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Preface

The Brazilian Symposium on Bioinformatics (BSB) is an international, annual scientific
conference with focus on Bioinformatics, Computational Biology, Systems Biology, and
related areas. It is organized by the Brazilian Computer Society (Sociedade Brasileira
de Computação – SBC), through the Special Committee for Computational Biology
(Comissão Especial de Biologia Computacional – CE-BioComp), which is presently
coordinated byRaquel C. deMelo-Minardi (UFMG) and co-coordinated byKeleBelloze
(CEFET/RJ). BSB 2023 was the 16th edition of the conference, and it was held during
June 13–16, 2023, at the FIEP Event Center, Curitiba, Brazil. Curitiba is the capital of
Paraná (PR), a state in southern Brazil.

The BSB 2023 conference had as general chairs Fabricio Martins Lopes (UTFPR)
and Alexandre R. Paschoal (UTFPR). The organization committee had as members
Dieval Guizelini (UFPR) and Roberto Tadeu Raittz (UFPR). The international Program
Committee this year was composed of 37 members from Brazil and also from Canada,
France, Germany, Mexico, and Uruguay. The conference, which accepted contributions
in the form of full and short papers, received a total of 24 submissions, with 14 works
being accepted (13 full papers and 1 short paper). The submitted works passed through a
single-blind review process, with each paper having at least three independent reviews.
Each of the 14 accepted papers is included in this collection and was presented at the
conference by one of its authors, at one of the three technical sessions that were held at
BSB 2023.

The 16th edition of BSB was co-located with the 19th International Congress of
the Brazilian Association of Bioinformatics and Computational Biology (Associação
Brasileira de Bioinformática e Biologia Computacional – AB3C). That congress, also
known as X-Meeting, is one of the two major Brazilian Bioinformatics conferences,
the other one being BSB itself. While BSB 2023 accepted full and short papers, X-
Meeting 2023 focused on poster submissions. Therefore, the co-located event joined
the communities of the two conferences into a single, synergistic event, which also
allowed the realization of one of the largest Bioinformatics conferences ever held in
Brazil, with the participation of over 500 delegates! The co-located event also shared the
keynote speakers, with lectures by Robert Finn (EMBL-EBI, UK), MartinMorgan (Fred
Hutchinson Cancer Research Center, USA), Miguel Rocha (Universidade do Minho,
Portugal), Helder Nakaya (Hospital Israelita Albert Einstein, Brazil), Sameer Velankar
(EMBL-EBI, UK), and João Meidanis (UNICAMP, Brazil); this latter speaker was also
honored by the Conference Organization, for his contributions to the development of
Bioinformatics in Brazil.

Finally, we thank a lot all the people that made BSB+X-Meeting 2023 possible: the
Program Committee members, who accomplished dozens of reviews in a tight schedule;
the organization chairs, committees and volunteers (from both BSB and X-Meeting
sides), who assured the realization of the co-located event from a logistical standpoint;
the support of theAB3C and the financial support of FundaçãoAraucária; the partnership



vi Preface

with Springer for, once more, publishing the BSB proceedings; the keynote speakers for
accepting the invitation for their talks; the instructors of the two mini-courses offered
during BSB 2023; and last but not least, all the authors that sent their contributions to
the 16th edition of BSB. To all of them: thank you! (muito obrigado!)

June 2023 Marcelo S. Reis
Raquel C. de Melo-Minardi
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Block Interchange and Reversal Distance
on Unbalanced Genomes

Alexsandro Oliveira Alexandrino1(B), Gabriel Siqueira1, Klairton Lima Brito1,
Andre Rodrigues Oliveira2, Ulisses Dias3, and Zanoni Dias1

1 Institute of Computing, University of Campinas, Campinas, Brazil
{alexsandro,gabriel.siqueira,klairton,zanoni}@ic.unicamp.br

2 Computing and Informatics Department, Mackenzie Presbyterian University,
São Paulo, Brazil

andre.rodrigues@mackenzie.br
3 School of Technology, University of Campinas, Campinas, Brazil

ulisses@ft.unicamp.br

Abstract. One method for inferring the evolutionary distance between
two organisms is to find the rearrangement distance, which is defined as
the minimum number of genome rearrangements required to transform
one genome into the other. Rearrangements that do not alter the genome
content are known as conservative. Examples of such rearrangements
include: reversal, which reverts a segment of the genome; transposition,
which exchanges two consecutive blocks; block interchange (BI), which
exchanges two blocks at any position in the genome; and double cut and
join (DCJ), which cuts two different pairs of adjacent blocks and joins
them in a different manner. Initially, works in this area involved com-
paring genomes that shared the same set of conserved blocks. Nowadays,
researchers are investigating unbalanced genomes (genomes with a dis-
tinct set of genes), which requires the use of non-conservative rearrange-
ments such as insertions and deletions (indels). In cases where there are
no repeated blocks and the genomes have the same set of blocks, the BI
Distance and the Reversal Distance have polynomial-time algorithms,
while the complexity of the BI and Reversal Distance problem remains
unknown. In this study, we investigate the BI and Indel Distance and the
BI, Reversal, and Indel Distance on genomes with different gene content
and no repeated genes. We present 2-approximation algorithms for each
problem using a variant of the breakpoint graph structure.

Keywords: Block Interchange · Reversal · Unbalanced Genomes
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1 Introduction

Mutations play a significant role during the evolutionary process. When these
mutations affect large stretches of a genome, they are called genome rearrange-
ments. By analyzing the relative order of genes in genomes of related species,
we can compute a sequence of rearrangements that transforms one genome into
another. Based on the principle of parsimony, the scenario with the least number
of rearrangements is assumed to be the most likely to have occurred.

The problem of finding the minimum number of rearrangements required to
transform one genome into another, known as the rearrangement distance, is
addressed using a model that defines which rearrangements should be consid-
ered. There are several genome rearrangement models, including conservative
and non-conservative events. Conservative events, such as reversal, block inter-
change (BI), transposition, and double cut and join (DCJ), do not alter the
amount of genetic material. In contrast, non-conservative events, such as inser-
tion and deletion, add or remove genetic material at specific positions in the
genome.

The computation of the rearrangement distance between two genomes can be
accomplished in polynomial time for certain models, while for others, it is NP-
hard. This depends on the level of information available, such as the orientation
of genes in each genome. When gene orientations are considered, both the Rever-
sal Distance and the DCJ Distance can be solved in polynomial time [12,16].
However, when orientations are not known, these distances become NP-hard, as
demonstrated by previous studies [7,8,13].

Since block interchanges and transpositions change only the relative position
of elements but not their orientations, they do not consider gene orientation
[11]. The Block Interchange Distance has an exact polynomial time algorithm
[9], while the Transposition Distance is NP-hard [6].

The literature on genome rearrangements started the study of the distance
between unbalanced genomes (genomes with a distinct set of genes) in 2000 [10],
and most of the models use indels, which refers to both insertions and deletions.
Considering gene orientation, the DCJ and Indel Distance [5] and the Reversal
and Indel Distance [15] are both solvable in polynomial time, while the Trans-
position and Indel Distance is NP-hard [1,2].

Here we study the Block Interchange and Indel Distance and the Block Inter-
change, Reversal, and Indel Distance, considering that genomes have a distinct
set of genes, but there are no occurrences of repeated genes in a genome. We
present lower bounds and 2-approximation algorithms for these problems.

2 Definitions

An instance for a rearrangement distance problem has a source genome G1 and
a target genome G2. We represent the target genome G2 with the identity string
ιn = (+1 +2 . . . +n), where each element ιni maps a gene or a maximal con-
tinuous sequence of genes without correspondence in G1. We say that 1, 2, . . . , n
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(without signs) are labels. We represent the source genome G1 with a string
A = (A1 A2 . . . Am), where Ai maps a gene, using the same mapping of labels
and genes used for the target genome, or it represents a maximal continuous
sequence of genes without correspondence in G2. If Ai maps a gene of G1, then it
has a “+” sign if the gene with same label in G2 has the same orientation, and it
has a “−” sign otherwise. For any element Ai that maps a continuous sequence
of genes without correspondence in G2, we set Ai = α without any sign, since
this element will be removed regardless of its content.

We use −Ai to denote the element Ai with its orientation reversed. For
example, if Ai = −1, then −A1 = +1. For the models where gene orientation is
not considered, as the Block Interchange and Indel Distance, we can just omit
the signs or consider that every element has a “+” sign.

The alphabet Σσ of a string σ is the set of labels present in σ. Note that
ΣA \ Σιn = {α}. Furthermore, there are no adjacent elements in ιn such that
both of them belong to Σιn \ΣA, since any maximal continuous segment of genes
without correspondence in G1 are mapped into a single element in ιn. For the
strings A = (+6 α −3 +4 +1 α) and ι6 = (+1 +2 +3 +4 +5 +6), we have
ΣA ∩ Σι6 = {1, 3, 4, 6}, ΣA \ Σι6 = {α}, Σι6 \ ΣA = {2, 5}.

Given a string A with |A| = m, a block interchange BI(i, j, k, l), with 1 ≤
i ≤ j < k ≤ l ≤ m, is a rearrangement that acts on the segments (Ai . . . Aj)
and (Ak . . . Al) generating the string A ·BI(i, j, k, l) = (A1 . . . Ai−1 Ak . . . Al

Aj+1 . . . Ak−1 Ai . . . Aj Al+1 . . . Am).
Given a string A with |A| = m, a reversal ρ(i, j), with 1 ≤ i ≤ j ≤ m, inverts

the segment (Ai . . . Aj) and changes the orientation of the elements in it. It
generates the string A · ρ(i, j) = (A1 . . . Ai−1 −Aj . . . −Ai Aj+1 . . . Am).

Given a string A with |A| = m, an insertion φ(i, S), where 0 ≤ i ≤ m and S
is a string, is a rearrangement which inserts S in the position i + 1 of a string.
When applied to A, we have A · φ(i, S) = (A1 . . . Ai S1 . . . S|S| Ai+1 . . . Am).

Given a string A with |A| = m, a deletion ψ(i, j), with 1 ≤ i ≤ j ≤ m,
removes the segment (Ai . . . Aj) from the string A. When applied to A, we
have A · ψ(i, j) = (A1 . . . Ai−1 Aj+1 . . . Am).

A rearrangement model M defines the set of allowed rearrangements to com-
pute the distance in a rearrangement distance problem. Given an instance (A, ιn),
the distance dM(A, ιn) is the minimum number of operations in M that trans-
forms A into ιn. Since both models studied in this paper have indels, we chose
not to mention it in the model acronym, so we use dBI(A, ιn) and dρ,BI(A, ιn) for
the Block Interchange and Indel Distance, and the Block Interchange, Reversal,
and Indel Distance, respectively.

2.1 Labeled Cycle Graph

The Labeled Cycle Graph [2,14] is an adaptation of the breakpoint graph and
the cycle graph created to deal with unbalanced genomes.

Given an instance (A, ιn), we create the strings πA = (πA
1 . . . πA

n′) and
πι = (πι

1 . . . πι
n′) as copies of A and ιn, respectively, but removing elements
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that do not belong to the set ΣA ∩ Σιn . We extend both strings by adding
the elements πA

0 = 0, πι
0 = 0, πA

n′+1 = n + 1, and πι
n′+1 = n + 1. We use

|πA| = |ΣA ∩ Σιn | = n′ to denote the size of these strings without considering
the extended elements 0 and n + 1.

Fig. 1. Labeled Cycle Graph for the strings A = (α +7 α −5 −4 +3 −2 +9 +11 +10)
and ιn, with n = 11. There are four cycles in this graph. The cycle C1 = (6, 1, 2) is a
divergent cycle with Λ(C1) = 4. All the other cycles have 0 runs. The cycle C2 = (3)
is a trivial cycle. The cycle C3 = (5, 4) is a divergent cycle. The cycle C4 = (9, 7, 8) is
an oriented cycle.

The Labeled Cycle Graph for (A, ιn) is the undirected graph G(A, ιn) =
(V,E, 
), where V = {+πA

0 ,−πA
1 ,+πA

1 ,−πA
2 ,+πA

2 , . . . ,−πA
n′ ,+πA

n′ ,−πA
n′+1} is

the set of vertices; E = Es ∪ Et is the set of edges, which is divided into source
(Es) and target (Et) edges; and 
 is an edge labeling function.

Source edges connect vertices that are adjacent in πA, while target edges
connect vertices that are adjacent in πι. The set of source edges Es = {ei =
(+πA

i−1,−πA
i ) : 1 ≤ i ≤ n′ + 1}. A source edge ei = (+πA

i−1,−πA
i ) has index

i. The label 
(ei) = ∅ if πA
i−1 and πA

i are consecutive in A. Otherwise, we have

(ei) = α. The set of target edges Et = {et

i = (+πι
i−1,−πι

i) : 1 ≤ i ≤ n′ + 1}.
A target edge et

i = (+πι
i−1,−πι

i) has index i. The label 
(et
i) = ∅ if πι

i−1 and πι
i

are consecutive. Otherwise, the label 
(et
i) = πι

i−1 + 1.
We say that an edge is clean if it has empty label; otherwise, we say that the

edge is labeled.
Since there are exactly one source and one target edge incident to each ver-

tex, there exists a unique decomposition of the graph into a collection of edge
alternating cycles.

We draw the graph by arranging the vertices horizontally, following the order
in which they appear in πA. The source edges are displayed as horizontal lines
while the target edges are shown as arcs. Edges that have a label are marked in
red, and the label is placed above the edge. Figure 1 provides an illustration of
this representation.

Each cycle C in G(A, ιn) is denoted by the list of source edges indices that
belong to C. For a cycle C = (c1, c2, . . . , ck), we construct the list of indices
starting with the rightmost source edge (i.e., c1 > ci, for all 1 < i ≤ k) and
traversing it from right to left.

A cycle with k source edges is called a k-cycle. A 1-cycle is called trivial. The
number of cycles in G(A, ιn) is denoted by c(A, ιn). For a rearrangement β, we
define Δc(A, ιn, β) = (|πA| + 1 − c(A, ιn)) − (|πA · β| + 1 − c(A · β, ιn)).
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A cycle C = (c1, c2, . . . , ck) is oriented if the values (c1, c2, . . . , ck) do not
form a decreasing sequence. Given a cycle C = (c1, c2, . . . , ck), a source edge eci

is convergent if it is traversed from right to left, and it is divergent otherwise.
Note that ec1 is always convergent by our convention of how the cycle is traversed
when listing indices. A pair of edges (ci, cj) is divergent if one of the source edges
is divergent and the other is convergent. A cycle is divergent if it has at least
one divergent source edge, and it is convergent otherwise.

A graph G(A, ιn) has divergent cycles if, and only if, A has at least one
element with “−” sign. Therefore, for the Block Interchange and Indel Distance
there are only convergent cycles in the graph.

An insertion run is a maximal path that starts and ends with labeled target
edges and has no labeled source edge. Similarly, a deletion run is a maximal
path that starts and ends with labeled source edges and has no labeled target
edge. The number of runs in a cycle C is given by Λ(C).

The indel potential of a cycle C is a value of how much indels are necessary
to turn Λ(C) = 0 without merging cycles or creating new cycles with runs in it.
We define the indel potential of C as follows:

λ(C) =

{⌈
Λ(C)+1

2

⌉
, if Λ(C) > 0

0, otherwise.

We also denote by λ(A, ιn) the sum of indel potentials of all cycles in G(A, ιn),
that is, λ(A, ιn) =

∑
C∈G(A,ιn) λ(C). We also have Δλ(A, ιn, β) = λ(A, ιn)−λ(A·

β, ιn), which denotes the change in the indel potential of the graph caused by a
rearrangement.

Lemma 1 (Alexandrino et al. [2]). For any deletion ψ and strings A and ιn,
we have that Δc(A, ιn, ψ) + Δλ(A, ιn, ψ) ≤ 1.

Lemma 2 (Alexandrino et al. [2]). For any insertion φ and strings A and
ιn, we have that Δc(A, ιn, φ) + Δλ(A, ιn, φ) ≤ 1.

Lemma 3. For any block interchange BI and strings A and ιn, we have that
Δc(A, ιn,BI) + Δλ(A, ιn,BI) ≤ 2.

Proof. We divide this proof according to the number of cycles affected by BI [9].
If BI affects four cycles C1, C2, C3, and C4, then it merges these cycles into

two new cycles C ′
1 and C ′

2. In the best scenario, two deletion runs and two
insertion runs from C1 and C3 are merged in C ′

1. Similarly, two deletion runs
and two insertion runs from C2 and C4 are merged in C ′

2. In this case, Λ(C ′
1) =

Λ(C1)+Λ(C3)−2 and Λ(C ′
2) = Λ(C2)+Λ(C4)−2. Therefore, Δλ(A, ιn,BI) = 4

and Δc(A, ιn,BI) + Δλ(A, ιn,BI) = 2. An example is presented in Fig. 2.
If BI affects three cycles C1, C2 and C3, then it merges these cycles into a

new cycle C ′. Similarly to the previous case, in the best scenario, the number
of runs decreases in four and Λ(C ′) = Λ(C1) + Λ(C2) + Λ(C3) − 4. Therefore,
Δλ(A, ιn,BI) = 4 and Δc(A, ιn,BI) + Δλ(A, ιn,BI) = 2.
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If BI affects two cycles C1 and C2, then it turns these cycles into two new
cycles or into four new cycles. If it turns C1 and C2 into two new cycles C ′

1

and C ′
2, then, in the best scenario, the number of runs decreases in four and

Λ(C ′
1) = Λ(C1) − 2 and Λ(C ′

2) = Λ(C1) − 2. Therefore, the indel potential
decreases by one for each cycle, so Δλ(A, ιn,BI) = 2, and Δc(A, ιn,BI) = 0.

Fig. 2. Example of a block interchange that acts on four cycles. In this example, we
have A = (0 α 2 α 4 α 6 α 8) and n = 7. The indel potential of the original graph
is equal to 4 × �(2 + 1)/2� = 8 and the indel potential of the new graph is equal to
�(2 + 1)/2� + �(2 + 1)/2� = 4.

Fig. 3. Example of a block interchange that acts on two cycles creating four new cycles.
In this example, we have A = (0 α 6 α 4 α 2 α 8) and n = 7. The indel potential of
the original graph is equal to �(4 + 1)/2� + �(4 + 1)/2� = 6 and the indel potential of
the new graph is equal to �(2 + 1)/2� + �(1 + 1)/2� + �(1 + 1)/2� + �(2 + 1)/2� = 6.

If it affects two cycles C1 and C2, and it turns these cycles into four new
cycles C ′

1, C ′
2, C ′

3, and C ′
4, then, in the best scenario, two pairs of deletion runs

are merged, but note that each cycle has at least one insertion run, as shown in
Fig. 3. So, Λ(C ′

1) = X, such that 1 ≤ X < Λ(C1), Λ(C ′
2) = min(Λ(C1)−X−2, 1),

Λ(C ′
3) = Y , such that 1 ≤ Y < Λ(C2), and Λ(C ′

4) = min(Λ(C2) − Y − 2, 1).
Therefore, the indel potential of the graph remains the same.

If BI affects one cycle C1, then it turns this cycle into a new cycle or into three
new cycles. If it does not change the number of cycles, then, in the best scenario,
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it can decrease the number of runs in the cycle by four and Δλ(A, ιn,BI) = 2.
If it turns this cycle into three new cycles C ′

1, C
′
2, and C ′

3, then, in the best
scenario, two pairs of deletion runs are merged, but note that each cycle has at
least one insertion run. Similarly to the previous case, the indel potential of the
graph remains the same. ��
Lemma 4 (Willing et al. [14]). For any reversal ρ and strings A and ιn, we
have that Δc(A, ιn, ρ) + Δλ(A, ιn, ρ) ≤ 1.

The graph G(A, ιn) has only trivial cycles and indel potential of zero if, and
only if, the strings A = ιn. Note that, when A = ιn, we have |πA|+1−c(A, ιn)+
λ(A, ιn) = 0.

Lemma 5. For any strings A and ιn, we have

dBI(A, ιn) ≥
⌈ |πA| + 1 − c(A, ιn) + λ(A, ιn)

2

⌉
.

Proof. Since |πA′ | + 1 − c(A′, ιn) + λ(A′, ιn) = 0 only if A′ = ιn, a sequence of
rearrangements that transform A into ιn must decrease the value of |πA| + 1 −
c(A, ιn) + λ(A, ιn) to zero. From Lemmas 1 to 3, a rearrangement can decrease
this value by at most two and, therefore, the bound follows. ��
Lemma 6. For any strings A and ιn, we have

dρ,BI(A, ιn) ≥
⌈ |πA| + 1 − c(A, ιn) + λ(A, ιn)

2

⌉
.

Proof. Similar to the proof of Lemma 5 considering Lemmas 1 to 4. ��

3 2-Approximation Algorithms for the Distance Problems

In this section, we introduce algorithms with approximation factors of 2 that
use the graph structure presented in the previous section. Alexandrino et al. [2]
presented a result on how to remove insertion runs from the graph and decrease
the indel potential, but only considering unsigned strings. We present how this
can be done for signed strings as well.

Lemma 7. For any strings A and ιn, if G(A, ιn) has insertion runs, then there
exists an insertion φ with Δc(A, ιn, φ) + Δλ(c, ιn, φ) = 1.

Proof. Consider the insertion run (v1, v2, . . . , vj) of a cycle C, such that v1 has
the same sign as the element of A that corresponds to v1 and (v1, v2) is a labeled
target edge. Let o1, o2, . . . , ok be indices such that (voi

, voi+1) is the i-th labeled
target edge of this run.

We construct S = (x1, x2, . . . , xk) as follows: for 1 ≤ i ≤ k, if voi+1 has a “−”
sign, then xi = 
((voi

, voi+1)); otherwise, xi = −
((voi
, voi+1)). The insertion of

S after the element of A corresponding to v1 removes the run and adds k cycles in
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the graph. A trivial cycle is created with the vertices (v1,−x1). For each element
xi, with 1 ≤ i < k, there is a cycle (+xi, voi+1, voi+2, . . . , voi+1 ,−xi+1,+xi). The
last vertex +xk belongs to what is left of the cycle C or to a trivial cycle, in the
case where all target edges of C belong to the removed run. An example of this
operation is shown in Fig. 4.

If Λ(C) ≤ 2, then removing a run of C reduces both the number of runs and
the indel potential of the graph by one. Otherwise, removing an insertion run
leads to the merging of two deletion runs. In this case, the number of runs of C
decreases by two and the indel potential of the graph decreases by one. As the
insertion adds k elements in A and k cycles in the graph with no runs, we have
Δc(A, ιn, φ) = 0. Therefore, Δc(A, ιn, φ) + Δλ(c, ιn, φ) = 1. ��

Fig. 4. Example of a insertion that removes a run from a cycle. In this example, we
have the insertion run (+0, −2, −9, +7, +5, −7). The insertion of (+1 −8 +6) at the
start of A removes this run and creates three new cycles.

Now, we show how block interchange operations can be used to increase the
number of cycles in the graph without increasing the indel potential.

Lemma 8. For any strings A and ιn, such that |πA| + 1 − c(A, ιn) > 0 and
G(A, ιn) has no labeled target edges, there exists a block interchange BI such
that Δc(A, ιn,BI) + Δλ(c, ιn,BI) = 2.

Proof. Consider that G(A, ιn) has an oriented cycle C = (c1, . . . , c�), and let
ci, cj , ck be a triple such that i < j < k and ci > ck > cj . Such triple always exists
in an oriented cycle and it is called an oriented triple [4]. A block interchange
applied on these three source edges creates three cycles C ′, C ′′, and C ′′′ [4]. Let
S1 and S2 be the two segments changed by the block interchange. If the source
edges are labeled, we can move the elements α in such a way that they end up in
the same cycle. To do this, we include the segment to be removed from the first
source edge in S1 and the segment to be removed from the third source edge
in S2. In this way, the segments to be removed are merged in a single source
edge, as shown in Fig. 5. An analogous operation is used if only two of these
source edges are labeled. Therefore, this block interchange does not affect the
indel potential of the graph and increases the number of cycles by two.
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Consider that G(A, ιn) has only non-oriented cycles and let C = (c1, . . . , c�)
be a cycle of G(A, ιn). Bafna and Pevzner [4] showed that for every eci and ecj

from C, with ci > cj , there exists a cycle D = (d1, . . . , d�′) with source edges
edx

and edy
such that either ci > dx > cj > dy or dx > ci > dy > cj . Assume,

without loss of generality, that ci > dx > cj > dy. A block interchange that
acts on these four source edges creates four new cycles C ′, C ′′,D′, and D′′: C ′

is formed by the path that goes from eci to ecj with a source edge that joins the
first and last vertices of this path; C ′′ is formed by the path that goes from ecj

to eci with a source edge that joins the first and last vertices of this path; D′

and D′′ are analogous. The first segment of the block interchange starts at the
source edge dy, including the segment to be removed from edy

if the edge edy
is

labeled, and ends at the source edge cj . The second segment starts at the source
edge dx and ends at the source edge ci, including the segment to be removed
from eci if the edge eci is labeled. In this way, the segments to be removed from
the same cycle are merged and the number of deletion runs remains the same,
as shown in Fig. 6. ��

Fig. 5. Example of a block interchange acting on an oriented cycle and creating three
new cycles. In this example, we have A = (0 α 2 α 1 α 3) and n = 2. The block
interchange moves the elements α in such a way that only one source edge remains
labeled.

Fig. 6. Example of a block interchange acting on two non-oriented cycles and creating
fours new cycles. In this example, we have A = (0 α 3 α 2 α 1 α 4) and n = 3. The
block interchange moves the elements α in such a way that the segments to be removed
from the same cycle are merged.
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Lemma 9. For any strings A and ιn, such that |πA| + 1 − c(A, ιn) = 0, there
exists a deletion ψ with Δc(A, ιn, ψ) + Δλ(c, ιn, ψ) = 1.

Proof. Since |πA| + 1 − c(A, ιn) = 0, each cycle of this graph is trivial. Each
cycle has at most one insertion run and one deletion run. A deletion that cleans
a source edge of a cycle C decreases the number of runs in C by one. Therefore,
Δλ(c, ιn, ψ) = 1 and Δc(A, ιn, ψ) = 0. ��

Algorithm 1 uses the results of Lemmas 7 to 9.

Theorem 1. Algorithm 1 is a 2-approximation for the problem of rearrange-
ment distance with block interchanges and indels.

Proof. By Lemmas 7 to 9, each operation β ∈ {BI, φ, ψ} applied by the algo-
rithm has Δc(A, ιn, β)+Δλ(c, ιn, β) ≥ 1. In this way, at the end of the algorithm,
the resulting string A′ satisfies |πA′ | + 1 − c(A′, ιn) + λ(A′, ιn) = 0 and, conse-
quently, A′ = ιn. Furthermore, the algorithm uses at most |πA| + 1 − c(A, ιn) +
λ(A, ιn) operations. By Lemma 5, the algorithm is a 2-approximation. ��

Algorithm 1: 2-Approximation algorithm for block interchange and indels
distance.
Input: Strings A and ιn

Output: An upper bound for the rearrangement distance dBI(A, ιn)
1 Let d ← 0
2 while G(A, ιn) has insertion runs do
3 Apply an insertion according to Lemma 7
4 d ← d + 1

5 while |ΣA ∩ Σιn | + 1 − c(A, ιn) > 0 do
6 Apply a block interchange according to Lemma 8
7 d ← d + 1

8 while G(A, ιn) has deletion runs do
9 Apply a deletion according to Lemma 9

10 d ← d + 1

11 return d

For the BI and Reversal Distance, we consider gene orientation. Therefore, it
is possible that divergent cycles exist in the labeled cycle graph. For convergent
cycles, we can still apply only block-interchanges to create new cycles in the
graph. The next lemma shows that it is always possible to find a reversal applied
to a divergent cycle and break it into two new cycles, while maintaining the indel
potential.

Lemma 10. For any strings A and ιn, such that G(A, ιn) has no labeled tar-
get edges and G(A, ιn) has a divergent cycle C, there exists a reversal ρ with
Δc(A, ιn, ρ) + Δλ(c, ιn, ρ) = 1.
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Proof. Let C = (c1, c2, . . . , ck) be a divergent cycle in G(A, ιn) and let (ecx , ecx+1)
be a pair of divergent edges with minimum x. A reversal applied to these edges
breaks C into a trivial cycle C ′ and another cycle C ′′ [3]. The reversal can be
chosen in a way that any α element is accumulated in the cycle C ′′, which makes
the indel potential of the trivial cycle equals 0 and the indel potential of C ′′ equals
the indel potential of C. In this way, we have Δc(A, ιn, ρ) + Δλ(c, ιn, ρ) = 1. An
example of such operation is shown in Fig. 7. ��

Theorem 2. Algorithm 2 is a 2-approximation for the problem of rearrange-
ment distance with block interchanges, reversals, and indels.

Proof. By Lemmas 7 to 10, each operation β ∈ {BI, ρ, φ, ψ} applied by Algo-
rithm 2 has Δc(A, ιn, β) + Δλ(c, ιn, β) ≥ 1. After the while loop, the resulting
string A′ satisfies |πA′ |+1−c(A′, ιn)+λ(A′, ιn) = 0 and A′ = ιn. Therefore, the
algorithm uses at most |πA| + 1 − c(A, ιn) + λ(A, ιn) operations. By Lemma 6,
the algorithm is a 2-approximation. ��

Fig. 7. Example of a reversal acting on a divergent cycle and creating two new cycles.
In this example, we have A = (0 α 2 α −1 α 3) and n = 2. The reversal moves the α
element in such a way that the trivial cycle created has only clean edges.

Algorithm 2: 2-Approximation algorithm for Block Interchange, Reversal
and Indel Distance.
Input: Strings A and ιn

Output: An upper bound for the rearrangement distance dρ,BI(A, ιn)
1 Let d ← 0
2 while G(A, ιn) has insertion runs do
3 Apply an insertion according to Lemma 7
4 d ← d + 1

5 while |ΣA ∩ Σιn | + 1 − c(A, ιn) > 0 do
6 if G(A, ιn) has a divergent cycle then
7 Apply a reversal according to Lemma 10
8 d ← d + 1

9 else
10 Apply a block interchange according to Lemma 8
11 d ← d + 1

12 while G(A, ιn) has deletion runs do
13 Apply a deletion according to Lemma 9
14 d ← d + 1

15 return d
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The time complexity of both algorithms is O(n2). Creating the Labeled Cycle
Graph and classifying its cycles takes O(n) time. Each while loop runs for O(n)
iterations, and each operation can be performed in O(n) time.

4 Conclusion

In this work, our main results are related to a structure called labeled cycle
graph. This graph can represent a complete instance of the problems, and we
were able to present good bounds for the Block Interchange and Indel Distance
and the Block Interchange, Reversal, and Indel Distance. With these results, we
developed 2-approximation algorithms for both distance problems.

The present study assumed equal costs for all rearrangements and absence of
repeated genes in the genomes. To extend the research, future works can explore
variations in the costs of rearrangements and the inclusion of genomes containing
repeated genes.

References

1. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Genome rearrangement dis-
tance with reversals, transpositions, and indels. J. Comput. Biol. 28(3), 235–247
(2021)

2. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Labeled cycle graph for trans-
position and indel distance. J. Comput. Biol. 29(03), 243–256 (2022)

3. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM
J. Comput. 25(2), 272–289 (1996)

4. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discret. Math. 11(2),
224–240 (1998)

5. Braga, M.D., Willing, E., Stoye, J.: Double cut and join with insertions and dele-
tions. J. Comput. Biol. 18(9), 1167–1184 (2011)

6. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J.
Discret. Math. 26(3), 1148–1180 (2012)

7. Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions.
SIAM J. Discret. Math. 12(1), 91–110 (1999)

8. Chen, X.: On sorting permutations by double-cut-and-joins. In: Thai, M.T., Sahni,
S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 439–448. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14031-0 47

9. Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett.
60(4), 165–169 (1996)

10. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of
contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol.
1848, pp. 222–234. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45123-4 20

11. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of
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Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil
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1 Introduction

Circular RNAs (circRNAs) have a covalent link between their ends, making
them more stable than linear RNA [13]. Cells usually produce circRNAs from
known exons by a type of alternative splicing denoted as back-splicing [10].
With the development of next-generation sequencing, researchers have identified
thousands of circRNAs in various organisms, with many having evolutionary
conservation [9,12].

Despite the attention received in the last decades, the exact mechanism and
function of most circRNAs still need to be discovered [23]. Recent studies have
found evidence indicating that circRNAs have functions related to their trans-
lation [1,3,19]. However, new tools and experiments are required to understand
their role, particularly in disease onset and progression [2,5,7,11,22].

