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Abstract. One method for inferring the evolutionary distance between
two organisms is to find the rearrangement distance, which is defined as
the minimum number of genome rearrangements required to transform
one genome into the other. Rearrangements that do not alter the genome
content are known as conservative. Examples of such rearrangements
include: reversal, which reverts a segment of the genome; transposition,
which exchanges two consecutive blocks; block interchange (BI), which
exchanges two blocks at any position in the genome; and double cut and
join (DCJ), which cuts two different pairs of adjacent blocks and joins
them in a different manner. Initially, works in this area involved com-
paring genomes that shared the same set of conserved blocks. Nowadays,
researchers are investigating unbalanced genomes (genomes with a dis-
tinct set of genes), which requires the use of non-conservative rearrange-
ments such as insertions and deletions (indels). In cases where there are
no repeated blocks and the genomes have the same set of blocks, the BI
Distance and the Reversal Distance have polynomial-time algorithms,
while the complexity of the BI and Reversal Distance problem remains
unknown. In this study, we investigate the BI and Indel Distance and the
BI, Reversal, and Indel Distance on genomes with different gene content
and no repeated genes. We present 2-approximation algorithms for each
problem using a variant of the breakpoint graph structure.
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1 Introduction

Mutations play a significant role during the evolutionary process. When these
mutations affect large stretches of a genome, they are called genome rearrange-
ments. By analyzing the relative order of genes in genomes of related species,
we can compute a sequence of rearrangements that transforms one genome into
another. Based on the principle of parsimony, the scenario with the least number
of rearrangements is assumed to be the most likely to have occurred.

The problem of finding the minimum number of rearrangements required to
transform one genome into another, known as the rearrangement distance, is
addressed using a model that defines which rearrangements should be consid-
ered. There are several genome rearrangement models, including conservative
and non-conservative events. Conservative events, such as reversal, block inter-
change (BI), transposition, and double cut and join (DCJ), do not alter the
amount of genetic material. In contrast, non-conservative events, such as inser-
tion and deletion, add or remove genetic material at specific positions in the
genome.

The computation of the rearrangement distance between two genomes can be
accomplished in polynomial time for certain models, while for others, it is NP-
hard. This depends on the level of information available, such as the orientation
of genes in each genome. When gene orientations are considered, both the Rever-
sal Distance and the DCJ Distance can be solved in polynomial time [12,16].
However, when orientations are not known, these distances become NP-hard, as
demonstrated by previous studies [7,8,13].

Since block interchanges and transpositions change only the relative position
of elements but not their orientations, they do not consider gene orientation
[11]. The Block Interchange Distance has an exact polynomial time algorithm
[9], while the Transposition Distance is NP-hard [6].

The literature on genome rearrangements started the study of the distance
between unbalanced genomes (genomes with a distinct set of genes) in 2000 [10],
and most of the models use indels, which refers to both insertions and deletions.
Considering gene orientation, the DCJ and Indel Distance [5] and the Reversal
and Indel Distance [15] are both solvable in polynomial time, while the Trans-
position and Indel Distance is NP-hard [1,2].

Here we study the Block Interchange and Indel Distance and the Block Inter-
change, Reversal, and Indel Distance, considering that genomes have a distinct
set of genes, but there are no occurrences of repeated genes in a genome. We
present lower bounds and 2-approximation algorithms for these problems.

2 Definitions

An instance for a rearrangement distance problem has a source genome G1 and
a target genome G2. We represent the target genome G2 with the identity string
ιn = (+1 +2 . . . +n), where each element ιni maps a gene or a maximal con-
tinuous sequence of genes without correspondence in G1. We say that 1, 2, . . . , n
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(without signs) are labels. We represent the source genome G1 with a string
A = (A1 A2 . . . Am), where Ai maps a gene, using the same mapping of labels
and genes used for the target genome, or it represents a maximal continuous
sequence of genes without correspondence in G2. If Ai maps a gene of G1, then it
has a “+” sign if the gene with same label in G2 has the same orientation, and it
has a “−” sign otherwise. For any element Ai that maps a continuous sequence
of genes without correspondence in G2, we set Ai = α without any sign, since
this element will be removed regardless of its content.

