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Abstract Recently, the additives of rare-earth metal oxides are being used for 
obtaining partially stabilized zirconia ceramics aimed at applications in various high-
temperature structural components. Corresponding sintering modes providing fine-
grained microstructure formation are being developed. Due to the obtained corre-
lations between the morphology parameters and resulting mechanical characteris-
tics of ceramics, it is possible to reach a unique combination of their functional 
properties. In this work, zirconia ceramics stabilized with small percentages of rare-
earth metal oxides have been studied in terms of sintering ability, elimination of 
the phase changes in zirconia, as well as employment of the transformation tough-
ening mechanism during crack propagation. The metal oxides including rare-earth 
metal oxides (Y2O3, CoO, CeO2, Fe2O3) were used as additives to reach a stabi-
lizing effect on zirconia and manufacture ceramics with fine-grained microstructure. 
Series of ceramic specimens were prepared using conventional sintering in a temper-
ature range of 1550–1620 °C. Fracture toughness test by indentation method and 
single-edge notch beam test under three-point bending were performed. Based on 
X-ray diffraction analysis and SEM studies of fracture surfaces of specimens, it was
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concluded that the maximum transformation toughening effect revealed for ZrO2– 
Y2O3–CoO–CeO2–Fe2O3 ceramics was related to a distinct change in the fracture 
surface pattern. 

1 Introduction 

Nowadays, zirconia ceramics doped with the stabilizing oxides Y2O3 [1–4], CeO2 

[5–7], MgO [8], or CaO [9] are being widely developed. The metastable tetragonal 
phase of zirconia ceramics is stabilized in such a way at room temperature. It is well 
known that transformation toughening of zirconia occurs due to the transformation 
of the tetragonal (t) phase into the monoclinic (m) one [10–14]. This process takes 
place in the crack tip vicinity under significant stresses, which can effectively improve 
crack growth resistance of ceramics. Therefore, increased strength and crack growth 
resistance of the ceramics can be ensured due to the tetragonal phase. 

Additionally, other oxides can be added while producing these ceramics to 
improve their mechanical strength and physical properties [10, 15–25]. Partially 
stabilized zirconia ceramics having improved mechanical properties can be utilized 
in various high-temperature structural components [26–30]. These ceramics are also 
widely used in energy generation, chemical industry, and biomedical applications 
[31–42]. 

The authors of a number of works [43–45] showed that the sintering temperature 
may affect to a great extent the grain size, porosity, and mechanical behavior of 
zirconia. It was reported in the work [44] that a single-phase microstructure (m-
ZrO2) had been formed already after pressing the zirconia specimens without Y2O3 

additive. In contrast, ceramics containing 1.5 mol% Y2O3 exhibited a single-phase 
microstructure (t-ZrO2) after sintering at 1100 °C. As compared to the two last 
variants, for zirconia containing 8 mol% Y2O3, a single-phase microstructure (c-
ZrO2) was formed during pressing. The maximum pore diameter in all the compacts 
reached 12.5 nm after pressing. An increase in the pore diameter was found in 
specimens without Y2O3 additive when the temperature increased to 600 °C. Intense 
grain growth and lowering of porosity occurred with a further increase in sintering 
temperature to 1100 °C. In a similar way, specimens containing 1.5 and 8 mol% 
of Y2O3 additives exhibited significant pore growth with increasing the sintering 
temperature to 600 °C. Significant densification of the specimens, along with the 
slight growth of grains, was revealed with increasing temperature up to 1100 °C. 

Several authors investigated the effect of conditions of zirconia ceramics prepa-
ration on the resulting grain size and mechanical behavior of prepared specimens 
[46–50]. The authors of the work [47] studied the evolution of grain growth in doped 
zirconia annealed at 1500 °C for several hours. The maximum grain size for 12Ti– 
ZrO2 ceramic was found to reach while sintering at 1400 °C with for 70 h. Other 
authors [48] reported grain size of about 1 μm while sintering at 1500 °C for a 
few hours. In the work [49], a study on the grain growth of zirconia ceramics was 
performed. A maximum grain size of 20 μm was found for 8 mol% Y2O3–ZrO2
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ceramic after sintering at 1700 °C for 20 h. For Y2O3–ZrO2 ceramic containing 
4 mol% Y2O3, a maximum grain size of more than 11 μm was found after sintering 
at 1800 °C for 100 h. The authors of the work [50] investigated specimens of zirconia 
ceramics sintered at maximum temperature 1600 °C for 2 h. It was found that the 
maximum mean grain size is 0.35 μm. 

Several scientists applied spark plasma sintering as one of the recently devel-
oped techniques for preparing bulk zirconia-based ceramics, namely ceria stabilized 
zirconia [51–53], yttria-stabilized zirconia [54, 55], and other ceramics [56–59]. 

