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Abstract. This paper addresses the electric vehicle charging problem in
a charging station with a limited overall power capacity and a fixed num-
ber of chargers. Electric vehicle drivers submit their charging demands.
Given the limited resources, these charging demands are either accepted
or rejected, and an accepted demand must be satisfied. The objective of
the scheduler is to maximize the number of satisfied demands. We prove
that the problem is NP-hard. Then, we propose a linear programming
model, heuristic, and a metaheuristic combining a simulated annealing
algorithm with an iterated local search procedure to solve it. We provide
computational results to show the efficiency of the proposed methods.

Keywords: Electric Vehicle · Charging Scheduling · Linear
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1 Introduction

Electric vehicles have recently gained wide popularity as low-emission vehicles.
According to the International Energy Agency [6], the number of electric vehicles
reached 16.5 million in 2021. While in 2010, only hundreds of them were on the
road. However, the global adoption of electric vehicles is still challenging since
charging an electric vehicle is time-consuming and requires considerable electric
energy. Moreover, a mass transition to electric vehicles will lead to a saturation of
charging stations and a significant increase in electrical power demand that can
overload the power grid. Several studies propose smart charging approaches to
avoid these negative impacts without expensively upgrading the existing power
grid. In smart charging, a management system controls the charging of electric
vehicles and optimally schedules the electric vehicle charging load. This paper
addresses the electric vehicle charging scheduling problem (EVCSP) in a charg-
ing station where drivers submit charging demand reservations before arriving.
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Given the lack of charging stations, the short range of electric vehicles, and the
long time required to charge them, drivers of electric vehicles need to carefully
plan their trips to ensure that they will have opportunities to recharge their
batteries. As a result, it is preferable for them to confirm in advance that the
charger they intend to use is available. Moreover, the Open Charge Point Pro-
tocol includes the reservation functionality of charging stations [1].

The remainder of this paper is organized as follows. Section 2 briefly reviews
the main works on EVCSP. Section 3 describes in detail the investigated prob-
lem. Section 4 provides the complexity of the problem. Section 5 formulates it
as an integer linear programming (ILP) model. The proposed heuristic is pre-
sented in Sect. 6. Section 7 details the developed metaheuristic that combines a
simulated annealing algorithm with a iterated local search procedure. Section 8
evaluates the performance of the proposed methods. The paper closes with some
conclusions and future research directions in Sect. 9.

2 Related Work

We focus on studies that investigated the problem of optimizing the charging
load of electric vehicles from the perspective of charging station operators. The
main objectives of these operators are to reduce the total charging cost [5,14,15]
or to maximize the satisfaction of their customers. In smart charging stations,
a control system builds a charging schedule while considering the arrival and
departure times and the amount of energy requested by each vehicle driver. Many
studies assume an uncertain arrival time [4,13,15]. Authors in [14] consider that
electric vehicles may arrive with or without a reservation. The electric vehicle
drivers can provide the departure times [4,14,16], or they can be estimated based
on historical behavior [15]. As for the desired energy, [14] assume that the elec-
tric vehicle drivers directly specify their desired energy in kWh. Other papers
consider charging electric vehicles to the rated battery capacity [10,12,16]. For
constraints related to the charging station, authors in [10,12,16] consider a vari-
able charging power where the charging rate varies over time, while in [4], con-
stant power rates were considered. One of the most commonly used constraints
is the capacity of the charging infrastructure. This constraint defines the total
power limit of the charging infrastructure, expressed in (kW). Limiting the total
charging load of electric vehicles is essential to keep the power peaks low and
avoid overloading other equipment and transmission lines. Different optimization
approaches were adapted and developed to solve EVCSP. A two-stage approxi-
mate dynamic programming was proposed in [16]. Some studies have considered
stochastic optimization methods as in [13], where the authors proposed a stochas-
tic linear programming model to schedule the electric vehicles charging load in
real-time. Metaheuristics were also applied to solve the EVCSP. For example,
we can find a particle swarm optimization in [12,14], a genetic algorithm in [5],
a GRASP-like algorithm and a memetic algorithm in [4]. Although the studies
mentioned above have examined various aspects of the EVCSP, the charging
station operating model, the constraints, and the optimization objective are
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different from this study. Thus, comparing results between the proposed meth-
ods and literature cannot be pertinent.

