
Towards a Many-Objective Optimiser
for University Course Timetabling

James Sakal(B) , Jonathan Fieldsend , and Edward Keedwell

University of Exeter, Exeter, UK
{js1188,J.E.Fieldsend,E.C.Keedwell}@exeter.ac.uk

Abstract. The University Course Timetabling Problem is a combina-
torial optimisation problem in which feasible assignments of lectures are
sought. Weighted sums of violations of various constraints are used as a
quality measure, with lower scores (costs) being more desirable. In this
study, we develop a domain-specific many-objective optimiser, based on
constructive heuristics and NSGA-III, in which the violations of different
constraints are cast as separate objectives to be minimised concurrently.
We show that feasible solutions can be attained consistently in a first
phase and that a targeted objective can be fully optimised in a second
phase. A set of non-dominated solutions is returned, representing a well-
spread approximation to the Pareto front, from which a decision maker
could ultimately choose according to a posteriori preferences.

Keywords: Many-objective · Optimisation · Timetabling

1 Introduction

The generalised University Course Timetabling Problem (UCTP) is the task of
generating a workable university timetable by assigning lectures to discrete loca-
tions in time and space, subject to various constraints. It is a well studied prob-
lem in combinatorial optimisation and known to be computationally hard [19].
This study works with the standard curriculum-based formulation proposed by
the International Timetabling Competition (ITC) 2007 Track 3 under the pop-
ular UD2 configuration [4,9]. While it is noted in [3] that all (unique) instances
of this benchmark but 3 have been solved to optimality, this does not diminish
its usefulness. The formulation remains challenging for optimisers running on
short-to-medium timeouts, while prior knowledge of the optimal values helps to
contextualise results. The reader is directed to the sources above for an in-depth
description of the problem and constraints, which are modelled on the real world
timetabling problem of the University of Udine. In brief, feasible timetable solu-
tions cannot violate any of five given hard constraints h1 . . . h5. These ensure
that all lectures are assigned, pre-designated unavailable periods are avoided, as
are clashes between lectures. The quality of a feasible solution is determined by
violations of four soft constraints, s1 . . . s4, which relate to room capacity, min-
imum working days, curriculum compactness and room consistency respectively.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Legrand et al. (Eds.): EA 2022, LNCS 14091, pp. 133–144, 2023.
https://doi.org/10.1007/978-3-031-42616-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42616-2_10&domain=pdf
http://orcid.org/0009-0006-3585-7209
http://orcid.org/0000-0002-0683-2583
http://orcid.org/0000-0003-3650-6487
https://doi.org/10.1007/978-3-031-42616-2_10

134 J. Sakal et al.

We use the following notation to refer to entities in the benchmark instances: L
is the set of lectures {l1 . . . lγ}, di a day of the week, ti a timeslot within a day,
pi = t×d a period (or timeslot within a week), ri a room. Adopting the terminol-
ogy used in [16], a room/period pair is referred to as a place. This study proposes
a parameterless many-objective optimiser based on the non-dominated sorting
genetic algorithm III (NSGA-III) [6] and a constructive heuristic. The motiva-
tion is to evolve a set of solutions that approximate the Pareto front, thereby
giving a decision maker a set of high quality timetables to select from. For effi-
ciency, our approach incorporates δ-evaluators, as suggested by [12]. Phase 1
of the approach aims to find feasible starting solutions, which are then used to
initialise the genetic algorithm in Phase 2. Here, the 4 soft constraint violation
scores are cast as separate objectives to be minimised concurrently.

Section 2 provides some background work before Sect. 3 details the methodol-
ogy and optimiser development. Section 4 describes the experiments and results.
Sections 5 and 6 feature a discussion and conclusions respectively.

2 Related Work

While results have been published by many authors for the ITC2007 benchmark
(see the Benchmark Analysis section of [13] for an incomplete list), the majority
treat the problem as a single-objective minimisation, as prescribed by the original
competition rules. The original Track 3 competition included five finalists [17],
Z. Lu et al, [2,10] and [5], from which the multi-phase constraint-based solver
of [17] was declared the winner. In the intervening years, the current best known
single-objective results have been achieved by [1] and [15]. The former employed
a hybrid genetic algorithm with Tabu Search, whose movement through the
search space was determined by a sequence of large neighbourhood operators.
The latter embedded an Adaptive Large Neighbourhood Search within a Sim-
ulated Annealing framework. The best known results are reproduced here for
context.

