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Abstract. Knowledge tracing aims to estimate students’ knowledge
state or skill mastering level over time, which is evolving into an essential
task in educational technology. Traditional knowledge tracing algorithms
generally use one or a few features to predict students’ behaviour and
do not consider the latent relations between these features, which could
be limiting and disregarding important information in the features. In
this paper, we propose MLFBK: A Multi-Features with Latent Relations
BERT Knowledge Tracing model, which is a novel BERT based Knowl-
edge Tracing approach that utilises multiple features and mines latent
relations between features to improve the performance of the Knowledge
Tracing model. Specifically, our algorithm leverages four data features
(student id, skill id, item id, and response id, as well as three meaning-
ful latent relations among features to improve the performance: indi-
vidual skill mastery, ability profile of students (learning transfer across
skills), and problem difficulty. By incorporating these explicit features,
latent relations, and the strength of the BERT model, we achieve higher
accuracy and efficiency in knowledge tracing tasks. We use t-SNE as a
visualisation tool to analyse different embedding strategies. Moreover,
we conduct ablation studies and activation function evaluation to eval-
uate our model. Experimental results demonstrate that our algorithm
outperforms baseline methods and demonstrates good interpretability.

Keywords: Knowledge Tracing · BERT · Multi-Features · Latent
Relations

1 Introduction

In recent years, Technology Enhanced Learning (TEL) has become an essen-
tial research field, mainly due to the increasing need for innovative solutions in
the education sector. One of the most promising approaches to this problem is
Intelligent Tutoring Systems (ITS), which could provide personalised learning
experiences for each student. To achieve this personalisation, ITS requires a reli-
able method for estimating students’ knowledge state and learning progress. This
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method is known as Knowledge Tracing (KT). KT estimates students’ knowledge
state or skill mastering level based on the student’s interaction data collected
from ITS [15]. Accurate and efficient KT models are essential for ITS and educa-
tors to provide personalised learning experiences and support to students, such
as tailored feedback, targeted hints, and relevant additional learning resources.

Generally, there are three kinds of KT models. Bayesian Knowledge Trac-
ing (BKT), Logistic KT models, and Deep Learning based Knowledge Tracing
(DKT) [16]. BKT is one of the earliest and most influential KT models. It uses
a probabilistic framework to model student knowledge and learning state over
time [2]. Logistic KT models are developed based on the concept of logistic
regression, a statistical technique utilised to model the probability of a binary
outcome by utilising one or more predictor variables. While BKT and Logis-
tic models have achieved significant success in predicting student performance,
they have also been criticised for their inability to capture the complex relation-
ships between different skills and concepts [18]. To address this limitation, the
more recent DKT models have utilised deep learning techniques to capture the
complex interactions between student responses, skills, and questions [23]. DKT
models have achieved state-of-the-art performance on benchmark datasets but
require a large amount of training data to achieve good results.

Previous KT models have often been limited by their reliance on a single
or few features, which could fail to capture the complexity of student learning
behaviour data. Numerous studies have demonstrated that incorporating one
or two additional features could enhance the performance of KT models [8,32].
Additionally, Minn et al. suggested that identifying latent features could further
improve the performance of KT [20]. However, to date, there has been no research
that has investigated the effectiveness of combining multiple features and latent
relations to improve the performance of KT models.

Therefore, the research question of this paper is: Whether incorporating mul-
tiple features and mining the latent relations between features together could
improve the accuracy and efficiency of KT models?

