory of Elementary
Methods. Columbia University Press, New York (1948)

[Rit50] Ritt, J.F.: Differential Algebra. Colloquium Proceedings, vol. XXXIII.
American Mathematical Society (1950)

Proving an Execution of an Algorithm Correct? 269

[SD69] Swinnerton-Dyer, H.P.F.: Letter to E.R. Berlekamp. Mentioned in [Ber70]
(1969)

[Sei54] Seidenberg, A.: A new decision method for elementary algebra. Ann.
Math. 60, 365–374 (1954)

[Tar51] Tarski, A.: A Decision Method for Elementary Algebra and Geometry. 2nd
edn. Univ. Cal. Press. Reprinted in Quantifier Elimination and Cylindrical
Algebraic Decomposition (Ed. by, B.F. Caviness, J.R. Johnson), Springer,
Wein-New York, 1998, pp. 24–84 (1951). https://doi.org/10.1007/978-3-
7091-9459-1 3

[Wüt76] Wüthrich, H.R.: IX. Ein Entscheidungsverfahren für die Theorie der reell-
abgeschlossenen Kürper. In: Strassen, V. (ed.) Komplexität von Entschei-
dungsproblemen Ein Seminar. LNCS, vol. 43, pp. 138–162. Springer,
Berlin, Heidelberg (1976). https://doi.org/10.1007/3-540-07805-3 10

[Zar65] Zariski, O.: Studies in equisingularity II. Am. J. Math. 87, 972–1006
(1965)

[Zas69] Zassenhaus, H.: On Hensel factorization I. J. Number Theory 1, 291–311
(1969)

https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/3-540-07805-3_10

Proving Results About OEIS Sequences
with Walnut

Jeffrey Shallit(B)

School of Computer Science, University of Waterloo, 200 University Ave. W.,
Waterloo, ON N2L 3G1, Canada

shallit@uwaterloo.ca

Abstract. We show how to “automatically” prove results about
sequences in the On-Line Encyclopedia of Integer Sequences (OEIS) using
a free software tool called Walnut, and illustrate it with a number of
examples chosen from the OEIS.

1 Introduction

The On-Line Encyclopedia of Integer Sequences (OEIS), originally created by
Neil Sloane [26], is an enormous database of mathematical information, contain-
ing over 361,000 integer sequences and theorems, conjectures, and citations to
papers about them. We owe Neil Sloane a huge debt of gratitude for his work
on this, and also to all the volunteers who edit the database.

In this paper I will discuss a theorem prover called Walnut that can “auto-
matically” prove results about many sequences in the OEIS, illustrate its use in
proving some theorems, explain how you can use it in your own work, and talk
about its limitations.

2 What is Walnut?

Walnut is free software, written in Java, originally designed by Hamoon Mousavi
[17], with additions and changes by Aseem Raj Baranwal, Laindon C. Burnett,
Kai Hsiang Yang, and Anatoly Zavyalov.

It is available at

https://cs.uwaterloo.ca/~shallit/walnut.html.

Walnut can rigorously prove theorems about the natural numbers and some
sequences. It has already been used in over 60 papers in the literature, to prove
dozens of theorems (and even correct some incorrect ones in the literature!) For
a list, see the URL above.

Walnut is based on extensions of Presburger arithmetic; more precisely, on
systems such as FO(N,+, <, Vk), where Vk(n) is the highest power of k dividing

Research supported by NSERC Grant number 2018-04118.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 270–282, 2023.
https://doi.org/10.1007/978-3-031-42753-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_18&domain=pdf
http://orcid.org/0000-0003-1197-3820
https://cs.uwaterloo.ca/~shallit/walnut.html
https://doi.org/10.1007/978-3-031-42753-4_18

Proving Results About OEIS Sequences with Walnut 271

n. It also can handle variations on this logic where Vk is replaced by a suit-
able analogue in other numeration systems, such as Zeckendorf representation.
Walnut implements a decision procedure first explained by Büchi [8], and later
corrected and extended by Bruyère et al. [7]. It is powerful enough to handle
statements about finite automata.

However, Walnut is not a general-purpose tool. It can prove results about
sequences, but not all of them—just a special class called the (generalized) auto-
matic sequences. Examples of sequences in this class include the Thue-Morse
sequence [1], the Rudin-Shapiro sequence [20,24], the infinite Fibonacci word
[4], the infinite Tribonacci word [18], Sturmian words [15, Chap. 2], paperfolding
words [9], etc.

Walnut can prove theorems about automatic sequences, but not all of them.
The theorem must be stated in first-order logic, and you can only do things
like add, subtract, and compare integers, and index into the sequence. You can
also use the existential (∃) and universal (∀) quantifiers. However, you cannot
do multiplication by variables, or division, square root, arbitrary real numbers,
primes, etc. You can multiply or divide by a constant, however. These restrictions
are unavoidable, because allowing operations like multiplication of variables leads
to undecidability.

The running time and space requirements of Walnut in the worst-case are
extraordinarily high, so sometimes Walnut proof attempts fail because it runs
out of space or would take years to complete the proof. Even so, you can do a
lot with it, because the worst case seems to occur rather rarely in practice.

For a fairly complete introduction to Walnut and its capabilities, see my book
[22].

3 An Example

Let us begin by using Walnut to prove the following extremely simple theorem:

Theorem 1. The sum of two odd natural numbers is even.

Proof. The first step is to translate the theorem into a more precise formulation
in the language of first-order logic. So we will need to define what it means to
be “odd” and “even”. Here are the definitions:

odd(n) := ∃k n = 2k + 1
even(n) := ∃k n = 2k.

Here ∃ is the symbol for “there exists”. So to say a number n is even just means
it is a multiple of 2, and to say it is odd just means that when divided by 2, it
leaves a remainder of one.

Next, we restate the desired theorem in first-order logic:

∀m,n (odd(m) ∧ odd(n)) =⇒ even(m + n).

Here ∀ is the symbol for “for all”, ∧ is the symbol for “and”, and =⇒ is the
symbol for logical implication.

272 J. Shallit

Now we simply translate these statements into a form Walnut can understand.
Walnut uses the capital letter E for ∃ and the capital letter A for ∀. It uses the
ampersand & for ∧ and the symbols => for =⇒ . The def command is used to
define logical formulas that can be reused in later commands by prefixing them
with a dollar-sign. The eval command evaluates the truth of a formula with no
free variables. (A variable is “free” if it is not bound by a quantifier.) Here is the
output from Walnut:

[Walnut]$ def odd "Ek n=2*k+1";

[Walnut]$ def even "Ek n=2*k";

[Walnut]$ eval thm "Am,n ($odd(m) & $odd(n)) => $even(m+n)":
(odd(m))&odd(n))):2 states - 3ms
((odd(m))&odd(n)))=>even((m+n)))):1 states - 2ms
(A m , n ((odd(m))&odd(n)))=>even((m+n))))):1 states - 1ms

Total computation time: 33ms.

TRUE

Walnut returns TRUE, so the theorem is now proved. ��
But the real power of Walnut is only apparent when you use it to deal with

infinite sequences.

4 A More Serious Example

We turn to a more serious example. I searched the OEIS with search terms
“Fibonacci conjecture” and I quickly found one that Walnut can handle.

This conjecture, previously unsolved, asserts that the first difference of
sequence A260317 is always a Fibonacci number. When we look this up sequence
A260317 in the OEIS, we find the following:

(Recall that the Fibonacci numbers, mentioned in the conjecture, are defined
by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.)

https://oeis.org/A260317
https://oeis.org/A260317

Proving Results About OEIS Sequences with Walnut 273

The sequence A260317 is itself defined in terms of the upper Wythoff num-
bers, sequence A001950, which is described as follows in the OEIS:

Let us solve this conjecture with Walnut. First, we need a way to express the
upper Wythoff sequence: this is the defined by the map

n →
ϕ2n�,
where ϕ = (1+

√
5)/2 is the golden ratio. Luckily, there is already some Walnut

code for this in the book [22]. (I’ll explain how this was derived later.)
In Walnut, though, the only functions that we can handle directly must have

finite range. So instead we use a small amount of subterfuge to define a function
indirectly: we create a Walnut formula phi2n of two arguments, n and x, such
that the result is TRUE if and only if x =
ϕ2n�. Such a function is called
synchronized [21]. In Walnut the assertion that x =
ϕ2n� is then expressed as
follows:

phi2n(n, x).

Next, we need code for the OEIS sequence A260317. Its description in the
OEIS says “Numbers not of the form v(m) + v(n), where v = A001950 (upper
Wythoff numbers) and 1 ≤ m ≤ n−1 for n ≥ 2”. Let us create a formula s2uw(z)
that evaluates to TRUE iff z belongs to A260317. In other words, s2uw(z) is true
iff there do not exist m,n, x, y such that z = x + y where phi2n(m,x) and
phi2n(n,y) both hold, and m,n satisfy the constraints 1 ≤ m, m ≤ n − 1, and
n ≥ 2.

This can be written as a first-order logical statement in Walnut as follows:

def s2uw "?msd_fib ~Em,n,x,y z=x+y & $phi2n(m,x) & $phi2n(n,y) &
1<=m & m<=n-1 & n>=2":

Here ~ represents logical negation.
Now we need to define the gaps g between successive values of A260317. To

do that we say we create a logical formula gap(g) that evaluates to TRUE iff g
belongs to A260317. In other words, gap(g) is true iff there exist t, v such that
t < v and s2uw(t) and s2uw(v) both hold, but for all u between t and v, the
assertion s2uw(u) does not hold, and g = v − t.

def gap "?msd_fib Et,v t<v & $s2uw(t) & $s2uw(v) &
(Au (u>t & u<v) => ~$s2uw(u)) & g=v-t":

Finally, we assert that every gap is a Fibonacci number:

reg isfib msd_fib "0*10*":
eval thm "?msd_fib Ax $gap(x) => $isfib(x)":

https://oeis.org/A260317
https://oeis.org/A001950
https://oeis.org/A260317
https://oeis.org/A001950
https://oeis.org/A260317
https://oeis.org/A260317
https://oeis.org/A260317

274 J. Shallit

and here is what we get:

[Walnut]$ eval thm "?msd_fib Ax $gap(x) => $isfib(x)":
(gap(x))=>isfib(x))):2 states - 44ms
(A x (gap(x))=>isfib(x)))):1 states - 11ms

Total computation time: 96ms.

TRUE

This proves the conjecture!
In fact, we get even more. How is gap stored? It is a finite automaton that

accepts the Fibonacci representation of those g that are elements of A260311,
as given in Fig. 1.

Fig. 1. Automaton recognizing the Fibonacci representations of elements of A260311.

In the Fibonacci numeration system [14,27], the natural numbers are repre-
sented (uniquely) as sums of distinct Fibonacci numbers, subject to the criterion
that no two consecutive Fibonacci numbers appear. We write such a represen-
tation as a binary string, (n)F := a1 · · · at, where n =

∑
1≤i≤t aiFt+2−i for

ai ∈ {0, 1} obeying the condition aiai+1 �= 1. For example, (43)F = 10010001.
By examining Fig. 1, we actually obtain something more:

Theorem 2. The only possible gaps are 1, 2, 3, 5.

Finally, how did we get phi2n? We obtained the automaton for phi2n using
a theorem in a paper of Don Reble in the OEIS [19]!

Theorem 3. We have
nϕ2� = x+2, where x is the number obtained by taking
the Fibonacci representation of n − 1 and concatenating two zeros on the end.

This example also illustrates another feature (or perhaps limitation) of
Walnut: the particular representation chosen for numbers must be geared in some
way to the particular problem. Here we chose to use the Fibonacci numeration
system because of the problem’s obvious relationship to the golden ratio ϕ. If
we had chosen an unrelated numeration system, such as base 2, we could not
have found an automaton that computes
ϕ2n�. This is a consequence of a deep
generalization of Cobham’s theorem due to Durand [12].

5 How Does Walnut Work?

Internally, assertions such as gap and s2uw are stored as finite automata.

https://oeis.org/A260311
https://oeis.org/A260311

Proving Results About OEIS Sequences with Walnut 275

A finite automaton is a simple model of a computer. There are two variations
that we use: an automaton with output (DFAO), that can compute a function
of its input, and an automaton (DFA) as accepter/rejecter of its input.

With each logical formula f , we associate a DFA. The DFA has one or more
inputs; these are the variables of the formula. The DFA accepts exactly those
natural number values of the variables that make the formula f true.

In automaton diagrams, states are represented by circles or ovals. A DFA
starts in a start state (denoted by a headless arrow coming into the state). It
processes the symbols of the input one-by-one, following the arrow labeled with
the symbol. If, after processing the whole input, it is in a final state (denoted by
double circle), the input is accepted. Otherwise it is rejected.

By contrast, a DFAO returns an output specified in the state last reached
when processing the input.

Here is the DFA for phi2n.

For example, phi2n(10,26) is true. The reader can check with the input

[0, 1][0, 0][1, 0][0, 1][0, 0][1, 0][0, 0].

Here [0010010]F = 10 and [1001000]F = 26.
Walnut compiles a logical formula into the appropriate automaton. Each

logical and arithmetic operation corresponds to some well-studied automaton
transformation that can be carried out; see, for example, [13].

Some of these operations only increase the automaton size by a small amount.
For example, AND and OR only multiply the sizes of the two automata. Other
operations, like ∀, can blow up the size of the automata exponentially. This
means that if there are t quantifier alternations, then the resulting automaton
could be, in the worst case, of size something like

22
2···2n

,

where the height of the tower of exponents is t. Luckily, this sort of extraordinary
space and time requirement seems to occur rarely in practice.

Numbers in Walnut have to be represented in some numeration system.
Walnut can handle

– base-k representation for any fixed k ≥ 2

276 J. Shallit

– Fibonacci representation (aka Zeckendorf representation), where numbers are
represented as sums of Fibonacci numbers

– Tribonacci representation
– Pell representation
– Ostrowski representation
– base-(−k) representation

as well as user-defined numeration systems.
Walnut can prove first-order logical statements about (generalized) automatic

sequences. These are sequences that are expressible as the outputs of DFAO’s
where the input is one of the 6 types of numeration system listed above. In
particular, Walnut can handle words that are images (under a coding) of a fixed-
point of a k-uniform morphism.

6 Another Example

Let us use Walnut to solve a previously-unsolved problem of Vladimir Shevelev
[25]. He observed that for the Thue-Morse sequence

t = t0t1t2 · · · = 0110100110010110 · · ·
there do not exist integers 0 < i < j such that

tn ∈ {tn+i, tn+j}
for all n. Here tn is the number of 1’s, computed modulo 2, in the binary repre-
sentation of n.

We can prove this claim with Walnut as follows:

eval shev1 "Ei,j 0<i & i<j & An (T[n]=T[n+i]|T[n]=T[n+j])":

and Walnut returns FALSE.
However, there do exist integers 0 < i < j < k such that

tn ∈ {tn+i, tn+j , tn+k}
for all n. Shevelev asked for a characterization of these valid triples (i, j, k). We
can solve this problem by finding an automaton that accepts all valid triples, as
follows:

def shev2 "0<i & i<j & j<k &
An (T[n]=T[n+i]|T[n]=T[n+j]|T[n]=T[n+k])":

This was a big computation in Walnut! It used 6432 s of CPU time and 18
Gigs of RAM. The largest intermediate automaton had 2952594 states.

