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Abstract. Digital Twin (DT) is recognized as a key enabling technology of Indus-
try 4.0 and 5.0 and can be used in collaborative networks formed to fulfillment
of complex tasks of the manufacturing industry. In the last years, the variety and
complexity of DTs have been significantly increasing with new technologies and
smarter solutions. The current definition of DT, such as cognitive, hybrid, and
others, embraces a wide range of solutions with different aspects. In this sense,
this article discusses DT definitions and presents a five-dimensional analytical
framework to classify the different proposals. Finally, to better understand the
proposal, we analyzed 12 articles using the analytical framework. We argue this
research may help researchers and practitioners to better understand digital twins
and compare different solutions.
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1 Introduction

Industry 5.0 is considered the next industrial evolution with the objective to leverage
the creativity of human experts in collaboration with efficient, intelligent, and accurate
machines, in order to obtain resource-efficient and userpreferred manufacturing solutions
compared to Industry 4.0 [32]. The enabling technologies of Industry 5.0 are a set of
complex systems that combine technological trends such as edge computing, digital
twins (DTs), internet of things (IoT), big data analytics, collaborative robots (cobots),
6G network and blockchain, which are integrated with cognitive skills and innovation that
can help industries increase production and deliver customized products more quickly
[32].

Digital twins are recognized as a key enabling technology of Industry 4.0 [38] and
Industry 5.0 [32]. DT provides opportunities for improved product lifecycle management
in manufacturing and also represents a significant change from the actual methods,
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processes, and tools used by the organization [29]. DTs can be used in a collaborative
way for the solving of complex problems of the manufacturing from DT ecosystems
approach and can be comprised as part of collaborative networks in manufacturing. The
collaboration between DTs aims to improve the detection of contextual and collective
anomalies, which are more challenging to be identified using self-reference models [15],
and also to facilitate the collaborative and distributed autonomous driving [26].

In the last years, the number of publications, works, and applications with Digi-
tal Twins increase considerably in the manufacturing context. The literature presents
projects in different domains with the use of more intelligent and autonomous DTs,
resulting in a growing variety and complexity of the proposals, nomenclatures, and types
of DTs. On the other side, it can cause confusion among researchers and practitioners
in the field when referencing their proposal of DT. Both the definition and expectations
for DT functionality have evolved significantly over the past decade. We consider that
the variety of DT definitions and types with different but intersecting characteristics is a
current challenge to the understanding of DT proposals. According to [25], the primary
obstacle in broader DT adoption or evolution is its ambiguity. Current efforts have been
made to define DT but this is still an open research question.

This paper discusses the different DT definitions and approaches and proposes a five-
dimensional analytical framework to cover different proposals of DTs. The dimensions
of analysis are: i) data flow; ii) interoperability level; iii) system level; iv) cognitive
process; and v) covering of the system life cycle. A proof of concept is carried out using
12 DT works. We argue an analytical framework can help researchers in the field to
better understand DTs, since it combines different approaches of the literature to define
and categorize a proposal of DT, focusing more on the characteristics than on your
definitions. From our approach, it is expected to clarify situations when a simulation,
optimization, or machine-learning model is closer to a DT with cognitive capabilities or
a data model, for instance.

The paper is organized as follows: Sect. 2 presents the theoretical background, high-
lighting the types of DTs cited in the literature, aspects of cognition related to the
development of DTs, and semantic characteristics that can be included in a proposal
of DT; Sect. 3 details the proposed analytical framework, and Sect. 4 shows a proof of
concept of the analytical framework. Finally, Sect. 5 presents our concluding remarks
and limitations.

2 Background

To help understand the types of DTs and better characterize the approaches proposed in
the literature, we analyze these definitions according to the following aspects: data flow
automation, system level, covering of the system lifecycles, cognitive process, semantics,
and interoperability level.

One of the first discussions on a distinction among DT types considering the data
flow automation was made by [29]. According to these authors, Digital Model is the
case where the digital object (a representation of an existing or planned physical object)
does not use any form of automated data exchange between it and the physical object.
Digital Shadow includes the existence of automated one-way flow between the state of
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the physical object and the digital object. Digital Twin is used only for the case where
the “data flow between physical object and data object are fully integrated into both
directions”. Although this typology is still well accepted and referred to in the literature,
it contains a certain level of ambiguity as demonstrated by [25].