In this paper, we present the Multi-Latent Feature BERT Knowledge Trac-
ing model that is both “broader” and “deeper” than the previous models to
address the above-mentioned limitation by incorporating multiple features with
mined latent relations that provide richer and more diverse contextual infor-
mation. By “broader”, we incorporate four different types of features into our
model: student id, skill id, question id, and response id. These features provide
additional contextual information to help the model better capture individual
differences in learning and problem-solving strategies. By “deeper”, we employ a
feature engineering method to extract three meaningful latent relations impor-
tant for representing student’s behaviour: skill mastery, ability profile of students
(learning transfer across skills), and problem difficulty. We utilise a monotonic
convolutional multi-head self-attention mechanism to combine the above explicit
features and latent relations. By incorporating these explicit features and latent
relations, our model could better account for the nuances and complexities of
student learning and achieve superior performance compared to existing KT
models. The experimental results show that MLFBK outperforms the four base-
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line models on five benchmark datasets. Furthermore, the t-SNE as the visualisa-
tion tool was used to analyse the interpretability of MLFBK and the embedding
strategies. The experimental results show that MLFBK outperforms the baseline
models and could effectively enhance the interpretability of deep learning based
KT models.

The main contributions of our paper lie in the following three aspects:

1. We propose MLFBK, a novel Multi- Features with Latent relations BERT
Knowledge Tracing model, which not only considers the multiple explicit
features but also deeply mines the latent relations between the features by
using a feature engineering method.1

2. Our model achieves state-of-the-art performance, outperforming four existing
state-of-the-art models on five benchmark datasets. Moreover, we conduct
ablation experiments and demonstrate different embedding strategies with a
visualisation tool to investigate the contribution of different latent relations.

3. MLFBK exhibits good interpretability as a deep learning based KT method
and has advantages in training efficiency.

2 Related Work

This paper aims to present a novel BERT-based KT model that incorporates
multi-features and latent relations. Therefore, we first review the cornerstone of
the BERT model – the Transformer based models and their applications. Then
we review the development of KT methods in general. At last, we review existing
KT methods from the perspective of the number of integrated features.

2.1 Transformer-Based Models and Application

The Transformer architecture, proposed by Vaswani et al. [28], is a type of
neural network that has gained widespread popularity in natural language pro-
cessing (NLP), and other domains due to its ability to effectively model long-
range dependencies and capture complex patterns in sequential data. Trans-
formers have been used in various NLP tasks, including language translation,
question answering, and text classification, and have achieved state-of-the-art
performance on many benchmarks [13].

In addition to NLP, Transformers have also been applied in other domains,
such as computer vision [10], speech recognition [22], and recommendation sys-
tems [30]. For example, the Vision Transformer (ViT) has recently been proposed
as an alternative to convolutional neural networks (CNNs) for image classifica-
tion tasks, achieving competitive performance on several benchmark datasets.

Besides the basic Transformer models, many powerful evolutions of
Transformer-based methods were proposed, such as the GPT [6] and BERT
[3]. The well-known ChatGPT originated from GPT [19]. BERT (Bidirectional
1 Source code and datasets are available at https://github.com/Zhaoxing-Li/ML

FBK.

https://github.com/Zhaoxing-Li/MLFBK
https://github.com/Zhaoxing-Li/MLFBK
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Encoder Representations from Transformers), introduced by Devlin et al. [3], is
a pre-trained Transformer-based language model that has achieved state-of-the-
art performance on various NLP tasks. BERT utilises self-attention and masked
language modelling (MLM) techniques to train the Transformer bidirectionally.
Its remarkable ability to process natural language text effectively and generate
high-quality embeddings has made it a popular choice and a superior performer
in many Deep Learning tasks [14]. BERT has also been adapted to various other
fields with excellent results. For instance, ConvBERT utilises the original BERT
architecture in image processing task [9], BERT4Rec enhances the performance
recommendation systems [25], and LakhNES improves the quality of music gen-
eration by incorporating BERT [4].

2.2 Knowledge Tracing

Knowledge Tracing is a technique utilised in educational data mining that aims
to model students’ knowledge state and mastering level of the learning concepts
or subjects [31]. Generally, the KT models could be classified into three categories
based on the different structures of the modelling approach that the model used:
probabilistic models, logistic regression KT models, and deep learning-based
models [18].