We use −Ai to denote the element Ai with its orientation reversed. For
example, if Ai = −1, then −A1 = +1. For the models where gene orientation is
not considered, as the Block Interchange and Indel Distance, we can just omit
the signs or consider that every element has a “+” sign.

The alphabet Σσ of a string σ is the set of labels present in σ. Note that
ΣA \ Σιn = {α}. Furthermore, there are no adjacent elements in ιn such that
both of them belong to Σιn \ΣA, since any maximal continuous segment of genes
without correspondence in G1 are mapped into a single element in ιn. For the
strings A = (+6 α −3 +4 +1 α) and ι6 = (+1 +2 +3 +4 +5 +6), we have
ΣA ∩ Σι6 = {1, 3, 4, 6}, ΣA \ Σι6 = {α}, Σι6 \ ΣA = {2, 5}.

Given a string A with |A| = m, a block interchange BI(i, j, k, l), with 1 ≤
i ≤ j < k ≤ l ≤ m, is a rearrangement that acts on the segments (Ai . . . Aj)
and (Ak . . . Al) generating the string A ·BI(i, j, k, l) = (A1 . . . Ai−1 Ak . . . Al

Aj+1 . . . Ak−1 Ai . . . Aj Al+1 . . . Am).
Given a string A with |A| = m, a reversal ρ(i, j), with 1 ≤ i ≤ j ≤ m, inverts

the segment (Ai . . . Aj) and changes the orientation of the elements in it. It
generates the string A · ρ(i, j) = (A1 . . . Ai−1 −Aj . . . −Ai Aj+1 . . . Am).

Given a string A with |A| = m, an insertion φ(i, S), where 0 ≤ i ≤ m and S
is a string, is a rearrangement which inserts S in the position i + 1 of a string.
When applied to A, we have A · φ(i, S) = (A1 . . . Ai S1 . . . S|S| Ai+1 . . . Am).

Given a string A with |A| = m, a deletion ψ(i, j), with 1 ≤ i ≤ j ≤ m,
removes the segment (Ai . . . Aj) from the string A. When applied to A, we
have A · ψ(i, j) = (A1 . . . Ai−1 Aj+1 . . . Am).

A rearrangement model M defines the set of allowed rearrangements to com-
pute the distance in a rearrangement distance problem. Given an instance (A, ιn),
the distance dM(A, ιn) is the minimum number of operations in M that trans-
forms A into ιn. Since both models studied in this paper have indels, we chose
not to mention it in the model acronym, so we use dBI(A, ιn) and dρ,BI(A, ιn) for
the Block Interchange and Indel Distance, and the Block Interchange, Reversal,
and Indel Distance, respectively.

2.1 Labeled Cycle Graph

The Labeled Cycle Graph [2,14] is an adaptation of the breakpoint graph and
the cycle graph created to deal with unbalanced genomes.

Given an instance (A, ιn), we create the strings πA = (πA
1 . . . πA

n′) and
πι = (πι

1 . . . πι
n′) as copies of A and ιn, respectively, but removing elements



4 A. O. Alexandrino et al.

that do not belong to the set ΣA ∩ Σιn . We extend both strings by adding
the elements πA

0 = 0, πι
0 = 0, πA

n′+1 = n + 1, and πι
n′+1 = n + 1. We use

|πA| = |ΣA ∩ Σιn | = n′ to denote the size of these strings without considering
the extended elements 0 and n + 1.

Fig. 1. Labeled Cycle Graph for the strings A = (α +7 α −5 −4 +3 −2 +9 +11 +10)
and ιn, with n = 11. There are four cycles in this graph. The cycle C1 = (6, 1, 2) is a
divergent cycle with Λ(C1) = 4. All the other cycles have 0 runs. The cycle C2 = (3)
is a trivial cycle. The cycle C3 = (5, 4) is a divergent cycle. The cycle C4 = (9, 7, 8) is
an oriented cycle.