3 Problem Description

The formulation of an instance of the EVCSP can be defined as follows. We
have a set J = {1, . . . , n} of charging demands to be scheduled on a set of
M = {1, . . . , m} of chargers. Each charger i delivers a constant power of wi

(kW). The total power that can be delivered by all chargers simultaneously
must not exceed wG (kW), which will further be denoted as the power grid
capacity. Each electric vehicle j has an arrival time rj , departure time dj , and
an energy requirement ej (kWh) that must be satisfied by its departure time dj .
The charging time pij of each demand j when assigned to charger i is equal to
pij = ej

wi
. Charging demands can either be accepted or rejected. When a charging

demand is accepted, it must be satisfied. At each time, a charger can only charge
one vehicle, and a vehicle can only be charged by one charger. During the time
interval [rj , dj), the vehicle is parked and plugged into charger i. The charging
scheduling is preemptive, i.e., the charging operation of each vehicle j can be
interrupted at any time and resumed later in the interval [rj , dj). Even when
the vehicle completes charging before dj , it still occupies the charger i until it
departs. Unless otherwise mentioned, we divide the scheduling time horizon H
into T time slots of equal length τ . The scheduling objective is to maximize the
number of satisfied charging demands.

4 Complexity

Theorem 1. The problem of maximizing the number of satisfied charging
demands is NP-hard.

Proof. We show that the problem is NP-hard by proving that its special case
where all chargers are identical is NP-hard. Let m = �wG

w �, where w is the
charging power rate of each charger. Clearly, at each time, at most m chargers
can be activated at the same time. Furthermore, maximizing the number of
satisfied charging demands is equivalent to minimizing the number of rejected
demands. Minimizing the number of rejected charging demands is equivalent to
minimizing the number of late jobs in m identical parallel machines scheduling
problem with release date and preemption of jobs (Pm|prmt|∑ U). In scheduling
problem Pm|prmpt|∑ U if a job is late in an optimal schedule, it is immaterial
where it is scheduled. Thus, scheduling on-time jobs is important. In the optimal
schedule, the on-time jobs are scheduled in their interval [rj , dj ], and at most m
are used to schedule these jobs. Then the on-time jobs correspond to the set of
accepted demands in the problem of maximizing the number of satisfied charging
demands. In [3] authors showed that the problem Pm|prmpt|∑ U is NP-Hard
even with two identical machines. Then the problem of maximizing the number
of satisfied demands is NP-Hard. ��
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5 Mathematical Formulations

In this section, we formulate the described problem as an integer linear program-
ming (ILP) model. We define binary variables sij to specify whether or not the
charging demand of electric vehicle j is scheduled on charger i. In addition, we
define binary variables xijt specifying whether or not the electric vehicle j is
plugged into the charger i at time slot t. Also, we introduce binary variables yjt
that specifies whether or not the electric vehicle j is charging at time slot t. The
mathematical formulation is as follows.

max
∑n

j=1

∑m
i=1 sij (1)

∑m
i=1 sij ≤ 1 ∀j ∈ J (2)

∑n
j=1 xijt ≤ 1 ∀i ∈ M, t ∈ H (3)

∑dj

t=rj
xijt = sij(dj − rj) ∀i ∈ M, j ∈ J (4)

∑dj

t=rj
yjt =

∑m
i=1 pijsij ∀j ∈ J (5)

∑n
j=1

∑m
i=1 wi × sij × yjt ≤ wG ∀t ∈ H (6)

Constraints (2) ensure that when a demand j is accepted, it is assigned to one
charger. Constraints (3) ensure that each charger i charges one demand at each
time slot t. Constraints (4) ensure that if a charging demand j is accepted to be
scheduled on charger i, then it will be plugged into this charger from its arrival
rj to its departure dj . Constraints (5) ensure that if a charging demand j is
accepted, the vehicle j will be charged to its requested energy. Constraints (6)
ensure that at each time slot t, the total power delivered by all chargers does
not exceed wG. In addition, variables xijt and yjt are set to zero for all t where
t < rj and t ≥ dj .