Probabilistic KT models assume a student’s learning process follows a
Markov process. They use a probabilistic graphical model such as Hidden Markov
Model (HMM) or Bayesian Belief Network to track their changing learning
states. Bayesian Knowledge Tracing (BKT) is a classic probabilistic model that
has been used for this purpose, but it has several limitations: BKT does not
account for the complexity or difficulty of concepts and skills and assumes that
each question requires only one skill. This makes it difficult to process complex
problems involving multiple skills and complex relationships between concepts,
questions, and skills. To address these limitations, researchers have proposed
models including Dynamic BKT (DBKT), which uses Dynamic Bayesian Net-
work (DBN) to model prerequisite hierarchies and dependencies of multiple skills
[5]. The logistic KT models are based on the principle of logistic regression, which
is a statistical method used to estimate the probability of a binary outcome by
using one or more predictor variables. However, both BKT and logistic KT
models struggle to process multiple topics or skills and fail to account for other
features that may impact student learning.

To overcome these limitations, researchers have turned to deep learning tech-
nologies to develop Deep Knowledge Tracing (DKT) [14]. DKT models a knowl-
edge tracing task as a sequence prediction problem and has shown promise
in achieving better performance than BKT and logistic KT models. The self-
attention mechanisms were widely used in deep learning architectures, which
have also been applied to KT models, resulting in models such as SAKT and
SAINT+ [24]. These methods have achieved higher performance than tradi-
tional DL-based methods. More recently, several BERT-based methods were pro-
posed that achieved state-of-the-art performance. BEKT [27] is a deep knowledge
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tracing with bidirectional encoder representations from transformers. Monacon-
BERT [12] utilised the monotonic attention based ConvBERT to improve the
knowledge tracing.

2.3 KT Models with Different Feature Numbers

Single feature KT models Single-feature KT models use only one feature,
usually exercise or skill, to predict a student’s knowledge or mastery of a partic-
ular skill or concept. Deep Knowledge Tracing (DKT) and Self-Attentive Knowl-
edge Tracing (SAKT) [26] are examples of single-feature models that have been
proposed to improve performance by using different techniques, such as LSTM
networks and attention mechanisms to deal with the sparsity of exercise data.

Double-feature KT models Double-feature KT models use both exercise
and skill features, resulting in significant performance gains compared to
single-feature models. Deep Hierarchical Knowledge Tracing (DHKT) [29], Bi-
Interaction Deep Knowledge Tracing (BIDKT) [11], and Attentive Knowledge
Tracing (AKT) [7] are examples of double-feature models that have been pro-
posed to improve performance by modelling the hierarchical relations between
skills and exercises and proposing new attention mechanisms and embedding
methods.

Multi-feature KT models Multi-factor KT models integrate multiple
learning-related factors into the model to improve performance. Exercise-aware
Knowledge Tracing (EKT) [17] and Relation-aware self-attention Knowledge
Tracing (RKT) [21] are examples of multi-feature models that have been pro-
posed to integrate information such as the exercise-making sequence, the rela-
tions between skills and time delay since the last interaction, and the text infor-
mation of the exercise content.

3 Methodology

3.1 Problem Statement

The goal of knowledge tracing is to use a series of interaction data from Online
Learning Systems (OLS) or Intelligent Tutoring Systems (ITS) to predict the
correctness of a student’s next answers. The student’s interactions are repre-
sented by a data sequence, denoted as x1, ..., xt, where t − th is represented as
xt = (qt, at). Here, qt refers to the t − th question and indicates whether the
student’s answer is correct (1) or not (0).

3.2 Proposed Model Architecture

We propose a novel Knowledge Tracing model, Multi Features with Latent Rela-
tions BERT Knowledge Tracing (MLFBK), to improve the traditional KT mod-
els by incorporating multi-features and mining latent relations between different



188 Z. Li et al.

features in the student historical interaction data. Figure 1 shows the architecture
of MLFBK, which consists of three parts: embedding on the left; BERT-based
architecture in the middle; the correctness sequence output on the right. The
embedding part on the left further contains two components: the Multi-Features
embedding on the top, and the Latent-Relations embedding at the bottom.