The resulting automaton shev2 has 53 states, and encodes all the valid triples
(i, j, k). With it we can easily determine if a given triple has the desired property.
We can also use it to prove various results of Shevelev, such as the following.

Theorem 4. All triples of the form (a, a+2j , a+2k) for a ≥ 1, 0 ≤ j < k, are
valid.

For more details about these results, see [16].

Proving Results About OEIS Sequences with Walnut 277

7 Proving Conjectures by Guessing the Automaton

Walnut can sometimes prove conjectures obtained by guessing! The idea is to
“guess” an automaton for a sequence using heuristics. Once the automaton is
guessed, we then rigorously verify that it is correct using Walnut.

Let us work through an example. Consider OEIS sequence A140100:

Julien Cassaigne conjectured that for all k the sum X(k)+Y (k) equals either
X(Y (k)) or Y (X(k)). Our goal is to prove this conjecture.

The definition of the sequences X(k) and Y (k) are as follows: Start with
X(0) = 0, Y (0) = 0, X(1) = 1, Y (1) = 2. For n > 1, choose the least positive
integers Y (n) > X(n) such that

neither Y (n) nor X(n) appear in {Y (k) : 1 ≤ k < n} or{X(k) : 1 ≤ k < n}
and such that

Y (n) − X(n) does not appear in {Y (k) − X(k) : 1 ≤ k < n}
or {Y (k) + X(k) : 1 ≤ k < n}.

There is no known foolproof way to take a definition like this and directly
turn it into an automaton computing the sequence. However, in this case, we
can “guess” an automaton for it as follows.

First, we decide on an appropriate numeration system. In this case, it is
already known that this sequence is related to the Tribonacci numbers (see
the OEIS description), so it is reasonable that we should use the Tribonacci
numeration system. This system, analogous to the Fibonacci numeration system
discussed earlier, is based on the sequence (Tn), where T0 = 0, T1 = 1, T2 = 1,
and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3. Once again numbers are represented
as sums of Tribonacci numbers, this time subject to the condition that no three
consecutive Tribonacci numbers appear. We then represent pairs (n, x) in the
Tribonacci numeration system, padding the shorter sequence with leading zeros,
if needed.

Let us say that a pair is valid if x = X(n). Say two strings y and z are
equivalent if (yw is valid iff zw is valid), for all w of length ≤ i, for some fixed
i. We used i = 6.

Do a breadth-first search on the set of all possible strings, identifying the
(finitely many) equivalence classes. One can then construct a candidate automa-
ton out of these equivalence classes. When we do this, we find a Tribonacci
automaton of 27 states for X(n) and 30 states for Y (n). This is our guess.

Now comes the important part: we use Walnut to verify that our guess is
correct, using mathematical induction. Recall that to prove some proposition

https://oeis.org/A140100

278 J. Shallit

P (n) about all natural numbers n by induction, one needs to prove (a) P (0)
holds (or some other suitable base case) and (b) P (n) =⇒ P (n + 1). We can
use Walnut to carry out both (a) and (b).

For our particular candidate automaton, this works as follows. We say that
a triple (n, x, y) is good if all of the following conditions hold:

1. y > x;
2. x �∈ {X(k) : 1 ≤ k < n}
3. y �∈ {X(k) : 1 ≤ k < n}
4. x �∈ {Y (k) : 1 ≤ k < n}
5. y �∈ {Y (k) : 1 ≤ k < n}
6. y − x �∈ {Y (k) − X(k) : 1 ≤ k < n}
7. y − x �∈ {Y (k) + X(k) : 1 ≤ k < n}

To carry out the induction proof we must show three things:

1. The triple (n,X(n), Y (n)) is good for all n ≥ 1;
2. If (n, x, y) is good then x ≥ X(n);
3. If (n,X(n), y) is good then y ≥ Y (n).

The latter two conditions ensure that each value of X(n) and Y (n) chosen iter-
atively is indeed the minimal possible value among good candidates.

The verification of (1)–(3) can then be carried out by the following Walnut
code.

def good "?msd_trib y>x & (~Ek k<n & $xaut(k,x)) &
(~Ek k<n & $xaut(k,y)) & (~Ek k<n & $yaut(k,x)) &
(~Ek k<n & $yaut(k,y)) & (~Ek,a,b k<n & $xaut(k,a) &
$yaut(k,b) & y+a=b+x) & (~Ek,a,b k<n & $xaut(k,a) &
$yaut(k,b) & y+a=b+x)":

eval check1 "?msd_trib An,x,y (n>=1 & $xaut(n,x) & $yaut(n,y)) =>
$good(n,x,y)":

eval check2 "?msd_trib An,x,y (n>=1 & $good(n,x,y)) =>
(Ez $xaut(n,z) & x>=z)":

eval check3 "?msd_trib An,x,y (n>=1 & $xaut(n,x) & $good(n,x,y)) =>
(Ez $yaut(n,z) & y>=z)":

and the last three commands all return TRUE. After the (trivial) verification of
the base cases X(0) = 0, Y (0) = 0, X(1) = 1, Y (1) = 2, the induction proof is
complete, and we know our candidate automaton is correct.

Now that we have verified the automaton, we are ready to prove Cassaigne’s
conjecture.

Theorem 5. For all k the sum X(k)+Y (k) equals either X(Y (k)) or Y (X(k)).

eval julien1 "?msd_trib An,x,y,xy,yx ($xaut(n,x) & $yaut(n,y) &
$xaut(y,xy) & $yaut(x,yx)) => (xy=x+y|yx=x+y)":

And Walnut returns TRUE. The conjecture is proved.
For more details about this conjecture, see [23].

Proving Results About OEIS Sequences with Walnut 279

8 Other Capabilities of Walnut

Walnut can also count things. In some cases it can find what is known as a linear
representation for a function.

A linear representation for a function f : N → N is a triple of the form
(v, γ, w), where

– v is a 1 × r matrix,
– γ(a) is an r × r matrix for all a
– w is an r × 1 matrix

and f(n) = vγ(x)w for all representations x of n. If x = a1a2 · · · ai, then
γ(x) = γ(a1)γ(a2) · · · γ(ai). Here the representations can be base k, Fibonacci,
Tribonacci, etc.

Linear representations can often be used to prove theorems about f(n) and
its growth rate.

For example, let us evaluate ρ(n), the number of distinct length-n blocks
appearing in the Thue-Morse sequence t. This sequence is A005942 in the OEIS.
This was computed independently by Brlek [6], de Luca and Varricchio [10], and
Avgustinovich [2].

def equalblock "At (t<n) => T[i+t]=T[j+t]":
def novelblock "Ak (k<i) => ~$equalblock(i,k,n)":
def countblock n "$novelblock(i,n)":

Walnut outputs a linear representation in a form that Maple can understand:

v =

⎡

⎢
⎢
⎣

1
1
0
0
1
0
0
0

⎤

⎥
⎥
⎦

T

γ(0) =

⎡

⎢
⎢
⎣

1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 2 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 2 0

⎤

⎥
⎥
⎦ γ(1) =

⎡

⎢
⎢
⎣

0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 2 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 2 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 2 0 0

⎤

⎥
⎥
⎦ w =

⎡

⎢
⎢
⎣

1
0
1
1
0
0
0
0

⎤

⎥
⎥
⎦

With this representation we can quickly compute ρ(n), the number of distinct
length-n blocks in t, very efficiently.

Furthermore, we can compute the exact value of ρ(2k) as follows: we have

ρ(2k) = v · γ(1) · γ(0)k · w,

and the minimal polynomial of γ(0) is X2(X − 1)(X − 2). This means that
ρ(2k) = a + b · 2k for some constants a, b and k ≥ 2. We can now use the linear
representation to compute ρ(2k) for k = 2, 3 and solve for a, b. We have ρ(4) = 10
and ρ(8) = 22. Hence a = −2, b = 3. So ρ(2k) = 3 · 2k − 2 for k ≥ 2.

In the OEIS, several different characterizations of ρ(n) are given:

(a) ρ(n) = 3(n − 1) + d(n − 1) for n > 2, where d(n) is the distance from n to
the closest power of 2.

(b) ρ(2n) = ρ(n) + ρ(n + 1) for n ≥ 2.
(c) ρ(2n + 1) = 2ρ(n + 1) for n ≥ 2.

https://oeis.org/A005942

280 J. Shallit

Let us prove each of these. We start with (a): define a synchronized function
ρ′(n) by ρ′(n) = ρ(n) for n ≤ 2, and otherwise ρ′(n) = 3(n − 1) + d(n − 1). Our
goal is to show ρ′(n) = ρ(n). To do so, first we trap n between two powers of
2: 2i ≤ n < 2i+1. Then the distance is either n − 2i or 2i+1 − n, depending on
which is smallest. This works for all n ≥ 1. Now we can use Walnut to compute
a linear representation for ρ′(n), as follows:

reg power2 msd_2 "0*10*":
def dist2 "(n=0&y=1) | Ex $power2(x) & x<=n & n<2*x &

((2*n<=3*x & y+x=n)|(2*n>3*x & y+n=2*x))":
def rhop "(n=0&z=1) | (n=1&z=2) | (n=2&z=4) |

(n>=3 & Ey $dist2(n-1,y) & z+3=3*n+y)":
def lrc n "Ez i<z & $rhop(n,z)":

The last command gives a linear representation of rank 14 for ρ′(n); we just
need to see it is the same as ρ(n). To do so, from the two linear representations
we compute one for the difference ρ(n) − ρ′(n) and then minimize it using an
algorithm of Schützenberger [5]. It minimizes to the 0 function, so the two are
identical.

With the synchronized representation for ρ′(n) in hand, we can very easily
verify (b) and (c) now:

eval testb "An,x,y,z (n>=2 & $rhop(2*n,x) & $rhop(n,y) &
$rhop(n+1,z)) => x=y+z":

eval testc "An,x,y (n>=2 & $rhop(2*n+1,x) & $rhop(n+1,y)) => x=2*y":

and both return TRUE.
Linear representations can be extremely useful for proving properties of

sequences. As an example, let’s consider the recent refutation of a conjecture
of Dombi [11]. He conjectured that there is no set A ⊂ N such that (a) the
complement N \ A is infinite and (b) the sequence r(n) counting the number of
(ordered) triples (x, y, z) ∈ A3 that sum to n is strictly increasing. However, in a
recent paper [3], Bell and I found a counterexample: let F = {2n+2 − 1 : n ≥ 0}
and define A = N \ F .

To prove that it works, we first use Walnut to find linear representations
for the two sequences (r(n))n≥0 and (r(n − 1))n≥0; then we use a simple block
matrix construction to find a linear representation for their difference d(n) :=
r(n)−r(n−1). Graphing this sequence d(n) suggests that d(n) is approximately
n−3
log2 n�. If e(n) = d(n)−n+3
log2 n�, then we can easily compute a linear
representation for e(n), too. Then a simple idea called the “semigroup trick” [22,
§4.11] proves that e(n) takes only finitely many values, and hence is automatic
in base 2. The resulting bounds on e(n) are enough to prove that d(n) > 0 for
all n.

9 Common Mistakes When Using Walnut

– Watch out for edge cases. Sometimes a theorem is true for all n ≥ 1 but fails
for n = 0.

Proving Results About OEIS Sequences with Walnut 281

– Don’t use logical assertions with variables in the wrong order. The order of
arguments in a multi-variable assertion is alphabetical order of the variable
names used to define it.

– Since the domain of variables is understood to be N, the natural numbers,
subexpressions that give negative numbers can cause incorrect results. All
subexpressions must be non-negative.

10 Tips for Using Walnut

– There are often different ways to translate the same logical statement into
Walnut. Some can take much longer to translate than others.

– There are often multiple characterizations of the same property. Some may
be first-order expressible, some may not.

– Sometimes being more general takes much more time and space than being
specific.

11 A Final Word

Walnut is free and downloadable from https://cs.uwaterloo.ca/~shallit/walnut.
html.

If you use it to solve a problem, please let me know about it!

References

1. Allouche, J.P., Shallit, J.O.: The ubiquitous Prouhet-Thue-Morse sequence. In:
Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications,
pp. 1–16. Springer, London (1999). https://doi.org/10.1007/978-1-4471-0551-0_1

2. Avgustinovich, S.V.: The number of different subwords of given length in the Morse-
Hedlund sequence. Sibirsk. Zh. Issled. Oper. 1, 3–7, 103 (1994, in Russian). English
translation in A. D. Korshunov (ed.) Discrete Analysis and Operations Research,
pp. 1–5. Kluwer (1996)

3. Bell, J.P., Shallit, J.: Counterexamples to a conjecture of Dombi in additive number
theory. Acta Math. Hung. (2023, to appear)

4. Berstel, J.: Fibonacci words-a survey. In: Rozenberg, G., Salomaa, A. (eds.) The
Book of L, pp. 13–27. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-
642-95486-3_2

5. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications.
Encyclopedia of Mathematics and Its Applications, vol. 137. Cambridge University
Press, Cambridge (2011)

6. Brlek, S.: Enumeration of factors in the Thue-Morse word. Disc. Appl. Math. 24,
83–96 (1989)

7. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994). Corrigendum, Bull. Belg.
Math. Soc. 1, 577 (1994)

https://cs.uwaterloo.ca/~shallit/walnut.html
https://cs.uwaterloo.ca/~shallit/walnut.html
https://doi.org/10.1007/978-1-4471-0551-0_1
https://doi.org/10.1007/978-3-642-95486-3_2
https://doi.org/10.1007/978-3-642-95486-3_2

282 J. Shallit

8. Büchi, J.R.: Weak secord-order arithmetic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960). Reprinted
in S. Mac Lane and D. Siefkes (eds.) The Collected Works of J. Richard Büchi, pp.
398–424. Springer (1990)

9. Davis, C., Knuth, D.E.: Number representations and dragon curves-I, II. J. Recre-
ational Math. 3(66–81), 133–149 (1970)

10. de Luca, A., Varricchio, S.: Some combinatorial properties of the Thue-Morse
sequence and a problem in semigroups. Theoret. Comput. Sci. 63, 333–348 (1989)

11. Dombi, G.: Additive properties of certain sets. Acta Arith 103, 137–146 (2002)
12. Durand, F.: Cobham’s theorem for substitutions. J. Eur. Math. Soc. 13, 1799–1814

(2011)
13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Boston (1979)
14. Lekkerkerker, C.G.: Voorstelling van natuurlijke getallen door een som van getallen

van Fibonacci. Simon Stevin 29, 190–195 (1952)
15. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics

and Its Applications, vol. 90. Cambridge University Press, Cambridge (2002)
16. Meleshko, J., Ochem, P., Shallit, J., Shan, S.L.: Pseudoperiodic words and a ques-

tion of Shevelev (2022). arxiv preprint arXiv:2207.10171. https://arxiv.org/abs/
2207.10171

17. Mousavi, H.: Automatic theorem proving in Walnut (2016). arxiv preprint
arXiv:1603.06017. http://arxiv.org/abs/1603.06017

18. Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110,
147–178 (1982)

19. Reble, D.: Zeckendorf vs. Wythoff representations: comments on A007895 (2008).
https://oeis.org/A007895/a007895.pdf

20. Rudin, W.: Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10,
855–859 (1959)

21. Shallit, J.: Synchronized sequences. In: Lecroq, T., Puzynina, S. (eds.) WORDS
2021. LNCS, vol. 12847, pp. 1–19. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85088-3_1

