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Foreword

I was delighted to be asked to be one of the plenary speakers at EA 2022, and to have
had the opportunity to share some of the exciting work that is currently going on in the
field of Evolutionary Robotics with the audience.

I am not a roboticist by training. In fact, I spent many years developing algorithms
for solving combinatorial optimisation problems such as scheduling and timetabling,
for example in the field of hyper-heuristics. However, through interactions with various
colleagues at conferences, I began to realise that robotics offered the ideal platform to
investigate one of the topics in the field of Evolutionary Computation that I feel most
passionate about: developing evolutionary-inspired systems that continually learn, i.e.
improve their performance over time either by learning from experience and/or being
able to adapt to changes in their operating environment.

I believe that the ability to continually learn is a necessary feature of many domains.
In most real-world situations, the characteristics of the problems that an optimiser has
to deal with are likely to change over time, as the requirements of users change, whether
this is over weeks, months or years. In addition, it seems obvious that if a system is
solving many instances, then it should able to learn from its experience to improve its
own software. While this is true in many real-world optimisation domains (e.g. routing,
factory scheduling) it seems even more acute in robotics: in addition to being asked to
accomplish rasks that change over time, robots often operate in complex, noisy environ-
ments in which it is often challenging to foresee before deployment what obstacles or
situations they might encounter. Furthermore, their operation can also be complicated
by hardware failure (for example, a wheel or leg breaking) which requires a robot’s con-
trol system to adapts its controller to counter the failure. As a result, robotics provides
the perfect platform to be able to study methods of continual learning, particularly as
learning can be applied to adapting both morphology (the robot’s body) and control,
thereby increasing the scope of what can be learnt over time.

Hence, I found myself somewhat unexpectedly drifting into evolutionary robotics
(ER) — the subject of my talk at EA 2022. Although researchers from the field of
Evolutionary Computation (EC) have applied EC to robotics for over two decades, the
majority of this work has been applied to evolution of controllers. However, back in
1994, Sims [5] first proposed the use of EC to simultaneously evolve body and control
of robots in simulation, with pioneering work by Lipson [3] demonstrating that complete
robots evolved in simulation could be built post-evolution. Today, the opportunities to
apply EC to the problem of jointly evolving body and control of robots in dynamically
changing environments are plentiful. This is driven by multiple factors. Firstly, rapid
advances in materials science, specifically in the development of soft materials that
open up an entirely new space to evolve in, recently facilitating ground-breaking work
in evolving robot designs that were subsequently built from living cells [1]. Secondly,
the relatively recent sub-field of EC known as Quality Diversity (QD) is driving much
of the algorithmic development in ER, through development of methods that leverage
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diversity to provide efficient exploration of complex search spaces [2, 4]. Finally, the
ability to rapidly prototype designs via 3d-printing promises to deliver physical robots
that can be easily evaluated in the real world, helping address the infamous reality gap.
Given these fast-paced developments, ER seems the ideal place to study methods of
continual learning in a challenging physical substrate — I’m excited about what the
field might deliver in the next decade as technology, materials and algorithms advance.

Finally, writing this in July 2023 provides an opportune moment to reflect more gen-
erally on the field of artificial evolution, noting that 2023 marks the 30-year anniversary
of the first ever journal in the field, Evolutionary Computation (ECJ), published by MIT
Press — the first issue was published in Spring 1993. I think this clearly indicates that
in 2023, Evolutionary Computation can be considered a mature science. I've had the
privilege to be the Editor-in-Chief of ECJ for the last seven years, giving me oversight
of the large and diverse breadth of work that is going on. I am continually surprised at
the constant innovation and progress being made. The field is becoming increasingly
interdisciplinary, leveraging ideas from machine learning and operations research, which
is only strengthening it. I fully expect this trend to continue. The most recent issue of
ECJ (volume 31:2) contains a series of articles written by the authors of the papers that
were published in the first issue, reflecting on just how much the field has changed in 30
years: I look forward to seeing what a similar issue in 2053 will say!

Emma Hart
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Preface

This LNCS volume is made of the best papers presented during the 15th Biennial Inter-
national Conference on Artificial Evolution, EA! 2022 held in Exeter (UK). This con-
ference is the first in the series to be held in the UK, with previous iterations held
across France in Mulhouse (2019), Paris (2017), Lyon (2015), Bordeaux (2013), Angers
(2011), Strasbourg (2009), Tours (2007), Lille (2005), Marseille (2003), Le Creusot
(2001), Dunkerque (1999), Nimes (1997), Brest (1995) and Toulouse (1994).The con-
ference was due to take place in 2021 but was postponed due to the ongoing effects of
the COVID-19 pandemic.

We sought original contributions relevant to Artificial Evolution, including, but not
limited to: evolutionary computation, evolutionary optimization, coevolution, artificial
life, population dynamics, theory, algorithmic and modeling, implementations, appli-
cation of evolutionary paradigms to the real world (industry, biosciences...), other
biologically-inspired paradigms (swarm, artificial ants, artificial immune systems, cul-
tural algorithms...), memetic algorithms, multi-objective optimization, constraint han-
dling, parallel algorithms, dynamic optimization, machine learning and hybridization
with other soft computing techniques. We received high-quality submissions spanning
many of these areas, including theoretical advances in tree-based methods, swarm intel-
ligence and multi-objective evolutionary algorithms in addition to a number of topical
fields of application in machine learning, electric vehicles, routing and bioinformatics.

Each submitted paper was reviewed by members of the International Program Com-
mittee and selections were based on a minimum of two such single-blind reviews. This
volume presents a selection of the best papers presented at the conference as in previous
years (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975, 7401, 8752,
9554, 10764, 12052).

The success of EA 2022 was the result of team work and I would like to express my
gratitude to:

— Dr. Mathias Kern (BT plc) and Prof. Emma Hart (Edinburgh Napier University) for
agreeing to give keynote talks;

— The Program Committee members for their rigorous work: the high quality of the
selected papers demonstrates their attention to detail;

— The Organizing Committee for their efficient work and kind availability, in particular
the local team;

— The members of the Steering Committee for their valuable assistance;

— Pierrick Legrand for the administration of the conference website;

— Lhassane Idoumghar for financial administration;

— Laetitia Jourdan and Patrick Siarry for publicity;

I As for previous editions of the conference, the EA acronym is based on the original French
name “Evolution Artificielle”.
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— Pierrick Legrand, Arnaud Liefooghe, Julien Lepagnot and Nicolas Monmarché for
managing submissions and for the editing of the proceedings;
— Nick Davies and Ben Samuels for their assistance in the local arrangements.

I would also like to take this opportunity to thank the following partners whose
support was instrumental in delivering the conference: the Faculty of Environment,
Science and Economy at the University of Exeter, Event Exeter, the University of Exeter
and Association EA.

Finally, we are as always deeply grateful to all authors who submitted their research
work to the conference, and to all attendees who made the conference such a vibrant
venue for the exchange of ideas. The combination of scientific quality and the con-
vivial atmosphere of this series of conferences provides a stimulating and inclusive
environment for all evolutionary algorithm researchers.

Edward Keedwell
EA 2022 Chair
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An Evolutionary Approach to the Autonomous Design
and Fabrication of Robots in Unknown Environments

Emma Hart
Edinburgh Napier University, UK

Abstract. Robot design is traditionally the domain of humans — engi-
neers, physicists, and increasingly Al experts. However, if the robot is
intended to operate in a completely unknown environment (for exam-
ple clean up inside a nuclear reactor) then it is very difficult for human
designers to predict what kind of robot might be required. Evolutionary
computing is a well-known technology that has been applied in various
aspects of robotics for many years, for example to design controllers
or body-plans. When coupled with advances in materials and printing
technologies that allow rapid prototyping in hardware, it offers a poten-
tial solution to the issue raised above, for example enabling colonies of
robots to evolve and adapt over long periods of time while situated in the
environment they have to work in. However, it also brings new challenges,
from both an algorithmic and engineering perspective.

The additional constraints introduced by the need for example to
manufacture robots autonomously, to explore rich morphological search
spaces and develop novel forms of control require some re-thinking of
“standard” approaches in evolutionary computing, particularly on the
interaction between evolution and individual learning. Some of these
challenges are discussed and some methods to address them that have
been developed during the ARE project. Finally, some ethical issues
associated with the notion of autonomous robot design, and discuss the
potential of artificial evolution to be used as a tool to gain new insights
into biological evolving systems is discussed.



Xvi

E. Hart

Bio. Professor Emma Hart has worked in the field of Evo-
lutionary Computing for over 20 years on applications rang-
ing from combinatorial optimisation to robotics, where the
latter includes robot design and swarm robotics. Her current
work is mainly centred in Evolutionary Robotics, bringing
together ideas on using artificial evolution as a tool for opti-
misation with research that focuses on how robots can be
made to continually learn, improving performance as they
gather information from their own or other robots’ expe-
riences. The work has attracted significant media attention
including recently in the New Scientist, and the Guardian.
She gave a TED talk on this subject at TEDWomen in
December 2021 in Palm Springs, USA which has attracted
over 1 million views since being released online in April
2022. She is the Editor-in-Chief of the journal Evolution-
ary Computation (MIT Press) and an elected member of
the ACM SIG on Evolutionary Computing. In 2022, she
was honoured to be elected as a Fellow of the Royal
Society of Edinburgh for her contributions to the field of
Computational Intelligence.



Optimisation Challenges at BT

Mathias Kern
British Telecommunications, UK

Abstract. In this talk, optimisation challenges from across BT Group plc,
the UK’s leading communications services company, are presented. Man-
aging and operating its network and providing fixed voice, mobile, broad-
band and TV and products and services over converged fixed and mobile
is a truly scale problem. It is discussed how optimisation approaches have
been used in the design and operation of BT networks that span the whole
of the UK, and the key role that they play in the daily management of
30,000 fixed resources. A number of example case studies are explored,
and particular focus is given to the real-world aspects of the optimisation
problems and the choice of optimisation algorithm for each particular
scenario.

Bio. Dr. Mathias Kern received his MSc and PhD in Com-
puter Science from the University of Essex, UK, in 1998 and
2006, respectively. He is currently Senior Research Man-
ager for sustainable resource management and optimisa-
tion in the Applied Research team of BT, UK. He is an
experienced industrial researcher and strong advocate for
both Artificial Intelligence and Operational Research tech-
nologies and the way they interact and can be applied to
real-life problems, with a particular focus on sustainable
operations to help BT achieve its net-zero ambitions. He is
an active member of the Operational Research Society and
The Charted Institute for IT (BCS) and represents BT on
the OR Society’s Analytics Development Group, the Heads
of OR and Analytics Forum and the BCS Specialist Group
on Artificial Intelligence committee.




Contents

On the Active Use of an ND-Tree-Based Archive for Multi-Objective
OPUMISALION . . vttt et ettt e e et e e e e et e e e 1
Jonathan E. Fieldsend

HyTEA: Hybrid Tree Evolutionary Algorithm ............................. 15
Francisco Miranda, Evgheni Polisciuc, and Nuno Lourenco

A Game Theoretic Decision Tree for Binary Classification .................. 29
Rodica loana Lung and Mihai-Alexandru Suciu

Evaluating a New Genetic Algorithm for Automated Machine Learning
in Positive-Unlabelled Learning .......... ..., 42
Jack D. Saunders and Alex A. Freitas

Neural Network-Based Virtual Analog Modeling ........................... 58
Tara Vanhatalo, Pierrick Legrand, Myriam Desainte-Catherine,
Pierre Hanna, Antoine Brusco, Guillaume Pille, and Yann Bayle

Defining a Quality Measure Within Crossover: An Electric Bus Scheduling
CaSe StUAY . ..ttt 73
Darren M. Chitty and Ed Keedwell

Maximizing the Number of Satisfied Charging Demands in Electric
Vehicle Charging Scheduling Problem .................................... 89
Imene Zaidi, Ammar Oulamara, Lhassane Idoumghar, and Michel Basset

Fine-Grained Cooperative Coevolution in a Single Population: Between
Evolution and Swarm Intelligence ............ ... ... it 103
E. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F. P. Vidal

One-Class Ant-Miner: Selection of Majority Class Rules for Binary
Rule-Based Classification . .............. ..ottt 118
Naser Ghannad, Roland de Guio, and Pierre Parrend

Towards a Many-Objective Optimiser for University Course Timetabling ...... 133
James Sakal, Jonathan Fieldsend, and Edward Keedwell

Empirical Investigation of MOEAs for Multi-objective Design
Of EXPEIiMENtS . . ...ttt e e e 145
Alexander Evans and Tinkle Chugh



XX Contents

Evolutionary Continuous Optimization of Hybrid Gene Regulatory

NEtWOIKS .« oot

Romain Michelucci, Jean-Paul Comet, and Denis Pallez

Designing Attention Based Convolutional Neural Network (CNN)
Architectures for Medical Image Classification Using Genetic Algorithm

Based on Variable Length-Encoding Scheme ............................

Muhammad Junaid Ali, Laurent Moalic, Mokhtar Essaid,
and Lhassane Idoumghar

A Multi-objective 3D Offline UAV Path Planning Problem with Variable

Flying AItitude . ... ...t e

Mahmoud Golabi, Soheila Ghambari, Shilan Amir Ashayeri,
Laetitia Jourdan, and Lhassane ldoumghar

An Elitist Non-dominated Heuristic Resolution for the Dynamic Asset

Protection Problem . ........ ... .. e

Quentin Peiia, Aziz Moukrim, and Mehdi Serairi

Author Index . ... .



®

Check for
updates

On the Active Use of an ND-Tree-Based
Archive for Multi-Objective Optimisation

Jonathan E. Fieldsend(®)

University of Exeter, Exeter, UK
J.E.Fieldsend@exeter.ac.uk

Abstract. A number of data structures have been proposed for the stor-
age and efficient update of unbounded sets of mutually non-dominating
solutions. The recent ND-Tree has proved an effective data structure
across a range of update environments, and may reasonably be consid-
ered the state-of-the-art. However, although it is efficient as a passive
store of non-dominated solutions — which may be extracted at the end
of an optimisation — its design is ill-suited to being an active source of
parent solutions to directly exploit during a optimisation run. We intro-
duce a number of modifications to the construction and maintenance of
the ND-Tree to facilitate its use as an active archive (source of parents)
during optimisation, and compare and contrast the run-time performance
changes these cause (and discuss their drivers). Illustrations are provided
with data sequences from a tunable generator and also a simple evolu-
tion strategy — but we emphasise such data structures are optimisation
algorithm agnostic, and may be effectively integrated across the range of
evolutionary (and non-evolutionary) optimisers.

Keywords: Data structures - Real-time statistics - Real-time
analysis - Computational efficiency

1 Introduction

In the 1990s evolutionary multi-objective optimisation (EMO) took a large step
forward with the realisation that a set of non-dominated solutions could be
effectively exploited during the search process. This was enabled either through
a bounded-size secondary archive or by preferentially selecting non-dominated
solutions identified during search for preservation in a single search population
(see e.g. [7,10,21]). Thus, algorithms started maintaining an approximation to
the Pareto set during their search. However, it was also recognised that a pas-
sive archive representing the best approximation to the Pareto front found over
the course of an optimisation run was often also required [20], which by its
nature needed to be unbounded in size.! This is because relying on a bounded
size approximation (or the best solutions in a final search population) typically

! In some practical examples where evaluation is very cheap this may not be feasible
if the approximation set cardinality is vast, though, as shown here, modern data
structures can comfortable deal with archive sizes of multiple hundreds of thousands.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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leads to the return of a set of solutions which may be mutually non-dominating
amongst themselves, but which include members who are in fact operationally
worse (dominated) when all solutions visited in the search process are consid-
ered. This was shown theoretically in [9] and empirically in [6] for a size bounded
archiver — with the approximation shown to be moving backwards and shrinking
(losing extreme solutions) over time. Later work (e.g. [15]) has shown similar
issues exhibited across many other bounded archiving algorithms.

Related to the above, recent work on comparing EMO algorithms has shown
that contrasting optimiser performance in terms of the non-dominated set of all
solutions visited during a search can lead to different algorithm rankings than
when comparing the final populations or bounded size approximation sets [19],
and as such an unbounded archive is a better reflection of an optimiser’s search
capability. However, such comparison necessitates the storing of a potentially
large passive archive, which specialised data structures are much better suited
to than, e.g., a simple linear list.

Many data structures have been developed to support the storage of an
unbounded approximation set. These include Dominated and Non-Dominated
Trees [4,6]; Quad Trees 1-3 [16,17]; Dominance Decision Trees [18]; Bi-objective
Trees (or Mak_ Trees) for two-objective problems [1]; the M-front [3]; the BSP-
Tree [8]; and most recently the Non Dominance Tree (ND-Tree) [11] (for which a
variant has also been recently developed with re-balancing [13]). We have com-
pared many of these data structures empirically over a range of point generation
scenarios [5], and found the ND-Tree to consistently equal or better the run-time
performances of the alternatives — on two very different computational architec-
tures — often realising several orders-of-magnitude improvements in run-time.
However, the use of unbounded archives in an active rather than passive fashion
(e.g. as a source of parents in evolutionary computation to help drive the optimi-
sation process itself) is much less explored, and typically bounded size archives
are still employed for this.

In this work we are concerned with modifying the ND-Tree in order to make
it amenable for use as an active rather than passive unbounded archive, and
demonstrate the run-time performance changes that such necessary modifica-
tions cause. Leading from this, the main contributions of this work are:

— We identify the subroutines in the ND-Tree construction and maintenance
algorithms which exhibit poor computational complexity during operations
likely to occur regularly when used as a source of parent solutions as an
active archive. These are the size () operation, which is recursive, and would
be regularly called when sampling uniformly randomly from the set, and the
maintenance of the hyperrectangle bounds (ideal and nadir estimates) for each
subtree, which are loose rather than exact in the standard ND-Tree. Exact
bound values are however required if sampling based on neighbourhood size,
to reduce error in this weighting approach.

— We generate two versions of the ND-Tree — one which caches subtree coverage
at the nodes and is therefore burdened with the additional computational cost
of updating these values, but for which the call to size () becomes O(1); and a
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Algorithm 1 Updating a non-dominated archive A with x (no duplicates)

Require: A > The current non-dominated set of solutions
Require: x > A new solution to check against A
1: if §x' € A|x' < x then > If x is not dominated or operationally equal
2: A=A\ {x € A|x <x} > Remove any members of A dominated by x
3: A:=AU{x} > Add x to non-dominated set

4: return A

second variant where exact bounds are kept at each node, enabling the exact
tracking of the minimum bounding axis-parallel hyperrectangle containing
the points in the subtree rooted at a node, and its hypervolume.

— We demonstrate the empirical run-time performance of these two variants
in comparison to the standard ND-Tree, both in a baseline passive archive
scenario (to illustrate the additional computational cost of these changes), and
in simulations of active use (where regular draws are made from the archive).
These are conducted across a range of simulated data stream properties, and
from simple optimiser runs.

The rest of the paper proceeds as follows. In Sect. 2 the Pareto archive updat-
ing problem is formally described, and a high-level description of the ND-Tree
is presented. Note, due to space limitations we omit most low-level technical
details of the data structure and its formal subroutines, but direct the reader
to the original work [11]. In Sect.3 we detail an empirical comparison of these
implementations on a range of problems. The paper concludes in Sect. 4 with a
discussion and highlights future work directions in this area.

2 Pareto Archive Updating

Without loss of generality, we concern ourselves with multi-objective minimisa-
tion problems. Given a feasible search space X, a design x from this space is
said to dominate another design x’, which we denote as x < x’, if it is no worse
on all m assessment criteria, f;(x) (i.e. f;(x) < fi(x')Vi), and better on at least
one. A design x is said to weakly dominate another design x’, denoted x < x’, if
it is no worse on all assessment criteria. The set of Pareto optimal solutions (the
Pareto set) is defined as P = {x € X' | 3x’ < x, x’ € X'}. The image of P under
f is known as the Pareto Front, F. Note — due to many to one mappings, the
cardinality of the Pareto Set may be larger than that of the Pareto Front.

As a multi-objective optimiser searches across X it typically maintains an
approximation to P, called its approximation set (or Pareto archive, A). The task
of maintaining this set is commonly referred to as the dynamic non-dominance
problem [18], and is summarised in Algorithm 1.

2.1 Archiving Limitations

Early work in the EMO field identified the various issues caused by truncating an
approximation archive [6,9], and more recent research has highlighted the change
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in relative performance of algorithms that is observed when unbounded approxi-
mation sets are tracked [19], furthermore even quite simple sequences can induce
pathological behaviours in popular (bounded size) archiving approaches [14]. As
such, it is best practice to at least keep a passive unbounded archive [20], if com-
putationally possible. From a practical point of view, even if a restricted set will
be considered for presentation to the problem owner, extracting this set from an
unbounded set means the problem owner is guaranteed only to consider solutions
which are non-dominated by any other designs found during the optimisation run.
We now give a high-level overview of the ND-Tree and its properties.

2.2 The Non Dominance Tree (ND-Tree)

The ND-Tree of Jaszkiewcz and Lust [11] is composed of interior nodes and
leaves. Each interior node has 1 to k children (usually k& = m — 1 is chosen).
Each leaf holds a set of solutions (designs). The leaf set is size bounded and
breaching this size limit leads to node splitting, etc. Only leaves hold solutions,
but nodes hold summary information about the subtree they root, and the ranges
of the designs the subtree covers (in objective space).

The tree is constructed such that each node represents a subset of the non-
dominated front which lies within a hyperrectangle defined by the subset’s
approximate nadir point, T, and ideal point, ¥, (artificial points which approx-
imate the worst values for each objective and the best values for each objective
derived from the covered point set). These are stored as node attributes. Specifi-
cally, for a node covering the set S of designs (the union of the sets of the children
in the leaves of the subtree rooted at the node), §;” > max f;(x),Vx € S and
9; < min f;(x),Vx € S. Each interior node has a set of children (usually up to
m—+1), and each leave has a bucket of solutions (this capacity is user defined, but
most studies use 20). The ideal and nadir are approzimate rather than exact in
the ND-Tree for computational efficiency — if a dominated solution is removed
from a leaf, these bounds are not updated in the leaf (or the interior nodes which
reach it), the bounds are only updated on insertion if a new point has smaller
values than in the approximated ideal, or larger values than the approximated
nadir in the leaf into which it is inserted (and this update is cascaded to its
parent chain of nodes). There is no guarantee an inserted solution will be placed
in any leaf where it instigated removal(s), and indeed a single new solution inser-
tion may require removals in multiple leaves and/or cause removal of multiple
entire subtrees to maintain the non-dominated property required in the set as a
whole.

The estimated nadir and ideal locations are used to identify whether new
solutions need to be compared to any of the designs covered by the node. A
putative new solution x dominated by the nadir point of a node will be dominated
by all members covered by that node (and so x can be immediately discarded).
Conversely, if x dominates the ideal point it will dominate all members covered
by the node (and must be accepted into the non-dominated set, and the subtree
rooted at the node removed). If x is mutually non-dominating with respect
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Fig. 1. Left: Illustration of a node property in the ND-Tree. A node covers a set of
non-dominated points, for which the approximated ideal and nadir vectors are shown
as ¥y~ and §7. If a new solution x is found which dominates §~ then the node and the
subtree beneath it can be discarded. If x is dominated by ¥, then x can immediately be
discarded. If however ¥~ 4 x and x £ 7, then no further processing is needed on the
node (as all points it covers must be mutually non-dominated with respect to x). The
contents of the node only need to be compared directly to x if none of the conditions
above hold. Right: Illustration of a node property in an ND-Tree maintaining exact
ideal and nadir points at each node. Note the dominates, dominated and incomparable
regions are larger than that illustrated in the left example, meaning fewer putative
solutions will need to be checked against the node contents. (N.B., as illustrated when
m = 2 stored solutions lie in the corners of the tight bound axis parallel hyperrectangle
which are unoccupied by y~ and y ™. This is not the case in general when m > 2, hence
regions labelled “May dominate some” and “Some may be dominated” which otherwise
appear to completely dominate/be dominated when illustrated for m = 2.)

to both the approximated ideal and the nadir points, it is also mutually non-
dominating with respect to all solutions covered by the corresponding node, so
the subtree needs no further comparison. An illustration of these relations in
objectives space for the designs covered by a node is provided in Fig. 1 (left).

As one traverses down the tree, the (hyper)volumes in objective space covered
by the internal nodes decrease, and the corresponding ideal and nadir locations
shift closer, until a leaf is reached containing a set of solutions residing in the
objective space volume defined by the hyperrectangle defined by the leaf’s ideal
and nadir. These solutions all need to be compared to x (until the first is found
which dominates x, or the last is processed).

2.3 Modifications for an Active Use ND-Tree

The ND-Tree is designed to be efficient and effective as a store of a non-
dominated set, but it is not efficient in its standard configuration as a source of
parents for active use in an optimiser.
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Accessing the Size () : Each node holds the (estimated) nadir, ideal and midpoint
of the axis-parallel hyperrectangle holding the designs it covers, however it does
not store how many designs it covers. Instead, a recursive call is used that
traverses the tree and sums the set sizes in each leaf. Having this information
cached at each node is practically useful in the active use of an archive, as
in many scenarios it is necessary to draw a member uniformly at random. To
accomplish this, one would traverse the tree, starting at the root, and select a
child in proportion to the number of designs it covers, until a leaf is reached,
where a design stored in the leaf can be picked at random. However, if the
number covered is stored at each node, then any time a design is added, this
will require a subroutine to increment the count in the leaf and all nodes which
lead to it. Similarly, any time a design is dominated and removed (or an entire
subtree removed) then this needs propagating up to all covering nodes. In our
first variant of the data structure we implement such changes. Note: this also
increases the memory footprint of the structure by number of nodes x integer
type memory size. For each successful add(x) call there will be an extra L integer
addition operations needed (where L is the number of levels above the leaf with
the new design), and for each individual removal there are L integer subtraction
operations needed (where L is the number of levels above the leaf with the
removed design, or above the detached subtree).

Ezact Nadir, Ideal and Midpoint: Having exact nadir and ideal values at nodes
(and by extension an exact midpoint) also has a benefit for random sampling.
When taking a uniformly random selection, no consideration is made regard-
ing the distributional bias of the stored points. However, commonly in EMO
approaches we want to have an even distribution of parents sampled across a
front surface/volume, rather than biasing them in any particular objective com-
binations. With accurate bounds on the volumes the designs reside in (in objec-
tive space) samples can be drawn based on this volume. That is, the tree can
be traversed not probabilistically based on the number of designed covered by a
node, but in relation to the proportion of hypervolume lying between the ideal
and nadir — i.e. probabilistically based on the volume which the designs mini-
mally span under each node when placed in an axis-parallel hyper-rectangle. It
should also be remarked that, although it brings extra maintenance cost, main-
taining exact ideal and nadir points means the average number of nodes a new
solution needs comparing to when evaluating whether it should be added to the
set will decrease (see right illustration in Fig. 1). This means it is not immedi-
ately clear if it will be more or less costly using an exact rather than approximate
nadir and ideal ND-Tree, even when using the archive exclusively in a passive
scenario. In terms of modifications to the core algorithm, whenever a design is
removed it needs comparing to the ideal and nadir points saved in the leaf. If it
is equal on any of the values (and no other leaf member also equals them), then
it defines that dimension, and it will need updating at the leaf (based on the
remaining set members), and the change will need propagating up the tree until
either a parent node is reached which has a smaller (ideal) or larger (nadir) on the
respective index (in which case it is being derived from a different child node),
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or another node covered by the parent has the same minimum/maximum, or the
root has been reached and updated. This can potentially require a significant
number of value comparisons for a single design insertion/removal.

We now report various run-time comparisons of these implementations under
different data sequence scenarios and usage scenarios. (Implementations are
available at http://github.com/fieldsend.)

3 Empirical Results

We conduct our empirical work on a laptop running O/S X. The machine speci-
fications are: 2.8 GHz Quad-Core Intel Core i7 CPU. L1 cache: 32 KB, L2 cache:
256 KB, L3 cache: 2 MB (per core), RAM 16 GB 1600 MHz DDRS3.

In all experiments 30 (paired) runs are taken. Figures 2-7 show mean time
taken to update a data structure to the sample/generation indicated. The shaded
background on a panel indicates when a data structure with a lower mean is
significantly better than another with a higher mean. Lowest blocks: lowest mean
vs second lowest; middle blocks: lowest mean versus third; upper blocks: second
versus third (Wilcoxon signed ranks test with Bonferronoi correction, o = 5%).

3.1 Simulation Runs

In our first set of experiments we employ the protocol used in [5,8] for generation
of objective vectors from controlled analytical distributions, which removes the
stochastic element of the optimiser from the results. Archives are constructed
from a sequence of N normally distributed objective vectors. Ny of these are
dominated, and N,4 are non-dominated (N = Ny + N,4). The tth objective
vector y! is drawn from:

t
yt~N<dN1711—111T> (1)
t m

where T € R™*™ is the identity matrix and 1 = (1,1,...,1)T € R™ is the vector
of all ones. d* controls the systematic improvement of points, and takes one of
two values: 0 with a probability of ¢N}/(N —t), where N/ is the number of
dominated points still to draw in the sequence, otherwise d? is assigned a value
> 0 (here we assign 1.0). ¢ > 1 results in more dominated points earlier in the
sequence, and with ¢ < 1 there are more dominated points later in the sequence.
We investigate ¢ = {0.9,1.1} here, and we measure the CPU time dedicated to
the execution thread when interacting with the data structure, but exclude all
other time costs (e.g., the cost of sampling from the analytical distribution).

3.2 Simulations of Usage in Passive Scenarios

In our first set of experiments we simulate usage in a passive environment: we
are interested in examining the run-time cost differences in the ND-Tree imple-
mentations when they are solely being used for storage. m ranges from 3 to 20
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Fig. 2. Mean (cumulative) time taken to update data structure per sample. Results on
analytical function, ¢ = 0.9. Log scales on both axis.

with various configurations of the generator. All data structures get the same
sequence set for each run (i.e. are paired), and results are shown in log—log plots.

The panels in Fig. 2 show the run-time characteristics of the different data
structures for ¢ = 0.9, and the panels in Fig. 3 show the run-time characteristics
of the different data structures for ¢ = 1.1. For both ¢ = 0.9 and ¢ = 1.1 and
across scenario configurations the baseline ND-Tree and cached node size ND-
Tree exhibit very similar run-time performances, indeed only for m = 3,¢ = 0.9
do the average performances vary substantially, but by 10* samples they have
converged, and the different variants required between 10~° and 10~* seconds
per sample update on average across a run.

For the ND-Tree with exact ideal and nadir values the run-time differences
are substantial for fewer objectives (3 and 5) and the larger total archives sizes
(i.e. where Ny = {219 211) outside of these though the timing differences are
smaller (though still statistically significant at later stages). Where there are
large variations it would appear due to the properties of these configurations —
with Ny = {210 21} there are more non-dominated solutions in the sequences,
which means more adjustments to the bounds are likely needed as solutions are
more regularly added, and with the lower m sizes the trees will be deeper (as
each interior node has up to m — 1 children, and therefore there will tend to be a
longer “chain” of nodes whose y~ and y™ need updating). Nevertheless, even in
the worse configurations, the average update time per sample over the run only
reaches 1073 seconds by the end for the ND-Tree with exact bounds at nodes.
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Fig. 3. Mean time taken to update data structure per sample. Results on analytical
function, ¢ = 1.1.

To illustrate the performance of the data structures in an optimisation envi-
ronment, we also employ sequences generated from a simple (1+1)-Evolution
Strategy (ES), as set out in [5]. The optimiser is based on the PAES algorithm
of [12], but rather than using a gridded (bounded) archive, an unbounded archive
is used, which is stored in the ND-Tree. The parent has a single design variable
mutated with Gaussian noise, with width 0.1 (with rejection sampling for bound-
ary violations). If the child is not weakly dominated by A, the child replaces the
parent at the next generation.

We run the ES with each data structure on a problem 30 times, plotting the
average update timings. DTLZ1 and DTLZ2 from [2] are used as test problems,
as they usefully span two extremes in behaviour. In DTLZ1, the objective values
of random design vectors are many orders of magnitude worse than those of the
Pareto set. Also, the problem has many deceptive fronts — so the approxima-
tion set tends to repeatedly converge, expand, and then rapidly contract once
a better local front is found. In contrast DTLZ2 is designed such that random
solutions are only a couple of times worse than Pareto optimal ones on the qual-
ity criteria. Furthermore, there is a single multi-objective basin of attraction in
the problem, so the approximation set tends to steadily grow over time, rather
than having seismic changes in size. For both problems we set the number of
design parameters as m — 1+ 9.

Figure 4 shows how the data structures compare — interestingly, there is lit-
tle consistency in differences in the three configurations across these scenarios,
with relative performance often swapping between the implementations on (and
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between) problems. This in part may be due to the archive sizes (i.e. |4]|). In
the optimiser runs this ranged from 20,000 to 120,000 by the end (for small to
large m) compared to the generator scenarios which were populating archives in
excess of a quarter of a million non-dominated members by the end of a run in
some configurations. The clear performance separation we see in the later stages
of the analytical sequences may be greatly influenced by the ND-Tree capacity
and depth reached.