Fig. 1. The architecture of MLFBK. MLFBK consists of three parts: 1) the multi-
features process (on the left), 2) the BERT-based architecture (in the middle), and 3)
the correctness sequence output part(on the right).

Multi-Features Embedding. In the Multi-Features Embedding part, we
incorporate four different types of features into our model: student id, skill id,
question id, and response id. Particularly, student id is utilised to generate the
interaction sequences. It is also used in the Latent Relation Embedding compo-
nent for calculating the skill mastery embedding and the ability profile embed-
ding. These features need student id to keep track of a single student.

Latent Relations Embedding. In the Latent Relations Embedding compo-
nent, we use a feature engineering method proposed by work [20]. Using this
method, we mine three different meaningful latent relations among the behaviour
data of individual students: skill mastery, ability profile (learning transfer across
skills), and problem difficulty.

Skill Mastery. The formulation of skill mastery is based on the Bayesian
Knowledge Tracing (BKT) model, which uses four parameters to represent prob-
abilities related to a student’s mastery of a skill. These parameters include P (Lo),
the probability that a student masters the skill before attempting the first prob-
lem associated with it; P (T ), the probability that a student will master the skill
after the next practice opportunity; P (G), the probability that a student guesses
the correct answer to a question despite not knowing the skill; and P (S), the
probability that a student answers a question incorrectly despite knowing the
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skill. Skill mastery is the probability of learning a skill rather than the probabil-
ity that a student applies the skill correctly. A BKT model is trained for each
skill, and the inputs to each skill model are the binary responses of a student on
that single skill. Figure 2 shows the Skill Mastery mining process.

Fig. 2. Estimated the probability of skill mastery at each timestamp.

Ability Profile. Students’ interactions are divided into multiple time intervals,
and past performance is encoded to estimate their ability profile. The ability
profile is encoded as a cluster ID and updated after each time interval using all
previous attempts on each skill. The K-means algorithm is used to evaluate the
temporal long-term learning ability of students in both training and testing at
each time interval. Figure 3 shows the ability profile extraction process.

Fig. 3. Estimated the probability of skill mastery at each timestamp.

Problem Difficulty. This is calculated on a scale between 1 and 10, with 1
being the easiest and 10 being the most difficult. We use function 1 to map the
average success rate of a problem onto the 10-level scale. The problem difficulty
(pj) could be calculated as:

δ (pj) =

⌊∑|Nj |
i Oi (pj)
|Nj | · 10

⌋
(1)
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where Pj is the jth problem. Nj is the set of the students who tried to solve
problem pj . Oi (pj) is the first attempt of student i to solve problem pj . Problems
with a higher success rate are considered easier, while problems with a lower
success rate are considered more difficult.

Overall, in the first part of our model, we incorporate question embedding
Eq, items embedding Ei, response embedding Er, learnable positional embedding
Epos, skill mastery embedding ESK , ability profile embedding EAP , and problem
difficulty embedding EPD. The final input embedding is denoted as:

Einput = Eq + Ei + Er + Epos + ESK + EAP + EPD. (2)

BERT Based Architecture. The second part of our proposed architecture
is a BERT-based method (shown in Fig. 1). First, the encoder blocks use the
pre-LN Transformer architecture with 12 layers to normalise the input vectors
Einput. The pre-LN can be formulated as follows:

z = LNpre (Einput) (3)

The normalised value z is then transformed into the query, key, and value of
monotonic convolutional multi-head attention. This result is passed through a
dropout layer and added to the embedding vectors as a residual connection.

a = x + D(MonoConvMulAttn(z, z, z)) (4)

The output is normalised and passed through fully connected layers with
a LeakyReLU activation function. The results are again normalised through a
dropout layer, and the second result is added as a residual connection.

fc = Wfc2 (LeakyReLU (Wfc1)) (5)

Moreover, we utilise a monotonic convolutional multi-head attention pro-
posed by [12], which is combined with mixed-attention and monotonic attention,
to represent forgetting in sequence data. Monotonic multi-head attention uses an
exponential decay mechanism to measure the distance between sequences, while
span-based dynamic convolution uses a lightweight convolution to combine query
and key vectors.