Usually, tools for predicting coding regions in RNAs consider only AUG as
a possible translation initiation site (TIS), ignoring non-AUG TIS that occurs
in circRNAs [20]. We found three methodologies for predicting non-AUG TIS in
linear RNAs, including PreTIS [16], TITER [25], and TIS Predictor [6]. PreTIS
uses a linear regression model to predict TIS AUG and near-cognates. TITER
employs deep learning to predict TIS and TIS Predictor uses Random Forest
models to identify TIS in DNA sequence fragments associated with neurological
disorders. These methodologies differ in the length of the input sequences, the
training data, and the methods used to extract features. Nonetheless, all three
return a score representing the probability of a sequence fragment containing an
actual TIS.

Kernel methods are a powerful class of machine learning algorithms that
allow the analysis and integration of different data types, using a kernel matrix
representing the data and several algorithms to analyze it [18]. These methods
use a kernel function that calculates a similarity measure to all pairwise combi-
nations of data points, allowing data embedding in a suitable vector space and
simplifying complex relationships between data.

String kernels are kernel functions that allow the comparison of strings. The
weighted degree (WD) is a string kernel that compares strings by counting equal
substrings in the same positions of original strings of length defined by the degree
hyperparameter [15]. Researchers have widely used string kernels in Bioinformat-
ics for sequence analyses [14].

Support vector machine (SVM) is the most widely used kernel method, which
maps the data into a higher-dimensional feature space and constructs a separat-
ing hyperplane with the broadest possible margin to perform binary classification
between classes [17]. SVM also allows the distance of a data point from the sep-
arating hyperplane to quantify the magnitude of the point belonging to a given
class.

Because of the lack of specific software for TIS prediction in circRNA, we
developed circTIS, a tool based on string kernel and support vector machine,
detailed in the following sections.
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2 Materials and Methods

This section details how the circRNAs were selected and split into test and train-
ing datasets. Next, we present our proposed methodology for TIS prediction, the
experimental setup for selecting the WD kernel degree and C hyperparameters,
and the length of sequence fragments. Lastly, we explain the method for com-
parison with existing tools for predicting TIS AUG and near-cognates.

2.1 circRNAs Selection and Datasets Construction

TransCirc [8] is a database that gathers 328,080 exonic circRNAs detected in
human tissues. From an extensive literature search, the authors of TransCirc
matched seven different types of translation evidence to circRNAs. Thus, a cir-
cRNA in TransCirc has none or different combinations of the seven translational
evidence associated with it. The main types of translation evidence cataloged by
TransCirc include data from mass spectrometry with encoded peptides across
back-splice junctions, data from ribosome/polysome experiments that detected
occupancy of ribosomes by circRNAs, and known TIS mapped on circRNA
sequences.

For constructing our datasets, we initially selected the 9,394 circRNAs avail-
able in TransCirc with evidence of translation supported by one or more TIS,
resulting in 10,636 associated TIS. To determine TIS positions in circRNA
sequences, TransCirc authors mapped previously annotated TIS in circRNAs,
from their genomic positions, available in TISdb [24]. TISdb is a database con-
taining canonical and alternative TIS detected in human genes using the global
translation initiation sequencing (GTI-Seq) technique. The TransCirc database
stores many circRNAs with different identifiers but with the same nucleotide
sequence and the same TISs mapped to these sequences. After we removed these
repeats, 6,650 circRNAs with 7,665 annotated TIS remained, which made up
our primary dataset.

Then, as seen in Table 1, we divided our primary dataset into six parts with
approximately the same amount of circRNAs, separating one of these parts to

Table 1. Separation of the primary dataset into six parts with approximately the same
amount of circRNAs. We also present the number of annotated TIS and the number
of equivalent codons non-TIS, considered in our methodology, extracted from each set
of circRNAs.

Split 1 Split 2 Split 3 Split 4 Split 5 Test dataset

circRNAs 1,109 1,109 1,108 1,108 1,108 1,108

TIS AUG 878 861 869 820 858 881

non-TIS AUG 17,090 17,447 19,082 18,735 18,186 18,422

TIS near-cognates 116 112 104 104 96 98

non-TIS near-cognates 49,070 49,986 53,389 52,076 52,440 52,782
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compose our test dataset. We use the test dataset for the final evaluation of the
model and comparison with other similar tools. The other five parts composed
our training dataset, used with 5-fold cross-validation. Ultimately, we grouped
these five parts for training the final model implemented in circTIS.

From each circRNA, we extract fragments of the nucleotide sequence around
possible TIS. Like the TITER and TIS Predictor authors, we consider the
AUG codons as canonical TIS and the CUG, GUG, and UUG codons as near-
cognate TIS. We disregarded the other annotated TIS, composed of codons with
nucleotide combinations different from the four mentioned. We obtained the
positions of the real TIS from TransCirc and considered as false TIS all existing
codons in the circRNA sequences, regardless of the frame, corresponding to one
of the four cited types. Table 1 shows the true and false TIS extracted from each
circRNA set.

2.2 Proposed Methodology for TIS Prediction

Our methodology consists of creating a representation of the samples constituted
by sequence fragments around possible TIS using the WD kernel and training
an SVM model to classify the samples. Classification is performed based on
a score corresponding to the distance of the sample concerning the separator
hyperplane of the trained SVM. As sequence circularization occurs in circRNAS,
all our samples have the same length in each experimental configuration, which
is necessary for using the WD kernel.

Before the SVM’s definitive training, we conducted experiments to select the
best values for the WD kernel’s hyperparameter degree and the SVM’s hyper-
parameter C. We also performed previous experiments to determine the best
fragment size around possible TIS to perform their identification in circRNAs.
We carried out these previous experiments using the 5-fold cross-validation tech-
nique, in which, for each configuration tested, we trained the model with four
parts of the training dataset and used the fifth part for validation, repeating
this procedure five times using each a different part of the training dataset for
validation. Before performing each training step, we randomly downsampled the
negative samples, matching their number to the positive ones.

Our first experiment aimed to investigate the best value for the degree hyper-
parameter of the WD kernel. The WD kernel compares two strings by counting
all occurrences where two substrings, one from each input string, are equal. WD
is a positional kernel, as the substrings occupy the same positions in the input
strings. The degree defines the maximum length of substrings for comparison.
This experiment used samples with 203 nucleotides (100 downstream and 100
upstream of the possible TIS). Then, setting the degree value to one, we train the
SVM and evaluate the classification performance. We then repeated the training
and testing by varying the degree hyperparameter from two to 203, given that
the degree value limit is the sequence sample size. As presented in the Results
section, the classification quality increased as we increased the degree value.
Thus, in the following experiments, we set the WD kernel degree value to the
length of the sequence fragments we used as samples.
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The following experiments aimed to determine the length of the sequences
that yield the best classification performance. Here, we used samples with 403
nucleotides (100 downstream and 300 upstream of the possible TIS). Initially,
we reduced the sequences of training and validation to just one nucleotide in the
downstream direction. Then, using these reduced samples, we executed cross-
validation. We then repeated the training and testing by increasing the sample
in the downstream sense one nucleotide at a time until we reached the limit of
303 nucleotides. We then evaluated which sequence length generated the best
classification.

Similarly, we again left the sample with one nucleotide. Now, we were incre-
menting and evaluating the classification result, increasing the sample upstream
up to the limit of 100 nucleotides. Again, we evaluated which sample length
generated the best classification. The selected length of the samples we used in
the circTIS final model corresponds to the best upstream sequence length con-
catenated to the best downstream sequence length founds, which we present in
the Results section.

We also realized experiments for selecting the best value for the C hyperpa-
rameter. The C hyperparameter balances the maximization of the margin of the
SVM hyperplane with the minimization of training errors. Initially, we tested
the values 2−3, 2−2, ..., 26, obtaining the best result with the value 2. Then,
we performed fine-tuning by testing the values 0.5, 0.75, ..., 2.5, where we got
the best result with the value 1.5. Finally, we tested the values in the interval
1.25, 1.3, ..., 1.75, with the best result at 1.55. Therefore, we set the hyperparam-
eter C to 1.55 in the final model.

We used the metrics F1-score, precision, and recall to evaluate the predic-
tions of these training experiments. As the validation dataset is significantly
unbalanced, the F1-score is more suitable for evaluating these results. The F1-
score is given by the harmonic mean between precision and recall, representing
the predictor’s ability to correctly identify the samples with TIS simultaneously
regarding the number of samples incorrectly classified as containing or not a TIS.

For the software implementation, we used Python scripts with the public
Shogun machine learning library version 6.1.3 [21] to compute kernel matrices,
construction, and manipulation of the SVM. We performed the experiments on
a personal computer with an operating system Debian-based with Linux kernel
version 5.15.0-67. The hardware comprises an 11th-generation Intel i7 processor
and 16 GB of main memory.

2.3 Comparison with Existing Methodologies

To evaluate the circTIS, we compared the performance of our model with TITER
and TIS Predictor using our test dataset. We also compare our method with
TIS Transformer [4], a recently published deep learning-based tool specialized
for TIS AUG prediction. We did not retrain the models in these experiments,
so the analysis of the results must consider that the authors originally trained
them with linear RNAs. Until the writing of this article, we did not find specific
tools for predicting TIS in circular RNAs to compare our methodology.
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In this comparison, we submitted our test dataset for classification by the
three cited tools. For the TITER, we used samples with 203 nucleotides (100
downstream and 100 upstream of the possible TIS, according to the sample
length defined by your authors). We prepared samples with only 23 nucleotides
(ten downstream and ten upstream of the possible TIS) for TIS Predictor, as
described in their release article. These sample lengths cannot be changed as they
are part of the architecture of the respective tools. TIS Transformer accepts
complete RNA sequences as inputs, so we submit the FASTA file of the test
dataset with complete circRNAs, without prior extraction of samples of sequence
fragments. We did not make any further changes in models or parameters to
perform the comparisons.

As the methodologies compared return a score measuring the potential of a
sample (or of each sequence position, in the case of the TIS Transformer), we
analyzed the results visually from graphs containing the ROC (Receiver Operat-
ing Characteristic) and PR (Precision-Recall) curves generated from the samples
extracted from the test dataset. We also used the values of the areas under the
curves for a numerical comparison of the results.

3 Results

Next, we show the results obtained in the experiments for selecting the WD
kernel degree, the length of the sequence fragment, and the comparison with
similar programs.

3.1 WD Kernel Degree Selection

In this experiment, we investigated the best value for the WD kernel degree
hyperparameter. We used samples with 203 nucleotides (100 downstream and
100 upstream of the possible TIS). We consider the value of the F1-score to
carry out the final evaluation.

As can be seen in Fig. 1, we found that, for the datasets used, there was
a constant improvement of the F1-score as we increased the degree value. The
limit for the degree value is the size of the sequences we use as samples. Thus,
we selected a degree value equal to the sequence length for training the model in
the following experiments. In the biological context, this result suggests that the
WD kernel could use the full extent of the samples to classify them as containing
or not a TIS.

3.2 Length of the Sequence Sample Selection

Now, we show the experiment results varying the sample size, with different
window lengths downstream and upstream of the possible TIS, indicating which
window sizes produce the best results for the problem under study.

Considering the F1-score in Fig. 2 (left), we can observe that the region
upstream of the possible TIS has a minor influence on the correct classifica-
tion of the samples. From a length above approximately 40 positions, we can see
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Fig. 1. Result of the experiment to investigate the best value for the WD kernel degree
hyperparameter. Considering the F1-score, it is possible to observe a constant improve-
ment in the result as we increase the degree value. The dots in the graph are the average
values from the 5-fold cross-validation.

a soft and constant decrease in the F1-score. Thus, we selected the length of 40
nucleotides upstream of TIS to build the final model implemented in circTIS.

In Fig. 2 (right), we can see an improvement in the classification, even around
a sample with more than 250 nucleotides in length. From this position, the
classification quality presents an establishment. The best F1-score occurs in this
experiment with a sample of 287 nucleotides. Therefore, we selected this length
downstream TIS to build the final model implemented in circTIS.

Fig. 2. Classification quality by varying the sample size upstream (left) and down-
stream (right) to the possible TIS. The dots in the graphs are the average values from
the 5-fold cross-validation.
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Therefore, based on these results, we defined a length of 327 positions for
extracting fragments of circRNA sequences manipulated by circTIS, 40 upstream
and 287 in the downstream direction from the possible TIS to be classified.

3.3 Comparison with Similar Tools

We performed this comparison by evaluating the ability of the models to pre-
dict TIS AUG and TIS near-cognates (CUG, GUG, and UUG, in this study)
separately. As shown in Fig. 3, TITER, TIS Predictor, and TIS Transformer
generated similar results. However, the circTIS significantly outperformed these
tools. Considering the ROC curve of TIS AUG prediction, circTIS obtained an
AUROC of 98.64%, while TITER, TIS Predictor, and TIS Transformer obtained
78.97%, 78.39%, and 81.3%, respectively. The AUPR value of our method was
92.42%, while TITER, TIS Predictor, and TIS Transformer reached 18.82%,
20.50%, and 30.21%, respectively.

In the second comparison at the bottom of Fig. 3, we substituted the TIS
Predictor model for TIS near-cognate prediction according to the TIS type since
its authors trained a specific model to predict TIS AUG and another for near-
cognate TIS. Again, our methodology significantly outperformed the other tools.
Our method obtained an AUROC equal to 96.84%, while TITER, TIS Predictor,
and TIS Transformer got 81.37%, 72.68%, and 66.33%, respectively. The AUPR
value of our method was equal to 74.22%, while TITER, TIS Predictor, and TIS
Transformer reached 4.25%, 0.89%, and 0.64%, respectively.

Regarding the processing time, circTIS took 94 s to calculate the kernel
matrix and train the SVM final model with the complete balanced training
dataset. To perform the prediction of samples in the test dataset, circTIS needed
382 s, with most of this time spent extracting samples from circRNA sequences.
To perform the prediction on the same test dataset, TITER took 2,295 s, TIS
Predictor needed 2,078 s, and TIS Transformer needed only 178 s. The hardware
comprises an 11th-generation Intel i7 processor and 16 GB of main memory.

4 Discussion

This paper introduces a new computational method for predicting TIS AUG and
near-cognates in circRNA sequences. The method involves extracting samples
composed of fragments of sequences around potential TIS and classifying them
as having or not an actual TIS.

Our method is similar to most TIS prediction tools for linear circRNA. How-
ever, we employ a different approach to prediction, using the WD string kernel
to represent samples and SVM to perform classification. Since circularization of
the ORFs occurs in circRNAs, we found one advantage compared to other tools
developed for linear RNAs: we did not use samples with partial sequences. All
samples used in our experiments were sequences of the same length.
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Fig. 3. ROC and PR curves generated by the four methods for the TIS AUG and TIS
near-cognate classification. TITER, TIS Predictor, and TIS Transformer generated
similar results. The circTIS significantly outperformed the other three tools.

The first contribution of this work was the construction and release of
datasets with TIS AUG and near-cognates of circRNA sequences. These datasets
and all scripts used for experimentation are available at https://github.com/
denilsonfbar/circTIS-exps-BSB2023.

Our primary contribution, which we did not find in the literature, was the
observation that the WD kernel hyperparameter degree equal to the size of
the input sequences produces better results for TIS classification in circRNAs.
In future work, we will investigate this finding through experiments on other
datasets and for other sequence classification problems, such as predicting TIS
in linear RNAs.

https://github.com/denilsonfbar/circTIS-exps-BSB2023
https://github.com/denilsonfbar/circTIS-exps-BSB2023
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Another significant contribution was the investigation of the best lengths
downstream and upstream of the potential TIS for classification. In the context
of circRNA fragments represented with the WD kernel, we found a limit of
around 250 nucleotides downstream for the best discrimination between real
and false TIS. As expected, this length is smaller in the upstream direction,
around 40 nucleotides. While more experiments are needed, this result suggests
that tools like TITER, which uses samples with 100 nucleotides upstream, could
be more efficient in reducing samples in that direction.

Finally, another contribution is the implementation of the proposed method-
ology in a tool called circTIS and its release for use by other researchers. circTIS
also stands out for its fast training and prediction times. circTIS is freely avail-
able at https://github.com/denilsonfbar/circTIS.

5 Conclusion

The initial experiments we presented suggest that the circTIS constitutes a valu-
able tool for predicting TIS in circRNAs. However, new experiments are needed
to confirm the initial results presented. Although circTIS showed significantly
better results than the other tools, it is essential to highlight that these other
models were trained for linear RNAs. Although the circRNAs used in our exper-
iments result from alternative splicing of known exons, the biological particular-
ities of the circRNAs, used for circTIS training require that new comparisons be
performed to confirm the presented results.
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Abstract. In antiviral studies, heparin is widely used against the SARS-CoV-2
virus. In this study, computer simulations were performed to understand the role
of heparin in a possible blockade of the spike protein binding with the human cell
receptor. Another molecule, graphene oxide (GO), was functionalized to interact
and bind with heparin to achieve an increase in binding affinity with the spike
protein. In the first stage. The electronic and chemical interaction between the
molecules were analyzed through ab initio simulations by using Spanish Initia-
tive for SIESTA (Electronic Simulations with Thousands of Atoms) Software.
Next, we evaluated the interaction between molecules together and separately in
the spike protein target through molecular docking simulations using AutoDock
Vina Software. The results were relevant because GO functionalized with heparin
exhibited an increase in affinity energy to the spike protein. This affinity indicated
a possible increase in antiviral activity. This increase will be verified in the future
through in vitro tests. Experimental tests on the synthesis and morphology of the
material preliminarily indicate a good interaction between molecules and absorp-
tion of heparin by GO. This phenomenon confirmed the results of first principles
simulations.

Keywords: coronavirus · drugs · pandemic

1 Introduction

Since the COVID-19 pandemic began in 2020, almost 6,881,955 (as of April 2023)
million deaths have been reported worldwide [11]. Several treatment methods against
the disease are based on experiments with similar viruses, such as severe acute respira-
tory syndrome coronavirus (SARS-CoV), acquired immunodeficiency syndrome (HIV),
middle east respiratory syndrome (MERS-CoV), and virus influenza (H1N1). Antivi-
rals explore a specific pathway in the COVID-19 infection process and are classified as
endosomal acidification inhibitors, membrane fusion inhibitors, protein and viral entry
blockers, viral replication blockers, and protease inhibitors [30].
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In previous studies, we analyzed antiviral drugs with the targets involved in the
infectious process of COVID-19 without the use of nanostructures [21]. In this study,
the spike protein was the target, and heparin separated and linked to graphene oxide
(GO) was the ligand. This study verified the blocking activity of the chosen molecules
in the binding process of the spike protein with the cell receptor (ACE2). In our research
group, a similar theme using GO and flavonoids was used to propose a methodology to
the current method, but with the molecules separated [22].

Heparin, widely used for the treatment of COVID-19 related to thrombosis and clots,
is being investigated as a viral entry blocker. Some studies have proved the effectiveness
of this drug. For example, a study showed that the dependence of heparin in the connec-
tion between the viral protein and cellular receptor and indicated that heparin can be used
as a blocker of the SARS-CoV-2 spike protein [3]. Furthermore, heparin can be used
against virus transmission [10]. Heparin inhibits cellular invasion by the SARS-CoV-2
virus by up to 80% [15]. A study proved the efficacy of SARS-CoV-2 inhibition by
heparin and its sulfated polysaccharide derivatives and demonstrate its antiviral efficacy
and its potential for prophylactic and therapeutic purposes [26]. A study investigated
heparin as a cofactor for angiotensin-converting enzyme 2 (ACE2) in binding with the
spike protein [33].

GO has been used in some virus research because of its excellent binding character-
istics (negative charges), large surface area, and ease of functionalization with targeted
drugs [9, 20, 24]. GO has been used for the treatment of other diseases such as cancer
[25].

Studies have focused on the use of heparin with GO alone or associated with other
molecules against COVID-19. For example, a study on the antimicrobial activity of the
dialdehyde cellulose-graphene oxide film indicated the antimicrobial and antiviral activ-
ity of GO [4]. In another study, an in-depth investigation to understand the inactivation
route of SARS-CoV-2 using GO revealed excellent results for virus inactivation when in
contact with the carbon nanostructure [6]. In similar investigation, GO interferes with the
surface of SARS-CoV-2 by exploring the sensitive regions of a variant of the spike pro-
tein and the angiotensin-converting enzyme of the cellular viral entry receptor 2 (ACE2)
[28]. Molecular dynamics simulations on the interactions between SARS-CoV-2 and
3CL-Mpro by graphene and its derivatives revealed excellent absorption and inactiva-
tion of the viral protein [31]. Studies on nanotoxicity, which can cause serious problems
for humans, have used graphene and GO in biological media and require meticulous
attention so that cell death is not altered during experiments [23]. Another study investi-
gated how to treat GO to obtain biocompatibility with human cells and deliver drugs to
their target without problems [16]. A study detailed advances in graphene-based mate-
rials in drug delivery applications, including antitumor drugs, photodynamic therapy
applications and optical imaging in theranostics, and exhibited excellent results and a
promising future [12].

In this study we analyzed the improvement in the blocking activity associated with
the binding of the spike proteinwith the human cellular receptor whenGOwas combined
with heparin. As previously reported, the two molecules exhibited antiviral character-
istics. However, the results of the two molecules together are yet to be investigated.
According to the results of our molecular docking test, an increase in the affinity energy
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was observed between the boundmolecules and the spike protein. This increase possibly
indicates an improvement in the blocking activity of the spike protein and viral infection.
In vitro and in vivo tests have been conducted to compare the results of the simulations
and verify the cytotoxicity that the molecules can cause in cells and identify an adequate
amount of dosage to be administered in humans against the SARS-CoV-2 virus as well
as other viruses of similar families and with characteristics.

2 Methodology

Figure 1 shows the methodology used in this work, with the appointment that there are
steps that in progress.

Fig. 1. 1-a: Ab initio methodology, b: download of the heparin molecule from the Pubchem
Database, and creation of the GO in the Chemcraft Software, c: Molecular Docking methodology,
d: Download of proteins from the Protein Data Bank (PDB). 2- Execution of the simulations. 3-
Results analysis. 4- Steps in progress: Molecular dynamics, in vitro tests and characterization and
morphology tests (DRX and SEM)

2.1 Ab Initio

The computational simulation of first principles, or ab initio, is used to analyze and
predict the interactions of molecular systems and study their electronic and structural
properties as well as interpret experimental results [18]. In ab initio simulations, the
results were obtained through the hypotheses and basic equations of quantummechanics,
with charge, mass, and fundamental constants as parameters.
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Ab initio simulations were performed using the SIESTA (Spanish Initiative for Elec-
tronic Simulations with Thousands of Atoms) Software, in which efficient electronic
structure calculations, such as density functional theory, are implemented [7, 13]. The
calculations were set to converge when the residual force on each atom was less than
0.05 eV/Å. The supercell was configured with a size of 45 Å in the X-direction, and
30 Å in the Y- and Z-directions.

The binding energy (EB) is given by Eq. (1), where Eb (GO+Heparin) corresponds
to the total energy of the interaction system when graphene oxide interacts with heparin.
Here EGO and EHeparin are the total energy corresponding to each isolated molecule,
heparin, and GO.

Eb =
{
E(Go+Heparin)−

(
EGO + EHeparin

)}
(1)

GO and heparin molecules were initially tested separately to describe their elec-
tronic properties. Two configurations of GO and heparin molecules were obtained:
GO_single_face with the molecular formula (C55H21O6) is a configuration with func-
tional groups only at the top, and GO_double_face GO with the molecular formula
(C56H24O9) is a configuration with functional groups on top and bottom.

2.2 Molecular Docking

In molecular modeling, molecular docking is a mechanism that predicts the preferential
orientation of a macromolecule (usually a protein, peptides, or a stretch of DNA) called
a target, to a second structure called a ligand when joined to form a stable complex [21,
27].

The fitting process at the molecular level can be described by the laws of quantum
chemistry in which the time evolution of molecular systems is expressed in terms of
the wave functions of atoms. However, in practice, approximations are used such that
the system’s dynamics are identified by atoms represented by point masses that move
in the fields of molecular forces. Molecular forces are established by electrostatic and
chemical bonding interactions between atoms [14].

Molecular fit is a placement relationship of a ligand to a target molecule and binding
score based on some metrics, such as, the scoring function and root mean square devi-
ation (RMSD), defined as a measure of the distance average in Angstrom between the
atoms of the two ligands (receptor and ligand). RMSD is used to measure the quality
of the molecular docking process, which indicates a value of fewer than two Angstroms
preferably, whereas the affinity value should be as negative as possible [27].

AutoDock Vina integrated with AMDockTools [29] was used to perform molecular
docking. The initial steps of docking, namely ligand preparation and receptor analysis,
were performed using AutoDockTools Software that is part of the AutoDock Suite. The
target molecule, also called the receptor, should be treated with the identification of
charges, correction of unbound atoms for the stabilization of the structure, and solvation
of the medium with water molecules [5]. Torsion was added to the GO@Heparin ligand,
and its structure was analyzed to identify possible torsion sites to allow its adaptation to
various spatial conformations during the execution of the docking. The results revealed
angular movements in its three-dimensional structure.
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The structures used in this study were obtained from an online database. The heparin
molecule (C12NH15S3O19) was obtained from the PubChemmolecules databasewith ID
(5288499) [19]. Single-face (C55H21O6) and double-face (C56H24O9) molecules were
produced at our nanomaterials simulation laboratory using ChemCraft Software [2].
The structures of the spike protein of SARS-CoV2 were obtained from the PDB Protein
Data bank with ID (PDB ID: 7XNQ) [17]. The coordinates for the spike protein (7XNQ)
binding domain (RBD) region with the cell receptor were mapped with the following
data (X:146.9; Y:151.6; Z:117.5; SizeX:57.0; SizeY:54; SizeZ:52). Notably, only this
region of the protein was evaluated because it is the connection between viral entry and
host cells [21]. The structure of the spike protein (7XNQ) is displayed in Fig. 2 with the
receptor-bind domain (RDB).

Fig. 2. The structure of the Spike Protein OmicronVariant BA.4 (7XNQ), with the Receptor-Bind
Domain (RBD) region highlighted in pink

3 Results and Discussion

Ab initio computer simulations results achieved excellent attraction responses between
GO and heparin molecules in the regions where we approximated between atoms. The
total energy and binding energy were the parameters for the four configurations shown
in Table 1.

Table 1 describes the binding energy, the difference between the energy bands
(HOMO and LUMO), charge transfer, the types of bonds made, and the distances
between atoms. The configuration with the major binding energy was version 4, where
two regions of heparin attraction with GOwere highlighted. The first region was the one
that made a hydrogen bond with GO. The other region of attraction of heparin with GO
was a sulfated zone, but without binding.

Figure 3 displays the image of the four versions of heparin being approximated to
GO in various regions, and their characteristics are presented in Table 1. In version 1, a
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Table 1. Results of the ab initio computational simulations of some evaluation parameters.

Conformation Ebind (eV) H-L (eV) Charge Transfer
(e-)

Type of bond Distance
(Å-Angstrom)

Version 01 −2.740 0.064 0.649 H-O 1.6

Version 02 −2.000 0.060 0.709 C-O 1.6

Version 03 −1.980 0.053 0.801 H-O 1.2

Version 04 −3.460 0.028 0.968 H-O 1.2

Fig. 3. Graphene oxide and heparin molecules approximated in lateral regions and functional
groups a) version 1, b) version 2, c) version 3, and d) version 4

heparin oxygen was approximated to a hydrogen of a lateral hydroxyl of GO. In version
2, one oxygen of heparin was approximated to one carbon of one hexane of GO. In
version 3, a heparin oxygen was approximated to a hydroxyl at the bottom of the GO. In
version 4, a heparin oxygen was approximated to a hydroxyl in the upper part of the GO.
The basic idea was to test different regions of approximation between the molecules, in
order to verify the interaction between them.

Figure 4 shows the details of the energy bands (HOMOand LUMO) for double-sided
GO, heparin alone and GO@heparin version 4. It is possible to observe that heparin is
more electronegative than GO, and after the union of the molecules the energy bands
were at an intermediate value compared to the molecules alone, which is an expected
behavior.

Molecular docking results revealed a good result when GO was used with heparin,
and the binding affinity increased. In this scenario, the antiviral blockade may increase
in practical tests.
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Fig. 4. Description of energy bands for graphene oxide molecules, heparin isolated and
GO@Heparin (interacting molecules)

Various types of torsions, namely torsions 4, 8, and 16, were investigated for the
GO@Heparin ligand. Themaximum number admitted for GO@Heparin was 16 because
when the number was greater than this number, the RMSD presented values above 2
Angstroms, which were considered a low-quality connection [1, 27]. Therefore, tests
should be performed on the most rigid and least flexible molecule.

Table 2. Molecular Docking results with the Spike Protein 7XNQ (Omicron Variant BA.4)

Conformation Torsion 4
(Affinity
kcal/mol)

RMSD
(Å)

Torsion 8
(Affinity
kcal/mol)

RMSD
(Å)

Torsion 16
(Affinity
kcal/mol)

RMSD
(Å)

Version 1 −16.9 0.214 −14.7 0.709 −12.8 1.609

Version 2 −15.4 0.281 −13.9 0.294 −11.4 1.060

Version 3 −14.4 0.283 −12.8 0.293 −10.9 1.090

Version 4 −13.8 0.171 −12.8 0.300 −10.8 0.888

Heparin −8.6 0.360 −8.1 1.170 −7.5 1.580

Table 2 describes the conformations used in this study, the number of torsions used
in ligands 4, 8, and 16, and their respective affinity values (kcal/mol), RMSD for spike
protein 7XNQ. As expected, GO@Heparin always achieved superior values compared
to heparin isolated. Furthermore, when the value of the number of torsions of the ligand
increased, the RMSD value also increased and the affinity value decreased linearly for
all values.

For the calculation of RMSD, the original ligand (with defined torsion) was con-
sidered in comparison with the first configuration of the results, that is, with a higher
affinity value.
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The Omicron BA.4 Variant (7XNQ) was chosen in this work, as it is the most
current version available in online databases for analysis, and the study [17] indicates
that this variant version together with BA.2.12.1 and BA.5, can evade antibodies induced
by SARS-CoV-2 virus infection. Other variants have been verified, for example, Beta
Variant B.1.351 (PDB ID:7LYQ) [8], Delta Variant B.1.617.2 (PDB ID:7V7V) [34],
and Gamma Variant P.1 (PDB ID:7M8K) [32]. All tests follow the same pattern of
affinity improvements when using GO linked to heparin compared to heparin alone.
This demonstrates that there is a possibility that the compound will be effective against
variants, which occurs with most drugs and vaccines available.

Fig. 5. 2D map for version 01 (torsion4) of the ligand interacting with Spike Protein Omicron
Variant (7XNQ)

The interactions of the binding molecules with the amino acids of the protein in
version 1 of Table 2 are displayed in Fig. 5, whichwas created inBioviaDiscovery Studio
Software [5]. The figure details the protein’s amino acids, distances, and types of bonds in
the legend. Themost common interaction types, namely conventional hydrogen bonding,
carbon hydrogen bonding, Pi-cation, Pi-anion, and Pi-alkyl. Asparagine (ASN), lysine
(LYS), glycine (GLY), phenylalanine (PHE), serine (SER), proline (PRO), histidine
(HIS), tyrosine (TYR) were amino acids.

4 Conclusion

Heparin, which iswidely used on a large scale in hospitals for treating various comorbidi-
ties and diseases, including COVID-19, exhibited good results in our computer simula-
tions of ab initio andmolecular docking tests. GO is a graphene-based nanomaterial with
functional groups on its surface that facilitates drug targeting and renders the molecule
hydrophilic, which is particularly useful in biological media. In this study, GO was
functionalized with heparin. After the emergence of the Omicron B.1.1.529 variant of
SARS-CoV-2, and other more aggressive variants, they represent a critical challenge to
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the effectiveness of vaccines and antibody therapies. In our research group, as previously
reported, tests were performed with other variants, and our compound maintained a very
similar average effectiveness.