It is noted in [14] that this single-objective approach predominates in educa-
tional scheduling generally, despite the existence of often numerous and conflict-
ing objectives. The authors consider a 3–objective professional training schedul-
ing problem with some similarities to the UCTP, comparing NSGA-II with
NSGA-III. The former was found to be superior on all metrics except speed.
However, the parameter values were tuned only for NSGA-II, and our problem
has a higher-dimensional objective space which may be tackled better by NSGA-
III. Other differences between the UCTP and the problem in [14] must be noted
too, such as its timescale (repeating week-long blocks rather than months or
years), requirement to assign all events, and lack of precedence constraints.

A more direct comparison may be made with [11], in which the many-
objective nature of the UCTP and ITC2007 benchmark was considered. A tra-
jectory search was carried out by selecting a small number of lectures and re-
assigning them. Various acceptance criteria were relied upon for the new evalua-
tions. In both of the two approaches proposed, decision maker preferences were

A Many-Objective Optimiser for Course Timetabling 135

assumed a priori and implied by the cost function. This was defined as either
the standard weighted sum of violations or the Chebyshev distance to a refer-
ence point (the origin). Using the latter resulted in a more even spread of scores
across individual objectives.

To the best of our knowledge, there are as yet no published results for the
benchmark that attempt to approximate the Pareto set in the absence of decision
maker preferences. The following section outlines the development and reasoning
behind the different components of our system.

3 Methodology

Encoding: Our system is built in Matlab and incorporates modules from
the platEMO optimisation suite [20]. Its first task is re-encoding the problem
instances, by converting each problem from its original .ctt file format to a 2-D
indexed cell array data structure.

Solutions to the problem — the timetables themselves — must also be
encoded. This is a design choice with serious implications for the efficacy of any
evolutionary algorithm used. The proposed solution encoding represents each
assignment using the 3-tuple: 〈di, ti, ri〉, where di and ti are the day and timeslot
respectively and the element-wise length of a complete chromosome is 3 × |L|.
Disadvantages of using a 3-tuple include the larger data structure and higher
time complexity involved, as well as the potential for epistatic effects caused by
interactions between elements within tuples. More favourably, the induced search
landscape grants connectivity between days, timeslots and rooms as individual
entities, allowing for the design of more nuanced and effective genetic opera-
tors. Each element within a gene resonates with a particular soft constraint. For
example, perturbing di affects the number of unique days that course lectures
are held on, and therefore the violation score of s2. Compliance with h1 (all
lectures must be assigned) is also ensured by the 1:1 lecture:gene ratio.

Initialisation: The initialisation constitutes Phase 1 of a two-phase optimi-
sation, with the aim being to produce a population of solutions that is as close
to fully feasible as practicable. To this end, two broad categories of construc-
tive heuristics have been proposed in the literature [18]. Static heuristics require
lectures to be sorted by some metric, where this fixed ordering then determines
the sequence of assignments. Dynamic heuristics involve recalculating the metric
values after each assignment, thus providing greater adaptive potential. In both
cases, the chosen metric is intended as a measure of ‘difficulty to assign’.

The static heuristics Largest Enrolment (LE) and Largest Degree (LD) and
the dynamic heuristic Saturation Degree (SD) were tested on the ITC2007 bench-
mark. LE relies on the number of enrolled students for its metric. Lectures with
a larger number of students take priority. LD, as described for the generic case
in [18], uses the number of potential clashes a lecture has with other lectures
resulting from commonality of students. Since explicit student sectioning is not
a feature of the ITC2007 benchmark, the metric is defined analogously as: The
sum total of lectures that have either a curriculum or a teacher in common with

136 J. Sakal et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proportion of feasible solutions in sample of 100 (mean of 10 reps).

1

2

3

4

5

W
al

l c
lo

ck
 ti

m
e

to
 c

on
st

ru
ct

10
0

so
lu

tio
ns

 /
s

(m
ea

n
of

 1
0

re
ps

).
Comparison of constructive heuristics

LE (), LD (), SD ()
for all 21 instances in the ITC2007 benchmark.