3.3 Experiment Setting

Datasets. We adopted four benchmark datasets to validate the performance of
the MLFBK model, including EdNet [1]2, assist093, assist124, algebra065.

2 https://github.com/riiid/ednet.
3 https://sites.google.com/site/assistmentsdata/home.
4 https://sites.google.com/site/assistmentsdata/home.
5 https://pslcdatashop.web.cmu.edu/KDDCup.

https://github.com/riiid/ednet
https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/site/assistmentsdata/home
https://pslcdatashop.web.cmu.edu/KDDCup
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Baseline Models. In this study, we evaluated the performance of our MLFBK
model by comparing it with three state-of-the-art models: MonaCoBERT [12],
BEKT [27], and AKT [7], as well as the top two baseline models (SSAKT and
LTMTI) in the Riiid Answer Correctness Prediction Competition hosted on Kag-
gle6.

Evaluation Metrics and Validation. We used the area under the curve
(AUC) as the evaluation metric to compare the model’s performance on four
benchmark datasets. After that, we conducted an activation function evaluation
to compare the different activation functions. We also conducted an ablation
study to identify the contribution of different latent relations. Furthermore, we
applied t-SNE as the visualisation tool to evaluate our method’s embedding
strategies and interpretability.

Hyperparameters for Experiments. For a fair comparison, all baseline mod-
els were trained using the same set of parameters. Specifically, training was con-
ducted with a batch size of 64 and a train/test split ratio of 0.8/0.2. The model
was trained for 100 epochs with the Adam optimiser and a learning rate of 0.001.
The loss function used was binary cross-entropy, and the model utilised a total of
12 encoder layers with a hidden size of 512 and 8 attention heads. The data was
preprocessed by splitting it into interaction sequences with a maximum length
of 100. In cases where a student had less than 100 interactions, the remaining
sequence was padded with zeros. For students with more than 100 interactions,
the sequence was split into multiple subsequences of length 100.

4 Results and Discussion

4.1 Overall Performance

Table 1 presents the comparison results of MLFBK with five other KT models,
including MonaCoBERT, BEKT, AKT, SSAKT, and LTMTL, on four bench-
mark datasets, including EdNet, assist09, algebra06, and assist12. It is clear
from Table 1 that MLFBK outperforms the other five KT models on all four
datasets in terms of AUC, indicating that MLFBK is a promising method for
KT. Take the algebra06 dataset as an example: MLFBK achieves an AUC of
0.8327, which is 1.4%, 2.9%, 3.9%, 5.2%, and 2.2% higher than the AUC val-
ues of MonaCoBERT, BEKT, SSAKT, LTMTI, and AKT, respectively. The
average improvement on this dataset is 3.12%. MonaCoBERT and BEKT also
perform relatively well, with AUC values close to those of MLFBK on some
datasets. SSAKT and LTMTI, on the other hand, have lower AUC values, indi-
cating weaker performance. The results suggest that MLFBK is a competitive
method for knowledge tracing and could potentially improve the accuracy of stu-
dent modelling by incorporating more student action features and mining latent
relations.
6 https://www.kaggle.com/code/datakite/riiid-answer-correctness.

https://www.kaggle.com/code/datakite/riiid-answer-correctness


192 Z. Li et al.

Table 1. Comparison of different KT models on five benchmark datasets. The best
performance is denoted in bold.