In  thework [60], the influence of the zirconia percentage on the crack growth resis-
tance and strength of Al2O3–ZrO2 ceramics was studied. The ceramics consisted of 
the monoclinic and tetragonal ZrO2 phases and the α-Al2O3 phase. The percentage 
of the t-ZrO2 phase decreased with increasing the total amount of ZrO2. The forma-
tion of fine-grained Al2O3–ZrO2 microstructure was reached due to adding 10–20% 
ZrO2 that allows obtaining ceramics with improved mechanical properties. It was 
proven in the work [61] that mechanical properties of alumina doped with zirconia 
and yttria-stabilized zirconia can be effectively optimized due to both the flexural 
strength and fracture toughness determination. 

The authors of the works [62, 63] studied YSZ ceramics stabilized with 3–5 mol% 
Y2O3. The chemical and phase compositions of the ceramics were found to relate 
to their mechanical properties [64]. 5YSZ ceramics sintered at 1450 °C for 2 h 
exhibited the highest fracture toughness. This is consistent with a comparatively 
high percentage of the tetragonal ZrO2 phase [62]. Effects of the sintering mode and 
phase composition on mechanical behavior of YSZ ceramics doped with 6–8 mol% 
Y2O3 were studied in the work [63]. After sintering at 1600 °C for 2 h, 7YSZ ceramics 
showed the highest fracture toughness, similarly to the results published in [65]. 

In the work [66], correlations between the yttria percentage, phase balance, grain 
size distribution, morphology of the fracture surface, and strength for zirconia with 
addition of 3 to 8 mol% Y2O3 (YSZ ceramics) sintered at 1550 °C for 2 h in argon 
were analyzed. It was shown that 7YSZ ceramic containing the monoclinic and 
tetragonal ZrO2 phases exhibited the fine-grained microstructure and, as a result, the 
highest strength. 

This work is aimed at studying the effects of oxide additives and sintering temper-
ature on the microstructure, microhardness, strength, and fracture toughness of 
fine-grained ZrO2–Y2O3–CoO–CeO2–Fe2O3 ceramics for various applications. 

2 Materials and Methods 

In this work, zirconia ceramics stabilized with oxides Y2O3, CoO, CeO2, and Fe2O3 

have been studied. 
Three series of beam specimens of partially stabilized zirconia (PSZ) approxi-

mately 2.9 × 2.9 × 45 mm3 in size were sintered in an argon atmosphere for 2 h at 
temperatures of 1550 °C, 1580 °C, and 1620 °C, respectively. An electric resistance 
furnace was used for sintering. For marking each series, corresponding sintering
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temperatures were indicated, i.e., PSZ–1550, PSZ–1580, and PSZ–1620 (Table 1). 
To avoid phase transformations, the side surfaces of specimens after sintering were 
processed using a grinding and polishing machine for metallographic preparation. 
Such processing allowed reaching the required surface quality. 

To measure microhardness of the studied ceramics, a NOVOTEST TC-MKB1 
microhardness tester was used. At least ten indentations under each of the indentation 
load of 0.25 N, 0.49 N, 0.98 N, 1.96 N, 2.94 N, 4.91 N, and 9.81 N were made to 
determine the microhardness of the ceramics under study. The test was performed 
according to the relevant standards [67–69]. 

Various teams of scientists around the world have developed a large number of 
formulas for calculating the microhardness of brittle materials [70–79]. 

Vickers microhardness (in GPa) was calculated using the formula [68]: 

H = 0.0018544
(
P 

d2

)
, (1) 

where P is the indentation load (N) and d is the average length of the diagonals of 
the indentation imprint (mm). 

The geometries of imprint and crack were estimated using an optical microscope 
Neophot-21. 

To estimate fracture toughness of the ceramics, the critical stress intensity factor 
(SIF), K Ic, was calculated as an indicator of the propensity of ceramics to brittle 
fracture [62, 80]. It is known about a number of methods for evaluating the fracture 
toughness of ceramics and cermets using Vickers indentation [81–83]. The developed 
formulas used for the K Ic value calculation include both mechanical and physical 
characteristics, as well as experimentally determined coefficients. Recently, it was 
proven in the works [63, 84] that for the characterization of the ZrO2–Y2O3 ceramics, 
the formula developed in [81] provides the best convergence of results with those 
obtained by traditional methods of fracture mechanics. This formula used in our 
work is as follows: 

KIc = 0.016
(
E 

H

)1/2( P 

c3/2

)
, (2) 

where E is Young’s modulus (GPa), H is microhardness (GPa), P is the indentation 
load (N), and c is the radial crack length (m).