22. Shallit, J.: The Logical Approach To Automatic Sequences: Exploring Combina-
torics on Words with Walnut, London Math. Society Lecture Note Series, vol. 482.
Cambridge University Press, Cambridge (2022)

23. Shallit, J.: Some Tribonacci conjectures (2023). arXiv preprint arXiv:2210.03996.
https://arxiv.org/abs/2210.03996. To appear, Fibonacci Quart

24. Shapiro, H.S.: Extremal problems for polynomials and power series. Master’s thesis,
MIT (1952)

25. Shevelev, V.: Equations of the form t(x + a) = t(x) and t(x + a) = 1 − t(x) for
Thue-Morse sequence (2012). arxiv preprint arXiv:0907.0880. https://arxiv.org/
abs/0907.0880

26. Sloane, N.J.A., et al.: The on-line encyclopedia of integer sequences (2023). https://
oeis.org

27. Zeckendorf, E.: Représentation des nombres naturels par une somme de nombres
de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41, 179–182 (1972)

http://arxiv.org/abs/2207.10171
https://arxiv.org/abs/2207.10171
https://arxiv.org/abs/2207.10171
http://arxiv.org/abs/1603.06017
http://arxiv.org/abs/1603.06017
https://oeis.org/A007895/a007895.pdf
https://doi.org/10.1007/978-3-030-85088-3_1
https://doi.org/10.1007/978-3-030-85088-3_1
http://arxiv.org/abs/2210.03996
https://arxiv.org/abs/2210.03996
http://arxiv.org/abs/0907.0880
https://arxiv.org/abs/0907.0880
https://arxiv.org/abs/0907.0880
https://oeis.org
https://oeis.org

System and Dataset Descriptions

ProofLang: The Language of arXiv
Proofs

Henry Hammer , Nanako Noda , and Christopher A. Stone(B)

Harvey Mudd College, Claremont, CA 91711, USA
{stone,hhammer,nnoda}@cs.hmc.edu

Abstract. The ProofLang Corpus includes 3.7M proofs (558 million
words) mechanically extracted from papers that were posted on arXiv.org
between 1992 and 2020. The focus of this corpus is proofs, rather than
the explanatory text that surrounds them, and more specifically on the
language used in such proofs. Specific mathematical content is filtered
out, resulting in sentences such as Let MATH be the restriction of MATH
to MATH. This dataset reflects how people prefer to write (informal)
proofs, and is also amenable to statistical analyses and experiments with
Natural Language Processing (NLP) techniques.

Keywords: Dataset · Informal proofs · Natural Language Processing

1 Introduction

How do people use language in proofs written for other humans? Is “Assume. . . ”
more or less common than “Suppose. . . ” ? How closely do the English-language
subsets accepted by tools like Mizar [1], Naproche-SAD [2], or Isar [3] correspond
to the way proofs are written in the literature? How well do off-the-shelf NLP
tools like NLTK [4] work on the stylized language of English-language proofs?
Is Ganesalingam [5] correct that “Mathematical language is exceptionally well-
suited” to analysis “in the way that generative syntacticians and semanticists
analyze natural languages” ?

The ProofLang Corpus1 is a resource for addressing such questions. It con-
sists of the text of English-language proofs mechanically extracted from the
LATEX sources of papers posted on arXiv.org from 1992 through April 2020. In
order to focus on the language used in proofs (and make repeated word patterns
more apparent), LATEX mathematical content is replaced by the token MATH.
Further cleanup steps include replacing references like \ref{...} or Theorem 2(a)
by REF ; replacing citations like \cite{...} or Smith [42] with CITE ; and replacing
proper names with NAME .
1 https://huggingface.co/datasets/proofcheck/prooflang.

This research was supported in part by the Jean Perkins Foundation and by the
NSF under Grant No. 1950885. Any opinions, findings, or conclusions are those of
the authors alone, and do not necessarily reflect the views of the NSF or JPF.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 285–290, 2023.
https://doi.org/10.1007/978-3-031-42753-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_19&domain=pdf
http://orcid.org/0009-0009-3942-8753
http://orcid.org/0009-0001-2664-2330
http://orcid.org/0009-0006-5720-3433
https://huggingface.co/datasets/proofcheck/prooflang
https://doi.org/10.1007/978-3-031-42753-4_19

286 H. Hammer et al.

The resulting dataset (a few examples appear in Fig. 1) is freely available for
download or can be directly accessed from Python scripts.

Fig. 1. The Beginnings of 20 Extracted Proofs

2 Constructing the ProofLang Corpus

We started with LATEX sources for 1.6M papers submitted to arXiv.org between
1992 and mid-2020, retrieved using arXiv’s Bulk Data Access. We identified
352K candidate papers where some source file contained the line \begin{proof} .
After skipping papers where no proof could be extracted and running language
detection on extracted proofs (to remove non-English output), we ended up with
328K papers with at least one extracted proof. These papers hail from a variety
of different fields but the bulk of relevant papers are in mathematics or computer
science: looking at arXiv subject tags, 281K papers have a math tag, 68K CS,
20K physics, 5.1K systems, 3.4K economics, and 2.4K biology.

The proofs were extracted using a Python script simulating parts of LATEX
(including defining/expanding macros). It does no real typesetting, throws away
text not in \begin{proof}. . . \end{proof}, and compresses math content to MATH.
Surprisingly, trying to implement LATEX more faithfully gave worse results; the
more the extractor knew about idiosyncrasies of TEX, the more it ran into other
imperfectly simulated constructs, with unrecoverable errors in complex macros.
It worked better to hard-code common cases (e.g., common environments to skip
because they represent figures or diagrams; common macros to ignore because
they only affect spacing or color) and to ignore unrecognized macros.

ProofLang: The Language of arXiv Proofs 287

During extraction, math-mode formulas (signalled by $, \[, \begin{equation},
etc.) become MATH ; \ref{...} and its variants (\autoref, \subref, etc.) become
\REF ; \cite{...} and its variants (\Citet, \shortciteNP, etc.) become CITE ; words
that appear to be proper names become NAME ; and \item becomes CASE: .

We then run a cleanup pass on the extracted proofs that includes fixing
common extraction errors (e.g., due to uninterpreted macros); replacing textual
references by REF (e.g., Theorem A.2 or Postulate (*)); replacing textual citations
with CITE (e.g., Page 47 of [3]); and replacing more proof-case markers with
CASE: (e.g., Case 3)).

The resulting dataset (3.7M proofs containing 558M words in 38.9M sen-
tences) is publicly available under a Creative Commons Attribution 4.0 license.2

Data can be downloaded as TSV files; accessing the data programmatically from
Python is also possible using the Hugging Face Datasets library [6], e.g.,

from datasets import load_dataset

dataset = load_dataset(’proofcheck/prooflang’, ’proofs’, split=’train’)

for d in dataset:

print(d[’paper’], d[’proof’])

To loop over individual sentences from the proofs, replace ’proofs’ and
d[’proof’] by ’sentences’ and d[’sentence’].

Also available is a mapping from paper IDs to a comma-separated list of
arXiv subject tags (which allows filtering proofs by subject area), and a “raw”
version of the proofs that shows the extracted proofs before the cleanup pass.
Further metadata for proofs can be found on arXiv, since each sentence or proof
tagged with paper <id> is from the paper at https://arxiv.org/abs/<id> .

3 Experimenting with the Corpus

So far, we have focused on collecting the data, and have only run relatively
simple experiments. For example, it’s easy to count occurrences of words. In this
corpus, the word assume appears more often than suppose (1119 K vs. 784 K
case-insensitive occurrences), but at the start of a sentence Suppose. . . occurs
much more often than Assume. . . (436 K vs. 263 K occurrences).

3.1 Identifying Collocations

We can also count occurrences of repeated sentences. Of course short ones like
Let MATH. or Then MATH. are most likely to repeat exactly (315 K and 185 K
times), but we can also compare counts for variants of longer sentences, e.g.,

2 Papers on arXiv.org are not in the public domain, but all relevant legal factors (the
purpose and character of the use, the nature of the original works, the amount and
substantiality of the copied text, and the effect upon the potential market for the
original) favor a conclusion of Fair Use under US copyright law.

288 H. Hammer et al.

Without loss of generality we may assume that MATH. 4.0 K
Without loss of generality assume that MATH. 2.3 K
Without loss of generality we assume that MATH. 2.2 K
Without loss of generality we can assume that MATH. 2.2 K
We may assume without loss of generality that MATH. 0.8 K

Longer sentences rarely have a large number of exact repeats, so one can also
look for collocations (idiomatic phrases) occurring inside sentences.

Fig. 2. Selected 2-Word Collocations from the Corpus

We started from bigrams (2-word sequences) in our corpus. For example, the
sentence Let MATH be even contains the three bigrams (let, MATH), (MATH,
be), and (be, even). For bigrams occurring more than 500 times we calculated
statistics such as Pointwise Mutual Information and χ2 to identify pairs of words
that appeared together more often than could be explained by chance. This
automatically finds a large number of conventional phrases; a few are shown in
Fig. 2. By treating the discovered collocations as single-word units and iterating
the bigram process, we can find longer collocations like induces an isomorphism
between and it suffices to check that.

3.2 Testing the NLTK Part-of-Speech Tagger

NLTK, the Natural Language Toolkit [4], is a Python package for traditional
NLP statistical algorithms. We were curious how well it would do at POS (Part-
of-Speech) tagging on our corpus, i.e., identifying a part of speech for each word
in a sentence. As a simple example, the three words in We like proofs should be
tagged as personal-pronoun, third-person-present-verb, and plural-noun.

NLTK’s default POS tagger (a perceptron trained on text from the Wall
Street Journal) is reasonably accurate for many purposes, but experiments with
the corpus showed it performs more poorly on mathematical language.

The first aspect is the vocabulary, not only because mathematical jargon is
rare in the training corpus, but also because the usage of more common words
differs. For example, integral is generally used as an adjective in newspapers, so
the default tagger always tags integral as an adjective even though within proofs

ProofLang: The Language of arXiv Proofs 289

integral is often a noun. Worse, integral is in the top 300 most-frequent words
(occurring 187K times), and whenever the tagger mis-tags integral, it is likely
to mis-tag neighboring words as well. Other problems include literal, metric, and
variable (where the default tagger confuses noun vs. adjective) and partition,
factor, and embedding (where the default tagger confuses verb vs. noun).

The most consistent problem is the mis-tagging of verbs in imperative sen-
tences. Trained on news text, the default tagger seems unaware that sentences
can start with verbs and tags these unexpected verbs as proper nouns, appar-
ently because the start of a sentence is always capitalized. For example, given
the sentence Suppose MATH is even , NLTK mis-tags Suppose MATH as proper
nouns as if this were a declarative sentence like “John Smith is tall” (except that
it further mis-tags even as an adverb instead of an adjective).

Similarly, Consider for all MATH the subtree MATH of MATH spanned by the
root and the first MATH leaves MATH with MATH is mis-tagged with Consider as
a proper noun, subtree as an adjective, and leaves as a verb.

Preliminary experiments with re-training the NLTK POS tagger showed that
adding manually tagged sentences from our corpus to the training set—5 imper-
ative sentences for each of 50 common verbs—significantly improved its perfor-
mance on imperative sentences with these and other verbs. Interestingly, adding
more sentences for each verb made performance worse overall; we hypothesize it
was over-fitting and memorizing just the specific imperative verbs we provided.

4 Conclusion and Future Work

The ProofLang Corpus is a new dataset showing how people naturally phrase
their claims, structure mathematical arguments, and use language in proofs writ-
ten for humans. We hope it can aid the development of language-based proof
assistants and proof checkers for professional and educational purposes.

As the corpus is heuristically extracted from LATEX files, it does contain
errors; one can probably spend arbitrary amounts of time polishing the corpus
by handling more corner cases. More general cleanup strategies might be helpful,
e.g., training Named Entity Recognition to recognize references to mathematical
facts (e.g., Theorem 2a.) replacing our ad hoc regular expressions.

It would also be interesting to distinguish MATH-as-noun (e.g., Then $n > 1$
is prime) from MATH-as-clause (e.g., If $n > 1$ then the theorem holds). We
conjecture that generalized POS tagging might be helpful here.

While we plan further analyses ourselves (e.g., identifying more general collo-
cations and applying language-model techniques), we also hope that others can
find interesting applications for this dataset.

References

1. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a Nutshell. J. Formal.
Reasoning 3(2), 153–245 (2010). https://doi.org/10.6092/issn.1972-5787/1980

https://doi.org/10.6092/issn.1972-5787/1980

290 H. Hammer et al.

2. De Lon, Adrian, Koepke, Peter, Lorenzen, Anton: Interpreting mathematical texts
in Naproche-SAD. In: Benzmüller, Christoph, Miller, Bruce (eds.) CICM 2020.
LNCS (LNAI), vol. 12236, pp. 284–289. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-53518-6 19

3. Wenzel, Markus: Isar — a generic interpretative approach to readable formal proof
documents. In: Bertot, Yves, Dowek, Gilles, Théry, Laurent, Hirschowitz, André,
Paulin, Christine (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3 12

4. Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python. O’Reilly
Media Inc. (2009)

5. Ganesalingam, Mohan: The Language of Mathematics. LNCS, vol. 7805. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37012-0

6. Hugging Face: Datasets. https://huggingface.co/docs/datasets

https://doi.org/10.1007/978-3-030-53518-6_19
https://doi.org/10.1007/978-3-030-53518-6_19
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/978-3-642-37012-0
https://huggingface.co/docs/datasets

True Crafted Formula Families
for Benchmarking Quantified Satisfiability

Solvers

Simone Heisinger(B) and Martina Seidl

Institute for Symbolic Artificial Intelligence, Johannes Kepler University,
Linz, Austria

simone.heisinger@jku.at

Abstract. As the application of quantified Boolean formulas (QBF)
continues to expand in various scientific and industrial domains, the
development of efficient QBF solvers and their underlying proving strate-
gies is of growing importance. To understand and to compare different
solving approaches, techniques of proof complexity are applied. To this
end, formula families have been crafted that exhibit certain properties of
proof systems. These formulas are valuable to test and compare specific
solver implementations. Traditionally, the focus is on false formulas, in
this work we extend the formula generator QBFFam to produce true
formulas based on two popular formula families from proof complexity.

Keywords: QBF · Solver · Benchmarking · KBKF · QParity

1 Introduction

Quantified Boolean Formulas (QBFs) extend the language of propositional logic
by existential and universal quantifiers over the Boolean variables [3]. For exam-
ple (x ↔ y) is propositional formula while ∀x∃y.(x ↔ y) and ∃y∀x.(x ↔ y) are
QBFs. The decision problem of QBF is PSPACE-complete. In contrast to SAT,
which has the asymmetry that the solution of a true formula is easy to validate
(by propagating the satisfying assignment returned by the solver), but unsatis-
fiability most likely not, the situation in QBF is different. Because of universal
quantification, there is a duality between true and false formulas. Inspired by
the progress in SAT in the field of proof complexity, many techniques and ideas
have been transferred to QBF, but the focus is mainly on false formulas, while
true formulas need to be considered as well [5,9]. The intention is to understand
the behavior of solving paradigms based on their underlying proof systems. In
QBF, much progress has been made in this regard, establishing relationships
between proof systems like Q-resolution, the formal basis of conflict/solution-
driven clause/cube learning (QCDCL), ∀Exp+Res proofs which characterize
expansion-based systems and others [3]. Here, a core technique is to craft for-
mula families of certain structure that enforce a certain behavior of the proof

Supported by the LIT AI Lab funded by the State of Upper Austria.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 291–296, 2023.
https://doi.org/10.1007/978-3-031-42753-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_20&domain=pdf
http://orcid.org/0009-0000-7630-2791
http://orcid.org/0000-0002-3267-4494
https://doi.org/10.1007/978-3-031-42753-4_20

292 S. Heisinger and M. Seidl

systems and therefore also of the implementing solvers. These formulas are not
only of theoretical interest, but also provide valuable benchmarks for testing and
evaluating solvers. Many of such formula families are implemented in the tool
QBFFam [4]. So far, all of these formulas are false. In this paper, we present
two families of crafted formulas that are true. Inspired by popular families of
false crafted formulas they are constructed in a such a way that they reveal
weaknesses of proof systems, i.e., even their shortest proofs are exponential in
the formula size. A small experimental evaluation shows that the behavior of the
solvers can indeed be characterized by crafted formulas.