Dataset Metrics MLFBK Monaco BEKT SSAKT LTMTI AKT

EdNet AUC 0.8278 0.7336 0.8204 0.7981 0.8023 0.7982

assist09 AUC 0.8524 0.8059 0.8227 0.6754 0.8132 0.7691

algebra06 AUC 0.8412 0.8201 0.8165 0.7937 0.7915 0.8143

assist12 AUC 0.8350 0.8132 0.7167 0.7356 0.6834 0.8034

4.2 Ablation Study

In order to identify the contribution of each latent relation in the MLFBK model
to the overall performance, we conducted an ablation study. The results are
summarised in Table 2. MLFBK* in the table indicates the basic model structure
with explicit features. ap represents ability profile, sm represents skill mastery,
and pd represents problem difficulty. Table 2 also shows the AUC values for
different versions of MLFBK* that were trained with different combinations
of latent relations. It is clear that the performance of the MLFBK model is
influenced by the different embedding strategies used for different relations. The
models incorporating all three latent relations achieved the highest AUC values
on three of the four datasets, except the assist09. Nevertheless, it also achieved
the second-highest score in the assist09.

The problem difficulty contributed significantly to the model’s performance,
with the models that used only the problem difficulty embedding achieving the
highest AUC values on four datasets compared to other single latent relation
embeddings. The combination of problem difficulty and ability profile achieved
the best performance on the assist09 dataset and the second-highest performance
on EdNet, indicating that the combination of these two latent relations has more
weight in the predictions. The skill mastery feature had a comparatively lower
impact on the model’s performance, with the models that used only the skill
mastery feature achieving the lowest AUC values on four datasets. However, the
models that used a combination of features achieved higher AUC values than
the models that used a single feature, indicating that the three latent relations
are complementary to each other.

Overall, the ablation study results suggest that the MLFBK model’s perfor-
mance could be effectively improved by incorporating multi-features and multi-
ple latent relations. The more features and/or latent relations embeddings were
incorporated, the higher AUC scores could be achieved.

4.3 Activation Function Evaluation

To investigate the impact of activation functions on the performance of our
MLFBK model, we conducted a study where we tested our model with three
different activation functions: Leaky ReLU, Sigmoid, and Linear. Figure 6 shows
the results of activation function evaluation. We trained and validated the models
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Table 2. Ablation Study of MLFBK. The abbreviations used in there are as follows:
ap for ability profile, sm for skill mastery and pd for problem difficulty. The best
performance is denoted in bold.

Model EdNet assist09 algebra06 assist12

MLFBK* 0.7221 0.8002 0.7997 0.8065

MLFBK* + ap 0.7503 0.7922 0.8139 0.7713

MLFBK* +sm 0.7454 0.7891 0.7983 0.7611

MLFBK* +pd 0.8194 0.8411 0.8256 0.8304

MLFBK* +ap + sm 0.7429 0.8078 0.8201 0.7989

MLFBK* +ap + pd 0.8270 0.8560 0.8344 0.8287

MLFBK* +sm + pd 0.8233 0.8445 0.8362 0.8216

MLFBK* +ap + sm + pd 0.8278 0.8524 0.8412 0.8350

for 50 epochs with early stopping. Upon analysing the results, we found that all
three activation functions produced similar results in terms of both training and
validation behaviour. However, the Linear activation function performed slightly
better than the other two. Specifically, it had the highest accuracy and AUC
score on the validation set, which indicates that it may be the most suitable
activation function for our MLFBK model. It is worth noting that the Leaky
ReLU activation function stopped early during the training process, which may
be due to its high learning rate. Overall, our findings suggest that the choice of
an activation function has a relatively minor impact on the performance of our
MLFBK model, but using the Linear activation function may lead to slightly
better results.

4.4 Analysis of Embedding Strategy

We conducted a t-SNE analysis to visualise the entire embedding vector created
in our MLFBK model. The results show the good interpretability of our meth-
ods’ embedding strategies. Figure 4 shows the comparison of general embedding
and MLFBK embedding strategies, utilising t-SNE as the visualisation method.
Here, we take the embedding strategy of AKT as an example (on the left) and
our MLFBK embedding strategy (on the right) on the assistments09 dataset.
Each data point in the plot represents a learning interaction associated with a
student, question, response, correctness, item, ability profile, skill mastery, and
problem difficulty. The data points were coloured based on the ability profile
value associated with them, specifically the transfer across skills value for the
relevant student at the relevant time.