Fig. 1. Performance comparison of 3 constructive heuristics. Lines connect results for
common instances.

the lecture being assessed. Priority is given to lectures with higher numbers of
potential clashes in this respect. The metric for SD is the number of available
feasible places, i.e. those that would not result in a hard constraint violation at
the point of assignment. The lecture with the lowest value at each decision point
is chosen for assignment. Across all heuristics, ties are broken at random.

Once a lecture has been chosen on the basis of its metric value, a place
is randomly selected from the set of feasible places currently available to that
lecture. If no feasible place exists, an infeasible place (excluding unavailable
periods) is chosen at random instead. A secondary, period-based heuristic is
suggested in [18] as an optional, more discriminatory, alternative to random
sampling. Our system neglects to include this with the following justification:
Any infeasible solutions that may have been constructed in Phase 1 are quickly
bred out of the population by the inherent hard constraint handling mechanism.
The extra expense of a period-based heuristic was therefore found to outweigh
the marginal gains in feasibility rate.

In testing LE, LD and SD, 10 independent repetitions were carried out for
each problem instance. In each repetition, 100 timetable solutions were con-
structed. This number was chosen to reflect the order of magnitude of a typical
population. The primary quality measures to consider are the proportion of
solutions that are feasible, and the relative speed of obtaining them. As with all
experiments in this study, the computation was performed on a 12-core Ryzen9
with 32GB RAM, base clock speed 3.8GHz. The wall clock speed shown here
resulted from using a single core and no parallelisation. Figure 1 shows the results
for the three heuristics over the 21 instances.

SD achieves superior feasibility rates for every instance, while being computa-
tionally dearer. At the scale of a population size of 100, this additional time cost
amounts to no more than a few seconds. More pertinently, all SD rates are 0.99
or higher, with the exception of the 3 instances comp02 (0.80), comp05 (0.11) and
comp19 (0.58). Across the infeasible solutions constructed for these 3 problems,

A Many-Objective Optimiser for Course Timetabling 137

the mean distances to feasibility, given as a vector of the hard constraints (h2
h3, h4, h5), were (0.3, 3.1, 0.0, 0.2), (0.2, 18.6, 0.0, 0.2) and (0.5, 3.8, 0.0, 0.2)
respectively. These show that in the minority of cases where SD fails to achieve
a near-perfect feasibility rate, the expected violations of hard constraints in the
infeasible subset are nonetheless low. In particular, h4 is zero in all cases.

Besides feasibility and speed, there may be other factors to consider when
assessing the quality of an initial population generated by a constructive heuris-
tic. The percentage of unique individuals in the sample is one example. In the
aforementioned tests, 100% was achieved across all instances and all heuristics on
this measure. Additionally, it may be worth considering some measure of disper-
sion or dissimilarity between individuals. A suitably diverse starting population
may be important in terms of the exploratory power of the optimiser.

Algorithm: NSGA-III is a successful evolutionary algorithm that supports
many-objective optimisation with constraints [6]. It is an extension to the popu-
lar NSGA-II algorithm, which was originally conceived for lower-dimensional
objective spaces [7]. As the ITC2007 problem has 4 objectives to optimise,
NSGA-III serves as an appropriate base for Phase 2 of our system.

Selection and constraint handling: Alongside the initialised population,
the SD heuristic implementation returns an array of feasibility flags, toggled
during construction. The property con holds the flag associated with each solu-
tion, with a true value indicating at least one violation of a hard constraint. For
the first generation only, scores for the four soft constraint objectives are then
calculated in full. 2-way tournament selection is used to select a mating pool.
Randomly paired candidate solutions are first compared on their con property,
with the lower value indicating the winner. Feasible solutions are thereby given
priority. Should the con values be equal, the sum of the objective scores is used
as a tie-breaking fitness measure.

Genetic operators: For a real-valued encoding, NSGA-III traditionally uses
simulated binary crossover (SBX) and polynomial mutation as its genetic oper-
ators. For this discrete problem, adaptations were first made to both genetic
operators to ensure the preservation of integrality in decision space. Further
investigation determined that, with no meaningful ordering apparent for enti-
ties such as days or periods, traditional polynomial mutation is not necessarily
well suited for this problem domain. Similarly, standard SBX carries the risk of

Fig. 2. A histogram of the percentage of assigned lectures with at least one feasible
move available, for comp12. The sample set is 1000 feasible solutions constructed by
SD.