Constraints (6) can be linearized by using a new binary variables zijt. a
variable zijt equals to 1 if variables yjt and sij equal to 1. Constraints (6) are
replaced by the following constraints:

zijt ≥ yjt + sij − 1 ∀i ∈ M, j ∈ J , t ∈ H (7)
zijt ≤ yjt ∀i ∈ M, j ∈ J , t ∈ H (8)
zijt ≤ sij ∀i ∈ M, j ∈ J , t ∈ H (9)

∑k
i=1

∑n
j=1 wizijt ≤ wG t ∈ H (10)

6 Greedy Constructive Heuristic

Since maximizing the number of satisfied demands is NP-Hard, it is hard to
find optimal solutions for large-size instances in a reasonable time. Moreover,
using a commercial linear programming solver may incur additional costs for
charging station operators. Hence, we propose heuristics and metaheuristics.
The proposed heuristic, detailed in Algorithm 1, builds a charging schedule by
considering vehicles in the non-decreasing order of their arrival time rj and
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breaking ties first by the non-decreasing order of their departure time dj , then
by the non-decreasing order of their energy request ej . Let (wt

G)t∈H be a vector
of reals that stores the power allocated at each time slot t, which is initialized to
0. For each vehicle j, if at least a charger is available at rj , the heuristic begins
by seeking an available charger with the smallest charging power to charge j
without exceeding the current grid capacity (lines 7-10). If such a charger exists,
it is selected to charge vehicle j (line 11). Otherwise, the heuristic calculates
the value e(j′, rj , dj) that represents the amount of energy allocated to each
scheduled charging demand j′ (j′ 
= j) in the interval [rj , dj). The charging
demand with the greatest value of e(j′, rj , dj) will be rejected if e(j′, rj , dj) is
greater than the requested energy ej (line 15). Otherwise, the vehicle j is rejected
(line 16). When no charger is available at rj (lines 18-22), the charging demand
with the maximum departure time is rejected.

Algorithm 1: Constructive greedy heuristic
Input : The set of charging demands J , the set of chargers M, the grid

capacity wG

Output: The assignment of vehicles to chargers, the set of rejected demand
1 Sort J by non-decreasing order of rj . Then, in non-decreasing order of dj .

Then, in non-decreasing order of ej ;
2 Sort M by non-decreasing order of charging power wi ;
3 (wt

G) ← (0)t∈H ;
4 while J �= ∅ do
5 Let j be the first demand in J ;
6 if at least a charger is available at rj then
7 wa

j be the first available charger in M ;
8 Let b be the number of time slots in [rj , dj) where wt

G + wa
j ≤ wG;

9 Ej ← ej/(b × τ) ;
10 if the vehicle j can be scheduled on an available charger i with a

charging power wi ≥ wj without exceeding wG then
11 Schedule j on charger i and remove it from J ;
12 else
13 Let e(j′, rj , dj) be the allocated energy to charging demand j′ �= j in

the interval [rj , dj);
14 Let k be the scheduled demand with maxj′ e(j′, rj , dj) ;
15 if e(k, rj , dj) > ej then Reject k ;
16 else Reject j and remove it from J
17 end

18 else
19 Let j′ be the scheduled charging demand with maximum dj′ ;
20 if dj′ > dj then Reject j′ ;
21 else Reject j and remove it from J
22 end
23 Update wt

G;

24 end
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7 Simulated Annealing Metaheuristic

7.1 Solution Representation

Solving the scheduling problem consists of two main decisions: first, selecting
electric vehicles to be plugged into chargers; then, selecting vehicles to charge by
choosing the appropriate time slots for charging without exceeding wG. There-
fore, a solution to the charging scheduling problem consists of the assignment
solution and the power allocation solution. We represent the assignment of charg-
ing demands to chargers as a vector (π1, .., πm) where πi is the sequence of vehi-
cles assigned to a charger i and we place the unassigned demands in a list of
rejected demands. The power allocation solution is represented with a vector
(Tj)j∈J where Tj ⊆ H stores, for each vehicle j, the time slots chosen for charg-
ing process. For convenience, we define the vector (wt

G)t∈H , which stores the
minimum grid capacity at each time slot t.