The left part of Fig. 4 shows the general embedding could not distinguish
different features as all the features mixed together. In contrast, the right part
of Fig. 4 shows that the MLFBK embedding strategy could distinguish different
embedding with different colours well. The t-SNE plot shows that the students
with small ability profile values at the current interaction were grouped together



194 Z. Li et al.

Fig. 4. The comparison of general embedding (Left) and MLFBK embedding (Right)
strategies, utilising t-SNE as the visualisation method.

by the embedding, as were students with large values. This grouping could be
used by the model to differentiate between interactions with correct responses
and incorrect responses. The ability profile values provide additional information
about students’ performance, which could be useful for predicting their future
performance. Overall, the t-SNE analysis demonstrated the effectiveness of the
MLFBK model in capturing and utilising complex student interaction data.

Figure 5 shows the different embedding strategies of different single latent
relations. The left is the embedding for the ability profile. It is the embedding
without the additional features and then coloured according to the problem
difficulty. It is easy to see that the problem difficulty feature is heavily considered
in the feature embedding. The middle is embedding for problem difficulty. It only
colours the learning interactions based on the problem difficulty of the relevant
question. In this figure, the embedding doesn’t seem to generate groupings, but
more of a constant gradient, where the more difficult problems are in the top
left and the easier problems are in the bottom right. The right image is the
embedding for skill mastery. Here the skill mastery of the student on the relevant
item is highlighted. This feature is multiplied by 100 and rounded to convert it
to a categorical feature instead of a continuous one. The embedding also seems
to be a gradient instead of groupings.

Fig. 5. Different Embedding Strategies.

4.5 Analysis of Estimating Problem Difficulty

We compared our model with MonaCoBERT regarding estimating problem diffi-
culty for specific questions in the assistments2009 dataset. While MonaCoBERT
uses a classical test theory (CTT) approach to estimate difficulties, our model
calculates problem difficulty as a feature to use as input for the BERT model.
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The comparison is visually represented in Fig. 7, with difficulty levels on the x-
axis and the number of students answering correctly (green) or incorrectly (red)
on the y-axis. Common sense dictates that harder questions should have more
incorrect answers, although there may be exceptions. Surprisingly, the Mona-
CoBERT method showed that many students answered easy questions incor-
rectly but answered more difficult questions correctly, which seemed unlikely
given the number of students evaluated. In contrast, our model revealed that
as question difficulty increased, fewer students answered correctly, aligning with
expectations. The results show that our method of estimating problem difficulty
is far superior to the CTT difficulty estimation used by MonaCoBERT. Our
method provides much more predictive value in estimating problem difficulty.
This highlights the effectiveness of using our MLFBK model in predicting stu-
dent performance in educational settings.

Fig. 6. Activation Function evalua-
tion.

Fig. 7. Estimating Problem Difficulty.

5 Conclusion and Future Work

In this paper, we have proposed the MLFBK, which employs a BERT-based
architecture incorporating multi-features and latent relations to improve the per-
formance of Knowledge Tracing models. Experimental results show that MLFBK
outperforms the five baseline models in every benchmark dataset on the met-
ric of AUC. Moreover, we conducted an ablation study for different embedding
strategies. The results indicate that combining different features and latent rela-
tions could improve performance effectively. Incorporating additional embed-
dings resulted in increased AUC scores. Moreover, we utilise the t-SNE as the
visualisation tool to compare different embedding strategies. The results show
that our method not only improves the performance of the models but also
improves the model’s interpretability. In future work, we plan to improve the
architecture to process more comprehensive features and latent relations to sat-
isfy the sustainable development requirement of Knowledge Tracing. Moreover,
we will develop a model that could enhance memory efficiency as it handles
growing amounts of multi-features and latent relations.
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