138 J. Sakal et al.

degenerating timetables by recombining promising subsets in an injudicious way,
thereby worsening the overall solution quality. In complex, combinatorial prob-
lems such as timetabling, a successful crossover operator requires domain-specific
knowledge and can be computationally expensive. The proposed approach there-
fore dispenses with crossover entirely and is instead wholly reliant on a guided
mutator. In developing this mutator, the following test was conducted:

1000 feasible solutions were constructed using SD. For each assigned lecture
of each solution, a check was made on the number of places it could be re-assigned
to without violating the overall solution feasibility. For some assignments, there
were no feasibility-preserving moves available. The histogram in Fig. 2 shows an
example (for comp12) of the distribution of percentages of assigned lectures, over
the 1000 solution sample, with at least one such available move.

For all problems tested, the distributions demonstrate that the expected
chance of an available feasible move is generally high. The optimiser can be
guided, therefore, by imbuing the initial mutator, known as MuPF, with a prefer-
ence for feasible moves where they exist. After randomly selecting one lecture,
li, to be mutated, another random selection is made from the set of feasible
moves available to that lecture. If this set is found to be empty, MuPF defaults
the assignment to any random place.

Using this mutator, a test run was performed on comp01 with a population
size of 364 over 550 generations. Over the course of this run, the minimum values
of objectives (s1, s2, s3, s4) improved from (1599, 15, 88, 66) to (537, 0, 6, 28)
respectively. Further tests emphasised the large relative contribution that s1
often makes to a scalarised objective score. An enhancement to the mutator, in
which sufficient room capacity is considered, was proposed specifically to target
this objective. Algorithm 1 outlines MuPFPR.

An initial indicative plot comparing MuPF and MuPFPR is given in Fig. 3. A run
on comp01 was carried out with a function evaluation budget of 2 million. The

Algorithm 1: Preference for feasibility, preference for room (MuPFPR)
mutation operator
Inputs: One starting solution
Output: One mutated solution
Randomly select a lecture, li, to mutate
Identify the set of places, feasMoves(li), to which li can be re-assigned without
violating the feasibility of the solution
if feasMoves(li) = ∅ then

Re-assign li to a new randomly chosen place in any room with sufficiently
high capacity and excluding unavailable periods

else
if feasMoves(li) ∩ sufficientRooms(li) = ∅ then

Re-assign lecture i to a place randomly chosen from feasMoves(li)

else
Re-assign li to a place randomly chosen from the given non-empty
intersection

A Many-Objective Optimiser for Course Timetabling 139

Fig. 3. A comparison of mutator MuPF (grey) and MuPFPR (black) for a single rep of
comp01 with 2 million function evaluations. Traces shown are the min, mean and max
objective scores over each generation.

extra room-related guidance provided by MuPFPR, shown as a black trace, helped
drive the convergence rate for s1 objective in the top left tile, at no detriment
to the remaining objectives.

Incorporated into the mutation process is an implicit feasibility checker.
A violation flag, conMutation, is toggled if and only if feasMoves(i) = ∅.
The returned con property for that child is generally given by (conParent ∨
conMutation) — except in the case when the parent solution is infeasible and
the mutation is feasible. Here, the feasibility of the child is unknown and a full
evaluation of the hard constraints must be called. The rarity of this outcome
ensures that, in practise, the hard constraint evaluators seldom need to be exe-
cuted at all — an example of a time-saving partial evaluation. The following
section details how δ-evaluations are used to make similar savings when calcu-
lating the soft constraint objectives.

Number of lectures mutated.

W
al

l c
lo

ck
 ti

m
e

fo
r

10
0

ev
al

ua
tio

ns
 /

s.

5 10 15 20
0

0.1

0.2

0.3
comp18

5 10 15 20

comp02

5 10 15 20

comp07

Fig. 4. A comparison of the time complexity (mean of 10 reps) for the combined δ-
evaluators (solid line) vs. full (dashed line), for a small (comp01), medium (comp02)
and large (comp07) sized problem and a variable number of mutations.