The Labeled Cycle Graph for (A, ιn) is the undirected graph G(A, ιn) =
(V,E, 
), where V = {+πA

0 ,−πA
1 ,+πA

1 ,−πA
2 ,+πA

2 , . . . ,−πA
n′ ,+πA

n′ ,−πA
n′+1} is

the set of vertices; E = Es ∪ Et is the set of edges, which is divided into source
(Es) and target (Et) edges; and 
 is an edge labeling function.

Source edges connect vertices that are adjacent in πA, while target edges
connect vertices that are adjacent in πι. The set of source edges Es = {ei =
(+πA

i−1,−πA
i ) : 1 ≤ i ≤ n′ + 1}. A source edge ei = (+πA

i−1,−πA
i ) has index

i. The label 
(ei) = ∅ if πA
i−1 and πA

i are consecutive in A. Otherwise, we have

(ei) = α. The set of target edges Et = {et

i = (+πι
i−1,−πι

i) : 1 ≤ i ≤ n′ + 1}.
A target edge et

i = (+πι
i−1,−πι

i) has index i. The label 
(et
i) = ∅ if πι

i−1 and πι
i

are consecutive. Otherwise, the label 
(et
i) = πι

i−1 + 1.
We say that an edge is clean if it has empty label; otherwise, we say that the

edge is labeled.
Since there are exactly one source and one target edge incident to each ver-

tex, there exists a unique decomposition of the graph into a collection of edge
alternating cycles.

We draw the graph by arranging the vertices horizontally, following the order
in which they appear in πA. The source edges are displayed as horizontal lines
while the target edges are shown as arcs. Edges that have a label are marked in
red, and the label is placed above the edge. Figure 1 provides an illustration of
this representation.

Each cycle C in G(A, ιn) is denoted by the list of source edges indices that
belong to C. For a cycle C = (c1, c2, . . . , ck), we construct the list of indices
starting with the rightmost source edge (i.e., c1 > ci, for all 1 < i ≤ k) and
traversing it from right to left.

A cycle with k source edges is called a k-cycle. A 1-cycle is called trivial. The
number of cycles in G(A, ιn) is denoted by c(A, ιn). For a rearrangement β, we
define Δc(A, ιn, β) = (|πA| + 1 − c(A, ιn)) − (|πA · β| + 1 − c(A · β, ιn)).
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A cycle C = (c1, c2, . . . , ck) is oriented if the values (c1, c2, . . . , ck) do not
form a decreasing sequence. Given a cycle C = (c1, c2, . . . , ck), a source edge eci

is convergent if it is traversed from right to left, and it is divergent otherwise.
Note that ec1 is always convergent by our convention of how the cycle is traversed
when listing indices. A pair of edges (ci, cj) is divergent if one of the source edges
is divergent and the other is convergent. A cycle is divergent if it has at least
one divergent source edge, and it is convergent otherwise.

A graph G(A, ιn) has divergent cycles if, and only if, A has at least one
element with “−” sign. Therefore, for the Block Interchange and Indel Distance
there are only convergent cycles in the graph.

An insertion run is a maximal path that starts and ends with labeled target
edges and has no labeled source edge. Similarly, a deletion run is a maximal
path that starts and ends with labeled source edges and has no labeled target
edge. The number of runs in a cycle C is given by Λ(C).

The indel potential of a cycle C is a value of how much indels are necessary
to turn Λ(C) = 0 without merging cycles or creating new cycles with runs in it.
We define the indel potential of C as follows:

λ(C) =

{⌈
Λ(C)+1

2

⌉
, if Λ(C) > 0

0, otherwise.

We also denote by λ(A, ιn) the sum of indel potentials of all cycles in G(A, ιn),
that is, λ(A, ιn) =

∑
C∈G(A,ιn) λ(C). We also have Δλ(A, ιn, β) = λ(A, ιn)−λ(A·

β, ιn), which denotes the change in the indel potential of the graph caused by a
rearrangement.