3.3 Usage in Active Scenarios: Sampling at Random
from the Archive

We now contrast the behaviours of the variants for sampling from the archive in
a prototypical active archive scenario. In these set of experiments we interleave
drawing a single member of the set with each update in the synthetic data
sequence and the ES—(1+41) runs. These draws are uniformly at random from the
standard ND-Tree, and the ND-Tree with cached node sizes, and in proportion
to the hypervolume spanned by the nodes in the ND-Tree variant with exact
ideal and nadir points tracked. Specifically, in the sequence if there are N data
points checked for adding in turn to the archive, then after each “add” call
to the data structure one member is drawn (without removal) from the data
structure, simulating parent draws (so N draws by the end of the run). Note,
we do not modify the data entry sequence for any of the runs (i.e. we do not
“use” the drawn parent) — this is to ensure the computational timing results are
unaffected by any induced changes in search behaviour due to particular parent
draws which would change the membership of the archives being compared for
each group of runs. This is because here we are purely concerned with the change
in computational cost of using the data structure implementations in an “active”
rather than “passive” archive setting on the same input data sequence.
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Results are shown in Figs.5 and 6 for the synthetic sequence data from
the generator. The time cost benefits of caching the number covered at each
node compared to the standard ND-Tree when draws are regularly taken is clear
across all simulation scenarios (though the relative improvement diminishes with
increasing number of objectives). The variant storing the coverage number is
consistently faster after 10% samples, ranging from 1-2 orders of magnitude speed
up by the end of the run for m = 3 through to at least twice as fast for m = 20.
For the version tracking the ideal and nadir points exactly, the computational
cost in the active use scenario is similar to that of the baseline ND-Tree, but the
samples drawn are now less influenced by a biased distribution of the archived
points in objective space. Interestingly the cost of recursively calculating the
node coverage in the standard configuration turns out to be similar in practice
to the additionally maintenance cost of keeping the bounds exact — with the
exact bound variant’s run-time being very similar to the standard ND-Tree.
Usually the standard approach is a little faster in the earlier stages of a run, but
by later in runs the exact bound variant becomes quicker.

Figure 7 shows the results for the two DTLZ problem configurations with the
interleaved draws. We see a similar trend as with the analytic functions — the
ND-Tree with stored coverage attributes is significantly faster after 1,000-2,000
evaluations onwards, and reaching between 1 and 2 orders of magnitude speed up
over standard ND-Tree configuration by 250,000 evaluations. The variant with
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exact node bounds is also more efficient that the standard data-structure, with
2-8 times speed up by the end.
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4 Conclusions

In this work we set out modifications to the ND-Tree, to enable its effective use
as an active unbounded archive in multi-objective optimisation. We compare the
run-time performance of two modified variants over a range of scenarios, both
synthetic, and from optimiser run histories. We find that storing the number of
designs covered by each node as an extra attribute, and dynamically updating
it, has only marginal run-time cost implications for the maintenance of the data
structure as a whole. Furthermore, on the analytically generated sequences and
optimiser histories considered it drastically improved the run-time performance
of sampling uniformly from the front (often multiple orders of magnitude faster).

Storing exact nadir and ideal points at nodes rather than approximations can
cause a performance degradation in some scenarios, but not punitively so — with
average update costs still around 1-10ms at archive sizes in excess of quarter
of a million. Storing exact values however can mitigate the distributional bias
that uniformly sampling from an unbounded archive may lead to if the relative
locations of the designs are not considered, and when used in an active rather
than passive setting it ends up quicker than the standard approach. In some
passive storage situations storing exact nadir and ideal points is also seen to
make the data structure faster overall, but not consistently.

We look forward to exploring the impact of using unbounded archives as a
source of parents in EMO runs in practical settings, and in particular investi-
gating whether the structures will be amenable for extension to other common
forms of parent draws (e.g. when using decomposition rays).

Acknowledgements. The author would like to thank the anonymous reviewers for
their insightful and helpful comments.
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Abstract. Hearing Loss affects an ever-growing number of people of all
ages. It can occur due to a multitude of sources such as genetics, diseases,
ageing, or noise exposure. If not treated properly and timely it may lead
to socioeconomic difficulties such as poor job performance, hardship in
finding a job, and social isolation.

In this work, we propose HyTEA a framework based on Evolutionary
Computation to create Decision Tree like models to identify people that
are likely to be diagnosed with hearing loss, so they can be called for
screening by a health professional. To achieve this, we will use historic
data about patients who have been diagnosed with hearing problems
and complement it with publicly available socioeconomic information.
The models created should provide some understanding of the reason a
decision is being made since this is key for health professionals.

To build Decision Trees we usually rely on greedy induction algorithms
which may result in overfitting of the training data. To counter this prob-
lem, HyTEA uses a combination of two Evolutionary Algorithms, namely
Structured Grammatical Evolution and Differential Evolution to gener-
ate Decision Trees.

The results show that HyTEA is capable of consistently modelling the
problem space and predicting hearing loss with an accuracy of approxi-
mately 73%. Additionally, we propose a visualisation tool based on t-SNE
to help identify the patients that are being wrongly classified.

Keywords: Hearing Loss - Machine Learning - Evolutionary
Computation - Structured Grammatical Evolution - Differential
Evolution - Decision Tree

1 Introduction

According to the World Health Organisation' hearing loss affects around 466
million people. By 2050 it is expected that this number doubles to around 900
million people. Of the people aged over 65, 30% are estimated to have hearing loss
greater than 40 dB. The untreated patient can suffer severe social and economic
consequences, greatly reducing the quality of life.

! Source: https://www.who.int/news-room/fact-sheets/detail /deafness-and-hearing-
loss.
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There are institutions that aim to lower the severity of these consequences for
example by compensating for hearing loss with hearing aids. However, for these
institutions to work, it is necessary to identify and diagnose patients through
regular screenings that assess the degree of hearing loss.

In this work, we propose to mitigate the impact of hearing loss in society by
using Evolutionary Computation to build models that can predict if a person is
likely to have a positive diagnosis, so they can be called for a hearing screen-
ing. This will allow health professionals to call potential patients for an official
diagnosis, resulting in a reduction of the negative effects that the hearing imped-
iment might bring. Given that understanding why the model is making a certain
prediction is key for medical professionals, our framework relies on models that
can be understandable, namely Decision Trees (DTs). Usually, to build DTs,
we rely on greedy induction algorithms which might be sub-optimal, resulting
in models that might become overfitted to the training data. To overcome this
issue we propose the usage of a hybrid Evolutionary Computation (EC) app-
roach based on Structured Grammatical Evolution (SGE) [9] and Differential
Evolution (DE) [18]. The SGE algorithm will use grammar to specify the syn-
tactic restrictions of the DTs, and it will be responsible for evolving their macro
structure. Then, the DE algorithm will optimise the numeric parameters of each
model according to the real data.

Over the years, several approaches have been proposed aiming at using EC
to build Decision Trees [2,16], most of them using Genetic Programming (GP).
However, the results show that, during the evolutionary process, the population
tends to be plagued with invalid individuals, which slows down the evolution-
ary process, compromising the overall results. To tackle this, and eliminate the
occurrence of invalid individuals, we rely on Context-Free Grammar to limit the
search space to a valid solution by specifying the syntax restrictions that should
be followed to create DTs.

The results of our proposed approach show that HyTEA is robust, being
able to consistently generate models for hearing loss prediction with accuracies
above 70%, which is similar to those obtained with traditional models. The
visualisation of our data with t-SNE also shows that the generated classifiers are
correctly modelling the problem space.

The remainder of the paper is organised as follows. atIn Sect.2 we showcase
the key concepts required to understand the work at hand and do a brief survey
of related works. Section 3 details the architecture and inner workings of HyTEA.
In Sect.4 we detail the experimental study to validate the proposed approach
and in Sect. 5 we present and discuss the obtained results. Finally, Sect. 6 gathers
the main conclusions.

2 Background

2.1 Evolving Decision Trees

The usage of Evolutionary Computation to evolve and design Decision Trees
(DT) has been the subject of intense research. In [2], Barros et al. show that
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the vast majority of works rely on Genetic Programming (GP) using a random
initialisation of trees with test values being constrained to guarantee the logical
validity of the tests. Most works use the full or the ramped-half-and-half methods,
while only one of the reviewed works uses the grow method. Some works use a
parametric parsimony pressure approach to counter overfitting, arguing that a
good balance between parsimony and accuracy is critical for efficient evolution.
Works not using parsimony pressure usually do not defend this choice either
since the evolution is slowed down due to larger trees and the bloat leads to
overfitted DT's which do not perform well on test data.

In [16] the authors make the argument that many invalid trees are created
after applying the crossover and mutation operators and that one attribute may
be examined more than once along the same path from root to leaf. To tackle
this issue, [16] prunes subtrees where a nominal attribute test is repeated.

2.2 Machine Learning in Audiology and Hearing Loss

There are several works that report the successful application of Machine Learn-
ing (ML) in the field of Audiology, most of them focusing on predicting a specific
type of hearing loss such as noise-induced [5], sensorineural (deficiency of neural
signal transfer from the cochlea to the auditory cortex) [4] and idiopathic sudden
sensorineural [13].

A recent survey [3] does a review on the contributions and limitations of eight
works [1,5,6,8,19-22] using ML to predict Noise Induced Hearing Loss (NTHL).
The work concludes that exposure to noise above 85 dBA for over 8 h and expo-
sure to noises over 3 kHz as the most important risk factors for NIHL. They
also show that there are other factors that affect an individual’s susceptibility
to NTHL such as demography, hearing protection usage and mutations to genes
that alter the KT concentration in endolymph. Most of the works surveyed used
features such as age, gender, duration of noise exposure, smoking habits, work-
ing experience in years and hearing thresholds at multiple frequencies. They also
were based on highly unbalanced datasets, having only between 10% to 33% of
the individuals suffering from NIHL which is usually defined by patients having
a hearing threshold above 25 dB. Moreover, the size of the datasets was small,
with studies having sample sizes equal to or under 210, while the remaining have
sample sizes of 1113, 2110 and 10567.

3 HyTEA: Hybrid Tree Evolutionary Algorithm

The goal of the proposed approach is to design Decision Trees (DT) to predict
if a person is likely to have hearing problems. While aiming at maximising the
predictive power of the model, we also need to balance its complexity, keeping
a simple structure for high interpretability.

For this we propose HyTEA, an Evolutionary Algorithm that relies on Struc-
tured Grammatical Evolution (SGE) [9,11] and Differential Evolution (DE) [18].
The former is responsible for evolving the macrostructure of each DT, such as
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Fig. 1. Overview of the proposed hybrid architecture.

deciding the number of nodes and which features, or combination of features,
should be used at each node. Each model is then passed to the DE algorithm
that parses the tree and optimises the numeric parameters that will be used at
each node to perform the splits. Figure 1 presents an overview of the proposed
architecture.

In the first step, we prepare our dataset by performing several pre-processing
operations such as feature engineering, addressing the problem of missing values
and performing feature normalisation. Additionally, we split our dataset into 3
subsets: 1) the Training set which will be used by the Differential Evolution com-
ponent; ii) the Validation set which will be used by SGE for fitness assignment;
iii) the Test set which will be used to validate the quality and generalisation abil-
ity of the best individuals found by our solution, at the end of the evolutionary
search.

In the second step, we generate DTs using HyTEA. Firstly, SGE will search
for the macrostructure of each model, using a grammar that defines the necessary
syntax restrictions using “if-then-else” constructs as shown in Fig. 2. The symbol
“061” is a placeholder for a real number that will be searched and optimised by the
DE algorithm. Using this grammar we can create DTs where a node is a leaf when
the terminal symbol “is_positive(%f)” is selected to replace the non-terminal
symbol <node>. Otherwise, the node will correspond to a split. In the split, a
decision is done based on a condition of the form “<expr> <= %f” where “%f”
is the split value of the feature calculated in <expr>. <expr>can be replaced by
a numeric constant, a feature from the original dataset (represent by the x array)
or a combination of features through the application of addition, subtraction,
multiplication or protected division. After having the macrostructure of the DT,
it is passed to the DE algorithm which will search for the numeric values of the
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“%1” placeholders that maximise the prediction accuracy of the model in the
Training set. Lastly, the model is evaluated in the Validation set, and it is the
quality obtained in this set that will be used as fitness in SGE.

Finally, in the third and final step, the best-performing models found are used
in the Test set. This step is performed when the evolutionary run is finished, to
assess the generalisation ability of the best DT found. This step is paramount
since it measures the extent to which the best DTs are robust and generalisable
for situations beyond the training data.

<start> ::= <node>

<node> ::=is_positive(%f) | (<node>) if (<condition>) else (<node>)
<condition> ::= <expr><signal>%f

<signal> = <=

<expr> 1= <op>(<expr>,<expr>) | <var>

<op> = _add_ | sub_ | mul | protdiv

<var> u=x[0] | x[1] | ... | x[60] | 1.0

Fig. 2. Grammar used by Structured Grammatical Evolution in the hybrid approach.

4 Experimental Setup

4.1 Dataset

To develop models capable of predicting hearing loss we built a database of 25398
patient records, with information regarding the county of origin, birth date,
audiometry screenings, hearing aid usage, and responses to a Hearing Health
questionnaire. The patient data was complemented with socioeconomic indica-
tors such as demographics, education level, type of industries in the county,
ageing index, salary levels, turnover per type of economic activity as well as
per economic sector, the numbers of diabetes diagnosis and heart problems, the
number of otorhinolaryngology exams, and fatality rates for hemorrhagic and
ischemic strokes [14,15], resulting in a total of 60 features. The patient data is
private and therefore can not be made accessible however all other indicators
can be found in [14,15]. Indicator’s data was aggregated with the calculation of
means, medians, quartiles and standard deviations and features were selected
via Pearson correlation.

Concerning the number of patients suffering from hearing problems, 42% of
the total patients were diagnosed with loss.
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4.2 Evolutionary Settings

We used the SGE implementation publicly available on Github [7]. As for the
DE, we used the implementation from SciPy’s Python library [17].

Since DE is sensitive to differences between the numeric values, we scaled all
the features in the dataset. After some preliminary experiments with several DT
models and 3 different scaling techniques, we apply a Standardisation Scaling
technique bounding the features to the following interval [—3; 3].

The parameters used to configure each algorithm are summarised in Table 1.
The settings used by the SGE were defined following the recommendations pro-
posed in [9,10]: {Number of Runs: 30; Population Size: 200; Generations: 100;
Crossover Rate: 0.9; Mutation Rate: 0.1; Elitism: 10%; Tournament Selection
with size 3; Minimum Tree Depth:3, Maximum Tree Depth: 10}. It should be
noted that Maximum Tree Depth is the depth of the derivation tree, not the
DT, and that once this depth is reached terminal derivations are prioritised.

For the DE algorithm, we use 15 individuals and allow the algorithm to run
for 20 generations. The mutation rate is variable between 0.01 and 0.2, and we
use the best/1/bin DE strategy.

Table 1. Parameters used in the experimental study for each method.

Parameter SGE DE

Population 200 15

Generations 100 20

Parent Selection Tournament with size 3 | N/A

Elitism 10% N/A

Crossover Rate 0.9 0.7

Mutation Rate 0.1 Between 0.01 and 0.2
Minimum Tree Depth |3 N/A

Maximum Tree Depth | 10 N/A

4.3 Fitness Assignment

Initially, the dataset is divided into three parts: 60% of the samples are used
for Training, 20% are used for Validation, and the remainder 20% are used for
Testing. As described in Sect. 3, the training data is used by the DE algorithm to
optimise the parameters of the model. To reduce the training time, we randomly
select a balanced subset of 1000 samples from the training set to be used by
DE at each generation. This allows us to use all the available data for training
during the evolutionary process, balancing the computational effort needed to
train the model without compromising its predictive performance.

Once the individual has been optimised by the DE, we use it to classify the
samples in the validation set. After all the samples are classified, we measure
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the accuracy of the model and use it as the fitness of the individual in the SGE
algorithm.

During the parent selection stage if individuals have a validation accuracy
difference lower than 2% we consider that they have the same fitness, i.e., we
consider them to be tied. To resolve the ties, we take into account the individual’s
size measured as the number of internal nodes of the DT, i.e., individuals with
fewer nodes are considered better. With this mechanism we introduce pressure
towards parsimony, leading to simpler and easier-to-interpret models.

5 Results and Discussion

5.1 Training

The performance of the best individuals’ accuracy over 100 generations is dis-
played in Fig.3. The presented results are an average of 30 independent runs.
A brief perusal of the curve reveals that HyTEA gradually improves the quality
of the solutions over the entire evolutionary search. Looking at the performance
of the best individuals, it is possible to see a rapid increase in the models’ qual-
ity during the first 20 generations. From this point forward, the accuracy still

improves, but at a much slower rate.

Average Fitness over the generations for all runs
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Fig. 3. Mean Best Fitness and Population Mean in the Training data across over 100
generations. The lines represent averages of 30 runs. The shadowed area represents the

95% confidence interval.

In Table2 we present a summary of the training results for the hearing loss
prediction. Looking at the quality of the best models after the 30 runs, we
obtained an average accuracy of 0.72 (£0.005), with a 95% confidence interval
of [0.720;0.724]. The results show a small standard deviation and a small range in
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Table 2. Summary of the results for the training dataset. The results are averages of
30 runs.

Fitness
Mean 0.722
Standard Deviation | 0.005
Median 0.721
Best 0.735
95% CI [0.720; 0.724]

the confidence interval, which indicates that HyTEA is robust, i.e., for different
runs, the discovered models have a similar predictive ability.

Finally, the best-discovered model is presented in Fig. 4. This model obtained
an accuracy of 0.735 in the training set. Looking at the DT, it is possible to see
that it contains nodes that result from the combination of features through
the application of simple arithmetic operations (e.g., the root node). This is an
indication that HyTEA is also performing feature engineering when constructing
the models. Table 3 details the features that are used by the best model.

(age + question_1_1) <= -0.41

I 1

[ company._turnover_11_2009 <= 2280815.47 ] [ age <= -482.03 ]

( | ;

[ question_1<= 518 ] [ company_quantity_6_2019 <= -81.87 ] [ Has Hearing Loss ] [ (question_2 + question_4_3) <= -0.02 ]

[ No Hearing Loss ] [ HasHearingLoss] [ No Hearing Loss ] [ No Hearing Loss ] [ No Hearing Loss ] [ HasHearingLoss]

Fig. 4. Best model obtained by HyTEA after 30 runs with an accuracy of 0.735.

5.2 Testing

The absolute performance of the models that are created by HyTEA is assessed
using the Test data. This step is crucial since it provides us with information
about the generalisation ability of the DT. Figure 5 presents the performance of
the best model discovered in each generation of the test data. The results are
averages of 30 runs. Looking at the evolution of the quality of the models we
can observe the same trend obtained during training, with the models gradually
improving their predictive ability. At the end of the evolutionary process, the
best model found has a testing accuracy of 73.7%, while the average accuracy is
of 0.719 + 0.007. The results of our experimentation are summarised in Table 4.

Another interesting outcome of this analysis is the fact that there is no evi-
dence of overfitting since the models keep their testing performance on par with
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Table 3. Description of the variables used by the best DT evolved by HyTEA (see

Fig. 4).

Feature name

Description

age

Patient age

question_1_1

1)

Answered “Yes” to question “Do
you feel hearing difficulties?” (0 or

company _turnover_11_2009

Total turnover of companies in the
retail sector in the patient’s county
measured in 2009

question_1

Answer to question “Do you feel
hearing difficulties?” (Between 1
and 7 where 1 is never and 7 is

always)

company _quantity_6_2019

Total number of real estate
companies in the patient’s county
of origin measured in 2019

question_2

Answer to question “Do you use a
hearing aid?” (Between 1 and 7
where 1 is never and 7 is always)

question_4_3

Answer “Sometimes” to the
question “Do third parties denote
your hearing loss?” (0 or 1)

Table 4. Fitness, accuracy, F1, precision

and recall for the 30 runs of the HyTEA

experiment.
Fitness | Accuracy | F1 Precision | Recall | Tree Depth
I 0.722 |0.719 0.7210.716 0.727 |3.262
o 0.005 |0.007 0.0120.014 0.030 |0.702
min | 0.714 |0.708 0.690 | 0.698 0.638 |2.000
max | 0.735 |0.737 0.741|0.752 0.779 |6.044

the training. This is an important result since it shows that HyTEA is not only
robust but it is also able to discover models that can be used to infer and detect
if a person is likely to suffer from hearing loss.

To better understand our models and the decisions that they were making,
we used a visualisation tool based on the t-Distributed Stochastic Neighbour
Embedding (t-SNE) [12]. This tool allows us to project all the samples in two
dimensions, enabling us to study the distribution of the samples of the different
classes and identify situations where our models have problems making correct

predictions.
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Fig. 5. Performance of the best model found in each generation on the Test Data across

100 generations. The lines represent averages of 30 runs. The shadowed area represents
the 95% confidence interval.

Figure 6 presents a comparison between the original search space where each
point is coloured using its true label (Fig.6a) with the labels obtained after
classifying each sample using the best DT found (Fig. 6b). In general, it is pos-
sible to see that the best DT is able to learn to distinguish between samples
with hearing loss and without hearing loss. In Fig.7 we can observe that most
incorrect classifications happened in regions of high uncertainty where clusters
consisted of a mix of both classes. The central cluster in the t-SNE visualisation,
consisting mainly of instances with no hearing loss, had a few misclassifications.
After closer inspection of the features of the samples that were wrongly classi-
fied, we found they corresponded to instances where one ear of the patient had
no hearing loss whilst the other one had a severe case of hearing loss.

Lastly, we compared the performance of HyTEA against traditional ML mod-
els. In concrete, we used the Scikit-Learn framework to create tree-based models,
such as simple Decision Trees, Random Forests and Gradient Boosting. In the
comparisons of the models, we used the default parameters defined by Scikit-
Learn, without any hyper-parameter optimisation. The average test accuracy
results obtained for the simple Decision Trees, Random Forest and Gradient
Boosting were 0.670 & 0.086, 0.740 £ 0.088, and 0.741 £ 0.075, respectively. The
Decision Tree and Random Forest approaches also had 100% accuracy in the
training set in all runs, showing great overfitting while the Gradient Boosting
approach had 76.9% accuracy in the training set, showing only slight overfitting.

When comparing to the performance of HyTEA, which obtained an accuracy
of 0.719 £ 0.007, we can see that its overall performance is better than simple
Decision Trees and has a similar performance to the ensemble methods while
being more consistent than any of the traditional models. We applied a statisti-
cal test to compare the different approaches and found that there are meaningful
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Fig. 7. t-SNE visualisation of the problem space discriminating the incorrectly classi-
fied instances by the Decision Tree. The dashed circle highlights the area of instances
of partial hearing loss that were wrongly classified.

differences between HyTEA and the simple Decision Trees, i.e., HyTEA is bet-

ter. Regarding the comparison with the ensemble models, there we found no
differences.

6 Conclusions

Hearing loss is a health problem that is affecting an ever-growing number of peo-
ple. Nowadays, around 5% of the world population suffers from hearing problems
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but this number is expected to grow to 10% (1 in 10 people) in 2050. If we con-
sidered the population above the age of 65 years old, these numbers are even
larger, where it is estimated that over 30% of individuals have hearing loss.
The lack of proper hearing levels has a negative impact on people’s lives since
they will have difficulties in communication. Additionally, there is an economic
impact associated with the non-treatment of hearing loss, estimated in US$ 750
billion worldwide. These figures include costs for medical treatment, education,
and loss of productivity.

In this paper, we proposed HyTEA, a way to mitigate the impact of hear-
ing loss in society. HyTEA uses Structured Grammatical Evolution (SGE) and
Differential Evolution (DE) to build models that can predict if a person is likely
to suffer from hearing problems. Using the prediction by the models, a health
official can call the person for a hearing screening to obtain an official diagnosis,
which will result in a reduction of the negative effects of the hearing impediment.
HyTEA uses SGE to build the macrostructure of the models, and then they are
sent to a DE module so they can be further optimised.

The results obtained show that HyTEA is able to discover models that have a
good predictive ability, obtaining a test performance of 73.7%. We also performed
an analysis on the examples that were being wrongly classified to understand
what was happening. After a detailed analysis of the features, we found that
some instances that were wrongly classified corresponded to patients who had
partial hearing loss, i.e., only one ear was affected. To the best of our knowledge,
HyTEA is the first evolutionary approach used to predict hearing loss problems.
The experimental study conducted and the results obtained confirm that it can
be a well-founded solution to the problem of predicting hearing loss. Additionally,
its general architecture allows its use in a broad range of problems.
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Abstract. Decision trees are some of the most popular and intuitive
classification techniques. Based on the recursive division of the data, the
goal is to ultimately identify regions in the space in which most instances
belong to the same class. This paper proposes a game-theoretic decision
tree using a two-player game to determine the splitting hyperplane at
the node level based on the Nash equilibrium concept. The entropy on
each sub-node is used as a payoff function that has to be minimized.
The game’s equilibrium can be computed by minimizing an objective
function constructed based on Nash equilibria properties. A new selection
mechanism is proposed for the Covariance Matrix Adaptation - Evolution
Strategy (CMA-ES) in order to approximate equilibria at each node level.
Numerical experiments illustrate the behavior of the approach compared
with other decision trees based methods.

Keywords: Binary classification - Nash equilibrium - CMA-ES

1 Introduction

Decision Trees (DT) and binary classification problems form an excellent combi-
nation as the former can be seen as a simple and intuitive representation of the
latter’s solution. They were listed early on among the top 10 algorithms for data
mining [21] and have been used extensively in applications in many fields [19].
However, the simplicity of interpretation of axis-parallel ones has been replaced
by various performance-enhancing splitting techniques, starting with oblique and
nonlinear variants, followed by various hybridization with other methods such
as neural networks, clustering, etc. Most DT induction algorithms make use at
some point of the concept of optimization as they search for the best splitting
mechanism in the form of the maximum/minimum of some indicator /error mea-
sure. However, in situations in which a trade-off is required, such as the one
needed to avoid overfitting, optimal solutions may not be the most efficient.
When dealing with trade-off situations, game theory provides a series of solu-
tion concepts designed to overcome some of the disadvantages of the optimal
solutions in conflicting situations. One of the most popular is the Nash equilib-
rium, which ensures stability against unilateral deviations. This paper proposes
a simple method to explore the use of the Nash equilibrium concept to construct
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splitting hyper-planes at non-terminal node levels of a DT. A game in which the
two sub-nodes try to minimize their entropy is designed. The game’s equilibrium
is approximated by minimizing a simulation-based objective function.

2 Decision Trees

The binary classification problem can be described as finding a rule for assigning
labels to data instances based on the information provided by a training set
consisting of data from the same distribution for which the labels are known.
Let D be the given data set, D C RV*P, consisting of data instances z; € RP,
and y; € Y, Y C {0,1}", the corresponding labels [9,22].

Decision trees (DT) [2] generate such rules by splitting data into regions
that are “pure” with respect to one label, i.e., most data instances in that region
have the same label; they assume that other, unlabeled instances, belonging to
the same region would also have the same label. Regions are defined by using
hyper-planes, either axis parallel [2] or oblique [14,20]. Nonlinear separation
methods also have been proposed, for example, by [12]. Compared to axis parallel
splitting methods, oblique and nonlinear ones are known to be more efficient at
the expense of computational complexity. The tree representation allows the
recursive division of the data space while also being intuitive in representing the
defined rules.

Thus, each tree node contains some data that must be split (or not). If the
data can be considered “pure enough” based on some indicator - usually derived
from the proportion of instances having the same label, then that node becomes
a leaf node for the tree. If not, a splitting rule separates the data into two subsets
as “pure” as possible that will be assigned to its two sub-nodes. Decision trees
differ in how they split node data, evaluate the purity, and perform the prediction
based on leaves data.

Oblique decision trees typically test at each node an expression of the form

p
Zajwij +apy1 <0,

j=1
where a1,as2,...,ap41 € R are parameters defining the hyperplane and z; =
(i1, T2, - - -, Tip) € D is a data instance. The induction of an optimal oblique

DT is a computationally challenging task. Moreover, unlike in the case of axis-
parallel DTs, the exhaustive search for the best splits is mostly not feasible.
There are many flavors of oblique decision trees. In [20] the authors pro-
pose HHCART as an oblique decision tree that uses Householder matrices to
estimate data orientation during the split at non-terminal node levels. Another
approach hybridizes a neural network with a decision tree to get the best of the
two worlds: the precision of the neural network combined with the readability of
the decision tree [18]. Another hybridizing technique uses fuzzy set theory and
fuzzy information theory to create fuzzy ODTs [4]. In a bottom-up approach to
the induction of decision trees, clustering and binary classification techniques are
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used to create leaves; hyper-planes are optimized by using feature selection [1].
The explainability of the oblique decision trees has also been a concern as the
adoption of a classification model by non-practitioners is dependent mainly on
its ease of interpretability [10,11]. The approach presented in this paper is novel
because it attempts to use the Nash equilibrium concept at the node level for
splitting data to take advantage of the stability properties of this solution con-
cept. In what follows, the proposed game and decision tree model are presented.

3 ESDT - Equilibrium Split Decision Tree

ESDT uses the concept of Nash equilibrium to split node data X,y. The Nash
equilibrium is one of the most popular solution concepts for non-cooperative
games. A game is defined by a set of players that have to choose among a set
of actions/strategies and receive a payoff based on their choices. The game aims
to maximize (or minimize) each player’s payoff. However, as in most situations,
all the players cannot maximize their payoffs simultaneously; the compromise
proposed by the Nash equilibrium concept is a situation in which no player can
improve its payoff by unilateral deviation.
Consider the normal form game Iy , consisting of:

— Two players corresponding to the two sub-nodes of a parent node, denoted
by L-left and R-right. The subset of X and y corresponding to the left sub-
node is denoted by X, and y, respectively, and to the one to the right
sub-node by X% and yr.

— Each player chooses as a strategy a splitting parameter 8, and Br for X
with the aim to minimize its own entropy.

— the payoffs E; (8., 8r) and Ex (8¢, Br) are computed as the entropy of its
data if X is split by using parameter 3 computed as the average of 3, and
Br.

In order to evaluate the entropy of the sub-nodes, the data in the node is
split using parameter ( in the following manner: an element x € X is placed
in X, if 273 <= 0, and otherwise is placed in X% (Fig.1).

The equilibrium of this game represents a set of split parameters (6., fr)
such that there is no possible decrease of the entropy of either node by unilateral
deviation of any of the players.

Equilibrium Split Decision Trees (ESDT) use the equilibrium of game I" to
split data at a node level. At each node level, the equilibrium of the game I'x
is approximated, and the data is split based on the information provided by the
game. The induction of the tree stops either when a maximum depth is reached
or when data in the nodes is “pure”, i.e., all instances belonging to that node
have the same label.
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{z e X|zT3 >0}
min E(yr)
Br

Fig. 1. Node splitting procedure in game I'(X,y). Nodes to the left and to the right
choose parameters 3. and Sz to minimize their entropy. The parent node is split using
3, the average of the two.

Node Level. At the node level, the data X,y are split based on the equilibrium
strategy of game I'x ,, by using the strategy of the left player, 8. . In this manner,
the left node will have a better separation potential as 3. is fitted for data likely
to be placed on this node. However, on the other hand, the right node will
contain more mixed data values separated in the next step. In this manner, an
asymmetric tree will be created in which the probability that the right nodes
will be further split will be higher than that of the left nodes.

Algorithm 1. Node split

1: Input: X, y;

2: Output: X.,yr, Xr,yr, and 3 to define the split rule for the node;
3: Approximate (using SCMA-ES)

(ﬁz:ﬁ;{) = a’rgminﬁc,ﬁny(ﬂﬂ7 6R|X7 y)

4: Set Xp = {r € X|zTB; <0} and
ye={yeY|zre X}

5: Set Xz = {x € X|zT3% >0} and
yr ={y € Y|z € X}

6: Return: Xg,yg,XR,yR,ﬁz

Leaf Level. As there is no reason to assume that the equilibrium of the game
provides a perfect separation but instead may provide good separable data for
the sub-nodes, the parameter § of the probit classification estimated by using
MLE (see Example 1) is computed and preserved in the leaves and used to make
predictions if the leaf is not pure and contains at least two instances with a
different label than the majority. If the probit model cannot be used, i.e., the
leaf is ‘pure’ or contains only one instance of data with a different label than
the rest, probabilities for test data are computed based on the proportion of
instances of each class in the leaf.
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Fig. 2. A synthetic data set with 50 instances: (a) the data set X, y; (b) distribution of
XT3, where 3 is the probit parameter computed using MLE; (c) distribution of XTs,,
where (. is the CMA-ES approximation of the equilibrium strategy for the left-node.
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Fig. 3. Split data in each sub-node corresponding to Fig.2(b) in (a) and (b) and to
Fig. 2(c) respectively in (c) and (d).

Equilibria Computation - SCMA-ES The equilibrium of game I'x, is a
strategy profile such that no player has an incentive for unilateral deviation. We
can actually use this property to approximate a Nash equilibrium of the game.
A number of unilateral deviations uniformly distributed are generated for each
player and the sum of squares of the deviations that lead to a better entropy
value is minimized. We denote this function by v (8., Br|X, y):

v(Be, Br|X,y) = > (max{0, E(S¢, fr) — E(Be + U(la, b],p), Br)}
+max{(l)€:é(5£a Br) — E(Bc, Br + U(la, b],p))}?)

where U([a,b],p)) denotes p uniformly distributed values in the interval [a, b]
and ng is the number of deviations used for the evaluation.

Function v simulates the corresponding optimization approach to Nash equi-
libria computation for normal form games [13] where a similar (exact) function
has global minimas with value 0 for all the Nash equilibria of the game. Thus,
minimizing v should lead to solutions that are close to or present some equilibria
properties such as stability against unilateral deviations for some of the players.

The minimization of function v is not a trivial task, especially since we do not
have an analytical form. Moreover, an additional challenge is that for some data
sets, we can expect multiple solutions to be equilibria as multiple parameters
classify data in the same manner. However, we can test the assumption that
such an approach may be useful in designing a DT, by using an optimization
heuristic such as CMA-ES: Covariance Matrix Adaptation Evolution Strategy [8]
to approximate game equilibria by minimizing function v(). CMA-ES evolves the
mean and covariance matrix of a population of potential solutions to the problem

(1)
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to find optimum regions. It can be used with minimum changes in parameter
settings and can be easily adapted to many types of optimization problems.