7.2 Simulated Annealing

The simulated annealing (SA) algorithm, initially proposed by [7], is a stochas-
tic local search metaheuristic successfully adapted to address several scheduling
problems. In this paper, a candidate solution for the SA algorithm represents
the assignment of charging demands to chargers, on which an iterated local
search (ILS), described in Sect. 7.4, is applied to get the power allocation vector
and the objective function value of each generated solution. The detailed proce-
dure of the implemented SA is presented in Algorithm 2. It starts by taking as
input an initial solution (S0), generated using the heuristic detailed in Sect. 6,
and five parameters: the maximum number of generated neighbors at each itera-
tion (maxGenerated), the acceptation ratio at each iteration (acceptanceRatio),
the final temperature (Tf ), the maximum global number of generated solutions
(maxTrials), and the parameter for initializing the value of the temperature
(μ). First, the initial solution S0 is set as the current solution S and as the
global best solution Sbest (line 1). The temperature parameter T is initially
set to a value proportional to the objective function value of the initial solu-
tion T = μf(S0). The maximum number of accepted solutions at each iteration
(maxAccepted) is initially set proportionally to the parameter (maxGenerated)
(line 2). At each iteration (lines 3-19), SA generates neighbors of the current
solution S until reaching either (maxGenerated) or (maxAccepted). We detail
the neighborhood generation in Sect. 7.3. For each new solution S′, the global
number of generated solutions (trial) and the number of generated neighbors
of S′ (generated) are incremented (lines 8-9). The objective function value of
each solution, i.e., the number of scheduled demands, is referred to by f(S), and
it is calculated by the ILS procedure given in Sect. 7.4. The gap between the
objective values of the new solution S′ and the current solution S is calculated
as Δf = f(S′)−f(S). The neighbor S′ is accepted and replaces the current solu-
tion based on the Metropolis criteria (lines 10-16); the new solution S′ replaces
the current solution if there is an improvement, i.e., Δf > 0. If S′ improves the
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best solution found so far, it will become the new global best solution Sbest. Oth-
erwise, a random number is generated following the uniform distribution U [0, 1]
and the neighbor S′ will become the current solution if U(0, 1) ≤ eΔf/T where
T is the temperature parameter that controls the probability of accepting worse
solutions. For each accepted solution, the parameter accepted is incremented
(line 12). Finally, a cooling scheme gradually decreases the temperature at each
iteration (line 16). We consider the Lundy-Mees cooling scheme proposed by [9].
It updates the temperature T at each iteration l as Tl+1 = Tl

a+bTl
. Connolly in [2]

develops a variant of the Lundy-Mees scheme that set the parameter a to 1 and
b in function of the initial temperature T0, the final temperature Tf and the size
of the neighborhood M as b = T0−Tf

MT0Tf
. Here, the number of iterations is not fixed

directly. In fact, if we omit the condition on maxAccepted, the number of itera-
tions will be equal to maxTrials

maxGenerated . Thus, we set M to this value (line 1). After
updating the temperature, the number of generated neighbors (generated) and
the number of accepted solutions (accepted) are reset to zero (line 4). The algo-
rithm will stop if the number of generated solutions (trial) reaches its maximum
(maxTrials), or after generating (maxGenerated) solutions that did not result
in accepted solutions, i.e. accepted = 0 (line 17). When the stopping criterion is
met, the algorithm terminates and returns the best solution Sbest found so far.

Algorithm 2: Simulated annealing
input : S0, maxGenerated, acceptanceRatio , Tf , maxTrials, μ
output: Best solution found Sbest

1 Sbest ← S0 , S ← S0 , T ← μf(S0), M ← maxTrials
maxGenerated

, trial ← 0 ;
2 maxAccepted ← acceptanceRatio × maxGenerated;
3 repeat
4 accepted ← 0; generated ← 0 ;
5 while generated ≤ maxGenerated and accepted ≤ maxAccepted do
6 S′ ← Neighbor(S);
7 Δf ← f(S′) − f(S);
8 generated ← generated + 1;
9 trial ← trial + 1;

10 if Δf > 0 or U(0, 1) ≤ eΔf/T then
11 S ← S′;
12 accepted ← accepted + 1;
13 if f(S) > f(Sbest) then Sbest ← S;

14 end

15 end

16 T ← T
1+bT

;

17 until trial ≤ maxTrials and accepted > 0;
18 return Sbest



96 I. Zaidi et al.

7.3 Neighborhood Operators

The SA algorithm randomly chooses one of three operators to generate a new
solution:

– Change assignment: this operator chooses a charging demand j on a
charger i1 and moves it to another charger i2. The chargers and the charging
demand are randomly selected. If a charging demand in charger i2 overlaps
with j, the move is discarded.