Lemma 1 (Alexandrino et al. [2]). For any deletion ψ and strings A and ιn,
we have that Δc(A, ιn, ψ) + Δλ(A, ιn, ψ) ≤ 1.

Lemma 2 (Alexandrino et al. [2]). For any insertion φ and strings A and
ιn, we have that Δc(A, ιn, φ) + Δλ(A, ιn, φ) ≤ 1.

Lemma 3. For any block interchange BI and strings A and ιn, we have that
Δc(A, ιn,BI) + Δλ(A, ιn,BI) ≤ 2.

Proof. We divide this proof according to the number of cycles affected by BI [9].
If BI affects four cycles C1, C2, C3, and C4, then it merges these cycles into

two new cycles C ′
1 and C ′

2. In the best scenario, two deletion runs and two
insertion runs from C1 and C3 are merged in C ′

1. Similarly, two deletion runs
and two insertion runs from C2 and C4 are merged in C ′

2. In this case, Λ(C ′
1) =

Λ(C1)+Λ(C3)−2 and Λ(C ′
2) = Λ(C2)+Λ(C4)−2. Therefore, Δλ(A, ιn,BI) = 4

and Δc(A, ιn,BI) + Δλ(A, ιn,BI) = 2. An example is presented in Fig. 2.
If BI affects three cycles C1, C2 and C3, then it merges these cycles into a

new cycle C ′. Similarly to the previous case, in the best scenario, the number
of runs decreases in four and Λ(C ′) = Λ(C1) + Λ(C2) + Λ(C3) − 4. Therefore,
Δλ(A, ιn,BI) = 4 and Δc(A, ιn,BI) + Δλ(A, ιn,BI) = 2.
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If BI affects two cycles C1 and C2, then it turns these cycles into two new
cycles or into four new cycles. If it turns C1 and C2 into two new cycles C ′

1

and C ′
2, then, in the best scenario, the number of runs decreases in four and

Λ(C ′
1) = Λ(C1) − 2 and Λ(C ′

2) = Λ(C1) − 2. Therefore, the indel potential
decreases by one for each cycle, so Δλ(A, ιn,BI) = 2, and Δc(A, ιn,BI) = 0.

Fig. 2. Example of a block interchange that acts on four cycles. In this example, we
have A = (0 α 2 α 4 α 6 α 8) and n = 7. The indel potential of the original graph
is equal to 4 × �(2 + 1)/2� = 8 and the indel potential of the new graph is equal to
�(2 + 1)/2� + �(2 + 1)/2� = 4.

Fig. 3. Example of a block interchange that acts on two cycles creating four new cycles.
In this example, we have A = (0 α 6 α 4 α 2 α 8) and n = 7. The indel potential of
the original graph is equal to �(4 + 1)/2� + �(4 + 1)/2� = 6 and the indel potential of
the new graph is equal to �(2 + 1)/2� + �(1 + 1)/2� + �(1 + 1)/2� + �(2 + 1)/2� = 6.

If it affects two cycles C1 and C2, and it turns these cycles into four new
cycles C ′

1, C ′
2, C ′

3, and C ′
4, then, in the best scenario, two pairs of deletion runs

are merged, but note that each cycle has at least one insertion run, as shown in
Fig. 3. So, Λ(C ′

1) = X, such that 1 ≤ X < Λ(C1), Λ(C ′
2) = min(Λ(C1)−X−2, 1),

Λ(C ′
3) = Y , such that 1 ≤ Y < Λ(C2), and Λ(C ′

4) = min(Λ(C2) − Y − 2, 1).
Therefore, the indel potential of the graph remains the same.

If BI affects one cycle C1, then it turns this cycle into a new cycle or into three
new cycles. If it does not change the number of cycles, then, in the best scenario,
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it can decrease the number of runs in the cycle by four and Δλ(A, ιn,BI) = 2.
If it turns this cycle into three new cycles C ′

1, C
′
2, and C ′

3, then, in the best
scenario, two pairs of deletion runs are merged, but note that each cycle has at
least one insertion run. Similarly to the previous case, the indel potential of the
graph remains the same. ��
Lemma 4 (Willing et al. [14]). For any reversal ρ and strings A and ιn, we
have that Δc(A, ιn, ρ) + Δλ(A, ιn, ρ) ≤ 1.