Thus, to minimize v(), CMA-ES may be run with default parameters. How-
ever, in order to tackle the problem of dealing with multiple possible solutions
the selection method of CMA-ES is modified in order to additionally ensure the
minimization of ||3|| = Zfi 1 37 as a mechanism to select one of the parameters
from the set the optimal ones.

CMA-ES evolves the mean and covariance matrix of a normally distributed
population. Each iteration it generates a population of individuals by using the
current values of the mean covariance matrix and selects the best y individuals
- based on the values of the objective function - to use for updating population
parameters. We are interested in finding solutions for which v() = 0, which may
be game equilibria. Among such solutions, we want to preserve the “smallest”
ones. One of the most common approaches to such a problem is to add || 3]| to the
objective function, multiplied by some factor. Here we propose a new mechanism
to minimize first the objective function v() and among optimal solutions to
further minimize |||: the objective function to be minimized is v(); when more
than p individuals converge to the (known) optimum of 0, their fitness is modified
in the following manner:

(1) 18]l is added to all individuals having the fitness value equal to 0; in this
manner they will be sorted and selected based on their magnitude;

(ii) in order to avoid individuals v with v(y) > 0 to appear to be better than
individuals in the first situation, the maximum of ||3| from all § having
v() =0 is added to their fitness.

Thus || - || is minimized only if necessary, and only solutions that are aleady
optimal are subject to this minimization process. We labeled this adaptive ver-
sion of CMA-ES by SCMA-ES.

Example 1. Consider the data set X,y represented in Fig.2(a)!. A simple way
to find a parameter 3 that can optimally split data (X, y) is to use probit classi-
fication [7]. Within this model the probability that an instance x has label 1 is
estimated by using the cumulative distribution function of the standard normal
distribution &(+):

P(y = 1ja) = 82" B), (2)

where (8 is the model parameter computed by maximum likelihood estimation
(MLE). MLE optimizes the log likelihood function in an attempt to find 8 such
that it maximizes probabilities in (2) for all € X with label 1 and minimizes
them for all x € X having label 0.

Parameter 3 can be used to separate data in X: if &(273) > 0.5 then the
model assigns to x the label § = 1 and x would be placed in the right sub-node.
But the condition (2T 3) > 0.5 is equivalent to 273 > 0 so 3 can be used to

! Generated by using the function: make_classification(n_samples=50, n_fea-
tures=2, n_redundant=0, n_informative=2, n_classes=2, random_state=50,
class_sep=0.5, weights=[0.5]) from the Python module sklearn.datasets.
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define a separating hyperplane for a node. In the same manner, if 73 < 0 then
z will be assigned label § = 0 and placed in the left sub-node. In fact any (3
value such that (ideally) for all = with label 1 we have 273 > 0 and for those
with label 0 we have 273 < 0 would provide a reasonable hyperplane to split
data. Figure 2(b) represents the values of XT3 with corresponding labels for the
Probit classification model distributed under the standard normal probability
distribution (green). To the right, the values of X7 3, are represented in the
same manner, but here (. is the approximation of the Nash equilibrium strategy
of the first player (left node) of the game I'x , computed by minimizing function
vin (1) with SCMA-ES. Figure 3 represents the distribution of data in sub-nodes
in each case. Corresponding entropy values for the sub-nodes are for probit: 0.82,
0.87; and for game I": 0.70, 0.84.

4 Numerical Experiments

Numerical experiments are performed to illustrate the potential of the proposed
approach on a set of synthetic and real-world data-sets with various degrees of
difficulty.

Synthetic Data-sets. In order to ensure reproducibility and also to control the
characteristics of the benchmarks, we use the make_classification function
from the scikit-learn library [15] to generate the data, and we report the
parameters for each variant of the data. The parameters used to generate data
sets are all combinations of: number of instances (100, 250, 500), number of fea-
tures (2,5, 10), number of classes (2), class separator (0.1,0.2,0.5, 1), weights for
each class (0.5), and random state (500).

Real-World Data. We use four real world data sets? that represent a binary
classification problem and have various degree of difficulty. The data sets used
are: iris data set (D1) from which we removed the setosa instances in order
to obtain a linear non separable binary classification problem, Pima Indians
Diabetes data set (D2) with eight attributes and 768 instances, the sonar data
set (D3) with 60 attributes and 208 instances, and Haberman’s Survival data
set with three attributes and 306 instances (D4).

ESDT Parameter Settings. ESDT was run using the following parameters: max-
imum tree depth 5 and 10; CMA-ES population size 15 and maximum number
of fitness function evaluations 1500; in evaluating v() we generated 500 unilat-
eral deviations for each player, following a uniform distribution in the interval
[—0.5;0.5].

2 UCI Machine Learning Repository https://archive.ics.uci.edu/ml/index.php,
accessed October 2021.
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Comparisons With Other Methods. We compare the performance of ESDT with
the following classifiers:

— Decision Tree (DT) classifier [2] in two variants the use the gini and entropy
indicators as a split criterion; with a maximum depth of 0 (split until all
leaves of the decision tree are pure), 5 and 10 for each variant;

— Random Forest (RF) classifier [3] with 5 and 10 estimators respectively, the
gini or entropy indicator as split criterion, a maximum depth for the estima-
tors of 0 (split until all leaves are pure), 5 and 10;

— Oblique Decision Tree (Oblique DT) classifier [20] that uses MSE for the
impurity criterion, split based on average of each feature, maximum depth of
5 and 10.

For the compared DT and RF classifiers we use their implementations from
the scikit- learn library and for the Oblique DT we use the implementation
available [5].

Performance Evaluation. 10-fold cross-validation is used: each data set is split
into k = 10 folds using the StratifiedKFold method from scikit-learn (with
seeds 60,1,2,3,4) [9]. In order to estimate the prediction error each fold is used
once as test data and the rest as training data. Considering all parameters, in
the synthetic setting, we obtain 360 different data sets with different degrees
of difficulty which is a good test-bed for classification problems [17]. For each
classification model we report the AUC - area under the ROC curve [6,16] for
each k test fold of each classification problem, resulting in 50 AUC values for
each data set, that can be used in paired t-test comparisons between methods.
AUC takes values between 0 and 1, a higher value indicate a better probability
to correctly classify instances considered “true”.

Results. We compare the performance of ESDT with the other methods based
on AUC values reported by each classification model on the £ = 10 test folds of
each data-set. Figure 4 presents the p-values from a paired t-test that compares
AUC values on all tested folds of ESDT against the compared models, testing
the null hypothesis that ESDT results are worst than the other models. For data
sets with fewer features, 2 and 5 more than for data sets with a larger number
of instances, ESDT performs significantly better than the other classification
models. In fact, in 49% of the cases, the p value indicates that ESDT results can
be considered better and 14% of the tested data sets worse. Table 1 presents the
percent of ESDT results that can be considered better/worst for the synthetic
data sets compared with each of the other methods.

On the one hand the performance of ESDT does not seem to depend on
the number of instances but on the number of features. However, we used the
same number of fitness function evaluations for FCMA-ES for all number of
attributes, so differences in performance can be expected. We find that for 10
attributes ESDT is outperformed most by random forests models, which is also
to be expected. Even-more, for smaller number of features ESDT does report
better results even than random forests. Also, ESDT does not use any mechanism
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Synthetic datasets, t-test results
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Fig. 4. Synthetic data-sets, comparisons with other methods. Colors represent p-values
resulted from a t-test comparing AUC values reported on the 10 test folds, with the null
hypothesis that ESDT results are worst than the other method. A p - value smaller than
0.05 can be considered significant, the null hypothesis rejected, and results reported by
ESDT regarded as better than those reported by the other method. The first line in
the headers indicates the number of instances, the second one the number of attributes,
and the third the class separator.

to manage the features used to split data at node level: the advantage of this is
that there is no extra selection process added to the tree induction.

Tables 2 and 3 present results reported by all methods for the real datasets
when the maximum tree depth is set to 5 and 10, respectively. Mean and stan-
dard deviation of AUC values, as well as t-test results, are presented. The other
methods are also run with maximum depth tree 0, i.e., without any limit in tree
size. We find results to be similar to those observed in the case of synthetic data
sets, confirming that this approach has the potential to compete and outperform
other methods.
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Table 1. Percent ESDT results outperformed/were outperformed by the other meth-
ods, based on ttest results.

Method ESDT
better | worse
DT-gini 51% | 6%
DT-entropy 59% | 12%
RF - gini (5) 50% |13%

RF - gini (10) | 40% | 23%
RF - entropy (5) |48% |15%
RF - entropy (10) | 37% | 23%
Oblique DT 55% | 2%

Table 2. Results for real data sets, max depth 5, for ESTD and compared models. Mean
and standard deviation of the AUC indicator for all classifiers over all test folds; a ¢
indicates a p value smaller that 0.05, i.e. ESDT results can be considered significantly
better and a o indicates a p value greater than 0.95 when comparing the results of
ESDT with the other models. A 0 after the name of the method indicates that there
is no limit imposed to the tree depth.

Method D1 D2 D3 D4
ESDT 0.90(+0.10) | 0.74(+0.06) |0.74(+0.10) | 0.68(40.07)

DT - gini 0.92(£0.08) | 0.70(£0.05) o 0.72(%0.09) o | 0.61(+0.08) o
DT - entropy 0.92(+0.07) |0.70(£0.05) ©|0.75(+0.07) | 0.61(+0.08) o
RF - gini (5) 0.93(£0.08) o | 0.70(£0.05) o | 0.79(%0.08) o | 0.57(%+0.08) o
RF - gini (10) 0.92(+0.09) |0.70(%+0.05) ©|0.77(+0.10) | 0.57(+0.07) o
RF - entropy (5) | 0.93(£0.07) o | 0.70(x0.05) o | 0.76(£0.09) | 0.57(£0.08) o
RF - entropy (10) | 0.92(+0.08) | 0.71(£0.05) o 0.79(£0.08) o | 0.57(+0.07) o
Oblique DT 0.91(£0.09) | 0.66(%0.05) ©|0.70(%0.09) o | 0.57(%0.09) o
DT - gini, 0 0.92(+0.08) | 0.68(+0.05) ©|0.73(+0.09) | 0.54(+0.08) o
DT - entropy, 0 0.92(£0.08) o | 0.68(%0.05) ©| 0.73(+0.08) | 0.55(0.07) o
RF - gini (5), 0 0.93(+0.07) 0| 0.69(%0.04) o | 0.75(+0.09) | 0.56(%0.07) o
RF - gini (10), 0 | 0.92(+0.09) | 0.69(+0.05) o 0.80(£0.09) | 0.56(=0.06) o
RF - entropy (5), 0 | 0.92(£0.10) | 0.69(£0.06) o 0.76(£0.09) | 0.56(=0.08) o
RF - entropy (10), 0| 0.93(0.08) o | 0.70(£0.05) o | 0.78(£0.09) o | 0.57(0.08) o

BCMA-ES versus CMA-ES. In order to evaluate the effect of the selection mech-
anism used by SCMA-ES we compare results reported on the synthetic data-sets
with those obtained by using CMA-ES, minimizing the objective function v/()
without any other modification. A paired ttest comparing AUC values rejected
the null hypothesis that mean differences are less than or equal to 0 with
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Table 3. Same as Table 2, max depth 10. Mean and standard deviation of AUC for all
models over all test folds; a ¢ indicates a p value smaller that 0.05, i.e. ESDT results
can be considered significantly better and a o indicates a p value greater than 0.95.
A 0 after the name of the method indicates that there is no limit imposed to the tree
depth.

Method D1 D2 D3 D4
ESDT 0.92(+0.11) | 0.69(+0.07) | 0.74(+0.10) | 0.67(%0.10) o
DT - gini 0.92(+0.09) | 0.68(40.05) o | 0.72(+0.10) | 0.54(+0.08) ©
DT - entropy 0.92(+0.08) | 0.68(40.05) o | 0.74(+0.07) | 0.57(%0.09) o
RF - gini (5) 0.93(+0.08) | 0.70(+0.06) | 0.75(+0.09) | 0.56(%0.09) o
RF - gini (10) 0.92(£0.09) | 0.71(£0.05) | 0.79(%0.10) o 0.56(%0.08) o
RF - entropy (5) | 0.93(40.08) | 0.70(+0.05) | 0.78(%0.09) o 0.58(40.08) o
RF - entropy (10) | 0.92(+0.07) | 0.71(£0.05) o | 0.79(%0.08) o | 0.56(%0.07) o
Oblique DT 0.91(£0.09) | 0.66(%0.05) o | 0.70(%0.09) o | 0.57(%0.09) o
DT - gini, 0 0.92(+0.08) | 0.68(40.05) o | 0.73(+0.09) | 0.54(%0.08) o
DT - entropy, 0 0.92(+0.08) | 0.68(%0.05) o | 0.73(+0.08) | 0.55(+0.07) o
RF - gini (5), 0 0.93(£0.07) | 0.69(£0.04) | 0.75(+0.09) | 0.56(%0.07) o
RF - gini (10), 0 |0.92(40.09) 0.69(+0.05) | 0.80(%0.09) o 0.56(%0.06) o
RF - entropy (5), 0 | 0.92(+0.10) | 0.69(+0.06) | 0.76(+0.09) | 0.56(%0.08) o
RF - entropy (10), 0] 0.93(40.08) | 0.70(+0.05) | 0.78(%0.09) o 0.57(40.08) o

p < 0.0001, indicating that it can be considered that the use of the selection
mechanism improves results.

5 Conclusions and Further Work

The use of the Nash equilibrium concept as a possible tool for splitting data at
the node level in decision trees for the binary classification problem is explored.
A two-player game in which each sub-node attempts to find the hyperplane that
minimizes its entropy is designed, and data is split based on the equilibrium
strategy of the game. The Nash equilibrium is approximated by minimizing an
objective function that simulates a number of unilateral deviations. The function
is constructed so that - given enough deviations - it has a minimum value of 0
at Nash equilibria. CMA-ES, endowed with a new selection scheme, is used to
minimize it.

While there is no guarantee that the Nash equilibrium of the game exists
or that it is computed by SCMA-ES, it is reasonable to assume that the solu-
tions found present some equilibrium properties making them worth exploring.
Numerical results reported by ESDT compared with other tree-based methods
indicate the potential of the approach. In order to isolate the effect of using the
equilibrium concept, at this point, ESDT is based only on the Nash equilibrium
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split using all features in the data at each node, and probit classification for pre-
dictions, without any feature management mechanism. Further work consists of
adding some feature selection mechanisms at the node level to improve scalabil-
ity. Many other possible modifications and improvements can be used in order to
refine classification results. However, there is reasonable evidence to support the
assumption that using the Nash equilibrium as a solution concept may benefit
the induction of decision trees for the binary classification problem.
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Abstract. Positive-Unlabelled (PU) learning is a growing area of
machine learning that aims to learn classifiers from data consisting of a
set of labelled positive instances and a set of unlabelled instances, where
the latter can be either positive or negative instances, but their label
is unknown. There are many PU-learning algorithms, so an exhaustive
search to find the best algorithm for a given dataset is computation-
ally unfeasible. We recently proposed GA-Auto-PU, the first Genetic
Algorithm-based Automated Machine Learning system for PU learning,
and reported its preliminary results. This work presents an improved ver-
sion of this system with an extended search space to include spy-based
techniques, and provides an extensive evaluation of the new and previous
versions of this system.

Keywords: Positive-Unlabelled Learning - Classification - Automated
Machine Learning (Auto-ML) - Genetic Algorithm

1 Introduction

Positive-Unlabelled (PU) learning is a field of machine learning that aims to
learn classifiers from positive and unlabelled data [1]. This differs from binary
classification due to the absence of a distinct and accurate negative set. The
two instance sets present in PU learning are the labelled positive set, consisting
of positive instances that have been labelled as positive, and the unlabelled
set, consisting of instances which can be in reality positive or negative, but
whose label is unknown. Consequently, the challenge lies in training a classifier
that can estimate the likelihood of an instance belonging to the positive class,
despite the mixture of negative and positive instances in the unlabelled set. When
learning such a classifier, a PU learning algorithm is ‘aware’ of the difference
between the concepts of unlabelled and negative instances. This allows a PU
learning algorithm to try to infer which unlabelled instances are negative and
which unlabelled instances are positive. In contrast, a traditional classification
algorithm applied to PU data lacks such awareness, treating unlabelled instances
as a single category alongside the labelled positive class, resulting in a learned
classifier that predicts the probability of an instance being labelled [2].
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PU learning naturally occurs in many application domains, such as bioinfor-
matics [2], text-mining [3], pharmacology [4], etc. [1], due to the impracticality
of obtaining fully labelled data. E.g., consider datasets where the class variable
represents the presence or absence of a disease. Instances with the positive class
label (disease) are in general reliable, indicating that the patient was diagnosed
earlier. However, the data often also includes patients who did not undergo
detailed medical examination yet, essentially ‘lack of evidence for the positive
class’, instead of ‘evidence for the negative class’ (not having the disease). Hence,
if those patients are labelled with the negative class (as it is usually the case),
this leads to unreliable negative-class labels. PU learning avoids this by treating
all those patients as ‘unlabelled’, to reflect their unreliability.

Many PU learning algorithms have been proposed (see [1] for a compre-
hensive review). Hence, finding the optimal PU learning algorithm for specific
classification tasks can prove unfeasibly time consuming and computationally
expensive, should one use an exhaustive search. Furthermore, algorithm predic-
tive performance is largely dependent on the input data [1]. Therefore, the PU
learning area could benefit greatly from an Automated Machine Learning (Auto-
ML) system, which selects the best algorithm for a given input dataset, among
a pre-defined set of candidate algorithms [5,6].

Our previous short paper [7] recently proposed GA-Auto-PU, the first
Genetic Algorithm (GA)-based Auto-ML system for PU learning, and reported
its preliminary results. This work presents an improved version of this system
with an extended search space and provides a much more extensive evaluation of
the new and previous versions of this system, comparing their predictive perfor-
mance to two popular PU learning methods on three distributions of PU data
across 20 datasets, i.e., 60 PU learning problems in total; whilst only 20 PU
learning problems were used in [7].

2 Background

2.1 Positive-Unlabelled (PU) Learning

PU learning is a field of machine learning that aims to learn models from datasets
that consist of only positive-class and unlabelled instances [1]. PU learning shares
the goal of binary classification - accurately predicting the class of an unseen
instance by learning to distinguish between two classes. However, as a standard
binary classifier requires a training set with two class labels, such a classifier built
using PU data would have to treat all unlabelled instances as a separate class,
and so will predict the probability of an instance being labelled (Pr(s=1)) instead
of the probability of an instance belonging to the positive class (Pr(y=1)) [2]
- where s is a variable taking 1 or 0 to indicate whether or not an instance is
labelled, and y is the true label of an instance, taking values 1 or 0 to denote
the positive or negative class, respectively. In contrast, PU learning models are
trained to predict Pr(y=1) using PU data and have been shown theoretically
to improve upon standard binary classifiers when applied to PU datasets [8].
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Within the PU learning literature, it is commonly assumed (implicitly or
explicitly) that the data adheres to the selected completely at random assump-
tion [2], stating that for the given data, Pr(s=1) =Pr(s=1|x), where Pr(s=1)
is the probability of an instance being labelled, and x represents a feature vector.
Le., the labelled examples are selected from the positive distribution irrespective
of their features and the labelled set is an independent and identically distributed
sample from the positive distribution. There are several approaches to PU learn-
ing, including the two-step approach, biased learning, and incorporation of the
class prior [1]. The two-step approach is by far the most popular and is the focus
of our proposed Auto-ML system.

The first step of this approach identifies a set of reliable negative (RN)
instances among the unlabelled set; i.e., a set of instances substantially differ-
ent from the labelled positive instances and likely not unlabelled positives. The
second step builds a classifier to distinguish the labelled positives from the RN
set. These two steps use only the training set [9]. Provided that the RN set is an
accurate representation of the negative class, this model will predict Pr(y =1)
rather than Pr(s=1).

This approach makes two assumptions [1]: (a) data separability, assuming a
natural division between positive and negative classes; and (b) data smoothness,
assuming that similar instances have similar probabilities of belonging to the
positive class.

An example of a two-step technique is the “Deep Forest PU” (DF-PU)
method [10]. It trains a state-of-the-art deep forest classifier on a random sample
of 20% of the unlabelled instances (treated as negative) and all positive instances.
The bottom 1% of instances with the lowest probability of belonging to the pos-
itive class are added to the RN set. This process is repeated 5 times. A classifier
is then trained to distinguish the RN set and the positive set. Our system is
compared against DF-PU as a recent state-of-the-art PU learning method.

We also compare our system against a well-known method: S-EM [9]. S-EM
uses a spy-based approach, hiding some of the labelled positive instances in
the unlabelled set and using them to determine the threshold under which an
instance is considered RN. It uses the Expectation Maximisation algorithm [11]
and determines the RN threshold as the predicted probability of being positive
under which 1% of spy instances fall. Whilst the literature generally refers to two
individual steps for two-step methods, this work uses slightly different terminol-
ogy. We refer to the steps as phases and recognise that “Step 1”7 often consists
of two distinct phases. Hence, when discussing two-step methods, this work ref-
erences Phase I-A, which extracts an initial RN set; Phase I-B, an optional step
using the initial RN set to further extract RN instances from the unlabelled set;
and Phase II, “Step 2” in the usual description, which builds a classifier using
the positive and RN sets. This notation is advantageous as it recognises that
“Step 17 often consists of two distinct phases, and the use of “phase” rather
than “step” allows us to reference the individual steps of each phase without
confusion.



Evaluating a New Genetic Algorithm for Auto-ML in PU Learning 45

2.2 Automated Machine Learning (Auto-ML)

Auto-ML is an emerging field of machine learning (ML) that looks to limit the
human involvement in ML applications [5], reducing the demand for domain
experts and allowing those without extensive ML knowledge to operate com-
plex ML pipelines [6]. As algorithm performance is largely dependent on input
data [12], Auto-ML is a useful tool as it searches for the best algorithm specific
to the target ML task.

Reference [13] proposed the Tree-based Pipeline Optimisation Tool (TPOT),
an Auto-ML system using genetic programming (GP). The GP uses tree-based
encoding such that the individuals in the population are ML pipelines. The
functions are pipeline operators and hyperparameters, e.g., specifying the num-
ber of trees in a random forest or the number of features selected by filter fea-
ture selection methods. The original version of TPOT uses a multi-objective
optimization approach, where each individual is evaluated by both the classi-
fication accuracy and the complexity of the pipeline produced, based on the
Non-dominated Sorting Genetic Algorithm II [14], drawing on the well-known
concept of Pareto dominance [15,16]. A drawback of the original version is that
it can produce individuals that represent invalid pipelines, with a large compu-
tational cost in terms of evaluation [17]. This issue has been ad-dressed by other
EA-based Auto-ML systems, such as the Resilient Classification Pipeline Evo-
lution system (RECIPE). Like TPOT, RECIPE, proposed by [17], is a genetic
programming system that evolves ML pipelines. However, RECIPE uses a gram-
mar to ensure that all generated individuals are valid, so that it does not waste
resources on invalid individuals. Furthermore, RECIPE evaluates a larger search
space than TPOT which, whilst making for a more complex search space, allows
for a greater variety of solutions [17].

The systems described in this section are for standard binary classification
and are not suitable for PU learning. Hence, we have not compared our system
against any of these. Instead, we have compared against the two PU methods
outlined in Sect. 2.1.

3 The GA-Auto-PU System

The next three Subsections define individual representation and genetic oper-
ators used by the GA. These subsections are based on the description of GA-
Auto-PU in [7], with two main differences. First, the current GA version uses
an extended search space of PU learning methods which includes two spy-based
methods, not used in [7]. This involves an extended individual representation and
a new procedure for handling instances used as “spies” (Algorithm 3, described
later). Second, in [7] the GA used a lexicographic multi-objective fitness func-
tion for optimising F-measure with higher priority and recall as lower priority
(these measures are defined below). In contrast, in this current paper the GA
uses a simpler fitness function, optimising the F-measure only. This simplifica-
tion was made because further experiments (performed after the writing of [7])
have shown that the simpler fitness function (F-measure only) produces results
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qualitatively similar to the more complex lexicographic fitness function, hence
the former is now used in this work. The F-measure is defined as follows:
Precision x Recall TP TP

F-M —9 Precision = ——— e ——
easure = 2 X 5 o+ Recall | recision = qp—p Recall = 7=

TP is true positive count, FP is false positive count, and FN is false negative
count.

3.1 Individual Representation

An individual of the GA represents a candidate solution, i.e., a two-step PU
learning method and its hyperparameter configuration. In both versions of the
system, each two-step technique is composed of three components: phase I-
A, phase I-B, and phase II. Phase I-A of the original system [7] consists of
three parameters: iteration_count_1A, threshold_1A, classifier_.1A. The new
proposed version of the system introduces three new parameters for phase I-A:
spy_flag, spy_rate, and spy_tolerance.

The iteration count determines the number of subsets to split the unlabelled
set into when learning a classifier to distinguish between the positive and the
unlabelled set. E.g., with an iteration count of 5, each subset contains 20% of
the unlabelled data. This helps to handle the imbalance present in many PU
learning datasets. The threshold determines the predicted probability required
for an instance to be considered a reliable negative (RN) instance. In the liter-
ature, the iteration count and threshold are either set heuristically [9] or arbi-
trarily [10]. The previous version of the system did not generate PU learning
methods with heuristic initialisation, but this has been added with the inclu-
sion of spy-based methods. The classifier is the classifier used to predict the RN
instances. Spy_flag is a Boolean value used to indicate whether or not to use a
spy-based method in Phase I-A. Spy_rate determines the percentage of positive
instances to use as spies. Spy_tolerance determines what percentage of spies can
remain in the unlabelled set when the threshold is calculated.

Phase I-B consist of three parameters: threshold_1B, classifier_1B, and
phase_1B_flag. The threshold and the classifier are analogous to those used in
phase I-A. The phase_1B_flag parameter indicates whether to skip phase I-B or
not. Phase I-B is not always utilised in PU learning techniques, and therefore the
system will also generate individuals that are able to skip this phase. Phase 11
simply consists of a single parameter: classifier_2. This classifier will be trained
to distinguish the positive set and the RN set. The list of the 10 genes encoded
into an individual is shown in Fig. 1.

iteration__|thresh.|classifier|spy__ |spy__|spy__|thresh.|classifier|flag |classifier
count 1A| 1A | 1A flag |rate [tol. | 1B | 1B _1B| 1B

Fig. 1. Individual representation of the GA.
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The genes Classifier 1A, Classifier_1B, and Classifier_2 can take the
same set of values, representing 18 different candidate classification algorithms:
Gaussian naive Bayes, Random forest, Decision tree, Multilayer perceptron, Sup-
port vector machine, Stochastic gradient descent classifier, Logistic regression,
K-nearest neighbour, Deep forest, AdaBoost, Gradient boosting classifier, Linear
discriminant analysis, Extra tree classifier, Extra trees classifier (an ensemble of
Extra trees), Bagging classifier, Bernoulli naive Bayes, Gaussian process classi-
fier, and Histogram-based gradient boosting classification tree. These values are
henceforth referred to as “Candidate_classifiers”. The candidate values of each
gene in the individual representation (defining the search space of PU learning
algorithms and their configuration) are as follows:

— Tteration_count 1A: {1,2,3,4,5,6,7,8,9,10 }

— Threshold_1A: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 }

— Classifier_ 1A: { Candidate_classifiers }

— Spy_flag: { True, False }

— Spy_rate: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 }

— Spy_tolerance: { 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 }
~ Threshold-1B: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 }

— Classifier_1B: { Candidate_classifiers }

— Phase_1B_flag: { True, False }

— Classifier_2: { Candidate_classifiers }

The size of the search space of the GA is thus calculated as follows:

10x10x18x2x7x11x10x 18 x2x 18 = 1,796, 256, 000 possible candidate
solutions.

PU learning solutions that do not find any RN instances get a fitness of 0.

3.2 Outline of the Underlying Genetic Algorithm (GA)

Algorithm 1 outlines the procedure that the GA follows to evolve a PU learning
algorithm. Initially, a Population of Population_size individuals is generated
(step 1). The configuration (genome) of the individual is checked against a list
of previously assessed configurations, and if it has not already been assessed, the
Fitness of Individual is calculated (steps 3-4) as described in Sect. 3.3, including
Algorithms 2, 3, 4 and 5. If the configuration has already been assessed, the
fitness values of the previous assessment are assigned to the individual (steps 5-
6). Once all individuals have been evaluated, the fittest Individual is saved for
the following generation (step 7). A new population is created from Population
after undergoing tournament selection (step 8), and New_pop then undergoes
crossover (step 9) and mutation (step 10). Finally, Population is set as New_pop
and Fittest_individual (step 11). This process of fitness calculation, selection,
crossover, mutation, and elitism is repeated #generations times. The fitness of an
individual is assigned as the F-measure achieved over the 5 folds of the internal
cross-validation (applied to the training set).

Both system versions employ uniform crossover and mutation as search oper-
ators, randomly replacing gene values with candidate values.
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Algorithm 1. Outline of the GA procedure

1: Population = Generate population();
2: for #generations times do
if Individual configuration has not already been assessed then

Assess fitness(Individual, Training set); // see Algorithms 2, 3, 4, 5
else

Individual Fitness value is set as the output of the previous assessment;
Fittest_individual = Get fittest individual(Population);
New_pop = 100 individuals selected from Population by tournament selection;
Individuals in New_pop undergo crossover;
Individuals in New_pop undergo mutation;
Population = New_pop U { Fiittest_individual };

—_ =

3.3 Fitness Evaluation

Recall that each individual encodes three classification algorithms, which are
used in phases I-A, I-B and II of the PU learning system. Fitness evaluation
involves applying these algorithms (with the possible exception of the algorithm
for the optional Phase I-B) to the training set. To describe the fitness evaluation
process, we use this notation:

RN: The set of reliable negative instances.

P: The set of labelled positive instances.

U: The set of unlabelled instances.

P+ RN: The combined set of labelled positive and reliable negative instances.

P(y = 1): The probability of an instance being positive, as calculated by the
classifier.

Algorithm 2. Assess Fitness (Individual, Trainingset)

1: Split Trainingset into 5 Learning and Validation sets;
2: for each Learningset and corresponding Validationset do
3: P = all labelled positive instances in Learningset;
U = all unlabelled instances in Learningset;
if Spy_flag then
RN, U = Phase I-A-Spies(P,U) // call Algorithm 3
else
RN, U = Phase I-A(P,U); // call Algorithm 4
9: if Phase_1B_flag then
10: RN, U = Phase I-B(P + RN, U); // call Algorithm 5
11: Train Classifier_2 to distinguish P and RN
12: Classify Validationset;
13: Individual's Fitness Value = F-measure over the 5 Validation sets;

The fitness of each individual is computed as specified in Algorithm 2. The
Training set is split into 5 folds for internal cross-validation, creating 5 pairs of
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Algorithm 3. Phase I-A-Spies(P, U)
1: RN ={};

2: Sets = Split U into Iteration_count_1A subsets;

3: for every Set in Sets do
Spies = spy_rate% instances, randomly selected from P;
Spy_set = Set U Spies;
Run EM(Classifier_1A, P, Spy_set);
Classify all instances in Spy_set;
Set threshold to a value such that spy_tolerance% spies have P(y = 1) less

than threshold;

9: for each unlabelled Instance in Spy_set do

10: if P(y =1) < threshold then

11: RN = RN U Instance, U = U — Instance

12: Return RN, U;

Learning and Validation sets (step 1). For each pair of Learning and Validation
sets, all labelled positive instances are added to P (step 3) and all unlabelled
instances are added to U (step 4). The RN set is determined with either the
phase I-A-Spies(P,U) or phase I-A(P,U) algorithm, depending on the spy_flag
parameter, which returns a refined U set (steps 5-8, executing Algorithm 3 or 4).
If the flag for running phase I-B is set to true, RN and U sets are further defined
with the phase I-B(P + RN, U) algorithm (steps 9-10, executing Algorithm 5).
Classifier_2 is then trained to distinguish P and RN (step 11), and then used
to classify the Validation set (step 12). The Fitness Value of the Individual is
assigned as the F-measure over the 5 Validation set classifications (step 13).

Algorithm 3 outlines Phase I-A of the two-phase PU learning method when
spy_flag is True. The RN set is initialised empty (step 1). The set U of unlabelled
instances is split into Iteration_count_1 A subsets (step 2). For each Set in the list
of subsets, Spies is initialised with spy_rate% of instances of P, randomly selected
(step 4) and Set and Spies are combined to form Spy_set (step 5). Next, the
Expectation Maximisation (EM) algorithm is run [9], tuning Classifier_1A on
P and Spy_set (step 6). All instances in Spy_set are classified and the threshold
is set so that spy_tolerance% of spies have P(y = 1) less than threshold (steps
7-8). For each unlabelled Instance in Spy_set (excluding the spies), if P(y = 1)
is less than threshold, they are added to RN and removed from U (steps 9-11).
The resulting RN and U sets are then returned.

Phase I-A of the two-phase PU learning method when Spy_flag is False is
described in Algorithm 4. The RN set is initialised as an empty set (step 1). The
set U of unlabelled instances is split into Iteration_count_1A subsets (step 2). For
each Set in the list of subsets, Classi fier_1A is trained to distinguish P and Set
(step 4) and used to classify all unlabelled instances in Set (instances previously
treated as the negative set during training) (step 5). For each unlabelled Instance,
if the instance’s calculated P(y = 1) is less than Threshold_1A then Instance is
added to RN and removed from U (step 8). The resulting RN and U sets are
then returned.
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Phase I-B of the two-phase learning method is described in Algorithm
5. Classifier_1B is trained to distinguish the positive and reliable negative
instances in P+ RN (step 1) and the resulting classifier is then used to classify
U (step 2). For each Instance in U, if the Instance’s calculated P(y = 1) is less
than Threshold_1B, Instance is added to RN and removed from U (step 5). The
resulting RN and U sets are returned (step 6).

