
Spectrum-Based Statistical Methods
for Directed Graphs with Applications

in Biological Data

Victor Chavauty Villela, Eduardo Silva Lira, and André Fujita(B)
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Abstract. Graphs often model complex phenomena in diverse fields,
such as social networks, connectivity among brain regions, or protein-
protein interactions. However, standard computational methods are
insufficient for empirical network analysis due to randomness. Thus, a
natural solution would be the use of statistical approaches. A recent
paper by Takahashi et al. suggested that the graph spectrum is a good
fingerprint of the graph’s structure. They developed several statistical
methods based on this feature. These methods, however, rely on the
distribution of the eigenvalues of the graph being real-valued, which is
false when graphs are directed. In this paper, we extend their results
to directed graphs by analyzing the distribution of complex eigenvalues
instead. We show the strength of our methods by performing simula-
tions on artificially generated groups of graphs and finally show a proof
of concept using concrete biological data obtained by Project Tycho.
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1 Introduction

We often use graphs to model interactions between objects. Some examples
include the functional connectivity of brain regions [4], social interactions [18],
molecular interactions [2], and gene regulations [1].

Once we model these natural phenomena using graphs, it becomes of signif-
icant interest to discriminate graphs of two or more populations or make infer-
ences [10]. For instance, suppose three patient groups were assigned different
treatments for a neurochemical condition. By examining each patient’s resting
state magnetic resonance imaging (MRI) scans, can we discern whether there is
a notable distinction among the administered drugs?

Traditional computation methods rely on the search for an isomorphism
between graphs or sub-graphs, which are prone to failure when randomness is
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applied to the graphs [9]. Because of this nature, these methods are unfit for
usage in biological data, where intrinsic randomness is expected [10].

An alternative technique is to compare graph features, such as the number
of nodes and edges, and, particularly, centrality measures, such as closeness and
betweenness [8]. These centrality measures are estimated and then used as input
in standard statistical methods. Although this is a step up from the previous
techniques, centrality measures can under-represent variability between graphs.
Take, for example, two graphs obtained from the Watts-Strogatz model. Even
if distinct rewiring probabilities are used, they still present the same centrality
measure since the number of edges does not change [10].

In 2017, Takahashi et al. [12] proposed that the graph spectrum is a good
feature for describing the graph structure. They used the Kullback-Leibler and
Jensen-Shannon divergences between spectral distributions to measure the dis-
tance between graphs. Using this concept, they constructed tools for 1. model
selection; 2. a parameter estimator for random graph models; 3. a statistical test
to compare two sets of graphs. More recently, these ideas have been used to create
a concept of correlation [11]/causality [15] between graphs and spectrum-based
clustering algorithms for complex networks [14].

One limitation of this work is that it is limited to undirected graphs whose
eigenvalues are all real-valued. However, many empirical graphs are directed. A
solution would be to symmetrize the graph. The problem is that we usually lose
the directionality information, or it vastly influences the spectrum distribution.

In this paper, we extend the results of Takahashi et al. for directed graphs.
Our ANOVA-like approach can distinguish between groups of directed graphs
obtained from distinct populations. Also, we apply it to actual biological data
for illustration.

2 Materials

2.1 Graphs

A graph G consists of a pair (N,E), where N is a set of nodes, and E is a set
of edges connecting a pair of nodes of G.

We call a graph weighted if every edge between two nodes i and j is associated
with a complex value ei,j ∈ C. In contrast, in non-weighted graphs, an edge
between two nodes i and j will assume 1 if i and j are connected or 0 otherwise.

A graph is said to be undirected if, for every pair of nodes i and j, the
edges ei,j and ej,i connecting i to j, and j to i respectively, are equal. That is:
ei,j = ej,i. Otherwise, it is undirected.

Given a graph G with n nodes, we define its adjacency matrix AG as the
matrix AG = (ei,j)i,j=1,...,n, where ei,j is the value associated with the edge
connecting node i and node j. Note that the adjacency matrix of an undirected
graph is symmetric.

The spectrum of a graph G is the set of eigenvalues of its adjacency matrix
AG. If G is directed, its adjacency matrix is non-symmetrical. Therefore its
eigenvalues are complex-valued.
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2.2 Spectral Distribution

A random graph g is a family of graphs whose members are generated by some
probability law. For example, we construct an Erdös-Rényi random graph by
connecting two nodes with probability p.

We define the complex Dirac delta as the measure δC satisfying for every
compactly supported continuous function f :

∫
C

f(x)δC{dx} = f(0).