The graph G(A, ιn) has only trivial cycles and indel potential of zero if, and
only if, the strings A = ιn. Note that, when A = ιn, we have |πA|+1−c(A, ιn)+
λ(A, ιn) = 0.

Lemma 5. For any strings A and ιn, we have

dBI(A, ιn) ≥
⌈ |πA| + 1 − c(A, ιn) + λ(A, ιn)

2

⌉
.

Proof. Since |πA′ | + 1 − c(A′, ιn) + λ(A′, ιn) = 0 only if A′ = ιn, a sequence of
rearrangements that transform A into ιn must decrease the value of |πA| + 1 −
c(A, ιn) + λ(A, ιn) to zero. From Lemmas 1 to 3, a rearrangement can decrease
this value by at most two and, therefore, the bound follows. ��
Lemma 6. For any strings A and ιn, we have

dρ,BI(A, ιn) ≥
⌈ |πA| + 1 − c(A, ιn) + λ(A, ιn)

2

⌉
.

Proof. Similar to the proof of Lemma 5 considering Lemmas 1 to 4. ��

3 2-Approximation Algorithms for the Distance Problems

In this section, we introduce algorithms with approximation factors of 2 that
use the graph structure presented in the previous section. Alexandrino et al. [2]
presented a result on how to remove insertion runs from the graph and decrease
the indel potential, but only considering unsigned strings. We present how this
can be done for signed strings as well.

Lemma 7. For any strings A and ιn, if G(A, ιn) has insertion runs, then there
exists an insertion φ with Δc(A, ιn, φ) + Δλ(c, ιn, φ) = 1.

Proof. Consider the insertion run (v1, v2, . . . , vj) of a cycle C, such that v1 has
the same sign as the element of A that corresponds to v1 and (v1, v2) is a labeled
target edge. Let o1, o2, . . . , ok be indices such that (voi

, voi+1) is the i-th labeled
target edge of this run.

We construct S = (x1, x2, . . . , xk) as follows: for 1 ≤ i ≤ k, if voi+1 has a “−”
sign, then xi = 
((voi

, voi+1)); otherwise, xi = −
((voi
, voi+1)). The insertion of

S after the element of A corresponding to v1 removes the run and adds k cycles in
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the graph. A trivial cycle is created with the vertices (v1,−x1). For each element
xi, with 1 ≤ i < k, there is a cycle (+xi, voi+1, voi+2, . . . , voi+1 ,−xi+1,+xi). The
last vertex +xk belongs to what is left of the cycle C or to a trivial cycle, in the
case where all target edges of C belong to the removed run. An example of this
operation is shown in Fig. 4.

If Λ(C) ≤ 2, then removing a run of C reduces both the number of runs and
the indel potential of the graph by one. Otherwise, removing an insertion run
leads to the merging of two deletion runs. In this case, the number of runs of C
decreases by two and the indel potential of the graph decreases by one. As the
insertion adds k elements in A and k cycles in the graph with no runs, we have
Δc(A, ιn, φ) = 0. Therefore, Δc(A, ιn, φ) + Δλ(c, ιn, φ) = 1. ��

Fig. 4. Example of a insertion that removes a run from a cycle. In this example, we
have the insertion run (+0, −2, −9, +7, +5, −7). The insertion of (+1 −8 +6) at the
start of A removes this run and creates three new cycles.

Now, we show how block interchange operations can be used to increase the
number of cycles in the graph without increasing the indel potential.

Lemma 8. For any strings A and ιn, such that |πA| + 1 − c(A, ιn) > 0 and
G(A, ιn) has no labeled target edges, there exists a block interchange BI such
that Δc(A, ιn,BI) + Δλ(c, ιn,BI) = 2.