Algorithm 4. Phase I-A(P,U)
1: RN ={};
2: Sets = Split U into Iteration_count_1A subsets;
3: for every Set in Sets do
Train Classifier_.1A on P and Set;
Classify all unlabelled instances in Set;

4
5
6 for each unlabelled Instance in Set do
7 if P(y =1) < Threshold_.1A then
8.
9:

RN = RN U Instance,U = U — Instance
Return RN, U;

Algorithm 5. Phase I-B(P + RN, U)
: Train Classifier 1B on P+ RN;
: Classify U;
: for each Instance in U do
if P(y =1) < Threshold_1B then
RN = RN U Instance,U = U — Instance

: Return RN, U;

D UL W N

4 Datasets and Experimental Methodolody

The experiments used a stratified 5-fold cross-validation procedure. Each dataset
is split into 5 folds of about the same size with about the same class distribution,
and then the methods are run 5 times. Each time, a different fold is used as the
test set, and the other 4 folds are used as the training set. For each training set,
we run the Auto-ML systems to evolve the best individual configuration. Then, a
PU learning classifier is built from the training set with the configuration defined
by that best individual. The classifier is then used to predict all instances in the
test set. Precision, recall, and F-measure are calculated. This process is repeated
for the 5 pairs of training and test sets in the 5-fold cross-validation, and the
reported results are the average over the 5 test set results. Each method is
evaluated using the same procedure, with the same 5 folds.

We compare the predictive performance of the two versions of the Auto-ML
system, GA-Auto-PU [7] (called GA-1) and GA-Auto-PU with the extended
search space (GA-2), and two well-established PU learning methods: DF-PU [10]
and S-EM [9]. Performance is measured mainly by the F-measure, the most used
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measure in PU learning [18], but we also report a summary of precision and recall
results, for completeness.

The two versions of the GA used the following hyperparameter settings.
#Generations (number of generations) set to 50. Population_size (number
of individuals in the population) set to 101 (100 individuals generated using
crossover, 1 saved with elitism). Crossover_prob, the probability that two indi-
viduals will undergo crossover, set to 0.9. Gene_crossover_prob, the probabil-
ity that a specific gene will be swapped when the individuals undergo uniform
crossover, set to 0.5. Mutation_prob, the probability that an individual’s gene
will undergo mutation, set to 0.1. Tournament_size set to 2. Code for both
versions of the GA can be found at https://github.com/jds39/GA-Auto-PU.

Regarding statistical analysis, for each performance measure (F-measure,
recall, and precision), we compare the performance of the new GA-2 against GA-
1 and the above two PU learning methods using the non-parametric Wilcoxon
Signed-Rank test [19]. As this involves testing multiple hypotheses per measure,
we use the well-known Holm correction [20] for multiple hypotheses. This proce-
dure involves ranking the p-values from the smallest to largest (i.e., from most
to least significant), and adjusting the significance level « according to the p-
values’ ranking. We set «=0.05 as usual, so the first p-value (p;) is statistically

Table 1. Dataset characteristics.

Dataset No. instances | No. features | Positive-class %
Alzheimer’s [21] 354 9 10.73%
Autism [22] 288 15 48.26%
Breast cancer Coimbra [22] 116 9 55.17%
Breast cancer Wisconsin [22] | 569 30 37.26%
Breast cancer mutations [23] | 1416 53 32.42%
Cervical cancer [22] 668 30 2.54%
Cirrhosis [24] 277 17 25.72%
Dermatology [22] 359 34 13.41%
Pima Indians Diabetes [22] 769 8 34.90%
Early Stage Diabetes [25] 521 17 61.54%
Heart Disease [22] 304 13 54.46%
Heart Failure [26] 300 12 32.11%
Hepatitis C [22] 590 13 9.51%
Kidney Disease [22] 159 24 27.22%
Liver Disease [22] 580 11 71.50%
Maternal Risk [22] 1014 6 26.82%
Parkinsons [22] 196 22 75.38%
Parkinsons Biomarkers [27] 131 29 23.08%
Spine [22] 311 6 48.39%
Stroke [28] 3427 15 5.25%
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significant if p; < 0.017. If this condition is not satisfied, the procedure stops
and p1, p2 and p3 are deemed non-significant. If p; is deemed significant, we then
evaluate po, which is deemed significant if po < 0.025. If py is deemed significant,
we then evaluate p3, which is deemed significant if p3 < 0.05.

Table 1 shows the characteristics of each dataset. These datasets are binary
datasets that are engineered to PU datasets by hiding 6% of the positive
instances in the negative set, thus creating an unlabelled set - a common practice
in PU learning [18]. Note, the Positive-class % column shows the percentage of
positive instances before some are hidden in the unlabelled set. § takes the values
20%, 40%, and 60%, as it is important to test on varying distributions [18].

5 Computational Results

Table 2 shows the F-measure values achieved by all methods across the datasets
for 6 = 20%. GA-2 achieved the highest number of wins with 10.5, followed by
GA-1 with 7.5. GA-2 outperformed DF-PU and S-EM with statistical signifi-
cance (p=0.00002, Holm’s adjusted a=0.017 for DF-PU; p=0.0008, Holm’s

Table 2. F-measure values achieved by the four methods for § = 20%.

Dataset GA-1 | GA-2 |DF-PU  S-EM
Alzheimer’s 0.529 0.548 | 0.195 0.321
Autism 0.960 0.982 | 0.648 0.820

Breast cancer Coi |0.705 | 0.711|0.697 |0.711
Breast cancer Wis |0.954 | 0.956|0.543 | 0.898
Breast cancer mut. | 0.893 | 0.896|0.489 | 0.892
Cervical cancer 0.828 | 0.867  0.061 |0.054
Cirrhosis 0.573 | 0.446 |0.405 |0.436
Dermatology 0.860 | 0.901|0.228 |0.718
Pima I. Diabetes |0.677| 0.642 |0.516 |0.534
Early Diabetes 0.958 | 0.9780.761 |0.792

Heart Disease 0.843 | 0.836 1 0.705 |0.811
Heart Failure 0.770| 0.751 |0.487 |0.529
Hepatitis C 0.953 | 0.944 |0.176 |0.695
Kidney disease 0.976 | 0.925 |0.428 |1.000
Liver disease 0.834| 0.831 |0.834 |0.816
Maternal health 0.476 | 0.862|0.403 |0.454
Parkinson’s 0.860 | 0.935 0.856 |0.815
Parkinson’s Biom. |0.476| 0.282 |0.354 |0.333
Spine 0.652 | 0.923|0.652 |0.820
Stroke 0.474| 0.241 |0.086 |0.102

Total wins 7.5 10.5 0.5 1.5
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adjusted a=0.025 for S-EM), but there was no significant difference between
GA-2 and GA-1 (p=0.7841, a=0.05).

This trend continued for § = 40%, as shown by Table 3. GA-2 achieved the
highest number of wins with 8, followed by GA-1 with 5. GA-2 significantly
outperformed DF-PU (p=10.0003, adjusted «=0.017) and S-EM (p=0.0073,
adjusted a=0.025), but there was no significant difference between GA-2 and
GA-1 (p=0.7562, « =0.05).

For § = 60%, in Table4, GA-1 and S-EM performed best with 6 wins each,
followed by GA-2 with 5 and DF-PU with 3. GA-2 significantly outperformed
DF-PU (p=0.0023, adjusted o =0.017), but there was no significant difference
between GA-2 and GA-1 or S-EM (p=0.4980, adjusted a=0.025 for GA-1;
p=0.5706, « =0.05, for S-EM). In total, across all Tables, GA-2 performed best
with 23.5 wins, followed by GA-1 with 18.5, S-EM with 10.5, DF-PU with 7.5.

Table 3. F-measure values achieved by the four methods for § = 40%.

Dataset GA-1 GA-2 DF-PU S-EM
Alzheimer’s 0.551 0.576 0.194 0.37
Autism 0.927 0.94 0.648 0.841
Breast cancer Coi. | 0.687 0.671 0.711 0.704
Breast cancer Wis. | 0.932 0.936 0.543 0.903
Breast cancer mut. | 0.868 0.739 0.489 0.893
Cervical cancer 0.903 0.839 0.042 0.053
Cirrhosis 0.464 0.397 0.401 0.442
Dermatology 0.78 0.896 0.229 0.718
Pima I. Diabetes |0.649 0.646 0.516 0.526
Early Diabetes 0.895 0.887 0.756 0.859
Heart Disease 0.801 0.78 0.705 0.828
Heart Failure 0.652 0.67 0.486 0.508
Hepatitis C 0.771 0.863 0.171 0.708
Kidney disease 0.988 0.951 0.428 1
Liver disease 0.803 0.817 0.832 0.587
Maternal health 0.812 0.813 0.395 0.434
Parkinson’s 0.836 0.843 0.86 0.748
Parkinson’s Biom. |0.265 0.259 0.354 0.261
Spine 0.907 0.917 0.652 0.839
Stroke 0.255 0.239 0.094 0.102
Total wins 5 8 4 3

Table 5 summarises the Precision and Recall values achieved by each method,
showing the number of wins (out of 20 datasets) of each method and whether
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GA-2 performed statistically significantly better or worse than another method,
for each measure and for each § = 20%, 40%, 60% (the full results per dataset are
not shown due to lack of space). In terms of recall, DF-PU performed best overall,
with GA-2 performing worst. GA-2 performed significantly worse than DF-PU
for all 3 § values. However, DF-PU generally predicted almost all instances as
positive, thus achieving near 100% recall, but near 0% precision. Such classifi-
cation is unhelpful, representing a bad trade-off between precision and recall,
which led to the inferior results for DF-PU regarding F-measure, as shown ear-
lier. GA-2 performed best in terms of Precision, significantly outperforming both
DF-PU and S-EM for the 3 ¢ values.

The performance of GA-2 did come at a computational cost, compared with
DF-PU and S-EM. Whilst DF-PU and S-EM took about 4.9 min and 1.5 min on
average per dataset respectively, GA-2 took about 3.7h. As such, GA-2 was 45x
slower than DF-PU, and 150x slower than S-EM. All experiments were run on
a 48 core GPU with 256GB of memory.

Table 4. F-measure values achieved by the four methods for § = 60%.

Dataset GA-1 GA-2 DF-PU|S-EM
Alzheimer’s 0.456 |0.529|0.171 0.373
Autism 0.91 0.927 | 0.645 0.835

Breast cancer Coi. |0.51 |0.553 |0.697 | 0.699
Breast cancer Wis. | 0.906 | 0.866 |0.539 | 0.904
Breast cancer mut. | 0.854 |0.872 | 0.485 |0.892
Cervical cancer 0.714 | 0.35 |0.044 |0.046
Cirrhosis 0.443 |0.204 |0.405 |0.459
Dermatology 0.828 1 0.692 |0.219 | 0.719
Pima I. Diabetes |0.606 | 0.634|0.515 |0.544
Early Diabetes 0.93 |0.894 |0.759 |0.793

Heart Disease 0.785 10.786 |0.702 |0.829
Heart Failure 0.674 | 0.671 |0.482 |0.557
Hepatitis C 0.588 |0.61 |0.160 |0.609
Kidney disease 0.754 |0.806 |0.428 |0.951
Liver disease 0.804 |0.748 | 0.834 | 0.788
Maternal health 0.735 |0.7380.390 | 0.438
Parkinson’s 0.818 [0.792 | 0.860 |0.762
Parkinson’s Biom. |0.233 |0.28 |0.367 | 0.331
Spine 0.818 |0.761 | 0.652 |0.83

Stroke 0.255|0.243 |0.094 |0.102

Total wins 6 5 3 6




Evaluating a New Genetic Algorithm for Auto-ML in PU Learning 55

Table 5. Summary of Precision and Recall results across all datasets.

Number of wins regarding Recall Statistically significant results (>

means better, < means worse)

) GA-1| GA-2 | DF-PU | S-EM

20% 1 3.83 |0 10.33  |5.83 GA-2 < DF-PU (p=0.00001)

40% | 0 0 14.5 5.5 GA-2 < DF-PU (p=0.00002)
GA-2 < S-EM (p=0.0136)

60% | 0 0 14 6 GA-2 < DF-PU (p=0.000002)
GA-2 < S-EM (p=0.00001)

0 Number of wins regarding Precision | Statistically significant results

20% | 7.83 10.83 |0 1.33 GA-2 > DF-PU (p=0.00001)
GA-2> S-EM (p=0.0003)

40% (7.33 |11.33 |0 1.33 GA-2 > DF-PU (p=0.001)
GA-2 > S-EM (p=0.001)

60% 9.33 1 10.33 |0 0.33 GA-2 > DF-PU (p=0.00001)
GA-2 > S-EM (p=0.0001)

6 Conclusions

We recently proposed GA-Auto-PU, the first GA-based automated machine
learning method for PU learning [7]. In this work we presented an improved
version of the system which features an extended search space, incorporating
spy-based heuristic methods into the genes of the individuals, which allows the
creation of more sophisticated PU learning algorithms. This new GA-Auto-PU
version was extensively compared against two established and well-performing
PU learning methods, as well against the previous version of the system, across
three distributions of engineered PU learning data in 20 datasets (representing
in total 60 different PU learning problems). The new version of the system out-
performed the previous version in general, and the new version outperformed the
PU learning baselines with statistical significance in regard to F-measure, the
most used performance measure in PU learning [18]. An analysis of the results
for recall and precision (used to compute the F-measure) showed that the new
system significantly outperformed the two baseline methods regarding precision,
but it is significantly outperformed by the two baselines in most cases regarding
recall.

Future work will look to explore other search and optimisation methods, such
as Bayesian Optimisation, as well as expanding the GA’s search space to include
other types of PU learning methods.



56 J. D. Saunders and A. A. Freitas
References
1. Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach.

10.

11.

12.

13.

14.

15.

16.

17.

Learn. 109(4), 719-760 (2020)

Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 213-220 (2008)

Li, X., Liu, B.: Learning to classify texts using positive and unlabeled data. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence,
vol. 3, pp. 587-592 (2003)

. Zheng, Y., Peng, H., Zhang, X., Zhao, Z., Gao, X., Li, J.: Ddi-pulearn: a positive-

unlabeled learning method for large-scale prediction of drug-drug interactions.
BMC Bioinform. 20(19), 1-12 (2019)

Q. Yao, et al.: Taking human out of learning applications: a survey on automated
machine learning. arXiv preprint arXiv:1810.13306 (2018)

He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based
Syst. 212, 106622 (2021)

Saunders, J.D., Freitas, A.A.: Ga-auto-PU: a genetic algorithm-based automated
machine learning system for positive-unlabeled learning. In: Proceedings of the
GECCO 2022 Companion (Genetic and Evolutionary Computation Conf.), pp.
288-291. ACM (2022)

Niu, G., du Plessis, M., Sakai, T., Ma, Y., Sugiyama, M.: Theoretical comparisons
of positive-unlabeled learning against positive-negative learning. In: Proceedings
of the 30th International Conference on Neural Information Processing Systems
(NIPS 2016), pp. 1207-1215 (2016)

Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text doc-
uments. In: International Conference on Machine Learning, vol. 2, pp. 387-394
(2002)

Zeng, X., Zhong, Y., Lin, W., Zou, Q.: Predicting disease-associated circular RNAs
using deep forests combined with positive-unlabeled learning methods. Brief. Bioin-
form. 21(4), 1425-1436 (2020)

Dempster, A., Laird, N.M., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. J. Roy. Stat. Soc. B 39, 1-38 (1977)

Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
73263-1

Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-
based pipeline optimization tool for automating data science. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2016), pp. 485—
492 (2016)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197
(2002)

Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley,
Hoboken (2001)

Freitas, A.A.: A critical review of multi-objective optimization in data mining: a
position paper. ACM SIGKDD Explorations Newsl 6(2), 77-86 (2004)

de S4, A.G., Pinto, W.J.G., Oliveira, L.O.V., Pappa, G.L.: Recipe: a grammar-
based framework for automatically evolving classification pipelines. In: Proceedings
of the European Conference on Genetic Programming, pp. 246-261 (2017)


http://arxiv.org/abs/1810.13306
https://doi.org/10.1007/978-3-540-73263-1
https://doi.org/10.1007/978-3-540-73263-1

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Evaluating a New Genetic Algorithm for Auto-ML in PU Learning 57

Saunders, J.D., Freitas, A.A.: Evaluating the predictive performance of positive-
unlabelled classifiers: a brief critical review and practical recommendations for
improvement. ACM SIGKDD Expl. 24(2), 5-11 (2022)

Wilcoxon, F., Katti, S.K., Wilcox, R.A.: Critical values and probability levels for
the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel. Tables Math.
Stat. 1, 171-259 (1963)

Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1-30 (2006)

Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open
access series of imaging studies: longitudinal MRI data in nondemented and
demented older adults. J. Cogn. Neurosci. 22(12), 2677-2684 (2010)

Asuncion, A., Newman, D.: UCI machine learning repository (2007). http://
archive.ics.uci.edu/ml

Pereira, B., et al.: The somatic mutation profiles of 2,433 breast cancers refine their
genomic and transcriptomic landscapes. Nat. Commun. 7(1), 1-16 (2016)
Fleming, T.R., Harrington, D.P.: Counting Processes and Survival Analysis. Wiley,
New York (1991)

Islam, M.F., Ferdousi, R., Rahman, S., Bushra, H.Y.: Likelihood prediction of
diabetes at early stage using data mining techniques. In: Computer Vision and
Machine Intelligence in Medical Image Analysis, pp. 113-125 (2020)

Chicco, D., Jurman, G.: Machine learning can predict survival of patients with
heart failure from serum creatinine and ejection fraction alone. BMC Med. Inform.
Decis. Mak. 20(1), 1-16 (2020)

Hlavnicka, J., Cmejla, R., Tykalové, T., Sonka, K., Ruzicka, E., Rusz, J.: Auto-
mated analysis of connected speech reveals early biomarkers of Parkinson’s disease
in patients with rapid eye movement sleep behaviour disorder. Sci. Rep. 7(1), 1-10
(2017)

Emon, M.U., Keya, M.S., Meghla, T.I., Rahman, M.M., Al Mamun, M.S., Kaiser,
M.S.: Performance analysis of machine learning approaches in stroke prediction. In:
2020 4th International Conference on Electronics, Communication and Aerospace
Technology (ICECA), pp. 1464-1469 (2020)


http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

l‘)

Check for
updates

Neural Network-Based Virtual Analog
Modeling

1,23 )@ | Pierrick Legrand', Myriam Desainte-Catherine?,

, Antoine Brusco®, Guillaume Pille?, and Yann Bayle?

Tara Vanhatalo
Pierre Hanna?

! Inria Bordeaux Sud-Ouest, Institute of Mathematics of Bordeaux,
UMR 5251 CNRS, University of Bordeaux, 33405 Talence, France
tara.vanhatalo@u-bordeaux.fr
2 University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR. 5800, 33400 Talence,
France
3 Orosys, 34980 Saint-Gély-du-Fesc, France

Abstract. Vacuum tube amplifiers present sonic characteristics often
coveted by musicians, that are due to the distinct distortion of their
circuits and accurately modeling such effects can be a challenging task.
A recent rise in machine learning has lead to the ubiquity of neural
networks in all fields including virtual analog modeling. This has lead
to the appearance of a variety of architectures tailored to this task. We
aim to provide an overview of the current state of the research in neural
emulation of distortion circuits.

Keywords: Audio effects modeling - Neural networks - Deep learning

1 Introduction

Guitarists tend to prefer the sound of vacuum tube amplifiers. Yet, their short-
comings include elevated cost and weight, and high power consumption. Digital
emulation can circumvent some downsides and is divided into three categories.
1) White-box methods emulate each electronic component. 2) Black-box tries to
match the output signal by applying custom functions to the input. 3) Gray-box
methods comprise a block-oriented structure inspired by internal information of
the device but disregard the behaviour of each of the individual components.
These “traditional” methods present some drawbacks. White-box methods are
time-consuming as they require hundreds of electronic components to be deter-
mined by hand for each amplifier. Moreover with white and gray-box methods it
is necessary to repeat the modeling process for each circuit. Black-box methods
can struggle to accurately approximate the nonlinear mapping of the amplifier.
The computational cost of these methods is also prohibitive for real-time (RT)
use, a fundamental factor to be considered in Virtual Analog (VA) modeling.
Neural networks seem suited for tube amplifier emulation as their nonlinear
activation functions resemble vacuum tubes distortion. They also reduce the
time needed to create a new model as only the training data needs to change.
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This work presents an overview of newly emerging neural approaches in dis-
tortion modeling with the aim of identifying future research topics. The structure
is as follows: White, gray, and black-box approaches are first introduced. The
neural networks used for amplifier emulation are then detailed. Finally, the dis-
cussion underlines the future research avenues to improve upon.

2 Traditional Methods

2.1 White-Box

White-box methods model the physical device using internal information of the
amplifier to establish a system of differential equations. The main methods are
state-space models, Modified Nodal Analysis (MNA), the port-hamiltonian (PH)
formalism and Wave Digital Filters (WDF'). Nodal analysis is used in circuit sim-
ulation techniques to establish the system of equations to be solved in matrix
form. MNA extends this to incorporate auxiliary equations into the system [35].
The most well-known electronic circuit simulator, SPICE (Simulation Program
with Integrated Circuit Emphasis), uses a combination of component-wise dis-
cretization of the circuit and MNA to create the system. The WDF approach
constructs digital filters based on the traveling-wave formulation of the physical
elements of the device [35]. State-space models rely on the principle that the
equations of motion for any physical system may be formulated in terms of the
state of the system: 2/ (t) = fi(z(t), u(t)) where x(¢) is the state of the system at
time ¢, u(t) is a vector of external inputs and the function f; specifies how ()
and u(t) cause a change in the state. The PH formalism is a state-space repre-
sentation that is structured based on the various energies of a system and their
dynamics. Each of these methods translates the circuit diagram of an amplifier
into a set of equations that completely describes it which is then discretized
in order to be solved. To establish these equations, access to the circuit dia-
gram or study of the internal structure of the amplifier is necessary and results
in a labor-intensive task. Moreover, the resolution of these equations relies on
computationally expensive iterative methods or storing lookup tables and the
component values measured can also introduce inaccuracies into the emulation.

2.2 Gray-Box

Gray-box methods alleviate some of the labour of white-box as they model the
amplifier using conceptual processing blocks (i.e. dynamic, linear, nonlinear),
simplifying the model [5]. The Wiener-Hammerstein method has been described
as the “fundamental paradigm of electric guitar tone” [10] and is used in com-
mercial products such as Fractal Audio’s Axe-Fx [10]. Eichas and Zélzer [5] pro-
posed using iterative methods to optimize the block topology. Gray-box methods
require less CPU than white-box methods but struggle with the emulation more.
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2.3 Black-Box

Black-box methods only require the input and output signals of an amplifier
to emulate it. They can also replicate idiosyncrasies that can exist in the ana-
log devices. The main methods are Volterra series, dynamic convolution, block-
oriented structures, and kernel regression. Dynamic convolution is a variant of
a method used for linear systems in which instead of a single impulse response
used to derive the transfer function of the DUT, multiple impulses are used
at different amplitudes to approximate the nonlinear behavior [20]. Gillespie et
al. [12] used a Support Vector Machine (SVM) to emulate a common-cathode
tube amplifier via kernel regression. While this method is theoretically solid,
the choice of the mappings and kernel function can be difficult. Artificial Neural
Networks (ANN) are a class of Machine Learning (ML), black-box method that
use neurons and nonlinear activation functions frequently found in VA modeling
to emulate various nonlinearities. Similarities between a number of ANN and
certain black-box methods can be drawn and suggest that they would be well
suited to the task of tube amplifier emulation and will be discussed in a future
section. Volterra series [27] are functional expansions of multidimensional con-
volution kernels that emulate the “memory” effect of an amplifier as the output
of the nonlinear system is dependent on the input at previous times steps. The
block-oriented structures presented previously can also fall under the scope of
black-box methods [6]. Overall, these methods remain computationally expensive
and/or tend to struggle when simulating very high levels of nonlinearity.

3 Neural Network-Based Methods

ANN are a class of ML algorithm whose basic structure is made up of neu-
rons and often nonlinear activation functions. These neurons are organized into
layers and comprise multiplication by weights, with optional bias added, fol-
lowed by the activation. The network parameters are learnt via minimization
of a distance between the target and the network output, enabling the network
to learn complex nonlinear mappings making this method suited to distortion
modeling. However, amplifier modeling via ANN is not a straight forward task.
The deep models used in other fields can pose a problem for RT use. Processing
raw waveforms in the time domain means that we have to deal with high tem-
poral dimensionality because of the sampling rates for high-quality audio. This
increases the computational cost and the complexity of the task, rendering music
Deep Learning (DL) challenging. A number of DL architectures have appeared
in distortion circuit modeling in recent years including various configurations of
both convolutional and recurrent layers. Here, we study these recent works.

3.1 Architectures

The main categories of architectures that have populated the state-of-the-art
are convolutional, recurrent, and hybrid models. The first instances of Convo-
lutional Neural Networks (CNN) for distortion effects modeling were applied to
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the emulation of amplifiers [3] and for distortion pedals [4], where Damskégg et
al. use a feedforward variant of the WaveNet from [23], originally for speech syn-
thesis. This variant contains dilated causal convolutions. A dilated convolution
uses increased kernel size to include spaces between elements for larger field of
view, in order to better model long-term dependencies, without increased com-
putational cost. These dilated convolutions are causal so only past information
is used. Two models of different sizes are presented [3] and compared to a block-
oriented model [6] and a Multi-Layer Perceptron (MLP) on modeling a Fender
Bassman 56F-A preamplifier. The larger WaveNet outperformed the others in
objective and subjective evaluation. Their follow-up article [4] focuses more on
the RT possibilities of the WaveNet applied to pedal emulation. Their WaveNet
is slightly modified in this work. A trade-off between accuracy of the method
and computational load as well as the minimum amount of data required for
training was studied. For this, three different configurations were compared on
three effects pedals: Ibanez Tube Screamer, Boss DS-1, and an Electro-Harmonix
Big Muff Pi. A modified version of the feedforward WaveNet, Temporal Con-
volutional Network (TCN), was used for more efficient computation for RT use
of models with more complex nonlinear behaviour [31]. The authors show that
by using shallow networks with large dilation factors comparable performance
was achieved with greater efficiency. Both causal and noncausal versions of this
modified architecture were tested to emulate a LA-2A dynamic range compres-
sor. They achieved similar performance but the noncausal variants performed
slightly better in the time domain. The results of listening tests indicated that
a small difference was perceived in the models compared to the reference.

The first article presenting the use of Recurrent Neural Networks (RNN)
for vacuum tube amplifier modeling uses a Nonlinear AutoRegressive eXoge-
nous (NARX) network [2]. A NARX network is similar to plain RNN but with
limited connectivity to remedy the vanishing and exploding gradient problems
frequently encountered. The audio quality of this method was reported to be
low when modeling a 4W Vox ACATV tube amplifier either due to insufficient
training or limited model capacity. A follow-up work [36] studies the use of Long
Short Term Memory (LSTM), first proposed in [11], for the task of amplifier
modeling. Again a 4W Vox AC4TV was chosen. LSTM is a RNN variant that
incorporates the use of forget, input and output gates to control information
flow through each recurrent layer in order to again avoid gradient problems of
regular RNN. The models used were configured as multi-layer networks. The
number of recurrent and hidden units, and sequence length used varied for their
tests. During subjective listening tests, the audio quality of the network was
not deemed satisfactory by semiprofessional guitarists. Wright et al. test a new
LSTM architecture along with another RNN variant, the Gated Recurrent Unit
(GRU) in [33] and both are compared to the WaveNet architecture from [4]. The
GRU, like LSTM, aims to remedy gradient problems by controlling information
flow through the recurrent cell. The computations carried out in a GRU are
similar to those of LSTM but with the various gates of the latter replaced with a
single update gate for reduced complexity. The architecture used is comprised of
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a recurrent layer followed by a fully connected (FC) one, preliminary experiments
showed that adding recurrent layers had little effect on the audio quality. This
method was used to model a pedal (Big Muff) and a combo amplifier (Blackstar
HT-1) [33]. In terms of objective quality, the most accurate RNN outperformed
the WaveNet for the pedal and the most accurate WaveNet outperformed the
RNN for the amplifier with LSTM outperforming the GRU in terms of accuracy
with roughly the same processing time. In a follow-up article [32], further com-
parisons between the RNN from [33] and various WaveNet configurations were
carried out for the modeling of two vacuum tube amplifiers: a Blackstar HT-5
Metal and a Mesa Boogie 5:50 Plus. These configurations were trained and com-
pared in order to gauge the RT capabilities (in C++) and the audio quality. The
LSTM provides better processing speeds than the WaveNet models however the
largest WaveNet was better able to model the highly nonlinear HT5M amplifier.

Distortion effects can be emulated by various ANN architectures [28]. In this
work, eight architectures are tested and compared including four LSTM net-
works, one hybrid convolutional LSTM, one MLP, one CNN, and one hybrid con-
volutional RNN. The most notable architectures of this work are: The parametric
LSTM where the input dimensions are extended to take into account the ampli-
fier parameters; The convolutional LSTM in which two 2D convolution layers are
used to reshape the inputs for GPU parallelization; The sequence-to-sequence
LSTM which outputs a buffer instead of a single sample. All architectures vary
in terms of accuracy and RT performance but the hybrid convolutional LSTM
presented the best Computation Time (CT) and accuracy trade-off. Another
category of hybrid method includes autoencoders such as those presented in the
works of Martinez-Ramirez et al. [26]. The general structure of an autoencoder
comprises: an encoding front-end, a latent space, and a decoding back-end. This
structure enables the model to learn an approximate copy of the input, forcing
it to prioritize useful properties of the data. A convolutional autoencoder with
FC latent space (dubbed CAFx) was presented with the following structure: A
convolutional adaptive front-end, a latent-space of two dense layers, and a FC
decoder. This architecture was used to model three effects of the IDMT-SMT-
Audio-Effects dataset [17]: distortion, overdrive, and equalization (EQ). This
architecture was modified by replacing the FC layers with Bidirectional LSTM
(i.e. LSTM containing forward and backward information at every time step)
to create a convolutional and recurrent autoencoder (CRAFx) to model more
complex audio effects also from [17]. Another variant of this architecture uses a
feedforward WaveNet in the latent space (CWAFx) and the three autoencoders
are compared with the original WaveNet architecture [4] on various tasks includ-
ing modeling a vacuum tube amplifier, sampled from a 6176 Vintage Channel
Strip unit. The results showed that both the WaveNet and CAFx performed
similarly but they are both outperformed by CRAFx and CWAFx with CRAFx
performing slightly better than CWAFx. It was reported that the preamplifier
was able to be successfully modeled on the two-second samples.
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3.2 White-Box and Gray-Box Approaches

Neural networks are black-box by nature but in recent years they have started
to be integrated into gray and white-box methods. The following works fall into
the category of gray-box approaches. Parker et al. present the State Trajectory
Network (STN) [24] which is a method of integrating neural networks into a
State-Space model by adding circuit component values (e.g. voltages) to the
training data for a more accurate simulation. A number of distortion circuits are
tested, including a second-order diode clipper. Results show that this method
is viable as all the circuits modeled were said to be indistinguishable from the
targets in informal listening tests however the training can be unstable [24,25].
Aleksi Peussa augments the STN in his Masters thesis [25] to include recurrence
using a GRU and compares this to both the original STN and a black-box GRU.
This work confirms the STN’s training instability as it was unable to model a
Boss SD-1 pedal. Although the State-Space GRU was able to emulate this pedal,
it was outperformed by its black-box equivalent. However the state-space model
managed to outperform the black-box one when applied to a Moog ladder filter
due to its self-oscillatory nature. Kuznetsov et al. [21] explore the idea of differ-
entiable Infinite Impulse Response (ITR) filters using the Differentiable Digital
Signal Processing (DDSP) library, which enables the integration of classic DSP
elements in a differentiable setting [7]. The authors present the link between IIR
filters and RNN and present a Wiener-Hammerstein model using differentiable
IIR filters to emulate a Boss DS-1 distortion pedal, compared with a simple
convolutional layer as a baseline. None of the models were able to fit the data
perfectly using this method. Differentiable IIR filters are explored further as a
cascade of differentiable biquads to model a distortion effect [22]. The proposed
model is said to have significantly fewer parameters and reduced complexity com-
pared to black-box ANN. This method was used to model a Boss MT-2 distortion
pedal and comparison with WaveNet showed that the parametric EQ cascaded
biquads outperformed the other representations as well as the WaveNet. Finally,
white-box methods have also started to appear. Esqueda et al. [8] implement a
white-box model in a differentiable form which allows approximate component
values to be learned, thus remedying the accuracy problems of white-box model-
ing due to lack of access of exact component values. This method was tested on
a Fender, Marshall, Vox tone stack as well as an Ibanez TS-808 Overdrive stage
in order to validate the proposed model. The performance of any network no
matter the category of approach is directly determined by a number of choices
made regarding the training process. Notably, the choice of dataset is critical.