Alternatively, we construct the complex Dirac delta function as the product
of the 1-dimensional Dirac delta in two variables (the real and the imaginary
variables). That is:

δC(a + bi) = δ(a)δ(b).

Let g be a directed random graph generated by some probability law. Then
its complex eigenvalues Δ form random vectors. Let brackets 〈〉 indicate expec-
tations concerning the probability law. Then we define the spectral distribution
of the directed random graph g as

ρg(λ) = lim
n→∞〈 1

n

n∑
j=1

δC(λ − λj√
n

)〉.

This distribution is highly correlated with distinct features of the graph. We
can use it as a fingerprint of the random graph g [10].

2.3 Calculating the Graph Spectrum

Estimating the spectral distribution of a directed random graph is performed
under a similar procedure as for the undirected case [10].

Since the spectral density ρg is unknown, we need an estimator ρ̂g. We ini-
tially compute the eigenvalues λ1, . . . , λn of the graph’s adjacency matrix g and
apply a multivariate kernel regression [6]. We divide the resulting 2-dimensional
surface by the volume under the curve to ensure the final volume is one (proba-
bility function).

2.4 Statistical Distance

The spectrum distribution is the distribution of complex eigenvalues of a graph
model. We are interested in using it as a fingerprint of the model so that by
comparing the spectrum of two different random graph models, we can establish
a certain distance between them. Similarly, we can compare the spectrum of
a graph to the spectrum distribution of a random graph model and obtain a
measure of how far apart the graph is from being generated from that specific
model.
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To compare these distributions, we will be using the Kullbeck-Leibler diver-
gence [13]. The Kullbeck-Leibler divergence is a statistical distance measuring
how a probability distribution differs from a second distribution. For two prob-
ability densities p and q, the Kullbeck-Leibler divergence is defined as

D(p, q) =
∫
C

p(x) log
(

p(x)
q(x)

)
dx

2.5 Random Graph Models

Graphs can often model very complex phenomena, and it is often impossible to
establish how a graph was formed when dealing with biological data. Besides,
it is difficult to establish whether two graphs are similar simply by analyzing
their structures. Thus, one idea is to imagine these graphs resulting from a
probabilistic model with a set of parameters.

Directed Models. Unfortunately, models for directed graphs are not as preva-
lent as the ones for undirected graphs. Thus, we propose the following general
extension of any directed model.

Given a random model r with a parameter p, we extend this model as follows.
Let p1 and p2 be two parameters for model r. Then

1. Generate a graph G1 with parameter p1 and construct its adjacency matrix.
2. Generate a graph G1 with parameter p2 and construct its adjacency matrix.
3. Generate a matrix M whose upper triangular is the same as of G1 and whose

lower triangular is the same as of G2.
4. Generate a graph G with adjacency matrix M .

Note that the parameters p1 and p2 control the network’s inner and external
connections, respectively, which are represented on the upper and lower triangle
of the graph’s adjacency matrix. In the scenario in which p1 = p2, the resulting
graph is still directed due to the random element of the graph generation process.

We will use this procedure to run our simulations.

3 Methods

Given k groups of graph samples, we are now interested in verifying whether
they originated from the same population.

Naively, we could use a parametric approach by selecting a random graph
model, estimating the parameters for each graph, and using traditional ANOVA
with the estimated parameters as input. However, we must know the random
graph model, which is very unlikely in most realistic scenarios. Other non-
parametric methods, like the Kolmogorov-Smirnov test, require independence
of the graphs, which is often not true when they result from a biological process.
Therefore, we will use an ANOVA-like approach following the ideas described
by Fujita et al. [9] called ANOGVA.
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In other words, we will perform a variation of the ANOVA using the complex
distribution of eigenvalues of the graphs.

Let g1, . . . , gk be k distinct graph populations. If these graphs come from
the same population, their spectral distributions should be equal. Let ρgi be
the average graph spectrum for group i, ρG = 1

k

∑k
i=1 ρgi be the overall graph

spectrum average, and D be the Kullbeck-Leibler divergence.
Then, we test the following hypothesis:

H0 : D(ρg1 , ρG) = D(ρg2 , ρG) = . . . = D(ρgk , ρG) = 0

H1: At least one of the groups of graphs was generated in a different manner

Under the null hypothesis, we expect the statistic Δ =
∑k

i=1 D(ρg1 , ρG) to
be small. Under the alternative hypothesis, we expect it to be large.

The distribution of Δ is unknown and highly dependent on the used random
graph model. Therefore, to test for significance, we will use a bootstrap approach.