Already [1] propose a typology of DTs based on the data flow but also consider
cognitive capacities. These authors show a three-layer approach to the different twins:
so-called Digital Twins and Cognitive Twins. Digital Twin is considered a digital replica
of aphysical system that captures the attributes and behaviors of that system. In their point
of view, a DT is typically materialized as a set of multiple isolated models that are either
empirical or first-principles based. Hybrid Twin (HT) is an extension of DT in which the
isolated DT models are intertwined to recognize, forecast and communicate less optimal
(but predictable) behavior of the physical counterpart just before such behavior occurs.
An HT integrates data from various sources (sensors, databases, etc.) with the DT models
and has predictive capabilities. Cognitive Digital Twin (CDT) is an extension of HT
incorporating cognitive features that enable sensing complex and unpredicted behavior.
According to the authors, CDT is thus a hybrid, selflearning, and proactive system that
will optimize its own cognitive capabilities over time based on the data it collects and
the experience it gains.

From the first reference to the term Cognitive Digital Twin at an industrial workshop
in 2016 [2], other authors [1, 4, 5, 31] presented complementary and similar definitions
for this kind of DT. The recent definition of [38] encompasses the majority of these defi-
nitions from a literature review. According to these authors, Cognitive Twin is a “digital
representation of a physical system that is augmented with certain cognitive capabilities
and support to execute autonomous activities; comprises a set of semantically interlinked
digital models related to different lifecycle phases of the physical system including its
subsystems and components; and evolves continuously with the physical system across
the entire lifecycle”. This definition includes beyond the cognitive capacity, the char-
acteristics related to multiple system levels and multiple lifecycle phases. While DT
corresponds to a single system (or product, subsystem, component, etc.), and focus on a
single lifecycle phase, a CDT consists of multiple digital models corresponding to dif-
ferent subsystems and components of a complex system, focusing on multiple lifecycle
phases of the asset [38].

Other authors present different DT types, such as Enhanced Cognitive Twin [23],
Semantic Digital Twin [12, 18], next-generation Digital Twin [25], and the six-type
typology (Imaginary, Monitoring, Predictive, Prescriptive, Autonomous, and Recollec-
tion) by [6, 35]. These typologies overlap with DT types mentioned previously in this
section. In this sense, we consider that the important not is the different names for DTs,
but the characteristics and aspects included in the proposals of DTs, which enable us to
better analyze the proposal and implementation of certain DT.

2.1 Cognition Applied to DTs

Cognition capabilities are an important topic related to modern DT proposals and there-
fore an aspect of interest to analyze DT implementations. It is wellaccepted that the main
capabilities related to cognition for DTs are perception, attention, memory, reasoning,
problem-solving, and learning [4].
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Perception is the process of forming useful representations of data related to the
physical twin and its physical environment for further processing. Examples: real-time
monitoring or data analytics on various data streams spanning from sensory data [24].
Attention is the process of focusing selectively on a task or a goal or certain sen-
sory information either by intent or driven by environmental signals and circumstances
[4], for example using anomaly detection tools (statistical process control, complex
event processing, ML-based tools) [24]. Memory corresponds to a single process that
includes: working, episodic and semantic memory; encoding and storing information;
and information retrieval [33]. Key technologies for the memory of DTs are the use of
databases, metadata, ontologies, and knowledge graphs. Reasoning can be defined as
drawing conclusions consistent with a starting point — a perception of the physical twin
and its environment, a set of assertions, a memory, or some mixture of them [27]. Exam-
ples of reasoning capabilities are root-cause analysis tools, simulations of the impact of
the detected disruptions, evaluations of the impact of machines malfunction, and crane
bottleneck [24]. Problem-Solving can be defined as the process of finding a solution
for a given problem or achieving a given goal from a starting point [4]. It is achieved
using optimization and simulation [24], for instance. Finally, learning is the process
of transforming the experience of the physical twin into reusable knowledge for a new
experience [4], predicting unwanted events in the operation before they happen and
offering the best possible solutions [1]. Key technologies for learning in DTs are ML
techniques, neural networks, knowledge graphs, DT models, etc., integrated with the
persistence technologies.