3.3 Datasets

The performance of ANN for any given task depends heavily on the dataset
they are trained on. The network needs to be exposed to a wide range input-
output pairings to generalize well. A number of datasets used for the task of
amplifier modeling bear certain similarities. Almost all of the data used com-
prises clean guitar Direct Input (DI) sent through either the analog device or a
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SPICE simulation. However, the data used depends on the approach. In black-
box approaches only input-output recordings are necessary whereas for gray or
white-box different or additional data is required. In the gray-box approaches
presented [21,22,24,25], component values of the internal circuit are also used
in the training data. In the white-box approach [8], only the circuit component
values are used. In the black and gray-box approaches, certain aspects of the
training data, namely the sampling rate, the length, and type of the data, have
a significant impact on the resulting model. The sampling rate dictates the audio
quality of the simulation and impacts its RT capabilities. The data used in [3]
was obtained from a SPICE simulation of a Fender Bassman 56F-A preamplifier
applied to DI from the Freesound dataset [9] at 44.1 kHz. A total of 4h of data
was used for the train set and 20min for validation split into 100 ms segments
and a random gain value was applied for more dynamic range. Damskégg et al.
show that as little as three minutes of data is sufficient for the training of the
CNN [4], although final results presented were obtained with five minutes of data
(50% guitar and 50% bass) from the IDMT-SMT-Guitar/Bass datasets [18,19].
These datasets contain a variety of single note recordings of various different
playing styles with varying pickups. The raw inputs were sent through three
effects pedals: Ibanez Tube Screamer, Boss DS-1 and an Electro-Harmonix Big
Muff Pi. This dataset was also used to train the RNN from [33]. The amplifier
models of [32] used a different training set than the pedal emulation, taken from
a pre-existing dataset. This dataset was tailor-made for this modeling task [29].
It includes five different styles of guitar sounds sent through various amplifiers
with their gain parameters set to different levels. The audio used in [32] consists
of around three minutes of guitar audio at 44.1 kHz with the training set consist-
ing of 2min 43s. This data was used for both the WaveNet and the LSTM. The
SignalTrain dataset [13] was used for train, test and validation of the shallower
TCN architectures. This dataset contains input-output recordings at 44.1kHz
of various instruments from a LA-2A dynamic range compressor. The training
data used for the NARX network of [2] was comprised of both signals from a
function generator and an electric amplifier. All training data was recorded at
96 kHz. The recordings from this dataset were also used for the LSTM in [36]. As
the choice of training data has a decisive impact on the performance of a neural
network, so does the choice of cost function used in the optimization process.

3.4 Loss Functions and Evaluation Metrics

Training ANN is an optimization problem in which we often aim to minimize
a given loss function representing the error between the prediction and the tar-
get. It must therefore accurately depict the perceptual difference between sig-
nals. This is often not the case with objective losses such as the Mean-Squared
Error (MSE). MSE and similar time domain losses are computed directly on
the signal’s waveform which does not perfectly correspond to human perception.
To improve the accuracy, spectral information can also be included but this
approach presents its own problems and most of the losses used remain time
domain-based. The most widely known, the MSE, is one of the most used for



Neural Network-Based Virtual Analog Modeling 65

training ANN in distortion circuit simulation. It was used in one of the first
articles presenting RNN for amplifier modeling [36] as well as in all of the gray-
box methods presented previously, including a normalized variant used in [24]
in order to stabilize the initial training of the network. Similar losses include
the Root MSE (RMSE) used in [2] and the Normalized Root MSE (NRMSE)
used in [28]. Despite having relatively widespread use, the MSE based losses
lack perceptual accuracy. Another loss function frequently encountered is the
Error-to-Signal Ratio (ESR) defined as:
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Variants of this loss have been used in the works of Damskégg et al. [3,4] and
Wright et al. [32,33] with pre-emphasis filtering for better perceptual accuracy.
In Damskégg et al., the high-pass pre-emphasis filter with the transfer function
H(z) =1-—0.952""! was used to train their WaveNet as it was found that the
model struggled at higher frequencies initially. To train the RNN, Wright et al.
apply a different pre-emphasis filter with transfer function H(z) = 1 — 0.8527!
to the ESR along with a term to compensate for a DC offset in the prediction:
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In a further work [34], various pre-emphasis filters and weightings are studied
and compared to gauge which combination better reflects perceptual quality.
The filters with the following transfer functions were tested: First-Order High-
Pass (Hpp(z) = 1—0.85271), Folded Differentiator (Hrp(z) = 1 —0.85272) and
First-Order Low-Pass (Hpp(z) = 1+0.8527!). The low-pass filter is preceded by
A-weighting which aims to mimic the equal loudness curves of the human ear.
Listening tests showed that pre-emphasis filtering enabled better accuracy during
modeling, with the A-weighted low-pass filtering achieving the best performance.
The Mean Absolute Error (MAE) is also used in both a time domain formulation
and a spectral variant. The MAE is defined as
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and was used to train the autoencoders in [26]. Steinmetz et al. [31] use a
combination loss comprising both time domain, using MAE, and spectral fea-
tures. For the spectral magnitude, the Short-Term Fourier Transform (STFT)
loss [1] is used, leading to the following cost function (||.|| the Frobenius norm):
Lyvag + Lster with Lgrer = Lso + Lgm where
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and (4)

Lsm = % [log(ISTFT(y)]) —log(ISTET(g)])]l; , (5)



66 T. Vanhatalo et al.

The loss functions used for training can also be applied to the evaluation pro-
cess for an objective measure of performance. These losses must be differentiable
to be used in the gradient-based optimization. Non-differentiable functions and
subjective listening tests constitute other methods of evaluation to provide a
more comprehensive assessment of the quality during testing. While objective
metrics struggle to properly reflect the perceptual aspects of the output, listening
tests take time to implement and hinder continuous integration of ML systems.
Therefore, there is need for objective evaluation metrics. Most of the evaluation
methods used for this task rely on reuse of the loss functions used during training
or a variation thereof. Damskéigg et al. [4] use pre-emphasized ESR for training
and plain ESR for evaluation. While simple to implement, a single objective met-
ric cannot replace subjective listening tests. The listening tests that are mainly
used for this task rely on MUlItiple Stimuli with Hidden Reference and Anchor
(MUSHRA) testing. In MUSHRA, the participants are presented with a labeled
reference, various test samples, an unlabeled reference, and an anchor [14]. A
similar framework used to carried out listening tests with human participants is
the Web Audio Evaluation Tool [16] based on the HTML5 Web Audio API for
perceptual audio evaluation. For the objective evaluation of the models compared
in [31], three metrics were used: the MAE and the STFT loss described above and
a perceptually informed loudness metric that uses the loudness algorithm from
the ITU-R BS. 1770 Recommendation [15]. A listening test similar to MUSHRA
was also carried out using the WebMUSHRA interface [30] to further validate the
accuracy of the models. The results of this test indicated that a small difference
was perceived among the models in comparison to the reference. WebMUSHRA
was again used in [32] and showed the largest WaveNet to be the most perceptu-
ally accurate model of the HT5M amplifier, although this prediction could still
be distinguished from the original amplifier. The largest LSTM proved to be the
closest to the Mesa 5:50 amplifier in terms of subjective quality and most people
could not tell the difference between the model and the target. For the work
established in Thomas Schmitz’s PhD thesis [28], a number of objective metrics
as well as listening tests were presented. One listening test studies the number
of parameters that can be reduced without loss of accuracy and the other is
used to determine the threshold of a given metric above which the accuracy
is no longer improved. An overview of the evaluation methods is presented in
here: Objective: MSE [36], RMSE [2,28], NRMSE [28], Spectrogram [28], Power
Spectrum [28], Harmonic Analysis using ESS [28], Waveform plot [28] [32,33],
SNR [28], Difference in harmonic content [28], MAE [26], ESR [3,4,32,33], Fre-
quency spectrum [3,4], MS_MSE [26], MFCC_COSINE [26], Spectra of 1245-Hz
sinusoid to study aliasing [4], AME [25], CT [3,4,28,32], Custom metric taking
into account RMSE + CT [28]. Subjective: Aural comparison of prediction
and target [36], 2 listening tests [28], MUSHRA [3,32], Web audio evaluation
tool [26], pre-emphasized ESR [34].

The audio quality of the prediction is not the only aspect that requires eval-
uation. The RT capabilities are crucial to take into account when studying VA
models and can also be presented as an objective metric of the emulation quality.
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This is illustrated in the last two objective methods listed above that take into
account the CT.

3.5 Real-Time Capabilities

A major factor to take into account in VA modeling is the RT constraint. If
the simulation cannot process in RT then it is of little use to the users. The
RT constraint for this application is approximately 10 ms. Any latency above
this is likely to be perceived by the musician and hinder their playing. The
latency produced in digital audio is not limited to only the CT of the Digital
Signal Processing (DSP) algorithm used which significantly decreases the time
left for the DSP computations. This means that using DL architectures with
a lot of computations is complicated as it either entails too high a latency or
excessive CPU usage. A number of the architectures are capable of RT to a
degree but caveats also exist. The architectures although often capable of RT
processing, some of which are light-weight enough to work in RT on CPU, are still
computationally heavy and have not been demonstrated to be able to achieve RT
speeds for sampling rates over 44.1 kHz. The hybrid convolutional and recurrent
architecture from [28] utilizes GPU parallelization to process the data in RT
which poses a problem when CPU processing is required. The autoencoders [26]
have been demonstrated using a sampling rate of 16 kHz which is insufficient
for high-quality audio applications. The shallow TCN [31] are capable of RT
use only for buffer sizes over 1024 samples, which at 44.1 kHz incurs a latency of
around 23.2 ms, over double the RT constraint of 10 ms. Finally the architectures
of [32], although capable of RT processing, remain computationally heavy, even
at 44.1kHz which is the lower bound for high quality in music applications.
Digital implementations can introduce aliasing. To remedy this, anti-aliasing
techniques are used which often require upsampling the signals by a factor of
eight [35] which greatly increases the number of samples to be processed, further
restraining the allowed CT of the DSP algorithm. This also applies to ANN
although formal study of the aliasing introduced is lacking.

Here we present an overview of the RT capabilities of the architec-
tures in the state-of-the-art in terms of their Real Time Factor (RTF) with
RTF = %. RTF lower than 1 is required for RT operation. The sam-
pling rate used is 44.1kHz unless stated otherwise: The two-layer LSTM and
the three-layer MLP [28] have a RTF of 1.39 and 0.24 respectively on GPU. The
WaveNet amps [3] had RTF equal to 0.16 (WaveNetl) & 0.33 (WaveNet3) in
Python whereas the WaveNet pedals [4] had RTF of 0.53 (WaveNetl) & 0.91
(WaveNet3) in C++. The CRAFx architecture [26] had RTF of 1.44 in Python
on CPU at 16 kHz. The single-layer LSTM & GRU [33] had RTF of 0.097 for the
fastest RNN & 0.41 for the slowest, estimated on CPU. And the CWAFx [26]
had 1.48 in Python on CPU at 16 kHz. Finally, the shallow TCN [31] was capable
of RT for large frame sizes in Python on CPU. A number of architectures are
capable of RT use, even on CPU. However, the RT measures presented in here
vary in a number of ways including: the sample rate used, the processing unit,
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the implementation language, and the RTF definition (number of operations,
timing the inference, etc.). This makes formal comparison challenging.

4 Discussion

Overall, the wide range of parameters used in the state-of-the-art make a for-
mal comparison of the architectures complicated. To remedy this, we chose at
least one model from each class of networks and trained them using the same
data and loss function. This allows for a clearer comparison. The dataset used
for training is from [29], using 80% for the training data and 20% for testing.
The sampling rate used is 44.1 kHz and the comparison is limited to black-box
approaches. The loss function is ESR without pre-emphasis filtering. A DC term
was added to the ESR when training the recurrent network as the predictions
from model are known to have an amplitude offset. The training parameters
for each network are the following: LSTM: Sequence-to-sequence LSTM with
32 recurrent units; WaveNet: Number of channels = 12; dilation depth = 10;
kernel size 3; Convolution LSTM: Number of channels = 35; stride = 4; kernel
size = 3 (for both convolution layers); Shallow-TCN: Number of channels = 32;
number of blocks = 4; stack size = 10; dilation growth = 10. The Shallow TCN
was trained for 150 epochs instead of the original 60 to account for the differ-
ence in training data and loss and all the other networks were trained until an
early stopping condition was met. For each model tested, we present a number
of objective metrics as well as the inference speeds. The STFT reported is the
Aggregate STFT [1]. Table 1 shows that the Shallow TCN outperforms the other
architectures in terms of processing speed but for significantly lower objective
quality. The lower quality could be due to insufficient training as this network
was trained for a fixed number of epochs. The LSTM with 32 units outperforms
all other models in terms of objective measures but is outperformed by the CNN
in terms of processing speed. This is contradictory to the results presented in
Wright et al. [32] which show that most LSTM models were able to outperform
the WaveNet models in terms of CT. This difference could be due to the evalua-
tion method as Wright et al. report CT of an optimized C++ implementation of
both networks and the results presented here were all obtain using Python. The
hybrid conv-LSTM network from Schmitz et al. [28] ranks highly in terms of

Table 1. Black-box architecture comparison. We define the Real-Time factor here to
be RTF = Irocessing Time R jgwer than 1 is required for RT operation. All results

RT constraint

reported were recorded in Python on CPU (AMD Ryzen 7 3750H CPU at 2.3 GHz).

Architecture RTF MSE |ESR |MAE |STFT
RNN (LSTM-32) [33] 0.51 |0.0040 | 0.0244 | 0.0378 | 0.5952
CNN (WaveNet) [3] 0.35 | 0.0703 | 0.4337  0.1359 | 0.6542

Hybrid (Conv-LSTM) [28] | 3.25 | 0.0069 | 0.0423 | 0.0530 | 0.6937
CNN (Shallow TCN) [31] |0.14 |0.3190 2.1371 0.4510 1.2348
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objective quality but is incapable of RT use without GPU parallelization. Over-
all, all models except for the Shallow-TCN were reported to have acceptable
subjective quality, judged through informal listening tests, even though their
objective time domain metrics vary. This highlights the divergence between the
objective metrics and perceptual quality. The STFT loss produces values closer
to perception, showing that taking into account spectral features can improve the
perceptual accuracy. All the audio results are available at https://www.math.u-
bordeaux.fr/~plegral00p/NNA_AMPLI_EMU.php.

The architectures presented here overall are capable of accurately modeling
analog distortion effects. However, some aspects warrant further study. These
architectures are often capable of RT processing, some of which are light-weight
enough to work in RT on CPU. However, they remain computationally heavy
and have not been demonstrated to be able to achieve RT speeds for sampling
rates over 44.1 kHz. Indeed, some models either require parallelization of their
operations on GPU, low sampling rates or large buffer sizes in order to achieve
close to RT performance. Furthermore, the architectures currently present in
the state-of-the-art that are capable of RT use have only be demonstrated to
work with sampling rates of 44.1 kHz which is the lower bound for high quality
audio in music applications. Moreover, digital implementations of analog audio
effects usually introduce aliasing into the signal and to remedy this, anti-aliasing
techniques are used which often require upsampling of the signals by a factor of
8 [35]. In [4], Damskéigg et al. study the effect of aliasing in the prediction of
their WaveNet and claimed that aliasing was indeed present in the output even
though the models were trained on non-aliased data but that this aliasing could
not clearly be heard in the predictions. Therefore anti-aliasing techniques might
be required for neural models and further work on the possible impact of aliasing
should be explored. A variety of methods presented here allow for input parame-
ters to be taken into account in the network for a parametric model via an extra
input dimension. However these methods could slow down training significantly
and greatly increase the amount of data needed. Moreover, all mentions of these
parametric approaches in the literature have been hypothetical or implemented
with marginal success and no clear demonstration of the methods have been
presented that we know of. The cost functions used for training and evaluation
of the networks have been studied in recent years. Wright et al. [34] present a
study on various functions for pre-emphasis filtering and weighting of the signal
in order to better capture the perceptual features. It was shown that the loss
that best improved audio results was the ESR with low-pass and A-weighting
pre-emphasis. A more formal comparison of various cost functions for amplifier
modeling would be desirable.
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5 Conclusion

In this work, we present an overview of the current state-of-the-art of neural
network-based VA modeling, covering the recent advances in deep learning in
this field under black-box, gray-box and white-box approaches. We highlight the
results of each method, including the audio quality and RT capabilities. More-
over, we include the evaluation methods used and the limitations of each method.
This was done in order to identify possible avenues for further work. We showed
that RT capabilities, and possible aliasing of such approaches as well percep-
tually relevant and preferably differentiable objective metrics warrant further
investigation. Further exploration into parametric models to enable adjustment
of the amplifier settings is also desirable.
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Abstract. Genetic Algorithm (GA) crossover for permutation type
problems is difficult due to the avoidance of vertex or value repetition. As
a result extensive research into crossover operators has been undertaken
with many variants developed. However, these crossover operators oper-
ate in a blind manner relying on the mechanics of survival of the fittest.
A possible improvement is to introduce a quality measure into crossover
enabling high quality edges to be utilised. This paper presents a crossover
operator ER-Q that selects parental edges based upon their quality and
applies this to an electric bus scheduling problem. Results demonstrate
significant improvements in electric bus scheduling over alternative blind
crossover operators. This paper also explores the definition of quality in
terms of the electric bus scheduling problem noting that quality is dif-
ficult to quantify. A range of quality metrics are presented that can be
used with differing effectiveness to optimally schedule electric buses.

Keywords: Genetic Algorithms - Electric Bus Scheduling - Crossover

1 Introduction

Meta-heuristic methods such as a Genetic Algorithm (GA) [14] are popular for
application to permutation routing problems such as the Traveling Salesman
Problem (TSP), Vehicle Routing Problem (VRP) or a bus scheduling prob-
lem. Permutation problems are AP-hard in nature and complex as each ver-
tex must occur once only. GAs use the principles of Darwinian evolution, sur-
vival of the fittest, mutation and crossover to improve a population of solu-
tions. Crossover, whereby genetic material is swapped between parent solutions,
is problematic when avoiding vertex repetition. Consequently, many differing
crossover operators have been developed to address this issue. Some preserve
parental paths [9,12,20], some parental edges [28] and some use a graph-based
approach [19,27]. However, these crossover operators have one common factor in
that they rely on the mechanics of evolution to progressively improve solutions.
They assume that parent solutions are highly fit and thus all edges must be too.
Furthermore, to resolve vertex conflicts, new edges are introduced which will
have an unknown effect on solution quality. In effect, these crossover operators
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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operate in a blind manner relying on survival of the fittest to remove poorly
recombined solutions.

This paper presents a methodology for less blind crossover whereby the oper-
ator is augmented with a quality measure to analyse edges. This enables better
quality edges to be selected and more importantly, the avoidance of violating
problem constraints. To test this hypothesis the proposed quality-based ER-Q
crossover will be compared to a range of blind crossover operators using a com-
plex electric bus scheduling problem which has the constraints of a timetable
and bus range. Furthermore, this paper will consider the definition of quality
itself which can be difficult to quantify. A wide range of quality metrics could
be used and given the locality of its use, an edge by edge basis, choice of metric
is shown to be important in terms of overall results. The paper is laid out as
follows: Sect.2 will provide an overview of crossover, its drawbacks and prior
work that considers edge quality; Sect. 3 will introduce a quality based crossover
technique and its application to an electric bus routing problem. In Sect. 4, the
results of a range of crossover operators including the proposed quality-based
operator when applied to a real-world electric bus scheduling problem will be
presented. Definitions of quality for electric bus scheduling will be explored and
tested in Sect. 5 and finally Sect. 6 will sum up and draw conclusions.

2 Background and Related Work

Permutation type routing problems have solutions which contain non-repeated
values. Examples include the Traveling Salesman Problem (TSP) with the aim
to visit each city once only in the shortest distance or the Multi Depot Vehicle
Routing Problem (MDVRP) [8] with the aim to assign customers and routes to a
fleet of vehicles minimising distance. The Capacitated Vehicle Routing Problem
(CVRP) extends the MDVRP adding a vehicle capacity such as a weight limit.
The bus scheduling problem can be considered similar to the MDVRP with time
windows (MDVPTW) whereby the goal is to assign a set of timetabled routes to
buses such that the bus fleet traversal distance is minimised whilst performing
each route on time. The electric bus scheduling problem adds a further con-
straint in that each bus has a limited range due to its battery which cannot be
quickly recharged. Therefore, an electric bus must be able to perform its assigned
timetabled routes and return to the depot without running out of charge.
Meta-heuristic approaches are commonly used to solve permutation type
problems such as bus scheduling. A popular meta-heuristic, the Genetic Algo-
rithm (GA) [14], uses the principles of Darwinian evolution to derive solutions
maintaining a population of solutions generated using natural selection, crossover
and mutation. Parents are probabilistically selected based on their solution qual-
ity and their genetic encoding used to generate offspring. This is achieved using
crossover whereby genetic material between parents is swapped to create two
new solutions. Given the success of GAs they have been applied to bus schedul-
ing problems. For instance, Kidwai et al. [17] use a GA to minimise the fleet size
of buses for a set of timetabled routes in Burdwan, India. For electric bus routing
Janovec and Kohani [16] used a grouping GA, whereby bus route assignments
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are termed groups, to minimise the energy use of a bus fleet. Wang et al. [25] con-
sider a multi-depot three line electric bus routing problem from Qingdao China
using a column generation GA whereby columns representing allocated routes for
electric buses are recombined. Hu et al. [15] optimally route electric buses with
additional fast bus stop charging using a Mixed Integer Linear Programming
(MILP) model and a GA for a three bus route in Sydney.

However, crossover of genetic material between parents can be problematic
for permutation problems such as bus scheduling. Vertices must occur once only
but if a vertex occurs at differing points in parent chromosomes it could occur
twice in a child. Hence, specialised GA crossover operators have developed for
solving permutation problems early attempts preserving parent sub-paths. Order
(OX) [9] takes a parent subsequence and preserves the relative order of vertices
from the second copied to the child in order from the second crossover point skip-
ping conflicts. Partially Mapped (PMX) [12] transfers vertices between crossover
points directly to children. Each child takes vertices from the other parent out-
side these points resolving conflicts using a one to one mapping of crossed over
genetic material. Cyclic (CX) [20] ensures that each vertex and relative position
comes from a parent using a one to one mapping. The vertex from position one
in parent one is directly copied to the child. The next is the corresponding vertex
in parent two but in the position it is found in parent one. This continues until
a conflict when genetic material from the second parent can be directly copied.

More recent research on crossover considers edges between vertices more
important. Grefenstette [13] introduced a method whereby from a given vertex
only incident edges from either parent could be selected probabilistically based
on length. If none are available a random edge is selected. Edge Recombination
(ER) [28] extended the concept by constructing an edge list from two parents
with each vertex having between two and four edges. A solution is constructed
by taking an initial vertex and selecting edges from the edge list which have least
onward edges. If no parent edges are available a random edge is used.

The aforementioned operators assume parental paths or edges are better
quality due to natural selection. However, parents will likely have some lower
quality edges thus these operators used in a purely evolutionary way fail to
reach optimality. To improve solutions local search methods are often used. For
example 2-opt [7] which iteratively takes all solution edge pairs and swaps them,
a sub-tour reversal accepting if an improvement. Given local search success and
importance of edge retention used by ER, a new more successful direction of
crossover developed with Edge Assembly (EAX) [19]. This operator takes two
parents A and B and constructs a graph G that contains the edges of parents.
From G a set of AB-cycles are constructed, an even-length sub-cycle of G with
edges alternating from A and B whereby cities can repeat but not edges. A
subset of AB-cycles are selected as an F-set. Once these have been determined
an intermediate solution is created from this E-set by using a greedy local search.

Edge preservation with local search has become the dominant crossover
applied to the TSP. Partition crossover (PX) [26] uses the theory that if par-
ent solutions are locally optimal, offspring from their preserved edges are likely
locally optimal too tunnelling to new optima. PX creates a graph G of parental
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edges finding a partition that separates graph edges aside from two edges. Off-
spring are generated using one parental sub-tour from one partition and a sub-
tour from the other partition and parent. PX cannot introduce new edges so
requires additional methods but achieved good results. PX was extended by
Generalised Partition crossover (GPX) [27] which utilises all partitions with
only two connecting edges to construct offspring. Combined with Lin-Kernighan
local search performance was similar to Chained Lin-Kernighan [2]. GPX was
improved with further partition recombining methods (GPX2) [24].

However, a common factor of these crossover operators is that they operate
blindly without problem domain knowledge or edge quality awareness. It could
be argued that relying on the dynamic of pure Darwinian evolution by using a
blind crossover is not particularly beneficial. Indeed, Osaba et al. [21] describe
the CX crossover as blind and through analysis of a TSP problem postulate
that CX provides little benefit, mutation and natural selection are the major
contributing factors. The heuristic of Grefenstette [13] considered parent edge
quality using distance but reported edge failures of 40%. However, edge quality
can be implicitly defined, Tang and Leung [22] considered using nearest neigh-
bours to select edges in cases of failure of parent edge availability. Edges between
nearest neighbours are naturally of higher quality. Alternatively, Ting [23] mod-
ifies ER crossover such that edges from alternating parents are used with edge
failures resolved by greedily selecting the shortest available edge. Freisleben and
Merz [11] use a greedy approach to solve TSPs whereby non-common parental
edges are deleted in offspring and reconnections made using the shortest available
edge. Kkesy and Domariski [18] considered an alternative edge quality measure,
the sensitivity of an edge in a parent to being broken and essentially replaced by
two edges with an intermediate vertex. Parental edges of higher sensitivity are
more likely to be preserved. Ahmed [1] modified ER crossover to consider edge
quality by greedily using the parental edge from a vertex with the best quality.
Results from application to small TSP instances yielded improvements over ER.

An alternative meta-heuristic Ant Colony Optimisation (ACO) [10] inte-
grates problem domain knowledge to solve routing problems. ACO uses heuris-
tic information, or edge quality, alongside pheromone information to guide ants
constructing solutions by traversing graph G. For the TSP this quality is the dis-
tance between vertices. This concept of heuristic information can be successfully
incorporated into GA crossover via ACO. Branke et al. [3] integrated ACO into
a crossover operator (ABX). A temporary pheromone matrix is created from a
number of parents and combined with heuristic information to generate a set of
offspring solutions. An alternative approach combined PMX crossover with ACO
(ACOX) whereby ants resolve conflicts rather than using a one to one mapping
hence incorporating edge quality improving upon PMX considerably [4].

3 Embedding a Quality Measure Within Crossover

To apply a meta-heuristic GA to the electric bus scheduling problem a chro-
mosome will represent a solution with a set of buses each followed by a set of
timetabled routes to be completed in order. However, as discussed in Sect. 2,
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blind crossover methods such as OX, ER and PMX, with no knowledge of the
bus scheduling problem and its constraints could be deemed to be less effec-
tive. A methodology is required that favours preservation of parental edges but
selects edges using quality and non-violation of constraints. Consequently, a novel
crossover operator based upon ER but incorporating an edge quality measure,
ER-Q [6], is proposed for application to the electric bus scheduling problem. ER
crossover aims to preserve parental edges building solutions step by step using
any available parental edges. From a given vertex ER selects the parental edge
with fewest onward connections to avoid edge failures when no parental edges
are available. In this instance a random choice is made over all available edges.

(1234567890)
(7416052839)

b1
b2

Given two parents p; and po an initial vertex 1 is selected. The next vertex
is taken from the connecting edges 0, 2, 4, or 6. All four have three available
parental edges so 4 is randomly selected. From vertex 4 edges to vertices 3, 5 and
7 are available, all have three available parental edges so 7 is randomly selected.
From vertex 7 only two parent edges are available to vertices 6 and 8 with 6
having fewest parental edges so is automatically selected giving the following:

0= (1476xxxXXXX)

This continues until a solution comprised mainly of parental edges is derived. The
ER crossover operator is described in Algorithm 1. Edge failures of 1-1.5% are
reported by the authors, a weakness with random edge choices made introducing
possibly poor edges which violate problem constraints. Even selecting a random
parental edge could violate problem constraints or be a poor quality edge.

Algorithm 1. Edge Recombination Crossover

1: E = list of parent edges from each vertex, K = empty list, N = random vertex
2: while length of K is less than length of parent do
append N to K, remove N from parent edge list £
if parental edge list E at N not empty then
N = vertex from E with fewest connections (random choice if multiple)
else
N = random available vertex (an edge failure)
end if
end while

ER-Q can resolve the problem of violating problem constraints or inserting
a poor quality edge by embedding a constraint and edge quality aware measure.
Since ER builds a complete solution step by step constraints such as an electric
bus charge level and current time can be tracked for each bus such that edges to
routes that result in running out of charge or lateness can be considered taboo. Of
the remaining edges, a high quality edge can be selected, a less random approach.
The highest quality edge may not be the optimal so a probabilistic model over
edges is used, similar to ACO when ants probabilistically decide vertices to visit
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using the random proportional rule, the probability of ant k at vertex ¢ visiting
vertex j € N¥ is defined as:
[7i3]* [:5)°

ko
Dij = S e [Tl 1) (1)

where [7;] is pheromone on vertex i to vertex [ edge; [1;;] is heuristic information,
1/dy; «, 3 are tuning parameters; N* is the feasible neighbourhood of ant k.
When an edge failure occurs at vertex ¢, heuristic information can be similarly
used for edge probability selection. A simple quality measure for the electric bus
scheduling problem and minimising fleet distance would be to use the distance
from the end of one bus route to the start of the next, vertex i to vertex 7,
d;;. If assigning a bus a route represented by vertex j violates the energy use
or lateness constraints, the edge has zero probability of selection. Thus, with
ER-Q, the probability of taking the edge to vertex j € N can be defined as:

Do = [0451° 11351
Y ZleN[Wz‘l]B[Til]

where [n;] is heuristic information, 1/d;;; 8 tunes edge length importance; N is
the feasible neighbourhood; 7T;; indicates if the edge from vertex ¢ to [ is taboo:

(2)

0 if current time plus time to travel to vertex [ causes lateness
or energy required to travel to vertex [ and back to the depot
exceeds remaining battery charge

1 otherwise

Ty = (3)

This hypothesis of selecting edges based on quality can be further extended
to parental edge selection. Now edge quality is accounted for in cases of edge
failure and thus less problematic, it can be hypothesised that the ER policy
of selecting parent edges with fewest onward edges is unnecessary. If parental
edges are available then a probabilistic decision of which to take can also be
made based purely upon their edge quality. In effect, the parent solutions act
as a candidate set of edges. The quality aware ER crossover operator, ER-Q), is
described in Algorithm 2. Note the key differences to the standard ER crossover
operator in Algorithm 1. Now, for edge failures a probabilistic model using edge
quality is used to select an available edge detailed on lines 8-9 and to select a
parental edge a probabilistic model using edge quality is constructed over just
the parental edges, lines 5-6.

Further enhancements can be applied to ER-Q, minimising the degree of modi-
fication of parent solutions and forcing edge failures [6]. Given the nature of using
a probabilistic model, making many decisions can inevitably lead to occasional
errors in these decisions. To avoid this, each parent contributes directly to an off-
spring whereby a random set of bus routings are directly preserved. This is similar
to standard crossover whereby the genetic material outside two points of a parent
solution is preserved. The remaining bus routings are constructed as described in
Algorithm 2. The second enhancement is to in effect cause an edge failure with
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Algorithm 2. ER-Q Crossover

1: E = list of parent edges from each vertex, K = empty list, N = random vertex
2: while length of K is less than length of parent do
append N to K, remove N from parent edge list E
if parental edge list E at N not empty then
create probabilistic model over edges from E using quality measure
N = select vertex using random proportional rule (Equation 2))
else
create probabilistic model over all available edges using quality measure
H N = select vertex using random proportional rule (Equation 2))
10: end if
11: end while

a given low probability even if parental edges are available. Now problem con-
straints and edge quality are accounted for using the probabilistic model, edge
failures can be considered less problematic. Indeed, consideration of non-parental
edges can now introduce new high quality edges into the population.

4 Optimally Routing an Electric Bus Fleet

To test the theory that the less blind crossover operator ER-Q can improve
evolution it will be applied to an electric bus scheduling problem. A UK bus
operator runs buses throughout a large area consisting of a radius of 50 km.
These run on a range of routes whereby a number of buses operate to a given
timetable. The bus operator uses a fleet of electric buses which are equipped
with a 450 kWh battery providing a range of 185km using 2.42kWh of energy
per Km. The objective is to assign timetabled routes to electric buses such that
the distance the fleet travels is minimised with no tardiness or violating the
range constraints of the buses. A solution to the electric bus scheduling problem
will consist of a set of unique values representing buses each followed by a set
of unique values representing its assigned routes. An electric bus performs their
assigned routes in the given order. A set of routing scenarios have been created
from the UK bus operator routes varying in size and are described in Table 1.

Table 1. Real-world electric bus routing problems.

Problem | Lines | Routes | Buses | Distance (Km) | Problem | Lines | Routes | Buses | Distance (Km)

Scenario A | 20 253 150 3112.58 Scenario F | 24 670 150 7244.83

Scenario B | 20 223 150 | 2353.76 Scenario G | 60 1456 | 450 | 21050.11
Scenario C | 20 890 150 13555.99 Scenario H | 64 1774|450 | 29836.56
Scenario D | 20 518 150 12145.38 Scenario I | 124 | 3230 900 50886.67

Scenario E | 20 676 150 12474.52

To test the effectiveness of the quality-based crossover ER-Q comparisons will
be made with OX, CX, PMX, ER and PX crossover operators. Three simple
mutation operators, swap, insert and inversion will be used. Note that to be
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able to fully assess the effectiveness of each crossover operator no local search
methods will be used. Experiments were conducted over 25 random runs using
a Ryzen 2700 processor and a parallel method to maximise CPU occupancy [5].
The parameters used for the GA implementation are described in Table2. A
recommended low degree of permissible maximum bus route modification of 10
bus routes is used and a one in ten probability of forcing edge failures [6].