The following algorithm describes how we compute the bootstrap

Input: k groups of graphs, g1, . . . , gk, and a number of max-iterations
Max

Output: A p-value
1 Estimate ρ̂g1 and ρ̂G;
2 Calculate Δ̂ =

∑k
i=1 D(ρ̂g1 , ρ̂G);

3 Set Δ̂l = [];
4 for Max iterations do
5 Construct k new groups g

′
1, . . . , g

′
k by resampling (without

replacement) the original graph set;
6 Estimate the average spectrum distribution ρ̂g′

i
for each new graph

g
′
i;

7 Calculate the overall graph spectrum average ρ̂
′
G;

8 Calculate Δ̂
′
=

∑k
i=1 D(ρ̂

′
g1 , ρ̂

′
G).;

9 Append Δ̂
′
to Δ̂l;

10 end
11 Let p = Cardinality(Δ̂

′ ∈ Δ̂l : such that Δ̂
′ ≥ Δ̂) · 1

Max ;
12 return p;

Algorithm 1: Anogva

Implementation. We implemented this method in R, extending the existing
StatGraph package [17]. We constructed the multivariate kernel density estima-
tor using the package ‘ks.’

4 Simulations

To verify the power of the method described in this paper, we constructed a set
of simulations to generate directed random graphs as defined in Sect. 2.5.



Spectrum-Based Statistical Methods for Directed Graphs with Applications 51

To evaluate the performance of ANOGVA, we need to verify the null (H0) and
alternative (H1) hypotheses. Since we want to ensure that ANOGVA works in
a wide range of random graph models, we generated the graphs using the Erdös-
Rényi [7], Watts-Strogatz [19], and Barabási-Albert [3] models, as described in
Sect. 2.4. We generated the graphs using the igraph package in R [5].

For each of the models, we performed the following simulation:

1. We generated three sets of graphs: G1, G2, and G2, each containing ten
graphs, for a total of 30 graphs.

2. All of the graphs were generated with n = 800 nodes and using specific
parameters.

3. We then applied the ANOGVA algorithm using 500 bootstrap samples.
4. We ran this experiment 500 times, generating a p-value distribution.

Simulation (H0): All three groups should be generated using the same set of
parameters under the null hypothesis.

Table 1 describes the parameters we used for each random graph model.

Table 1. Parameters used in the null hypothesis simulation

Model Parameters

Erdös-Rényi p1 = 0.1 and p2 = 0.2

Watts-Strogatz p1 = 0.1 and p2 = 0.3 neigh = 10, dim = 1

Barabási-Albert p1 = 1.0 and p2 = 1.1

Since we generated all groups using the same models and parameters, we can
safely assure that they all come from the same population. In other words, they
are under the null hypothesis. Under the null hypothesis, we expect that the
distribution of p-values forms a uniform distribution in the [0, 1] range.

Figure 1 shows the distribution of the p-values. As we can see, they form a
uniform distribution, thus showing that our proposal controls the rate of false
positives.

We remark that the power of the test increases with the number of graphs.
Thus, a small number of graphs (N = 30) shows that even under a small sample
size, the ANOGVA method performs well.

Now we verify the H1 hypothesis.

Simulation (H1): To verify the power of the test, we need to generate groups
from distinct populations.

Table 2 describes which parameters we used for each random graph model.
Since we generated all the groups using distinct parameters, this simulation

satisfies the requirements for H1, where we generated at least one of the groups
(in this case, all of them) differently. Under the alternative hypothesis, we expect
all the p-values to be small.

In all models, the resulting p-values were all equal to zero.
We can see that the ANOGVA method satisfies our expectations.
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Fig. 1. (a) Distribution of p-values for the ANOGVA simulation under the null hypoth-
esis using the Erdös-Rényi model. (b) Distribution of p-values for the ANOGVA simu-
lation under the null hypothesis using the Watts-Strogatz model (c) Distribution of p-
values for the ANOGVA simulation under the null hypothesis using the Barabási-Albert
model. Notice that all of them are uniform distributions. Performing a Kolmogorov-
Smirnov test comparing these values with the uniform distribution gives us p-values
greater than 0.05.

Table 2. Parameters used in the alternative hypothesis simulations

Model G1 G2 G3

Erdős-Rényi p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.4 p1 = 0.3, p3 = 0.2

Watts-Strogatz p1 = 0.1, p2 = 0.3, neigh = 10, dim = 1 p1 = 0.2, p2 = 0.7, neigh = 10, dim = 1 p1 = 0.3, p3 = 0.3, neigh = 10, dim = 1

Barabási-Albert p1 = 1.1, p2 = 1.3 p1 = 1.1, p2 = 1.8 p1 = 1.7, p2 = 1.8

5 Applications to Biological Data

To illustrate ANOGVA, we applied it to a biological dataset. We used the data
source titled ‘Anesthesia Task’ [20]. We obtained it from Project Tycho and
downloaded it via their website at http://wiki.neurotycho.org The experiment
aimed to compare neural activity between most of the lateral cortex measured
with electrocorticographic signals (ECoG) in a macaque during five stages: awake
with eyes opened, awake with eyes closed, anesthetized, recovering with eyes
closed, and recovering with eyes open.