Proof. Consider that G(A, ιn) has an oriented cycle C = (c1, . . . , c�), and let
ci, cj , ck be a triple such that i < j < k and ci > ck > cj . Such triple always exists
in an oriented cycle and it is called an oriented triple [4]. A block interchange
applied on these three source edges creates three cycles C ′, C ′′, and C ′′′ [4]. Let
S1 and S2 be the two segments changed by the block interchange. If the source
edges are labeled, we can move the elements α in such a way that they end up in
the same cycle. To do this, we include the segment to be removed from the first
source edge in S1 and the segment to be removed from the third source edge
in S2. In this way, the segments to be removed are merged in a single source
edge, as shown in Fig. 5. An analogous operation is used if only two of these
source edges are labeled. Therefore, this block interchange does not affect the
indel potential of the graph and increases the number of cycles by two.
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Consider that G(A, ιn) has only non-oriented cycles and let C = (c1, . . . , c�)
be a cycle of G(A, ιn). Bafna and Pevzner [4] showed that for every eci and ecj

from C, with ci > cj , there exists a cycle D = (d1, . . . , d�′) with source edges
edx

and edy
such that either ci > dx > cj > dy or dx > ci > dy > cj . Assume,

without loss of generality, that ci > dx > cj > dy. A block interchange that
acts on these four source edges creates four new cycles C ′, C ′′,D′, and D′′: C ′

is formed by the path that goes from eci to ecj with a source edge that joins the
first and last vertices of this path; C ′′ is formed by the path that goes from ecj

to eci with a source edge that joins the first and last vertices of this path; D′

and D′′ are analogous. The first segment of the block interchange starts at the
source edge dy, including the segment to be removed from edy

if the edge edy
is

labeled, and ends at the source edge cj . The second segment starts at the source
edge dx and ends at the source edge ci, including the segment to be removed
from eci if the edge eci is labeled. In this way, the segments to be removed from
the same cycle are merged and the number of deletion runs remains the same,
as shown in Fig. 6. ��

Fig. 5. Example of a block interchange acting on an oriented cycle and creating three
new cycles. In this example, we have A = (0 α 2 α 1 α 3) and n = 2. The block
interchange moves the elements α in such a way that only one source edge remains
labeled.

Fig. 6. Example of a block interchange acting on two non-oriented cycles and creating
fours new cycles. In this example, we have A = (0 α 3 α 2 α 1 α 4) and n = 3. The
block interchange moves the elements α in such a way that the segments to be removed
from the same cycle are merged.
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Lemma 9. For any strings A and ιn, such that |πA| + 1 − c(A, ιn) = 0, there
exists a deletion ψ with Δc(A, ιn, ψ) + Δλ(c, ιn, ψ) = 1.

Proof. Since |πA| + 1 − c(A, ιn) = 0, each cycle of this graph is trivial. Each
cycle has at most one insertion run and one deletion run. A deletion that cleans
a source edge of a cycle C decreases the number of runs in C by one. Therefore,
Δλ(c, ιn, ψ) = 1 and Δc(A, ιn, ψ) = 0. ��

Algorithm 1 uses the results of Lemmas 7 to 9.

Theorem 1. Algorithm 1 is a 2-approximation for the problem of rearrange-
ment distance with block interchanges and indels.

Proof. By Lemmas 7 to 9, each operation β ∈ {BI, φ, ψ} applied by the algo-
rithm has Δc(A, ιn, β)+Δλ(c, ιn, β) ≥ 1. In this way, at the end of the algorithm,
the resulting string A′ satisfies |πA′ | + 1 − c(A′, ιn) + λ(A′, ιn) = 0 and, conse-
quently, A′ = ιn. Furthermore, the algorithm uses at most |πA| + 1 − c(A, ιn) +
λ(A, ιn) operations. By Lemma 5, the algorithm is a 2-approximation. ��

Algorithm 1: 2-Approximation algorithm for block interchange and indels
distance.
Input: Strings A and ιn

Output: An upper bound for the rearrangement distance dBI(A, ιn)
1 Let d ← 0
2 while G(A, ιn) has insertion runs do
3 Apply an insertion according to Lemma 7
4 d ← d + 1