140 J. Sakal et al.

δ-evaluations: The process by which a δ-evaluation negates the need for a
full evaluation on the soft constraint objectives is as follows: The ID of the lecture
to be perturbed is recorded. The value contributed to the parent objective score
by the assignment of this lecture is calculated. This value is subtracted from
the objective score of that parent, which is known a priori from the previous
generation. Lastly, the contribution of the new assignment in the child solution
is added. Objective s1 is best suited for a fast δ implementation, due to the
fact that the value contributed by an individual lecture is independent of those
from other lectures. For the remainder of the objectives, interactions between the
lecture being perturbed and various other lectures must also be accounted for.
Specifically, those from the same course (for s2 and s4), or those with a common
curriculum (s3). Combined over 4 objectives, the δ-evaluators nonetheless offer
a sizeable time saving over their full counterparts, as illustrated in Fig. 4. While
the run time of a full evaluator scales with the number of lectures, the δ run
time scales with the number of mutations — due to the resulting combinatorial
interactions. Under a single lecture mutation, the δ-evaluator gives the largest
time savings, by multiples of 6.3, 10.7 and 13.2 for the respective problems shown.

Non-dominated sorting: NSGA-III relies initially on the dominance rela-
tion on objective scores to sort a concatenated parent/offspring population into
non-dominated fronts. The efficient non-dominated sort with sequential search
(ENS-SS) is used [21]. The hard constraint handling procedure mandates that
any solution with a con flag value true is automatically dominated by all fea-
sible solutions, regardless of the quality of its objective vector. The only way,
therefore, in which such a solution can be admitted into the next generation is
if the cardinality of the feasible solution set is less than the active population
size. This in turn implies the following about Phase 2: If a given generation
is fully feasible, all subsequent generations are also fully feasible. To promote
diversity, NSGA-III also associates solutions with rays passing through a set
of popSize uniformly distributed points on the 4-dimensional unit hyperplane.
The normal-boundary intersection method with two layers is used to obtain
these coordinates. popSize is a geometrically constrained approximation to the
desired, user-input population size, setPopSize.

4 Experimental Design and Results

Each run of the optimiser was allocated to a single core of the Ryzen9 machine,
as per the original ITC2007 stipulation. Parallelisation was used only across
independent runs. In the absence of the original CPU benchmarking program,
termination was after 600 s wall clock time, which was the limit intended by
the competition, and setPopSize = 100. For each problem in a subset of 10
tested, 30 repetitions were carried out by varying the random seed. An exter-
nal passive archive, implementing the ND-Tree structure [3,8], was constructed
using the complete search history. The purpose was to update and store the
set of non-dominated solutions found over the course of the search. The results
are reported in terms of the following performance metrics: The best scalarised

A Many-Objective Optimiser for Course Timetabling 141

score found (using the original ITC2007 weighted penalty scheme). The size, at
termination, of unique solutions in the non-dominated archive (both in decision
and objective space, as the mapping is many-to-one). A Monte Carlo estimate of
the hypervolume indicator, for which theoretical upper bounds on the maximum
objective scores were used as the reference point coordinates.

Table 1 shows our results and statistics, alongside results from [1,11] and [15].
Figure 5 illustrates the spread of non-dominated solutions achieved by a single
rep in 3-D objective space, for 3 problems in which the s1 dimension has suc-
cessfully been collapsed to zero.

Table 1. Results from 30 independent reps. bs is the best scalarised solution score
found over all reps, while bs(s1, s2, s3, s4) gives the objective scores that make it up
(averaged over the unique objective vectors whose sum is bs). A is the final archive of
non-dominated solutions, where sets of unique vectors in objective or decision space
are distinguished by subscripts o and d respectively. Cardinalities for both are given as
median values. hv(Ao) is the (mean) hypervolume of Ao, while HVref is the reference
point used. The best scalarised results from the two approaches in [11] are given as G1
(Threshold Accepting with 1% threshold) and G2 (reference point based). Finally, BK
denotes the best known single-objective scores to date within the time limit, achieved
by either [1]* or [15]† or both.