First, the high binding power of heparin was confirmed by testing its electronic
properties with the GO molecule. Thus, the combination of heparin and GO exhibited a
high binding tendency with the spike protein of SARS-CoV-2 virus. This phenomenon
indicates a possible gain in viral blocking property, which requires tests for confirmation
and analysis of cytotoxicity. Further efficacy tests are ongoing and results are awaited.
Finally, molecular dynamics simulations are in progress to confirm the results obtained
through molecular docking simulations to help with future practical experiences. Thus,
the study is as complete as possible.
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Abstract. Long non-coding RNAs (lncRNAs) play important roles in
various biological processes, and their accurate identification is essen-
tial for understanding their functions and potential therapeutic applica-
tions. In a previous study, we assessed the impact of short and long reads
sequencing technologies on long non-coding RNA computational identi-
fication in human and plant data. We provided evidence of where and
how to make potential better approaches for the lncRNA classification.
In this follow-up study, we investigate the misclassified sequences by five
machine learning tools for lncRNA classification in humans to under-
stand the reasons behind the failures of the tools. Our analysis suggests
that the primary cause for the failures of these tools is the overlap of two
coding regions by lncRNAs, similar to a chimeric sequence. Furthermore,
we emphasize the need to view genes as transcriptional units, as the tran-
script will define the gene function. These insights underscore the need
for further refinement and improvement of these tools to enhance their
accuracy and reliability in lncRNA prediction and classification, ulti-
mately contributing to a better understanding of the role of lncRNAs in
various biological processes and potential therapeutic applications.

Keywords: Non-coding RNAs · high-throughput sequencing
technologies · coding · methods · benchmarking

1 Introduction

Long-read sequencing provides numerous advantages over short-read sequencing
[1,12]. While short-read sequencing produces reads that are typically less than
300 bases, long-read sequencing technologies generate reads that can be more
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than 10 kb in length [12]. Long reads can thus improve de novo assembly, map-
ping certainty, transcript isoform identification, and detection of structural vari-
ants. Additionally, long-read sequencing of native molecules, such as DNA and
RNA, eliminates amplification bias and preserves base modifications. As accu-
racy, throughput, and cost reduction continue to improve, long-read sequencing
is becoming an increasingly attractive option for a wide range of genomics appli-
cations, including those for model and non-model organisms [1,15].

Long non-coding RNA (lncRNA) identification is a significantly benefited
class of transcripts that would have improved identification using long-read
sequencing technologies [10]. The GENCODE project [8], as a foundational
resource for human genome annotation, has recently recognized the benefits
of using long-read transcriptome sequencing [8]. In the human transcriptome,
the benefits of annotating lncRNAs using long-read transcript data have already
been proven to be an important advance (e.g., some reads span the entire tran-
script and do not require assembly) [14]. The latest versions of the lncRNA anno-
tation in the GENCODE database are massively based on long-read sequencing,
making this database a reference resource for evaluating the performance of
lncRNA computational predictors.

In our previous work [2], we examined the impact of sequencing technologies
on lncRNA prediction using human genome annotation. We obtained lncRNA
transcripts datasets from the GENCODE project in releases 21 (V21) and 38
(V38), containing 26,414 and 48,751 lncRNA sequences respectively. Release V21
relied mostly on short-sequencing data, while V38 predominantly used long-read
data. These lncRNA datasets served as inputs for 10 prediction tools, and their
performance was evaluated based on sensitivity. We then selected the five tools
with the best average sensitivity across V21 and V38 - RNAmining, PLEK,
CNCI, LncADeep, and lncRNAnet - for a more detailed lncRNA analysis. Fol-
lowing our subsequent investigation, we found nine misclassified sequences for
V21 and five for V38 across the five tools (see details in [2])

In this report, we focus specifically on misclassification (misclassified lncR-
NAs), which occurs when an input that is a true lncRNA is incorrectly classified
as coding. We first updated our sensitivity analysis to GENCODE version 41
(V41) and compared it with our previous report [2]. We then investigated in
detail the transcripts that were commonly incorrectly classified by all the tools
we analyzed. We discuss potential reasons for misclassification that could inform
the improvement of machine learning models. Our study has yielded two signif-
icant findings that are of relevance contributions: firstly, identifying lncRNAs
that overlap with multiple coding genes, which behave like chimeras, poses a
challenge for accurate identification; and secondly, the traditional definition of
gene as either coding or non-coding is no longer applicable as the transcript
itself plays a critical role in determining its function. Our aim is to gain a better
understanding of why these tools make mistakes in lncRNA classification. Under-
standing the reasons behind lncRNA misclassification is crucial for improving
the accuracy of lncRNA classification tools and advancing our understanding of
lncRNA biology.
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2 Methods

We selected the five top-performing tools - RNAmining, PLEK, CNCI,
LncADeep, and lncRNAnet - with the best average values based on our pre-
vious report [2]. We focused specifically on misclassification, where the input
data is a true lncRNA but is incorrectly classified as coding. All five tools uti-
lize supervised machine learning methods to differentiate between lncRNAs and
protein-coding genes (mRNA) or between coding and non-coding sequences. To
perform our analysis, we used 54,291 lncRNA transcript sequences from GEN-
CODE version 41 (V41) and compared the results with previous analyses in
versions 21 (V21) and 38 (V38). We updated the sensitivity analysis of each
tool for V41 to ensure the most accurate results. We used the Ensembl Genome
Broswer visualization from GENCODE version 43 which keep the same results
as V41.

The sensitivity is a metric that measures the accuracy of positive predictions
and is calculated as the ratio of the total number of correct positive predictions
to the number of actual positives. In our study, we used lncRNA transcripts
as the positive set and evaluated the sensitivity of each tool by comparing the
True Positives (TP) and False Negatives (FN) counts. The sensitivity metric was
calculated using the Eq. 1, where TP represents the correct classifications made
by the tools and FN represents the number of lncRNA transcripts misclassified
as coding transcripts. In the other words, the FN meaning sequences incorrectly
identified as coding sequences when they should have been classified as lncRNAs
according to GENCODE.

SN = TP/(TP + FN) (1)

Finally, we used Upset plots and Venn diagrams (Fig. 2a) to visually represent
the misclassified results by the tools.

3 Results and Discussion

In our previous report [2], we evaluated ten lncRNA classification tools in the
GENCODE V21 dataset (short read data) against V38 datasets (long read data).
We identified the five tools with the highest average sensitivity in comparison
to sequencing technologies: RNAmining (99.22%), LncADeep (97.13%), CNCI
(97.47%), lncRNAnet (96.91%), and PLEK (95.99%) (Fig. 1).

After comparing the results obtained from the V21 and V38 datasets, we
observed that, except for PLEK, all other tools demonstrated improved perfor-
mance. This led us to conclude that the V38 dataset, which is based on long-read
sequencing technology, was better annotated. One possible explanation for this
observation is that PLEK relies solely on the k-mer scheme (k = 1..5) to char-
acterize lncRNA and mRNA transcriptional sequences, whereas the other tools
employ at least two strategies for feature extraction.

In this report, we ran the same five tools with the V41 dataset as input
and updated their performance based on sensitivity values (Fig. 1). Our analysis
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revealed the following order of tools based on their sensitivity values: RNAmin-
ing (99.47%), LncADeep (97.66%), CNCI (97.49%), lncRNAnet (97.23%), and
PLEK (92.88%). These findings are consistent with our earlier evaluation of the
five tools using the V38 dataset [2].

Fig. 1. Comparison of sensitivity values for five lncRNA classification tools (CNCI,
LncADeep, lncRNAnet, PLEK, and RNAmining) across three GENCODE datasets:
V21, V38, and V41. The sensitivity values were calculated based on the ability of
each tool to accurately classify lncRNAs in each dataset. The y-axis represents the
sensitivity values, while the x-axis shows each tool and bars each dataset used as
input. The results show that RNAmining consistently outperformed the other tools
across all three datasets, while PLEK showed the lowest sensitivity, especially in the
V41 dataset. The findings are consistent with our earlier evaluation of these tools on
the V38 dataset [2].

We also determined the number of sequences misclassified by more than one
tool. A total of 6,249 sequences were misclassified by at least one tool, and that
5,199 (83.2%) sequences were misclassified exclusively by one tool (see Upset
Plot in Fig. 2a). The intersection of all sets (in red in Fig. 2a) shows that only
five sequences were misclassified by all five tools used in this study (V41). PLEK,
in particular, had the highest number of misclassifications, with 3,557 (56,92%
of total) sequences classified incorrectly, of which 3,075 (59.15% of exclusives)
were exclusively misclassified by PLEK.

In the previous study, we also compared the misclassified sequences and found
that nine transcripts in V21 and five in V38 were wrongly classified by all five
tools used. Using this information, we compared the misclassified transcripts for
each of the GENCODE releases (V21, V38, and V41), and we found that the
union of all versions resulted in 14 distinct misclassified transcripts (Fig. 2b).
Among the eight misclassified sequences exclusively from V21, four transcripts
were annotated as protein-coding in V41, and the other four no longer have tran-
script annotation information, indicating an improvement in transcript annota-
tion. The one misclassified exclusive sequence from V38 (ENST00000675965) is
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Fig. 2. (a) Misclassified sequences by the five tools in V41. The rows correspond to a
set of misclassified sequences. Each column corresponds to a possible intersection: the
filled-in circles show which set is part of an intersection, and vertical bar charts show the
size of the intersection. Five sequences were identified as non-lncRNA by five lncRNA
tools in V41. (b) The intersection of misclassified sequences by five lncRNA tools. Nine
sequences were misclassified in V21, five in V38, and five in V41. Transcript IDs are dis-
played around the diagram. We show the latest version of the transcripts. (c) Ensembl
Genome Browser showing the genetic region and isoforms of the ENST00000539086
transcript. The vertical dashed line is between the two coding genes overlapped by the
lncRNA (adapted from [4]).
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also not present in V41. The unique exclusive misclassified sequence from V41
(ENST00000461287) is a novel lncRNA transcript that was previously defined
as a coding sequence.

We found a transcript (ENST00000539086) that was misclassified in all three
versions of GENCODE (Fig. 2c). Upon checking the Ensembl Browser, we dis-
covered that there are 12 isoforms within this transcript, with only one as an
lncRNA. However, the critical aspect is that this lncRNA isoform overlaps with
two coding genes, making it look like a chimera. This evidence indicates that
regions with coding and non-coding features make their distinction difficult [9],
and we believe this is the reason for the misclassification of this transcript.

Another important factor to consider is the potential for region overlap. Typ-
ically, lncRNA classification tools are trained using two separate sets of tran-
scripts: one consisting of mRNAs, and the other of lncRNAs. This means that
when a lncRNA overlaps like a chimera with an mRNA, there is a chance that
a transcript (or a significant portion of it) may be present in both training sets
of the lncRNA classification tool. Consequently, this intersection of data can
compromise the accuracy of the classifier.

The transcripts ENST00000648391 and ENST00000461287 exhibit the same
chimera situation as discussed previously for transcript ENST00000539086. It
is hypothesized that this similarity could lead to failures in classifying these
transcripts by the tools. Figures 3 and 4 show these overlapping regions.

There are only three misclassified lncRNA transcripts in common between
V38 and V41 (ENST00000668205, ENST00000623502, and ENST00000648391).
Two (ENST00000668205 and ENST00000623502) of them are lincRNA tran-
scripts that overlap two enhancer regions and multiple sequence regions (e.g.,

Fig. 3. Ensembl Genome Browser showing the genetic region of ENST00000648391
transcript (adapted from [6])
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enhancers and promoter regions). Figures 5 and 6 show the region of these
transcripts. The third is a novel lncRNA transcript (ENST00000648391) that
does not have an identical model in RefSeq according to the Ensembl Human
(GRCh38.p13) website. According to the Ensembl annotation, this transcript
has a length of 4082 bps and 22 associated exons and we already described
before (Fig. 3).

Fig. 4. Ensembl Genome Browser showing the genetic region of ENST00000461287
transcript (adapted from [3])
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Fig. 5. Ensembl Genome Browser showing the genetic region of ENST00000668205
transcript (adapted from [7])

Fig. 6. Ensembl Genome Browser showing the genetic region of ENST00000623502
transcript (adapted from [5])

4 Conclusions

In this study, we thoroughly evaluated the performance of five machine learning
tools (RNAmining, LncADeep, CNCI, lncRNAnet, and PLEK) for classifying
long non-coding RNA (lncRNA) sequences in three versions of the GENCODE
dataset (V21, V38, and V41). Through our analysis, we aimed to gain a deeper
understanding of why these tools can make mistakes in lncRNA classification. To
gain insights into the specific types of misclassifications, we analyzed the indi-
vidual sequences that were misclassified by each tool. Interestingly, we found
that most misclassifications occurred when a sequence contained features of
both coding and non-coding RNA, making it difficult to distinguish between
the two. In particular, we identified a transcript (ENST00000539086) misclas-
sified in all three GENCODE versions, with 12 isoforms within the transcript
and only one as an lncRNA, overlapping with two coding genes, making it look
like a chimera. Chimeric RNAs, as described by [13], are formed through gene
fusion events, contributing to the intricacy of the transcriptome. These chimeric
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RNAs can originate from chromosomal rearrangements at the DNA level or non-
canonical RNA splicing mechanisms at the RNA level, further enhancing tran-
scriptome complexity. Our hypothesis is this region with coding and non-coding
features makes their distinction difficult, and overlapping data can compromise
the accuracy of the classifier. We suggest that classification tools incorporate a
pre-processing step to identify chimeric sequences, as well truncated sequences.
Additionally, it is possible to search for small open reading frames (ORFs) to
aid experimental efforts in characterizing potential peptides encoded by lncR-
NAs (as done by [11]). Another key conclusion is that the traditional definition
of a gene as either coding or noncoding no longer applies, since a transcript can
be both simultaneously. It is the transcript that determines whether a gene is
coding or non-coding. Therefore, it is important to consider the transcript when
defining a gene, as it plays a crucial role in determining its function. Overall, our
study offers valuable insights into the performance of these tools and emphasizes
the significance of careful evaluation when classifying lncRNA sequences. Our
detailed analysis of the misclassified sequences can help guide the development
of improved training strategies and feature engineering techniques to improve
the accuracy of these tools in the future.
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Abstract. Graphs often model complex phenomena in diverse fields,
such as social networks, connectivity among brain regions, or protein-
protein interactions. However, standard computational methods are
insufficient for empirical network analysis due to randomness. Thus, a
natural solution would be the use of statistical approaches. A recent
paper by Takahashi et al. suggested that the graph spectrum is a good
fingerprint of the graph’s structure. They developed several statistical
methods based on this feature. These methods, however, rely on the
distribution of the eigenvalues of the graph being real-valued, which is
false when graphs are directed. In this paper, we extend their results
to directed graphs by analyzing the distribution of complex eigenvalues
instead. We show the strength of our methods by performing simula-
tions on artificially generated groups of graphs and finally show a proof
of concept using concrete biological data obtained by Project Tycho.

Keywords: Network Correlation · Graph Statistics · ECoG

1 Introduction

We often use graphs to model interactions between objects. Some examples
include the functional connectivity of brain regions [4], social interactions [18],
molecular interactions [2], and gene regulations [1].

Once we model these natural phenomena using graphs, it becomes of signif-
icant interest to discriminate graphs of two or more populations or make infer-
ences [10]. For instance, suppose three patient groups were assigned different
treatments for a neurochemical condition. By examining each patient’s resting
state magnetic resonance imaging (MRI) scans, can we discern whether there is
a notable distinction among the administered drugs?

Traditional computation methods rely on the search for an isomorphism
between graphs or sub-graphs, which are prone to failure when randomness is
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applied to the graphs [9]. Because of this nature, these methods are unfit for
usage in biological data, where intrinsic randomness is expected [10].

An alternative technique is to compare graph features, such as the number
of nodes and edges, and, particularly, centrality measures, such as closeness and
betweenness [8]. These centrality measures are estimated and then used as input
in standard statistical methods. Although this is a step up from the previous
techniques, centrality measures can under-represent variability between graphs.
Take, for example, two graphs obtained from the Watts-Strogatz model. Even
if distinct rewiring probabilities are used, they still present the same centrality
measure since the number of edges does not change [10].

In 2017, Takahashi et al. [12] proposed that the graph spectrum is a good
feature for describing the graph structure. They used the Kullback-Leibler and
Jensen-Shannon divergences between spectral distributions to measure the dis-
tance between graphs. Using this concept, they constructed tools for 1. model
selection; 2. a parameter estimator for random graph models; 3. a statistical test
to compare two sets of graphs. More recently, these ideas have been used to create
a concept of correlation [11]/causality [15] between graphs and spectrum-based
clustering algorithms for complex networks [14].

One limitation of this work is that it is limited to undirected graphs whose
eigenvalues are all real-valued. However, many empirical graphs are directed. A
solution would be to symmetrize the graph. The problem is that we usually lose
the directionality information, or it vastly influences the spectrum distribution.

In this paper, we extend the results of Takahashi et al. for directed graphs.
Our ANOVA-like approach can distinguish between groups of directed graphs
obtained from distinct populations. Also, we apply it to actual biological data
for illustration.

2 Materials

2.1 Graphs

A graph G consists of a pair (N,E), where N is a set of nodes, and E is a set
of edges connecting a pair of nodes of G.

We call a graph weighted if every edge between two nodes i and j is associated
with a complex value ei,j ∈ C. In contrast, in non-weighted graphs, an edge
between two nodes i and j will assume 1 if i and j are connected or 0 otherwise.

A graph is said to be undirected if, for every pair of nodes i and j, the
edges ei,j and ej,i connecting i to j, and j to i respectively, are equal. That is:
ei,j = ej,i. Otherwise, it is undirected.

Given a graph G with n nodes, we define its adjacency matrix AG as the
matrix AG = (ei,j)i,j=1,...,n, where ei,j is the value associated with the edge
connecting node i and node j. Note that the adjacency matrix of an undirected
graph is symmetric.

The spectrum of a graph G is the set of eigenvalues of its adjacency matrix
AG. If G is directed, its adjacency matrix is non-symmetrical. Therefore its
eigenvalues are complex-valued.
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2.2 Spectral Distribution

A random graph g is a family of graphs whose members are generated by some
probability law. For example, we construct an Erdös-Rényi random graph by
connecting two nodes with probability p.

We define the complex Dirac delta as the measure δC satisfying for every
compactly supported continuous function f :

∫
C

f(x)δC{dx} = f(0).

Alternatively, we construct the complex Dirac delta function as the product
of the 1-dimensional Dirac delta in two variables (the real and the imaginary
variables). That is:

δC(a + bi) = δ(a)δ(b).

Let g be a directed random graph generated by some probability law. Then
its complex eigenvalues Δ form random vectors. Let brackets 〈〉 indicate expec-
tations concerning the probability law. Then we define the spectral distribution
of the directed random graph g as

ρg(λ) = lim
n→∞〈 1

n

n∑
j=1

δC(λ − λj√
n

)〉.

This distribution is highly correlated with distinct features of the graph. We
can use it as a fingerprint of the random graph g [10].

2.3 Calculating the Graph Spectrum

Estimating the spectral distribution of a directed random graph is performed
under a similar procedure as for the undirected case [10].

Since the spectral density ρg is unknown, we need an estimator ρ̂g. We ini-
tially compute the eigenvalues λ1, . . . , λn of the graph’s adjacency matrix g and
apply a multivariate kernel regression [6]. We divide the resulting 2-dimensional
surface by the volume under the curve to ensure the final volume is one (proba-
bility function).

2.4 Statistical Distance

The spectrum distribution is the distribution of complex eigenvalues of a graph
model. We are interested in using it as a fingerprint of the model so that by
comparing the spectrum of two different random graph models, we can establish
a certain distance between them. Similarly, we can compare the spectrum of
a graph to the spectrum distribution of a random graph model and obtain a
measure of how far apart the graph is from being generated from that specific
model.
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To compare these distributions, we will be using the Kullbeck-Leibler diver-
gence [13]. The Kullbeck-Leibler divergence is a statistical distance measuring
how a probability distribution differs from a second distribution. For two prob-
ability densities p and q, the Kullbeck-Leibler divergence is defined as

D(p, q) =
∫
C

p(x) log
(

p(x)
q(x)

)
dx

2.5 Random Graph Models

Graphs can often model very complex phenomena, and it is often impossible to
establish how a graph was formed when dealing with biological data. Besides,
it is difficult to establish whether two graphs are similar simply by analyzing
their structures. Thus, one idea is to imagine these graphs resulting from a
probabilistic model with a set of parameters.

Directed Models. Unfortunately, models for directed graphs are not as preva-
lent as the ones for undirected graphs. Thus, we propose the following general
extension of any directed model.

Given a random model r with a parameter p, we extend this model as follows.
Let p1 and p2 be two parameters for model r. Then

1. Generate a graph G1 with parameter p1 and construct its adjacency matrix.
2. Generate a graph G1 with parameter p2 and construct its adjacency matrix.
3. Generate a matrix M whose upper triangular is the same as of G1 and whose

lower triangular is the same as of G2.
4. Generate a graph G with adjacency matrix M .

Note that the parameters p1 and p2 control the network’s inner and external
connections, respectively, which are represented on the upper and lower triangle
of the graph’s adjacency matrix. In the scenario in which p1 = p2, the resulting
graph is still directed due to the random element of the graph generation process.

We will use this procedure to run our simulations.

3 Methods

Given k groups of graph samples, we are now interested in verifying whether
they originated from the same population.

Naively, we could use a parametric approach by selecting a random graph
model, estimating the parameters for each graph, and using traditional ANOVA
with the estimated parameters as input. However, we must know the random
graph model, which is very unlikely in most realistic scenarios. Other non-
parametric methods, like the Kolmogorov-Smirnov test, require independence
of the graphs, which is often not true when they result from a biological process.
Therefore, we will use an ANOVA-like approach following the ideas described
by Fujita et al. [9] called ANOGVA.
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In other words, we will perform a variation of the ANOVA using the complex
distribution of eigenvalues of the graphs.

Let g1, . . . , gk be k distinct graph populations. If these graphs come from
the same population, their spectral distributions should be equal. Let ρgi be
the average graph spectrum for group i, ρG = 1

k

∑k
i=1 ρgi be the overall graph

spectrum average, and D be the Kullbeck-Leibler divergence.
Then, we test the following hypothesis:

H0 : D(ρg1 , ρG) = D(ρg2 , ρG) = . . . = D(ρgk , ρG) = 0

H1: At least one of the groups of graphs was generated in a different manner

Under the null hypothesis, we expect the statistic Δ =
∑k

i=1 D(ρg1 , ρG) to
be small. Under the alternative hypothesis, we expect it to be large.

The distribution of Δ is unknown and highly dependent on the used random
graph model. Therefore, to test for significance, we will use a bootstrap approach.

The following algorithm describes how we compute the bootstrap

Input: k groups of graphs, g1, . . . , gk, and a number of max-iterations
Max

Output: A p-value
1 Estimate ρ̂g1 and ρ̂G;
2 Calculate Δ̂ =

∑k
i=1 D(ρ̂g1 , ρ̂G);

3 Set Δ̂l = [];
4 for Max iterations do
5 Construct k new groups g

′
1, . . . , g

′
k by resampling (without

replacement) the original graph set;
6 Estimate the average spectrum distribution ρ̂g′

i
for each new graph

g
′
i;

7 Calculate the overall graph spectrum average ρ̂
′
G;

8 Calculate Δ̂
′
=

∑k
i=1 D(ρ̂

′
g1 , ρ̂

′
G).;

9 Append Δ̂
′
to Δ̂l;

10 end
11 Let p = Cardinality(Δ̂

′ ∈ Δ̂l : such that Δ̂
′ ≥ Δ̂) · 1

Max ;
12 return p;

Algorithm 1: Anogva

Implementation. We implemented this method in R, extending the existing
StatGraph package [17]. We constructed the multivariate kernel density estima-
tor using the package ‘ks.’

4 Simulations

To verify the power of the method described in this paper, we constructed a set
of simulations to generate directed random graphs as defined in Sect. 2.5.
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To evaluate the performance of ANOGVA, we need to verify the null (H0) and
alternative (H1) hypotheses. Since we want to ensure that ANOGVA works in
a wide range of random graph models, we generated the graphs using the Erdös-
Rényi [7], Watts-Strogatz [19], and Barabási-Albert [3] models, as described in
Sect. 2.4. We generated the graphs using the igraph package in R [5].

For each of the models, we performed the following simulation:

1. We generated three sets of graphs: G1, G2, and G2, each containing ten
graphs, for a total of 30 graphs.

2. All of the graphs were generated with n = 800 nodes and using specific
parameters.

3. We then applied the ANOGVA algorithm using 500 bootstrap samples.
4. We ran this experiment 500 times, generating a p-value distribution.

Simulation (H0): All three groups should be generated using the same set of
parameters under the null hypothesis.

Table 1 describes the parameters we used for each random graph model.

Table 1. Parameters used in the null hypothesis simulation

Model Parameters

Erdös-Rényi p1 = 0.1 and p2 = 0.2

Watts-Strogatz p1 = 0.1 and p2 = 0.3 neigh = 10, dim = 1

Barabási-Albert p1 = 1.0 and p2 = 1.1

Since we generated all groups using the same models and parameters, we can
safely assure that they all come from the same population. In other words, they
are under the null hypothesis. Under the null hypothesis, we expect that the
distribution of p-values forms a uniform distribution in the [0, 1] range.

Figure 1 shows the distribution of the p-values. As we can see, they form a
uniform distribution, thus showing that our proposal controls the rate of false
positives.

We remark that the power of the test increases with the number of graphs.
Thus, a small number of graphs (N = 30) shows that even under a small sample
size, the ANOGVA method performs well.

Now we verify the H1 hypothesis.

Simulation (H1): To verify the power of the test, we need to generate groups
from distinct populations.

Table 2 describes which parameters we used for each random graph model.
Since we generated all the groups using distinct parameters, this simulation

satisfies the requirements for H1, where we generated at least one of the groups
(in this case, all of them) differently. Under the alternative hypothesis, we expect
all the p-values to be small.

In all models, the resulting p-values were all equal to zero.
We can see that the ANOGVA method satisfies our expectations.
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Fig. 1. (a) Distribution of p-values for the ANOGVA simulation under the null hypoth-
esis using the Erdös-Rényi model. (b) Distribution of p-values for the ANOGVA simu-
lation under the null hypothesis using the Watts-Strogatz model (c) Distribution of p-
values for the ANOGVA simulation under the null hypothesis using the Barabási-Albert
model. Notice that all of them are uniform distributions. Performing a Kolmogorov-
Smirnov test comparing these values with the uniform distribution gives us p-values
greater than 0.05.

Table 2. Parameters used in the alternative hypothesis simulations

Model G1 G2 G3

Erdős-Rényi p1 = 0.1, p2 = 0.3 p1 = 0.2, p2 = 0.4 p1 = 0.3, p3 = 0.2

Watts-Strogatz p1 = 0.1, p2 = 0.3, neigh = 10, dim = 1 p1 = 0.2, p2 = 0.7, neigh = 10, dim = 1 p1 = 0.3, p3 = 0.3, neigh = 10, dim = 1

Barabási-Albert p1 = 1.1, p2 = 1.3 p1 = 1.1, p2 = 1.8 p1 = 1.7, p2 = 1.8

5 Applications to Biological Data

To illustrate ANOGVA, we applied it to a biological dataset. We used the data
source titled ‘Anesthesia Task’ [20]. We obtained it from Project Tycho and
downloaded it via their website at http://wiki.neurotycho.org The experiment
aimed to compare neural activity between most of the lateral cortex measured
with electrocorticographic signals (ECoG) in a macaque during five stages: awake
with eyes opened, awake with eyes closed, anesthetized, recovering with eyes
closed, and recovering with eyes open.

5.1 Data Source

Four experiments were conducted, each on a different monkey. In each experi-
ment, a monkey was seated in a chair with restricted arms and head movement.

http://wiki.neurotycho.org
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In particular, the following steps describe the experiment for the monkey we ana-
lyzed. Neural data was acquired through 128 ECoG electrodes measuring ECoG
signals from most of the lateral cortex. Neural activity was recorded during all of
the following stages. Initially, the monkey was awake and opened its eyes, sitting
calmly in his chair for 10 min. Next, the eyes of the monkey were covered with
an eye mask to avoid evoking a visual response. The monkey was left sitting
in his chair for another 10 min. Recording of neural activity was stopped while
anesthesia was intramuscularly injected into the monkey. By the point at which
the monkey had stopped responding to manipulation of the monkey’s hand or
touching the nostril or philtrum with a cotton swab, neural activity recording
was resumed for another 20 min. After the anesthetized condition, the monkey
recovered from the anesthesia and was left alone for 55 min with its eyes still
covered. Next, the eye mask was removed, and the monkey was left to sit calmly
on his chair for another 10 min.

5.2 Data Processing and Graph Generation

The initial data generated by the experiment consisted of 128-time series in 5
categories: conscious with open eyes, conscious with closed eyes, anesthetized,
recovering with closed eyes, and recovering with open eyes.

Initially, the data was processed through several finite impulse response (FIR)
filters to remove any effect caused by electrical interference. We divided the
filtered data into several time windows, each lasting four seconds and generated
the graph using generalized partial directed coherence (gPDC) [16].

The gPDC is a frequency domain approach to identify the direction of
information flow (Granger causality) between multiple time series. We say
that a time series X Granger cause another time series Y if knowledge of
X(t − 1), . . . , X(t − k) increases the prediction of Y (t).

We carried out gPDC on the 128 frequencies of the filtered data. The result
was five sets of 128 groups of graphs (one for each generated frequency). Each
group consisted of several graphs, each representing a time window in its cate-
gory. Each graph had 128 nodes (each corresponding to a different ECoG elec-
trode). The graph was directed and weighted, where each edge between two
nodes corresponded to the level of causality between the ECoG electrodes.

5.3 ANOGVA

We performed the following experiment to verify the power of the ANOGVA
method. We selected a single-frequency domain. Given that frequency, we chose
100 graphs from each category. This procedure resulted in the following:

1. G1: 100 graphs generated from when the monkey was awake with its eyes
opened.

2. G2: 100 graphs generated from when the monkey was awake with closed eyes.
3. G3: 100 graphs generated from when the monkey was under anesthesia.
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4. G4: 100 graphs generated from when the monkey was recovering with closed
eyes.

5. G5: 100 graphs generated from when the monkey was recovering with closed
eyes.

First Experiment: We first performed an ANOGVA test using the five groups.
We used 1 000 bootstrap samples.

Second Experiment: We then performed the same experiment but compared
it in a pairwise manner. Similarly to the previous experiment, we used 1 000
bootstrap samples.

Third Experiment: Since all graphs originate from the same monkey, there
is a possibility that obtaining low p-values in the previous experiments is not a
consequence of the difference between the distinct categories. To verify that the
significance of the previous experiments was valid, we performed an ANOGVA
test under the null hypothesis. In specific, we performed the following for each
group Gi.

1. We split group Gi into two randomly sampled groups with no replacement,
obtaining Gi,1 and Gi,2

2. We performed an ANOGVA test on these groups with 300 bootstrap samples.
3. We stored the calculated p-value.
4. We repeated this procedure 300 times, generating a distribution of p-values.

Suppose we explain low p-values because all graphs originate from the same
monkey. In that case, performing ANOGVA using the described setup should
give us mostly low p-values.

5.4 Results

First Experiment: For the first experiment, we obtained a p-value less than
1

300 . This shows that there is at least one sample of graphs that were generated
differently.

Second Experiment: Table 3 shows the p-values obtained when comparing
groups Gi and Gj . We note the low p-values, indicating that our method could
differentiate between any two groups.

Third Experiments: Figure 2 shows the distribution of the p-values when
comparing each group with itself. Any fear that previous low p-values might be
because both groups originate from the same monkey can be eased by looking
at the results of this experiment. We note a well-defined uniform distribution in
each group, proving that the graphs from the same monkey are insufficient to
justify a low p-value between groups.
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Table 3. Results of second experiment:

G1 G2 G3 G4 G5

G1 0.002 0 0 0

G2 0.002 0 0 0.076

G3 0 0 0 0

G4 0 0 0 0

G5 0 0.076 0 0

Fig. 2. Results of the third experiment.

Experiment Conclusion: We have shown that our methods can differentiate
between the brain connectivity networks associated with all stages in the anes-
thesia experiment. These results promise that our methods can be used in future
clinical trials.

6 Conclusion

To distinguish between populations of directed graphs, we explored measures
based on the graph spectrum. We compared groups of graphs by calculating
the Kullback-Leibler divergence between the graphs’ spectra. This led to the
development of ANOGVA, a non-parametric model for testing whether two or
more groups of graphs share the same spectral distribution.