These capabilities are required to perform complex tasks and a Cognitive DT is not
required to have all these capabilities. On the other side, it is not clear what is the threshold
for a DT not to be considered cognitive, and the term has been used widely in the recent
literature. The implementation and realization of these cognitive capabilities in DTs are
far from a simple task. In this sense, [4] arguments in favor of three critical operations
in the design stage which cognition enable and enhance: (i) search; (ii) share; and (iii)
scale. For example, perception and attention allow the search operation to selectively
focus on a set of appropriate models. Problem-solving can further improve the search
operation by enabling it to identify the most suitable digital twin model. Learning support
for the share operation, because it enables transforming the experience into knowledge
reusable by a new DT.

2.2 Semantics in DTs

Interoperability problems are an issue while integrating systems and equipment in the
manufacturing industry, often related to different models and systems of the lifecycle of a
product. It is expected that the DT supports the integration of systems and models across
different lifecycle phases and collaborates with the level of interoperability. Because of
that, the term “semantics” appears in some definitions of DT, such as Cognitive DTs
and Semantic DTs. In both cases, the references to semantics in DT's are mainly associ-
ated with the key enabling technologies (i.e. semantic modeling, ontologies, knowledge
graphs) to reach the semantic interoperability of data, digital models, and information.
Some authors propose the term Semantic Digital Twin. According to [30], Seman-
tic DT is a semantically enhanced virtual representation of a retail store environment,
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connecting an ontology-based symbolic knowledge base with a scene graph. The scene
graph provides a realistic 3D model of the store, which is enhanced with semantic infor-
mation about the store, its shelf layout, and contained products. [13] highlighted that a
Semantic Digital Twin should enable pro-active modeling, connecting among various
planning systems (i.e. heterogeneous datasets), tracking, and optimization of construc-
tion processes and their associated off- and on-site resources. [21] assert that a fully
Semantic Digital Twin is capable of leveraging acquired knowledge with the use of
Al-enabled agents, agent-driven socio-technical platforms, and a variety of digital tech-
nologies and techniques (i.e. machine learning, deep learning, data mining, and data
analysis) employed to create a self-reliant, self-updatable and self-learning DT.

In some definitions of Cognitive DTs it is possible to identify references to semantic
capabilities as necessary requirement for this DT type. [14] defines a next-generation
digital twin as a description of a component, product, system, or process by a set of well-
aligned, descriptive, and executable models which is the semantically linked collection
of the relevant digital artifacts including design and engineering data, operational data
and behavioral descriptions. In its turn, [31] defines cognitive twin as a DT with aug-
mented semantic capabilities for identifying the dynamics of virtual model evolution,
promoting the understanding of interrelationships between virtual models, and enhanc-
ing the decision-making based on DT. In the definition of [38], Cognitive DT “comprises
a set of semantically interlinked digital models related to different lifecycle phases of the
physical system including its subsystems and components”. In many cases, a Cognitive
DT can be constructed by integrating multiple related DTs using ontologies, semantic
modeling, knowledge graphs, and lifecycle management technologies.

Considering the literature revised and the different concepts used to define Cognitive
and Semantic Twins, it is important to highlight that in our opinion cognition and
semantics are complementary and essential characteristics to make smart, autonomous,
predictive, and self-learning Digital Twins, and necessary to the current context of the
application of DTs in Industry 5.0.

3 An Analytical Framework for Digital Twins

The use of new technologies and the growth of the number of DT applications in Industry
4.0 and 5.0 have increased the complexity of the functions and capabilities of DTs. There
is a wide range of reported implementations from digital models to cognitive DTs, but
it is difficult in many cases to clearly understand such reports. It is not unusual that
some papers report regular simulation, optimization, and machine-learning models as
cognitive digital twins, and the misuse of this term may be related to ambiguity regarding
DT definitions [25]. We present a conceptual framework of analysis for digital twins in
Fig. 1 to help researchers and practitioners understand DT implementations. In this
proposal, DT is analyzed on five dimensions: i) data flow, ii) interoperability level, iii)
system level, iv) the cognitive process it performs, and iv) how the DT supports the
product lifecycle. Unlike other authors, we do not create a categorization of digital
twins such as semantic or cognitive DT, digital shadow, and others. On the other hand,
our five-dimensional analytical framework embraces these definitions and allows the
specification of a wide range of DT implementations.
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Digital twins can be compared regarding their data flow [29]. Considering the model-
asset communication, the data can flow automatically in both directions (two-way), from
the asset to the model (one-way), or with no automatic data flow between the asset and the
model - no data flow. Prototypes are usually the first model used to simulate a machine’s
behavior and act as proof of concept of the digital twin. These prototypes (or data models)
are generally considered DTs with no automatic communication. Finally, when the data
flows are realized among a DT and other DTs, this DT is considered interconnected.