Table 2. Genetic Algorithm parameters.

Population Size 128 | Iterations 100k
Crossover Probability | 90% | Mutation Probability 10%
Elitism Rate 2% | Tournament Size 9
Forced Edge Failure |10% | Max. Modifiable Bus Routings | 10

The results from applying a GA with each crossover operator including ER-
Q to the bus scheduling scenarios are shown in Table 3. From these results it
can be observed that the quality based crossover operator ER-Q outperforms
all other crossover operators in terms of minimising bus fleet distance for all
routing scenarios. Of the alternative crossover operators OX achieves the next
best results although ER-Q improves upon these non-service distances by as
much as 25%. The reduction in electric bus fleet non-service distance by ER-
Q is due to the number of buses used in each fleet. ER-Q finds solutions with
significantly fewer buses in the optimised solutions. Optimal solutions for routing
problems generally minimise vehicle use. A key reason behind ER-Q using fewer
electric buses is that through using a quality metric to assess edges, parental or
otherwise, returning early to the depot will only occur when close as the edge
is of higher quality. Otherwise, further routes are most likely scheduled. The
alternative crossover operators all recombine parent solutions introducing new
edges without any quality measure meaning that a bus could be inadvertently
returned to the depot through the recombination process. Survival of the fittest
can be relied upon to some extent to remove these weaker solutions but clearly
the dynamics of Darwinian evolution are not enough.

However, the effectiveness of a quality metric within a crossover operator
does come with a computational cost due to quality analysis of available edges.
The runtimes using each crossover operator are shown in Table 3 whereby it can
be observed that ER-Q is the most computationally expensive. For the smaller
problem scenarios ER-Q is approximately 2.5x slower than the fastest operator
CX although this difference diminishes as the problem size increases. But given
the improvement in results this additional computational cost is acceptable as
ER-Q is capable of deriving better results within the same time period.

It could be considered that the maximum permissible number of random bus
routings that can be modified from parent solutions of ten buses out of up to
900 is too low. The other bus routes are preserved from parent solutions, each
parent being responsible for one offspring. For the modifiable bus routings edges
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Table 3. Average electric bus fleet not in service distance travelled, buses utilised and
evolution runtimes using ER-Q crossover and a range of other crossover operators.

Routing Crossover | Non-Service Distance | Buses Runtime
Problem | Operator | Travelled (Km) Utilised (secs)
Scenario A | OX 1529.66 + 43.39 37.12 £ 1.27 |18.07 £ 0.26
CX 2446.20 £ 83.10 58.36 + 2.40 |17.63 + 0.20
PMX 2587.54 £ 85.18 61.08 £ 2.34 |22.91 £ 0.48
ER 2060.09 £ 78.90 49.32 £ 1.91 |33.87 £ 0.56
PX 2351.22 £+ 105.12 56.36 + 2.27 | 27.24 £+ 1.00
ER-Q 1401.10 + 50.897 33.40 £ 1.15 |32.35 £ 0.37
Scenario B | OX 1357.17 + 45.05 32.64 £1.19 |16.74 £ 0.13
CX 2140.56 £ 99.51 52.28 + 1.93 | 16.51 + 0.26
PMX 2183.24 £ 73.65 52.88 + 2.07 | 21.51 + 0.43
ER 1987.70 + 81.52 48.44 £ 2.58 |32.17 £ 0.57
PX 2025.39 £ 79.23 50.40 + 2.24 | 25.57 + 0.71
ER-Q 1244.79 + 52.537 29.72 £ 1.28 | 29.97 + 0.26
Scenario C | OX 5022.58 £ 135.23 146.00 &+ 1.66 | 41.44 £+ 0.38
CX 5316.14 £+ 109.33 148.16 + 1.18 | 41.27 £+ 0.27
PMX 5257.85 £+ 114.20 148.00 + 1.15|41.93 £+ 0.33
ER 6566.84 £+ 386.25 149.28 + 0.79 | 73.62 £+ 0.50
PX 5308.84 £ 114.45 147.16 + 1.91 | 57.11 + 1.25
ER-Q 4106.50 + 84.931 126.80 &+ 2.10 | 74.15 £ 0.44
Scenario D | OX 2462.81 £ 81.06 111.16 4+ 2.66 | 27.40 £+ 0.19
CX 2571.52 £+ 101.85 131.08 + 2.20 | 27.55 £+ 0.20
PMX 2555.53 £ 90.05 132.40 £+ 3.72|27.92 £+ 0.45
ER 2693.05 £ 103.65 125.92 + 2.97 | 50.83 £ 0.47
PX 2543.01 £+ 101.07 130.88 4+ 3.10 | 41.95 £+ 2.70
ER-Q 1976.44 + 78.27" 94.04 £ 1.84 |50.14 £ 0.37
Scenario E | OX 3009.79 £ 83.22 127.04 + 2.44|33.18 £ 0.17
CX 3225.10 £ 91.25 135.36 + 2.31 | 33.28 £+ 0.17
PMX 3238.47 £ 89.10 136.72 £ 2.11 | 33.40 £ 0.21
ER 3528.27 £+ 106.10 141.04 + 3.21|61.10 £+ 0.57
PX 3190.02 £+ 72.31 135.52 + 2.37|48.69 + 2.11
ER-Q 2595.11 + 41.231 109.44 £+ 1.50 | 59.72 £ 0.42
Scenario F | OX 1174.93 + 51.29 114.12 + 2.77 | 32.58 £+ 0.19
CX 1319.85 + 53.19 130.4 + 3.62 | 33.04 £ 0.20
PMX 1338.45 + 54.81 132.2 £ 2.83 | 33.69 £ 0.87
ER 1436.26 + 80.14 125.92 + 2.72 | 60.04 £+ 0.53
PX 1319.18 + 67.48 129.64 + 2.89 | 48.98 £ 2.40
ER-Q 903.44 + 27.041 87.36 £ 2.27 |59.27 £ 0.31

(continued)
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Table 3. (continued)

Routing Crossover | Non-Service Distance | Buses Runtime

Problem | Operator | Travelled (Km) Utilised (secs)

Scenario G | OX 9856.68 £+ 127.40 264.28 £ 3.86 | 92.62 £ 0.29
CcX 11966.71 + 162.85 322.44 + 4.54 | 93.76 £ 0.87
PMX 11894.88 + 209.58 328.80 £ 5.48 | 94.80 £ 0.90
ER 13124.85 £ 240.66 327.88 £ 6.27 | 149.77 £ 0.63
PX 11897.18 + 126.69 321.20 £ 5.09 | 127.47 + 3.01
ER-Q 7659.55 + 148.697 | 214.84 + 3.33 | 135.82 + 0.45

Scenario H | OX 7156.48 £+ 122.06 344.48 £+ 4.85|115.84 + 0.24
CX 7802.91 £ 126.00 389.32 £+ 6.11|118.54 £ 2.28
PMX 7637.57 £ 132.83 394.08 £+ 4.18|117.92 £ 1.23
ER 9251.01 £ 396.63 400.40 £ 5.10 | 182.41 £ 2.67
PX 7742.30 £ 151.88 388.20 £ 5.25|150.81 + 2.81
ER-Q 5633.01 + 133.177 | 296.12 + 3.43 | 163.59 + 0.44

Scenario I | OX 19854.31 + 184.29 649.20 £+ 9.11 | 243.56 + 0.63
CcX 23121.74 £ 248.86 752.44 + 8.69 | 247.88 £ 3.55
PMX 22304.42 £+ 275.84 750.00 £ 7.34 1 254.23 £+ 1.84
ER 26268.26 + 464.78 772.48 £ 8.39 | 358.53 £ 0.72
PX 23044.95 + 253.68 750.20 £ 7.31 | 306.16 £ 2.19
ER-Q 14432.14 + 197.34" | 536.32 + 4.12 | 326.07 + 1.22

T Statistically significant improvement over all other crossover operators with p < 0.01,

a two-sided significance level and 24 degrees of freedom

from both parents can be utilised as normal with ER-Q crossover. Therefore,
the results from using ER-Q crossover are repeated using a range of maximum
permissible bus routes that can be modified with the results shown in Fig. 1
in terms of average fleet traversal distance and runtimes. From these results
it can be observed that increasing the modification level degrades the derived
solutions. Moreover, even using a very small degree of modification is relatively
successful. The reason for this is that as the degree of probabilistic decision
making increases, the number of potential edges increases, many of which are
of lower quality but could still be selected. Therefore, it can be hypothesised
that ER-Q is a fairly destructive crossover operator and should only make small
modifications. Furthermore, using a small degree of modification enables ER-Q

to operate faster with little degradation in results.



Defining a Quality Measure Within Crossover 83

Non-Service Distances for Range of Mod. Levels ER-Q Runtimes when Using Range of Mod. Levels
16000 — 350 7
@20 Modifiable Bus Routes . @20 Modifiable Bus Routes
14000 4 ®15 Modifiable Bus Routes 300 4 m 15 Modifiable Bus Routes M
@10 Modifiable Bus Routes —_ @10 Modifiable Bus Routes
__ 12000 4 @5 Modifiable Bus Routes 2 o5 Modifiable Bus Routes
£ 03 Modifiable Bus Routes € 250 1 g3 Modifiable Bus Routes
¥ 10000 8
P 2 200
2 8000 b
s g 150
® 6000 £
a
4000 g 10
2000 A 50 1
0 — 0 -
A B [ D E F G H I A B Cc D E F G H I
Bus Route Scenario Bus Route Scenario

Fig. 1. Average non-service distance travelled and runtimes using ER-Q crossover and
a range of permissible bus route modification levels.

5 Defining the Ideal Quality Metric

In the previous experiments, a quality measure was utilised within ER-Q
crossover to create a probabilistic model over the available edges to select higher
quality edges. Since the goal is to complete all timetabled routes on time in
minimal distance, a simple edge length quality metric was deemed sufficient.
However, distance is not the only quality measure that could be utilised. Indeed,
an issue with using distance between vertices is that it can encourage a bus to
return earlier than necessary to the depot. If a bus completes a route finishing
close to the depot the distance quality measure of returning to the depot will be
high.

Therefore, a question remains over quantifying quality. Since a quality mea-
sure will operate at a highly localised level, an edge by edge basis, the overall
fitness function cannot be utilised. To illustrate the importance of defining qual-
ity a range of metrics are proposed. The first considers energy consumption in
terms of kWh required by an electric bus to travel out of service to the start
of another timetabled bus route. This quality measure is essentially the same as
the distance metric. However, a key change is when considering an edge which
returns the bus to the depot whereby the edge quality is defined as the energy
that could be used to service more bus routes, the remaining charge in the bat-
tery. Clearly, if a bus returns to the depot it will no longer be used and any of its
remaining energy will be essentially “lost” in terms of servicing the timetable.
Thus heuristic information [n;] in Eq. (2) for electric bus n can be defined as:

[ 1/ey if vertex I is a bus route
[na] = { 1/¢, otherwise )

where ¢e;; is the electric charge required to travel between vertices ¢ and [; ¢, is
the remaining charge for bus n.

A second quality measure that can be defined for use by ER-Q for electric bus
scheduling is the use of time. In the previous experiments due to the detection of
constraints on edges a bus is not assigned a route it will arrive late to. However, a
bus could arrive early to the beginning of a bus route and then simply wait until
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the departure time for the given route. This is a loss of service time when a bus
could be performing a route a further distance away. Moreover, with the previous
experiments using a distance quality metric electric buses were also assigned to
closer bus routes even if too early as this would conserve their battery charge.
Consequently, the waiting time for a bus at the start of a potential bus route
is used as a differing quality measure. In terms of the return to the depot, the
quality measure is the loss of working time. Therefore, edges with a high degree
of waiting time or loss of working time are considered of poorer quality. The
time-based quality measure is defined as follows:

il = 1/(s; — T, — ty) if vertex [ is a bus route (5)
=1 J(F—1T,) otherwise

where s; is the start time of the route at vertex [; T;, is the current time for bus
n;t; is the time to travel between vertices ¢ and [; F' is the day finish time.

The time-based quality metric can be extended further. It can be considered
that both distance and waiting time are important. Therefore the time metric
can be extended to include the travel time between routed along edges. In effect,
the total amount of time an electric bus is out of service:

il = 1/(s1 = Ty) if vertex [ is a bus route (6)
it = 1/(F -1T,) otherwise

Finally, two further quality metrics will be used. Firstly, previous results
demonstrated that reducing the number of buses used is advantageous. Conse-
quently, a simper quality measure will be used which only labels edges returning
to a depot as poor quality defined by the loss of service time. Finally, for compar-
ison purposes, no quality measure will be used within ER-Q, in effect a uniform
level of quality across edges. The ER-Q process will remain the same using only
a small degree of modification of parent bus route schedules. Visibility of the
constraints will remain such that any edges that would exceed an electric bus
charge level or edges that arrive late to a timetabled route are considered taboo.

The previous experiments are repeated using each individual quality mea-
sure with results shown in Fig. 2 in terms of the average not in service distance
travelled by the electric bus fleet and the number of buses utilised. A key obser-
vation is that all quality measures are not equal, choice of quality measure can
significantly influence results. The time-based quality measures perform the best
in terms of minimised fleet distance. The number of electric buses used by the
time-based quality measures embedded in ER-Q are also lower than any of the
other measures. Clearly, any degree of time that a bus is waiting at a bus stop
to begin a timetabled route is wasted time that could be put to use. Using a
purely distance-based quality measure results in considerable wasted time and
hence a greater number of buses are required. This means more trips in and out
of the depot increasing the not in service distance travelled by the fleet.

An energy-based quality measure is a slight improvement over a pure
distance-based measure. This is due to it being easier to penalise edges that
return buses to the depot with charge remaining as observed with a small reduc-
tion in buses used. Interestingly, a quality measure that is purely designed to
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Fig. 2. Average non-service distance travelled and buses utilised for optimised solutions
using ER-Q crossover and a range of differing quality measures.

label edges that return a bus to the depot as lower in quality increases bus
usage. This is likely due to no time-based quality being used resulting in buses
not returning to the depot and assigned a route late in the day wasting much
service time. Once the end of the day is reached the constraints dictate that a
bus returns to the depot.

Finally, the results in Fig. 2 demonstrate that when using no quality measure,
merely problem constraint awareness, the total non-service distance travelled by
the fleet is significantly greater than when using distance, energy or time-based
quality measures. This reinforces the hypothesis that embedding a measure of
edge quality within crossover can improve overall results for permutation routing
problems. Moreover, contrasting results in Fig. 2 without using a quality measure
to those in Table 3 for the blind crossover operators results are still significantly
improved. Therefore, even a problem constraint aware crossover operator which
is relatively blind is beneficial for permutation routing problems.

6 Discussion and Conclusions

This paper has hypothesised that crossover operators for permutation problems
operate effectively blindly relying on the simple mechanics of Darwinian evolu-
tion to improve solutions. These crossover operators have no problem domain
knowledge, only that one given solution is better than another. This paper pos-
tulated that introducing a degree of problem domain oversight into crossover via
the use of an edge quality measure to select parental edges could reduce blindness
and improve results. In effect, favoring the better aspects of the parents. Hence,
a crossover operator, ER-Q, based on Edge Recombination (ER) that probabilis-
tically selects edges based on their perceived quality is used to test this theory.
Higher quality edges stand a greater chance of selection. Tested upon a multi-
facetted permutation routing problem, the assignment of timetabled bus routes
to a fleet of electric buses, the use of a quality-based crossover substantially
improved results. Knowledge of the problem domain through a quality mea-
sure enables a crossover operator to have oversight of both problem constraints
avoiding invalidating solutions and favouring edges beneficial to the problem.
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However, whilst the concept of a quality measure embedded within a
crossover operator is a simple concept, defining quality itself is more difficult. If
minimising distance travelled by an electric bus fleet a sensible quality measure
to use at a localised level would seem to be edge length or distance to the start of
the next potential route. However, experiments showed that buses were directed
to routes considerably earlier than expected. Analysis of the problem and results
led to a time-based quality measure that resolved this issue improving results.

Therefore, it can be concluded that whilst a quality measure can assist
crossover to select high quality edges, defining the measure is not straightforward
and will necessitate analysis of the problem and experimentation. Moreover, a
quality measure will most likely be unique to the problem under consideration.
This is the advantage of blind crossover operators in that they are universally
deployable by relying on the dynamics of Darwinian evolution although less
effective. Future work will continue to quantify edge quality and extending to
the detection of low quality edges in parents to earmark them for modification.
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Abstract. This paper addresses the electric vehicle charging problem in
a charging station with a limited overall power capacity and a fixed num-
ber of chargers. Electric vehicle drivers submit their charging demands.
Given the limited resources, these charging demands are either accepted
or rejected, and an accepted demand must be satisfied. The objective of
the scheduler is to maximize the number of satisfied demands. We prove
that the problem is NP-hard. Then, we propose a linear programming
model, heuristic, and a metaheuristic combining a simulated annealing
algorithm with an iterated local search procedure to solve it. We provide
computational results to show the efficiency of the proposed methods.

Keywords: Electric Vehicle + Charging Scheduling - Linear
Programming - Heuristic - Simulated Annealing

1 Introduction

Electric vehicles have recently gained wide popularity as low-emission vehicles.
According to the International Energy Agency [6], the number of electric vehicles
reached 16.5 million in 2021. While in 2010, only hundreds of them were on the
road. However, the global adoption of electric vehicles is still challenging since
charging an electric vehicle is time-consuming and requires considerable electric
energy. Moreover, a mass transition to electric vehicles will lead to a saturation of
charging stations and a significant increase in electrical power demand that can
overload the power grid. Several studies propose smart charging approaches to
avoid these negative impacts without expensively upgrading the existing power
grid. In smart charging, a management system controls the charging of electric
vehicles and optimally schedules the electric vehicle charging load. This paper
addresses the electric vehicle charging scheduling problem (EVCSP) in a charg-
ing station where drivers submit charging demand reservations before arriving.
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Given the lack of charging stations, the short range of electric vehicles, and the
long time required to charge them, drivers of electric vehicles need to carefully
plan their trips to ensure that they will have opportunities to recharge their
batteries. As a result, it is preferable for them to confirm in advance that the
charger they intend to use is available. Moreover, the Open Charge Point Pro-
tocol includes the reservation functionality of charging stations [1].

The remainder of this paper is organized as follows. Section 2 briefly reviews
the main works on EVCSP. Section 3 describes in detail the investigated prob-
lem. Section4 provides the complexity of the problem. Section 5 formulates it
as an integer linear programming (ILP) model. The proposed heuristic is pre-
sented in Sect. 6. Section 7 details the developed metaheuristic that combines a
simulated annealing algorithm with a iterated local search procedure. Section 8
evaluates the performance of the proposed methods. The paper closes with some
conclusions and future research directions in Sect. 9.

2 Related Work

We focus on studies that investigated the problem of optimizing the charging
load of electric vehicles from the perspective of charging station operators. The
main objectives of these operators are to reduce the total charging cost [5,14,15]
or to maximize the satisfaction of their customers. In smart charging stations,
a control system builds a charging schedule while considering the arrival and
departure times and the amount of energy requested by each vehicle driver. Many
studies assume an uncertain arrival time [4,13,15]. Authors in [14] consider that
electric vehicles may arrive with or without a reservation. The electric vehicle
drivers can provide the departure times [4,14,16], or they can be estimated based
on historical behavior [15]. As for the desired energy, [14] assume that the elec-
tric vehicle drivers directly specify their desired energy in kWh. Other papers
consider charging electric vehicles to the rated battery capacity [10,12,16]. For
constraints related to the charging station, authors in [10,12,16] consider a vari-
able charging power where the charging rate varies over time, while in [4], con-
stant power rates were considered. One of the most commonly used constraints
is the capacity of the charging infrastructure. This constraint defines the total
power limit of the charging infrastructure, expressed in (kW). Limiting the total
charging load of electric vehicles is essential to keep the power peaks low and
avoid overloading other equipment and transmission lines. Different optimization
approaches were adapted and developed to solve EVCSP. A two-stage approxi-
mate dynamic programming was proposed in [16]. Some studies have considered
stochastic optimization methods as in [13], where the authors proposed a stochas-
tic linear programming model to schedule the electric vehicles charging load in
real-time. Metaheuristics were also applied to solve the EVCSP. For example,
we can find a particle swarm optimization in [12,14], a genetic algorithm in [5],
a GRASP-like algorithm and a memetic algorithm in [4]. Although the studies
mentioned above have examined various aspects of the EVCSP, the charging
station operating model, the constraints, and the optimization objective are
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different from this study. Thus, comparing results between the proposed meth-
ods and literature cannot be pertinent.

3 Problem Description

The formulation of an instance of the EVCSP can be defined as follows. We
have a set J = {1,...,n} of charging demands to be scheduled on a set of
M = {1,...,m} of chargers. Each charger ¢ delivers a constant power of w;
(kW). The total power that can be delivered by all chargers simultaneously
must not exceed wg (kW), which will further be denoted as the power grid
capacity. Each electric vehicle j has an arrival time r;, departure time d;, and
an energy requirement e; (kWh) that must be satisfied by its departure time d.
The charging time p;; of each demand j when assigned to charger ¢ is equal to
Dij = Z—J Charging demands can either be accepted or rejected. When a charging
demand is accepted, it must be satisfied. At each time, a charger can only charge
one vehicle, and a vehicle can only be charged by one charger. During the time
interval [r;,d;), the vehicle is parked and plugged into charger i. The charging
scheduling is preemptive, i.e., the charging operation of each vehicle j can be
interrupted at any time and resumed later in the interval [r;,d;). Even when
the vehicle completes charging before d;, it still occupies the charger ¢ until it
departs. Unless otherwise mentioned, we divide the scheduling time horizon H
into T time slots of equal length 7. The scheduling objective is to maximize the
number of satisfied charging demands.

4 Complexity

Theorem 1. The problem of mazimizing the number of satisfied charging
demands is NP-hard.

Proof. We show that the problem is NP-hard by proving that its special case
where all chargers are identical is NP-hard. Let m = [®< |, where w is the
charging power rate of each charger. Clearly, at each time, at most 7 chargers
can be activated at the same time. Furthermore, maximizing the number of
satisfied charging demands is equivalent to minimizing the number of rejected
demands. Minimizing the number of rejected charging demands is equivalent to
minimizing the number of late jobs in 77 identical parallel machines scheduling
problem with release date and preemption of jobs (Pgz|prmt|>_ U). In scheduling
problem Pr|prmpt| > U if a job is late in an optimal schedule, it is immaterial
where it is scheduled. Thus, scheduling on-time jobs is important. In the optimal
schedule, the on-time jobs are scheduled in their interval [r;, d;], and at most
are used to schedule these jobs. Then the on-time jobs correspond to the set of
accepted demands in the problem of maximizing the number of satisfied charging
demands. In [3] authors showed that the problem Prm|prmpt|d U is NP-Hard
even with two identical machines. Then the problem of maximizing the number
of satisfied demands is NP-Hard. O
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5 Mathematical Formulations

In this section, we formulate the described problem as an integer linear program-
ming (ILP) model. We define binary variables s;; to specify whether or not the
charging demand of electric vehicle j is scheduled on charger i. In addition, we
define binary variables z;;; specifying whether or not the electric vehicle j is
plugged into the charger ¢ at time slot ¢. Also, we introduce binary variables y;;
that specifies whether or not the electric vehicle j is charging at time slot ¢. The
mathematical formulation is as follows.

max Die1 D Sij (1)
2ty si; <1 VieJ (2)

Z;—;l Tije <1 VieM, teH (3)

YL, wige = sij(dy — 1) VieM, jeJ (4)

Z?irj Yjt = D iy PijSij vied (5)

o1 2 Wi X 8ij X Yt Swa Vte H (6)

Constraints (2) ensure that when a demand j is accepted, it is assigned to one
charger. Constraints (3) ensure that each charger i charges one demand at each
time slot ¢. Constraints (4) ensure that if a charging demand j is accepted to be
scheduled on charger i, then it will be plugged into this charger from its arrival
r; to its departure d;. Constraints (5) ensure that if a charging demand j is
accepted, the vehicle j will be charged to its requested energy. Constraints (6)
ensure that at each time slot ¢, the total power delivered by all chargers does
not exceed wg. In addition, variables z;;; and y;; are set to zero for all ¢ where
t<’l”j andtzdj.

Constraints (6) can be linearized by using a new binary variables z;;;. a
variable z;j; equals to 1 if variables y;; and s;; equal to 1. Constraints (6) are
replaced by the following constraints:

Zijt = Yje +Sij — 1 vVieM, jeJ, teH (7)
Zijt < Yt VieM, jeJ, teH (8)

Zijt < Sij VieM, jeJ, teH (9)

S S wizg <we  LEH (10)

6 Greedy Constructive Heuristic

Since maximizing the number of satisfied demands is NP-Hard, it is hard to
find optimal solutions for large-size instances in a reasonable time. Moreover,
using a commercial linear programming solver may incur additional costs for
charging station operators. Hence, we propose heuristics and metaheuristics.
The proposed heuristic, detailed in Algorithm 1, builds a charging schedule by
considering vehicles in the non-decreasing order of their arrival time r; and
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breaking ties first by the non-decreasing order of their departure time d;, then
by the non-decreasing order of their energy request e;. Let (wf)ien be a vector
of reals that stores the power allocated at each time slot ¢, which is initialized to
0. For each vehicle j, if at least a charger is available at r;, the heuristic begins
by seeking an available charger with the smallest charging power to charge j
without exceeding the current grid capacity (lines 7-10). If such a charger exists,
it is selected to charge vehicle j (line 11). Otherwise, the heuristic calculates
the value e(j’,7;,d;) that represents the amount of energy allocated to each
scheduled charging demand j’ (j' # j) in the interval [r;,d;). The charging
demand with the greatest value of e(j’,7;,d;) will be rejected if e(j’,7;,d;) is
greater than the requested energy e; (line 15). Otherwise, the vehicle j is rejected
(line 16). When no charger is available at r; (lines 18-22), the charging demand
with the maximum departure time is rejected.

Algorithm 1: Constructive greedy heuristic

Input : The set of charging demands J, the set of chargers M, the grid
capacity wa

Output: The assignment of vehicles to chargers, the set of rejected demand

Sort J by non-decreasing order of r;. Then, in non-decreasing order of d;.

Then, in non-decreasing order of e; ;

=

2 Sort M by non-decreasing order of charging power w; ;
8 (wg) < (0)en ;
4 while J # () do
5 Let j be the first demand in J ;
6 if at least a charger is available at r; then
7 wj be the first available charger in M ;
8 Let b be the number of time slots in [r;,d;) where wg + w§ < we;
9 Ej —ej/(bxT);
10 if the vehicle j can be scheduled on an available charger © with a
charging power w; > w; without exceeding wa then
11 ‘ Schedule j on charger i and remove it from J ;
12 else
13 Let e(j',7;,d;) be the allocated energy to charging demand j' # j in
the interval [r;,d;);
14 Let k be the scheduled demand with max;: e(j',7;,d;) ;
15 if e(k,r;,d;) > e; then Reject k ;
16 else Reject j and remove it from J
17 end
18 else
19 Let 7' be the scheduled charging demand with maximum d;;
20 if d;; > d; then Reject j' ;
21 else Reject j and remove it from J
22 end
23 Update w;

24 end
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7 Simulated Annealing Metaheuristic

7.1 Solution Representation

Solving the scheduling problem consists of two main decisions: first, selecting
electric vehicles to be plugged into chargers; then, selecting vehicles to charge by
choosing the appropriate time slots for charging without exceeding wg. There-
fore, a solution to the charging scheduling problem consists of the assignment
solution and the power allocation solution. We represent the assignment of charg-
ing demands to chargers as a vector (71, .., T,,) where ; is the sequence of vehi-
cles assigned to a charger ¢ and we place the unassigned demands in a list of
rejected demands. The power allocation solution is represented with a vector
(Tj)jes where T; C H stores, for each vehicle j, the time slots chosen for charg-
ing process. For convenience, we define the vector (w4 )tcm, which stores the
minimum grid capacity at each time slot .

7.2 Simulated Annealing

The simulated annealing (SA) algorithm, initially proposed by [7], is a stochas-
tic local search metaheuristic successfully adapted to address several scheduling
problems. In this paper, a candidate solution for the SA algorithm represents
the assignment of charging demands to chargers, on which an iterated local
search (ILS), described in Sect. 7.4, is applied to get the power allocation vector
and the objective function value of each generated solution. The detailed proce-
dure of the implemented SA is presented in Algorithm 2. It starts by taking as
input an initial solution (Sp), generated using the heuristic detailed in Sect. 6,
and five parameters: the maximum number of generated neighbors at each itera-
tion (maxGenerated), the acceptation ratio at each iteration (acceptance Ratio),
the final temperature (T), the maximum global number of generated solutions
(maxTrials), and the parameter for initializing the value of the temperature
(). First, the initial solution Sy is set as the current solution S and as the
global best solution Spest (line 1). The temperature parameter T is initially
set to a value proportional to the objective function value of the initial solu-
tion T' = pf(Sp). The maximum number of accepted solutions at each iteration
(max Accepted) is initially set proportionally to the parameter (maxGenerated)
(line 2). At each iteration (lines 3-19), SA generates neighbors of the current
solution S until reaching either (maxGenerated) or (maxAccepted). We detail
the neighborhood generation in Sect.7.3. For each new solution S’, the global
number of generated solutions (¢rial) and the number of generated neighbors
of S’ (generated) are incremented (lines 8-9). The objective function value of
each solution, i.e., the number of scheduled demands, is referred to by f(5), and
it is calculated by the ILS procedure given in Sect.7.4. The gap between the
objective values of the new solution S’ and the current solution S is calculated
as Af = f(S8")— f(5). The neighbor S’ is accepted and replaces the current solu-
tion based on the Metropolis criteria (lines 10-16); the new solution S’ replaces
the current solution if there is an improvement, i.e., Af > 0. If S” improves the
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best solution found so far, it will become the new global best solution Spes:. Oth-
erwise, a random number is generated following the uniform distribution U[0, 1]
and the neighbor S’ will become the current solution if U(0,1) < e®//7 where
T is the temperature parameter that controls the probability of accepting worse
solutions. For each accepted solution, the parameter accepted is incremented
(line 12). Finally, a cooling scheme gradually decreases the temperature at each
iteration (line 16). We consider the Lundy-Mees cooling scheme proposed by [9].
It updates the temperature T" at each iteration [ as Tj41 = %I;Tl. Connolly in [2]
develops a variant of the Lundy-Mees scheme that set the parameter a to 1 and
b in function of the initial temperature Tp, the final temperature Ty and the size

of the neighborhood M as b = E)T_O ?C . Here, the number of iterations is not fixed
directly. In fact, if we omit the condition on maxAccepted, the number of itera-
tions will be equal to %. Thus, we set M to this value (line 1). After
updating the temperature, the number of generated neighbors (generated) and
the number of accepted solutions (accepted) are reset to zero (line 4). The algo-
rithm will stop if the number of generated solutions (¢rial) reaches its maximum
(maxTrials), or after generating (maxGenerated) solutions that did not result
in accepted solutions, i.e. accepted = 0 (line 17). When the stopping criterion is

met, the algorithm terminates and returns the best solution Spes: found so far.

Algorithm 2: Simulated annealing

input : Sp, maxGenerated, acceptanceRatio , Ty, maxTrials, p
output: Best solution found Shest

1 Spest — So , S —So , T «— uf(So), M«— %, trial < 0 ;
2 maxAccepted «— acceptanceRatio X maxGenerated,
3 repeat
4 accepted < 0;  generated < 0 ;
5 while generated < maxGenerated and accepted < maxAccepted do
6 S’ «— Neighbor(S);
7 Af — J(S') = F(S);
8 generated «— generated + 1;
9 trial «— trial + 1;
10 if Af>00rU(0,1) < /T then
11 S S
12 accepted «— accepted + 1;
13 if f(S) > f(Sbest) then Spest — S;
14 end
15 end
16 T — H% ;
17 until trial < maxTrials and accepted > 0;

[y
o]

return Spest
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7.3 Neighborhood Operators

The SA algorithm randomly chooses one of three operators to generate a new
solution:

— Change assignment: this operator chooses a charging demand j on a
charger 7; and moves it to another charger i5. The chargers and the charging
demand are randomly selected. If a charging demand in charger is overlaps
with 7, the move is discarded.

— Assign a rejected charging demand: this operator chooses a charging
demand j from the rejected list and inserts it on a charger ¢. The charger and
the charging demand in the rejected list are randomly selected. The move is
discarded if at least one charging demand in charger ¢ overlaps with j.

— Reject a charging demand: this operator moves a charging demand from
a charger to the rejected list. The charger and the charging demand are
randomly selected.

When a move is discarded, the SA algorithm randomly selects another oper-
ator. After each successful move, the SA algorithm applies an ILS procedure to
construct and improve the power allocation solution.