5.1 Data Source

Four experiments were conducted, each on a different monkey. In each experi-
ment, a monkey was seated in a chair with restricted arms and head movement.

http://wiki.neurotycho.org
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In particular, the following steps describe the experiment for the monkey we ana-
lyzed. Neural data was acquired through 128 ECoG electrodes measuring ECoG
signals from most of the lateral cortex. Neural activity was recorded during all of
the following stages. Initially, the monkey was awake and opened its eyes, sitting
calmly in his chair for 10 min. Next, the eyes of the monkey were covered with
an eye mask to avoid evoking a visual response. The monkey was left sitting
in his chair for another 10 min. Recording of neural activity was stopped while
anesthesia was intramuscularly injected into the monkey. By the point at which
the monkey had stopped responding to manipulation of the monkey’s hand or
touching the nostril or philtrum with a cotton swab, neural activity recording
was resumed for another 20 min. After the anesthetized condition, the monkey
recovered from the anesthesia and was left alone for 55 min with its eyes still
covered. Next, the eye mask was removed, and the monkey was left to sit calmly
on his chair for another 10 min.

5.2 Data Processing and Graph Generation

The initial data generated by the experiment consisted of 128-time series in 5
categories: conscious with open eyes, conscious with closed eyes, anesthetized,
recovering with closed eyes, and recovering with open eyes.

Initially, the data was processed through several finite impulse response (FIR)
filters to remove any effect caused by electrical interference. We divided the
filtered data into several time windows, each lasting four seconds and generated
the graph using generalized partial directed coherence (gPDC) [16].

The gPDC is a frequency domain approach to identify the direction of
information flow (Granger causality) between multiple time series. We say
that a time series X Granger cause another time series Y if knowledge of
X(t − 1), . . . , X(t − k) increases the prediction of Y (t).

We carried out gPDC on the 128 frequencies of the filtered data. The result
was five sets of 128 groups of graphs (one for each generated frequency). Each
group consisted of several graphs, each representing a time window in its cate-
gory. Each graph had 128 nodes (each corresponding to a different ECoG elec-
trode). The graph was directed and weighted, where each edge between two
nodes corresponded to the level of causality between the ECoG electrodes.

5.3 ANOGVA

We performed the following experiment to verify the power of the ANOGVA
method. We selected a single-frequency domain. Given that frequency, we chose
100 graphs from each category. This procedure resulted in the following:

1. G1: 100 graphs generated from when the monkey was awake with its eyes
opened.

2. G2: 100 graphs generated from when the monkey was awake with closed eyes.
3. G3: 100 graphs generated from when the monkey was under anesthesia.
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4. G4: 100 graphs generated from when the monkey was recovering with closed
eyes.

5. G5: 100 graphs generated from when the monkey was recovering with closed
eyes.

First Experiment: We first performed an ANOGVA test using the five groups.
We used 1 000 bootstrap samples.

Second Experiment: We then performed the same experiment but compared
it in a pairwise manner. Similarly to the previous experiment, we used 1 000
bootstrap samples.

Third Experiment: Since all graphs originate from the same monkey, there
is a possibility that obtaining low p-values in the previous experiments is not a
consequence of the difference between the distinct categories. To verify that the
significance of the previous experiments was valid, we performed an ANOGVA
test under the null hypothesis. In specific, we performed the following for each
group Gi.

1. We split group Gi into two randomly sampled groups with no replacement,
obtaining Gi,1 and Gi,2

2. We performed an ANOGVA test on these groups with 300 bootstrap samples.
3. We stored the calculated p-value.
4. We repeated this procedure 300 times, generating a distribution of p-values.

Suppose we explain low p-values because all graphs originate from the same
monkey. In that case, performing ANOGVA using the described setup should
give us mostly low p-values.

5.4 Results

First Experiment: For the first experiment, we obtained a p-value less than
1

300 . This shows that there is at least one sample of graphs that were generated
differently.

Second Experiment: Table 3 shows the p-values obtained when comparing
groups Gi and Gj . We note the low p-values, indicating that our method could
differentiate between any two groups.