– Assign a rejected charging demand: this operator chooses a charging
demand j from the rejected list and inserts it on a charger i. The charger and
the charging demand in the rejected list are randomly selected. The move is
discarded if at least one charging demand in charger i overlaps with j.

– Reject a charging demand: this operator moves a charging demand from
a charger to the rejected list. The charger and the charging demand are
randomly selected.

When a move is discarded, the SA algorithm randomly selects another oper-
ator. After each successful move, the SA algorithm applies an ILS procedure to
construct and improve the power allocation solution.

7.4 Iterated Local Search

Given an assignment solution, the iterated local search (ILS) procedure will solve
the power allocation problem by selecting the maximum subset of scheduled
demands from the assignment solution that can be satisfied without exceeding the
grid capacity wG. The assignment solution may or not be feasible, i.e., the grid
capacity wG may not be sufficient. Let J ′ be the set of assigned charging demands.
Let w̃G be the minimum grid capacity required to satisfy all charging demands in
the set J ′. The basic idea is to obtain a charging schedule with the minimum value
of w̃G. When w̃G > wG, we insert and reject charging demands until w̃G reaches
wG. Note that we can only insert the demands rejected by the ILS procedure. More-
over, each demand can only be reinserted in their previously assigned charger,
meaning that we cannot move a charging demand to another charger. Therefore,
we keep a list LLS of rejected demands by ILS along with their previous charg-
ers. The implemented ILS algorithm (Algorithm 3) starts by building the power
allocation vectors of an assignment solution S0 using a heuristic described in Algo-
rithm 4 (line 1). The current solution S is set to S0. At each iteration (line 3-23),
the ILS procedure generates maxGeneratedLS neighbors of the current solution
S (line 5-12). For each generated neighbor, it applies a procedure to minimize w̃G

(line 7) that will be described below. The best feasible solution S′ in the neighbor-
hood of S is selected. A solution is feasible if its grid capacity w̃G is less than or
equal to wG. If the best neighborhood S′ is better than the best solution found so
far S∗, it will replace the current solution S and the best solution S∗. Otherwise,
the number of non-improving iterations iter is incremented (line 21). In this case,
the current solution S is set to either the best solution in the neighborhood S′ or to
S∗. The best solution in the neighborhood S′ may replace the current solution S if
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a randomly generated number u is less than the probability piter (line 17-22). piter
decreases in a geometric way [11] and is calculated as follows. piter = p0 × riter−1,
Where p0 is the initial acceptance probability, r < 1 is the reducing factor, and
iter is the number of iterations. When the number of non-improving iterations
iter exceeds maxNonImproving, the search is considered as stagnating on a local
optimum and is subsequently terminated.

Algorithm 3: Iterated local search procedure
Input : The assignment solution S0, maxNonImproving, maxGeneratedLS,

r, p0

Output: Best feasible solution found S∗

1 Initialize the power allocation for S0 according to Algorithm 4;
2 iter ← 0; S ← S0; S∗ ← empty solution;
3 while iter < maxNonImproving do
4 S′ ← empty solution;
5 for k = 1 to maxGeneratedLS do
6 N ← Local Neighbor(S);
7 Apply minimizing grid capacity procedure to N ;
8 if w̃G(N) ≤ wG and f(N) > f(S′) then
9 if S∗ is empty then S∗ ← N ;

10 S′ ← N ;

11 end

12 end
13 if f(S′) > f(S∗) then
14 S ← S′;
15 S∗ ← S′;
16 iter ← 0;

17 else
18 Generate a random number u ∼ U(0, 1);

19 if u < p0 × riter−1 then S ← S′ ;
20 else S ← S∗ ;
21 iter ← iter + 1

22 end

23 end
24 return S∗

Initial Solution for Power Allocation. Let J ′ be the set of vehicles in the
assignment solution vector. Let wj be the charging power of each vehicle j ∈ J ′.
Then, the charging time pj of each demand j can be calculated as �ej/wj
. The
proposed heuristic, detailed in Algorithm 4, builds the power allocation solution
for the set J ′ by considering the assigned vehicles in the non-decreasing order
of their departure time dj , and break ties first by non-increasing order of their
energy request ej , then by non-increasing order of their arrival time rj (line 1).
The grid capacity w̃G and power allocation vectors are initialized to 0 (line 2).
The power allocation heuristic starts by charging vehicle j at time slots without
exceeding w̃G in chronological order (lines 4, 6–15). Then, on time slots with the
minimum wt