The interoperability dimension describes how the DT can interpret the data. In our
analytical framework, the Levels of Conceptual Interoperability Model (LCIM) [34]
is applied to heterogeneous DT communication. LCIM has been applied to different
domains [36, 37] and it is a useful tool to understand the capabilities of the digital twin
regarding data manipulation. The syntactical level refers to structured data, while the
semantic level corresponds to the description (meaning) of the data. Asset Administration
Shell addresses these two interoperability levels. Pragmatic interoperability demands a
common understanding of context. Pragmatics in computation addresses the problem of
finding the appropriate communication partner, establishing and maintaining exchange
with him [37], which is primarily performed by orchestration methods. Orchestrating
digital twins is, however, an open problem. Besides a protocol for negotiating a task, it is
necessary a public catalog of digital twins with a description of the contract and policies.
Next, the dynamic interoperability level relates to the understanding of the effect of the
exchanged data on the sender and receiver. To this, it is necessary a shared state model
where the digital twin is capable to understand its inner state and the state model of its
communication partner.

DTs can be seen as digital models of a simple asset or a complex machine. Cognitive
DTs represent such complex digital models able to communicate with other (generally
simpler) DTs to, for instance, identify anomalies in the product line, search for optimized
solutions, and negotiate a solution. The system level dimension considers the granularity
of the DT regarding the ecosystem to which it belongs: part, component, subsystem,
system, or system-of-systems [38].

The capacity of digital twins to handle complex tasks is related to their cognitive
capabilities. The implementation and realization of these capabilities is a complex task
and frequently it is difficult to identify them in the proposals of DT. Some technolo-
gies used in cognitive process of DTs can encompass two or more capabilities at the
same time (i.e., machine learning techniques and knowledge graphs can be used for the
memory of DTs and also for reasoning). In this sense, a strategy of identification of
the cognition for DTs is to associate operations with the capabilities that make possi-
ble the cognitive process. We make use of the Information Processing Theory [28] in
our analytical framework to define the four stages' of processing information in digital
twin ecosystem: collect, search, share, and scale. Collect is the process of retrieving
and gathering the appropriate data from assets to perform an operation; Search is the
process of identifying the appropriate digital twin models of a manufacturing system by
searching over the Internet across search mechanisms; Share is the process of sharing
relevant information gained during the life cycle of the digital twin of a manufacturing
system to a new digital twin in its early design, development stage, and usage; and Scale

! These stages are strongly motivated by the three processes described in [4].
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Fig. 1. Five-dimensional analytical framework for digital twins

is the process of sharing knowledge across nonoverlapping domains of a manufacturing
system.

Finally, digital twins can be analyzed according to life cycle management. In the man-
ufacturing industry, it is common that exist multiple related digital models to the different
phases (production design, simulation, planning, production, maintenance, recycling,
etc.) of the lifecycle of a product. Unfortunately, these different models and systems
manifest a low degree of interoperability, and this creates problems, for instance when
different enterprises or branches of an enterprise interact. In this sense, it is expected
that proposals of DTs more semantic and cognitive support the integration of models
across different lifecycle phases [38]. Therefore, it is not a trivial task and still a chal-
lenge for DTs to evolve digital models to cover the entire life cycle of the asset. In this
dimension, we classify the proposals of DTs according to covering of the lifecycle of
the product (asset) in: full, partial, or single lifecycle. The purpose expected of DTs is
that implement technologies capable of covering the different phases of the lifecycle of
a product and maintain a good level of interoperability.

4 Discussion

To exemplify how DT proposals can be analyzed with the framework, we compared 12
DT proposals and compiled the results in a radar graph (Fig. 2). The five dimensions
were mapped to a five-point scale according to the following values: i) data flow (no
data flow = 0; one-way = 1.7; two-way = 3.4; interconnect = 5); ii) system level (part
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= 1; component = 2; subsystem = 3; system = 4; system-ofsystems = 5); iii) cognitive
process (collect = 1.25; search = 2.5; share = 3.75; scale = 5); iv) interoperability
(systenatic = 1; semantic = 2; pragmatic = 3; dynamic = 4; conceptual = 5); v)
lifecycle (single = 1.7; partial = 3.4; full = 5). We show four hybrid DT [8, 10, 11, 17],
four cognitive DT [3, 7, 9, 23], and four DT proposals [16, 19, 20, 22] that authors don’t
specify the type of DT. These works were selected to exemplify how distinct these DT
proposals can be in the same definition.