Third Experiments: Figure 2 shows the distribution of the p-values when
comparing each group with itself. Any fear that previous low p-values might be
because both groups originate from the same monkey can be eased by looking
at the results of this experiment. We note a well-defined uniform distribution in
each group, proving that the graphs from the same monkey are insufficient to
justify a low p-value between groups.
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Table 3. Results of second experiment:

G1 G2 G3 G4 G5

G1 0.002 0 0 0

G2 0.002 0 0 0.076

G3 0 0 0 0

G4 0 0 0 0

G5 0 0.076 0 0

Fig. 2. Results of the third experiment.

Experiment Conclusion: We have shown that our methods can differentiate
between the brain connectivity networks associated with all stages in the anes-
thesia experiment. These results promise that our methods can be used in future
clinical trials.

6 Conclusion

To distinguish between populations of directed graphs, we explored measures
based on the graph spectrum. We compared groups of graphs by calculating
the Kullback-Leibler divergence between the graphs’ spectra. This led to the
development of ANOGVA, a non-parametric model for testing whether two or
more groups of graphs share the same spectral distribution.

We demonstrated that our proposed method effectively distinguishes popu-
lations of graphs generated by different parameters, irrespective of the model
used. Similarly, regular ANOVA on centrality measures can also distinguish var-
ious models. However, traditional ANOVA fails when centrality measures, like
the number of edges in the Watts-Strogatz random model, remain unchanged. In
our illustrative application with ECoG data, we successfully captured changes in
the neural activity network of anesthetized monkeys. Unlike many classification
methods, the proposed method can be used in clinical settings for diagnosing
psychological conditions without the need for model training.
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Our current approach is limited to single-edge graphs, in which a node i can
only be connected to a node j via, at most, one edge. Multi-edge graphs, which
permit several connections between two nodes, are not represented so simply by
an adjacency matrix, and thus our method fails to apply.
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7. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
8. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40,

35–41 (1977)
9. Fujita, A., Vidal, M.C., Takahashi, D.Y.: A statistical method to distinguish func-

tional brain networks. Front. Neurosci. 11, 66 (2017)
10. Fujita, A., Silva Lira, E., De Siqueira Santos, S.: A semi-parametric statistical test

to compare complex networks. J. Complex Netw. 8 (2020)
11. Fujita, A., Takahashi, D.Y., Balardin, J.B., Vidal, M.C., Sato, J.R.: Correlation

between graphs with an application to brain network analysis. Comput. Stat. Data
Anal. 109, 76–92 (2017)

12. Lees-miller, J., et al.: Correlation between graphs with an application to brain
network analysis. Comput. Stat. Data Anal. 109, 76–92 (2017)

13. MacKay, D.J.: Information Theory, Inference, and Learning Algorithms, 1st edn.
Cambridge University Press, Cambridge (2003)

14. Ramos, T.C., Mourão-Miranda, J., Fujita, A.: Spectral density-based clustering
algorithms for complex networks. Front. Neurosci. 17, 926321 (2023)

15. Ribeiro, A., Vidal, M., Sato, J., Fujita, A.: Granger causality among graphs and
application to functional brain connectivity in autism spectrum disorder. Entropy
23, 1204 (2021)

16. Sameshima, K., Baccala, L.: Methods in brain connectivity inference through mul-
tivariate time series analysis (2016)

17. Santos, S.S., Fujita, A.: statGraph: statistical methods for graphs (2017). www.
cran.r-project.org/package=statGraph

18. Scott, J.: Social Network Analysis. Sage, Newcastle upon Tyne (2012)

www.cran.r-project.org/package=statGraph
www.cran.r-project.org/package=statGraph


Spectrum-Based Statistical Methods for Directed Graphs with Applications 57

19. Watts, D., Strogatz, S.: Collective dynamics of “small-world’ networks. Nature
393, 440–442 (1998)

20. Yanagawa, T., Chao, Z.C., Hasegawa, N., Fujii, N.: Large-scale information flow in
conscious and unconscious states: an ECoG study in monkeys. PLoS ONE 8(11),
e80845 (2013)


	Spectrum-Based Statistical Methods for Directed Graphs with Applications in Biological Data
	1 Introduction
	2 Materials
	2.1 Graphs
	2.2 Spectral Distribution
	2.3 Calculating the Graph Spectrum
	2.4 Statistical Distance
	2.5 Random Graph Models

	3 Methods
	4 Simulations
	5 Applications to Biological Data
	5.1 Data Source
	5.2 Data Processing and Graph Generation
	5.3 ANOGVA
	5.4 Results

	6 Conclusion
	References