We include the generator for the two new formula families with options PAR-
ITYTrue and KBKFTrue in the QBFFam tool which is available at:

https://github.com/marseidl/qbffam

2 Preliminaries

We consider quantified Boolean formulas in prenex normal form, i.e., formulas of
the structure Q1X1 . . . QnXn.φ where Xi are disjoint sets of Boolean variables,
Qi ∈ {∀,∃}, and φ is a propositional formula with connectives negation (¬),
conjunction (∧), disjunction (∨), implication (→), equivalence (↔), and xor (⊕)
over variables in Xi. A QBF Π.φ is in prenex conjunctive normal form (PCNF)
if φ is a conjunction of clauses. As usual a clause is a disjunction of literals
and a literal is a variable or a negated variable. By x → (l1 ∧ . . . ∧ ln) we
denote the clauses (x̄ ∨ l1), . . . , (x̄ ∨ ln). A QBF ∀xΠ.φ is true iff both Π.φ[x/
]
and Π.φ[x/⊥] are true where φ[x/t] denotes the formula obtained when setting
variable x to term t, which can be true (
) or false (⊥). A QBF ∃xΠ.φ is true
iff Π.φ[x/
] or Π.φ[x/⊥] is true. From the semantics it directly follows that
¬(Q1X1 . . . QnXn.φ), i.e., the negation of a formula that is obviously not in
prenex form, has the same truth value as (Q̄1X1 . . . Q̄nXn.¬φ) where Q̄i = ∃ if
Qi = ∀ and Q̄i = ∀ otherwise.

3 Two Families of True Formulas

In this section, we present two families of crafted formulas that are true. The
formulas are based on the KBKF formula family which was originally introduced
in [10] for showing that there are formula families which do not have a short proof
in the basic Q-resolution proof system. Since then, several variants have been
introduced which are also hard for stronger calculi like QU-resolution [6] or LD-
Q-resolution [1] which extend Q-resolution. The other formula family which we
consider are the so-called Parity formulas. These formulas also play an important
role for proof theoretical investigations [2].

True Formulas Based on the KBKF-Family. To obtain interesting true formulas
from the KBKF family, we consider their negations, hence swapping the quan-
tifiers, Boolean connectives, and the polarities of the literals. As the resulting

https://github.com/marseidl/qbffam

True Crafted QBFs 293

formulas are not in prenex conjunctive normal form, but in prenex disjunctive
normal form, which is not processable by most state-of-the-art QBF solvers,
we additionally apply the Plaisted-Greenbaum transformation [13] to obtain a
PCNF formula again. The following definition describes the true QBFs that are
members of the TKBKFt family where t > 2 parameterizes the formula size.

Definition 1. A formula ϕt of the family TKBKFt has the quantifier prefix

∀d1e1 ∃x1 ∀d2e2 ∃x2 . . . ∀dtet ∃xt ∀f1 . . . ft∃y1 . . . y2t+1 z1 . . . z2t

and a propositional matrix consisting of the following clauses

y1 → (d1 ∧ e1)

y2j → (d̄j ∧ x̄j ∧ dj+1 ∧ ej+1) y2j+1 → (ēj ∧ xj ∧ dj+1 ∧ ej+1) 1 ≤ j ≤ t − 1

y2t → (d̄t ∧ x̄t ∧ f1 ∧ . . . ∧ ft) y2t+1 → (ēt ∧ xt ∧ f1 ∧ . . . ∧ ft)

z2j → (xj ∧ f̄j) z2j−1 → (x̄j ∧ f̄j) 1 ≤ j ≤ t

(y1 ∨ · · · ∨ y2t+1 ∨ z1 ∨ . . . ∨ z2t)

Following the argumentation that the false KBKF formulas are hard for Q-
resolution to refute, i.e., the proof size is exponential in t, it is straight-forward
to show that there are no short satisfaction Q-resolution proofs for the TKBKFt

formulas since the proof size is also exponential. Note that this also holds for
a slightly different version of TKBKFt where the yi variables are positioned as
left as possible in the prefix, which has then the structure

∀d1e1 ∃y1x1 ∀d2e2 ∃y2y3x2 . . . ∀dtet ∃xt ∀f1 . . . ft∃y2ty2t+1z1 . . . z2t

True Formulas Based on the Parity-Family. The false Parity formula family
contains formulas that encode the constraint ((x1 ⊕ . . . ⊕ xt) ⊕ y). The prefix
is ∃x1 . . . ∃xn∀y. In addition, the variables zj are appended in the innermost
existential quantifier block, needed for an efficient transformation to PCNF.
Here Tseitin transformation [17] is applied, i.e., not only implication as above is
used for the definition of the labels, but bi-implication. To obtain true formulas,
we change the quantifiers of the xi variables to universal and the quantifier of
y to existential. The quantifiers of the zj variables remain existential and the
matrix unchanged. Hence, the formula family Parityt is defined as follows.

Definition 2. A formula ϕt of the family Parityt has the quantifier prefix

∀x1 · · · xt ∃y ∃z2 · · · zt
and a propositional matrix consisting of the following clauses where 2 < i ≤ t:

(z̄2 ∨ x1 ∨ x2) (z̄2 ∨ x̄1 ∨ x̄2) (z2 ∨ x̄1 ∨ x2) (z2 ∨ x1 ∨ x̄2)

(z̄i ∨ zi−1 ∨ xi) (z̄i ∨ z̄i−1 ∨ x̄i) (zi ∨ z̄i−1 ∨ xi) (zi ∨ zi−1 ∨ x̄i)

(y ∨ zt) (ȳ ∨ z̄t)

294 S. Heisinger and M. Seidl

Already from the structure of the formula it is visible that there cannot be
short Q-resolution satisfaction proofs following the argumentation of [2] for false
formulas: Strategy extraction is easy from a Q-resolution proof: in terms of circuit
complexity it falls in the class of AC0. It is well known that Parity formulas have
no efficient representation in AC0, hence also the Q-resolution proofs have to be
exponential, since the unique solution for y depends on (x1 ⊕ . . . ⊕ xn).

Fig. 1. Runtimes of TKBKFt and Parityt formulas for 2 ≤ t ≤ 30.

4 Evaluation

We selected three different solvers based on different solving paradigms repre-
senting the state of the art in QBF solving to evaluate how they perform on the
generated formulas as described above. The solver RAReQS [8] is an expansion-
based QBF solver that has its theoretical foundations on the ∀Exp+Res calcu-
lus [2]. In contrast, the solver DepQBF [11] implements conflict/solution-driven
clause/cube learning (QCDCL), a generalization of the CDCL approach that can
be found in most SAT solvers. Hence, DepQBF’s search is theoretically founded
on Q-resolution. We run DepQBF in two versions: the older 3.04 supporting full
proof generation for true and false formulas and the most recent 6.03, addition-
ally implementing advanced inprocessing and pruning techniques like generalized
axioms [12]. Such techniques have been observed to considerably improve solv-
ing time, but full certification is not possible at the moment. As a third solver
we ran CAQE [14] which relies on CEGAR-based clausal abstraction [16] and
which has been extremely successful in recent QBF competitions.

Our experiments were executed on a cluster of dual-socket AMD EPYC 7313
@ 3.7GHz machines with 8GB memory per task and a timeout of 900 s. For both
families we generated 29 instances, ranging parameter t from 2 to 30.

Figure 1 shows the result of our experiments. The plot on the left compares
the runtimes of the solvers for the TKBKFt family. The definition variables intro-
duced for the normal form transformation are introduced as early as possible.
We also tested appending the definition variables at the end of the prefix, but
observed similar runtimes. As a recent paper shows, in general this is not always
the case and strongly depends on the benchmarks [15]. The formulas are hard
for all solvers and the runtime seems to grow exponentially in the parameter t.
When analyzing the proofs produced by DepQBF 3.04, the number of axioms
from which the satisfaction proof is generated is linear in t, but the proofs are
exponential indicating that the proofs are constructed as to be expected (see also
the discussion above). Also in the plot on the right for the Parityt formulas we
can observe a similar behavior except for DepQBF 6.03. In this configuration,

True Crafted QBFs 295

the formulas become easy, i.e., they can immediately be solved. This is not sur-
prising, because for simplification techniques like blocked clause elimination [7]
reasoning on Parity formulas is simple. The Q-resolution proofs generated by
DepQBF 3.04 have an exponential number of axioms that are all needed to
show the truth of the formulas. In consequence, the function that is extracted
for variable y is also exponential. Currently, there is no solver that supports the
generation of ∀Exp+Res proofs for true formulas.

5 Conclusion

We presented two families of crafted true formulas, based on their false coun-
terparts widely used for evaluating proofs of unsatisfiability. We argued and
empirically showed that the true formulas are also hard for Q-resolution. The
hardness could also be observed for expansion-based proof systems, however,
the theoretical reasoning is less obvious. While there is always a dual variant
based on a representation in PCNF, it is not clear how to construct them during
search for a solution. This is in contrast to QCDCL solvers which directly build
Q-resolution satisfaction proofs during the search. It remains as future work to
practically investigate satisfaction proofs for expansion-based solvers in more
detail.

References

1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

2. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory 11(4), 26:1–26:42 (2019)

3. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified Boolean formulas.
In: Handbook of Satisfiability - Second Edition, pp. 1177–1221. IOS Press (2021)

4. Beyersdorff, O., Pulina, L., Seidl, M., Shukla, A.: QBFFam: a tool for generating
QBF families from proof complexity. In: Li, C.-M., Manyà, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 21–29. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-80223-3_3

5. Böhm, B., Peitl, T., Beyersdorff, O.: Should decisions in QCDCL follow prefix
order? In: SAT. LIPIcs, vol. 236, pp. 11:1–11:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

6. Gelder, A.: Contributions to the theory of practical quantified Boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7_47

7. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

8. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8_10

https://doi.org/10.1007/978-3-030-80223-3_3
https://doi.org/10.1007/978-3-030-80223-3_3
https://doi.org/10.1007/978-3-642-33558-7_47
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10

296 S. Heisinger and M. Seidl

9. Janota, M., Marques-Silva, J.: An Achilles’ heel of term-resolution. In: Oliveira,
E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol.
10423, pp. 670–680. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65340-2_55

10. Kleine Büning, H., Lettmann, T.: Aussagenlogik: Deduktion und Algorithmen.
Teubner (1994)

11. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_23

12. Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 435–452. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40970-2_27

13. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

14. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: FMCAD, pp. 136–
143. IEEE (2015)

15. Reeves, J.E., Heule, M.J.H., Bryant, R.E.: Moving definition variables in quantified
Boolean formulas. In: TACAS 2022. LNCS, vol. 13243, pp. 462–479. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_26

16. Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 475–494.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_25

17. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning. Symbolic Computa-
tion, pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-
81955-1_28

https://doi.org/10.1007/978-3-319-65340-2_55
https://doi.org/10.1007/978-3-319-65340-2_55
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1007/978-3-319-40970-2_27
https://doi.org/10.1007/978-3-030-99524-9_26
https://doi.org/10.1007/978-3-319-63390-9_25
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

An Augmented MetiTarski Dataset
for Real Quantifier Elimination Using

Machine Learning

John Hester1, Briland Hitaj2, Grant Passmore1(B), Sam Owre2,
Natarajan Shankar2, and Eric Yeh2

1 Imandra Inc., Austin, TX 78704, USA
{john,grant}@imandra.ai

2 SRI International, Menlo Park, CA 94025, USA
{briland.hitaj,natarajan.shankar,sam.owre,eric.yeh}@sri.com

Abstract. We contribute a new dataset composed of more than 41K
MetiTarski challenges that can be used to investigate applications of
machine learning (ML) in determining efficient variable orderings in
Cylindrical Algebraic Decomposition. The proposed dataset aims to
address inadvertent bias issues present in prior benchmarks, paving the
way to development of robust, easy-to-generalize ML models.

Keywords: MetiTarski Variable Ordering · Machine Learning
Datasets · Generalizability · Bias

1 Introduction

Cylindrical Algebraic Decomposition (CAD) is a key proof technique for the
formal verification of cyber-physical systems such as aircraft collision avoidance
systems, autonomous vehicles and medical robotics. While CAD is a complete
decision procedure, it is computationally expensive with worst-case exponential
complexity. Prior work has demonstrated that machine learning (ML) may be
successfully applied to determining efficient variable orderings [2,5]. Much of
this work has been driven by CAD problems extracted from applications of the
MetiTarski theorem prover [1,7].

However, the original MetiTarski benchmark data is highly imbalanced, inad-
vertently introducing preferences towards certain variable orders, thus hindering
the ability of resulting ML models to generalize to new data [4,6]. Data aug-
mentation can address bias issues while substantially improving the robustness
of trained models [3]. In this vein, we make use of inherent symmetries present

This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR00112290064. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Government or
DARPA.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 297–302, 2023.
https://doi.org/10.1007/978-3-031-42753-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_21

298 J. Hester et al.

in the data to create a new balanced MetiTarski dataset composed of more than
41K additional challenges. We make the new dataset together with our models
publicly available.1

2 The Proposed MetiTarski Dataset Setup

In this section, we provide details about the datasets that we have used in our
experiments, and we introduce a new augmented dataset designed to remove bias.
In addition to the datasets, we provide details on the features considered based on
England et al. [2] and Huang et al. [5] respective works, followed by a discussion
of our labeling strategy. We conclude the section with a discussion of the machine
learning models considered together with their respective hyperparameter setup.

2.1 MetiTarski Datasets

Dataset 1 (Original): The first dataset is predominantly gathered from
MetiTarski, by logging MetiTarski’s RCF subproblem queries during its proof
search [2,7]. The dataset contains 6,895 polynomial systems, together with data
on the performance of a CAD-based decision procedure on different orderings of
their variables. Every problem in this data set has 3 variables (x1, x2, x3) and
thus 6 possible variable orderings.

Dataset 2 (Augmented): We noted that the original MetiTarski dataset was
highly imbalanced. While class 0, corresponding to the (x1, x2, x3) variable order
contained 580 records, class 5, corresponding to (x3, x2, x1) contained 2,657
records, nearly 4-times more, Fig. 1a. We note that this may bias ML mod-
els towards certain label/s, thus preventing the models from learning relevant
information and hindering their generalizability to new, previously unseen data.

Fig. 1. Data distribution per label on both the original MetiTarski dataset and the
second, balanced one.