We demonstrated that our proposed method effectively distinguishes popu-
lations of graphs generated by different parameters, irrespective of the model
used. Similarly, regular ANOVA on centrality measures can also distinguish var-
ious models. However, traditional ANOVA fails when centrality measures, like
the number of edges in the Watts-Strogatz random model, remain unchanged. In
our illustrative application with ECoG data, we successfully captured changes in
the neural activity network of anesthetized monkeys. Unlike many classification
methods, the proposed method can be used in clinical settings for diagnosing
psychological conditions without the need for model training.
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Our current approach is limited to single-edge graphs, in which a node i can
only be connected to a node j via, at most, one edge. Multi-edge graphs, which
permit several connections between two nodes, are not represented so simply by
an adjacency matrix, and thus our method fails to apply.
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Abstract. The in silico evaluation of small molecules (ligands) and
receptors (proteins) interactions is of great importance, especially in
Drug Design. This is one of the principal computational methodolo-
gies that can be incorporated into the process of proposing new drugs,
with the aim of reducing the high financial costs and time involved.
In this context, molecular docking is a computer simulation procedure
used to predict the best conformation and orientation of a ligand in
the binding site of a target protein. These docking algorithms evalu-
ate the protein-ligand complex interactions using scoring functions (SF).
SF computationally quantify the complex binding affinity and can be
divided into categories according to the methodology applied in their
development: Physics-based, Empirical, Knowledge-based and Machine
Learning. Machine Learning (ML) scoring functions train the SF consid-
ering features obtained from known protein-ligand complexes and exper-
imental affinities. These SF rely heavily on the set of attributes that are
used to train them. Thus, in this work, we use PCA, ANOVA and Ran-
dom Forest to investigate how these feature selection methods impact the
performance of three Machine Learning scoring functions trained with
Support Vector Machines, Elastic Net Regularization and Neural Net-
works algorithms. The results show that Neural Networks can greatly
benefit from Feature selection performed by Random Forests but not
from ANOVA and PCA. The conclusions are that Feature selection can
improve the results of regression and in this study Neural Networks com-
bined with Random Forest is the best option.

Keywords: Rational Drug Design · Molecular Docking · Machine
Learning · Feature Selection · Scoring Functions

1 Introduction

Living organisms carry the genetic code for producing a wide range of products,
including proteins that play a crucial role in carrying out a myriad of biological

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. S. Reis and R. C. de Melo-Minardi (Eds.): BSB 2023, LNBI 13954, pp. 58–69, 2023.
https://doi.org/10.1007/978-3-031-42715-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42715-2_6&domain=pdf
http://orcid.org/0000-0001-7653-0962
http://orcid.org/0000-0003-2603-1940
http://orcid.org/0000-0001-7107-5024
http://orcid.org/0000-0002-8966-5708
https://doi.org/10.1007/978-3-031-42715-2_6


Feature Selection Investigation 59

functions. Small molecules can interact with proteins altering their function mak-
ing the study of these interactions highly significant in various research domains.
Computational investigation of these interactions is continuously gaining rele-
vance and finds extensive application in Drug Discovery [26]. Consequently, prior
to conducting in vitro and in vivo experiments, researchers often perform in sil-
ico investigation as part of the Rational Drug Design (RDD) [15,21].

In RDD, docking simulations are an essential step in experiments. They are
employed to predict the best conformation and estimate the binding affinity of
a ligand (small molecule) in a binding site of a receptor (Protein) [20]. The Free
Energy of Binding (FEB), or binding affinity, is computed by a scoring func-
tion [23,33]. The development of scoring functions (SF) is still a challenge [4]
and different types have been developed. These SFs types are classified into four
categories [18] related to the method that is used to obtain the protein-ligand
binding affinity: (i) Physics-based that uses force fields to calculate protein-ligand
binding; (ii) Empirical that calculates the protein-ligand fitness through the sum
of individual terms that represent important energetic factor in protein-ligand
binding; (iii) Knowledge-based, that obtains the score from summing pairwise sta-
tistical potentials between protein and ligand and (iv) Machine Learning meth-
ods that train scoring functions using features obtained from known protein-
ligand binding experiments. Among these categories of scoring functions, the
Machine Learning (ML) category is relatively new and promising as in general
they present superior results [27,33].

Although ML scoring functions present very promising results, there are some
aspects that require further investigation. There are many features (descriptors)1

that can be obtained from a protein (e.g. frequency of amino acids in primary
structure, secondary structure characteristics, number of atoms, chains, amino
acids, etc.), from a ligand (2- and 3- descriptors like radius of gyration, number
of atoms, rings, rotatable bonds, etc.) or from a protein-ligand complex (e.g.
close contacts according to atom types, electrostatic interactions, hydrophobic
contacts, etc.). Choosing which of these features are relevant for the training of
ML methods is not a trivial task. Besides, the knowledge about which descrip-
tors are more intimately related to binding affinity can shed some light in the
discussion about protein-ligand interactions.

In this work we consider 723 molecular descriptors related to protein-ligand
complexes. These descriptors are obtained using the following molecular feature
extraction software: AA, DSSP, BINANA, PaDEL, RDDit 2D/3D, SASA and
Vina. To select the most important features out of the 723 features available,
three Feature Selection methods are used: (i) Analysis of Variance (ANOVA),
(ii) Principal Component Analysis (PCA) and (iii) Random Forests (RF).

After selecting the most important features, the data sets composed of these
features and the experimental pKd are used to train three ML Regression meth-
ods: (i) Elastic net regularization (ENR), (ii) Neural Networks (NN) and (iii)
Support Vector Machine (SVM) and obtain the values of binding affinity, ˆpKd.

1 In this paper, features and descriptors are treated as synonyms.
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Using this experimental setting, we investigate how the Regression methods’
performance is affected by Feature selection in the task of predicting binding
affinity. Moreover, we explore the most important molecular descriptors found
by the Feature selection methods to better understand how to improve the devel-
opment of new scoring functions.

2 Material and Methods

Figure 1 shows our proposed methodology. The right panel presents a diagram of
the steps that are executed in the methodology. Examples for each of these steps
are presented in the left. All the steps were performed using in-house Python
scripts and the Scikit-learn package [25].

First, the PDBbind 2018 Refined set [31] is retrieved. Various feature extrac-
tion tools (AA, DSSP, BINANA, PaDEL, RDKit 2D/3D, SASA and Vina) are
employed to obtain the descriptors. After conducting exploratory data analy-
sis (EDA) and preprocessing, we generate the input data. Next, we apply fea-
ture selection algorithms such as PCA, Anova, and RF to the input dataset.
The resulting attributes are then used in Machine Learning regression methods,
namely Elastic Net Regression, Neural Network, and SVM, to obtain the pro-
posed ML scoring functions. Finally, the models are evaluated using two distinct
metrics RMSE (Root Mean Square Error) and Correlation.

Fig. 1. Proposed methodology.

2.1 Protein-Ligand Complexes for Input Dataset

PDBBind-CN [31] is a comprehensive assembly of experimentally measured bind-
ing affinity data for complexes (protein-ligand, protein-protein, protein-nucleic
acid, and nucleic acid-ligand) stored in Protein Data Bank (PDB). In this paper
we are considering the PDBbind Refined set 2018 [19]. The refined set selects
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the protein-ligand complexes with better quality from the PDBBind General
set using filters like binding data, crystal structures quality, and nature of the
complexes [17]. The data package of PDBbind 2018 includes index files with
information about the processed structures, receptor PDB file, ligands in Mol2,
and SDF format and also files with only the protein pocket. PDBbind refined set
2018 has 4,463 complexes in total, from where we separate the core set (CASF
2016 [27], to use in future validation) that has 285 structures, totaling 4,178
complexes. A small part of these complexes presented errors during the genera-
tion of the features and was not considered. Thus, our input dataset based on
PDBbind refined set 2018 has 4,152 complexes in total.

There are different experimental ways of expressing the protein-ligand bind-
ing affinity. In PDBbind 2018 the available experimental values of binding affinity
are the dissociation constant (Kd), the inhibition constant (Ki), and the concen-
tration at 50% inhibition(IC50) [19]. In this work we use the Kd because it is the
most commonly employed to provide the binding affinity characterization. Val-
ues of Kd in PDBBind Refined Set varies according to the experimental method
hence we use the normalized kd. Taking into consideration the details presented
above, the target attribute in our input files is the pKd that corresponds to
− log10 Kd.

2.2 Feature Extraction

Starting from the PDBbind data, a total of 723 features are obtained from
different sources. These features were extracted/obtained as follows, where the
number in parentheses corresponds to the total of attributes of a given type
followed by the source of the features (Receptor, Ligand or the Complexes):

– AA % (20 - Receptor): these attributes correspond to the percentage of
each amino acid type in the primary receptor structure. We calculated these
using Biopython [3];

– DSSP (34 - Receptor): we considered 34 attributes selected from the list
used by [14]. This list is based on protein secondary structure functional char-
acteristics calculated by DSSP [12]. These attributes are: the total number of
residues, chains, SS-bridges, SS-bridges intra-chain and inter-chain, hydrogen
bonds in anti-parallel bridges and parallel bridges, hydrogen bonds of different
types (O(I) H-N(I-5), O(I) H-N(I-4) and so on).

– BINANA (350 - Receptor - Ligand - Complex): The Python imple-
mented algorithm BINANA (BINding ANAlyzer) [6] calculates descriptors
for characterizing protein-ligand binding. These attributes were considered in
the scoring function NNSCORE 2.0 [5] and are divided into:

1. close contacts corresponds to the frequency of all ligand and protein
atoms types that are within 2.5 Å or 4.0 Å of each other;

2. electrostatic interactions calculates, for each atom-type pair of atoms
within 4.0 Å of each other, the sum of electrostatic energy using Gas-
teriger partial charges [22];
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3. binding-pocket flexibility starts verifying for each receptor atom
within 4.0 Å of any atom of the ligand if it belongs to a side chain
or backbone, then check if this receptor atom is in a α-sidechain, α-
backbone, β-sidechain, β-backbone, other-sidechain, other-backbone and
finally counts these frequencies;

4. hydrophobic contacts simply verify the number of times a ligand car-
bon atom is within 4.0 Å of a receptor carbon atom and calculates
the frequency where this receptor carbon atom is according to side-
chain/backbone/secondary structure;

5. hydrogen bonds counts the number of hydrogen bonds according to
the side-chain/backbone/secondary structure of the receptor atom and
where is the hydrogen-bond donor (ligand or receptor) generating twelve
attributes;

6. salt bridges corresponds to the possible salt bridges between the recep-
tor and the ligand categorized by the secondary structure of the protein
residue α-helix, β-sheet or other;

7. π interactions starts identifying and characterizing all aromatic rings of
receptor residues and five or six aromatic rings, aromatic or not of ligands
followed by the identification of π-π stacking, T-stacking, and cation-π
interactions between these rings according to the secondary structure of
the receptor residue containing the associated aromatic ring or charged
functional group α-helix, β-sheet, or other;

8. ligand information calculates the number of atoms of each atom
type and the number of rotatable bonds of the ligands (according to
Autodock);

– PaDEL (92 - Ligand): The software PaDEL calculates 1-, 2- and 3D ligands
descriptors and 10 types of fingerprints [34]. From these, we chose to consider
92 2D descriptors that comprehend:

1. atom count descriptors: total number of heavy atoms, H, B, C, N, O,
S, P, F, Cl, Br, I, and halogens;

2. bound count descriptors: the total number of single and/or double
bonds considering and not considering hydrogens and the total number
of triple or quadruple bonds;

3. rings count descriptors: number of single and Ring count descriptors
(total number of rings and/or fused rings, number of 3-, 4-, 5-, 6-, 7-,
8-, 9-, 10-, 11-, 12-, > 12-membered rings and/or fused rings, number
of rings and/or fused rings containing heteroatoms, number of 3-, 4-, 5-,
6-, 7-, 8-, 9-, 10-, 11-, 12-, >12-membered rings and/or fused rings with
heteroatoms).

– RDKit(158 - Ligand): The open-source toolkit for cheminformatics RDKit
generates 2-,3D descriptors about ligands [16]. In our proposed method, 147
2D descriptors like the number of aliphatic rings; saturated/aliphatic hetero-
cycles; some polarity counts; MOE-type descriptors, and so on;

– SASA (10 - Receptor): These descriptors are related to solvent-accessible
surface area (SASA). For details, see material of [30].
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– Vina (59 - Ligand - Complex): 58 terms implemented by AutoDock
Vina source code [7,29]: protein-ligand interactions terms (gauss, repulsion,
van der walls, electrostatic, hydrogen bond, hydrophobic, non-hydrophobic,
autodock 4 solvatation) and ligand dependent counts (number of torsions,
rotors, heavy and hydrophobic atoms, hydrogen bonds, ligand length). On this
group of attributes, we are also considering the vina score [7,29].

2.3 Preprocessing

Before applying feature selection, we first performed a Exploratory Data Analysis
(EDA). After the EDA, we removed attributes where the entropy was equal to
zero as they do not offer information gain for generating the models. In addition
to this, we normalized all the numeric attributes to have values between 0 and
1. This resulted in an input data set with a dimension of 4,152 (instances) ×
502 (attributes).

2.4 Feature Selection

Dimensionality reduction is a process that aims to reduce the dimensionality of
the training set, in order to obtain a set of features that are more relevant to
training the model. This process aims to reduce overfitting, increase the accu-
racy of the results and reduce training time [8]. Based on this, we propose to
investigate the impact of distinct feature selection methods in the prediction of
pKd. Three different feature selection methods were exploited:

– PCA: Principal Component Analysis [24] is an statistical multivariate tech-
nique that transforms the original data set in a new data set of principal
components. Each feature in the new data set is a linear combination of all
original features, maintaining the maximum of information in terms of data
variability. To decide how many features have to be kept to maintain 90% of
the data variability, Fig. 2 shows the Elbow Plot where it is possible to verify
that 77 features are necessary.

Fig. 2. Elbow Plot. This plot shows in the horizontal axis the number o components
and in the vertical axis the Eigenvalues, or the percentage of variability that is kept.
To explain 90% of the data variability 77 features are necessary.
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– Anova: The statistic for Analyses of Variance (Anova), or the F-statistic, is
calculated and used to decide if there are significant differences between the
means of multiple features [13]. This allows the ordering of features according
to their degree of importance, following the F-value. Thus, in order to compare
the feature selection methods, we pick the first 77 features considering the
Anova ranking of features.

– Random Forest (RF): A RF is composed by a large number of individual
trees, operating as an ensemble classifier [1]. It builds unpruned individual
trees using bootstrap samples of the data. At each split, a random subset
of variables is considered as the candidate set of variables. Random Forest
algorithm uses both bagging and random variable selection for tree building.
Besides, a RF gives the order of importance of the attributes [11]. In this
work, this order of importance is used for selecting the first 77 most important
features.

2.5 Regression Methods and Validation

Three regression methods are applied to infer the pKd using the selected features,
they are:

– Elastic Net Regularization (ENR): is a weighted combination of the
penalties of Ridge Regression (L2 regularization) and Lasso (L1 regulariza-
tion) [10]. ENR reduces the problems of Lasso by adding to its penalty a
quadratic term that when used alone is known as ridge regression;

– Neural Networks (NN): NNs is an artificial intelligence algorithm inspired
by the human brain that can be applied to various learning tasks, including
classification problems. They are very flexible models, trained with examples
for which the correct classification is known. A typical NN is composed of a
topology and its parameters. The topology defines the number of layers (an
input layer, one or more hidden layers, and an output layer) and the number
of nodes in each layer. The parameters for such topology are learned from the
data during the training [32]. In this work, we employed a NN with two layers
of 50 neurons, and the threshold was set to 0.01.

– Support Vector Machines (SVM): are classifiers that learn from the input
data hyper-planes in a multidimensional space that best separate the labeled
classes [9]. SVM can handle continuous and categorical target attributes by
using different kernels [2,28].

We evaluate the regression models using root mean squared error (RMSE)
and the Pearson correlation metrics applied to a test set that is part of the
original dataset but was not used during the training step.

3 Results

First, we present the results regarding the selection of descriptors by each Feature
extraction method: ANOVA, PCA and, RF. In Fig. 3 we can observe the total
number of descriptors of each type selected by each method.
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Fig. 3. Total number of descriptors of each type selected by the algorithms ANOVA,
RF and PCA.

Considering the 77 features selected by ANOVA, we can notice that 18 are
from BINANA, 15 from PaDEL, 11 from RDKit and 33 from Vina. This feature
selection method did not select any descriptors of SASA, AA or DSSP types.
The 61 descriptors selected by PCA vary between all types: 2 of AA, 1 of DSSP,
37 of BINANA, 12 of PaDEL, 6 of RDKit, 1 of Vina and 2 of SASA. Finally,
considering the RF as the feature selection method, the most frequent descriptor
type is PaDEL (25) followed by BINANA (22), RDkit (14), Vina (13) and, SASA
(3). Only descriptors of AA and DSSP types were not chosen by this method.

Figure 4 details the selected features according to each method. We can
observe that we had 188 different features and only 2 descriptors were selected by
all methods (cc MN.OA 2.5 and cc A.F 4 ). These descriptors are from BINANA
and correspond to close contacts between the atom types MN-OA in a distance
of 2.5 Å and between A and F in a distance of 4 Å (the definition about atom
types are based on AutoDock [29]). From these 188 descriptors, 24 were chosen
by at least two methods, from which 14 are also of type close contacts and 4 are
related to electrostatic contacts from BINANA. These results indicate that infor-
mation about the frequency of contacts between protein and ligand, at distances
of 2.5 Å and 4 Å, are interesting descriptors to be considered in the future.

The results in regard to the ML methods are summarised in Fig. 5. To com-
pare the results obtained with different Regression methods: (i) Elastic net regu-
larization (ENR), (ii) Neural Networks (NN) and (iii) Support Vector Machine
(SVM) and Feature Selection methods: (i) Analysis of Variance (ANOVA),
(ii) Principal Component Analysis (PCA) and (iii) Random Forests (RF) two
metrics are used, Pearson Correlation and RMSE.

In Fig. 5, Regression and Feature Selection methods are presented respec-
tively in vertical and horizontal axis. The Selection method ALL is the result of
considering all the 502 non-zero features. The left and right panel present respec-
tively the Pearson correlation and RMSE metrics. The values of both metrics is
shown inside the squares. The color in each square follows a gradient that varies
from worst result (clearer color) to best result (darker color). The better results
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Fig. 4. Selected Features. The grid shows in rows the name of the Features and in
columns the Feature selection algorithms. The graph is divided in 5 panels due to the
number o Features, each panel is a continuation of the previous panel. Dark coloured
squares indicate the Features that were selected by each method.

are closer to 1 (one) for Pearson correlation and are closer to 0 (zero) for RMSE,
hence the inverted color gradients. The gray squares are relative to values that
are not available.

4 Discussion and Future Work

Scoring functions for protein-ligand molecular docking based on ML are very
promising. However, further feature selection studies are needed to improve
their performance. In this work we have explored how Feature selection methods
impact different Regression models. The number of Features to be considered,
77, was obtained from the PCA, by analysing the elbow curve, Fig. 2. This num-
ber of 77 features is used in the other methods. Moreover, the results of using
all the features are also presented.

In relation to the descriptors selected by ANOVA, it is important to mention
that 33 out of the 77 are of vina type, which means that, according to this
feature selection method, this descriptor type is important and related to the
pkd binding affinities. The only method that selected vina score was PCA.

Concerning the selected features by all methods, we can observe that they
vary and did not converge to the same subset of descriptors. Considering all the
descriptors, we have a total of 188 of which only 2 are common to ANOVA,
RF and PCA and 24 more are present in at least two of them. Regarding the
descriptors types, we can conclude that descriptors types related only to the
receptor (AA and DSSP) were rarely chosen. On the other hand, the descriptors
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Fig. 5. Results of different Regression methods and Feature Selection methods eval-
uated with two different metrics: Pearson Correlation (left) and RMSE (right). In
the vertical axis, Regression methods are: Elastic net regularization (ENR), Neural
Networks (NN) and, Support Vector Machine (SVM). In the horizontal axis, Feature
Selection methods are: ALL where all features are considered, Analysis of Variance
(ANOVA), Principal Component Analysis (PCA) and Random Forests (RF). The color
gradient varies from worst results (clearer blue) to best results (darker blue). The gray
color indicates that results are not available. (Color figure online)

more frequent on the 188 list (Fig. 4 correspond to the frequency of close contacts,
for example, the 14 descriptors from BINANA selected by at least two methods.

With respect to the ML results, for NN with ALL the features the simula-
tions did not converge, hence there are not results for this setting. The results
show that SVM with ALL is the worst result and NN with RF is the best result.
All other settings are very similar, however, it is possible to see that ENR with
no feature selection (ALL) performed slightly better than with feature selec-
tion. This is not surprising giving that ENR has its Lasso component that is
responsible by feature selection, i.e., ENR has an embedded feature selection.

The main conclusions are that Feature selection is important in this problem
and has the potential to improve the results of ML methods. However, the impact
of Feature selection is different for each regression algorithm and they should be
applied with caution. Most importantly, this study shows that the combination
of methods and features can be used to develop a new protein-ligand docking
scoring function based on ML.

As future work we propose enhancing the EAD and preprocessing steps by
considering the prerequisites of each FS method. Additionally, we plan to eval-
uate alternative Machine Learning algorithms to generate the scoring functions.
Moreover, we aim to compare the performance of the proposed scoring function
with other SFs using bechmarks such as CASF 2016 [27].
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Abstract. The COVID-19 pandemic led to an unprecedented volume of arti-
cles published in scientific journals with possible strategies and technologies to
contain the disease. Academic papers summarize the main findings of scientific
research, which are vital for decision-making, especially regarding health data.
However, due to the technical language used in this type of manuscript, its under-
standing becomes complex for professionals who do not have a greater affinity
with scientific research. Thus, building strategies that improve communication
between health professionals and academics is essential. In this paper, we show a
semi-automated approach to analyze the scientific literature through natural lan-
guage processing using as a basis the results collected by the “Scientific Evidence
Panel on Pharmacological Treatment and Vaccines – COVID-19” proposed by the
Brazilian Ministry of Health. After manual curation, we obtained an accuracy of
0.64, precision of 0.74, recall of 0.70, and F1 score of 0.72 for the analysis of the
using-context of technologies, such as treatments or medicines (i.e., we evaluated
if the keyword was used in a positive or negative context). Our results demonstrate
howmachine learning and natural language processing techniques can greatly help
understand data from the literature, taking into account the context. Additionally,
we present a proposal for a scientific panel called SimplificaSUS, which includes
evidence taken from scientific articles evaluated through machine learning and
natural language processing methods.

Keywords: COVID-19 · SimplificaSUS · Literature · NLP

1 Introduction

In 2020, the COVID-19 pandemic spread worldwide, causing irreparable human losses
[1–4]. COVID-19 (CoronaVirus Disease 2019) is a respiratory disease caused by the
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), a single-stranded
sarbecovirus with a positive-sense RNA [5]. Thus, the scientific community responded
with an unprecedented amount of studies seeking to understand the origins, mechanisms
of action, and possible treatments for the disease [6–8].
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Governments and health organizations aimed to provide the means to help the results
of newstudies reachphysicians, health professionals, and society in general. For instance,
the Brazilian Ministry of Health team proposed a panel to summarize the COVID-19
scientific literature available until that moment and show the results using user-friendly
data visualizations [9]. The “Scientific Evidence Panel on Pharmacological Treatment
and Vaccines - COVID-19” aimed to gather real-time information on technical-scientific
publications from indexed and pre-printed journals that investigate the efficacy, safety,
and effectiveness of drugs and biological products used for the treatment and prevention
of COVID-19. Until the evaluated date (06/17/2022), the panel summarized information
from 2,147 manually curated scientific articles. However, the large amount of data can
be detrimental to interpreting the problem since the vast amount can lead to extremely
different understandings of the information,making it difficult to transmit the knowledge.

For example, in one of the analyzes proposed by the panel, they raised more than 500
technologies used in the treatmentmentioned in the articles. These technologies could be
vaccines, therapies, drugs, among others. However, the proposed visualizations in their
panel considered only the count of times a technology was mentioned. As the context
was not considered, this could lead to misinterpretations. For example, the most cited
technology in articles published up to that point was hydroxychloroquine, a drug used to
treat malaria. Several studies pointed to the possibility of using hydroxychloroquine to
combatCOVID-19, in a strategy knownas drug repositioning [10].However, later studies
and literature reviews showed that the efficiency of hydroxychloroquine in combating
COVID-19 could not be proven [11–15].

In fact, the analysis of some of the articles cited in the panel already showed that both
chloroquine and hydroxychloroquine did not have proven effectiveness [16]. However,
considering only the number of times these technologies are cited in the literature may
give a false impression that their use was effective. Additionally, a manual analysis of
each technology and the context of mention in each article in real-time would require
an unviable number of dedicated personnel.

We hypothesize that text mining and natural language processing (NLP) techniques
could be used to identify the context in which technology is mentioned in the scientific
literature. One such technique is sentiment analysis, often used to analyze whether users’
reviews about a certain product are positive or negative. In this context, this technique
has the potential to promptly identify which papers cite each technology as effective or
non-effective for a given disease, which could contribute to the faster adoption of more
effective public policies by the health authorities.

Here we show the results of our NLP-based analyzes of the data presented in the
“Scientific Evidence Panel on Pharmacological Treatment and Vaccines - COVID-19”.
Our tool aims to collect, analyze, and present evidence taken from scientific articles
evaluated through machine learning techniques and natural language processing. To
evaluate our results, our teammanually analyzed the citation context of each technology
in the papers from the panel. Then, we performed a comparison with a panel produced
by the Brazilian Ministry of Health.
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2 Material and Methods

2.1 Data Collection

We collected metadata from 2,147 articles from the Scientific Evidence Panel on Phar-
macological Treatment and Vaccines - CoViD-19, available at: https://infoms.saude.gov.
br/extensions/evidencias_covid/evidencias_covid.html. Titles, abstracts, authors, DOI,
journal name, and ISSN were obtained from PubMed API (https://www.ncbi.nlm.
nih.gov/home/develop/api/) using in-house Python scripts. Qualis strata were col-
lected fromSucupira (https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/vei
culoPublicacaoQualis/listaConsultaGeralPeriodicos.jsf) and journal impact factor val-
ues were obtained from SJC - Scimago Journal & Country Rank (https://www.scimag
ojr.com/journalrank.php). The list of technologies was also obtained from the Scientific
Evidence Panel. Details were included in the Supplementary Material. We also used
Drug Central’s database of FDA, EMA, PMDA Approved Drugs (https://drugcentral.
org/download) to identify other technologies and treatments not considered in the initial
database.

2.2 NLP Analyses

In natural language processing, sentiment analysis models usually perform the task of
analyzing if a given text is referring to a certain product or technology in a positive
or negative light. These models are commonly used in industries such as social media
monitoring, customer service and market research, where many customer-generated
texts (reviews) need to be analyzed to identify public mood and help inform strategic
decision-making.

Considering the specific context of evaluating whether medications are referred to
in the articles as effective, our first step was to use regular expressions search to identify
which medications or therapies listed in the Drug Central’s FDA, EMA, and PMDA
Approved Drugs database were mentioned in each paper. This approach is preferable to
named entity recognition techniques since we are searching specifically for medications
and therapies, not general entities.

Since not every paper is open-access, we only evaluated the titles and abstracts. After
identifying the technologies cited in these sections, we separated the sentence in which
they were cited as well as the next sentence and applied the Valence Aware Dictionary
and sEntiment Reasoner (VADER) model to evaluate the sentiment of the two sentences
[17]. If the technology was cited in more than one sentence, the procedure was repeated
for each pair. Then, the average score was computed to indicate if the overall sentiment
related to that technology was positive or negative.

Considering the aforementionedprocedure, paperswithout abstracts or not inEnglish
were discarded before the processing. The overall results were then recorded in a CSV
file, indicating which technologies were positively or negatively cited in each paper.

https://infoms.saude.gov.br/extensions/evidencias_covid/evidencias_covid.html
https://www.ncbi.nlm.nih.gov/home/develop/api/
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/veiculoPublicacaoQualis/listaConsultaGeralPeriodicos.jsf
https://www.scimagojr.com/journalrank.php
https://drugcentral.org/download
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2.3 Manual Curation and Data Evaluation Metrics

Through a meticulous process of manual curation, each paper in the database received
a label. Our team determined whether or not each study mentioned the highlighted
treatment or technology as effective or not. Papers mentioning multiple technologies
had multiple rows to allow for separate evaluation of each technology. On the other
hand, papers that did not mention any technology or treatment present in Drug Central’s
database were eliminated. This removal is in accordance with the behavior of the pro-
posed method, which uses regular expression search to determine which therapies are
mentioned by the paper and eliminates from analysis those that do not mention any valid
treatment, as mentioned in the previous section.

To avoid biases in the analysis, the evaluators were not aware of the label assigned
to each paper by the sentiment analysis model. The final result was a manually curated
database that was used as the “gold standard” for assessing the accuracy, precision,
recall, and F1-score of the sentiment analysis model by comparing manual and model
classifications.

3 Results and Discussion

In this study, we evaluated technologies cited in articles, reviews, comments, and pre-
prints published during the COVID-19 pandemic (Fig. 1A). We propose that using
natural language processing approaches could benefit rapid analysis and helpmakemore
effective public policy decisions. Our main objective in this work is to allow a semi-
automatic analysis of datasets obtained from the scientific literature to obtain an initial
overview. This analysis should be semi-automatic as a completely automatic analysis
could include biases that would impair our understanding. Furthermore, a fully manual
analysis would be time-consuming.
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Fig. 1. Data overview. (A) Articles published by date. (B) Articles grouped by impact factor or
Qualis stratum.

Our initial analysis aimed to understand the importance of the means used to publish
these manuscripts. For this, we use two different metrics: (1) the impact factor and (2)
the Qualis stratum. The impact factor is a metric that considers the average citation of a
journal in recent years. TheQualis stratum is ametric used byBrazilian agencies to assess
the quality of journals in which Brazilian researchers have already published. Journals
without an assigned impact factor or Qualis stratum tend to be less recognized by the
scientific community. Therefore, this is an initial factor in the quality of the published
manuscript.

From 2,147 manuscripts, we detected that almost half of them do not have an impact
factor or Qualis stratum (Fig. 1B).
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3.1 Technology Mentions

The “Scientific Evidence Panel on Pharmacological Treatment and Vaccines - COVID-
19” provides a list of technologies cited in the manuscripts. For each manuscript, the
authors manually selected technologies used to treat COVID-19. Then, they evaluated
the most cited technologies but did not evaluate the context in which the keyword was
mentioned.

In the original panel, a total of 564 technologies were detected. However, when
analyzing the list of technologies, we found many repeated or overlapping terms (in
Portuguese) such as “Colchicine”, “colchicine”, and “anti-inflammatory drugs”. In
this initial form, the most cited technologies were: Hydroxychloroquine, tocilizumab,
Lopinavir, Ritonavir, chloroquine, Azithromycin, remdesivir, corticosteroids, convales-
cent plasma, Angiotensin Converting Enzyme 2 Inhibitors (ACE 2), Angiotensin II
Receptor Antagonists, prednisone, favipiravir, Umifenovir, heparin, Immunoglobulin,
oseltamivir, Ivermectin, Ribavirin, Vitamin D, alpha interferon, Anakinra, cell therapy,
interferon, darunavir, dexamethasone, BCG vaccine, vaccines, and so on.

Using the terms described in the Drug Central database, we identified 72 unique
technologies mentioned in the titles and/or in the abstracts of the analyzed papers. Only
14 of the recognized therapies and medicines were cited in at least five different articles:
hydroxychloroquine (90), tocilizumab (59), vaccines (35), azithromycin (28), chloro-
quine (25), remdesivir (22), anakinra (12), heparin (8), methylprednisolone (8), ribavirin
(8), oxygen therapy (8), ivermectin (7), lopinavir (6) and famotidine (5). We evaluated
the context using the sentiment analysis model and considered those whose context was
classified as negative (negative sentiment score) as being referred to as non-efficient or
prejudicial, while those described in a positive context (positive sentiment score) as effi-
cient or beneficial for the COVID-19 treatment. The results were summarized as shown
in Fig. 2.



76 F. Carvalho et al.

Fig. 2. Predictions of technology use depending on context. Red bars indicate quotes in a negative
context. Blue bars indicate citations in a positive context.

3.2 Sentiment Analysis Model Performance Evaluation

The manually curated gold standard database consisted of 410 scientific articles that
mentioned treatments and/or therapies for COVID-19. A total of 263 (~64%) of these
papers highlighted the mentioned technologies as effective while 147 (~36%) of them
cited the technologies as non-effective.