Table 1 Marking of the investigated ceramics, their chemical compositions, and sintering modes 

Series marking System and chemical composition, mol% Sintering mode 

temperature, °C Time, h 

PSZ–1550 90ZrO2–1Y2O3–1CoO–7CeO2–1Fe2O3 1550 2 

PSZ–1580 90ZrO2–1Y2O3–1CoO–7CeO2–1Fe2O3 1580 2 

PSZ–1620 90ZrO2–1Y2O3–1CoO–7CeO2–1Fe2O3 1620 2 
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To study mechanical behavior of the ceramics, the three-point flexure test of 
ceramic specimens was performed in air at 20 °C with calculating fracture stresses 
[85, 86]. 

For comparison with the Vickers indentation method, a single-edge notch beam 
(SENB) test [87–89] was carried out as a conventional method of estimating the 
fracture toughness of the ceramics. The notch width was 0.1 mm. The SENB spec-
imens were tested under three-point bend at 20 °C in air [90–99]. Corresponding 
formulas given elsewhere [87–89] were used for calculating the critical SIF K Ic of 
the ceramics. 

In both the cases (SENB and Vickers indentation tests), the average K Ic value of 
five specimens for each series was calculated. 

The microstructure and fracture surface analyses of material specimens were 
carried out using a Carl Zeiss EVO-40XVP scanning electron microscope (SEM). 
For an energy-dispersive X-ray (EDX) microanalysis, an INCA Energy 350 system 
was used. X-ray diffraction (XRD) analysis of specimens was performed on a DRON-
4.07M diffractometer. The WinCSD program package was used to perform the 
procedures of indexing, refinement, and calculation of the zirconia phase weight 
percentages. 

3 Results and Discussion 

The phase compositions of the studied ceramics were determined based on the XRD 
analysis. 

The XRD patterns for the studied ceramics exhibited two-phase structure with 
clear peaks of the t-ZrO2 and m-ZrO2 phases (Fig. 1). It was found that the peak 
heights of the t-ZrO2 phase slightly increased for the material sintered at a temperature 
of 1580 °C, compared to that sintered at 1550 °C, whereas the peak heights of the 
m-ZrO2 phase slightly decreased. Even more increase of peaks of the t-ZrO2 phase 
and lowering of peaks of the m-ZrO2 phase were observed for the material sintered 
at 1620 °C.

Such differences in the peak heights for obtained XRD patterns are consistent 
with the phase balance in the studied ceramics (Fig. 2). For ceramics sintered at 
1550 °C, tetragonal phase fraction was about 82.6%, whereas for ceramics sintered 
at 1580 °C and 1620 °C, the fractions were 84.6% and 85.9%, respectively. For these 
ceramic series, monoclinic phase fractions were about 17.4%, 15.4%, and 14.1%, 
respectively. Therefore, correlations between the sintering temperature for the studied 
materials and percentages of the t-ZrO2 and m-ZrO2 phases were observed.

There are lots of works on microstructure-related microhardness and strength of 
zirconia-based ceramics [84, 92, 99–106]. For ZrO2–8 mol% Y2O3 ceramics [63, 
84], a gradual decrease in microhardness with an increase in the indentation load 
from 0.49 to 9.81 N was found. Such material behavior evidences the indentation 
size effect peculiar to ceramics [107]. However, the microhardness values for ZrO2– 
8 mol% Y2O3 ceramics were found to yield on the plateau at the loads in a range of



268 V. V. Kulyk et al.

Fig. 1 XRD patterns of the studied ceramics (Table 1). Notation: t is tetragonal and m is monoclinic 
ZrO2

Fig. 2 Phase balance in the 
studied ceramics (Table 1). 
Notation: t is tetragonal and 
m is monoclinic ZrO2

4.91–9.81 N. Such a phenomenon allows concluding that the values of microhardness 
and fracture toughness in this loading range are invariant. 

In our work, the indentation loads of 0.25 N, 0.49 N, 0.98 N, 1.96 N, 2.94 N, 4.91 
N, and 9.81 N were set and corresponding microhardness values were determined 
for the studied materials 1–3 (Fig. 3a).

The obtained microhardness vs load correlations are similar and can be divided 
into two parts. The first part of each dependence corresponds to low indentation loads 
(up to 0.98 N), whereas the second one corresponds to the range of 1.96–9.81 N.
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Fig. 3 Changes in 
mechanical characteristics of 
the studied ceramics 
depending on the indentation 
load: a Vickers 
microhardness; b fracture 
toughness measured by the 
Vickers method. The symbol 
marking corresponds to the 
series marking given in 
Table 1

In this range, the above-mentioned indentation size effect is observed. In contrast, 
the first part of each dependence exhibits the lowered microhardness values due to 
the indentation imprints commensurable with the average diameter of pores on the 
specimen surface. The average microhardness values for all the studied materials 
were revealed to yield on the plateau under the loads of 4.91–9.81 N (Fig. 3a). For 
this load range, a trend to increase invariant values of microhardness with an increase 
in the sintering temperature was found. 