We recognize that variables in the formula and ordering can be swapped
without changing the time and cost needed to perform the computation. For
1 https://github.com/SRI-CSL/augmented-metitarski.

https://github.com/SRI-CSL/augmented-metitarski

An Augmented MetiTarski Dataset for RQE Using Machine Learning 299

instance, swapping variables x1 with x2 in the formulas and in the ordering
leads to a CAD with the same time and cell cost. While this may seem apparent
to a human or a machine reasoner that already has the ability to recognize this
symmetry, for current machine learning systems it needs to be made explicit
in the training data. This procedure resulted in a new augmented composed of
41,370 polynomial systems (cf. Figure 1b).

2.2 Feature Engineering and Labeling

We process each set of polynomials extracting features enlisted in [2,5], includ-
ing the number of polynomials, maximum total degree of polynomials, maximum
degree of each xi, and proportion of each xi appearing in polynomials and mono-
mials. In addition to the feature set, we assign to each polynomial problem a
label ranging from 0...5, where each label translates to one of the 6-possible vari-
able orderings. At present, the label for each polynomial problem corresponds
to the variable ordering that takes the least amount of time.

2.3 Models

To evaluate our approach, we used 5-ML classifiers: 1) Support Vector Machines
(SVM), 2) k-Nearest Neighbours (k-NN), 3) Decision Trees (DT), 4) Random
Forests (RF), and 5) Multi-Layer Perceptrons (MLP). England et al. [2] relies
on SVMs, k-NNs, DTs, and MLPs. By following a similar approach, we ensure
that our strategy is comparable to the state-of-the-art and thus can be used as
a foundation for future adoption of more complex ML strategies, such as Trans-
formers [9] or Graph Neural Networks (GNNs) [8]. We used the scikit-learn2-
based implementations of the ML algorithms. Similar to the works of England
et al. [2] and Huang et al. [5], we employed a grid-search strategy with 5-fold
cross-validation to identify the right parameter setup for each of the models.

3 Evaluation

In this section, we proceed with the evaluation of the performance of the selected
machine learning models (cf. Section 2.3) on identifying the preferred (best) vari-
able order for a given input problem. We transform the problem of determining
the best variable order into a multi-class classification problem. In these kind of
problems the training set is composed of (x, y) tuples of data, where x is an input
sample and y is the corresponding label for that sample. The goal of the learning
process translates into the task of finding a function f , such that f(x) = y.

In our setting, the input data corresponds to the series of 11-features (cf.
Sect. 2.2) whereas y is one of the 6-labels from [0, . . . , 5] belonging to a preferred
variable order from [(x1, x2, x3), . . . , (x3, x2, x1)]. The features were scaled by
subtracting the mean and then scaling to unit variance3.
2 https://scikit-learn.org/stable/.
3 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Standard

Scaler.html.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

300 J. Hester et al.

Training: For each of the datasets, we used 80% of the data for training and
kept the remaining 20% as part of the testing set. For Dataset 1 (original),
this corresponded to 5, 516 samples for training and 1, 379 for testing, whereas
for Dataset 2 (augmented), 33, 095 samples were used during training and the
remaining 8, 274 samples for testing. Tables 1 and 2 provide accuracy of each
model obtained on the respective training set.

Table 1. Performance of models trained on Dataset 1 when evaluated on Testing set
1 and entire Dataset 2.

Model Trained on
Dataset 1

Performance on
Training Set 1

Performance on
Testing Set 1

Performance on
Dataset 2 (all)

SVM 69.38% 58.88% 28.9%
k-NN 75.27% 57.36% 32.21%
DT 75% 55.69% 31.44%
RF 76.39% 58.23% 34.15%
MLP 58.81% 53% 33.64%

Testing: We test each model on 20% of the respective datasets: 1, 379 samples
for Dataset 1, and 8, 274 samples for Dataset 2.

Table 2. Performance of models trained on Dataset 2 evaluated on Testing set 2 and
Dataset 1. Perf. on Dataset 1 (all) also shows (in parentheses) results from training
on a “reduced” subset of Dataset 2 obtained by random sampling.

Model Trained on
Dataset 2

Performance on
Training Set 2

Performance on
Testing Set 2

Performance on
Dataset 1 (all)

SVM 62.1% 57.39% 60.43% (53.89%)
k-NN 69.2% 54.9% 66.28% (54.19%)
DT 68.03% 55.04% 64.16% (52.27%)
RF 70.47% 55.07% 66.96% (55.66%)
MLP 50.51% 49.62% 48.19% (48.22%)

The performance of models trained on Dataset 1 varied from 53% for the
MLP model up to 58.88% for the SVM (Table 1) these results being in-line with
state-of-the-art work by England et al. [2] and Huang et al. [5]. Likewise, the
models trained on the augmented Dataset 2 exhibit similar performance with the
MLP architecture performing poorly with 49.62% accuracy and SVM obtaining
up to 57.39% accuracy on the testing set (Table 2).

An Augmented MetiTarski Dataset for RQE Using Machine Learning 301

Evaluation on Respective Datasets: Model performance is quite promising
and substantially better than random choice (≈ 16.67%). However, given the
bias of the original dataset (cf. Section 2.1), it is interesting to investigate the
performance of models trained on Dataset 1 (the original MetiTarski dataset) and
the newly produced Dataset 2, the latter a superset of Dataset 1. As illustrated in
Table 1, there is a significant drop in classification accuracy for all models trained
on Dataset 1, with more than 25% drop in some cases. Models trained on the
“debiased” Dataset 2 retain good performance when evaluated on Dataset 1. We
believe this is due to the training data being balanced and the model potentially
seeing some of these samples during training, increasing its decision confidence.
Interestingly, we also see good performance for models trained on a “reduced”
version of Dataset 2 for which we select one random permutation per problem.

4 Conclusion

We have re-examined a classical dataset for ML-driven CAD variable ordering
and observed issues of bias. To address this, we have applied symmetry-based
data augmentation to create a debiased version and have shown this improves
generalizability. We believe this phenomenon is quite general, and that debiasing
with formula symmetries should be a standard tool for applications of ML in
computer algebra, program verification, and other fields manipulating mathe-
matical formulas. While this approach generalizes naturally to more variables,
there is a bottleneck of exponential growth in the number of distinct orderings
that must be considered as the dimension grows (e.g., for 6 variables we have 6!
combinations). We intend to investigate variants where, instead of considering
a full ordering up front, we consider partial solutions, e.g., the first k variables
to project, etc. Nevertheless, an enormous number of RCF verification problems
encountered in practice take place over R

3, so even the classical focus on the 3
variable case is well motivated. We plan to extend this work into general-purpose
tools and apply it to many problem domains (e.g., Gröbner bases, BDDs, SAT).

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. J. Autom. Reasoning 44, 175–205 (2010)

2. England, M., Florescu, D.: Comparing machine learning models to choose the vari-
able ordering for cylindrical algebraic decomposition. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp.
93–108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4_7

3. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
Imagenet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness. In: International Conference on Learning Representations
(2019). https://openreview.net/forum?id=Bygh9j09KX

4. Geirhos, R., Temme, C.R., Rauber, J., Schütt, H.H., Bethge, M., Wichmann, F.A.:
Generalisation in humans and deep neural networks. Adv. Neur. Inf. Proc. 31 (2018)

https://doi.org/10.1007/978-3-030-23250-4_7
https://openreview.net/forum?id=Bygh9j09KX

302 J. Hester et al.

5. Huang, Z., England, M., Wilson, D.J., Bridge, J., Davenport, J.H., Paulson, L.C.:
Using machine learning to improve CAD. Maths. in C.S. 13(4), 461–488 (2019)

6. Kawaguchi, K., Kaelbling, L.P., Bengio, Y.: Generalization in deep learning. arXiv
preprint arXiv:1710.05468 (2017)

7. Passmore, G.O., Paulson, L.C., de Moura, L.: Real algebraic strategies for metitarski
proofs. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 358–
370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_24

8. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

9. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

http://arxiv.org/abs/1710.05468
https://doi.org/10.1007/978-3-642-31374-5_24

VizAR: Visualization of Automated
Reasoning Proofs (System Description)

Jan Jakubův1(B) and Cezary Kaliszyk2

1 Czech Technical University in Prague, Prague, Czech Republic
jakubuv@gmail.com

2 University of Innsbruck, Innsbruck, Austria and INDRC, Prague, Czech Republic
cezary.kaliszyk@uibk.ac.at

Abstract. We present a system for the visualization of proofs originat-
ing from Automated Theorem Provers for first-order logic. The system
can hide uninteresting proof parts of proofs, such as type annotations,
translate first-order terms to standard math syntax, and compactly dis-
play complex formulas. We demonstrate the system on several non-trivial
automated proofs of statements from Mizar Mathematical Library trans-
lated to first-order logic, and we provide a web interface where curious
users can browse and investigate the proofs.

Keywords: Proof Visualization · First-Order Logic · Automated
Theorem Provers

1 Introduction

With the increasing power of Automated Theorem Proving systems (ATPs), the
size and complexity of the proofs they output are also increasing. This addi-
tionally implies that analyzing such automatically generated proofs is becoming
more daunting for users. This is of particular importance for proofs that originate
from machine-learning-guided provers. The guided version of E, ENIGMA [6] can
automatically find proofs of many theorems that have previously been provable
only with long manual proofs. A large number of such proofs have been dis-
cussed in our recent work on machine learning for Mizar [5]. To allow users
to inspect and analyze such proofs conveniently, we developed and present the
VizAR system:

http://ai.ciirc.cvut.cz/vizar/

The system can hide uninteresting parts of proofs (such as Mizar soft type
system annotations and reasoning about them), translate first-order terms to

Supported by ERC-CZ grant no. LL1902 POSTMAN and EU Regional Development
Fund under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/00004,
and Cost Action CA20111 EuroProofNet.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 303–308, 2023.
https://doi.org/10.1007/978-3-031-42753-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_22&domain=pdf
http://orcid.org/0000-0002-8848-5537
http://orcid.org/0000-0002-8273-6059
http://ai.ciirc.cvut.cz/vizar/
https://doi.org/10.1007/978-3-031-42753-4_22

304 J. Jakubův and C. Kaliszyk

standard math syntax (such as presenting Element(x, y) as x ∈ y), and com-
pactly display complex formulas. The system provides several ways to visualize
complex proofs. In the full proof view, the proof is displayed as an interactive
SVG image. In order to simplify orientation in large proofs, the system features
a conjecture-centered view which helps to identify essential proof steps. Finally,
the proof step view allows the user to interactively browse individual proof steps
and reveal the proof essence hidden in their symbols.

Related Work. There exist several tools for viewing general automatically found
proofs. One of the first generally usable visual viewers for automatically found
proofs was the LΩUI [7] viewer offered as part of the Omega system. TPTP
tools include an interactive derivation viewer IDV [8] which allows users to focus
on particular clauses in TPTP proofs and see their relation (distance) from
the axioms and the conjecture. One of the most advanced viewers for proofs is
PROOFTOOL [4] which allows viewing GAPT transformed proofs.

Urban et al. [10] have developed an online tool for Mizar that checks if partic-
ular subgoals are ATP-provable and if so views the premises (rather than proof
details as our tool does). Visualizing proof search differs quite a lot from the pre-
sentation of complete proofs and has also been investigated [3]. Hammer systems
use automated theorem provers to find proofs of conjectures in more complex
logics. The reconstruction of such ATP proofs often requires presenting them in
a more complex logic including mechanisms able to transform the conjecture to
its positive form [2]. Finally, the most advanced tools for presenting non-ATP
Mizar proofs are used to render Mizar Library articles in LATEX for the Journal
of Formalized Mathematics [1]. To our best knowledge, we are not aware of any
proof visualization tool as advanced as VizAR.

2 VizAR: The Proof Navigator

VizAR can display an arbitrary proof in the TPTP language. In addition, it
integrates extended support for proofs of Mizar statements coming from the
MPTP [9] translation of Mizar to first-order logic. A large amount of MPTP
proofs has been recently generated by ATPs (E and Vampire) with machine
learning guidance [5]. Selected proofs can be investigated on the VizAR web page.
VizAR shows the original Mizar statements for every conjecture and assumption,
and it provides links to Mizar proofs and symbol definitions.

Symbol Translation. MPTP uses its own names for Mizar symbols. VizAR uses
Unicode symbols to display terms and predicates in standard mathematical nota-
tion when possible. For example, the MPTP symbol m1_subset_1(X,Y) corre-
sponds to Mizar symbol Element(X,Y) and in VizAR it is presented as X ∈ Y .1
Another example is the MPTP symbol r2_wellord2(X,Y) corresponding to the
Mizar symbol are_equipotent(X,Y) which is written as |X| = |Y | in VizAR.
1 We use LATEX to typeset VizAR syntax in this paper. Unicode used in HTML/SVG

looks fairly close to it, with the exception of better spacing and fonts in LATEX.

VizAR: Visualization of Automated Reasoning Proofs (System Description) 305

The translation is implemented using simple templates to position arguments.
For symbols without special VizAR translations, original Mizar symbol names
are used. Mizar names are composed of various ASCII characters resembling the
standard math notation, for example, c= stands for ⊆.

Clause Visualization. ATP proofs consist of clauses with positive and negative
literals. In the VizAR syntax, clauses are displayed as sequents in order to avoid
the negation sign (∼ in TPTP). For example, the clause A | B | ∼ C | ∼ D
is considered as the logically equivalent sequent C,D ⇒ A,B. The antecedents
(left-hand side) are implicitly connected by logical and, while the consequents
(right-hand side) are implicitly connected by logical or. The sequents are visual-
ized as boxes with the content displayed vertically (top-down) as demonstrated
in Fig. 1. Clauses without negative literals (for example, A | B) are displayed
simply as A,B instead of � ⇒ A,B. Clauses without positive literals (for exam-
ple, ∼ C | ∼D) are displayed as C,D ⇒ ⊥. As an exception, a unit clause with
one negative literal is displayed as ¬A instead of A ⇒ ⊥ to save space. This is
the only case where the negation sign can be encountered in VizAR.

Clause Simplifications. MPTP first-order translations of Mizar statements
typically use soft type guard predicates to specify types of variables. A
typical clause (written as a sequent) looks as natural(X1), natural(X2) ⇒
natural(plus(X1,X2)). This states that the sum of two naturals is a natural num-
ber. To simplify the proof presentation, VizAR hides the type guards applied
to variables, and introduces a different variable symbol for each type predicate,
for example, N for natural numbers and R for real numbers. Hence the above
sequent becomes just natural(plus(N1, N2)). In the VizAR syntax, this becomes
simply (N1+N2) ∈ N as VizAR uses Unicode subscript letters to typeset variable
indices. This means that, for example, the VizAR statement N1 ∈ R should be
interpreted as “every natural number is a real number”. As a second step, all neg-
ative occurrences of type guard predicates (even with a non-variable argument)
are completely hidden. This is because they typically provide no interesting infor-
mation from the human point of view. While the first simplification preserves
all information in the clause, the second removes intuitively trivial literals but
the original clause cannot be fully reconstructed.