7.4 Iterated Local Search

Given an assignment solution, the iterated local search (ILS) procedure will solve
the power allocation problem by selecting the maximum subset of scheduled
demands from the assignment solution that can be satisfied without exceeding the
grid capacity wg. The assignment solution may or not be feasible, i.e., the grid
capacity wg may not be sufficient. Let 7’ be the set of assigned charging demands.
Let wg be the minimum grid capacity required to satisfy all charging demands in
the set J’. The basic idea is to obtain a charging schedule with the minimum value
of wg. When wg > we, we insert and reject charging demands until wg reaches
w¢. Note that we can only insert the demands rejected by the ILS procedure. More-
over, each demand can only be reinserted in their previously assigned charger,
meaning that we cannot move a charging demand to another charger. Therefore,
we keep a list L g of rejected demands by ILS along with their previous charg-
ers. The implemented ILS algorithm (Algorithm 3) starts by building the power
allocation vectors of an assignment solution Sy using a heuristic described in Algo-
rithm 4 (line 1). The current solution S is set to Sp. At each iteration (line 3-23),
the ILS procedure generates maxzGeneratedLS neighbors of the current solution
S (line 5-12). For each generated neighbor, it applies a procedure to minimize w¢
(line 7) that will be described below. The best feasible solution S’ in the neighbor-
hood of S is selected. A solution is feasible if its grid capacity W is less than or
equal to wg. If the best neighborhood S’ is better than the best solution found so
far S*, it will replace the current solution S and the best solution S*. Otherwise,
the number of non-improving iterations iter is incremented (line 21). In this case,
the current solution S is set to either the best solution in the neighborhood S’ or to
S*. The best solution in the neighborhood S’ may replace the current solution S if
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arandomly generated number u is less than the probability pise, (line 17-22). piter
decreases in a geometric way [11] and is calculated as follows. pjte, = po X 7€ =1
Where py is the initial acceptance probability, r < 1 is the reducing factor, and
iter is the number of iterations. When the number of non-improving iterations
iter exceeds max NonImproving, the search is considered as stagnating on a local
optimum and is subsequently terminated.

Algorithm 3: Iterated local search procedure

Input : The assignment solution So, maxNonImproving, maxGeneratedLS,
T, Po
Output: Best feasible solution found S™
1 Initialize the power allocation for Sy according to Algorithm 4;
2 iter < 0; S « Sp; S* «— empty solution;
3 while iter < maxNonImproving do

4 S’ «— empty solution;
5 for k =1 to maxGeneratedLS do
6 N « Local Neighbor(S);
7 Apply minimizing grid capacity procedure to N;
8 if we(N) <wg and f(N) > f(S') then
9 if S* is empty then S* «— N ;
10 S' « N;
11 end
12 end
13 if f(S") > f(S*) then
14 S S
15 S* — 5
16 iter «— 0;
17 else
18 Generate a random number u ~ U(0, 1);
19 if u<poxri ! then S — 5 ;
20 else S «— §*;
21 iter «— iter + 1
22 end
23 end

24 return S*

Initial Solution for Power Allocation. Let J’ be the set of vehicles in the
assignment solution vector. Let w; be the charging power of each vehicle j € J'.
Then, the charging time p; of each demand j can be calculated as [e;/w;]. The
proposed heuristic, detailed in Algorithm 4, builds the power allocation solution
for the set J’ by considering the assigned vehicles in the non-decreasing order
of their departure time d;, and break ties first by non-increasing order of their
energy request e;, then by non-increasing order of their arrival time 7; (line 1).
The grid capacity wg and power allocation vectors are initialized to 0 (line 2).
The power allocation heuristic starts by charging vehicle j at time slots without
exceeding W¢ in chronological order (lines 4, 6-15). Then, on time slots with the
minimum wf, value (lines 5, 6-15).
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Algorithm 4: Power allocation heuristic

w N

© 0w N o

10
11
12
13
14
15
16
17

Input : The set of charging demands J', the selected charging power w; and
the charging time p; for each vehicle

Output: The vectors (T});e7, (wh)ier, the grid capacity g

Sort J' by non-decreasing order of d;. Then, in non-increasing order of e;.

Then, in non-increasing order of r; ;

(wg) — (0)ien 5 W «— 0; (Ty) — (D) e ;

for je€ J do

Hy « the set of time slots t where ¢ € [r;,d;) and Wg > w; + w sorted in

chronological order;

H, — the set of time slots ¢ where ¢ € [r;,d;) and ¢t ¢ H; sorted in non

decreasing order of wk;

while p; > 0 do

ile;é(Z)then H1<—H1 5

else H; — Hs ;

Let t be the first time slot of H;;

Remove t from H; ;

T < T; U{t};

wg — W +wj

pj—pi— L

if wh > We then wg «— wh

end

end
return Wg, (1j)jer, (Wg)ten

Local Neighbor Structure. In the ILS procedure, a neighbor is generated by
one of the following operators:

Reject this operator removes one or multiple charging demands from a
charger to the rejected list Lys. We implements three methods to select a
vehicle to reject. First, a randomly chosen vehicle. Second, reject the vehi-
cle j with the greatest value v; where v; = >, . wf where T" = {t €
T; and wl > weg}. Third, calculate the value v; for all scheduled vehicles
and then a roulette wheel selection [8] is performed i.e., a vehicle j with a
higher value v; has a higher probability to be chosen. After rejecting a vehicle,
the wf, is updated.

Reinsert this operator randomly chooses one or more vehicles from Lpg to
be assigned back to its charger. The power allocation for inserted vehicle is
obtained using the same procedure in Algorithm 4 (lines 4-21).

Minimizing Grid Capacity Procedure. We use a SA algorithm similar to
Algorithm 2 but with different objective function f(S) and different neighbor
structure. This second SA is denoted by MINWG-SA. The objective of MINWG-
SA is to try to reschedule the charging operations so that the minimum grid
capacity W¢ is minimized. Since Algorithm 2 is a maximization algorithm, in
the MINWG-SA, we replace line 10 by Af < 0 or U(0,1) < e 2f/T. Also,
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line 13 is replaced by f(S) < f(Shest). A neighbor structure in the minimizing
grid capacity local search method moves a charging operation of a vehicle j
from a time slot t; € T; to another time slot to ¢ T;. Let J' be the set of
scheduled charging demands where d; — r; — p;; > 0, where p;; is the charging
time of vehicle j on its assigned charger type i. First, we randomly select an
electric vehicle 7 € J’ and two time slots ¢; and to, where t1 is a time slot with
wh = minger, ) wg, and to is a time slot with ws = maxyg7,} wg. Then, the
charging operation of vehicle j is moved from time ¢; to ts by deleting ¢; from
T; and adding ¢ to T;. This procedure is repeated k times for the same vehicle,
where k is randomly selected in {1,...,p;;}. After each move, the vector th is
updated as well as the objective value wg.

8 Simulation Results

The proposed algorithms are implemented in C++4, and run on a desktop com-
puter with an Intel Core i5, 2.9 GHZ CPU and 8 GB RAM. The ILP model is
solved using CPLEX 12.8. In the following, we present our experimental results
on randomly generated instances.

We consider five groups of instances with different number of charging
demands n € {10, 40, 50,100}, different number of chargers m € {15, 24,27, 30},
and different power grid capacities wg € {50, 75,100, 125}. For each group, one
third of chargers deliver a power w; = 11(kW), one third of chargers deliver
a power we = 22 (kW), and the remaining third of chargers deliver a power
wsg = 43 (kW). For each group, we generate 10 different random instances as
follows. The arrival times of vehicles are generated from the uniform distribu-
tion in the interval [0,0.2n] (in hours). The required energy are generated from
the uniform distribution [5.5,66] (in kWh). To generate the departure times of
vehicles, we first calculate the charging times pi; (in hours) for each vehicle j
€ J assuming that it can be charged with chargers of type 1 (11 kW). Then, the
departure time of each vehicle j is calculated as d; = r; + (1 + a)p1, where a is
randomly chosen according to the value p;; as follows. For py; in [0.5, 1], [1, 2],
[2,3], [3,4], [4,5], and [5,6] « is randomly chosen in [0.1, 1], [0.1, 0.9], [0.1, 0.8],
[0.1, 0.7], [0.1, 0.6], and [0.1, 0.5], respectively. On the basis of preliminary exper-
iments, we set the parameters pu, maxGenerated, maxTrials, acceptance Ratio,
and T to 0.12, 50, 100, 0.1, and 0.001 respectively. For the LS procedure, we
set the parameters maxzNonImproving, marGeneratedLS, the reducing factor
r and the initial acceptance pg to 5, 5, 0.75, and 0.2 respectively.

We set the maximum computation time of CPLEX to 30 min. Table 1 pro-
vides a comparison of results obtained for the four groups of instances. The first
column denotes the instance number in the group. For CPLEX and the heuristic,
column “scheduled” reports the objective value found, and column “time” dis-
plays the total running time in seconds. Due to the stochastic nature of the SA
algorithm, ten independent executions were done for each instance. We report
the best, the worst, and the average objective function value over the ten runs in
columns “best”, “worst”, and “average”, respectively. Also, we report the stan-
dard deviation of the mean objective function value in column “std” and the
average running time in column “time”.
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Table 1. Comparison results between CPLEX, the heuristic, and the SA algorithm.

instance | CPLEX Heuristic SA

scheduled ‘ time (s) | scheduled ‘ time (s) | best ‘ worst ‘ average ‘ std ‘ time (s)
group 1 with n = 10, m = 15, and wg = 50 |
1 10 6.07 7 5.45E-05 | 10 10 10 0.00 | 3.56
2 9 1800.66 |7 3.89E-05 | 9 9 9 0.00 | 23.12
3 9 1800.38 | 7 2.67E-05 |9 9 9 0.00 | 19.54
4 10 3.98 7 8.70E-05 | 10 9 9.4 0.52]17.49
5 9 537.35 |9 1.96E-05 | 9 9 9 0.00 | 21.66
6 10 18.17 6 4.74E-05| 10 8 9.6 0.70 | 12.94
7 9 1800.48 | 7 3.17E-05 | 9 8 8.3 0.48 | 24.85
8 9 74227 |7 3.50E-05 | 9 8 8.7 0.48 | 24.43
9 9 46.03 6 5.14E-05 | 9 8 8.1 0.32|22.92
10 9 1800.66 |7 3.21E-05 | 9 8 8.6 0.52]23.82
Average | 9.30 855.60 | 7.00 4.24E-059.30 |8.60 |8.97 0.3019.43
group 2 with n =40, m = 24, and wg = 75
1 26 1802.38 | 27 1.37E-04 | 30 29 29.1 0.32 ] 27.60
2 26 1802.27 | 25 2.19E-04 | 31 29 29.6 0.70 | 26.04
3 11 1801.35 | 23 2.08E-04 | 26 24 25.2 0.63 | 29.64
4 23 1802.33 | 19 4.86E-04 | 24 22 23.3 0.67 | 31.95
5 25 1801.64 | 21 2.17E-04 | 26 24 25.1 0.74 | 30.58
6 26 1802.17 | 25 1.34E-04 | 29 28 28.7 0.48 | 29.68
7 26 1801.81 | 26 1.02E-04 | 30 28 29.7 0.67129.79
8 24 1801.51 | 23 1.66E-04 | 28 27 27.3 0.48 | 29.87
9 25 1801.89 | 23 1.38E-04 | 27 26 26.6 0.52 | 32.25
10 30 1802.85 | 30 9.83E-05 | 33 31 32.1 0.57 | 28.48
Average | 24.20 1802.02 | 24.20 1.91E-04 | 28.40 | 26.80 | 27.67 0.58 | 29.59
group 3 with n = 50, m = 27, and wg = 100
1 21 1802.28 | 36 1.88E-04 | 41 39 40.20 0.79 | 34.45
2 31 1802.03 | 37 1.16E-04 | 44 42 42.70 0.67 | 34.62
3 16 1801.76 | 35 1.06E-04 | 41 38 39.50 |0.85)|32.63
4 34 1802.02 | 38 1.45E-04 | 44 42 42.80 0.63 | 30.70
5 22 1802.04 |41 1.35E-04 | 45 43 44.10 0.57 | 33.17
6 24 1801.96 | 38 1.69E-04 | 41 40 40.80 0.42 | 34.59
7 23 1801.92 | 37 1.99E-04 | 42 40 41.10 0.74 1 32.79
8 31 1801.90 | 34 4.25E-04 | 39 37 38.00 |0.67|35.74
9 33 1801.90 | 34 1.53E-04 | 37 34 36.10 0.88 | 35.74
10 15 1802.46 | 40 1.71E-04 | 45 43 44.00 0.67|33.12
Average | 25 1802.03 | 37 1.81E-04 | 41.9 |39.8 |40.93 0.69 | 33.75

(continued)
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Table 1. (continued)

instance | CPLEX Heuristic SA |
scheduled ‘ time (s) | scheduled ‘ time (s) | best ‘ worst ‘ average ‘ std ‘ time (s)

group 4 with n = 100, m = 30, and wg = 125 ‘

1 18 1806.49 | 76 6.08E-04 | 77 76 76.20 | 0.42|50.57

2 11 1806.12 | 81 2.39E-03 | 86 83 84.90 0.88]49.28

3 13 1805.92 | 76 2.32E-04 | 80 78 78.90 |0.7455.75

4 14 1806.03 | 75 3.54E-04 | 78 76 77.40 ]0.70| 55.62

5 14 1806.01 | 75 6.24E-04 | 82 78 80.50 |1.18|52.36

6 13 1805.99 | 77 2.65E-04 | 82 79 81.00 10.94|55.05

7 13 1805.57 | 78 2.43E-04 | 83 81 81.40 |0.70|51.40

8 14 1806.07 | 73 6.58E-04 | 80 7 78.70 |1.16 50.72

9 12 1806.21 | 74 3.89E-04 | 82 80 80.40 |0.84|51.84

10 14 1806.14 | 77 3.88E-04 | 81 7 79.40 |1.26 55.16

Average | 13.60 1806.06 | 76.20 6.15E-04 | 81.10 | 78.50 | 79.88 | 0.88 | 52.78

First, we can notice that CPLEX found six optimal solutions out of 40, all in
group one instances with ten vehicles (instances 1,4, 5, 6, 8, and 9 in group 1). All
remaining instances were hard to solve for CPLEX within 30 min. The SA also
achieved six optimal solutions. However, it took an average time of 17.16's, while
CPLEX took an average time of 225.64s. As expected, the SA algorithm out-
performs the heuristic since it is set to the initial solution for the SA algorithm.
The SA algorithm achieved the best solutions in all instances. We calculate the
average gap Gappest(%) (resp. Gapmean (%)) between the objective values found
by CPLEX Scprrx and the best (resp. mean) objective values found by the SA
algorithm Sga as Gappest (%) = SCPLélEiXSSA The Gappest(%) values were 0%,
—14.75%, —40.33%, and —83.23% for groups 1, 2, 3, and 4, respectively. The
Gapmean (%) values were 3.68%, —12.54%, —38.92%, and 82.97% for groups
1, 2, 3, and 4, respectively. The gap between the SA algorithm and solutions
found by CPLEX increases significantly with the size of instances. The heuristic
starts performing better than CPLEX in groups 3 and 4. Finally, we compare the
proposed methods in terms of running time. As expected, the heuristic is faster
than the SA algorithm. The heuristic took less than one millisecond, whereas
the SA algorithm took an average running time of 32.44s. In summary, the SA
algorithm outperformed CPLEX in significantly less time.

9 Conclusion

This paper addressed the EVCSP in a charging station with different charg-
ing types and limited overall power. We proved that the problem is NP-Hard
and we formulate it as an ILP model. It was hard for CPLEX to solve the ILP
model within 30 min. Therefore, we designed a heuristic and a SA algorithm
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combined with an ILS procedure. We generated different instances to evaluate
the performance of the proposed methods. The experimental results underline
the efficiency of the proposed methods. We assumed that the data related to
vehicle charging demands were known in advance. In future research, we can
study the scheduling problem in real-time to handle charging demands with or
without reservations. Another challenge is considering multi-objective optimiza-
tion to add the objective of minimizing the charging costs.
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Abstract. Particle Swarm Optimisation (PSO) and Evolutionary Algo-
rithms (EAs) differ in various ways, in particular with respect to infor-
mation sharing and diversity management, making their scopes of appli-
cations very diverse. Combining the advantages of both approaches is
very attractive and has been successfully achieved through hybridisa-
tion. Another possible improvement, notably for addressing scalability
issues, is cooperation. It has first been developed for co-evolution in EA
techniques and it is now used in PSO. However, until now, attempts
to make PSO cooperate have been based on multi-population schemes
almost exclusively. The focus of this paper is set on single-population
schemes, or fine-grained cooperation. By analogy with an evolutionary
scheme that has long been proved effective, the fly algorithm (FA), we
design and compare a cooperative PSO (coPSO), and a PSO-flavoured fly
algorithm. Experiments run on a benchmark, the Lamp problem, show
that fine-grained cooperation based on marginal fitness evaluations and
steady-state schemes outperforms classical techniques when the dimen-
sion of the problem increases. These preliminary results highlight inter-
esting future directions of research on fine-grained cooperation schemes,
by combining features of PSO and FA.

1 Introduction

Swarm intelligence is a source of inspiration for many optimisation algorithms, for
instance for PSO proposed by J. Kennedy and R. Eberhart in 1995 [22], Ant Colony
Algorithms [16], Artificial Bee Colony Algorithms [20] or Bacterial Foragings [13].
The idea is to exploit the collective behaviour of a set of entities, the same way as
natural populations (flocks of birds or ant colonies) search for food.

There is actually a proliferation of new techniques based on analogies to
animal behaviour [38]. With respect to the ongoing debate about the originality
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and relevance of such a proliferation, we stress the fact that this contribution is
not proposing yet another novel optimisation methodology, but making a point
on two established heuristics that date back over 20 years and might look similar
at first glance.

PSO is based on social interactions. The emerging collective behaviour results
from a balance between following a leader and following an individual focus,
thanks to inter-individual communications [31]. This mechanism is different
from Evolutionary Algorithms (EAs) that rely on genetic transmission and nat-
ural selection analogies (birth, death and inheritance within a population). An
important difference between them is how they manage diversity and share infor-
mation', making them best fitted to different optimisation tasks [19].

Among other desirable features, scalability is a major concern. A way to
deal with it is co-evolution, which was first developed for EA techniques [33]
and starts to be experimented for PSO [6]. There are two major existing co-
evolution schemes: mono- and multi-population [30], but as far as we know, only
multi-population schemes are used in PSO [18,42].

This study investigates the differences and commonalities between intra-
population communication in PSO and cooperative-co-evolution [12] as imple-
mented in the FA [3,26,41]. This paper is organised as follows. After a rapid
overview of the state of the art for PSO and cooperative PSO (Sect. 2), mono-
population cooperative co-evolution and FA (Sect.3), we propose a mono-
population cooperative PSO (coPSO) and a new operator for the FA in Sect. 4.
These schemes are compared on a cooperative-coevolution benchmark, the Lamp
test case [39] in Sect. 5. The discussion and conclusions are given in Sect. 6.

2 From PSO to Cooperative PSO

Each entity of a PSO, called a particle, has a position in space and a velocity,
that determines a random movement depending on the context. Velocities and
positions are updated at each iteration using rules taking into account local and
collective memories, mimicking respectively a cognitive and a social behaviour.

Similar to evolutionary techniques, the theoretical understanding of swarm
intelligence is a formidable challenge: with very simple mechanisms, interactions
of a large number of elements produce a nontrivial global dynamic. Besides
experimental evidence that such a system is able to concentrate the population
into optimal areas of a search space [35], theoretical results for convergence and
convergence rates [31] exist and are based on simple PSO models. The parameter
settings and the structure of the update rules clearly have a crucial influence on
performance [37].

A canonical PSO can be described as follows [22]: each particle keeps track
of its own best known position pbest and has also access at any time to the global
swarm best known position gbest. An iteration loop is then implemented:

1. Particles are initialised with random positions and velocities.

! via inter-individual communications in PSO or genetic inheritance in EAs.
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2. Best known positions are computed (according to the function to be opti-
mised): pbest; for each particle i and gbest for the whole swarm.

3. For each particle i, velocity v; and position z; are then updated (in vector
notation, valid for any dimension of the search space):

vi(t+ 1) = wvi(t) + @prp(pbest; — x;) + @qrq(gbest — x;) (1)
zi(t+1) = z;(t) + vi(t) (2)

where 7, and r, are random values uniformly distributed between 0 and 1, w
is the inertia weight, ¢, and ¢, are the cognitive and social learning factors.

4. The process is repeated from Step 2 until a stopping criterion is met (e.g. stag-
nation, predefined level of fitness, or max. number of iterations).

The most common scheme, also called gbest strategy, corresponds to “fully
informed” particles aware of the state of the whole population. In another impor-
tant trend, called lbest strategy, each particle may only access local informa-
tion [31]. The update rule is the same, except that in Eq. (1) lbest, a best local
position, is used instead of gbest. This is more time-consuming as the neighbours
of each particle (according to a given topology) have to be identified. This lbest
scheme allows various subtleties to preserve diversity; neighbourhood topology
has a strong influence on the performance of the Algorithms [23]. Topology may
vary: the neighbourhood can be gradually enlarged according to a topological
distance or a graph hierarchy, sometimes using adaptive strategies [31]. The
lbest scheme is particularly useful in parallel implementations when communi-
cation between processors is limited [42]. However, it may cause trouble with
high dimensional search spaces, as it relies on a distance measure which may
become computationally expensive with large swarms, besides the fact that dis-
tance functions get less useful in high dimension spaces [27]. In this paper, we
will focus on gbest strategies only.

Diversity is an important issue in PSO, to avoid premature convergence. For
instance, dispersion and collision-avoiding mechanisms or repulsion mechanisms
have been proposed [42]. It has to be noted that multi-population approaches
have been developed for improving the management of diversity.

Cooperative PSO and multi-swarm models? have been developed for
different purposes: to improve diversity [29,45], track multiple optima in multi-
modal or dynamic multimodal landscapes [11,31], address multi-objective prob-
lems [42], perform dynamic optimisation using adaptive strategies [8], handle
constrained optimisation [36], or deal with large search spaces, by explicitly split-
ting the problem into interdependent sub-problems with smaller dimensions [42].

Bergh and Engelbrecht [6] were the first to use a cooperative scheme, in the
style of Potter and De Jong [14,33] with separate sub-populations. Cooperation
comes from the exchange of information between sub-populations, to build a
composite fitness in the high-dimension problem. Usually the gbest particles of
other sub-swarms are used to evaluate the particles of a sub-swarm. Fine tuning

2 [18] defines cooperative search for any method as strategies that have several search
modules running and exchanging information to improve search capability.
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these algorithms is difficult [32], the choice of information to be exchanged and
the synchronisation strategies deeply affect performance. It has been observed
that “Increasing the number of cooperating swarms helps in improving the
performance up to a certain limit, after which, the solution starts to deterio-
rate” [18].

Note that cooperative PSO developed until now corresponds to what we may
call coarse-grained cooperation, i.e. the swarms or sub-swarms are explicitly
separated: cooperation occurs at swarm-, not particle-level?.

3 Fine Grained Cooperative Co-evolution

Co-evolution is an extension of standard EAs [30] that “distributes” the encod-
ing of a solution onto several individuals. As a consequence the fitness of each
individual depends on other individuals. An early example of this technique is
the “Michigan approach” [44] for classifier systems, in which a single population
of individuals, each being a rule, is evolved to collectively achieve a given task
(rule-based machine learning). Another pioneering work is the multi-population
approach of Potter and De Jong [33], later transferred to the PSO model. Co-
evolution has actually been structured and exploited in optimisation in quite
different ways, according the interacting behaviour, competitive versus cooper-
ative [5,9,12,14,40,43] or the granularity of interaction: a single population of
interbreeding individuals versus multiple interacting populations [30].

Various versions of fine grained single-population cooperation have
been proposed: “Parisian Evolution” [12,17] in 2000 and more recently “Kaizen
programming” [15], “FFX” [28] or “e-lexicase survival” [24]. In [12], all indi-
viduals share the same representation, can exchange genetic material thanks to
genetic operators and evolve together inside a single population. The EA loop
then embeds an additional step at each generation for aggregating individuals
to build a solution, evaluate it and distribute rewards to individuals. The idea
is to exploit the evolution mechanism in a more parsimonious manner: where
a traditional EA only keeps the best individual as an optimum solution at the
end of the evolution (forgetting all precious information gathered by the popu-
lation during its exploration of the search space), a Parisian approach tries to
capitalise the full potential of an evolved population. It possess all usual fea-
tures (e.g. mutation, crossover, and selection), but with two possible levels of
fitness: a local fitness to assess the performance of a single individual (partial
evaluation or local information) and a global fitness to assess the collective
performance of the whole population. Maintaining diversity helps avoid degen-
erate solutions, e.g. when individuals gather in only a few areas of the search

3 However, an application to the generation of improvised music [7] implements both
types of cooperation, coarse and fine grained (this is not quite an optimisation,
but rather an exploration task). It was performed with multi-swarms: each particle
being a note (loudness, pulse and pitch of a MIDI event), each swarm a voice or
instrument, and the whole system being considered as an improvising ensemble.
Coherence is reached by self-organisation of particles and swarms.
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space. Finally, a solution is built from a collation of individuals (sometimes with
the concatenation of whole population). The way the fitness functions are con-
structed and the solution is extracted, are of course problem-dependent. Parisian
Evolution has been successfully applied to various optimisation problems, such
as text-mining [25], hand gesture recognition [21], complex interaction modelling
in industrial agrifood processes [4,5], imaging problems such as computer stereo
vision in robotics [26], tomography reconstruction in medical physics [2], and
computer art [1].

A typical fine-grained cooperation is the Fly Algorithm (FA) [26]. First
designed for stereovision applications, the Fly algorithm evolves a population
of individuals called “flies”. It uses an “inverse problem” approach where con-
ventional approaches to stereovision use primitive extraction, pattern matching
and calculation of disparities [26]. In the original version, a fly is defined as a
3-D point (z, y, z). A population of flies is initialised in the field of view common
to at least two cameras, then evolved using a classical Evolutionary Strategy,
guided by the flies’ fitness values. The solution is given by the whole popula-
tion (or a subset of the population), concentrated on the visible surfaces of the
objects in the scene [10]. The fitness of a fly is a measurement of the consistency
of its projections on the cameras. Classical operators — mutation, optional CMX
crossover, immigration (introducing brand new flies) and tournament selection
— are most commonly used.

4 Fine-Grained Optimisation Based on PSO and FA

Particle Swarm Optimisation versus Fly Algorithm

Besides the narrative attached to each scheme (communications and social
behaviour versus genealogical features transmission and selection mechanisms),
PSO and FA share obvious features, and a parallel can be drawn between flies
mutations and particle movements, but this actually leads to a different balance
between diversification and intensification [19]. In particular, selection is not
used in PSO, although it is an explicit intensification mechanism. Additionally,
diversity preservation mechanisms are more explicit and tunable in FA, with the
help of an “immigration” operator that introduces a proportion of purely ran-
dom flies in the current population. We propose hereafter two different lines for
mutual cross-fertilisation (i) implementing the PSO algorithm using the Parisian
approach, and (ii) introducing the same information sharing mechanism as in
PSO into the FA.

A Cooperative PSO: coPSO

A coPSO, in terms of fine grained approach, consists in evolving, within a single
swarm, particles that carry only a small part of a solution. At each iteration
of the algorithm it is necessary to aggregate the particles of the swarm (or a
selected part of it) to build the problem solution. As for FA, there are now
two levels of objective functions, an optional global one computed on the whole
swarm and a local one computed for each particle. The local fitness function is
used to update pbest. Due to the distributed nature of the approach, the social
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learning factor (p, in Eq. 1) is set to 0 as it makes no sense to follow the global
best particle (gbest). Equation 2 remains the same. In the experiments below, a
marginal fitness* is used at the local level.

FA as a Swarm: SFA

To introduce a “PSO-like” information sharing mechanism within a FA, we built
an additional operator, the genealogical mutation. The idea is, for each individ-
ual, to keep track of the best of its ancestors, according to the genealogy due
to the genetic operators. Additionally, an extra vector similar to the velocity
in PSO is attached to each fly. When a genealogical mutation is triggered, the
velocity and position of offspring are updated using Eqs. 1 and 2. For the same
reason as above, ¢, is set to zero. Note that this operator tends to focus the
search of a fly into the direction of its pbest. However, it may be too restrictive
(i) at the start of the optimisation when no knowledge is available, and (ii) at the
end of optimisation when the result needs to be refined. This is why an adaptive
mutation scheme has been built.

Adaptive Mutation

The adaptive genetic bi-operator, concurrently assesses two different genetic
operators (here Gaussian mutation and genealogical mutation) so that the most
successful operator in generating good offspring is favoured. Both operators are
initially given an equal probability of occurrence. Their success rates are checked
at regular intervals to adjust their probabilities. The update rule is multiplicative
as for the famous 1/5 rule [34].

Each operator has i) a counter to keep track of how many times it has been
applied and ii) an accumulator that keeps track of how many times it has been
successful. This accumulator is incremented if the marginal fitness of the newly
created fly is positive, decremented if negative. The success rate of an operator
is its accumulator divided by its counter. The probability of the most successful
operator over the last period is increased at the expense of the other one. The
probabilities are then clamped in the range 10%-90% to make sure that the least
successful operator retains a chance to be picked up.

5 Experimental Analysis on a Toy Problem

A Toy Problem for Cooperative-Coevolution: The Lamps

There are few benchmarks designed for cooperative co-evolutionary algorithms.
The Lamps [39] is one of the toy problems available: the basic premise is to
optimally place a set of circles (lamps) of given radius, so that they completely
cover a square field. The fitness function rewards each lamp separately, and also
provides a global reward that depends on the overall placement of all lamps.
While each single lamp can be optimally placed on the square field, so that it

4 Positive or negative contribution of the individual to the global fitness, i.e. the
difference between the fitness of the population, when complete or deprived from this
particular individual. This concept has been successfully used in various applications,
see for instance [2]. In the absence of additional information at the local level for
building a specific “local fitness”, marginal fitness is a convenient option.
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lits as much area as possible, it is interesting to notice that sometimes individual
lamps with sub-optimal positions (e.g. part of their area falls outside of the field)
can significantly improve the global reward (see Fig. 1). This simple toy problem
only has one parameter, the ratio between the radius of a circle/lamp and the
side of the square field (i.e. the ratio between the surface of a lamp and the
surface of the field), problem_size = %. With higher parameter values,
more lamps are needed with more placement possibilities, making the benchmark
more challenging. A further difficulty can be added by introducing penalties for

overlapping lamps.

area_enlightened area_overlap

3)

fitness =

total_area " total_area

The fitness of a candidate involves the total area enlightened and the number
of lamps used. A weight W sets the balance with the overlapping term, see Eq.
(3). Best solutions maximise the illuminated area whilst minimising the number
of lamps to cover the whole area. Tonda et al. showed that traditional approaches
based on genetic operators are competitive when the search space is relatively
small, i.e., for Lamps problem size less than 10 [39]. For more complex problems,
the Parisian approach outperformed the other algorithms tested.

Fig. 1. Arrangement of a set of four lamps to enlighten a square field. (left) The lamps
completely cover the square field, but part of their own area is outside of the square
itself. (right) One of the lamps is now completely inside the square, but the global
solution is unable to completely cover the square.

Experimental Setup
The Lamps problem with increasing sizes (3, 5, 10, 20, 100, and 500) has been
used for benchmarking the scalability of six algorithms:

— A traditional PSO with no algorithmic enhancement, as a baseline for com-
parison (labelled PSO in the tables and figures below);

— The coPSO algorithm (labelled coPSO in the tables and figures);

— A steady state FA with marginal fitness, threshold selection, varying popula-
tion size using mitosis and slaughtering/culling, 30% of immigration and 70%
of Gaussian mutation (labelled FA);

— A steady state FA as above but with 30% of immigration, 35% of Gaussian
mutation, and 35% of Genealogical mutation (labelled SFA35);

— As above but with 30% of immigration, and 70% of Genealogical mutation
(labelled SFAT70);
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— As above but with 30% of immigration, and 70% of genetic bi-operator with
both Gaussian and Genealogical mutation (labelled SFA-bi operator).

The lamp radius is 8 and W = 1 (Eq.3) to match the value initially used
in [39]. Algorithms 1 and 2 show the skeleton of FA and coPSO implementations,
displayed side-by-side to highlight similarities and differences. The structure of

// Read problem specific data
// Set the algorithm
Initialisation

// Create the initial population of n
individuals
repeat n times
Create a fly at a random position in
the search space;

Add the fly to the population;

Add the fly’s contribution to the
population’s fitness;

end

Compute the global fitness;

repeat

repeat n times

repeat // Select a bad fly

i «— Random(0,n — 1);

MF(¢) « Marginal fitness of
Fly i;

until MF(z) < 0;

Remove Fly(i)’s contribution
from the population’s;

// Optimisation loop

Compute the global fitness;

Select genetic operator;

if Genetic operator is
immigration then
‘ Replace Fly(i) with a random

fly in the search space;

else // Mutation is used

repeat // Select a good fly

j < Random(0,n — 1);

MF(j) « Marginal
fitness of Fly j;

until MF(j) > 0;

Copy Fly(j)’s genes into
Fly(i)’s;

Randomly mutate Fly(i)’s
genes;

end
Add Fly(2)’s contribution to
global fitness;

Compute the global fitness;
end

until Convergence;
Iteratively eliminate bad flies;

Convert the population of flies into
problem specific answer;

Algorithm 1: Steady state FA

// Read problem specific data
// Set the algorithm
Initialisation

// Create the initial swarm of n
particle

repeat n times

Create a particle at a random position
in the search space;

Initialise the particle’s velocity;

Add the particle to the swarm;

Add the particle’s contribution to the
swarm’s;

end

Compute the global fitness;

repeat // Optimisation loop
foreach Particle p; € Swarm do

Remove p;’s contribution from
the swarm’s;

Update the p;’s velocity;
Update the p;’s position;

Compute the global fitness;

Compute p;’s local fitness
(Marginal fitness)
Update p;’s lbest if needed

end

until Convergence;
Iteratively eliminate bad particles;

Convert the swarm of particles into
problem specific answer;

Algorithm 2: Cooperative PSO.
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the algorithms is fairly similar but coPSO lacks natural selection for killing and
breeding. The mutation in FA and the position update in coPSO are similar in the
sense that they both move an individual or particle from its current position. Algo-
rithmic enhancements such as varying population or swarm size are not shown to
improve the readability of the pseudocode. In our experiment, we added an extra
loop so that each time stagnation is detected slaughtering/culling and mitosis are
alternatively triggered. In the slaughtering/culling step, bad flies or particles are
eliminated so that there are only good flies or particles left. If triggering slaughter-
ing/culling and mitosis does not help the population or swarm improve the global
fitness over N iterations (stagnation), the optimisation ends and the problem solu-
tion is extracted. Our main stopping criterion is thus stagnation.