By comparing the results predicted by the NLPmodel with those obtained bymanual
curation, we obtained the results summarized in Table 1.

The comparison of the manual curation with the prediction indicates that the model’s
predictions were 64.88% accurate. The precision and recall achieved were 73.71% and
70.34%, respectively. These results suggest that the model has reasonable accuracy and
capacity to identify a particular context in which the technologies were cited in the
literature.
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Table 1. Results of NLP analysis.

Metric Value

Accuracy 0.6488

Precision 0.7371

Recall 0.7034

F1 score 0.7198

Table 2 illustrates some examples of predictions and themanually curated attributions
for each statement.

Table 2. Eight classification examples: three negative and three positive correctly predicted, one
negative and one positive mispredicted. Columns “prediction” and “real”: negative context (0)
and positive context (1). The complete table is available in the Supplementary material (https://
github.com/LBS-UFMG/SimplificaSUS).

# Technology Prediction Real Statement evaluated Source

1 azithromycin 0 0 “Hydroxychloroquine, chloroquine,
and azithromycin produced no
clinical evidence of efficacy in
randomized controlled clinical trials
(RCT).”

[18]

2 hydroxychloroquine 0 0 “Our study did not support the use of
hydroxychloroquine plus
atazanavir/ritonavir in patients who
had SpO2 < 90% at the time of
hospital admission.”

[19]

3 fingolimod 0 0 “Our case suggests that
discontinuation of fingolimod during
COVID-19 could imply a worsening
of SARS-CoV2 infection.”

[20]

4 vaccine 1 1 “Therefore, development of a safe
and effective vaccine against
COVID-19 is an urgent public health
priority.”

[21]

5 anakinra 1 1 “Based on what we experienced in
this case, anakinra could be an
effective and reliable option in
COVID-19-associated pericarditis”

[22]

6 remdesivir 1 1 “[…] to reconcile results to determine
patient populations that may
optimally benefit from remdesivir
therapy”

[23]

(continued)

https://github.com/LBS-UFMG/SimplificaSUS
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Table 2. (continued)

# Technology Prediction Real Statement evaluated Source

7 chloroquine 1 0 “[…] the chloroquine hype, fueled by
low-quality studies and media
announcements, has yielded to the
implementation of more than 150
studies worldwide.”

[24]

8 ruxolitinib 0 1 “Rux treatment for COVID-19 in
patients with hyperinflammation is
shown to be safe with signals of
efficacy in this pilot case series for
CRS-intervention to prevent or
overcome multiorgan failure.”

[25]

For instance, in line 1 of Table 2, we show the results for the context analysis
for the technology “azithromycin” in the article “Systematic review on the therapeutic
options for COVID-19: clinical evidence of drug efficacy and implications”, published
by Abubakar et al. in 2020 in the Infection and Drug Resistance journal [18]. Our NLP
analysis predicted that the word was used in a negative context (0). Indeed, a reviewer
also manually attributed that this keyword was used in a negative context (0). We could
verify this by analyzing the sentence in which it was cited: “[…] azithromycin produced
no clinical evidence of efficacy […]”. Hence, we can conclude that the NLP analysis
correctly predicted the context of mention.

In [19], the authors affirm that their study “did not support the use of hydroxychloro-
quine […]”. In this case, both our method and the reviewer attributed a negative context
for the keyword “hydroxychloroquine”, predicting correctly once again. Also, in [20],
our method again correctly predicted the using context for the “fingolimod” keyword.

In lines 4, 5, and 6 of Table 2, we can see the predictions for the using context for
the words “vaccine”, “anakinra”, and “remdesivir”, in the papers [21, 22], and [23],
respectively. In these cases, our method predicted a positive context, which was proved
by manual curation.

The table also shows two failure samples, highlighted in lines 7 and 8. The analysis
of these cases shows that the model sometimes fails to correctly classify if a treatment is
effective or not in situationswhere it is described in sentences that also refer to the disease
symptoms or external situations. In case 7, the prevalence of words and expressions
usually seen in positive reviews (e.g., “hype”, “media announcements”, “more than 150”)
might be the case for the incorrect classification as positive. Meanwhile, the description
in case 8 has many words usually related to negative contexts but that is not related
to the medication, such as “hyperinflammation”, “intervention”, “prevent”, “overcome”
and “failure”, which may explain why the model attributed a negative context to the
medication.
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The examples above show that, despite achieving an acceptable performance in clas-
sifyingwhich technologies and therapies are describedmostly as effective or not effective
in the literature, the model still fails in several common cases where the description of
context and the disease symptoms are given close to the name of the medication. This
suggests that a pre-trained model might not be the best option for the task selected, and
building a more robust model trained on a larger database specifically designed for this
use case might result in better performance for this task. We have future prospects to
improve the model presented by testing it with other case studies.

SimplificaSUS Panel
As a secondary objective, we also present the SimplificaSUS panel. Our objective, in

this case, is to provide a user-friendly tool that facilitates the understanding of scientific
articles and that provides visualizations that complement the existing tools. However,
this panel is only available in Portuguese. The tool is available at: http://simplificasus.
com.

4 Conclusion

As the number of papers published in the literature continues to grow, machine learning
techniques have become powerful tools to help us process and simplify knowledge. Here
we investigated how sentiment analysis can be used to identify which technologies are
presented as effective or not effectivewhen used as a treatment option for a disease. In our
case study, the pre-trained sentiment analysis model showed reasonable performance,
indicating its potential as an early indication of themost promising therapies according to
the literature. Thus, the use of machine learning and NLP can be helpful in summarizing
information present in scientific articles and help guide such review efforts in the future.
Finally, themanually curated database presented here can also serve as a basis for training
more sophisticated models in the future, which may result in better tools for this task.
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Abstract. Properly modeling the dynamics of cell signaling pathways
requires several steps, such as selecting a subset of chemical reactions,
mapping them into a mathematical model that deals with the commu-
nication of the pathway with the remainder of the cell (e.g., systems
of universal differential equations - UDEs), inferring model parameters,
and selecting the best model based on experimental data. However, this
entire process can be extremely laborious and time-consuming for many
researchers, as they often have to access different and complicated tools
to achieve this goal. To address the challenges associated with this pro-
cess in a more efficient way, we propose a framework that provides a
streamlined approach tailored for universal differential equation UDE-
based cell signaling pathway modeling. The open-source, free framework
(github.com/Dynamic-Systems-Biology/BSB-2023-Framework) combi-
nes parameter inference algorithms, model selection techniques, and data
importation from public repositories of biochemical reactions into a sin-
gle tool. We provide an example of the usage of the proposed framework
in a Julia Jupyter notebook. We expect that this streamlined approach
will enable researchers to design improved cell signaling pathway models
more easily, which may lead to new insights and discoveries in the study
of biological mechanisms.

Keywords: Cell signaling pathways · Parameter inference ·
Biochemical reactions · Universal differential equation

1 Introduction

Model inference and selection are essential techniques in Systems Biology to
obtain a mathematical model that adequately represents the studied biological
phenomenon. In the context of cell signaling pathways, it is necessary to select a
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subset of chemical reactions from a pathway for dynamic modeling, that is, the
description of how the concentration of each chemical species in those reactions
evolves over time. Dynamic modeling is often accomplished using ordinary dif-
ferential equations (ODEs), and also requires model inference, that is, to adjust
model parameters using experimental measurements. To model the dynamics of
a cell signaling pathway, several steps are needed to be carried out:

– 1) To import a set of reactions from public repositories of systems biology
databases such as BioModels [1] or REACTOME [10]. These reactions are
usually accompanied by kinetic constants and initial concentrations and are
described in either CSV (comma-separated values) or SBML (Systems Biology
Markup Language) format [7].

– 2) To map the set of reactions into a mathematical model that describes the
pathway dynamics, which is usually done using ordinary differential equa-
tions (ODEs). ODE equations describe how the concentrations of each chem-
ical species in the signaling pathway change over time. This process usually
involves defining state variables, kinetic equations for each reaction, and initial
concentrations. There are several tools and software available to assist in this
step, such as MATLAB [12], Python with the SciPy package [22], or specific
software for modeling signaling pathways, such as COPASI [6].

– 3) To use inference algorithms to estimate the missing parameters of the math-
ematical model, such as kinetic constants and initial concentrations of some
chemical species. There are several inference approaches available, includ-
ing optimization-based approaches such as the least squares method [3], and
simulation-based approaches such as the Monte Carlo algorithm [18].

– 4) Finally, if more than one set of reactions are considered for dynamic mod-
eling, the model that best explains the dynamics of the cellular signaling
pathway should be selected. This usually involves comparing the model with
experimental data to verify its accuracy and validity. The criteria for selecting
the model may vary depending on the modeling objective, but usually include
the model’s ability to accurately predict the behavior of the signaling pathway
and the simplicity of the model.

However, the aforementioned classic signaling pathway modeling pipeline has
an issue: selecting chemical species from a pathway for dynamic modeling implies
in “disconnecting” these species from the remainder of the network, resulting in
problems during the inference of model parameters. To mitigate this problem,
estimating the missing communication due to the disconnection is necessary,
but it is a computationally difficult problem and requires the estimation of extra
parameters in the mathematical model. A recent way to infer that missing com-
munication is the usage of ODE systems coupled with neural networks, which
can be attained using mathematical frameworks such as the universal differential
equations (UDEs) [17].

Currently, in the case of UDE mathematical models, the aforementioned
sequence of steps typically requires researchers to manually execute a myriad of
independent tools, which can be challenging, particularly for those who are not
proficient in pipeline programming; such proccess can also be time-consuming
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and prone to errors. Therefore, there is a need for developing an streamlined
approach tailored for UDE-based cell signaling pathway modeling that consol-
idates these steps into a single tool. Such approach should also consider the
user-friendliness and allow the import of models from public reaction reposi-
tories. To address this need, we propose a new framework that combines data
importation from public repositories of biochemical reactions, UDE-based sig-
naling pathway model building, parameter inference and model selection, and
simulation results analysis. This framework has the potential to lead to the gen-
eration of better cell signaling pathway models, which might assist in the studies
of the underlying mechanisms of such pathways.

2 Related Frameworks

In this section, we present some existing applications with similar purposes,
highlighting their limitations and demonstrating the need for a new framework
to address these issues.

2.1 COPASI and Cell Designer

COPASI and Cell Designer [2] are both software tools used to simulate and ana-
lyze models of complex biological processes, including metabolic networks and
cell signaling pathways. While COPASI enables the creation of mathematical
models and the simulation of different experimental conditions to predict sys-
tem behavior, it lacks intuitive model visualization and direct support for UDE
systems. In contrast, Cell Designer provides a user-friendly graphical interface for
creating models and visualizing molecule interactions, as can be seen in Fig. 1,
but also lacks support for UDE systems and, akin to COPASI, may be time-
consuming to use and require significant prior knowledge of the cell biology.

2.2 Garuda

Garuda is a software framework designed to analyze biological systems by inte-
grating various types of biological data [20]. It offers a range of tools to construct
and customize pathway models, and can work with multiple of these tools simul-
taneously, allowing researchers to build more comprehensive models. However, it
should be noted that Garuda does not support UDE systems, and constructing
biological systems models in Garuda may require significant prior knowledge of
cell biology and other applications due to its complexity.

2.3 ABC-SysBio

ABC-SysBio is a command line-based framework for modeling biological systems
that uses an Approximate Bayesian Computation (ABC)-based approach for
model inference and selection [11]. It is capable of handling models of biological
systems that involve multiple scales of time and size. However, ABC-SysBio can
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Fig. 1. Screenshot of Cell Designer software v.(4.4.2), showing an example of a bio-
chemical model being built. Source: Cell Designer (www.celldesigner.org).

be complicated to configure and use, and may require specialized knowledge in
programming for advanced modeling as the application does not have a graphical
interface and requires the usage of command-line interfaces. Additionally, this
framework was tailored for ODE-based dynamic models, not for UDE-based
ones.

3 The Proposed Framework

We introduce a framework for model inference and selection of cell signaling
pathways which allows for easy retrieving data from public reaction databases
and usage of inference and model selection algorithms such as sequential heuris-
tics [9], ABC methods [21], and others. The proposed framework was designed
to ensure good usability, high computational performance, and also to over-
come limitations of similar tools, such as providing support for UDE-based
models. The source code of the framework is open and freely available at
github.com/Dynamic-Systems-Biology/BSB-2023-Framework.

The proposed framework consists of a library containing various functions
programmed in Julia and C++ programming languages. This was a strategic
choice, as each of these languages offer unique advantages. C++ is known for
its high performance and memory management capabilities, making it ideal for
tasks that require intensive computation, such as numerical analysis and machine
learning. Julia, on the other hand, is a language specifically designed for scien-
tific computing, with a syntax that is both easy to read and write, and perfor-
mance that rivals that of C++. Julia’s built-in support for parallel computing
and distributed memory architectures also makes it well-suited for applications
that require scaling to larger datasets or distributed computing environments.
Together, the use of these two languages enables the framework to be highly
performant and versatile, with the ability to handle a range of tasks with ease.

https://www.celldesigner.org/
https://github.com/Dynamic-Systems-Biology/BSB-2023-Framework
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In this section, we describe the reaction databases currently supported in the
proposed framework, the available model inference and selection algorithms, as
well as other features of the framework.

3.1 Supported Reaction Databases

Chemical reaction databases are repositories that store information about the
chemical reactions that occur in biological systems. Those databases contain
information about the chemical structures of molecules involved in the reactions,
as well as their properties and interactions. Those databases are important tools
because they allow researchers to access information about biochemical pathways
in a structured and organized manner, which can be useful in understanding how
these pathways are involved in specific biological processes.

Reactome is a database of human biological reaction pathways. It pro-
vides detailed information on biological processes such as cellular signaling,
metabolism, and response to external stimuli, as well as showing the interactions
between proteins, molecules, and other cellular components involved in these
pathways. It is regularly updated with new information and used by researchers
and scientists around the world to better understand the biological processes
involved in disease and other areas of biology. In addition, Reactome has two
main versions: a normal version, which is a relational database, and a graph ver-
sion, which is a graph-based database. The normal version of Reactome is based
on a traditional relational model, which is suitable for simple queries and data
analysis with traditional data mining tools. On the other hand, the graph version
of Reactome is based on a graph structure, which allows for the representation
of complex relationships between the components of biological pathways. In this
version, each biological component is represented as a node in the graph, while
the interactions between these components are represented as edges between the
nodes, as can be seen in Fig. 2. This graph representation is especially useful for
more complex analyses, such as identifying protein subnetworks and visualiz-
ing complex interactions between proteins and other molecules. Both versions of
Reactome are publicly available and can be accessed through the official Reac-
tome website (reactome.org).

Recently, our research group has developed an extension to Reactome, named
Anguix, that incorporates biochemical kinetic data into the models generated
by the database [14,15]. These data, which consist of reaction rate constants,
are imported from the SABIO-RK database, which has the relevant property of
providing this information [23]. By incorporating reaction rate constants from
SABIO-RK, the models generated by the Reactome database become more accu-
rate and reliable; for this reason, we chose Anguix as the primary source of data
in this project, though models imported from sources such as BioModels could
also be used.

https://reactome.org/
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Fig. 2. Screenshot of Reactome pathway browser v.(3.7), showing an example path-
way in the graph structure. Source: Reactome (reactome.org/PathwayBrowser/#/R-
HSA-351202&PATH=R-HSA-1430728,R-HSA-71291).

3.2 Model Inference and Selection Algorithms

The framework enables parameter inference of models using one of the 13 dif-
ferent Julia optimization algorithms from the Optim.jl package [13]. Some of
the available algorithms include gradient descent, Newton-Raphson, BFGS, and
ADAM [19]. Each of these algorithms has its own advantages and disadvan-
tages and is suitable for different types of problems. Gradient descent is a simple
and widely used optimization algorithm, but it can lead to slow convergence
or convergence to local minima. Newton-Raphson is an algorithm that takes
into account the curvature of the objective function and can, therefore, converge
more quickly than gradient descent, but it can be computationally expensive to
compute the Hessian matrix in problems with many variables. BFGS is a more
efficient version of gradient descent that approximates the Hessian matrix using
information from the objective function. It is faster than Newton-Raphson and
less susceptible to convergence to local minima. ADAM is a stochastic gradient-
based optimization algorithm that is efficient on large datasets and exhibits good
generalization capability.

For model selection, the proposed framework makes use of Bayesian methods,
which can help to identify the most appropriate model for the data at hand.
These methods utilize probability distributions from the Distributions.jl package
to define priors, likelihoods, and posteriors, and the posterior distributions are
then approximated using MCMC sampling methods, which are implemented in
the Turing.jl package [5]. By comparing the posterior distributions of different
models, we can select the one that best fits the data. Furthermore, we plan to
include other selection algorithms in the future, such as cross-validation.

https://reactome.org/PathwayBrowser/#/R-HSA-351202&PATH=R-HSA-1430728,R-HSA-71291
https://reactome.org/PathwayBrowser/#/R-HSA-351202&PATH=R-HSA-1430728,R-HSA-71291
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The framework also includes a dedicated function for converting CSV files
from the Anguix database to the standardized SBML format, facilitating inte-
gration with other tools in Systems Biology. Additionally, an application with
a graphical interface was developed to streamline the CSV to SBML conver-
sion process, working seamlessly with the Julia notebook for convenient model
conversion.

4 Example of Application of the Framework

In this section, we use a Jupyter notebook in Julia to demonstrate the application
of the framework for parameter inference of a model using systems of UDEs. The
model we use is an edited subset of a larger model, which we import from Anguix
beforehand. Then, we plot the results and analyze whether the edited model after
training was able to approach the values of the larger model.

4.1 Data Importation

First, we need to start the Neo4j application, which is a graph database man-
agement system [16]. Once the application is open, we can import data from
the Anguix database by opening the executable, which can be downloaded
from github.com/anthraxodus/Anguix-graphical (through this link we also find
instructions for installing Neo4j and Reactome database), and selecting the
organism we want to import the data from into Neo4j (e.g., Danio rerio). The
sequence of screens of this process is showed in Fig. 3.

Fig. 3. Sequence of used interfaces for data acquisition from the Anguix database.

Once the data has been successfully imported into Neo4j, we can then perform
queries using Cypher, a query language for querying graph databases created by
Neo4j developers, to extract specific information from the database. In this case,
our main model will consist of two reactions identified by the ID’s 597 and 7489
from SabioRK database. This reactions involves the conversion of reactants into
products through a series of chemical transformations. We can query for the
model with these reactions in Neo4j and download it using the query shown in
Eq. 1.

https://github.com/anthraxodus/Anguix-graphical
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MATCH (n:SabioRkReaction)-[:kineticDataFor]-(k),

(n)-[:generalReactionFor]-(r), (k)-[:parameterInfo]-> (p)

RETURN n, k, r, p

(1)

Next, we will use the CSV to SBML conversion application to convert the
model to SBML. This process can be seen in Fig. 4. After the conversion, we
will place the resulting SBML file in the same folder as our Jupyter notebook
Pipeline.ipynb named as model.sbml. Then, we will delete all reactions (and
species involved in these reactions) except for “Reaction0” and “Reaction1”,
create a copy of the file, and repeat the same procedure, but this time we will
leave only “Reaction1” and rename this copy as cutmodel.sbml. Finally, we will
access the Pipeline.ipynb notebook.

Fig. 4. Interfaces of the CSV to SBML conversion tool.

From this point, we just need to follow the Jupyter notebook block by block,
making changes only to the names of files in the first blocks if necessary, and
subsequently of the desired algorithms. Initially both models (“model” and “cut-
model”) will be imported, and a simple simulation will be performed with its
ODEs to generate the time series of the chemical species, as can be seen in the
code snippet of Eq. 2.

# Generating the time series with a simulation

tspan = (0.0f0, 25.0f0); method = Rosenbrock23();

X, t = FWmodule.gen timeseries(tspan, odesys, u0, model param, ...

...method, abstol = 1e-12, reltol=1e-6, saveat = 0.1;
(2)

This code block generates a time series for the given ODE system odesys by
solving the system numerically using the “Rosenbrock23” method [4]. The simu-
lation time span is defined by tspan, and initial conditions and model parameters
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are defined by u0 and model param, respectively. The ODE problem is defined
and solved internally by the “gen timeseries” function using the method with
specified tolerance and time step parameters. The resulting solution and the
time points are stored in the variables X and t respectively.

Further in the notebook, there is a call to a function that performs the con-
version of the ordinary differential equations (ODEs) from the model “cutmodel”
to universal differential equations (UDEs), such function can be seen in the code
snippet of Eq. 3.

function ude dynamics!(du, u, p, nn p, nn st, t, ode func, U)

ode func(du, u, p, t) # mechanistic model

NN = U(u, nn p, nn st)[1] # add the neural network to the mechanistic model

for i in 1:length(du)

du[i] += NN[i]

end

end

(3)
The function “ude dynamics!” updates the differential variables du based on

the state variables u, mechanistic model parameters p, and neural network
model parameters nn p and nn st. The mechanistic model is evaluated using
the “ode func” function, and the neural network output is added to each entry
in du. for this purpose, the notebook defines a neural network with four layers,
each with ten neurons, using the Lux package [8], and a function is defined to
combine the mechanistic model with the neural network to create a new ver-
sion of the model using UDEs. After that, a loss function is defined to optimize
the neural network model during training, and a callback function is defined to
record the loss after each iteration.

Finally, The code block in Eq. 4 trains the neural network model using the
ADAM optimization algorithm.

# Train with ADAM

step = 1, losses = Float32[]; adtype = Optimization.AutoForwardDiff()

optf = Optimization.OptimizationFunction((x,p)− > loss(x), adtype)

optprob = Optimization.OptimizationProblem(optf, ComponentVectorFloat64(nn p))

res1 = Optimization.solve(optprob,ADAM(0.1),maxiters=2000,callback=callback,progress=true)

loss adam end = size(losses)[1]

println(‘‘Training loss after $(length(losses)) iterations: $(losses[end])’’)

(4)
This procedure initializes a vector called losses to store the training loss after

each iteration and defines an optimization function and problem based on the
previously defined loss function. The ADAM solver is then used to optimize the
neural network parameters, with the maximum number of iterations set by the
maxiters parameter. The training loss is recorded after each iteration using the
“callback” function. After training, the results are plotted, with Fig. 5 showing
the loss function during training against the loss of the validation set and Fig. 6
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showing the concentrations of selected species over time, simulated by the trained
model (dashed lines) and the original model (solid lines). The predicted results
closely match the actual ones.

Fig. 5. Loss function evolution during training with ADAM.

Fig. 6. Plot comparing the simulated results with the original model concentrations.

The files used in this notebook can be accessed at github.com/Dynamic-
Systems-Biology/BSB-2023-Framework, thus allowing readers to reproduce the
results and build upon the methods presented in this article.

https://github.com/Dynamic-Systems-Biology/BSB-2023-Framework
https://github.com/Dynamic-Systems-Biology/BSB-2023-Framework
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For the purpose of comparison, when utilizing Copasi to obtain equivalent
simulation results, a notable level of complexity becomes apparent. The proper
implementation and configuration of the cellular signaling model in Copasi may
require a profound understanding of the software and its modeling language.
Additionally, constructing the model and defining its parameters can be a time-
consuming process since it involves a manual procedure, taking several minutes
depending on the complexity of the model. In contrast, our method automati-
cally handles the accurate specification of differential equations and molecular
interactions, ensuring precise and dependable results with greater ease.

5 Conclusions

In this paper, we reported the limitations of existing tools for inferring cellu-
lar signaling pathway models and proposed a new framework that overcomes
these limitations. The new framework consists of a library of functions pro-
grammed in C++ and Julia, which allows: the conversion of data from the
Anguix biochemical reaction database from CSV to SBML, parameter inference
through optimization, model selection and results analyses. Some of those feature
were demonstrated in this article through a Jupyter Julia notebook. Overall, we
believe the further development of this framework might constitute an important
contribution to the studies of biological systems, especially with regard to the
inference of cellular signaling pathway models.

Source Code Availability. This framework is free and open software and can
be downloaded at github.com/Dynamic-Systems-Biology/BSB-2023-Framework
work.
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Abstract. This article presents an intentional semantics, using Object
Petri Nets (OPNs), to assign activity to each biological molecule and
complex, such as mRNA, tRNA, ribosomes, and protein synthesis. The
work differs from traditional uses of Petri Nets in Biology and Chemistry
for being a bottom-up and general semantics and not only a formalization
of some molecular biological phenomenon. Assigning activities to every
molecule and the difference between biological function and activity is
also a conceptual contribution of this work. To illustrate our semantics,
we set to tRNA, mRNA, ribosome, and the protein transcription molec-
ular complex the respective activities expressed by OPNs.

1 Introduction

Any living organism must be able to store and preserve its genetic information,
transmit it to future generations, and express it as it carries out all of life’s
processes. The main steps in handling genetic information are illustrated (Fig. 1)
by the Central Dogma of molecular biology [3]. As widely known, it represents
the flow of genetic information within a biological system.

According to the Central Dogma of molecular biology, the information
present in the DNA is transmitted to another molecule of DNA through a
process called replication (or duplication). This information is transferred to
RNA molecules through a process called transcription. The information in RNA
molecules is transmitted to protein (PTN) molecules through translation. We
also know that replication acts on the entire DNA of an organism, but not all
DNA is transcribed into RNA, and not all RNA is translated into proteins. We
want also to explore here, as seen in our graphical representation, that besides
DNA, RNA, and Protein interactions, there are also interactions with other
molecules at all levels.
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All genetic information is abstracted using an alphabet of four nucleotides
(A, G, T, and C) and is deciphered from sets of three nucleotides (codons); out
of the 64 existing codons, 61 encode one of the 20 canonical amino acids, with
the remaining three directing translation initiation and termination [4,13].

Fig. 1. A modified representation of the Central Dogma of Molecular Biology, with
other interactions and molecules also represented.

Fig. 2. The Set-theoretical Concepts and Mappings in Fig. 1

In Fig. 2, we provide a set-theoretical interpretation of the Central Dogma
based on the same model. Besides RNA, DNA, Ribosomes, and other molecules
explicitly mentioned in the model, molecules like polypeptides, ATPs, several
polymers, and even simple molecules like Oxygen (O2), metals, and so on, are
also crucial in explaining the protein’s activities. They are the Others set, i.e.,
other molecules, physically related domain objects, and even elements of con-
cepts as time1 Regarding a protein, activity is anything it can perform with any
1 The time is not explicitly used in this paper. It appears here due to the completeness

of the intended model.
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proper molecule combination. The ellipses are sets of molecules; each solid line
between sets represents a mathematical function that maps a molecule instance
to the instantaneous time when it exists. For example, the PTN function rep-
resents the evolution in time of each molecule’s individual. The dashed lines
between solid lines map for each pair of instants t1 � t2 in time the set of pro-
tein molecules existing in time t1 into the set of protein molecules existing in
time t2. Some conditions on these mappings make them the mathematical con-
cept of a sheaf. A sheaf is a geometrical and logical concept used to describe
dynamical systems in mathematics. Due to space limits, this article focuses on
a computational formalization of molecular biology, so we will not go too deep
into the mathematical aspects of such a formalization.

Moreover, our big picture, depicted in Fig. 3, shows the level of the codes and
data in the upper ellipse. In the lower ellipse, we show the denotation of each
code (or process) as instant molecules in each respective concept set, i.e., RNA,
PTN, DNA, and Other Molecules. The ribosome’s transcription of the protein
instant, i.e., the molecular complex in the center of the lower ellipse, is denoted
by the compositions of the processes that provide activity or products by using
the processes that take part in its composition. The composition of processes, as
this ribosome’s transcription, has its intention formalized by an Object Petri-Net
(a concept explained in Sect. 3). The intuition is that it has a series of tRNA,
the two parts of the ribosome, superior and inferior. The mRNA processes as
inputs and delivers the protein transcription process as output.

This article presents the semantics of molecular biology under the principle
that every molecule performs an activity. We show that our semantics supports
the formalization of the activities of some molecular complexes and polypeptides.
Under this principle, we prefer associating each molecule or molecular complex
with its activity instead of its biological function.

The activity of a molecule has to do with all the possible chemical and phys-
ical interactions that it provides from the possible immediate combinations in
which it can take part within the possible environments. For example, in con-
trast, a polypeptide’s biological function involves interpreting the polypeptide
activity whenever some real contexts are considered. Another semantic level,
related to a forthcoming article, should provide the biological function concept
to extend the one presented here. In this article, we show how to assign seman-
tics for protein synthesis by using the semantics of its components. Our purpose
is to convince the reader about the completeness of the model.

The paper is structured as follows. Section 2 gives an overview of computa-
tional semantics. Section 3 provides an informal introduction to the Object Petri
Nets foundations. Section 4 defines the generalized model of object-nets, which
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Fig. 3. The big picture of The intentional model, based on Fig. 1

allows a deep nesting structure to give semantics to molecular biology based
on computational processes only. Section 5 describes related work and discusses
them. The work closes with a conclusion.

2 Computational Semantics

A model of computation is a theoretical framework that describes how algo-
rithms and computations can be performed.2 It is a mathematical abstraction.
For example, the Turing machine and finite state machines are models of com-
putation that describe different classes of computations, the class of the former
being a superset of the class pertaining to the latter.

Models of computation help analyze the capabilities and limitations of com-
puters, programming languages, and algorithms. They also provide insight into
some aspects of computation. For instance, the λ-calculus is an intentional model
of functions. This means that functions are at the same level as arguments. This
2 We must not confuse model of computation with computational model; the latter is a

mathematical model of something that can be simulated or performed in a computer.
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opposes the extensional, or set-theoretical, concept of a function as a set of
ordered pairs. The syntax of basic λ-calculus is such that any two terms M,N
can be seen as functions or as arguments to a function, making the term MN
fully meaningful. The M is the intentional function, while N is the argument to
which it is applied.

Even for abstract mathematical models, such as the theory of recursive func-
tions [6], each recursive function has at least one code, or intention, that rep-
resents it. Observing this code’s existence is important in obtaining the univer-
sal recursive function U that interprets any recursive function F on data d by
U(F, d) = F (d), such that, the first F is a code that provides an intention. In
contrast, the second F is evaluated using the recursive functions framework.

The Turing machine model made this explicit for the first time in 1936 [14].
Since then, every computation model equivalent to the Turing machine model
also carries the property of providing at least a code for every function. For
the recursive functions, the code of a function is a number whose numeral can
be decomposed into a sequence of characters in the alphabet of the recursive
functions’ definitions. For example, for coding the function that maps n to n+2,
i.e., s ◦ s, is the numeral 141 in base 20, for s ◦ s, in the recursive functions
definitions alphabet3 has 20 symbols.

This duality between codes and data is natural and implicitly given for Turing
machines. However, in any Turing-complete model of computation M , given the
set Σ∗ of the strings over Σ, and Λ the set of all strings that are codes for the
M -computable functions, we always have two functions, F and O, the first from
Λ into Λ → Λ, and the second from Λ → Λ into Λ, such that, O(F(Λ)) ⊂ Λ and
F(O(F(m)) = m, for every m ∈ Λ.

In this article, we consider the following definition:

Definition 1. A semantical-structure is any structure 〈U, (Fi)i∈N,O〉, such
that, U is a set, for each i ∈ N, Fi is a mapping from U into U i → U , and, O is a
mapping from

⋃
i∈N

U i into U , such that, (1) O(Fi(U) ⊂ U , Fi(O(Fi(m)) = m,
for every i ∈ N, and (2) Fi(O(Fj(m)) = Fi−j(m).

In the following sections, we give a semantic structure for Molecular Biol-
ogy, where U is the set of Molecular complexes from the point of view of the
observable physicochemical process they induce. Due to the highly parallel and
concurrent model of interaction of molecules with the environment and other
molecules, we use Petri Nets, one of the most popular true concurrency4 models.

3 Object Petri Nets Foundations

Petri Nets (PNs) can be seen as both a mathematical model and a graphical nota-
tion and are used as such in Computer Science and other areas. Carl Adam Petri
3 The alphabet in question is {s, z, P, ◦, Recp, 〈, 〉, μ, . . .} with 20 letters.
4 A true concurrency model can be taken as a framework to describe systems that allow

many independent processes or threads to run simultaneously without interfering
with each other model.
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introduced them in 1962 [10] and have since been used for modeling, analyzing,
and simulating dynamic systems exhibiting concurrency and synchronization.
PNs are formally defined as a five-tuple (P, T,A,W,M0) where P is a finite set
of places; T is a finite set of transitions; A ⊆ (P × T ) ∪ (T × P ) is a set of arcs;
W : A → N is a weight function; M0 : P → N is a marking function.