Proof Transformations. Proofs considered by VizAR are proofs by contradiction
because of the underlying ATP provers. The prover first negates the conjecture
and then searches for the contradiction with other assumptions. An ATP proof
in the TPTP language is a directed acyclic graph where the leaves correspond to
assumptions and all the edges can be followed to the sink node representing the
contradiction. Every inner node represents an inferred clause and the edges con-
nect premises with the inference outcome. After symbol translations and clause
simplifications, two consequent graph nodes might represent syntactically equal
clauses. For example, the Mizar statements Element(X,NAT) and natural(X) are
both represented as X ∈ N in VizAR. In these cases, to further simplify the proof

306 J. Jakubův and C. Kaliszyk

Fig. 1. Visualization of a proof step from the proof of MPTP theorem t72_newton.

graph, we unify consequent nodes labeled with the same VizAR expression and
merge their respective source and destination edges.

Proof Visualizations. VizAR uses Graphviz to render proof graphs while the
web interface is implemented by the static site generator Jekyll. VizAR web
interface provides several ways to investigate ATP proofs. In the full proof view,
the whole proof graph is displayed as an SVG image with hyperlinks. Graph
leaves corresponding to assumptions are displayed in blue and all the nodes
inferred from the negated conjecture are displayed in orange. Hence all non-
orange nodes represent statements generally valid in Mizar. Clicking on any
node takes the user to a detailed description of the corresponding proof step.

Since the full proof view might be very complex, VizAR features a conjecture-
centered view where only the statements derived from the conjecture are dis-
played. This is a subgraph of the full proof view. Additionally, for every
conjecture-related node, its non-conjecture premises used to derive this step are
displayed. This view can help the user inspect how the negated conjecture is
transformed into the contradiction. Thus, it is useful to identify the key steps of
the proof.

In the proof step view, only a single proof graph node is displayed with its
immediate parents and children. Additional information is provided about the
symbols appearing in this proof step. Again, the user can click on any of the nodes
to see the corresponding proof step view. Figure 1 shows an example proof step
in VizAR. The ATP proved the Mizar theorem t72_newton, which states that
there is no upper bound on the prime numbers. Proving this in one ATP run is
rather impressive, so we inspect the key steps leading to the contradiction. The
ATP inferred that when n!+1 ≥ 2 then n!+1 has no prime divisors less or equal
to n. We already see the instantiation found (n! + 1) and can inspect the key
reasoning steps: In the later step, this is applied to the upper bound on primes

VizAR: Visualization of Automated Reasoning Proofs (System Description) 307

assumed by the negated conjecture, which quickly leads to a contradiction since
the upper bound must be greater than 2. For the sake of presentation, we display
the ATP Skolem symbols (ski in VizAR) as primeDivisor and primeUpperBound
and hide trivially false statements (primeDivisor(..) = 0, 1).

Skolem symbols are introduced by ATPs to eliminate existential quantifiers
and they typically constitute an important part of the proof. Hence it is impor-
tant to understand their meaning and, to help the user with that, VizAR displays
their origin in the proof overview. Clicking on the axiom will take the user to
the axiom view where they will also see the original formula that gave rise to
them. The Skolem symbols are also displayed in the proof step view when some
of them are included in the step claim.

3 Conclusions and Future Work

We have developed the VizAR ATP proof visualization system and we publish
its web interface on GitHub pages with a custom domain redirect. The web
interface currently features selected ATP proofs of MPTP statements. In the
proof gallery, we present featured proofs with improved VizAR syntax for all
relevant Mizar symbols. Moreover, the other proofs section of the page contains
a large number of proofs where Mizar names are used for selected symbols.

The VizAR system can be enhanced in many ways. First, VizAR syntax
can be provided for more Mizar symbols to display statements in standard math
notations. Second, additional proof simplification rules can be applied, for exam-
ple, to hide clauses like A ⇒ A or (s = t) ⇒ (t = s). Such simplification rules
could also be detected automatically or provided interactively.

References

1. Bancerek, G., Naumowicz, A., Urban, J.: System description: XSL-based translator
of Mizar to LaTeX. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.)
CICM 2018. LNCS (LNAI), vol. 11006, pp. 1–6. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96812-4_1

2. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-
intelligible Isar proofs from machine-generated proofs. J. Autom. Reason. 56(2),
155–200 (2015). https://doi.org/10.1007/s10817-015-9335-3

3. Byrnes, J., Buchanan, M., Ernst, M., Miller, P., Roberts, C., Keller, R.: Visualizing
proof search for theorem prover development. In: UITP. ENTCS, vol. 226, pp. 23–
38. Elsevier (2008). https://doi.org/10.1016/j.entcs.2008.12.095

4. Dunchev, C., et al.: PROOFTOOL: a GUI for the GAPT framework. In: UITP.
EPTCS, vol. 118, pp. 1–14 (2012). https://doi.org/10.4204/EPTCS.118.1

5. Jakubův, J., et al.: MizAR 60 for Mizar 50. CoRR (2023). https://arxiv.org/abs/
2303.06686

6. Jakubův, J., Chvalovský, K., Olšák, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA anonymous: symbol-independent inference guiding machine (system
description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12167, pp. 448–463. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51054-1_29

https://doi.org/10.1007/978-3-319-96812-4_1
https://doi.org/10.1007/978-3-319-96812-4_1
https://doi.org/10.1007/s10817-015-9335-3
https://doi.org/10.1016/j.entcs.2008.12.095
https://doi.org/10.4204/EPTCS.118.1
https://arxiv.org/abs/2303.06686
https://arxiv.org/abs/2303.06686
https://doi.org/10.1007/978-3-030-51054-1_29
https://doi.org/10.1007/978-3-030-51054-1_29

308 J. Jakubův and C. Kaliszyk

7. Siekmann, J.H., et al.: LΩUI: Lovely Ωmega User Interface. Formal Aspects Com-
put. 11(3), 326–342 (1999). https://doi.org/10.1007/s001650050053

8. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. In: UITP.
ENTCS, vol. 174:2, pp. 109–123. Elsevier (2006)

9. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1–2), 21–43 (2006). https://doi.org/10.1007/s10817-006-9032-3

10. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

https://doi.org/10.1007/s001650050053
https://doi.org/10.1007/s10817-006-9032-3

Extending Numeric Automation
for Number Theory Formalizations

in Mizar

Adam Naumowicz(B)

Institute of Computer Science, University of Bialystok, Bialystok, Poland
adamn@math.uwb.edu.pl

Abstract. In this paper we present an experimental version of the Mizar
proof checker equipped with new built-in routines for automating com-
mon numeric computations. This implementation has been directly moti-
vated by recent formalizations of selected number theory topics that
required extensive numeric calculations and proving numerical properties
of specific numbers. The potential of automating parts of such proofs has
been evaluated and, consequently, the Mizar checker has been extended
with code that enabled refactoring the current contents of the Mizar
Mathematical Library.

Keywords: Mizar · Numeric computation · Number theory
formalization · Built-in knowledge

1 Introduction

Mizar is a proof assistant best known for its underlying proof language primar-
ily designed to closely resemble the mathematical vernacular, as well as the pio-
neering long-term development of a repository of formalized mathematics, Mizar
Mathematical Library (MML) [1], established in 1989. For several decades the
development of MML has been conducted in parallel to the evolution of the
proof checking system. The system was originally designed to be used by math-
ematicians, not programmers, and therefore the possibility of implementing its
extensions by typical users is not provided. However, various features of the
system have been implemented by the system developers in response to specific
needs that emerged during the formalization of particular theories. One of recent
formalization projects aims at encoding W. Sierpinski’s book ‘250 Problems in
Elementary Number Theory’ [14]. The initial Mizar formalizations related to
that effort were done in 2020 and the resulting dataset was presented at CICM
2020 [10]. To date, the joint formalization work resulted in developing a sequence

The processing and analysis of the Mizar library has been performed using the infras-
tructure of the University of Bialystok High Performance Computing Center (https://
uco.uwb.edu.pl).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 309–314, 2023.
https://doi.org/10.1007/978-3-031-42753-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_23&domain=pdf
http://orcid.org/0000-0003-4224-9798
https://uco.uwb.edu.pl
https://uco.uwb.edu.pl
https://doi.org/10.1007/978-3-031-42753-4_23

310 A. Naumowicz

of Mizar articles submitted to MML [3,5–8,11] which cover almost 100 of the
problems.

No deeper prior knowledge of the Mizar language and system should be
needed to follow the next sections. However, readers who would like to learn
more about Mizar are kindly referred to its brief description, ‘Mizar in a Nut-
shell’ [2]. The Mizar system distribution (containing executables and the contents
of MML) can be downloaded from the Mizar website [9]. The code used for the
work presented in the current paper is derived from the Mizar source code avail-
able on GitHub1. The pre-compiled experimental version of the Mizar checker
as well as the changed source files mentioned in the paper can be downloaded
from the Mizar website2.

2 Number Theory Automations

The current version of the Mizar checker supports direct calculations on rational
complex numbers (complex numbers with rational coefficients). Internally, the
calculations are performed by the checker for arbitrarily big values represented
as decimal-encoded strings. However, the code has not been designed to perform
intensive calculations on par with optimized dedicated calculation tools, and so
the numerals that can explicitly be input by the user cannot currently exceed the
value of the maximal signed 32-bit integer. This restriction is as a compromise
between typical user needs and the reasonable processing time of the verification
system.

The functionality is switched on by inputting the, so called, requirements
ARITHM directive [13] in the environ part of the Mizar text being developed.
Then, the Mizar checker performs polynomial elimination and accepts numeric
operations as obvious, so the users do not need to provide any justification
for the parts of their proofs based on such computations. Once the underly-
ing code was available in the checker, it offered the possibility to reuse some of
its internal routines to shorten the process of writing proofs that involve simple
number-theoretic reasoning. Some of such notions (div, mod, etc.) were identified
as prospective additions to the checker’s automation [12]. Their potential use-
fulness, however, was at that time limited by a small number of number theory
developments in the Mizar library, and so the idea was not officially implemented
in the Mizar distribution.

The situation changed considerably when there appeared more MML contri-
butions devoted to number theory. The work on formalizing the aforementioned
Sierpinski’s textbook can serve as a good example here. In the course of for-
malizing numerous facts related to elementary number theory, the authors often
needed to refer to, for instance, the basic divisibility properties of concrete (some-
times quite big) numbers, or to prove whether a particular number is prime or
not. To facilitate writing such proofs on top of the current MML, A. Kornilowicz

1 https://github.com/MizarProject/system.
2 https://mizar.uwb.edu.pl/∼softadm/int d.

https://github.com/MizarProject/system
https://mizar.uwb.edu.pl/~softadm/int_d

Extending Numeric Automation for Number Theory Formalizations in Mizar 311

of the Mizar library committee generated a set of ‘encyclopedic’ articles iden-
tifying all prime numbers in the range up to 10,0003. These articles contain a
handy set of referential facts that authors may potentially need when formaliz-
ing various theorems in number theory. However, the massive files (almost 800K
lines of Mizar text in total) cause serious performance problems, especially when
processing the whole library is required. Our extended automation is, therefore,
devised to eliminate the users’ need to directly reference facts from these articles
by making them obvious for the Mizar checker. From the point of view of end
users, the Mizar language is not complicated in any way by this extension, only
the internal implementation changes. The implementation details presented in
this work should be most useful to future developers who intend to create their
own similar extensions of the Mizar system.

3 New Directive: requirements INT D

All the presented automated notions have their definitions in two Mizar articles,
(INT 1 and INT 2), so the corresponding new library file dubbed int d.dre (‘d’
for divisibility) provides the following signature and links between respective
MML constructors and the numbers of the built-in requirement type in the
Mizar code:
<?xml version="1.0"?>
<Requirements >
<Signature >
<ArticleID name="HIDDEN"/>
<ArticleID name="INT_1"/>
<ArticleID name="INT_2"/>
</Signature >
<Requirement constrkind="K" constrnr="4" nr="35"/>
<Requirement constrkind="K" constrnr="5" nr="36"/>
<Requirement constrkind="R" constrnr="3" nr="37"/>
<Requirement constrkind="K" constrnr="7" nr="38"/>
<Requirement constrkind="K" constrnr="8" nr="39"/>
<Requirement constrkind="V" constrnr="3" nr="40"/>
</Requirements >

The values of the constrnr XML attributes represent the numbering derived
from the imported MML signature, whereas the nr attributes refer to hard-coded
requirements (in source file builtin.pas), c.f. [12].

3.1 Functors div and mod

The numeric constant calculations make use of simple routines that compute
the div and mod operations. In order to reuse them in the checker’s Equalizer
module (file equalizer.pas in the source code) as a direct implementation
of the MML notions, they must exactly match the semantics of the library defi-
nitions (including the floor operation for div and the mod 0 variant):

3 These are MML articles XPRIMET1, XPRIMES0, XPRIMES1, and XPRIMES2 available in
recent Mizar distributions.

312 A. Naumowicz

definition
let i1,i2 be Integer;
func i1 div i2 -> Integer equals :: INT_1:def 9
[\ i1 / i2 /];
func i1 mod i2 -> Integer equals :: INT_1:def 10
i1 - (i1 div i2) * i2 if i2 <> 0
otherwise 0;

end;

3.2 Functors lcm and gcd

Similarly, two operations for calculating the least common multiple and the
greatest common divisor of two integer values must match the general Mizar
definitions:
definition

let a,b be Integer;
func a lcm b -> Nat means :: INT_2:def 1
a divides it & b divides it &
for m being Integer st a divides m & b divides m holds it divides m;
func a gcd b -> Nat means :: INT_2:def 2
it divides a & it divides b &
for m being Integer st m divides a & m divides b holds m divides it;

end;

3.3 Predicate divides

The next automatized definition denotes the integer divisibility:
definition

let i1,i2 be Integer;
pred i1 divides i2 means :: INT_1:def 3
ex i3 st i2 = i1 * i3;

end;

It should be noted that such predicative definitions can be automatized using
definitional expansions [4], but then a typical proof context looks this way:

30 = 2*15;
then 2 divides 30;

Please note the lack of references in both proof steps, yet the first inference
is necessary to provide the witness for the expansion of the divides definition.
Our automation eliminates the need to input such intermediate steps what-
soever. Unlike in the case of the functor requirements mentioned before, the
implementation here requires also providing code in the Mizar’s Unifier mod-
ule (file unifier.pas) to facilitate generating clause substitutions based on the
divisibility of the available constants. In general, whenever the verifier tries to
disprove some statement quantified over two numbers with the assumption that
one is divided by the other, then any suitable pair of constants available in the
inference can serve as the substitution for unification.

Extending Numeric Automation for Number Theory Formalizations in Mizar 313

3.4 Attribute prime

The notion of primality is defined the standard way, but technically applicable
to any integer number:
definition

let p be Integer;
attr p is prime means :: INT_2:def 4
p > 1 & for n being Nat st n divides p holds n = 1 or n = p;

end;

The implemented automation saves users from having to refer to the ency-
clopedic articles of the XPRIME* collection. It might still be worthwhile that the
available proofs be maintained by the MML committee as a sort of low-level
complete proof data or for regression testing purposes.

4 Conclusions

The proposed extension of the Mizar system and library can be used by a simple
user import command in any Mizar text that develops a theory requiring exten-
sive use of integer divisibility. The usefulness of its application is clear from the
big number of automated proof steps in typical article-sized Mizar formalizations
similar to the NUMBER* series. Standard Mizar utilities (e.g., relprem) equipped
with the enhanced checker reveal hundreds of unnecessary references in the orig-
inal scripts. Note, however, that just as with the other requirements, its use
should not be imposed on the users, especially if the possibility of developing
proofs in full detail may be beneficial, for instance, for didactic purposes.