G value (lines 5, 6–15).
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Algorithm 4: Power allocation heuristic
Input : The set of charging demands J ′, the selected charging power wj and

the charging time pj for each vehicle
Output: The vectors (Tj)j∈J , (wt

G)t∈H , the grid capacity w̃G

1 Sort J ′ by non-decreasing order of dj . Then, in non-increasing order of ej .
Then, in non-increasing order of rj ;

2 (wt
G) ← (0)t∈H ; w̃G ← 0; (Tj) ← (∅)j∈J ′ ;

3 for j ∈ J ′ do
4 H1 ← the set of time slots t where t ∈ [rj , dj) and w̃G ≥ wj + wt

G sorted in
chronological order;

5 H2 ← the set of time slots t where t ∈ [rj , dj) and t /∈ H1 sorted in non
decreasing order of wt

G;
6 while pj > 0 do
7 if H1 �= ∅ then Hi ← H1 ;
8 else Hi ← H2 ;
9 Let t be the first time slot of Hi;

10 Remove t from Hi ;
11 Tj ← Tj ∪ {t} ;
12 wt

G ← wt
G + wj ;

13 pj ← pj − 1;
14 if wt

G > w̃G then w̃G ← wt
G

15 end

16 end
17 return w̃G, (Tj)j∈J , (wt

G)t∈H

Local Neighbor Structure. In the ILS procedure, a neighbor is generated by
one of the following operators:

– Reject this operator removes one or multiple charging demands from a
charger to the rejected list LLS . We implements three methods to select a
vehicle to reject. First, a randomly chosen vehicle. Second, reject the vehi-
cle j with the greatest value vj where vj =

∑
t∈T ′ wt

G where T ′ = {t ∈
Tj and wt

G > wG}. Third, calculate the value vj for all scheduled vehicles
and then a roulette wheel selection [8] is performed i.e., a vehicle j with a
higher value vj has a higher probability to be chosen. After rejecting a vehicle,
the wt

G is updated.
– Reinsert this operator randomly chooses one or more vehicles from LLS to

be assigned back to its charger. The power allocation for inserted vehicle is
obtained using the same procedure in Algorithm 4 (lines 4-21).

Minimizing Grid Capacity Procedure. We use a SA algorithm similar to
Algorithm 2 but with different objective function f(S) and different neighbor
structure. This second SA is denoted by minwG-SA. The objective of minwG-
SA is to try to reschedule the charging operations so that the minimum grid
capacity w̃G is minimized. Since Algorithm 2 is a maximization algorithm, in
the minwG-SA, we replace line 10 by Δf < 0 or U(0, 1) ≤ e−Δf/T . Also,
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line 13 is replaced by f(S) < f(Sbest). A neighbor structure in the minimizing
grid capacity local search method moves a charging operation of a vehicle j
from a time slot t1 ∈ Tj to another time slot t2 /∈ Tj . Let J ′ be the set of
scheduled charging demands where dj − rj − pij > 0, where pij is the charging
time of vehicle j on its assigned charger type i. First, we randomly select an
electric vehicle j ∈ J ′ and two time slots t1 and t2, where t1 is a time slot with
wt1

G = min{t∈Tj} wt
G, and t2 is a time slot with wt2

G = max{t/∈Tj} wt
G. Then, the

charging operation of vehicle j is moved from time t1 to t2 by deleting t1 from
Tj and adding t2 to Tj . This procedure is repeated k times for the same vehicle,
where k is randomly selected in {1, . . . , pij}. After each move, the vector wt

G is
updated as well as the objective value w̃G.

8 Simulation Results

The proposed algorithms are implemented in C++, and run on a desktop com-
puter with an Intel Core i5, 2.9 GHZ CPU and 8 GB RAM. The ILP model is
solved using CPLEX 12.8. In the following, we present our experimental results
on randomly generated instances.