The meaning of places and transitions in Petri Nets depends directly on the
modeling approach. For example, in a dynamic system, a transition is regarded
as an event, and the places are interpreted as a condition for an event to occur.
The places contain tokens that travel through the net depending on the firing of
a transition. These tokens simulate agents’ dynamic and concurrent activities,
instantiated from classes, and may be changed from place to place [2,7].

The concept of Object-Based Petri Nets (OPNs) extends classical Petri Nets
to represent and manipulate objects. In OPN, tokens are instances of classes
defined as lists of attributes. Tokens, therefore, become a collection of constants,
variables, net elements, and class elements that allow them to represent the
object identifiers of sub-net instances, thereby allowing multiple levels of activity
in the net and the dynamic allocation and deallocation of sub-nets. Object-
Oriented Petri Nets (OOPNs) enhance OPNs with the notion of inheritance [9].

Fig. 4. Transport in an Object Petri Net. Use token “object X”, then move object X

The most significant aspect of OPNs is the single unified class hierarchy.
Providing a single unified class hierarchy in OPNs means that both token types
and subnet types are classes, and these classes can be intermixed. A token can
thus encapsulate a subnet. Therefore, OPNs support multiple activity levels on
the net. The modeler is free to choose how various activities are to be composed,
i.e., whether a particular object should be active, passive, or both depending on
the focus of attention [8,9].

For example, an OPN with two places (locations A and B) can model the
movement of object X with a transition that is enabled by the token “object X”,
as shown in the first net in Fig. 4.

Moreover, as the object has a dynamical behavior – alternating states p and
q – the token is again a marked net. A token net is also called an object net in
distinction to the system net to which it belongs. The whole system is called an
object net or short object system. The movement of the net token is shown as
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the firing of transition 〈t〉. Also, the token net can fire autonomously without
being moved (see Fig. 5). Transport and autonomous firing can interleave; they
are considered concurrent actions. This should be distinguished from a situation
where these transition occurrences are synchronized, i.e., the object moves if
and only if some object net transition occurs. Such an action may be triggered
by the object, system, or both (the term interaction denotes this situation). A
corresponding symbol labels interacting transitions [8,15], such as in Fig. 6.

Fig. 5. Autonomous transition in an Object Petri Net model for protein synthesis

4 The Intentional Semantics for Molecular Biology

Based on the description of the Central Dogma of Molecular Biology, we propose
an Object Petri Net (OPN) (see Fig. 7) for the modelling of the protein synthesis
process. In this model, the mRNA, tRNA, amino acids, protein, and ribosome
units are modelled as separate networks that work in parallel to the main network
(places and transitions in grey in Fig. 7).

Fig. 6. Interaction in an Object Petri Net Model
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The mRNA Petri (sub)Net is just a chain of places representing nucleotides as
represented in Fig. 7. The transitions connecting them have labels synchronizing
them with their matching tRNA, so the token will only transition with a token
in a matching tRNA (i.e., containing the anticodon to the mRNA’s codon).

A tRNA (sub)net is a 3-element chain of places representing nucleotides (see
Fig. 7), followed by a single place representing the amino acid the tRNA carries.
Its first three transitions have labels that synchronize with the transitions on
the ribosome and the mRNA, ensuring that each nucleotide from the tRNA is
processed by the ribosome as the corresponding nucleotide from the mRNA is
processed.

The ribosome is the central piece of translation. The places labelled by
mRNA, tRNA, and PTN have those nets as tokens (see Fig. 8).

A series of amino acid nets represent proteins. The token of each net is/repre-
sents the previous amino acid net as presented in Fig. 9. This process represents
the step that joins amino acids together to form a protein. The amino acids in
the figure are represented as the same amino acid. What is represented has to
do only with joining the amino acids. The differences among the amino acids are
related to the individual activity they have regarded in other contexts. Each has
different activities; some help structure the body, while others regulate tasks. For
each Petri net token in Fig. 9, the blank place must be filled with the activity
the respective amino acid performs.

We recursively define a Semantic-Structure from the above constructions;
see Definition 1. The intentions of basic molecules are the OPNs, mRNA, tRNA,
ribosomes, and PTN. If M ∈ U is one of the basic molecules, πM is the respective

Fig. 7. Object Petri Net Model proposal for protein synthesis
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Fig. 8. Petri Net for Ribosome

OPN defined in this section and, Fbpl(πM)(M) = [πM]5. A marking m for any
π′ ∈ [πM], corresponds to consuming the tokens in m and evolving to a process
that corresponds to M reacting to the interactions in the level of bio-molecules.
Let O([π]) = F−1

pln(π)(P ([π])). Conditions (1) and (2) in Definition 1 hold, prov-
ing we have obtained a semantic structure by induction on the bio-molecule
construction.

5 Related Works and Discussion

The usage of PNs to model processes is almost ubiquitous, ranging from the-
oretical to industrial applications. In [12], there is a comprehensive review on
using PNs in Biology until 2013. Blätke et al. [1] also discusses PNs use in bio-
applications, which include metabolic pathways, gene regulatory networks, and
signalling pathways. Some applications are examples of how PNs can be used to
analyze and simulate the behaviour of these systems.

Our work is different from what is cited above. As far as we know, there is no
work using PNs to give semantics to molecular biology based on computational
processes only. The above-mentioned applications concern the use of PNs to
formalize specific processes.

Fig. 9. Petri Net for PTN

5 If π is an OPN, then pl(π) is the number of output and input places in π, [π] is the
equivalence class of π under isomorphism on OPNs and P is the natural projection.
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Recently, in [5], more sophisticated Petri Nets than OPNs are used, but they
follow the approach we discuss in the sequence. As an illustrative example, Fig. 10
depicts a Petri-Net that describes the initial phase of the protein transcriptions.
It starts with the TATAA code and consumes a series of Transcription Factors,
TFIID, TFIIB, TFIIE, TFIIF, TFIIH in this order. Lastly, the kinase enzyme is
implicitly consumed. Note that the PN asks, due to its coordination order, that,
for example, TFIIF and the RNAPolyII need to be consumed simultaneously.
The PN is opaque, since the tokens are not formalized, and the only information
it provides is the high-level process it describes. Most PNs formalizations of
Biological processes are of this kind. They choose some granularity of components
to be taken as tokens and then describe the process top-down.

The semantics we provide follows in the opposite direction. The granularity
is the lowest possible, starting with nucleotides and even simpler molecules. The
focus is on the description of a broader scenario. For example, adding an amino
acid to a growing peptide chain requires four ATP molecules, two for amino
acid activation and two ATPs more for peptide bond formation and ribosome
translation, see [11].

This is depicted in Fig. 11, the redesigned OPN that adds amino acids pushed
by ATPs in the growing protein chain. We are not considering the additional
costs of other ATPs for error correction and the synthesis of sequences that are
removed during protein maturation since this has to do with protein maturation,
which occurs after what we consider here. We also do not consider the two
ATPs used in the translation phase for similar reasons. It is natural to include
an energy promoter for bio-systems, for example, the ATP , as an object token
in the intention of a process. By OPN-transport, the ATP goes to a position
that it can be used in association with the pairs of nucleotide processes that it
helps to implement, as illustrated in Fig. 11. This can culminate with allowing of
describing self-sustainable consumption and generation of resources and energy
usage.

Fig. 10. High level Petri-Net for Transcription Starting Process
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Fig. 11. Petri Net for PTN Growth with energy. 2 means two ATPs

Summing up, our model provides semantics based on process and is thus
intentional (in the logical sense of the word). It is not a sole formalization
that aims to predict some specific phenomenon. The semantics of transcription
obtains by an OPN that has as tokens processes defined by OPNs as in Sect. 4.

6 Conclusion

This article presents the semantics for molecular biology under the principle that
every molecule performs an activity. The semantics formalizes the activities of
each molecular complex and polypeptides intentionally using OPNs. The OPN
describes for each molecule all the possible chemical and physical interactions
that it provides from the possible immediate combinations in which it can take
part within any possible environment. We provided basic biological examples,
RNA, Ribosome, tRNA, mRNA, and protein synthesis to show that we can,
compositionally, assign semantics to more sophisticated molecular complexes
from these basic intentional processes.

A possible further work is to associate the activity of each molecular com-
plex with the biological function by interpreting this activity when some real
contexts are considered. We expect that other semantic levels should provide
this biological function concept to extend the one presented here.

This article has laid the foundational work that will allow us to formalize
a wide class of biological processes. We have started with a formalization for
protein synthesis. We plan to work it out in detail for specific proteins, starting
from a simpler peptide like Insulin and moving on to more complex proteins
afterward. We then intend to formalize other biological processes.
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Abstract. The transcAnalysis pipeline is a comprehensive tool that
allows the analysis of transcriptome data. The pipeline allows for analysis
of differential expression, alternative splicing, lncRNA and RNA editing
analysis, with a specific focus on A-to-I editing mediated by the ADAR
protein. This type of RNA editing is widespread and can significantly
affect gene regulation and function. The results from these analyses are
integrated, and the events are associated with each gene. The pipeline
also integrates results that can help correlate gene expression and post-
transcriptional events. This allows for a comprehensive understanding of
the functional impact and provides insight into the biological processes
and pathways associated with these events. One of the significant advan-
tages of the transcAnalysis pipeline is its ability to perform all these
analyses with a single command using the Snakemake package. This fea-
ture simplifies the analysis process and makes it accessible to researchers
with limited bioinformatics expertise. Its user-friendly ability to perform
multiple analyses with a single command make it an ideal choice for
researchers looking to analyze transcriptome data.

Keywords: Pipeline · Differential Gene Expression · Alternative
Splicing · RNA Editing

1 Introduction

The advent of next-generation sequencing (NGS) technologies has brought about
a wealth of data that can be used to gain insights into biological systems. RNA
sequencing (RNA-seq) has become the cornerstone for studying gene expres-
sion, with a primary focus on differential expression analysis [1]. However, this
approach often overlooks other important information related to post transcrip-
tional modifications and the expression of long non-coding RNAs (lncRNAs),
which can also be included in the analysis.
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One of the critical post-transcriptional modifications is alternative splicing
(AS), which involves the removal of introns and non-canonical joining of exons
from pre-mRNA, leading to the production of different proteins and transcrip-
tional control. There are five primary forms of AS: exon skipping (ES), alterna-
tive 5’ splice site (A5SS), alternative 3’ splice site (A3SS), mutually exclusive
exons (MXE), and intron retention (IR) [2]. These processes play a critical role
in regulating gene expression and contribute to the diversity of the proteome.

RNA editing (RED) is mainly carried out by the protein ADAR in mammals,
leading to the editing of adenine to inosine (A-to-I), which modifies the secondary
structure of transcripts and alters the binding of RNA-binding proteins and
miRNAs. RED can also lead to the generation of transcript isoforms through
AS. These events are related to specific conditions and can aid in understanding
biological phenomena [3]. By considering AS and RED in RNA-seq analyses,
researchers can gain a more comprehensive understanding of the transcriptional
and post-transcriptional mechanisms underlying gene expression.

2 Material and Methods

2.1 Workflow

The transcAnalysis pipeline performs mRNA, lncRNA, AS, and RE expression
analysis from a BAM (Binary Alignment Map) file created after the alignment
of RNA-seq reads from fastq files. Additionally, the pipeline requires a metadata
file that is filled out by the user with their desired preferences to be executed,
including the path to each sample. The pipeline facilitates the analysis by allow-
ing the execution of each step with only one command line, which is possible
due to the use of the snakemake, a workflow management system that provides
integration with Conda and Docker, two popular tools in the bioinformatics com-
munity, to enhance reproducibility and portability of analysis pipelines [4]. The
pipeline outputs the data integration related to the analyzed event (Fig. 1) and
is available at: github.com/PHAB1/transcAnalysis.

2.2 Transciptome Analysis Pipeline

From the output obtained by the pipeline, the integration of the data related
to each gene simultaneously to differential expression, RED (A-to-I), and AS is
performed, considering each AS category separately (Table 1).

Differential Expression. Differential expression analysis was performed using
the R package DESeq21 (v1.38.2), developed by Bioconductor project. The pro-
gram specializes in normalization, visualization, and differential gene expression
analysis, and uses empirical Bayes techniques to estimate the log of fold change,
the dispersion, and related estimates such as the p-value and the False Discov-
ery Rate (FDR) [5]. The program uses the gene expression array and a table
containing the experimental design and performs differential expression analysis
from two or more different conditions.
1 https://bioconductor.org/packages/release/bioc/html/DESeq2.html.

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Fig. 1. Workflow and steps in the transcAnalysis pipeline

Table 1. Integration of transcriptome data. Only Fold change (FC) of which had
FDR < 0.05 are shown. Similarly, the event counts of Exon Skkiping (ES), Intron
Retention (IR) and RNA editing shown are significant with FDR < 0.05.

Gene FC SE RI . . . RED

CTSS 0 4 0 42

APOBEC3C 0 0 0 13

METTL7A 0 0 0 16

...
...

...
...

...

IFITM2 2.35 0 0 3

RBM39 0 8 1 2

Alternative Splicing. For detection of differential AS, the rMATS2 turbo
program (v4.1.2) was used. The program is based on using mapped reads in
regions indicating different isoforms to detect and estimate the proportion of
different types of splicing between different conditions. Here, the five possible
splicing types are identified, these being ES, IR, MXE, A3SS, and A5SS [6]. As
an example, in ES, the reads mapped in the regions used as AS markers are the
junction reads (S), positioned between the upstream exon and the downstream
exon with single exon skipping, forming the isoform, while the reads related to
the canonical form of the gene, with the inclusion of the exon, are the inclu-
sion reads (I). Inclusion levels (ψ) are defined as the percentage of transcript
inclusion [6].

ψ = (I/LI)/(I/LI + S/LS),

2 https://github.com/Xinglab/rmats-turbo.

https://github.com/Xinglab/rmats-turbo
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where:

ψ = Inclusion Level (IncLevel),
I = number of reads mapped to the inclusion isoform,

S = number of reads mapped to the ES isoform,

LI = effective length of the inclusion isoform exon,

LS = effective length of the ES isoform.

For filtering of the splicing events, after identification with rMATS, FDR <
0.05 and |ψit − ψic| > 0.1 were used, where ψic and ψit indicates the relative
mean ψ in each event between the (t) treatment and (c) control.

RNA Editing. For the detection of RED, the program SPRINT3 (v0.1.8)
was used. The SPRINT program preprocesses the reads by removing annotated
single nucleotide genetic variants (SNPs), aiming to remove false positives from
genetic variants, and subsequently identifies ER candidates [7]. Only candidates
containing nucleotides with high quality q > 20 and mapped reads in regions
with indistinguishable repeats are retained, removing those with mapping or
sequencing errors.

LncRNA. Annotation of lncRNAs is performed and differential expression
analysis is done with the DESeq2 program. For pathway enrichment analysis, the
R package LncRNAs2Pathways4 (v.1.1), developed to associate pathways related
to lncRNAs, is used. The package uses a network library, which relates lncRNAs
to the expression of mRNAs [8]. The interaction network was created from the
analysis of 28 different studies and takes into account protein-protein interactions
annotated in different databases such as REACTOME [9] and HPRD [10], and is
able to relate differentially expressed lncRNAs to “KEGG” [11] or “Reactome”
[9] pathways.

2.3 Experimental Transcriptome Data

The transcriptome samples in fastq format were obtained from the Sequence
Read Archive (SRA) database. The experimental files used were all paired-end
files. We used monocyte samples from patients with severe-stage COVID-19
(PRJNA699856). 6 treated and 6 controls were used. The STAR5 program (v2.7)
was used to align each sample to the reference genome GRCh38 (hg20) [13].

3 Results and Discussion

The pipeline performs statistical analysis between two distinct groups, including
differential analysis of gene expression, lncRNA, AS, and RED. The pipeline is
3 https://github.com/jumphone/SPRINT.
4 https://cran.r-project.org/web/packages/LncPath/.
5 https://github.com/alexdobin/STAR.

https://github.com/jumphone/SPRINT
https://cran.r-project.org/web/packages/LncPath/
https://github.com/alexdobin/STAR
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designed to integrate these events, allowing a complementary analysis to conven-
tional expression analysis, as shown in Fig. 2, where the intersection of enriched
terms between differentially expressed genes, differential alternative splicing, and
differentially edited RNAs in monocytes from patients with severe COVID-19
versus the healthy patient is shown.

Fig. 2. Metascape functional analysis Heatmap of the transcriptome. Intersection of
the most relevant terms in mRNA-related enriched genes, alternative splicing or RNA
editing events.

3.1 Conclusion

There is a large amount of information in transcriptome data that is not normally
used, programs that identify and analyze post-transcriptional modifications have
no trivial use and require computer skills. The transcAnalysis pipeline was cre-
ated with the intention of allowing the acquisition of data related to both gene
expression and post-transcriptional modifications for the utilization of the data
and integration, allowing association between the events. In addition, the Snake-
make pipeline manager was used to create a user-friendly approach.
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Abstract. Peptides are short chains of amino acid residues linked
through peptide bonds, whose potential to act as protein inhibitors has
contributed to the advancement of rational drug design. Indeed, under-
standing the interactions between proteins and peptides is potentially
helpful for several biotechnological applications. However, it is not a
trivial task since peptides can adopt different conformations when inter-
acting with proteins. In this paper, we develop a classification model
for protein-peptide interfaces using a convolutional neural network and
distance maps. To evaluate our proposal, we performed two case stud-
ies classifying protein-peptide interfaces based on peptide sequences and
receptor classes. Additionally, we compared the distance map approach
with a graph-based structural signatures approach. We aim to find out
if a convolutional neural network could classify peptides just from the
patterns of distances in these maps. In conclusion, graph-based methods
were slightly superior in almost all comparisons performed. However,
distance map-based signature methods achieved better results for some
classes, such as classifying hormones, membranes, and viral proteins.
These results shed light on the potential use of distance maps for classi-
fying protein-peptide interfaces. Nevertheless, more experiments may be
needed to explore this use.

Keywords: Convolutional neural networks · distance maps ·
protein-peptide interactions

1 Introduction

Peptides are short-chain molecules consisting of two to fifty amino acid residues
linked through peptide bonds. They have several essential functions in human
physiology, such as acting as hormones, neurotransmitters, growth factors, ion
channel ligands, or anti-infective agents [23]. Moreover, recent research suggests
that peptides play a vital role in protein-protein interactions, constituting a
significant percentage of such interactions within cells [2].

Compared to proteins, peptides have more chemical versatility because they
can be more easily modified. Additionally, peptides exhibit low resistance and
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limited non-target activity, making them suitable for therapeutic agents [14,28].
As a result, peptide drug development has become one of the hottest topics in
pharmaceutical research.

Designing new peptides and peptide-based compounds for drug develop-
ment and biotechnological applications requires understanding the structure and
recognition of protein-peptide complexes. With the aid of databases containing
protein-peptide complexes, researchers can analyze and gain insights into the
mechanisms of protein-peptide recognition, paving the way for future discover-
ies [5,16]. However, these studies depend on public structure databases, such as
PDB (Protein Data Bank) and more specialized databases, as Propedia [19].

Propedia is a database of peptide-protein interactions designed to provide a
comprehensive and current dataset of complex protein-peptide experiments [18].
In a recent study [19], graph-based structural signatures [17] have been used
to extract characteristics of protein-peptide complexes collected from Propedia.
Then, several machine-learning approaches were used to classify protein-peptide
complexes [19]. The results demonstrated the potential use of graph-based sig-
natures for protein-peptide classification. However, other approaches could be
used to construct new signature types, such as distance maps.

Mathematical approaches applied to understanding the properties of proteins
have provided insights relevant to structural bioinformatics [13]. For example,
information about the structure of biomolecules is encoded in the internal dis-
tances, represented by square matrices known as distance matrices. These repre-
sentations contain the pairwise distances between residues in a protein and are
used to infer protein-protein interactions [13].

A distance matrix can be defined as d = (dij), where dij is the Euclidean
distance between the ith and the jth residue. Generally, the coordinates of the
atoms of Cα (carbon-α) and/or Cβ of the residuals are input to the method [13].

Recent studies have shown that predicting the structures of proteins can be
done using two-dimensional images known as distance maps (DMs), representing
the inter-residue distance matrices of proteins. These maps are increasingly used
to compare biomolecular structures and analyze functional differences between
proteins [11]. By comparing DMs of homologous structures, researchers can iden-
tify similarities and differences in their patterns of structural flexibility [11]. In
addition, DMs have the added advantage of being low-dimensional, invariant to
rotation and translation of structures, making parameter calculation and effi-
cient learning [6], which is desirable for artificial intelligence applications, such
as convolutional neural networks.

Convolutional neural networks (CNNs) [15] are a class of deep neural net-
works, of the type feed-forward, specialized in processing data that have a topol-
ogy of grid (e.g., image) [9]. The architecture of a CNN is analogous to the
connectivity pattern of neurons in the human brain being inspired by the orga-
nization of the visual cortex, where neurons in different layers detect increasingly
complex features of visual stimuli. As an allusion to their name, these neural net-
works use a mathematical operation called convolution in feature learning, as
opposed to matrix multiplication common in multilayer perceptrons (MLP) [9].
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This class of neural networks has shown great potential in applications involv-
ing pattern recognition in images [9], being used recently in conformational anal-
ysis, structure prediction, protein classification, etc. [21]. The basic structure of
CNNs consists basically of two parts: feature learning (convolution and pooling
layers) and classification (fully-connected layers) [21].

In this study, we model the interface region of the protein-peptide complex
through a two-dimensional representation of the interatomic distance matrix,
known as a distance map. We aim to find out if a CNN could classify pep-
tides from the patterns of distances in these maps. The importance of this app-
roach in the context of Bioinformatics/Biotechnology stems from its contribu-
tion to the advancement of computational modeling techniques for analyzing
biological data. By improving modeling capabilities, we enable more effective
machine learning applications across multiple scenarios, enabling researchers to
gain deeper insights, make more accurate predictions, and accelerate advances
in understanding and harnessing biological systems.

2 Material and Methods

2.1 Data Collection

The protein-peptide complexes used in this work come from the Propedia web
database (http://bioinfo.dcc.ufmg.br/propedia2). We performed two case stud-
ies. First, we analyzed 1,111 peptides from five clusters grouped by sequence sim-
ilarities (clusters S0, S1, S112, S151, and S162). Additionally, we collected and
analyzed 6,238 peptides from six Propedia datasets: AntimicrobialDB, ViralDB,
EnzymeDB, MembraneDB, HormoneDB, and PlantDB. Lastly, we compared our
results to the neural network analysis of graph-based signatures shown in [19]
(signature method: aCSM-ALL with 0.2Å of step and distance max of 20Å [25];
parameters used in Orange Data Mining [7]: neurons in hidden layers = “300”,
solver = “Adam”, activation = “ReLu”, maximal number of iterations = “200”,
regularization alpha = “0.001”, and replicable training).

2.2 Generation of Distance Maps

We focus on atoms within the interface region to generate distance maps for
protein-peptide complexes. We select the residues Cα (alpha carbon) from each
.pdb file and extract their corresponding coordinates (x, y, z ) from the pro-
tein and peptide structures. Using these coordinates, we calculate the Euclidean
distance between atoms within the interface region to create a distance matrix
between residues. In this matrix, peptide atoms correspond to the ordinate axis,
while protein atoms correspond to the abscissa axis [20]. Finally, we transform
the distance matrix into a two-dimensional image (.png format) using Python’s
Matplotlib library. The algorithms for developing the process described above
and obtaining the distance maps were developed in Python (version 3.7.9)1.
1 https://github.com/LBS-UFMG/cnn-distance-maps.

http://bioinfo.dcc.ufmg.br/propedia2
https://github.com/LBS-UFMG/cnn-distance-maps
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Distance maps offer a powerful means for inferring three-dimensional struc-
ture using paired distances. By analyzing attention maps, for example, we can
effectively identify significant patterns between residual pairs. Furthermore, as
mentioned earlier, the main advantage of distance maps lies in their inherent
invariance to rotations and translations of the protein structure. The computa-
tional complexity of this method is denoted as O(n × m), where n represents
the number of residues in the protein and m denotes the number of residues
in the peptide. However, when distance maps are utilized as input for CNNs,
additional pre-processing steps, such as resizing, are often required, particularly
if the distance matrix is not square.

2.3 Pre-processing: Data Augmentation and Resizing

To prepare the DMs for input into our neural network, we applied preprocess-
ing techniques that consisted of three steps: resizing, data augmentation, and
rescaling. Since the protein-peptide complex can contain molecules of varying
size, we need to resize the DMs to 64 × 64 pixel dimensions to fit the square
input structure required by the CNN architecture. Following this, we applied
data augmentation to the DM set using a series of techniques such as brightness
adjustments, sharpening filters, and horizontal/vertical shifts. Previous studies
have shown that data augmentation techniques can significantly improve clas-
sification models, particularly for imbalanced datasets [30]. Lastly, we rescaled
each DM so that the pixel values were converted to a range between 0 and 1
since neural networks tend to perform better with values in this range [9].

2.4 Model Architecture

Our model is based on representation learning [3], a technique that allows the
system to automatically learn important features from a large amount of data,
allowing it to learn a representation specific to the task. We use a popular repre-
sentational learning technique called Deep learning that involves using deep neu-
ral networks that optimize weight parameters, by combining simple and complex
features to construct hierarchical representations of input data [21]. We employ
a type of deep neural network called Convolutional Neural Networks (CNN).

We developed a sequential and uniform architecture [4] comprising a linear
stack of 2D convolutional layers. The first two layers have 32 filters each, while
the last two have 64 filters each. We define a 3 × 3 convolution kernel with
a stride of 1. After the convolutional layers, we include a pooling layer with
max-pooling using a 2 × 2 pool array and a stride of 2. To enhance the non-
linear properties of the feature maps generated, we apply the Rectified Linear
Unit (ReLU) activation function [9], which is followed by a Batch Normalization
layer to zero center the activations [10].

For our model, we selected a batch size of 32, which determines the number
of samples processed by the network in one pass. Typically, larger batch sizes
demand more memory, so it’s common to use values like 32 or 64 [22]. The input
data was structured as tensors, defined by the input shape, which includes the
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image dimensions (height and width) and the number of color channels (RGB is
equivalent to 3). Additionally, the batch size was specified [4].

We generate the input layer for the fully connected layers (FC layer) by
vectorizing the feature maps and concatenating them into a flattened array. For
multiclass classification, the FC layer acts as a classifier with 512 nodes, and we
employ the softmax activation function to process its output [27]. Additionally,
to improve generalization and prevent overfitting, we set the Dropout rate to 0.5,
as it has produced a significant reduction in error for values in the range of [0.3,
0.6] [26]. To optimize the model, we utilized the Adaptive Moment Estimation
(Adam) optimizer [12] and trained it over 100 epochs.

We implemented the source code to preprocess the distance maps and develop
the model architecture using the Python programming language (version 3.7.9),
along with consolidated machine learning libraries and neural networks such as
TensorFlow [1] and Keras [4].

2.5 Experimental Design

We split the dataset into training and testing subsets, with 80% and 20% of
the data, respectively. A test set was previously extracted by randomly selecting
samples from the initial dataset. No data augmentation was applied to test set.
For the training set, we used 80% of the samples for tuning the hyperparameters
of the network, while the remaining 20% was reserved for validating the model.
Commonly, a percentage γ < 0.5 of the training data is used to validate the
model [8]. We stopped adjusting parameters when the number of training epochs
reached a predefined value.

We employ an alternative version of the cross-validation (CV) technique app-
roach known as k-fold CV [24]. This technique randomly divides the training set
into k subsets of equal size (n/k), where n is the total number of training sam-
ples. In this case, we define k = 5 because it’s possible to guarantee that γ ≥ 0.1,
often recommended [8]. One subset is reserved for validation, and the remaining
k − 1 subsets are used for parameter estimation. We repeated this process k
times rotating the validation subset each time. In the end, We estimated the
performance based on the average of the k error rates corresponding to each
one of k partitions [8]. Since the problem involves multiclass classification, we
selected the categorical cross-entropy loss function to train the model.

In this particular problem, the distribution of classes relative to sequence
clusters and sub-datasets of peptides from Propedia is unbalanced. To evaluate
the model’s performance, we used complementary metrics to the error rate. We
compared the performance of multiple classifiers trained with the same dataset
and calculated complementary metrics such as precision, recall, and F1-Score,
which help in choosing the optimal classifier from a performance perspective [29].
We obtained a multi-class confusion matrix to calculate these metrics. Addition-
ally, we presented the performance of the developed model as a function of what
it correctly predicted by class [29]. To calculate model performance metrics, we
utilized the open-source Python scikit-learn library.
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The models were implemented on Google’s virtual environment, Colab, which
provides access to a Jupyter Notebook. The hardware used consisted of a dual-
core processor with 13.6 GB of RAM and an L3 cache of 40–50 MB. However, to
accelerate the process, an NVIDIA A100-SXM4 GPU with 40GB of memory was
also used, along with an additional 89.6 GB of available RAM. Figure 1 presents
an overview of how our methodology was applied.

Fig. 1. Overview of the methodology used to evaluate distance map-based signatures.
The interface region of the protein-peptide complex is modeled as inter-residue distance
maps, used in training the deep neural network. In the end, we want to correctly predict
the classes corresponding to the groupings by sequence similarity and peptide type.

3 Results and Discussion

In this study, we use convolutional neural networks to classify interfaces of
protein-peptide interactions using computational modeling based on distance
maps. We aim to verify if signatures based on contact maps can be as good as
graph-based signatures. Graph-based signatures are considered state-of-the-art
for classifying macromolecules and, typically, have greater accuracy, in addition
to generating vectors of the same size (when the same parameters are applied),
allowing direct comparisons without the need for data augmentation steps. Nev-
ertheless, distance map-based signatures can be helpful when combined with
convolutional neural networks.

To assess this, we analyzed a problem of high impact in the biotechnol-
ogy industry: protein-peptide interactions. We collected structures of complexes
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protein-peptide from the Propedia database. For each collected protein-peptide
complex, we extracted the interaction interface. We then computed the distance
maps, applied the preprocessing steps, and performed the training and testing
process using CNNs (Fig. 1). To evaluate the methodology, we performed two
case studies described below.

3.1 Case Study 1: Sequence Clusters

The first case study considers peptide sequences. The sequence classification
problem is well established in the literature, with several methodologies, algo-
rithms, and tools that provide optimal results for clustering. On the other hand,
our method uses the three-dimensional structure of the peptide and the contact
interface with the receptor, which has the potential to detect more details of the
characteristics of peptides and their interactions.

Thus, in this first case study, we collected 1,111 peptides from five clusters
grouped by sequence similarities: S0, S1, S112, S151, and S162. These clusters
are the five most populated in the Propedia database, with sizes of 503, 184,
161, 142, and 122, respectively. Table 1 summarizes the results of the grouping
performed based on the signatures of the distance map and compares with the
results of the signatures based on graphs by Martins et al. (2023) [19].

Table 1. Case study 1: performance metrics for the model based on CNNs and dis-
tance map-based signatures. To evaluate model quality, we calculated accuracy, preci-
sion, recall and F1-Score. Furthermore, we also determined the percentage of correct
predictions (%) for each class. Graph-based signature results were obtained from [19].

Model Graph-based signature Distance-map-based signature

Accuracy 0.92 0.91

Precision 0.92 0.92

Recall 0.92 0.92

F1 0.91 0.91

S0 100% 97.0%

S1 100% 88.0%

S112 100% 93.0%

S151 85.3% 82.0%

S162 40.5% 95.0%

As we hypothesized, representations based on distance maps proved efficient
when we analyzed the similarity of the sequences. From Table 1, we can observe
that the predictions related to case study 1 had an accuracy of 0.91, precision of
0.92, recall of 0.92, and F1-score of 0.91. This is comparable to the performance
achieved by neural networks trained from state-of-the-art representations such
as structural signatures [19] that obtained 0.92, 0.92, 0.92, and 0.91 for accuracy,
precision, recall, and F1, respectively.



Peptide-Protein Interface Classification Using CNN 119

In the work of Martins et al. [19], the clustering of S0, S1, and S112 groups
obtained 100% accuracy. On the other hand, they only obtained 85.3% and only
40.5% for S151 and S162 clusters. Although we obtained a slightly lower result
for most of the five groups (97%, 88%, 93%, 82%, and 95%, respectively), our
methodology can better handle the classification of the latter group (S162). As a
disclaimer, we can argue that an improvement in the parameterization performed
in work by Martins et al. [19] could get better results for this last cluster. Still,
our primary goal here is to demonstrate that signatures based on distance maps
can be as good as signatures based on graphs for classifying protein-peptide
interfaces.