References

1. Bancerek, G., et al.: The role of the Mizar Mathematical Library for interactive
proof development in Mizar. J. Autom. Reason. 61(1–4), 9–32 (2018)

2. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reason. 3(2), 153–245 (2010)

3. Grabowski, A.: Elementary number theory problems. Part VI. Formaliz. Math.
30(3), 235–244 (2022)

4. Kornilowicz, A.: Definitional expansions in Mizar - In memoriam of Andrzej Try-
bulec, a pioneer of computerized formalization. J. Autom. Reason. 55(3), 257–268
(2015)

5. Kornilowicz, A., Surowik, D.: Elementary number theory problems. Part II. For-
maliz. Math. 29(1), 63–68 (2021)

6. Kornilowicz, A.: Elementary number theory problems. Part III. Formaliz. Math.
30(2), 135–158 (2022)

7. Kornilowicz, A.: Elementary number theory problems. Part IV. Formaliz. Math.
30(3), 223–228 (2022)

8. Kornilowicz, A., Naumowicz, A.: Elementary number theory problems. Part V.
Formaliz. Math. 30(3), 229–234 (2022)

9. Mizar Homepage. https://mizar.uwb.edu.pl. Accessed 10 Apr 2023

https://mizar.uwb.edu.pl

314 A. Naumowicz

10. Naumowicz, A.: Dataset description: formalization of elementary number theory
in Mizar. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol.
12236, pp. 303–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53518-6 22

11. Naumowicz, A.: Elementary number theory problems. Part I. Formaliz. Math.
28(1), 115–120 (2020)

12. Naumowicz, A.: Evaluating prospective built-in elements of computer algebra in
Mizar. In: Matuszewski, R. Zalewska, A. (eds.): From Insight to Proof: Festschrift
in Honour of Andrzej Trybulec, Studies in Logic, Grammar and Rhetoric 10(23),
191–200 (2007)

13. Naumowicz, A., Byliński, C.: Improving Mizar Texts with Properties and Require-
ments. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol.
3119, pp. 290–301. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27818-4 21

14. Sierpinski, W.: 250 Problems in Elementary Number Theory. Elsevier, Amsterdam
(1970)

https://doi.org/10.1007/978-3-030-53518-6_22
https://doi.org/10.1007/978-3-030-53518-6_22
https://doi.org/10.1007/978-3-540-27818-4_21
https://doi.org/10.1007/978-3-540-27818-4_21

Extracting Theory Graphs
from Aldor Libraries

Florian Rabe1(B) and Stephen M. Watt2

1 Computer Science, University of Erlangen-Nuremberg, Erlangen, Germany
florian.rabe@fau.de

2 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada

smwatt@uwaterloo.ca

Abstract. Aldor is a programming language for computer algebra that
allows natural expression of algebraic objects while also allowing compi-
lation to efficient code. Its language primitives, however, do not corre-
spond exactly to those of modern proof assistants nor to those of data
formats used in mathematical knowledge management. We discuss these
difficulties and export the Aldor library as a diagram in the category of
theories and theory morphisms, using a simplified model of the Aldor
language that retains its essential expressivity. This allows us to capture
a rich set of expert-designed interfaces for use in mathematical knowledge
management settings.

1 Background

Aldor emerged from the Scratchpad II project at IBM Research, developed as
a generalization of a language first described in [3] and known first as A� [9],
and the Axiom Library Compiler before its release as Aldor as an independent
package. Types are run-time values, with run time domains providing abstract
data types, and categories qualifying domains by requiring certain operations or
properties. The application to symbolic mathematical computation influenced
the design to use dependent types pervasively, conditional run-time category
membership, and ex post facto type extension [7,8].

Theory graphs are categorical diagrams of theories using truth-preserving
compositional interpretations as morphisms between theories. They are an
important language-independent tool for high-level knowledge representation,
interrelating diverse constructs, and modular theory development [2]. A critical
choice in the design of formal languages for mathematics is whether theories and
morphisms are provided by a meta-layer formalism (which is always possible
and relatively straightforward) or built into the language as first-class objects
(which greatly increases both expressivity and complexity). For mathematical
knowledge, the built-in design is very appealing because it enables using theories
as the types of mathematical structures, thus elegantly capturing mathematical
practice. Thus, many systems choose it, including Aldor. But the meta-layer

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 315–320, 2023.
https://doi.org/10.1007/978-3-031-42753-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42753-4_24&domain=pdf
https://doi.org/10.1007/978-3-031-42753-4_24

316 F. Rabe and S. M. Watt

design is superior for integrating developments across different languages, sys-
tems, and libraries because they can share the theory layer, which provides
exactly the interfaces needed for interoperability. This poses a recurring chal-
lenge for the integration of mathematical software systems.

In this paper, we present (i) a system for translating Aldor libraries into the
language-independent theory graph formalism provided by Mmt [6], and (ii) the
data obtained by translating the available Aldor libraries in this way. The result
comprises 440 theories and morphisms. This is valuable because (i) it makes the
(so far unpublished) Aldor libraries accessible to the general community and (ii)
provides insights into the general issue of connecting the built-in and meta-layer
design choices. In particular, our work can serve as a starting point for porting
the Aldor library to or as an interface for integrating Aldor computations in
other mathematical software systems.

2 Modeling Aldor in MMT

As a running example we use the definition in Fig. 1, based on
∑it [1]. Here the

function ResidueClassRing takes two arguments R and p and returns a theory

Fig. 1. ResidueClassRing in Aldor

(called a category in Aldor).
Theories are used as types
akin to record types, and their
elements (called domains in
Aldor) provide definitions for
all abstract fields of the cate-
gory. Each Aldor domain pro-
vides a representation type
(written %), which corre-
sponds to a carrier set. The
name of a domain doubles
as a reference to that repre-
sentation type, mimicking the
mathematical practice of using the same name for a structure and its carrier.
Here R is a domain, typed by a previously defined category, and p is an element
of the carrier of R.

The category is defined to extend the category CommutativeRing with sev-
eral declarations. Critically, Aldor allows conditional declarations: if R addi-
tionally has category EuclideanDomain (an extension of CommutativeRing),
then ResidueClassRing is defined to also declare symmetricPreImage, and if
R additionally has category SourceOfPrimes, ResidueClassRing is defined to
also include the category Field. For example, ResidueClassRing(Integer, 7)
extends Field with all three listed operations because the domain Integer has
those two categories.

Extracting Theory Graphs from Aldor Libraries 317

Representing Aldor Primitives. We use a manually written Mmt theory
Aldor to declare the about 30 primitive operators of Aldor.1 The theory Aldor
occurs as the governing language (called meta-theory in Mmt) of all theories we
generate from Aldor libraries.

For simplicity, we have not formalized Aldor in a logical framework, instead
we declare it directly as a primitive language in Mmt. Therefore, the constants
in Aldor are untyped and provide only notations (via the # symbol). For exam-
ple, we declare an operator Qualify # L1 $ 2 for Aldor’s primitive operation
modularRep $ C of accessing the field modularRep of some domain variable C of
category ResidueClassRing. Mmt’s notation language is expressive enough to
mimic many details of Aldor’s concrete syntax such as the $-notation for qual-
ified names. These Mmt constants occur as the heads of the Mmt expressions
representing Aldor expressions. For example, we export the expression above as
the following Mmt object (here given in OpenMath XML syntax):

<OMA><OMS cd="aldor" name="Qualify"/>

<OMS cd="ResidueClassRing" name="modularRep"/><OMV name="C"/></OMA>.

Interpreting Categories and Domains as Theories and Morphisms.
Category-valued Aldor functions become parametric theories in Mmt. For exam-
ple, Fig. 2 shows the HTML+MathML rendering produced by Mmt from our
export of our example theory. The two kinds of declarations in Aldor categories
(typed constants and category extensions) can be directly represented using the
analogous features of Mmt.

If a domain is declared at top level, it can be seen as a theory morphism
from its type (which must be a category and thus be represented as an Mmt
theory) to the empty theory, i.e., the Mmt theory Aldor. More generally, a
domain-returning function can be represented as a theory morphism into the

Fig. 2. ResidueClassRing in MMT

anonymous Mmt theory
declaring the function’s argu-
ments. If the type of a domain
is the union of some Aldor
categories, the domain of the
Mmt morphism is the corre-
sponding union of Mmt the-
ories. If the type is an anony-
mous category, we generate
a name for it and add it
to the Mmt theory graph.
Finally, Aldor allows domains
typed by an anonymous cate-
gory and no definiens; this is
Aldor’s way of grouping stat-
ically available constants. We represent such domains as Mmt theories.

1 This theory can be found at https://gl.mathhub.info/aldor/language/.

https://gl.mathhub.info/aldor/language/

318 F. Rabe and S. M. Watt

The Implicit Carrier Type. The type % is built into every Aldor category
and treated specially by the system. We represent this in Mmt by manually
writing a special theory Carrier that declares only a type %. This theory is then
included by every theory generated from an Aldor category. In Fig. 2, this include
is not present explicitly because it is already inherited from CommutativeRing
by composition of inclusions.

Each domain must define the name Rep to define the carrier set. In the
language of theory graphs, this is simply the assignment to the constant %, and
we translate it accordingly in the Mmt theory morphism. To represent the Aldor
type system correctly, we have to add a coercion rule that turns every use of an
Aldor domain R in a position where a type is expected into the expression %$R.

Categories as Types. Contrary to Aldor categories, Mmt theories cannot be
meaningfully used as types directly. In fact, Mmt does not impose any type
system at all. Instead, it is the task of the meta-theory to declare appropriate
constants and typing rules. We have previously presented a solution for using
theories as types in [5], and we follow the same approach here: the constant
Category of the theory Aldor serves as the type of categories, and we provide
the rules

theory T includes Carrier

T : Category
c : Category

c : type

to turn each category (including those that are created dynamically) into a type.
Thus, we can represent the type of the variable R in the running example simply
as an OpenMath object referencing the theory ResidueClassRing.

Conditional Declarations. Mmt does not allow for conditional declarations,
and intentionally so because that makes it statically undecidable what the names
provided by a theory are. We found two novel solutions to encode Aldor’s con-
ditional declarations that will have to be evaluated in the future.

First, we extend our representation of Aldor’s type system with a
propositions-as-types principle and represent the condition as an additional argu-
ment. For example, in Fig. 2 the condition of the constant symmetricPreImage
is represented by the type � R Has EuclidenDomain (which uses Aldor’s built-
in operator Has for testing if a domain implements a category). This requires
providing a proof every time the constant is used. In Aldor these proof obli-
gations are discharged by direct computation, which amounts to a very simple
sound-but-incomplete theorem prover. Therefore, we do not synthesize proof
terms for them and instead generate a placeholder for an unknown subterm to
be reconstructed by the reusing application.

Extracting Theory Graphs from Aldor Libraries 319

This approach does not work for conditional includes though. Therefore, we
developed a second solution that is more involved but would also be applicable to

Fig. 3. ResidueClassRing theory graph fragment

for every conditional declara-
tion, we produce a nested the-
ory that declares first the con-
dition as an axiom and then
the actual declaration. For
example, in Fig. 2 the inclu-
sion of Field is guarded by
the conjunction of the two
conditions in whose scope it
occurs. We need to generate a
name for this new theory, and
we use some heuristics to pick
a helpful name for it, in this
case EuclideanDomain. Now
given a proof of the condi-
tion, we can construct a the-
ory morphism from the nested
theory into its parent, via which the conditional declarations can be accessed.

Representing Aldor Libraries as MMT Theory Graphs. The Aldor dis-
tribution includes six libraries, but we focus on the two that have the most reuse
value: the base library and the algebra library. We follow the best practice [4]
of exporting a system-near export that is then imported into the target sys-
tem using a general purpose data format (in our case: Lisp S-expressions) as
an intermediate representation. We have adapted the Aldor compiler to produce
the intermediate representation (as one .axy file for each of the 321 Aldor source
files available), and we have written an Mmt import tool that implements the
representation described above. The (very verbose) intermediate representation
makes up 360 MB (18 MB gzipped). This yields 440 Mmt theories and mor-
phisms, written out as OMDoc files totaling 0.5 MB, which is similar in size to
the zipped Aldor sources. The import time is on the order of 1 minute on mod-
ern laptops. A fragment of the resulting theory graph is shown in Fig. 3. Here
the conditional inclusion from our running example would appear as an edge
from Field to ResidueClassRing/EuclideanDomain, which our theory graph
layouting algorithm currently places it outside of the screenshot. We have also
generated many smaller graphs representing individual parts of the library.We
are able to release the generated .axy and OMDoc files and theory graphs.
These are available at https://gl.mathhub.info/aldor/distribution and can be
regenerated by running Mmt.

https://gl.mathhub.info/aldor/distribution

320 F. Rabe and S. M. Watt

3 Conclusions and Future Work

We have seen that the algebraic framework of the Aldor language and libraries
carries over in a natural way to Mmt theories. Certain language features, includ-
ing conditional categories and ex post facto extensions appear to be useful more
generally and we anticipate incorporating these in Mmt.

References

1. Bronstein, M.:
∑IT —a strongly-typed embeddable computer algebra library. In:

Calmet, J., Limongelli, C. (eds.) DISCO 1996. LNCS, vol. 1128, pp. 22–33. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61697-7 2

2. Farmer, W.M., Guttman, J.D., Javier Thayer, F.: Little theories. In: Kapur, D. (ed.)
CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55602-8 192

3. Jenks, R.D., Trager, B.M.: A language for computational algebra. ACM SIGPLAN
Not. 16(11), 22–29 (1981)

4. Kohlhase, M., Rabe, F.: Experiences from exporting major proof assistant libraries.
J. Autom. Reason. 65(8), 1265–1298 (2021)

5. Müller, D., Rabe, F., Kohlhase, M.: Theories as types. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 575–590. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 38

6. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)
7. S.M. Watt. Handbook of Computer Algebra, chapter 4.1.3 Aldor, pp. 265–270.

Springer, Cham (2003). https://doi.org/10.1007/978-3-642-55826-9 4
8. Watt, S.M.: Post facto type extension for mathematical programming. In: Proceed-

ings of Domain-Specific Aspect Languages, pp. 26–31. SIGPLAN, ACM, October
2006

9. Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Steinbach, J.M., Sutor, R.S.:
A first report on the A� compiler. In: Proceedings of ISSAC, pp. 25–31. ACM, July
1994

https://doi.org/10.1007/3-540-61697-7_2
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1007/978-3-319-94205-6_38
https://doi.org/10.1007/978-3-642-55826-9_4

System Entry

GeoGebra Discovery

Christopher W. Brown1, Zoltán Kovács2(B), Tomás Recio3, Róbert Vajda4,
and M. Pilar Vélez3

1 United States Naval Academy, Annapolis, USA
2 PHDL Linz, Linz, Austria
zoltan@geogebra.org

3 Nebrija University, Madrid, Spain
4 JKU Linz, Linz, Austria

Description. GeoGebra is a dynamic mathematics software tool for all levels
of education, that brings together geometry, algebra, spreadsheets, graphing,
statistics and calculus. GeoGebra Discovery (GD) is an experimental version of
GeoGebra, dealing with automated reasoning in elementary geometry. It con-
tains some features that are under heavy development and therefore they are
not yet included in the official GeoGebra version.

GD can be found at https://github.com/kovzol/geogebra-discovery.