Hybrid DT (Fig. 2a) are expected to be interconnected since most authors understand
these DT should interact with other DTs to perform more complex tasks. Moreover,
complex tasks demand a certain level of interoperability and cognition. Although some
works present good interoperability and cognition process levels, it is not the case for
all of the works. For example, HDT1 presents a solution for the exploration of overlay
metal deposition patterns in real-time primarily collecting from assets and training a
knowledge-based DT. Regarding the data flow, however, the DT collects data from the
asset and presents information to engineers. Although the solution can be used in a
DT ecosystem, it is not discussed. HDT4 showcases a distributed hybrid DT for the
predictivemaintenance purpose, discussing how DT can communicate with assets and
other DTs. However, the interoperability level is not covered by the authors.

In its turn, works proposing cognitive DT (Fig. 2b) tend to be interconnected and
achieve high interoperability and cognitive processes levels. More important, the major-
ity of the authors discuss more clearly the role of the DT in relation to other systems
and twins, i.e. these works are more aware of the system-level dimension. For instance,
CDT4 discusses the use of DT in the context of process industries, where cognition is
particularly important due to the continuous, non-linear, and varied nature of the respec-
tive production processes, communication and collaboration among DT are presented to
achieve more complex cognitive processes by using knowledge graphs. CDT3 presents
an LSTM neural network-based method for Time-To-Recovery (TTR) prediction within
a digital supply chain twin framework to enhance supply chain resilience and improve
decision-making under disruption. According to the chart, however, CDT3 cognitive
capabilities regarding more complex cognitive processes, interconnectivity among other
digital twins, and interoperability levels.

The product lifecycle is not considered in all these 12 DTs. Lifecycle management is
an important characteristic of cognitive digital twins, as stated by [38], but is not trivial to
produce models that cover multiple lifecycle phases and it is reflected in Fig. 2. Finally,
other DT works (Fig. 2c) are more closely to data models (DT1 [16] and DT3 [20]) and
digital shadows (DT2 [19] and DT4 [22], which have the same values in all dimensions),
according to the definition of [29] since they don’t present interoperability and system-
level information, perform tasks related to less-complexity cognitive processes, and the
communication with other DT is not a requisite.

It is worth noting how these works present a variety of DT proposals with different
characteristics using the same definition (hybrid or cognitive). We argue that is more
useful to understand these proposals using an analytical framework than creating new
definitions.
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5 Concluding Remarks

The enabling technologies of Industry 5.0 are a set of complex systems that combine
technological trends such as digital twins, [0oT, collaborative robots, etc. In this paper,
we discussed the concept of digital twins with the objective to can help researchers
and practitioners to better understand the current variety of proposals of DTs and their
different applications, considering the set of typologies and some implementations found
in the literature.

We propose a simple analytical framework to clarify the different proposals of DTs
based not on terminologies but on the characteristics and capabilities of DTs, using five
dimensions of analysis: data flow, interoperability, system level, cognitive process, prod-
uct lifecycle. The framework embraces the different approaches found in the literature
[1,4, 13,25, 30, 38] and allows the specification of a wide range of DT implementations,
being domain-agnostic. We argue the analytical framework can better characterize a DT
than the use of terminologies.

It is important to highlight that this research is not intended to exhaust all forms
of analysis and characterization of digital twins but to bring some contributions and
directions to the current approaches and proposals for digital twins in Industry. In this
sense, other researchers can extend the proposed framework by including new dimen-
sions, according to the need of the application domain or new capabilities demanded by
Industry 5.0.
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As the first validation of the analytical framework, this paper presented a proof of
concept from an analysis of a limited set of proposals of DTs extracted from the liter-
ature, encompassing 12 articles analyzed under the five dimensions of our framework.
A broader study of publications through a systematic review of the subject can pro-
vide new insights into the ability of the framework to encompass the variety of existing
DTs. Finally, our analysis was based on the DT description of each work but it may be
error-prone since some authors are not clear about some aspects we have analyzed.
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