Moreover, our analysis showed that the percentage of accurate predictions
per class was above 80%, indicating that our approach effectively discriminates
between different data classes. These findings highlight the potential of distance
maps for sequence analysis, suggesting that they may be particularly useful
in scenarios where methods based on structural signatures are not feasible or
appropriate.

3.2 Case Study 2: Peptide Types

In the second case study, we consider the role of the type of peptide interacting
with the receptor. For example, we look at peptide-protein complexes classified
as antimicrobial, enzyme, hormone, membrane, plant, and viral. These classes
were obtained from the PDB descriptions and are assigned based on the locals
where the peptides were obtained.

Thus, in this second case study, we collected 6,238 contact interface structures
from Propedia: a protein-peptide database. We analyzed six Propedia datasets:
AntimicrobialDB (n = 10), ViralDB (n = 294), EnzymeDB (n = 5,344), Mem-
braneDB (n = 152), HormoneDB (n = 212), and PlantDB (n = 256). Then, we
compared our results with the neural network and graph-based signature exper-
iments described in Martins et al. (2023). Table 2 summarizes the results of the
grouping performed based on the signatures of the distance map and compares
with the results of the signatures based on graphs by Martins et al. (2023) [19].

In Case Study 2, we observed a decrease in model performance for accuracy,
precision, recall, and F1 values compared to Case Study 1. A possible reason
for the drop in performance could be the impact of dataset imbalance on the
final prediction, leading to a bias toward correctly classifying the cluster with
more samples (Enzyme). On the other hand, the Antimicrobial class had low
accuracies in both studies, mainly due to the low number of instances (n = 10).
Despite this, we were able to achieve an accuracy of 0.76. Data imbalance is a
challenge in machine learning tasks. For this reason, we have a future perspective
to research ways to deal with the imbalance in the datasets used in this case study
to improve the accuracy in less populated classes without negatively impacting
the most populous.

Also, when we examined the percentages of correct predictions, we can see
that we obtained values higher than the structural signatures for the Hormone
(86%), Membrane (72%), and Viral (55%) classes. This indicates the model
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Table 2. Case study 2: performance metrics for the model based on CNNs and dis-
tance map-based signatures. To evaluate model quality, we calculated accuracy, preci-
sion, recall and F1-Score. Furthermore, we also determined the percentage of correct
predictions (%) for each class. Graph-based signature results were obtained from [19].

Model Graph-based signature Distance-map-based signature

Accuracy 0.91 0.76

Precision 0.90 0.80

Recall 0.91 0.76

F1 0.90 0.77

Antimicrobial 22.2% 0.0%

Enzyme 97.5% 91.0%

Hormone 63.5% 86.0%

Membrane 36.3% 72.0%

Plant 79.2% 52.0%

Viral 29.9% 55.0%

successfully classified peptides within subsets corresponding to their function.
This success aligns with the sequence-structure-function paradigm. Since dis-
tance maps serve as an alternative 2D representation of the three-dimensional
structure, the model is expected to accurately classify the peptides in the rele-
vant functional subsets of the Propedia.

4 Conclusion and Perspectives

In conclusion, graph-based methods were slightly superior in almost all compar-
isons performed. However, distance map-based signature methods obtained close
results in the sequence-based classification. Also, in the second case study, they
achieved better results for some classes, such as classifying hormones, mem-
branes, and viral proteins. These results shed light on the potential use of
distance maps for classifying protein-peptide interface, which could be better
explored in future experiments using protein-peptide complexes or other macro-
molecule complexes.

Data Availability Supplementary material, data, and scripts are available at
https://github.com/LBS-UFMG/cnn-distance-maps.
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Embrapa Café, Bráılia DF, 70770-901, Brazil

Abstract. Currently, there is a massive data generation in the most
diverse areas of knowledge, as bioinformatics that generates huge
amounts of data, requiring the analysis and the summarization of this
data for its understanding. Semantic similarity can be seen as an app-
roach that considers the features of objects in a context in order to estab-
lish the similarity or dissimilarity of these objects. The Gene Ontology
(GO) has been widely employed as a source of features in the estima-
tion of semantic similarity between its terms. Several methods have been
proposed in the literature for estimating semantic similarity from GO.
However, the methods are based on parametric distributions or arbitrar-
ily defined parameters that do not consider the distribution of GO data.
In this context, this work presents a data-driven method for estimat-
ing the semantic similarity from GO terms that exploit the power-law
distribution. A set of five metabolic pathways were considered for the
evaluation of the proposed method and compared with some of the prin-
cipal methods in the literature. The results showed the adequacy of the
proposed method in the estimation of semantic similarities and that it
produced more compact gene clusters among all the methods adopted
and with an adequate distance between them, leading to clusters more
assertive and less susceptible to errors. The proposed method is freely
available at https://github.com/EricIto/plawss.

Keywords: Semantic similarity · Complex networks · Power-law ·
Bioinformatics · Pattern Recognition

1 Introduction

The evolution of technologies has allowed the generation of large amounts of
data in various areas of knowledge. As a consequence, new methodologies are
being developed with the objective of analyzing and extracting information from
this large set of constantly updated data and contribute to the generation of
knowledge derived from this data.
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Semantic similarity (SS) is a fundamental concept, which can be seen as an
approach to compare objects from their features [22]. This technique is widely
applied in many areas of knowledge, such as information retrieval, biomedicine
and artificial intelligence [1,15,28] to cite but a few.

The gene ontology (GO) [11] has been successfully used in many SS appli-
cations, such as gene clustering [10], prediction of protein function [19] and
validation of gene-gene interactions [8]. Briefly, GO [11] is composed of directed
acyclic graphs (DAGs) to define the knowledge about a gene considering three
ontologies: molecular function (MFO), biological process (BPO) and cellular
component (CCO). Each node is a GO term and two GO terms are connected
by different types of edges indicating different relationships. Therefore, obtaining
the semantic similarity between GO terms is essential in bioinformatics research,
since it represents the relationships between genes based on their annotations.

In recent years many works has been proposed to infer the similarity between
pairs of genes or sets of multiple genes [27]. Among the proposed methods for the
inference of semantic similarity, two strategies stand out. The first one is based
on obtaining the nodes of the graph to obtain the information content (IC) [31].
On the other hand, another strategy is to rely on the edges of the graph to
analyze its topology [36]. Thus, these two approaches have been integrated into
hybrid methodologies that aim to obtain the advantages of both approaches, and
as a consequence, produce more suitable results [34,38]

A hybrid approach is presented in the GOGO [38], which is based on the
method proposed by Song et al. [34] and also considers the IC approach indi-
rectly. The GOGO method describes that the IC of the term GO has a high
correlation with the number of children of the term. In this way, the method
weighs the semantic relations between the GO terms considering the number
of children, and thus considering more information to calculate the SS between
gene pairs. However, the GOGO method is defined by considering two constant
parameters, c and d, to measure the semantic weight. Since the GO terms and
the organism annotations are constantly updated, constant values can quickly
become out of date.

In this context, this work presents a data-driven methodology for calculating
semantic similarity based on gene ontology. More specifically, an alternative SS
method is proposed based on the distribution of the number of children of the
GO terms as a rule for penalizing its specificity. In addition, the distribution of
the number of children per node can be approximated to a power law [5], making
the proposed method guided by the ontology distribution and, as a result of this
adjustment, the results have a more suitable SS distribution.

2 GO Semantic Similarity

Gene ontology (GO) [11] is an essential source of data for the functional analysis
of genes. GO provides an unified vocabulary that describes the functions of
genes and relates them considering three ontologies: Biological process (BPO),
Molecular Functions (MFO) and Cell Component (CCO). BPO represents a
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series of molecular functions, which refer to a biological objective that a gene
or its gene product contributes. The MFO describes the biochemical activities
of a gene product and the CCO describes the location of the occurrence of a
molecular function.

Each of these ontologies forms an acyclic graph, each term being represented
by a node while the edge represents the relationship between the nodes. This rela-
tionship can be of several types, among the most common are: “is a”, “part of”
and “regulates”.

Thus, when a gene is investigated and its participation in a biological process,
molecular function or location is discovered, that gene receives one or more terms
from the respective ontologies in which its participation is showed. Therefore,
the gene annotations and the ontology are constantly being updated.

3 Complex Network

Complex networks have been successfully applied to analyze, represent and
understand complex systems in many application areas [6,7,12,17,21,24,26,35],
leading to a truly multidisciplinary contribution. In particular, networks with a
power-law degree distributions, called scale-free networks, have been attracted
great attention in the literature [2,33].

The scale-free networks [5] do not have a homogeneous distribution of k
connections between their nodes, presenting few vertices highly connected (hubs)
to other network nodes, and a large number of nodes with few connections [12].
More specifically, the probability P (k) of a network node to interact with k other
nodes decays as a power-law, defined in Eq. 1.

P (k) ∼ k−γ , (1)

where γ define the exponential decay, implying an irregular distribution among
the network nodes. In fact, the degree distribution is an important complex
network property to represent the topological organization of real networks [3,
12].

Regarding biological networks, the scale-free model [5] proved to be adequate
to represent metabolic, protein, and gene interaction networks [2–4,18,20,23,30]
even considering different organisms. In fact, the scale-free networks present some
interesting properties that can led to important biological insigths. For instance,
the existence of hubs can provide robustness to random disruptions in biological
networks [16] and robustness against perturbations [2], evidence of hierarchical
modularity in metabolic networks [30], genomic duplication-divergence of pro-
teins [13], to cite but a few.

In addition, many biological networks are inherently modular, i.e., their func-
tionality can be partitioned into smaller systems or components [25]. In fact,
various biological systems present a hierarchical modularity in which the same
structures of modules occur repeatedly at different hierarchical levels or topo-
logical scales of the network [32]. Thus, the hierarchical modularity and the
scale-free are two important properties present in biological networks [3,30].
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4 Materials and Methods

4.1 Materials

In order to evaluate the proposed method, a dataset composed of five pathways
of Saccharomyces cerevisiae was adopted, namely: mevalonete, mannose degra-
dation, phenylalanine degradation, valine degradation and superoxide radicals
degradation. Table 1 presents an overview of the clusters formed by genes of the
adopted pathways.

Table 1. Clusters formed by the genes of the following metabolic pathways: superoxide
radical degradation, mevalonate, mannose degradation, phenylalanine degradation and
valine degradation of the SGD database [9].

Pathways Clusters

superoxide radicals degradation Cluster 1: [SOD1,SOD2 ]

Cluster 2: [CTT1,CTA1 ]

mevalonate pathway Cluster 1: [ERG10,ERG13 ]

Cluster 2: [HMG1,HMG2 ]

Cluster 3: [ERG12,ERG8 ]

Cluster 4: [MVD1,IDI1 ]

mannose degradation Cluster 1: [GLK1,HXK1,HXK2 ]

Cluster 2: [PMI40 ]

phenylalanine degradation Cluster 1: [ARO8,ARO9 ]

Cluster 2: [ARO10,PDC1,PDC5,PDC6 ]

Cluster 3: [SFA1,ADH1,ADH2,ADH3,ADH4,ADH5 ]

valine degradation Cluster 1: [BAT1,BAT2 ]

Cluster 2: [PDC1,PDC5,PDC6 ]

Cluster 3: [SFA1,ADH4,ADH5 ]

More specifically, the mevalonate pathway is found in animals, fungi, the
cytoplasm of phototrophic organisms, archaea and some eubacteria. The meval-
onate pathway is a source of isopentenyl diphosphate in all living organisms.
Mannose degradation pathway is a fermentable six-carbon monosaccharide that
can be utilized for carbon and energy in Saccharomyces cerevisiae. It is also
required for many important mannosylation reactions in the cell. Phenylalanine
degradation pathway has as result to be a source of nitrogen. Valine degradation
is a path to carbon source using amino acid. The superoxide radicals degradation
pathway is a defence mechanism of organisms living in an aerobic environment to
deal with oxidative stress. These metabolic pathways were adopted, because they
are commonly used as benchmarks by competitor methods [34,36,38]. Thus, the
evaluation is straightforward and can be extended to other methods available in
the literature.
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The genes contained in the adopted dataset, in particular each of the path-
ways, as well as the relationships between genes and GO terms were obtained
from the Saccharomyces Genome Database (SGD) [9].

4.2 Methods

The proposed method addresses a new perception to infer the semantic similar-
ity (SS) between GO terms. Unlike other works that do not take into account
the distribution of data and adopt constants, this study proposes a data-driven
method that provide a simplified representation of GO hierarquical structure.
More specifically, it is based on analysing the data itself, without having to
make any assumptions about parameters, which are arbitrarily defined for other
methods [36,38].

The GO reports the current state of knowledge in biology considering three
ontologies: cellular component (CCO), biological process (BPO), and molecular
function (MFO), each one represented by a root ontology term. The structure
of GO can be described in terms of a graph, where each GO term is a node,
and the relationships between the terms are edges between the nodes. GO is
hierarchical, with ‘child’ terms being more specialized than their ‘parent’ terms.

The proposed methodology is based on a power distribution to penalize the
connections between the terms GO, since the greater the number of children
that the parent node has, the less specific is the connection with its children.
This choice is based on the analysis of the distribution of children contained in
the ontology. Figures 1a and 1b show the respective log-log distributions of the
number of descendants with the relations “is a” and “part of” of GO terms and
a power-law distribution, which indicate that the distribution of the number of
children of the GO terms is approximately a power-law.

Fig. 1. Log-log function of the number of children in Gene Ontology compared to the
data distribution described by the power law.

It is important to confirm that the distributions of the number of children of
the ontology and the power law distribution are similar, i.e. they are compara-
ble to each other. Therefore, an experiment was performed in order to evaluate
these distributions. First was obtained the average among the number of chil-
dren from GO, achieving 1.81, which was considered for the power law exponent.
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Thus, the histograms with the probability distributions of: (i) the power law
and (ii) the number of children per GO term were considered. The two-sample
Kolmogorov-Smirnov test [29] was performed, which is a non-parametric method
for comparing two samples. Thus, the two histograms of probability were con-
sidered, in order to verify whether they were statistically different. The p-value
obtained was 0.586, thus being greater than 0.05 of significance, indicating that
is not possible to reject the null hypothesis that the values of the probability
histograms are similar.

Semantic Similarity Between GO Terms. To analyze the similarity between
a pair of GO terms, a graph is built for each GO term that contain all of its
predecessors up to the root of the gene ontology. This step is performed sep-
arately for each of the ontologies: biological process, molecular functions, and
cellular component. With the graphs generated, the first step is to calculate the
weight that each GO term in relation to the information content it carries. In
this step the power law is adopted to define the weight (wc) taking into account
how many children the parent of the term has and also what kind of relation
to the parent term. In this work, the definition of previous works regarding the
semantic weight of relations is adopted, assigning a value of 0.8 for the “is a”
relation and 0.6 for the “part of” relation [36]. Equation 2 defines the semantic
weight of each GO term.

wc = k(ws−1) (2)

where k is the number of children that parent of the GO term has and ws is the
semantic weight.

For each GO term A is defined a semantic value (SA) that measures its
semantic value, this value depends on the weight (wc), as well as the semantic
value of its descendants, as defined by Eq. 3. GO terms, if compared to itself
receive value 1, otherwise the path to the root will be traversed to identify its
semantic value.{

SA(t) = 1 if t = A

SA(t) = Max{wc × SA(t′)|t′ ∈ children(t)} if t �= A
(3)

The semantic similarity between GO terms SGO(A,B) is defined by dividing
their common ancestor semantic values by the sum of all the semantic values of
the GO terms, as defined by the Eq. 4.

SGO(A,B) =

∑
t∈TA∩TB

(SA(t) + SB(t))∑
t∈TA

SA(t) +
∑

t∈TB

SB(t)
(4)

Thus, the semantic content of each GO term is considered by taking into
account the information content of all of its ancestor terms in the GO graph,
i.e. the targets of term A (TA) and term B (TB). The overview of the proposed
methodology for GO term similarity is shown in Fig. 2.
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Fig. 2. Overview of the proposed methodology for GO term similarity.

Semantic Similarity Between Genes. The semantic similarity between pairs
of genes GA and GB is performed by the combination of each GO term of Gene
A (GOA), with all GO terms of Gene B (GOB) and vice-versa, taking into
account the highest similarity value of each combination, as defined by the Eq. 5.
Next, a clustering of the similarity values between the GO terms is performed
by considering the Affinity Propagation algorithm [14]. Therefore, the semantic
similarity between a pair of genes is defined by the maximum of the average
similarity values of the generated clusters.

Sim(GA, GB) = max
GOA∈GAGOB∈GB

SGO(GOA, GOB) (5)

Figure 3 shows the overview of the proposed methodology for the semantic
similarity between genes.

5 Results and Discussion

In order to assess the performance of the proposed method PLAWSS, as well as to
compare its results, some of the principal semantic similarity methods from GO
were considered: GOGO [38], Wang [36] and Resnik [31]. Although the proposed
method is suitable for the estimation of semantic similarity in any of the three
gene ontologies: cellular location, molecular function and biological process, to
perform the experiments, the biological process ontology was considered, which
is commonly adopted by competing methods.
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Fig. 3. Calculation of semantic similarity between genes.

The results were evaluated by considering the semantic similarity of the
expected clusters corresponding to groups of genes that have the same or very
similar functions in each pathway, as presented in Sect. 4.1. An example is the
superoxide radicals degradation, in which one cluster is formed by genes SOD1
and SOD2 and another cluster is formed by genes CTT1 and CTA1. Besides the
superoxide radicals degradation pathway, another four pathways were adopted
to assess the semantic similarity methods.

Table 2 presents the semantic similarities of the proposed method for the
genes in the superoxide radicals degradation pathway, for each gene pair present
in the pathway the semantic similarity is performed, it is expected that genes
that belong to a cluster have higher similarities and genes in different cluster
have lower semantic similarities.

It can be noted that the proposed method produced high semantic similar-
ity values for genes in the same cluster, highlighted in bold, while it produced
lower similarity values for genes from different clusters. The competing methods
produced lower similarity values for genes in the same cluster than the proposed
method. The GOGO and Wang methods produced slightly lower similarity val-
ues for genes from different clusters, while the Resnik method produced a high
similarity value between CTA1 and SOD2 genes which belong to different clus-
ters.

In order to analyse the overall efficiency of each method considering the
adopted metabolic pathways and the respective generated clusters, two indexes
commonly used in cluster analysis and pattern recognition were adopted: Com-
plete Diameter Distance (CDD) and Average Centroid Linkage Distance (ACLD)
[37]. In this way, CCD represents the distance between the most remote samples
belonging to the same cluster, thus it is possible to evaluate how compact the
generated clusters are. On the other hand, ACLD reflects the average distance
between the centroids of generated clusters, making it possible to assess the
distance between the clusters.
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Table 2. Semantic similarity matrix of the adopted methods for the genes in superoxide
radicals degradation pathway.

SOD1 SOD2 CTT1 CTA1

PLAWSS SOD1 1.00 0.78 0.31 0.44

SOD2 0.78 1.00 0.31 0.53

CTT1 0.31 0.31 1.00 0.82

CTA1 0.44 0.53 0.82 1.00

GOGO SOD1 1.00 0.39 0.10 0.21

SOD2 0.39 1.00 0.17 0.45

CTT1 0.10 0.17 1.00 0.45

CTA1 0.21 0.45 0.55 1.00

Wang SOD1 1.00 0.49 0.17 0.31

SOD2 0.49 1.00 0.29 0.51

CTT1 0.17 0.29 1.00 0.61

CTA1 0.31 0.51 0.61 1.00

Resnik SOD1 1.00 0.41 0.21 0.36

SOD2 0.41 1.00 0.36 0.71

CTT1 0.21 0.36 1.00 0.45

CTA1 0.36 0.71 0.45 1.00

All adopted metabolic pathways were evaluated and the semantic similarity
matrices produced. Therefore, the evaluation indexes (CDD and ACLD) of the
clusters produced for each metabolic pathway were performed and can be seen
in Tables 3 and 4.

Table 3. Complete Diameter Distance (CDD) of the adopted methods for the clusters
in mevalonate, mannose degradation, phenylalanine degradation and valine degradation
pathways.

Metabolic pathway PLAWSS GOGO WANG RESNIK

superoxide radicals degradation 0.40 1.07 0.90 1.15

mevalonate pathway 0.79 1.21 0.74 1.58

mannose degradation 0.00 0.31 0.24 0.49

phenylalanine degradation 0.74 0.94 0.75 1.17

valine degradation 0.37 0.69 0.52 1.22

Average 0.46 0.84 0.63 1.12

Regarding the CDD, it is possible to verify that the proposed method pro-
duces more compact clusters for the metabolic pathways mannose degradation,
phenylalanine degradation and valine degradation, with highlight to mannose
degradation with a value of 0, showing that all the genes of each cluster have
semantic similarity equal 1 (maximum) among them.



132 E. Augusto Ito et al.

Table 4. Average Centroid Linkage Distance (ACLD) of the adopted methods for the
clusters in mevalonate, mannose degradation, phenylalanine degradation and valine
degradation pathways.

Metabolic pathway PLAWSS GOGO WANG RESNIK

superoxide radicals degradation 0.50 0.50 0.45 0.31

mevalonate pathway 0.29 0.30 0.08 0.18

mannose degradation 0.84 0.76 0.67 0.47

phenylalanine degradation 0.45 0.46 0.33 0.28

valine degradation 0.49 0.51 0.34 0.31

Average 0.52 0.51 0.37 0.31

Regarding the ACLD, it is possible to verify that the proposed method pro-
duces clusters that are distant from each other, specially for the mannose degra-
dation pathway, with the best result among all the methods, while in the other
pathways it presented results equivalent to the GOGO method.

In summary, considering the average values among the evaluated pathways,
the proposed method showed an average CDD value of 0.46, while the other
methods GOGO (0.84), Wang (0.63) and Resnik (1.12). On the other hand,
considering the mean values of ACLD, the proposed method present 0.52, GOGO
(0.51), Wang (0.37) and Resnik (0.31).

The competing methods produced cluster less compact and closer to each
other, and therefore more susceptible to noise and clustering errors. Therefore,
it was possible to identify that the proposed method produced the best bal-
ance with more compact clusters and with adequate spacing, and therefore more
assertive and less susceptible to noise and clustering errors.

6 Conclusion

Approaches to measure the similarity and semantic relationship between terms
can provide semantic context needed for the identification and characterisation
of relationships, with special emphasis on problems in bioinformatics, which
present a large amount of data to be analysed and better understood.

Currently, there are several methods that address this context, but without
considering the distribution of the data, which leads to imposing arbitrarily
defined parameters and the use of parametric distributions. This work presents
a new data-driven method to perform semantic similarity from GO.

Five metabolic pathways of Saccharomyces cerevisiae commonly used by
similar methods in the literature were adopted for evaluation of the proposed
method. Some of the principal methods of semantic similarity estimation were
considered for comparison of the results, such as GOGO, Wang and Resnik. The
results showed that the proposed method is suitable and functional for semantic
similarity estimation in all metabolic pathways adopted. In addition, the gener-
ated clusters were analysed in terms of indices for the evaluation of compactness
and distance between the generated clusters.
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The proposed method produced, on average, the most compact clusters
among all methods and with a suitable distance between them, leading to more
adequate and assertive clusters and less susceptible to clustering errors.
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Abstract. Gene Regulatory Networks inference from gene expression
data is an important problem in systems biology field, involving the
estimation of gene-gene indirect dependencies and the regulatory func-
tions among these interactions to provide a model that explains the gene
expression dataset. The main goal is to comprehend the global molecular
mechanisms underlying diseases for the development of medical treat-
ments and drugs. However, such a problem is considered an open prob-
lem, since it is difficult to obtain a satisfactory estimation of the depen-
dencies given a very limited number of samples subject to experimental
noises. Many gene networks inference methods exist in the literature,
where some of them use heuristics or model based algorithms to find
interesting networks that explain the data by codifying whole networks
as solutions. However, in general, these models are slow, not scalable to
real sized networks (thousands of genes), or require many parameters,
the knowledge from an specialist or a large number of samples to be
feasible. Reinforcement Learning is an adaptable goal oriented approach
that does not require large labeled datasets and many parameters; can
give good quality solutions in a feasible execution time; and can work
automatically without the need of a specialist for a long time. There-
fore, we here propose a way to adapt Reinforcement Learning to the
Gene Regulatory Networks inference domain in order to get networks
with quality comparable to one achieved by exhaustive search, but in
much smaller execution time. Our experimental evaluation shows that
our proposal is promising in learning and successfully finding good solu-
tions across different tasks automatically in a reasonable time. However,
scalabilty to networks with thousands of genes remains as limitation of
our RL approach due to excessive memory consuming, although we fore-
see some possible improvements that could deal with this limitation in
future versions of our proposed method.
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1 Introduction

Systems Biology (SB) is an interdisciplinary research field that focuses on the
study of complex networks of molecular interactions existing in live organisms
[27]. The functioning of an organism depends on several metabolic pathways
regulated by gene expression networks. The development of techniques such as
DNA Microarrays [24], SAGE [29], RNA-Seq [30], and Single-Cell RNA-Seq [12]
enabled the expression level (mRNA concentrations) measurement of thousands
of genes simultaneously and in several experiments (usually patients, treatments
or timepoints). Thus, several methods for analyzing the topology and dynamical
evolution of the gene expression levels have been proposed, with the goal of
reverse engineering the regulatory control mechanisms [14,33]. Currently, the
Gene Regulatory Networks (GRN) inference problem is attracting the attention
of many researchers, mainly because of the enormous volume of gene expression
data generated for many species and specific conditions. Nevertheless, the GRN
inferenceis still an open problem.

A common problem presented by gene expression analysis is the huge number
of genes (variables) with just a few dozens of samples (experiments), demanding
then the development of statistical and computational methods to alleviate the
estimation error committed in the presence of small number of samples and high
dimensionality. Other factors that contribute to the difficulty of this task are
associated to the large degree of imprecision inherent to the gene expression
measurements (noisy data), the large complexity of inter-relationship networks,
and lack of prior information about many biological organisms [14,20].

There are two main approaches to model the complex networks of gene inter-
actions: continuous and discrete. The continuous approach uses differential equa-
tions to reach a quantitative detailed model of biochemical networks with cellular
functions [9]. There is also a discrete approach, where it is based on the con-
struction of qualitative discrete models of gene interactions, including the models
based on graphs like Boolean Networks (BNs) [17] and its variation, the Proba-
bilistic Boolean Networks (PBNs) [25]. The continuous approaches can provide
a more detailed comprehension of the considered system, but they require a
significant number of samples and information about the characteristics of the
reactions, which is rare and difficult to have [14,20].

In the context of discrete models, BNs represent an appropriate model to
generalize and capture the global behavior of biological systems, especially when
the number of samples available is limited and the dimensionality (number of
variables) is large [17]. Such model performs a data quantization, which makes
the BN model simpler to work and to adapt [11].

Many gene networks inference methods modeled as BN were proposed in
the literature, usually performing Exhaustive Search (ES) with a given size of
regulators (predictors) set per target gene over the state transition matrix of
quantized gene expression data [1,3,18,22]. Some other approaches, use heuris-
tics or model based algorithms to find interesting networks that explain the
data by codifying whole networks as solutions [16,23]. But, these methods are
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not scalable to real-sized networks with thousands of genes and usually require
tuning of many parameters, the knowledge from an specialist, or large number
of samples to become feasible.

RL [28] is an approach that allows agents to learn autonomously through
interactions with an environment. In RL, an action that affects the environment
is chosen by the agent, then the agent observes how much that action helped
to the task completion through a reward function. An agent can learn how to
optimally solves tasks by executing this process multiple times autonomously.

In order to learn with few parameters, fast and automatically, many decision
problems such as GRN inference, might be modeled by a Markov Decision Pro-
cess (MDP) [28], and RL is an extensively used solution for MDPs. Hence, in
this work we propose a GRN inference method using RL, consisting in applying
RL algorithms per each target gene independently aiming at obtaining the best
predictor set (a single, a pair, a triple or as many predictors the target gene can
have). To the best of our knowledge, our proposal is novel, since there is no RL
method fully adapted to the GRN inference domain.

With the objective of analyzing the results of the proposed method, experi-
ments involving artificial Boolean networks generated by the Erdös-Renyi ran-
dom complex network model [13] were performed. We compared the proposed
RL method with the traditional ES algorithm that searches for pairs or triples
of predictors per target. RL shows promise given the quality of the networks
achieved, but with much less exploration of the search space, consequently lead-
ing to much smaller execution times.

2 Foundations

In this section we introduce the relevant basic concepts and works involving
the Boolean Networks (BN) model for Gene Regulatory Networks (GRN) and
Reinforcement Learning (RL).

2.1 Boolean Networks Inference

Genes can indirectly interact with each other, mainly by means of the interaction
of part of their generated proteins, which can activate or inactivate the gene
transcription (expression) of mRNAs responsible for producing proteins. This
process is known as a GRN, which can be represented as a directed graph with
genes as nodes and interactions as edges, in which a source node promotes or
inhibits the activity (expression) level of a target node [6].

A BN is a model proposed for the study of complex systems dynamics, and
of GRNs in particular [17]. In a Boolean Network, a set of n Boolean variables is
represented by a set V = {v1, v2, . . . , vn} of vertices in a graph, while the other
component of a BN is a set of Boolean transition functions Φ = {φ1, φ2, . . . , φn},
each function corresponding to one vertex [10]. In GRNs modeling, each vertex
vi is associated with a certain gene, thus we will refer to vi as either a gene or a
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vertex, indistinctly. Each gene vi ∈ {0, 1}, i = 1, 2, ..., n represents a binary vari-
able for which its value in the next time instant t+1 is completely determined by
the values of its ki predictor genes in the current time instant t. More concretely,
these dynamics can be represented by vi(t + 1) = fi(v1i(t), v2i(t), ..., vki(t)), in
which v1i, v2i, ..., vki represents the ki predictor (or regulatory) genes that influ-
ence the target gene vi.

Although BN variables present only two possible values, the BNs inference
is still considered an open problem due to the well known curse of dimension-
ality. An approach that deals with this problem with a certain success is the
Probabilistic Gene Networks (PGN), which provides some biologically sound
simplifications to the inference process, allowing the application of a local fea-
ture selection for each target to look for the best gene subset which predicts
the behavior of a given target gene [3,15,16,19], by assuming conditional inde-
pendence, among other simplification assumptions. The general PGN inference
process can be described as follows:

1. Take as input a gene expression matrix, the index of the considered target
gene, and a criterion function

2. For each considered subset of predictor genes (predictor subset):
- A table of joint probabilities (or just countings) among the possible instances

(0 or 1) of the target gene and the possible instances (all combinations of
bits) of the predictor subset

- A criterion function is applied to the table filled in the previous step and
assigned to the considered predictor subset

3. Return the candidate predictor subsets ordered by the adopted criterion func-
tion values

The procedure described above is generic and can be described by efficient
heuristic greedy algorithms, although they do not guarantee optimality [2,20,21].
On the other hand, the ES is the only search which guarantees optimality [7], but
it is a prohibitely costly combinatorial process, only feasible considering pairs or
triples of predictor subsets, since the number of genes is usually in the order of
thousands. So our proposal is to apply for the first time the RL framework as a
sound solution to infer BNs approached as PGNs.

2.2 Reinforcement Learning

The RL framework [28] allows autonomous agents to learn through interactions
in the environment. Many sequential decision problems (as the Boolean Networks
problems), can be modeled by a Markov Decision Process (MDP) [28], and RL
is an extensively used solution for MDPs driven by environment interactions. An
MDP is described by the tuple 〈S,A, T,R〉, where S is the set of environment
states, A is the set of available actions, T is the transition function, and R
is the reward function (the agent does not know T and R). The goal of the
agent in an MDP is to learn an optimal policy π* that maps each state to the
actions that lead the agent to the highest expected cumulative sum of rewards
over the lifetime of the agent.
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As the output from the transition and reward functions cannot be predicted
in learning problems, the MDP can be solved through interactions with the
environment, which can be accomplished, for instance, by the Q-Learning
algorithm [31]. Q-Learning iteratively learns a Q-value, aiming at estimat-
ing the cumulative discounted reward associated with each state-action pair:
Q : S × A → R. At each decision step, Q is updated following: Qt+1(st, at) =
(1 − α)Qt(st, at) + α[rt+1 + γmax

a
Qt(st+1, a)]. Q-Learning eventually converges

to the optimal Q function: Q∗(s, a) = E
[∑∞

i=0 γiri
]
, and Q∗ can be used to

define an optimal policy as: π∗(s) = arg maxa Q∗(s, a).
SARSA algorithm is another approach that expands RL to State, Action,

Reward, State, Action, and is an on-policy value-based approach. As a form of
value iteration, it needs a value update rule [28].