Applications. Among other improvements, GD includes a set of either new or
enhanced (w.r.t. the standard GeoGebra version) Automated Reasoning Tools
for elementary geometry, which is a set of commands like ProveDetails, Prove,
Compare, Relation, LocusEquation, Envelope, Discover, StepwiseDiscovery
and Plot2D. These commands allow proving planar geometry statements via a
portfolio of provers, and to visualize the locus or envelope equations. Also a
point-based discovery is available, either in a casual run, or in a continuous
setup. Planar curves can be (topologically) faithfully plotted, including them for
real-time parametrized animations.

Changes from Previous Version. See [1] for a report on a former version.
Now an updated implementation of the ProveDetails command is included
which allows the user to mechanically prove, among others, geometric inequalities
on a planar construction. GD exploits the free availability and comparable speed
of the Tarski software system to manipulate Tarski formulas (logical connectives
of semi-algebraic formulas), in particular, the relevant case of those that contain
only existential quantifiers. This facilitates the new version to consider a more
delicate classification of truth can be obtained, similarly to the notion of “truth
on parts” or “truth on components” in complex algebraic geometry.

Reference

1. Brown, C.W., Kovács, Z., Recio, T., Vajda, R., Pilar Vélez, M.: Is computer algebra
ready for conjecturing and proving geometric inequalities in the classroom? Math.
Comput. Sci. 16, 31 (2022)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, p. 323, 2023.
https://doi.org/10.1007/978-3-031-42753-4

https://github.com/kovzol/geogebra-discovery
https://doi.org/10.1007/978-3-031-42753-4

Author Index

A
Appel, Andrew W. 206
Aransay, Jesús 37
Ayala-Rincón, Mauricio 53

B
Bayer, Jonas 69
Benzmüller, Christoph 69
Berges, Marc 84
Betzendahl, Jonas 84
Bindel, David 206
Brown, Christopher W. 323

C
Caminati, Marco B. 98
Chugh, Abhishek 84
Corless, Robert M. 113

D
Davenport, James Harold 255

F
Fernández, Maribel 53

G
Gangwar, Neeraj 130
Gonus, Alexey 69

H
Hammer, Henry 285
Heisinger, Simone 291
Hester, John 297
Hitaj, Briland 237, 297
Huch, Fabian 142

J
Jakubův, Jan 303
Jeannin, Jean-Baptiste 206
Jeffrey, David J. 113

K
Kaliszyk, Cezary 303
Kani, Nickvash 130
Kellison, Ariel E. 206
Kharim, Aabid Seeyal Abdul 158
Kohlhase, Michael 84, 190
Kovács, Zoltán 323
Kutsia, Temur 53

L
Lambán, Laureano 37
Lohr, Dominic 84

M
Müller, Dennis 84

N
Nantes-Sobrinho, Daniele 53
Naumowicz, Adam 309
Noda, Nanako 285

O
Owre, Sam 237, 297

P
Passmore, Grant 297
Paulson, Lawrence C. 3
Prathamesh, T. V. H. 158

Q
Quemener, Maena 237

R
Rabe, Florian 174, 315
Rajiv, Shweta 158
Recio, Tomás 323
Rubio, Julio 37

S
Schaefer, Jan Frederik 190
Scott, Dana S. 69

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
C. Dubois and M. Kerber (Eds.): CICM 2023, LNAI 14101, pp. 325–326, 2023.
https://doi.org/10.1007/978-3-031-42753-4

https://doi.org/10.1007/978-3-031-42753-4

326 Author Index

Seidl, Martina 16, 291
Shakoori, Azar 113
Shallit, Jeffrey 270
Shankar, Natarajan 237, 297
Silva, Gabriel Ferreira 53
Stathopoulos, Yiannos 142
Stone, Christopher A. 285

T
Tekriwal, Mohit 206

V
Vajda, Róbert 323
Vélez, M. Pilar 323
Vyas, Rishi 158

W
Watt, Stephen M. 315
Weber, Franziska 174
Wieser, Eric 222

Y
Yeh, Eric 237, 297

	 Preface
	 Organization
	Abstracts of Invited Talks
	 Progress on Proof System Interoperability
	 How Can We Make Trustworthy AI?
	 Contents

	Invited Talks
	Large-Scale Formal Proof for the Working Mathematician—Lessons Learnt from the ALEXANDRIA Project
	1 Introduction
	2 A Brief Prehistory of the Formalisation of Mathematics
	3 ALEXANDRIA: Warmup Formalisation Exercises
	4 Advanced Formalisations
	5 Seriously Deep Formalisation Projects
	5.1 Szemerédi's Regularity Lemma and Roth's Theorem on Arithmetic Progressions
	5.2 Additive Combinatorics
	5.3 Other Formalisation Projects
	5.4 On Legibility of Formal Proofs

	6 Library Search and Machine Learning Experiments
	7 Evaluation
	8 Conclusions
	References

	Never Trust Your Solver: Certification for SAT and QBF
	1 Introduction
	2 Preliminaries
	3 Certification for SAT
	3.1 CDCL-Based SAT Solving
	3.2 Certificates Based on Resolution
	3.3 Certificates Based on Reverse Unit Propagation
	3.4 Certificates Based on Resolution Asymmetric Tautologies

	4 Certification for QBF
	4.1 Certificates Based on Q-Resolution
	4.2 Certificates Based on Exp+Res
	4.3 Certificates Based on QRAT

	5 Conclusion
	References

	Regular Papers
	Evasiveness Through Binary Decision Diagrams
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions, BDDs, Evasiveness
	2.2 Alexander Dual, Dismantling

	3 Ligneous Boolean Functions
	4 Dismantlable Implies Ligneous
	5 Formalisation in Isabelle/HOL
	6 Conclusions and Further Work
	References

	Nominal AC-Matching
	1 Introduction
	2 Background
	2.1 Nominal Terms, Permutations and Substitutions
	2.2 Freshness and -Equality
	2.3 Solution to Quintuples and Additional Notation

	3 Algorithm
	3.1 Functions chooseEq and decompose
	3.2 Handling Freshness Constraints - Functions freshSubs? and fresh?
	3.3 The Function applyACStep
	3.4 An Example of First-Order AC-Unification and How We Adapted It to the Nominal Setting

	4 Formalisation
	4.1 Nice Inputs
	4.2 Termination
	4.3 Soundness
	4.4 Completeness

	5 Towards a Nominal AC-Unification Algorithm
	6 Conclusion and Future Work
	References

	Category Theory in Isabelle/HOL as a Basis for Meta-logical Investigation
	1 Introduction
	2 Category Theory from a Free Logic Perspective
	2.1 Free Logic and Its SSE into Isabelle/HOL
	2.2 Formalization of Axiomatic Category Theory

	3 Formalization of Elementary Topoi
	4 Formalization of the Categorical Model of IMLL
	4.1 IMLL and Its Categorical Model
	4.2 Isabelle/HOL Formalization of the IMLL Categorical Model

	5 Conclusions
	References

	Learning Support Systems Based on Mathematical Knowledge Management
	1 Introduction
	2 Assembling an Educational Dialogue
	3 The VoLL-KI ALeA System
	3.1 The Learning Object Server (LOS)
	3.2 The Learner Model Server (LMS)
	3.3 The Course Fragment Server (CFS)

	4 The Rhetoric/Didactic Model
	5 Conclusion, Evaluation, and Future Work
	References

	Isabelle Formalisation of Original Representation Theorems
	1 Introduction
	2 Event Structures and Full Graphs
	2.1 Event Structures
	2.2 Full Graphs

	3 Connecting ES's and FGs
	4 Formalisation and Verification: Introduction
	5 Formalisation and Verification: Proof Structure for bijection
	6 Formalisation and Verification: Proof Structure for representation
	6.1 Proof of main2
	6.2 Proof of main1

	7 The Formalisation Process
	8 Conclusions
	References

	Teaching Linear Algebra in a Mechanized Mathematical Environment
	1 Overview
	1.1 Active Learning in a Mechanized Environment
	1.2 How to Teach with Technology
	1.3 What to Teach, When Technology Is Involved
	1.4 Outline of the Paper

	2 Tools
	2.1 Proprietary Tools
	2.2 Free Software
	2.3 Visualization
	2.4 Programming

	3 Topics
	3.1 The Language of Matrices
	3.2 Parametric Linear Algebra
	3.3 Factoring Matrices
	3.4 Determinant
	3.5 Eigenvalues and Floating-Point
	3.6 Special Matrices
	3.7 Proof and Formal Methods

	4 Assessment
	5 Promoting Agreement on Syllabus Change
	6 Concluding Remarks
	References

	Highlighting Named Entities in Input for Auto-formulation of Optimization Problems
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experiments
	4.1 Dataset
	4.2 Training Details
	4.3 Evaluation Metrics
	4.4 Results
	4.5 Error Analysis
	4.6 Ablation Study

	5 Datasets Without Labeled Named Entities
	5.1 Noisy Named Entities
	5.2 Results
	5.3 Generality of the Proposed Approach

	6 Conclusion
	References

	Formalization Quality in Isabelle
	1 Introduction
	2 Code Quality in Software Engineering
	3 Analysis of Formalization Quality
	3.1 Maintenance Effort
	3.2 Lints and Formalization Structure
	3.3 Comparison with Perceived Quality

	4 Discussion
	4.1 Limitations
	4.2 Future Work

	1 Graph Features
	2 Large Language Model Analysis
	References

	Formalizing Free Groups in Isabelle/HOL: The Nielsen-Schreier Theorem and the Conjugacy Problem
	1 Introduction
	2 Mathematical Preliminaries
	3 Formalisation of Basic Constructions
	4 The Word and Conjugacy Problems for Free Groups
	5 The Nielsen-Schreier Theorem
	6 Discussion
	7 Related Works
	8 Conclusions and Future Work
	References

	Morphism Equality in Theory Graphs
	1 Introduction and Related Work
	2 Preliminaries
	2.1 LF-Expressions
	2.2 Theory Graphs in MMT

	3 Propositional Equality of LF-Expressions
	4 Propositional Equality of MMT-Morphisms
	5 Case Studies
	6 Conclusion and Future Work
	References

	Towards an Annotation Standard for STEM Documents
	1 Introduction
	2 Related Work
	3 Accumulating Semantic Information
	4 The Document Corpus
	5 Annotations as RDF Triples
	5.1 Annotation Targets
	5.2 Annotation Bodies
	5.3 Discontinuous Targets
	5.4 Querying Annotations with SPARQL

	6 SpotterBase
	6.1 JSON Serialization of Annotations
	6.2 Document Narrative Model
	6.3 Document Pre-processing

	7 Datasets, Spotters and Experiences
	8 Conclusion, Ongoing and Future Work
	References

	Verified Correctness, Accuracy, and Convergence of a Stationary Iterative Linear Solver: Jacobi Method
	1 Introduction
	2 Overview of Iterative Methods and Our Proof Structure
	3 Parametric Models and Proofs; Important Constants
	4 Forward Error Bound for Dot Product
	5 Jacobi Forward Error
	6 Convergence Guarantee: Absence of Overflow
	7 An Efficient and Correct C Program
	7.1 Sparse Matrix-Vector Multiply
	7.2 Jacobi Iteration

	8 The Main Theorems, Residuals, and Stopping Conditions
	9 Related Work
	10 Conclusion and Future Work
	References

	Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies
	1 Introduction
	2 Types of Structure Inheritance
	2.1 Flat Structures
	2.2 Nested Structures

	3 Typeclasses Depending on Typeclasses
	3.1 Equality of Typeclass Arguments
	3.2 Inequality of Typeclass Arguments
	3.3 Impact of the Inheritance Strategy
	3.4 Other Examples in mathlib

	4 Mitigation Strategies
	4.1 Perform -Reduction of Structures in the Kernel
	4.2 Use ``Flat'' Inheritance
	4.3 Carefully Select ``Preferred'' Paths
	4.4 Ban Non-root Structures in Dependent Arguments

	5 Implications for Packed Structures
	6 Related Work
	7 Conclusion
	References

	CoProver: A Recommender System for Proof Construction*-1pc
	1 Introduction
	2 CoProver Overview
	3 Data Generation
	4 Command Prediction
	5 Lemma Retrieval
	6 Experiments and Results
	6.1 Command Prediction
	6.2 Lemma Retrieval

	7 Related Work
	8 Conclusions
	References

	Project and Survey Papers
	Proving an Execution of an Algorithm Correct?
	1 Introduction
	2 SAT Solving
	3 Polynomial Factorisation
	3.1 Univariate Polynomials
	3.2 Comments on Research Question 2
	3.3 Multivariate Polynomials

	4 Integration ``in Closed Form''
	4.1 What Exactly Do We Mean?
	4.2 The Algebraic Theory of Integration ch17Ritt1948,ch17Ritt1950
	4.3 Liouville's Principle ch17Liouville1835,ch17Ritt1950
	4.4 Risch's Idea ch17Risch1969a
	4.5 Producing a Proof of

	5 Real Geometry and Quantifier Elimination
	5.1 Real Quantifier Elimination
	5.2 The [Sampled] Cylindrical Algebraic Decomposition Algorithm
	5.3 Challenges with Cylindrical Algebraic Decomposition
	5.4 Proving Cylindrical Algebraic Decomposition Correct
	5.5 Solving Problem 6 via CAD

	6 Cylindrical Algebraic Coverings (CAC)
	6.1 The Algorithm
	6.2 How Might a CAC Be Verifiable?

	7 Conclusions
	References

	Proving Results About OEIS Sequences with Walnut
	1 Introduction
	2 What is Walnut?
	3 An Example
	4 A More Serious Example
	5 How Does Walnut Work?
	6 Another Example
	7 Proving Conjectures by Guessing the Automaton
	8 Other Capabilities of Walnut
	9 Common Mistakes When Using Walnut
	10 Tips for Using Walnut
	11 A Final Word
	References

	System and Dataset Descriptions
	ProofLang: The Language of arXiv Proofs
	1 Introduction
	2 Constructing the ProofLang Corpus
	3 Experimenting with the Corpus
	3.1 Identifying Collocations
	3.2 Testing the NLTK Part-of-Speech Tagger

	4 Conclusion and Future Work
	References

	True Crafted Formula Families for Benchmarking Quantified Satisfiability Solvers
	1 Introduction
	2 Preliminaries
	3 Two Families of True Formulas
	4 Evaluation
	5 Conclusion
	References

	An Augmented MetiTarski Dataset for Real Quantifier Elimination Using Machine Learning
	1 Introduction
	2 The Proposed MetiTarski Dataset Setup
	2.1 MetiTarski Datasets
	2.2 Feature Engineering and Labeling
	2.3 Models

	3 Evaluation
	4 Conclusion
	References

	VizAR: Visualization of Automated Reasoning Proofs (System Description)
	1 Introduction
	2 VizAR: The Proof Navigator
	3 Conclusions and Future Work
	References

	Extending Numeric Automation for Number Theory Formalizations in Mizar
	1 Introduction
	2 Number Theory Automations
	3 New Directive: requirements INT_D
	3.1 Functors div and mod
	3.2 Functors lcm and gcd
	3.3 Predicate divides
	3.4 Attribute prime

	4 Conclusions
	References

	Extracting Theory Graphs from Aldor Libraries
	1 Background
	2 Modeling Aldor in MMT
	3 Conclusions and Future Work
	References

	System Entry
	GeoGebra Discovery
	Reference

	Author Index