Instance Proposed approach Others

bs bs(s1, s2, s3, s4) |Ao| |Ad| hv(A) HVref G1 G2 BK

comp01 11 (4, 0, 4, 3) 11 7492 0.959 (3606, 360, 294, 124) 5 10 5*†
comp03 162 (0, 52.5, 92, 17.5) 17 850 0.831 (11160, 720, 1536, 179) 115 154 68†
comp04 92 (0, 6.7, 65.3, 20) 17 482 0.853 (8151, 665, 1130, 207) 67 90 35*†
comp06 167 (0, 15, 104, 48) 16 233 0.777 (10632, 990, 1668, 253) 94 159 30*

comp08 108 (0, 0, 74, 34) 14 301 0.810 (7711, 700, 1166, 238) 75 120 37*

comp09 158 (0, 40, 94, 24) 24 623 0.821 (9269, 720, 1492, 203) 153 197 100†
comp11 0 (0, 0, 0, 0) 2 45453 0.981 (3196, 335, 500, 103) 0 0 0*†
comp13 131 (0, 30, 84, 17) 20 390 0.832 (10668, 670, 1292, 226) 101 133 59*†
comp14 125 (0, 20, 90, 15) 19 1289 0.866 (7138, 830, 1392, 190) 88 120 51†
comp18 116 (0, 30, 78, 8) 45 1373 0.884 (2638, 455, 954, 91) n/a n/a 64†

Fig. 5. Non-dominated solution sets in (s2,s3,s4)-space, found during single runs for
3 problems in which the fourth objective, s1, was optimised to zero.

142 J. Sakal et al.

5 Discussion

The strategy for speeding up (or by-passing) calculation of objective scores was
successful in yielding inexpensive evaluations. However, this only partially mit-
igated against the cost of non-dominated sort. The algorithm unsurprisingly
had a lower execution rate for function calls than many single-objective solvers.
Comparing its performance on an equal function evaluation budget rather than
a time budget would be enlightening, as the gradients in Fig. 3 suggest further
gains are available. Despite this, scalarised results are seen to approach those of
single-objective solvers on some problems which is encouraging — comp11 in par-
ticular was solved to optimality. With regard to the individual objective scores,
the targeted operator MuPFPR was capable of rapidly optimising s1 to zero across
the board (except for comp01 where the value of s1 in the optimal solution is
known to be 4). These gains were not made at the expense of other objectives
however, which showed improvement without exception during the runs. This
suggests that additional bespoke operators, targeted at these objectives, may be
a promising next step in striving to closer approximate the true Pareto front. A
comparison with the reference point based approach of [11] (G2), shows compet-
itive or improved scalarised scores, although this claim is weakened by the CPU
benchmarking discrepancy. A major point of differentiation though is that our
approach returns a population per run, rather than a single solution, in a compa-
rable timescale. The approach appears relatively problem-agnostic, in contrast
to [12] whose results show high variance across problems. Most importantly, it
works on the assumption of a posteriori decision maker preferences. Different
areas and extremes of the Pareto front are therefore explored simultaneously
and a well-spread set of non-dominated solutions can be provided, as shown in
Fig. 5. The hypervolume indicator values in Table 1 also evidence this, with all
10 problems, bar comp06, achieving a mean of 0.82 or higher. As lower absolute
objective scores are achieved, the cardinality |Ao| naturally tends to decrease,
as in comp01 (median 11) and comp11 (2). This can be explained by the prox-
imity of the front to the origin and consequent sparsity of distinct points on the
4-D integer lattice. The observation |Ad| � |Ao| also interestingly highlights the
extent to which multiple designs map to a common objective point.

6 Conclusions and Further Work

In a departure from the single-objective treatment of the ITC2007 timetabling
problem, we propose a two-phase, many-objective optimiser based on NSGA-III
in which hard constraints are handled procedurally and soft constraints are cast
as objectives. It is effectively paramaterless, save for setPopSize and termina-
tion criteria which are pragmatic user choices. The time cost associated with
many-objective algorithms is mitigated by prudent use of δ-evaluators. A simple
mutation operator reduces the otherwise large violation contributions caused by
over-filling rooms (constraint s1) to zero wherever possible. Selection and non-
dominated sorting ensure convergence of the other objectives as well as feasibility
of solutions, while a quick start is guaranteed by the SD constructive heuristic.

A Many-Objective Optimiser for Course Timetabling 143

Further work will focus on increasing the convergence speed of the remain-
ing 3 objectives by widening the pool of targeted operators. If the mutator is
considered as a neighbourhood, a more systematic exploration may be possible.
Figure 2 gives an intuition about the size of such a neighbourhood. An adaptive
element may be added to Phase 2 to select from such a pool based on the state
of the current population or trajectory of the evolution. Alternatively, objec-
tives that reach optimality may be aggregated with con so that any solutions
sub-optimal in this objective will thereafter be automatically dominated. Fur-
ther analysis will also help characterise the trade-offs between the objectives.
By their definitions, s1/s4 and s2/s3 represent the two pairs with the greatest
potential to conflict. The large cardinalities of the decision space solution sets
suggests that genotype diversity could also play a useful role in the selection
process.