In SARSA, at each decision step, Q is updated following:
Q(st, at) = Q(at, at) + α(rt + γ(Q(st+1, at+1) − Qt(st, at)).
The Q-value update rule is mainly what distinguishes SARSA from Q-

learning. In SARSA the time difference value is calculated using the current
state-action combo and the next state-action combo. This means we need to
know the next action our policy takes in order to perform an update step. This
makes SARSA an on-policy algorithm as it is updated based on the current
choices of our policy.

Q-learning differs from SARSA in its update rule by assuming the use of the
optimal policy. The use of the maxa function over the available actions makes the
Q-learning algorithm an off-policy approach. This is because the policy we are
updating differs in behavior from the policy we use to explore the world, which
uses an exploration parameter ε to choose between the best identified action and
a random choice of action. In this work we tested both of them in order to check
the influence of the situations and parameters aforementioned.

However, it is important to highlight that the standard Q-Learning, SARSA
and classical RL techniques might be inefficient in environments with large state
spaces and some adaptations and tuning must be done in order to scale and
accelerate these approaches depending on the problem we are dealing with.

3 Using RL to Infer GRNs

As the Exhaustive Search (ES) for Gene Regulatory Networks (GRN) inference
requires constraining the search space of the possible gene predictor subsets
to pairs or triples to be feasible, resulting in optimal subsets from this con-
strained search space, we here propose a GRN inference method by using RL, in
order to make the learning process automatic, in a less constrained search space,
faster, and making the use of just a few parameters. It consists in simulating
the behaviour of BNs, modeling them as an MDP. The method takes as input
a temporal binary gene expression data matrix (genes in rows and timepoints
in columns), then selects a target gene and derive a counting table per explored
predictor subset from the input matrix. A counting table is a matrix with the
rows representing all possible instances (bit strings) of a predictor subset, the
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columns meaning the two possible values of the target (0 or 1), and each cell
(i, j), where i is the decimal corresponding to a given instance (bit string) and
j ∈ {0, 1}, stores the number of observations of the target being in the state j
in a given timepoint and the predictor subset being in a given state, encoded
by a bit string whose conversion from binary to decimal is i, in the previous
timepoint.

For each explored predictor subset, the RL algorithm reward (R) is based
on the sum of the minimum number of occurrences of the target being 0 or 1
per counting table row (predictor subset instance), which is analogous to the
number of times a Bayesian classifier misses the correct target values based on
the possible instances (states) of the candidate predictor subset. From now on,
for the sake of simplicity, we call this sum as ”error”. So we can apply RL
algorithms such as Qlearning and SARSA for each target gene independently
aiming at obtaining the best predictor subset for each target gene (an empty
subset, a single, a pair, a triple, or as many predictors the target gene can have),
i.e., the subset with minimum error. This is possible by assuming conditional
independence, a PGN simplification assumption (see Sect. 2.1).

Using RL for inference of GRNs implies in considering all the predictors and
target genes as the State Space, where a state S is one target gene plus a set of
selected predictors used to construct a counting table of occurrences of 0’s and
1’s. An action is the choice of this predictor, where all predictors are part of the
set of actions A. Here we also included an special action to allow the agent to
stop and finish the episode and not to get stuck in a maximum or minimum
local. The transition function is considered always to work as deterministic,
with T = 1.0, not giving any chance to perform other than the right action. And
finally, the reward R the agent receives is the difference between the error of the
last step and the error of the current step.

Algorithm 1 summarizes our approach. It initially requires a list of predic-
tors, target gene and a gene expression data matrix. Then, we set the error as
the highest possible. After that, for a numberOfEpisodes it repeats the learning
process. During the learning process (lines 4-13), the agent selects actions (pre-
dictors available) and remove them from the set of possible actions for the next
step to avoid selecting more than once in the same episode/run. The counting
table error then is calculated, but here we have a special action, which stops
and ends the episode when selected, so the agent does not construct all possible
counting tables during the episodes. Finally, the algorithm returns the best set
of predictors (with the minimum error found) for each target gene.

4 Experimental Results

All experiments were performed in a regular PC desktop with an Intel(R) Core
(TM) i7-7700 CPU (3.6GHz), 16GB RAM DDR3.

The methods were executed 10 times per experiment. A given experiment
takes as input 10 gene expression data matrices, each one starting from a dis-
tinct randomly chosen initial state. Such gene expression data matrices were
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generated from a randomly generated artificial Boolean network, assuming ran-
dom topology (Erdös-Renyi complex network model [13]) and average degree
(number of predictors per target) equal to 2.

Algorithm 1 RL for GRN Inference
Require: list of possible predictor genes, target genes, and gene expression data
1: while episode < numberOfEpisodes do
2: state = []
3: lastError = ∞
4: while action ! = stop do
5: select action action using RL algorithm
6: state.append(action)
7: predictorsByEpisode.append(action)
8: remove selected action from predictors to select
9: newError = Counting table error of predictors in state

10: reward = lastError - newError
11: update RL algorithm according to last state, reward, and action
12: lastError = newError
13: end while
14: end while
15: return the best set of predictors found

In order to check the efficiency of our proposal, we executed 3 experiments
comparing the performance of RL algorithms with the ES: 1) 20 genes and
20 timepoints, 2) 20 genes and 50 timepoints, and 3) 50 genes and
50 timepoints. In all experiments, the agent started in a random initial state,
where the set of states S contains all predictors the algorithm can select for each
target, and the actions A are the predictors choices or the special action to ”stop”
and end the episode, where the RL algorithms can choose to stop the episode at
any time (randomly). We evaluated error (considered as our reward by the RL
algorithms) starting with ∞. The experiments 1 and 2 were performed over 100
episodes and the experiment 3 over 300 episodes. We adopted the following RL
parameters: α = 0.2, γ = 0.9 and ε = 0.2.

4.1 GRN with 20 Genes and 20 Timepoints

In this experiment, we evaluated our proposal in 10 gene expression data matri-
ces, each one containing 20 genes and 20 time samples (timepoints). Here, the
RL algorithms could learn really fast in terms of number of episodes, where the
execution time varies according to the choices done by the algorithm. Figure 1
shows that Qlearning performed slightly better than SARSA. The mean error at
the end of the experiments was about 0.5 (considering 10 executions on distinct
gene expression data matrices). The minimum error obtained was zero for both
Exhaustive Search and RL, but RL could find the minimum error after analyzing
508 predictor subsets, while ES had to analyze all triples (combination of 20, 3
to 3 = 1,140 triples).
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4.2 GRN with 20 Genes and 50 Timepoints

In this experiment, we evaluated our proposal in 10 gene expression data matri-
ces, each one containing 20 genes and 50 time samples (timepoints). Here, the RL
algorithms took a little more episodes to run (where the time varies according to
the choices done by the algorithm) compared to the previous experiments, but
still needed less than 100 episodes. Figure 2 shows that Qlearning still performed
slightly better than SARSA. The mean error at the end of the experiments was
about 5.5 (considering 10 executions on distinct gene expression data matrices).
The minimum error obtained was 5.0 for both Exhaustive Search and RL, but
RL could find the minimum error after analyzing 942 predictor subsets, while
ES had to analyze all triples (combination of 20, 3 to 3 = 1,140 triples).

Fig. 1. The mean reward for the 10 gene expression datasets with 20 genes and 20
samples (timepoints) over 100 episodes during the learning process.

4.3 GRN with 50 Genes and 50 Timepoints

In this experiment, we evaluated our proposal in 10 gene expression data matri-
ces, each one containing 50 genes and 50 time samples (timepoints). Differently
from the previous experiments, SARSA performed slightly better than QLearn-
ing, as shown in Fig. 3. The mean error at the end of the experiments was about
10.0 (considering 10 executions on distinct gene expression data matrices). The
minimum error obtained was 8.0 for both Exhaustive Search and RL, but RL
could find the minimum error after analyzing 10,421 predictor subsets, while ES
had to analyze all triples (combination of 50, 3 to 3 = 19,600 triples).
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5 Discussion

First, it is important to notice the challenge of limited number of samples, which
is the case for most gene expression data samples available. The lack of samples
leads to non-observed or poorly observed predictor instances. This leads the

Fig. 2. The mean reward for the 10 gene expression datasets with 20 genes and 50
samples (timepoints) over 100 episodes during the learning process.

Fig. 3. The mean reward for the 10 gene expression datasets with 50 genes and 50
samples (timepoints) over 300 episodes during the learning process.
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error to be almost 0, which could be misleading, since the estimation of the joint
probability distributions between the target and the candidate predictor subsets
is problematic.

The ES presents the best possible result under the significant search space
constrained when considering only subsets with three predictors (triples), while
both RL algorithms were able to achieve almost the same results as the ES (the
optimal ones for that particular number of predictors), without constraining the
search space and taking only a fraction of computing time to find the best solu-
tion. As the ES is feasible for pairs or triples of predictors at most, considering
real sized networks (with thousands of genes), RL has potential to achieve even
better results, since it could retrieve more than 3 predictors per gene. But due to
the drawback of excessive memory consuming by our first attempt of implemen-
tation of the RLs adapted to GRN inference domain, we still could not consider
larger networks, so scalability of RLs remains to be demonstrated in further
memory efficient implementations.

Qlearning showed better performance than SARSA for smaller networks (20
genes), but the opposite happened for larger networks (50 genes). Despite scala-
bility challenges, especially regarding excessive memory consuming, we note that
both of them are promising and can provide as good results as the ES with few
steps and in less time. With some better adaptation of these RL methods to
the GRN inference domain, they can be useful for real-sized networks, as they
showed their potential to deal with ”real world” problems [4,8,32].

6 Conclusion

Reinforcement Learning (RL) is a powerful learning paradigm with many poten-
tial uses and applications, including GRN inference, a poorly explored domain
as far as we know. The first implementation attempt of QLearning and SARSA
algorithms for GRN inference provided here shows promigins, but still presents
excessive memory consumption which leads to scalability limitations. The pre-
vious knowledge the agent has and the way in which it perceives its expected
future rewards influences how it learns and the final policy it achieves. Besides,
more knowledge about the environment and more samples lead to faster learning
process. If an agent acts with a stochastic policy, it will be more uncertain about
rewards and choose a safer path. On the other hand, an agent that uses just a
greedy approach, expects to always select the best action and will take more
direct and riskier actions. Understanding these limitations and sensitivity of RL
algorithms for GRN inference is key to comprehend how to properly implement
them to deal with real-sized networks.

For further works, other approaches, algorithms and metrics can be explored,
including not only information about the topology, but also some information
about the dynamics generated by the networks. Other RL apporaches include
Options [4], Multiobjective [5] or Multiagent Reinforcement Learning [26], which
might accelerate the learning process and also can give weights according to the
importance of some genes in the networks. It could be done by selecting the
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priority genes in a network, and then the RL algorithms would incorporate infor-
mation about it. Another benefit is that these approaches can split the learning
process in smaller parts and learn various parts of the problem simultaneously.
This could alleviate the memory consuming, leading to better scalability.
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Abstract. Various processes, including growth, proliferation, migra-
tion, and death, mediate the activity of a cell. To better understand
these processes, dynamic modeling can be a helpful tool. First-principle
modeling provides interpretability, while data-driven modeling can offer
predictive performance using models such as neural network, however at
the expense of the understanding of the underlying biological processes.
A hybrid model that combines both approaches might mitigate the lim-
itations of each of them alone; nevertheless, to this end one needs to
tackle issues such as model calibration and identifiability. In this paper,
we report a methodology to address these challenges that makes use of a
universal differential equation (UDE)-based hybrid modeling, were a par-
tially known, ODE-based, first-principle model is combined with a feed-
forward neural network-based, data-driven model. We used a synthetic
signaling network composed of 38 chemical species and 51 reactions to
generate simulated time series for those species, and then defined twelve
of those reactions as a partially known first-principle model. A UDE
system was defined with this latter and it was calibrated with the data
simulated with the whole network. Initial results showed that this app-
roach could identify the missing communication of the partially-known
first-principle model with the remainder of the network. Therefore, we
expect that this type of hybrid modeling might become a powerful tool to
assist in the investigation of underlying mechanisms in cellular systems.

Keywords: Scientific Machine Learning · First-principle Modeling ·
Universal Differential Equation · Inverse Problem · Cell Signaling
Pathway

1 Introduction

The activity of a cell is mediated by various processes such as growth, prolifer-
ation, migration, death, and others. These processes are orchestrated by mes-
sages transmitted through the so-called cell signaling pathways. Such pathways
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are composed of a cascade of chemical reactions (e.g., enzymatic reactions) in
which products of one reaction are used as substrates for another. A healthy
cell requires its cellular processes to be adequately orchestrated. Dysregulations
in cell signaling pathways are involved in the pathophysiology of many diseases,
including cancer [8,9].

Cell signaling pathways are non-linear systems whose dynamics depends on
concentration changes of the involved chemical species (e.g., proteins) over a
given period. Due to the intrinsic non-linearity of those systems, human intuition
is not enough to infer the behavior of a particular signaling pathway when its
initial conditions are modified (i.e., how a specific signaling pathway behaves
from different cellular stimuli, such as the addition of different compounds to
the cell culture). Therefore, mathematical modeling of cell signaling pathways
is an important tool in studying the mechanisms behind cellular processes. Two
widely used approaches for modeling of cell signaling pathways are first-principle
and data-driven.

First-principle modeling involves describing signaling pathways based on the
underlying physical-chemical principles of their activity. In this approach, ordi-
nary differential equations (ODEs) describe the signaling pathways where each
ODE translates into how the involved chemical species are consumed or pro-
duced in terms of kinetic laws [5,18]. First-principle modeling offers the benefit
of interpretability since it explicitly correlates the input and outputs by employ-
ing the laws of chemical kinetics. On the other hand, just a small set of reactions
and chemical species can be modeled since the degree of freedom of the model
increases as the number of components in the model increases (e.g., the num-
ber of reactions and chemical species). Furthermore, sometimes one only par-
tially knows the underlying cellular process mechanism, making it challenging
to develop a precise first-principle model [1,5,13].

Data-driven modeling employs machine learning techniques to predict the
behavior of a signaling pathway from experimental measurements of chemical
species present in the cell. Opposite to the first-principle modeling, data-driven
modeling relies solely on produced data. Among the techniques commonly used
for this purpose are linear models, tree-based models, neural networks, and
ensemble methods, with varied results [6]. Data-driven models are often less
interpretable than first-principle ones, especially when one uses more powerful
and complex models such as neural networks.

Therefore, it would be interesting to combine the interpretability of first-
principle modeling with the power of data-driven modeling. To this end, one
approach is to construct a hybrid model where the first-principle and data-driven
models are integrated for modeling of cell signaling pathways. More precisely,
the first-principle model is used to express what is known about the underlying
process, whereas the data-driven model is employed to learn what is missing
from the first-principle model [12,13]. However, even when the first-principle
model has its parameters completely identified, the associated data-driven model
still has to be learned (e.g., weights values in a neural network). Moreover, the
identifiability of such hybrid model is still underexplored in the context of cell
signaling pathways.
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This work aims to explore the identifiability of the data-driven part of hybrid
models of cell signaling pathways. This paper consists of five sections, includ-
ing this introduction. Section 2 is dedicated to discuss the related works within
the context of our own work. In Sect. 3, we describe the proposed methodol-
ogy, including the presentation of the used toy model, and also the experimen-
tal setup. In Sect. 4, we present the initial results obtained with the proposed
methodology. Finally, In Sect. 5, we summarize the findings of this paper and
outline the next steps of this research.

2 Related Works

One of the first approaches to deal with the intrinsic incompleteness of signal-
ing pathways modeled by ODEs was proposed in 2017 by Engelhardt and col-
leagues [4]. In that work, the authors proposed a Bayesian approach to estimate
latent variables that would be missing from the system. However, the proposed
method, called BDEN, only uses information from proteins present in the first-
principle part of the model and does not allow the incorporation of existing prior
information for the remainder of the cell [4]. To address the limitations of signal-
ing pathways modeled only with ODEs, in 2021 Glass and colleagues proposed
the usage of delay differential equations, with promising results [7]. Another pur-
sued path is data-driven modeling, using machine learning; for instance, in 2021,
Gabor and colleagues described the outcome of a competition in which differ-
ent machine learning techniques (linear models, decision trees, neural networks,
ensemble methods, among others) were applied to large-scale experimental data
produced for different human breast cancer cell lines subjected to different treat-
ments, achieving different levels of performance [6].

There has been growing interest in a hybrid modeling approach combining
first-principle models with data-driven models in recent years. One example is
the development of a hybrid model in 2020, which aimed to model a signaling
pathway that was only partially observed in the network [12]; however, the design
of such a model is overly complicated and with some ad hoc procedures [12]. In
2021, a mathematical object called Universal Differential Equations (UDEs) was
introduced, which is a tool for coupling mathematical descriptions of natural laws
with data-driven machine learning approaches [17]. UDEs were used by Bangi
and colleagues in 2022 for the modeling of beta-carotene production using yeast,
with superior performance in comparison to the classical approach [3]. More
recently, in 2023, Santana and colleagues discussed using a hybrid modeling
approach to model the sorption uptake kinetics systematically and efficiently,
which resulted in a well-fitted hybrid model. In the end, sparsed and symbolic
regression was used to reconstruct the sorption uptake kinetics showing that the
proposed approach holds promising potential to discover sorption kinetic law
structures [19].
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3 Methodology

The methodology of this work consists in the usage of a synthetic model that
represents a complete first-principle model of a cell signaling network, composed
of 38 chemical species and 51 chemical reactions (Fig. 1). That model is complete
in the sense that the model is an isolated system. We use that model to gener-
ate a large amount of time series data of chemical species that belongs to that
system. In the sequence, we choose a subset composed of twelve chemical reac-
tions of that system to represent a cell signaling pathway (Fig. 1, in blue), whose
communication with the remainder of the network will be inferred using the
produced data and a hybrid model (i.e., a model that combines a first-principle
model with a data-driven model).

Fig. 1. Diagram in Systems Biology Graphical Notation (SBGN) [2,11] presenting
the synthetic cell signaling network used in this work. Nodes and edges represent,
respectively, chemical species (e.g., proteins) and reactions. The sets of blue and purple
nodes symbolize, respectively, a cell signaling pathway and species outside of that
pathway.

The first-principle model of the cell signaling pathway (subset of the complete
signaling network, nodes in blue in Fig. 1) has the following set of reactions:

X1 + X2

kf1−−⇀↽−−
kr1

X1X2

kcat1−−−→ X1 + X3 (1a)

X3 + X4

kf2−−⇀↽−−
kr2

X3X4

kcat2−−−→ X3 + X5 (1b)

X3 + X5

kf3−−⇀↽−−
kr3

X3X5

kcat3−−−→ X3 + X6 (1c)
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X2 + X6

kf4−−⇀↽−−
kr4

X2X6

kcat4−−−→ X6 + X7. (1d)

Those reactions were then transcribed to a set of ordinary differential equations.
For each chemical species, an ODE was defined by the inclusion of terms that
describes its production or consumption in a given first or second-order reaction.
For instance, X1 is consumed in a second-order reaction and is produced in two
first-order reaction (Eq. 1a), thus resulting the following ODE:

d[X1](t)
dt

= kcat1 [X1X2] + kr1 [X1X2] − kf1 [X1][X2]. (2)

ODEs for the other species were generated in the same way, thus yielding the
following ODE system:

d[X1](t)
dt

= kcat1 [X1X2] + kr1 [X1X2] − kf1 [X1][X2] (3a)

d[X2](t)
dt

= kr1 [X1X2] − kf1 [X1][X2] − kf4 [X2][X6] (3b)

d[X1X2](t)
dt

= kf1 [X1][X2] − kr1 [X1X2] − kcat1 [X1X2] (3c)

d[X3](t)
dt

= kr2 [X3X4] + kr3 [X3X5] + kcat2 [X3X4] + kcat3 [X3X5]

− kf3 [X3][X5] − kf2 [X3][X4]
(3d)

d[X4](t)
dt

= kr2 [X3X4] − kf2 [X3][X4] (3e)

d[X3X4](t)
dt

= kf2 [X3][X4] − kr2 [X3X4] − kcat2 [X3X4] (3f)

d[X3X5](t)
dt

= kf3 [X3][X5] − kr3 [X3X5] − kcat3 [X3X5] (3g)

d[X5](t)
dt

= kr3 [X3X5] − kf3 [X3][X5] (3h)

d[X6](t)
dt

= kr4 [X2X6] − kf4 [X2][X6] + kcat4 [X2X6] (3i)

d[X5X6](t)
dt

= kf4 [X2][X6] − kr4 [X2X6] − kcat4 [X2X6] (3j)

d[X7](t)
dt

= kcat4 [X2X6]. (3k)

To conduct the experiments, we assumed that all rate constants of the first-
principle model are known (Table 1). These constants were carefully selected to
ensure the generation of diverse and comprehensive data. To achieve this, we
systematically simulated the model with various rate constants, evaluating and
selecting those that best met the criteria.

Using synthetic data instead of real measured data is justified due to its abil-
ity to generate diverse data with different conditions and its lack of limitations
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and constraints associated with real data collection, such as experimental uncer-
tainties, limited number of samples, and noise. Synthetic data provides flexibility
in assessing the identifiability of hybrid modeling in inferring missing signals in
cell signaling pathway models. However, future work should include employing
the methodology with real measured data, thereby further enhancing the validity
and applicability of the findings.

Table 1. Rate constants values used to parameterize the first-principle model of the
cell signaling pathway. This set of parameters corresponds to θ in Eq. 4.

kf1 kr1 kcat1

0.0150 0.1000 0.0030

kf2 kr2 kcat2

0.0990 0.1150 0.0850

kf3 kr3 kcat3

0.0890 0.0500 0.1500

kf4 kr4 kcat4

0.2500 0.4325 0.0150

3.1 Hybrid Model

Modeling a cell signaling pathway using an ODE-based, first-principle model
does not take into account the communication with the remainder of the com-
plete network. This can lead to a model whose dynamics diverges from the actual
cell signaling pathway, since it would be modeled as it was an isolated system,
which is not the case. Therefore we tackle this problem using a hybrid model,
namely with a set of universal differential equations (UDEs) [17]. UDEs combine
an ODE-based, first-principle model with a data-driven model (a feedforward
neural network):

ẋ = fθ (x) + Uw(x), (4)

where the f : Rn
≥0 → R

n
≥0 is a function parametrized by θ that maps a vector

of species concentration x to another vector of same type, and U is a neural
network with weight vector w. In the case of our hybrid model, f is defined
using the ODE system of Eq. 3a–3k.

For our experiments, the neural network U in Eq. 4 was set with an input
layer with eleven nodes, one hidden layer with seven nodes, an output layer
with seven nodes (we assume that four species are not produced throughout
the experiment). The sigmoid was used as the activation function in the hid-
den layer. The hybrid model was implemented using the Scientific Machine
Learning Ecosystem [14–16], which is coded in Julia. The source code of our
experiments is open and free, under the MIT license, and can be accessed at
github.com/Dynamic-Systems-Biology/BSB-2023-Hybrid-modeling.

https://github.com/Dynamic-Systems-Biology/BSB-2023-Hybrid-modeling
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3.2 Model Training and Assessment

The model described in Fig. 1 was simulated 30 times; for each simulation, the
initial condition vector was sampled from a uniform distribution on the interval
[0, 13); the considered sampled initial conditions are showed in Tables 2, 3 and 4.
Finally, those produced time series were split into training, validation and test
sets of equal size. The parameter vector w was optimized with three runs using
the ADAM optimizer [10] with the sequence of learning rates (0.1, 0.05, 0.001).
After that, the BFGS optimizer was used [20]. The validation set was used to
make the early stopping decision to avoid overfitting. The criterion to employ the
early stopping was to verify whether the loss value calculated on the validation
set increased after 100 iterations. The loss function was defined as:

�(X̂,X,w) =
1
N

I∑

i=1

J∑

j=1

|X̂ij − Xij | + λ

W∑

k=0

w2
k, (5)

where N is the number of data points, X (X̂) is a I × J (11 × 101) matrix
containing the simulated (predicted) time series for each chemical species, and
w is the U parameter vector. The regularization constant λ was chosen to be
10−3. To evaluate the robustness of the hybrid model, we used the mean absolute
error (MAE):

MAE(X̂,X) =
1
N

I∑

i=1

J∑

j=1

|X̂ij − Xij |, (6)

and also the symmetric mean absolute percentage error (SMAPE):

SMAPE(X̂,X) =
100
N

I∑

i=1

J∑

j=1

|X̂ij − Xij |
X̂ij + Xij

. (7)

For both metrics above, a lower value indicates better model performance, with
zero being an optimal performance.

Table 2. Initial conditions vectors used to generate the training dataset. The values
are truncated to three decimal digits.

u1
0 2.923 3.742 1.352 6.184 5.416 6.778 11.810 1.336 8.715 9.820 8.437

u2
0 3.160 4.733 0.855 5.329 7.089 4.357 7.383 10.642 2.872 2.016 5.657

u3
0 10.552 12.849 10.499 12.611 1.820 6.622 0.763 0.055 12.670 7.243 6.037

u4
0 8.841 11.367 12.012 12.081 8.128 9.584 3.475 10.458 5.764 9.520 5.055

u5
0 9.580 2.852 4.642 9.367 7.467 5.073 4.058 9.638 10.744 12.921 6.366

u6
0 9.511 9.252 0.684 9.550 8.362 12.869 10.673 6.421 8.312 4.092 6.363

u7
0 9.049 1.887 9.212 0.786 11.772 11.929 1.471 4.334 7.313 0.851 5.030

u8
0 11.886 7.346 10.572 2.916 3.579 4.668 9.483 4.105 10.673 1.891 12.930

u9
0 0.749 7.558 9.563 3.703 8.415 6.052 3.767 6.930 6.409 2.828 8.028

u10
0 1.463 4.788 4.477 0.736 1.570 2.334 4.963 10.596 3.148 10.657 8.709
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4 Results

During the training of the hybrid model, the loss function was plotted to com-
pare how it behaves in the training and in the validation datasets. As shown in
Fig. 2, the chosen parameters resulted in the loss function value of 54.91 on the
validation dataset.

To assess how the predictions from the model varied for each initial condition
across the datasets, we computed the SMAPE and MAE values for each initial
condition in the training, validation and test sets (Tables 5 and 6). The minimum
SMAPE and MAE values on the test dataset were 12.74 and 2.10, respectively,
while the maximum values were 33.24 and 6.64.

We also evaluated the performance of a partially known first-principle model
without a data-driven component, that is, an implementation of the ODE system
of Eq. 3a–3k. We used that model to generate simulations with the initial con-
ditions of the 10 test time series and then calculated SMAPE and MAE values
(Tables 5 and 6).

Table 3. Initial conditions vectors used to generate the validation dataset. The values
are truncated to three decimal digits.

u1
0 6.850 12.970 7.162 10.430 9.818 0.939 11.753 2.702 5.651 6.048 11.895

u2
0 7.568 12.695 5.476 6.402 10.944 8.996 5.366 8.677 10.458 0.291 8.746

u3
0 11.454 4.197 3.840 8.014 5.317 12.370 7.010 11.929 12.444 11.511 7.423

u4
0 2.331 11.425 4.955 6.098 4.924 6.174 11.739 11.432 3.773 11.092 2.302

u5
0 0.294 12.573 11.047 1.981 1.970 3.625 2.695 5.588 3.888 11.917 10.714

u6
0 10.789 10.179 6.083 1.428 12.377 4.338 1.325 1.497 1.282 11.621 11.498

u7
0 8.446 1.565 7.784 0.273 0.738 5.448 8.503 6.590 9.284 8.628 4.626

u8
0 6.422 9.774 12.555 12.320 11.447 4.377 11.386 7.304 9.919 4.855 5.524

u9
0 0.145 7.104 1.283 2.676 11.403 10.758 8.077 1.004 6.945 10.115 12.979

u10
0 8.864 10.12 4.193 0.476 1.983 12.988 5.162 5.033 7.373 8.848 2.452

Table 4. Initial conditions vectors used to generate the test dataset. The values are
truncated to three decimal digits.

u1
0 11.879 4.637 2.379 2.687 6.409 5.214 5.540 10.286 12.693 1.490 5.791

u2
0 8.415 4.919 0.566 0.987 6.568 10.816 0.725 6.562 5.852 8.111 7.152

u3
0 1.347 5.528 1.277 1.753 12.682 4.502 9.385 0.744 0.958 7.303 4.366

u4
0 5.695 5.321 2.487 10.535 9.703 12.073 9.179 0.125 0.246 8.342 7.701

u5
0 2.501 9.231 0.260 8.329 7.844 5.686 0.136 3.298 10.898 7.923 9.751

u6
0 0.295 5.092 7.221 2.668 3.000 3.074 3.765 6.705 10.842 10.876 0.130

u7
0 11.259 6.948 10.358 11.984 10.365 6.930 11.746 0.151 9.053 6.123 1.373

u8
0 1.799 2.410 2.207 11.627 1.592 8.172 3.196 3.647 10.349 6.833 0.599

u9
0 4.892 2.003 0.903 7.908 7.938 9.758 2.323 11.508 1.042 3.829 6.756

u10
0 3.491 4.812 4.737 8.514 8.833 4.911 12.051 5.260 6.625 9.282 3.063
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Finally, we also made a qualitative verification on the best and worst fittings,
that is, we analyzed how far lied the predicted curves from the measured ones.
In Figs. 3 and 4, we show that analysis for the hybrid model best and worst
predictions, respectively.

Table 5. SMAPE values for each of the 10 initial conditions. The last row is the results
when only the partially known first-principle model is used for prediction.

u1
0 u2

0 u3
0 u4

0 u5
0 u6

0 u7
0 u8

0 u9
0 u10

0 Mean

Training 18.6 42.1 23.4 12.2 23.7 21.5 27.7 16.1 16.3 17.8 21.9

Validation 30.6 22.3 19.7 21.8 36.3 14.1 20.0 43.9 23.6 18.4 25.1

Test 30.0 23.9 29.2 12.7 25.9 19.0 27.8 33.2 17.2 27.2 24.6

First-principle only 68.0 62.0 55.7 55.5 49.6 61.7 63.3 54.6 55.6 59.2 58.5

Fig. 2. The loss function value per iteration. The black vertical line marks the point
at which the parameter values result in the minimum loss on the validation set.

Table 6. MAE values for each of the 10 initial conditions. The last row is the results
when only the partially known first-principle model is used for prediction.

u1
0 u2

0 u3
0 u4

0 u5
0 u6

0 u7
0 u8

0 u9
0 u10

0 Mean

Training 3.7 11.5 3.4 2.3 3.3 4.3 4.3 2.6 2.4 2.2 4.0

Validation 6.0 5.0 4.1 5.2 8.4 2.8 2.6 12.0 4.3 4.0 5.4

Test 6.0 4.6 5.6 2.1 3.9 3.1 5.5 6.6 3.9 5.5 4.7

First-principle only 15.2 14.2 9.4 10.4 11.2 9.0 12.6 11.1 12.2 11.0 11.6
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Fig. 3. The best prediction of the hybrid model with SMAPE and MAE metrics of
12.74 and 2.10, respectively.

Fig. 4. The worst prediction of the hybrid model with SMAPE and MAE metrics of
33.24 and 6.64, respectively.

5 Final Remarks

Our results presented in this report suggest that the hybrid modeling approach
for cell signaling pathways is more effective than the partially known first-
principle model alone (Tables 5 and 6). These findings provide promising insights
into the potential effectiveness of hybrid modeling in this context. By comparing
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the results of the validation, test, and training datasets, we can conclude that
identifiability was achievable, especially when analyzing the predictions gener-
ated exclusively with the partially known first-principle model. However, these
initial results have certain limitations. Firstly, it is important to validate the
possibility of identifiability other models than the one used in this paper. Sec-
ondly, we need to experiment with varying sizes of training, validation, and test
datasets to determine whether the performance metrics improve as the data size
increases. Thirdly, it is essential to optimize the hyper-parameters of the neural
network and the training process, such as the number of layers and learning
rates, to further improve the performance of the model. Finally, there is a prob-
lem that arises when the parameters of the first-principle model is partially or
totally unknown; for that case, we need to find a way to infer them at same time
the neural network is trained.
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