We consider five groups of instances with different number of charging
demands n ∈ {10, 40, 50, 100}, different number of chargers m ∈ {15, 24, 27, 30},
and different power grid capacities wG ∈ {50, 75, 100, 125}. For each group, one
third of chargers deliver a power w1 = 11(kW), one third of chargers deliver
a power w2 = 22 (kW), and the remaining third of chargers deliver a power
w3 = 43 (kW). For each group, we generate 10 different random instances as
follows. The arrival times of vehicles are generated from the uniform distribu-
tion in the interval [0, 0.2n] (in hours). The required energy are generated from
the uniform distribution [5.5, 66] (in kWh). To generate the departure times of
vehicles, we first calculate the charging times p1j (in hours) for each vehicle j
∈ J assuming that it can be charged with chargers of type 1 (11 kW). Then, the
departure time of each vehicle j is calculated as dj = rj + (1 + α)p1j , where α is
randomly chosen according to the value p1j as follows. For p1j in [0.5, 1], [1, 2],
[2,3], [3,4], [4,5], and [5,6] α is randomly chosen in [0.1, 1], [0.1, 0.9], [0.1, 0.8],
[0.1, 0.7], [0.1, 0.6], and [0.1, 0.5], respectively. On the basis of preliminary exper-
iments, we set the parameters μ, maxGenerated, maxTrials, acceptanceRatio,
and Tf to 0.12, 50, 100, 0.1, and 0.001 respectively. For the LS procedure, we
set the parameters maxNonImproving, maxGeneratedLS, the reducing factor
r and the initial acceptance p0 to 5, 5, 0.75, and 0.2 respectively.

We set the maximum computation time of CPLEX to 30 min. Table 1 pro-
vides a comparison of results obtained for the four groups of instances. The first
column denotes the instance number in the group. For CPLEX and the heuristic,
column “scheduled” reports the objective value found, and column “time” dis-
plays the total running time in seconds. Due to the stochastic nature of the SA
algorithm, ten independent executions were done for each instance. We report
the best, the worst, and the average objective function value over the ten runs in
columns “best”, “worst”, and “average”, respectively. Also, we report the stan-
dard deviation of the mean objective function value in column “std” and the
average running time in column “time”.
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Table 1. Comparison results between CPLEX, the heuristic, and the SA algorithm.

instance CPLEX Heuristic SA

scheduled time (s) scheduled time (s) best worst average std time (s)