References

1. Abdullah, S., Turabieh, H.: On the use of multi neighbourhood structures within
a tabu-based memetic approach to university timetabling problems. Inf. Sci. 191,
146–168 (2012)

2. Atsuta, M., Nonobe, K., Ibaraki, T.: ITC-2007 Track 2: An approach using general
CSP solver. In: Proceedings of the Practice and Theory of Automated Timetabling
(2007)

3. Bagger, N.C.F., Sørensen, M., Stidsen, T.R.: Dantzig-Wolfe decomposition of the
daily course pattern formulation for curriculum-based course timetabling. Eur. J.
Oper. Res. 272(2), 430–446 (2019)

4. Bonutti, A., De Cesco, F., Di Gaspero, L., Schaerf, A.: Benchmarking curriculum-
based course timetabling: formulations, data formats, instances, validation, visu-
alization, and results. Ann. Oper. Res. 194(1), 59–70 (2012)

5. Clark, M., Henz, M., Love, B.: QuikFix a repair-based timetable solver. In: 7th
International Conference on the Practice and Theory of Automated Timetabling,
PATAT 2008 (2008)

6. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point based non-dominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Fieldsend, J.E.: Data structures for non-dominated sets: implementations and
empirical assessment of two decades of advances. In: GECCO 2020 - Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference, pp. 489–497
(2020)

9. di Gaspero, L., Schaerf, A., McCollum, B.: The second international timetabling
competition: curriculum-based course timetabling (Track 3). In: Proceedings of the
1st International Workshop on Scheduling a Scheduling Competition (2007)

10. Geiger, M.J.: An application of the threshold accepting metaheuristic for curricu-
lum based course timetabling. In: Proceedings of the 7th International Conference
on the Practice and Theory of Automated Timetabling (PATAT) (2008)

144 J. Sakal et al.

11. Geiger, M.J.: Multi-criteria curriculum-based course timetabling—a comparison
of a weighted sum and a reference point based approach. In: Ehrgott, M., Fon-
seca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS,
vol. 5467, pp. 290–304. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01020-0 25

12. Geiger, M.J.: Applying the threshold accepting metaheuristic to curriculum based
course timetabling. Ann. Oper. Res. 194(1), 189–202 (2012)

13. Gozali, A.A., Fujimura, S.: Solving university course timetabling problem using
multi-depth genetic algorithm. SHS Web Conf. 77, 01001 (2020)

14. Hafsa, M., Wattebled, P., Jacques, J., Jourdan, L.: A Multi-objective evolutionary
approach to professional course timetabling: a real-world case study. In: 2021 IEEE
Congress on Evolutionary Computation, pp. 997–1004 (2021)

15. Kiefer, A., Hartl, R.F., Schnell, A.: Adaptive large neighborhood search for the
curriculum-based course timetabling problem. Ann. Oper. Res. 252(2), 255–282
(2017)

16. Lewis, R., Paechter, B., Rossi-Doria, O.: Metaheuristics for university course
timetabling. Stud. Comput. Intell. 49, 237–272 (2007)

17. Müller, T.: ITC2007 solver description: a hybrid approach. Ann. Oper. Res. 172(1),
429–446 (2009)

18. Pillay, N., Özcan, E.: Automated generation of constructive ordering heuristics for
educational timetabling. Ann. Oper. Res. 275(1), 181–208 (2019)

19. Rossi-Doria, O., et al.: A comparison of the performance of different metaheuristics
on the timetabling problem. Pract. Theory Autom. Timetabling IV 2740, 329–351
(2003)

20. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: A MATLAB platform for
evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–
87 (2017)

21. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated
sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput.
19(2), 201–213 (2015)

https://doi.org/10.1007/978-3-642-01020-0_25
https://doi.org/10.1007/978-3-642-01020-0_25

	Towards a Many-Objective Optimiser for University Course Timetabling
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Design and Results
	5 Discussion
	6 Conclusions and Further Work
	References