It is known that an increase in sintering temperature leads to intensive grain growth 
in yttria-stabilized zirconia. When the average grain size of the t-ZrO2 phase becomes 
larger than the admissible one (about 1 μm for ceramics of this type), the retention 
of the metastable tetragonal zirconia is suppressed [108]. As the microhardness of 
t-ZrO2 is higher than m-ZrO2 [108], the lowering of microhardness occurs during 
indentation, due to the t–m transition. In our case, the t-ZrO2 phase is stabilized 
mainly with CeO2, in which content in the ceramics is 7 mol%. Such a CeO2 amount 
allows the strong stabilization of the tetragonal crystal structure to be achieved. A 
slight decrease in the m-ZrO2 phase fraction with an increase in sintering temperature 
of the ceramics (Fig. 2) is consistent with a slight increase in the microhardness of 
the ceramics (Fig. 3a). 

To construct a graph for studying the changes in fracture toughness of the ceramics 
with a change in the sintering temperature from 1550 °C through 1580 °C to 1620 °C, 
the values of the material microhardness obtained under the indentation load in the
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Fig. 4 Changes in 
mechanical characteristics of 
the studied ceramics 
(Table 1): a flexural strength; 
b fracture toughness 
measured by the SENB 
method under three-point 
bending 

range of 0.25–9.81 N were taken (Fig. 3b). Surprisingly, a slight difference between 
obtained levels of fracture toughness for the studied materials was found. 

In contrast to such a little difference in values of fracture toughness measured by 
the Vickers method for the studied materials, distinct changes in both the flexural 
strength and fracture toughness measured by the SENB method under three-point 
bending while increasing the sintering temperature were found (Fig. 4). 

It should be noted that the ceramic sintered at 1550 °C has both the lowest flex-
ural strength and fracture toughness measured by the SENB method (Fig. 4). No 
significant difference in fracture toughness was found for all the studied ceramics. 
However, the best result was obtained for the ceramic sintered at 1580 °C (Fig. 4b). 
It is assumed that in such conditions, the highest bond strength between recrystal-
lized t-ZrO2 grains is achieved. Although no distinct difference was revealed at low 
magnifications in the microstructure images (Fig. 5a, c, e) and corresponding images 
of fracture surfaces (Fig. 5b, d, f), the above assumption is confirmed by the images 
of microstructure (Fig. 6a, c, e) and fracture surfaces (Fig. 6b, d, f) taken at high 
magnifications. In particular, slightly increased t-ZrO2 grains are observed in the 
ceramic sintered at 1580 °C compared to those in the ceramic sintered at 1550 °C.

Besides, no signs of transgranular fracture of the m-ZrO2 phase particles were 
found in the ceramic sintered at 1580 °C (Fig. 6d), whereas in that sintered at 1620 °C a 
comparatively large number of cleavage facets were revealed (Fig. 6f). This obviously 
is a reason for the lower fracture toughness of the last material series.
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Fig. 5 SEM a, c, e microstructures (BSD images at low magnifications) and b, d, f fractography (SE 
images at low magnifications) of specimen series a, b PSZ–1550, c, d PSZ–1580, and e, f PSZ–1620 
(Table 1)

The weaker areas consisting of freely transformed m-ZrO2 grains adjoin the coarse 
particles of the m-ZrO2 phase in the ceramic sintered at 1620 °C. Such local weak-
ening affects the fracture toughness of the material by lowering it. In contrast, no 
effect of the local weakening on flexural strength of this ceramic was found. There-
fore, coarse particles of the m-ZrO2 phase contribute dominantly to increasing the 
strength of a bulk material.
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Fig. 6 SEM a, c, e microstructures (BSD images at high magnifications) and b, d, f fractography 
(SE images at high magnifications) of specimen series a, b PSZ–1550, c, d PSZ–1580, and e, 
f PSZ–1620 (Table 1)

4 Conclusion 

In this work, a stabilizing effect of small percentages of oxides Y2O3, CoO, CeO2, 
and Fe2O3 on zirconia ceramics has been studied. 

1. It was shown that the metal oxide additives made it possible to reach the stabi-
lization of the tetragonal ZrO2 phase and manufacture ceramics with fine-grained 
microstructure. 

2. The maximum transformation toughening effect in ZrO2–Y2O3–CoO–CeO2– 
Fe2O3 ceramics was found to correlate with features of fracture surface 
morphology. Compared to the ceramic sintered at 1550 °C, slightly increased 
grains of the tetragonal ZrO2 phase were revealed in the ceramic sintered 
at 1580 °C. The formed microstructure allowed implementing high-energy
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consuming fracture micromechanism involving tetragonal to monoclinic ZrO2 

phase transformation toughening without transgranular cleavage fracture of 
monoclinic ZrO2 phase particles. 
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