group 1 with n = 10, m = 15, and wG = 50

1 10 6.07 7 5.45E-05 10 10 10 0.00 3.56

2 9 1800.66 7 3.89E-05 9 9 9 0.00 23.12

3 9 1800.38 7 2.67E-05 9 9 9 0.00 19.54

4 10 3.98 7 8.70E-05 10 9 9.4 0.52 17.49

5 9 537.35 9 1.96E-05 9 9 9 0.00 21.66

6 10 18.17 6 4.74E-05 10 8 9.6 0.70 12.94

7 9 1800.48 7 3.17E-05 9 8 8.3 0.48 24.85

8 9 742.27 7 3.50E-05 9 8 8.7 0.48 24.43

9 9 46.03 6 5.14E-05 9 8 8.1 0.32 22.92

10 9 1800.66 7 3.21E-05 9 8 8.6 0.52 23.82

Average 9.30 855.60 7.00 4.24E-05 9.30 8.60 8.97 0.30 19.43

group 2 with n = 40, m = 24, and wG = 75

1 26 1802.38 27 1.37E-04 30 29 29.1 0.32 27.60

2 26 1802.27 25 2.19E-04 31 29 29.6 0.70 26.04

3 11 1801.35 23 2.08E-04 26 24 25.2 0.63 29.64

4 23 1802.33 19 4.86E-04 24 22 23.3 0.67 31.95

5 25 1801.64 21 2.17E-04 26 24 25.1 0.74 30.58

6 26 1802.17 25 1.34E-04 29 28 28.7 0.48 29.68

7 26 1801.81 26 1.02E-04 30 28 29.7 0.67 29.79

8 24 1801.51 23 1.66E-04 28 27 27.3 0.48 29.87

9 25 1801.89 23 1.38E-04 27 26 26.6 0.52 32.25

10 30 1802.85 30 9.83E-05 33 31 32.1 0.57 28.48

Average 24.20 1802.02 24.20 1.91E-04 28.40 26.80 27.67 0.58 29.59

group 3 with n = 50, m = 27, and wG = 100

1 21 1802.28 36 1.88E-04 41 39 40.20 0.79 34.45

2 31 1802.03 37 1.16E-04 44 42 42.70 0.67 34.62

3 16 1801.76 35 1.06E-04 41 38 39.50 0.85 32.63

4 34 1802.02 38 1.45E-04 44 42 42.80 0.63 30.70

5 22 1802.04 41 1.35E-04 45 43 44.10 0.57 33.17

6 24 1801.96 38 1.69E-04 41 40 40.80 0.42 34.59

7 23 1801.92 37 1.99E-04 42 40 41.10 0.74 32.79

8 31 1801.90 34 4.25E-04 39 37 38.00 0.67 35.74

9 33 1801.90 34 1.53E-04 37 34 36.10 0.88 35.74

10 15 1802.46 40 1.71E-04 45 43 44.00 0.67 33.12

Average 25 1802.03 37 1.81E-04 41.9 39.8 40.93 0.69 33.75

(continued)
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Table 1. (continued)

instance CPLEX Heuristic SA

scheduled time (s) scheduled time (s) best worst average std time (s)

group 4 with n = 100, m = 30, and wG = 125

1 18 1806.49 76 6.08E-04 77 76 76.20 0.42 50.57

2 11 1806.12 81 2.39E-03 86 83 84.90 0.88 49.28

3 13 1805.92 76 2.32E-04 80 78 78.90 0.74 55.75

4 14 1806.03 75 3.54E-04 78 76 77.40 0.70 55.62

5 14 1806.01 75 6.24E-04 82 78 80.50 1.18 52.36

6 13 1805.99 77 2.65E-04 82 79 81.00 0.94 55.05

7 13 1805.57 78 2.43E-04 83 81 81.40 0.70 51.40

8 14 1806.07 73 6.58E-04 80 77 78.70 1.16 50.72

9 12 1806.21 74 3.89E-04 82 80 80.40 0.84 51.84

10 14 1806.14 77 3.88E-04 81 77 79.40 1.26 55.16

Average 13.60 1806.06 76.20 6.15E-04 81.10 78.50 79.88 0.88 52.78

First, we can notice that CPLEX found six optimal solutions out of 40, all in
group one instances with ten vehicles (instances 1,4, 5, 6, 8, and 9 in group 1). All
remaining instances were hard to solve for CPLEX within 30 min. The SA also
achieved six optimal solutions. However, it took an average time of 17.16 s, while
CPLEX took an average time of 225.64 s. As expected, the SA algorithm out-
performs the heuristic since it is set to the initial solution for the SA algorithm.
The SA algorithm achieved the best solutions in all instances. We calculate the
average gap Gapbest(%) (resp. Gapmean(%)) between the objective values found
by CPLEX SCPLEX and the best (resp. mean) objective values found by the SA
algorithm SSA as Gapbest(%) = SCPLEX−SSA

SSA
. The Gapbest(%) values were 0%,

−14.75%, −40.33%, and −83.23% for groups 1, 2, 3, and 4, respectively. The
Gapmean(%) values were 3.68%, −12.54%, −38.92%, and −82.97% for groups
1, 2, 3, and 4, respectively. The gap between the SA algorithm and solutions
found by CPLEX increases significantly with the size of instances. The heuristic
starts performing better than CPLEX in groups 3 and 4. Finally, we compare the
proposed methods in terms of running time. As expected, the heuristic is faster
than the SA algorithm. The heuristic took less than one millisecond, whereas
the SA algorithm took an average running time of 32.44 s. In summary, the SA
algorithm outperformed CPLEX in significantly less time.

9 Conclusion

This paper addressed the EVCSP in a charging station with different charg-
ing types and limited overall power. We proved that the problem is NP-Hard
and we formulate it as an ILP model. It was hard for CPLEX to solve the ILP
model within 30 min. Therefore, we designed a heuristic and a SA algorithm
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combined with an ILS procedure. We generated different instances to evaluate
the performance of the proposed methods. The experimental results underline
the efficiency of the proposed methods. We assumed that the data related to
vehicle charging demands were known in advance. In future research, we can
study the scheduling problem in real-time to handle charging demands with or
without reservations. Another challenge is considering multi-objective optimiza-
tion to add the objective of minimizing the charging costs.
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