5 while |ΣA ∩ Σιn | + 1 − c(A, ιn) > 0 do
6 Apply a block interchange according to Lemma 8
7 d ← d + 1

8 while G(A, ιn) has deletion runs do
9 Apply a deletion according to Lemma 9

10 d ← d + 1

11 return d

For the BI and Reversal Distance, we consider gene orientation. Therefore, it
is possible that divergent cycles exist in the labeled cycle graph. For convergent
cycles, we can still apply only block-interchanges to create new cycles in the
graph. The next lemma shows that it is always possible to find a reversal applied
to a divergent cycle and break it into two new cycles, while maintaining the indel
potential.

Lemma 10. For any strings A and ιn, such that G(A, ιn) has no labeled tar-
get edges and G(A, ιn) has a divergent cycle C, there exists a reversal ρ with
Δc(A, ιn, ρ) + Δλ(c, ιn, ρ) = 1.
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Proof. Let C = (c1, c2, . . . , ck) be a divergent cycle in G(A, ιn) and let (ecx , ecx+1)
be a pair of divergent edges with minimum x. A reversal applied to these edges
breaks C into a trivial cycle C ′ and another cycle C ′′ [3]. The reversal can be
chosen in a way that any α element is accumulated in the cycle C ′′, which makes
the indel potential of the trivial cycle equals 0 and the indel potential of C ′′ equals
the indel potential of C. In this way, we have Δc(A, ιn, ρ) + Δλ(c, ιn, ρ) = 1. An
example of such operation is shown in Fig. 7. ��

Theorem 2. Algorithm 2 is a 2-approximation for the problem of rearrange-
ment distance with block interchanges, reversals, and indels.

Proof. By Lemmas 7 to 10, each operation β ∈ {BI, ρ, φ, ψ} applied by Algo-
rithm 2 has Δc(A, ιn, β) + Δλ(c, ιn, β) ≥ 1. After the while loop, the resulting
string A′ satisfies |πA′ |+1−c(A′, ιn)+λ(A′, ιn) = 0 and A′ = ιn. Therefore, the
algorithm uses at most |πA| + 1 − c(A, ιn) + λ(A, ιn) operations. By Lemma 6,
the algorithm is a 2-approximation. ��

Fig. 7. Example of a reversal acting on a divergent cycle and creating two new cycles.
In this example, we have A = (0 α 2 α −1 α 3) and n = 2. The reversal moves the α
element in such a way that the trivial cycle created has only clean edges.

Algorithm 2: 2-Approximation algorithm for Block Interchange, Reversal
and Indel Distance.
Input: Strings A and ιn

Output: An upper bound for the rearrangement distance dρ,BI(A, ιn)
1 Let d ← 0
2 while G(A, ιn) has insertion runs do
3 Apply an insertion according to Lemma 7
4 d ← d + 1

5 while |ΣA ∩ Σιn | + 1 − c(A, ιn) > 0 do
6 if G(A, ιn) has a divergent cycle then
7 Apply a reversal according to Lemma 10
8 d ← d + 1

9 else
10 Apply a block interchange according to Lemma 8
11 d ← d + 1

12 while G(A, ιn) has deletion runs do
13 Apply a deletion according to Lemma 9
14 d ← d + 1

15 return d



12 A. O. Alexandrino et al.

The time complexity of both algorithms is O(n2). Creating the Labeled Cycle
Graph and classifying its cycles takes O(n) time. Each while loop runs for O(n)
iterations, and each operation can be performed in O(n) time.

4 Conclusion

In this work, our main results are related to a structure called labeled cycle
graph. This graph can represent a complete instance of the problems, and we
were able to present good bounds for the Block Interchange and Indel Distance
and the Block Interchange, Reversal, and Indel Distance. With these results, we
developed 2-approximation algorithms for both distance problems.

The present study assumed equal costs for all rearrangements and absence of
repeated genes in the genomes. To extend the research, future works can explore
variations in the costs of rearrangements and the inclusion of genomes containing
repeated genes.
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