N is set to 5 for coPSO, FA and SFA. However, it was empirically determined
that this number was far too low for PSO, which is why we use 50 in our exper-
iments. An additional stopping criterion is the maximum number of iterations
in case an algorithm fails to converge towards a solution. All parameters are
provided in Table 1.

Each experiment is repeated 100 times using a supercomputer to gather sta-
tistically meaningful results®. That is 100 runs x 6 problem sizes x 6 algorithms =
3600 optimisation processes in total. Each algorithm records the global fitness
of the solution it provided, and how many lamps needed to be created and
tested before a solution was accepted. This number is linearly proportional to
the computational power that was required to find the solution.

Results and Discussion®

Quantitative results are given in Table2. It highlights for each problem size
which algorithm(s) provides solutions significantly better (p < 0.05) than the
other algorithms. From the table it is clear that PSO performs best with small
problem sizes but collapses rapidly. It is also computationally intensive compared
to FAs. Figures 2 and 3 are a visualisation of these data in terms of global fitness
and computing time versus problem size in log scale.”

With small problem sizes, FA does not perform quite as well as PSO; SFA
is comparable to FA though a little less performing, and coPSO does not per-
form well at all. With larger problem sizes, Fig.2 shows that PSO collapses;
FA stabilises, taking advantage of its scalability; coPSO starts a shy improve-
ment, showing that communication is only beneficial with a larger problem size.
Figure 3 clearly shows that PSO and coPSO are not as efficient as FA and SFA.
On both figures FA and the 3 variants of SFA are hard to distinguish when
the problem size increases. A zoomed scatterplot (Fig.4) of global fitness versus
computational effort (number of lamps created) gives a more precise comparison
for FA and SFA. FA’s performance decreases when the problem size increases to
become quite close to SFA35’s and SFA70’s. SFA-bi operator is, however, more
consistent and starts to slightly outperform FA in terms of computing require-
ments (p < 0.05).

5 Except for the largest instance (size 500) for which only 50 runs were done.

5 Reproducibility: code available at http://doi.org/10.5281/zenodo.7101160.

" A synthetic scatterplot is also provided in https://evelyne-lutton.fr/Lutton_EA2022-
Additional.pdf for assessing the balance between both measurements.
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Table 1. Summary of the algorithms’ parameters.

PSO FA coPSO SFA35 SFAT0 SFA-bi operator
Initial number of particles/individuals: \/% 3 X pb size | 3 X pb size |3 X pb size | 3 x pb size | 3 x pb size
Lamps per particle/individual: 3 xpbsize |1 1 1 1 1
W in Eq. 3: 1 1 1 1 1 1
Immigration probability (%): N/A 30 N/A 30 30 30
Gaussian mutation probability (%): N/A 70 N/A 35 0 varying
Genealogical mutation probability (%): N/A 0 N/A 35 70 varying
Initial Gaussian mutation factor (pixels): |N/A 16 N/A 16 N/A 16
Decrease of mutation factor per generation: | N/A 0.016 pixel |[N/A 0.016 pixel | N/A 0.016 pixel
w in Eq. 1: m N/A 2><13g(2) 2Xlig(2) 2><l;g(2) 2><1§g(z)
¢p in Eq. 1: 1+1log(2) |N/A 2 +1og(2) |1 +1log(2) |4 +1log(2) |3 +log(2)
g in Eq. 1: 1+log(2) |N/A 0 0 0 0

Stopping criteria
1) No improvement over the last :

2) Max # of gen. or iterations:

500

50 iterations | 5 iterations

500

5 iterations
500

5 iterations | 5 iterations

500

500

5 iterations
500

For each problem size, F'A is the average number of lamps created over 100 runs of FA

to reach the problem solution

Global fitness

Problem size

Fig. 2. Comparison in terms of global fitness (maximisation).
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Fig. 3. Comparison in terms of computational requirement. This is a value that should

be as small as possible.
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Fig. 4. Performance comparison in terms of effectiveness (highest global fitness) and
efficiency (smallest number of tested lamps) zoomed onto FA and SFA. The best algo-
rithms are in the top-left corner of the plots.
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Table 2. Results of the experiments. Values for algorithms marked in bold are signif-
icantly better (p < 0.05) than the others for the same problem size. Values in italics
highlight cases where the best performance is equally achieved by two or more algo-
rithms (non separable, with p > 0.05).

Problem | Evolution Global Lamps created

size fitness before acceptance

3 PSO 80.58% + 6.84 | 1.18e+03 + 473.47

3 FA 75.81% + 4.22 | 1.32e+02 + 100.75

3 coPSO 49.66% + 11.58 | 7.63e+02 + 1560.97
3 SFAT0 67.74% + 7.59 | 1.23e+02 + 100.48

3 SFA35 69.03% + 7.56 | 1.08e+02 + 79.37

3 SFA-bi operator | 69.87% + 7.71 | 1.18e+02 + 83.20

5 PSO 76.74% + 4.98 | 3.63e+03 + 1296.64
5 FA 72.71% 4+ 3.51 | 2.49e+02 + 138.45

5 coPSO 50.09% + 8.51 | 1.73e+03 + 1274.77
5 SFAT0 64.82% + 5.23 | 1.95e+02 + 152.83

5 SFA35 66.80% + 4.83 | 1.99e+02 + 142.94

5 SFA-bi operator | 67.21% =+ 4.74 | 1.75e+02 4+ 129.27
10 PSO 71.44% + 4.48 | 9.89e+03 + 2843.23
10 FA 69.11% + 3.28 | 5.15e+02 + 301.90
10 coPSO 45.51% + 7.39 | 8.39e+03 + 6427.39
10 SFAT0 63.91% + 4.02 | 3.31e+02 + 208.52
10 SFA35 65.13% + 3.90 | 3.55e+02 + 225.33
10 SFA-bi operator | 66.01% =+ 3.22 | 3.49e+02 + 205.07
20 PSO 61.52% + 4.46 | 1.50e+04 + 3893.98
20 FA 66.39% + 2.56 | 9.97e+02 + 536.03
20 coPSO 48.12% + 6.07 | 4.37e+04 4+ 27148.87
20 SFAT0 63.49% + 2.81 | 6.77e+02 £ 290.76
20 SFA35 64.46% + 2.69 | 6.51e+02 £ 322.55
20 SFA-bi operator | 65.47% =+ 2.26 | 7.09e+02 + 253.34
100 PSO 49.74% + 2.26 | 1.20e+05 + 34739.96
100 FA 64.47% + 1.11 |4.33e+03 £ 1664.40
100 coPSO 52.86% + 4.53 | 2.14e+06 £ 1215718.00
100 SFAT0 63.78% + 1.29 | 3.85e+03 + 854.81

(continued)
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Table 2. (continued)

Problem | Evolution Global Lamps created

size fitness before acceptance

100 SFA35 63.81% =+ 1.42 | 3.86e+03 + 912.96

100 SFA-bi operator | 64.57% + 1.18 | 3.71e+03 + 842.15

500 PSO 42.43% + 1.37 | 7.94e+05 + 252250.84
500 FA 63.73% + 0.56 | 2.22e+04 £ 7000.81

500 coPSO 56.04% =+ 3.09 |9.00e+07 + 40418907.90
500 SFAT0 63.66% + 0.61 | 2.02e+04 + 3852.50

500 SFA35 63.81% + 0.57 | 2.07e+04 + 4109.04

500 SFA-bi operator | 64.03% =+ 0.5/ | 2.01e+04 + 3935.58

6 Conclusions

The previous experiments are a first try with fine-grained cooperative swarms.
For the moment this has been reached with a single swarm in which social com-
munications have been cut (the gbest position has no influence on local rules).
Together with a convenient formulation of the problem (which information is car-
ried by a particle), this rough strategy (coPSO) is able to drive the full swarm
into a good solution, while having better scalability than the classical gbest PSO.
Marginal fitness is actually an indirect way to implement some social commu-
nication, as it evaluates the contribution of a particle with respect to the whole
swarm. Less efficient than FA, a mature technique of fine-grained cooperative
based on EA, this simple coPSO however exhibits interesting scalability proper-
ties (positive slope on Fig. 2 for large problem sizes).

Future improvements of this strategy can follow different lines. A first one
could be distance-based lbest strategies, but possibly limited in high dimensions.
Another line, sketched in this paper, is a combination of features from Evolu-
tionary Algorithms (life and death, genetic transmission) and swarms (internal
memory and social communication in the group). SFA is an attempt to add
a memory to the flies, in the same spirit as coPSO, as an inter-generational
transmission of information. The experiments displayed above prove that these
inter-generational communications improve the scalability of FA. Making the
balance of the SFA mutations adaptive also yields important information about
the efficiency of these operators during the runs (see also supplementary mate-
rial).

Future work on this topic will aim at exploring the combinations of PSO and
FA, and extending the experiments to other benchmarks and real problems.
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Abstract. In recent years, high-performance models have been intro-
duced based on deep learning; however, these models do not have high
interpretability to complement their high efficiency. Rule-based classi-
fiers can be used to obtain explainable artificial intelligence. Rule-based
classifiers use a labeled dataset to extract rules that express the relation-
ships between inputs and expected outputs. Although many evolution-
ary and non-evolutionary algorithms have developed to solve this prob-
lem, we hypothesize that rule-based evolutionary algorithms such as the
AntMiner family can provide good approximate solutions to problems
that cannot be addressed efficiently using other techniques. This study
proposes a novel supervised rule-based classifier for binary classification
tasks and evaluates the extent to which algorithms in the AntMiner
family can address this problem. First, we describe different versions of
AntMiner. We then introduce the one-class AntMiner (OCAntMiner)
algorithm, which can work with different imbalance ratios. Next, we
evaluate these algorithms using specific synthetic datasets based on the
AUPRC, AUROC, and MCC evaluation metrics and rank them based on
these metrics. The results demonstrate that the OCAntMiner algorithm
performs better than other versions of AntMiner in terms of the specified
metrics.

Keywords: AntMiner - Evolutionary algorithm + Rule-based
classifier - Ant colony classification - Imbalanced dataset - Binary
classification - Synthetic datasets

1 Introduction

In recent years, various highly scalable models have been developed using deep
learning [8,10] and other machine learning models such as XGBoost [5]. Most
of these models are black-box models that are not interpretable by users. A
few of these models specify the importance of features to help users understand
which features are more helpful for predicting classes [15]. However, they do
not provide explicit relationships that allow human users to understand the
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relationships between input and output variables, unlike a white-box model.
Because rule-based classifiers [1] explicitly rely on individual variables in the
original data, they are powerful candidates for constructing white-box models.
Rule-based classifiers extract rules to explain the effects of individual variables
on a given class, as follows:

IF (Conditions) THEN (Consequent) (1)

Conditions are combinations of propositions for different input variables (terms)
bound by a logical conjunction (AND). The result of these combinations is the
consequent (i.e., classes). In this study, we focused on ordered-rule-based classi-
fiers. There are two methods for extracting rules: direct and indirect. In direct
methods, the algorithm directly operates on the data and extracts rules from the
data, as seen in the RIPPER [7], CN2 [6], PART [14], and RISE [11] algorithms,
or uses evolutionary algorithms such as the ant colony algorithm (AntMiner) [27]
to extract rules. In indirect methods, a classifier is first applied to the data and
then another method extracts rules from the classifier. Such methods include
the C4.5, J48 [30,31], random tree [29], and REPTree [33] algorithms. These
tree-based algorithms first use a decision tree to classify data. Rules are then
extracted from the trees provided by the algorithms.

The goal of this study was to develop an algorithm to extract rules from
provided datasets that works well with both imbalanced (i.e., when the amount
of data in one class is significantly less than the amount of data in another class)
and balanced datasets, and also determine a suitable method for the ranking
algorithms based on datasets with various imbalfance ratios. Additionally, con-
sidering the lack of suitable datasets for evaluating rule-based algorithms, we
aimed to generate datasets containing all possible instances for generating out-
put classes so that we could determine which algorithms could achieve the high-
est values for the defined metrics with the availability of all possible instances
and absence of noise. Also, with these data, we can find out which algorithm is
over-fitted or under-fitted on the data. The remainder of this article is organized
as follows. Section 2 provides an overview of evolutionary approaches. Section 3
defines the developed one-class AntMiner (OCAntMiner) algorithm, and Sect. 4
provides an evaluation of the considered algorithms. Section 5 presents the eval-
uation results. Finally, Sect. 6 concludes this article.

2 Related Work

Evolutionary algorithms (EAs) are used in optimization problems. They repre-
sent a subset of evolutionary computations [34]. The EA approach is inspired
by biological evolution and uses operations such as mutation, recombination
(crossover), and selection. A population evolves with the goal of maximizing a
given evaluation function. The main EAs used for learning rules are the learning
classifier system (LCS) [4] and AntMiner algorithms [27]. The LCS was intro-
duced by John Holland [17], and genetic algorithms were used to extract rules.
In contrast, AntMiner uses a simulated ant colony as a probabilistic approach
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to solve graph problems and find the best path to optimize an evaluation func-
tion. Ants choose their paths based on the amount of pheromones along paths,
which represents how many times a path has been selected successfully before.
Releasing pheromones in an environment (along paths) is a method for ants to
communicate. The path with the most pheromones should be shorter than the
others according to the current state of the search [12].

2.1 Evolution of AntMiner

Several versions of AntMiner have been released. We focus on the most impor-
tant releases. As mentioned previously, the first version of AntMiner was intro-
duced by Parpinelli [27,28]. The second version was AntMiner2 [18], which
introduced a novel heuristic function. AntMiner+ [19] defined a directed acyclic
graph as a new environment for ants to select their paths more efficiently when
the AntMiner environment is fully connected. This means that AntMiner ants
must choose from all nodes at each decision point, whereas AntMiner+ ants
must choose only from nodes corresponding to a single variable. The continu-
ous AntMiner (cAntMiner) [21,22] follows the concepts of AntMiner+ [19] and
removes the discretization step by dynamically determining the cutoff values
for continuous variables by selecting corresponding entropy minimization val-
ues. Ant-Tree-Miner [26] uses the ant colony optimization algorithm to learn
decision trees. The Ant-Tree-Miner algorithm follows the traditional divide-and-
conquer approach. It uses a stochastic process based on heuristic information and
pheromone values during tree construction to define the nodes (attributes) of
trees instead of applying greedy deterministic selection. In the Pittsburgh cAnt-
Miner (cAntMinerPB) [20,23], a search for the best list of rules is performed,
whereas in AntMiner, a search for the best single rule is performed in each step
of the sequential coverage process. In other words, in cAntMinerPB, the search
is guided by the quality of a candidate list of rules, whereas in AntMiner, it is
guided by the quality of a single rule. In the unordered cAntMinerPB (UCAnt-
MinerPB) [24,25], the underlying concept is the same as that of cAntMinerPB,
but the goal is to generate an unordered set of rules.

2.2 Quantitative Algorithm Ranking

The main objective of this study was to construct an algorithm that is appli-
cable to binary classification tasks and evaluate it using datasets with various
imbalance ratios. According to our review, researchers typically use the UCI
database [13] to verify the accuracy of their algorithms. The problem is that
in most of the corresponding datasets, only a small portion of the total data is
provided; thus, all possible input instances are unavailable. Based on the incom-
pleteness of these datasets, we may not be able to trust the results of the rank-
ing of algorithms, even if we use different cross-validation methods, because we
may inadvertently overfit or underfit the given data. To solve this problem, we
aimed to generate datasets that can produce imbalance ratios similar to the UCI
datasets while considering all possible data points, without noise (i.e., 100% of
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Fig. 1. Different data boundaries based on noise or new data entry.

possible instances for given inputs). We think that these artificial datasets, can
give a good insight about real world because they cover different imbalance
ratios via different linear and non-linear problems. Additionally, we intended to
compare the ranking of algorithms using the generated data and UCI data.

Another important question is which metrics are the most suitable for rank-
ing algorithms. Among the studies mentioned in the previous sections, most
researchers used the accuracy metric to rank their algorithms. Unfortunately,
this metric is not the most suitable for ranking algorithms when considering
both balanced and imbalanced datasets. A few studies have used the area under
the receiver operating characteristic curve (AUROC) as an evaluation metric.
However, when faced with high imbalance ratios, the AUROC is not a suitable
option. In such cases, one should consider using another metric such as the area
under the precision-recall curve (AUPRC) [32]. In this study, we considered both
the AUPRC and AUROC to rank different algorithms. By using relevant datasets
and metrics, we identified the limitations of the AntMiner algorithms in terms of
handling datasets with high imbalance ratios and attempted to overcome these
limitations. To this end, we developed a novel algorithm called OCAntMiner,
which is presented in Sect. 3.

3 OCAntMiner

This section presents our proposed OCAntMiner (One-Class AntMiner) algo-
rithm. As shown in Fig. 1a, it is possible to define different boundaries for dis-
criminating two classes of data, which becomes particularly important when
dealing with imbalanced data.

The amount of data that can express a minority class is very small and
noise in these data can completely distort the output of prediction. As shown
in Fig. la, only three data points belong to square class (minority class) and all
other data belong to class circle (majority class). Our goal in this study was to
develop an algorithm that works on existing data without the need to add or
remove data. As shown in Fig. 1b, if we add more data points to the existing data
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Input : TrainingSet : all.training.cases
Output: Discovered.Rules.list|]

1 WCTP = MajorityClass;

2 while TrainingSet >Maz uncovered cases do

3 t=1; /*ant index*/
4 i=1; /*convergence test index*/
5 pheromones = init.phermones();

6 Rule =] ; /*empty rulesx/
7 repeat

8 Rule[t] = add terms based on heuristic function and pheromones;

9 Prune Rule[t] ; /*based on quality function*/
10 if Consequent of Ruleft] I= WCTP then

11 | Quality[Rule[t]]=0;

12 end

13 Update the pheromones;

14 if Ruleft] is equal to Ruleft-1] then

15 | Jj=i+1

16 else

17 | =1

18 end

19 t=t+1;

20 until (¢ >= No.of.ants) OR (j >= No.rules.converged);

21 R.best =best(Rule) ; /*Rule with highest quality among all Rules*/
22 if Consequent of R.best == WCTP then

23 Add rule R.best to Discovered.Rules.List; ;

24 TrainingSet=TrainingSet-(set of cases correctly covered by R.best);

25 end

26 end

Algorithm 1: High-level pseudocode for OCAntMiner

(either noise or true data) and if these data are added to the minority class, they
can significantly change the boundaries of the minority class. However, for the
majority class, the addition of new data does not significantly shift the boundary
because the rest of the data can pinpoint the location of the boundary.

In previous versions of AntMiner, the majority class was considered as the
default class and the algorithm searched for rules to explain the minority and
majority classes with no restrictions on finding rules for each class. As a result,
the algorithm could provide rules to describe the majority class and rules to
describe the minority class, or only rules to describe the minority class. Our idea
is to limit the algorithm to the majority class and extract rules only for that
class. The reason for choosing the majority class to extract rules instead of the
minority class is that there are more data for the majority classes in datasets,
meaning more precise rules can be derived to express such classes. If we can
describe one class very well, then another class will be easily discriminable.
One goal of this study was to evaluate the impact of integrating this approach
into AntMiner-based algorithms. The OCAntMiner pseudocode is presented in
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Algorithm 1. OCAntMiner extends the original AntMiner by focusing on the
extraction of the majority class, which is defined as the class with the highest
frequency in the class distribution of training samples. The pheromone update,
pheromone initialization, heuristic, and quality functions rely on the AntMiner
model. To focus on the majority class, the first step is to detect which class to
predict (WCTP), afterward, algorithm was modified to extract rules related to
this class (the modifications are highlighted by red in Algorithm 1). Most other
changes to the original version aim to prevent the algorithm from generating
minority class rules. In line 10, the algorithm checks for the consequences of
extracted rules. If the consequent does not match the value of the majority
class, then the quality of the rule is equal to zero. Similarly, in line 22, when all
ants provide their solutions (rules), the best solution (R.best) is selected based
on the quality measure. If the consequent of R.best is equal to the value of the
majority class, then R.best is added to the list of discovered rules and the cases
correctly covered by R.best are removed from the training set.

4 FEvaluation

In this section, we first provide a detailed overview of our datasets and then our
methodology for evaluating algorithms. Subsequently, relevant evaluation met-
rics are identified and justified. Finally, the algorithms selected for the evaluation
process are presented with their configurations.

4.1 Datasets

For evaluating and comparing their algorithms on classification tasks, most
researchers use various UCI datasets [13] as a reference. However, as explained
previously, these datasets do not provide all possible data instances, and con-
sequently, we are unable to rely on ranking based on insufficient information.
Additionally, we aimed to evaluate the algorithms under different conditions
(i.e., different imbalance ratios), and it was unknown whether these datasets
covered a large variety of possible scenarios.

To overcome these limitations and evaluate our algorithm, we used a dataset
generator that allowed us to consider all of the complexities and relationships
between input and output variables. Because we wished to generate datasets
containing classes based on rules, we used binary logic to generate rules and
considered inputs and outputs as binary values. The AND, OR, and NOT oper-
ators were used to generate all possible combinations and relationships between
input variables. We assigned the desired number of input variables (four and
eight in this study) to the generator for generating random rules. Then, based
on the number of inputs, it generated all possible instances, and based on the
generated rules, it evaluates the inputs and generated class outputs (e.g., for
eight binary inputs, we generated 28 = 256 different instances, that is, the num-
ber of possible instances without replacement for eight inputs).



124 N. Ghannad et al.

Four and eight features as inputs may seem to be small numbers. However,
as indicated in the results section, the complexity that these number of variables
can generate is so high that there is no need to consider greater numbers of inputs
at this time. The 24 generated datasets cover, imbalance ratios from 1 to 84. This
method allowed us to generate all possible combinations of relationships between
variables for each dataset and a very wide range of complexities. For assessment,
we used five generated datasets with four inputs, 19 generated datasets with eight
inputs, and five UCI binary datasets (Breast Cancer, Breast Cancer Wisconsin,
Haberman, Hepatitis, and Tic Tac Toe).

4.2 Methodology

We first evaluated the algorithm performance using data that comes from data
generator for the reasons mentioned in Sect.4.1. The objective was to evaluate
the performance of the algorithms in different scenarios. Therefore, we tested
the algorithms with two different sampling percentages. In the first scenario, we
fed all possible instances (i.e., 100% of the data) to the algorithms as training
data, and use same data for testing, and then with metrics checked the behavior
of the algorithms to determine which algorithms were capable of categorizing
data in the best possible manner (i.e., fully predict the output and e.g. AUROC
= 100%) considering the clarity and presence of answers in the data and the
absence of noise. We know that this action may cause some models to overfited
on the data. And we’ll check that with the second scenario. Our objective in
this scenario is just to verify the learning power of the algorithms. In the second
scenario, we checked the performance of the algorithms using 50% of the all data
points as training data and use 100% of data for testing. This scenario measured
the robustness of the algorithms when only half of the samples were available
for training. For this purpose, we randomly split the data into 10 folds (10-fold
cross-validation) and, stored these folds. Then We run each algorithm 10 times
and used 10 folds each time to make the results more reliable, and then use them
to evaluate algorithms. Finally, we compare the ranking of the algorithms in two
scenarios to see which algorithms were able to achieve the highest ranking in
both scenarios.

To evaluate and understand the results of comparing the proposed algorithm
to the other algorithms, we followed two steps. First, we described the results
based on the mean and standard deviation of different runs. Second, statistical
methods (i.e., AutoRank tools) were used to rank the algorithms based on their
performance measures [16]. Specifically, we adopted the Demsar method [9]. The
Demsar method was used to highlight both the ranking results of the benchmark
and to show how much the performances of the different algorithms varied from
each other. To compare the algorithms and rank them according to classification
performance, because the datasets used for evaluation were highly imbalanced,
we considered classification metrics that yield good results in this domain, includ-
ing the AUPRC, AUROC [3], and Matthews correlation coefficient (MCC) [2].
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4.3 Selected Algorithms

To demonstrate the performance of the proposed OCAntMiner algorithm com-
pared to other algorithms, we selected algorithms from the category of evolu-
tionary algorithms for the sake of fair comparison. However, we also went a
step further and compared it to non-evolutionary algorithms to demonstrate the
power of the proposed algorithm. We selected different versions of AntMiner,
namely, the original version of AntMiner [18], cAntMinerPB [23], UCAntMin-
erPB [24], and cAntMiner [22]. For direct and non-evolutionary algorithms, we
also selected some algorithms like RIPPER [7], PART [14], and RISE [11], and
for indirect algorithms, we selected J48 [30,31], and REPTree [33].

4.4 Algorithm Parameters

We used the same input parameters for all algorithms, namely, “Size of Ant

colony” = 60, “Maximum number of iterations” = 1500, “Minimum covered
cases per rule” = 10, “Number of uncovered cases set” = 10, and “Rule quality
function” = Sensitivity x Specificity. In the next section, we present the results

of different algorithms based on the described metrics.

5 Results and Discussion

5.1 Evaluation of Algorithms from a Classification Perspective

In this section, we compare different algorithms from a classification perspective.
For this purpose, we consider three different metrics (AUROC, AUPRC, and
MCC) to evaluate the accuracy of dataset. To verify the algorithms in different
scenarios, we applied two different sampling percentages (100% and 50%) to the
input data. Our first scenario is to provide the algorithms 100% of the data
samples (i.e., all possible instances without replication) for training and testing
data to evaluate whether they can achieve the maximum value (e.g., AUROC
= 100%) when all possible samples are used. Because all possible samples are
provided to the algorithms, we expect the algorithms to adapt to the data and
provide the maximum AUROC, AUPRC, and MCC values for the testing data.
In Table 1, mean values of different runs were sorted by the AUPRC metric,
and the highest values are bolded. In left side of this Table we consider a second
scenario in order to see what happens when we give only half part of possible data
samples, and which algorithm can predict the output better. As can be seen in the
Table, the results decrease compared to using all possible data samples (right side
of Table 1), but still, OCAntMiner gives the best result on AUROC, AUPRC, and
MCC in comparison to other Antminer algorithms. However, when considering
the non-evolutionary algorithms, RIPPER provides better performance in terms
of the AUPRC metric.

Also, this Table shows results using 100% of all instances. Rise algorithm
achieves the best values for all metrics but when we look at the result with 50%
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Table 1. Mean [Std] using 24 synthetic datasets with different sampling.

50% of whole possible instances 100% of whole possible instance

AUROC AUPRC MCC AUROC AUPRC MCC
OCAntMiner 90.64 [9.21] | 89.48 [16.66] | 80.82 [17.56] | 95.10 [8.71] | 93.87 [11.37] |92.72 [13.19]
RIPPER 90.56 [15.59] | 92.43 [19.99] | 77.08 [32.84] |94.52 [14.13] |95.34 [18.76] | 85.97 [30.68]
IREP 86.82 [17.28] |90.2 [20.77) 71.26 [35.33] | 93.31 [14.58] |94.49 [19.01] |85.75 [29.09]
UCAntMinerPB | 82.40 [18.35] |81.73 [24.73] | 57.42 [35.23] | 82.53 [21.81] | 84.56 [24.66] | 62.08 [42.44]
Jrip 81.58 [19.44] | 87.42 [21.16] |63.40 [34.7] 81.57 [21.09] | 88.90 [20.55] |66.03 [36.67]
cAntMinerPB | 76.91 [19.1] |74.66 [29.49] |45.09 [33.78] | 77.41 [19.25] |75.15 [28.83] |49.90 [35.52]
Rise 76.12 [5.12] | 84.62 [12.99] |45.74 [20.58] |100.0 [0.0] |100.0 [0.0] 100.0 [0.0]
J48 72.42 [19.08] |81.39 [23.6] 43.39 [38.41] | 78.71 [19.87] | 87.13 [21.96] |53.67 [40.81]
AntMiner 72.32 [16.99] | 73.69 [28.8] 41.70 [31.79] | 75.02 [20.63] | 74.84 [29.35] |48.12 [38.65]
REPTree 70.99 [19.33] | 80.28 [23.35] | 40.21 [38.54] | 77.60 [19.67] | 83.59 [23.12] |50.92 [39.27]
cAntMiner 69.45 [19.18] | 73.83 [29.05] |36.11 [35.36] |73.54 [18.91] |74.78 [28.76] |45.82 [36.28]
PART 69.27 [18.59] | 72.31 [30.19] |42.29 [33.42] |65.93 [21.22] |70.90 [30.91] |37.13 [37.4]

sampling, result dramatically decreases and it is sign of overfitting or underfit-
ting. But the results of algorithms OCAntMiner and RIPPER have not differed
much and have kept the same position as before. In Table 2, we compare the
original AntMiner to the improved version (i.e., OCAntMiner) with more specific
criteria using 50% sampling of all possible instances of the generated datasets.
The results indicate that the number of rules is reduced by 43%, runtime is
improved by 47%, and AUPRC is improved by 15.87% when using OCAntMiner.
This demonstrates that the proposed algorithm provides fewer rules in less time
and is more accurate for prediction. In this section, we presented the results in
terms of the mean and standard deviation for different sampling percentages.
In the next section, we examine the ranking of the algorithms in detail using
statistical methods and the UCI datasets.

Table 2. Comparison using 50% of all possible instances of 24 synthetic datasets.

Algorithm Number of rules | Time(S) AUPRC
AntMiner 667 3400 78%
OCAntMiner | 375 (] 43%) 1778 (1 47%) 1 93.87% (1 15.87%)

5.2 Ranking of Algorithms

In this section, we rank the algorithms using a statistical approach based on
AutoRank tools using both UCI and synthetic datasets. Because the data under
analysis do not follow a normal distribution, the Friedman test with the Nemenyi
post-hoc test was applied to rank the algorithms and divide the algorithms into
different groups based on the critical distance (CD) metric. As shown in Fig. 2,



One-Class Ant-Miner (OCAntMiner) 127

the algorithms were ranked based on the AUROC metric using UCI datasets.
One can see that the most performant algorithm is the proposed OCAntMiner,
followed by J48. This figure also shows that OCAntMiner, J48, RIPPER, and
IREP are in the same group and there is no significant difference between them,
but they are significantly different from the other algorithms. It also shows that
the original version of AntMiner is in the group with the worst results along
with different versions of AntMiner. With our modifications, it jumps to the first
group and first rank. Additionally, we performed another test with 24 synthetic
datasets and 50% random sampling. The results are presented in Fig. 3, and
shown that, RIPPER has the highest ranking, followed by OCAntMiner. This
figure also shows that OCAntMiner provides significantly better results than
the other versions of AntMiner and is clearly in the top group. These results
indicate that despite being in the same group as RIPPER, there is still room for
improving OCAntMiner.

cD
11 10 9 8 7 6 5 4 3 2 1
PART —— L OCAntMiner
CAntMinerPB. ————— b 48
UCAntMinerPB. —M8M8M8M8@M8 L——— Ripper
CAntMiner IREP
AntMiner REPTree
Jrip

Fig. 2. AUPRC on UCI datasets with 10-fold cross-validation.
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Fig. 3. AUPRC on synthetic datasets with 50% of data with 10-fold.

6 Discussion and Conclusions

In this study, we focused on rule-based classifiers, specifically the AntMiner
algorithm family, for extracting classification rules from a given dataset. The
most important part for the classification task are validation results, because
if such results are not calculated properly, it can lead to incorrect directions
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for improving existing algorithms. For validation, there are two important fea-
tures, the datasets, and metrics used for validation. Most studies have used the
UCI database for evaluating algorithms in different areas with varying complex-
ities. However, most UCI datasets cannot provide all possible instances for data
inputs to facilitate the measurement of the intrinsic performance of algorithms
when seeking a binary function. Interestingly, no AntMiner algorithm was able
to consistently achieve values of 100% for the metrics used when all instances
were provided. When evaluating and ranking different algorithms using synthetic
datasets with 50% of all data instances, overfitting or underfitting to the given
data may have occurred. The same phenomenon should occur with the UCI
data, but because we did not have all data instances, we could not verify this
phenomenon.

Another limitation of using UCI datasets is that we do not know the extent
to which the data used for ranking cover different complexities for the target
problem. Our contribution to solving these problems was the introduction of a
dataset generator that generates datasets with various imbalance ratios, covers
different complexities, and provides all possible instances for a given number of
input parameters. With all possible instances, we can check whether the algo-
rithm is overfitted or underfitted to the data. Therefore, we divided our tests
into two scenarios. The first scenario used 100% of the data for training and the
same data for testing. In the second scenario, we used 50% of all data instances
with random sampling for the training phase and 100% of the instances for the
testing phase. This allowed us to check how classifier rules were extracted for
all data instances. The results of the different algorithms for 100% and 50% of
all possible instances are presented in Table 1. As shown on the right side of
this table (i.e., 100% sampling), the maximum values for AUROC, AUPRC, and
MCC are 100% and the Rise algorithm can achieve these values, indicating that
this algorithm either overfits the data or fits the data properly. To understand
which one of these scenarios occurred, we should consider the results for 50% of
the data (i.e., left side of the table). As shown using 50% of data, Rise algorithm
is not ranked first anymore and shows a very poor result for the MCC metric
(i.e., 45.74%), indicating that the algorithm likely overfitted the data, which is
why the solution provided for 50% of the data is not as good as that for 100%
of the data. Another interesting point in this table is that the OCAntMiner
and RIPPER algorithms retain the same ranks for the two different sampling
percentages based on different metrics, indicating that these two algorithms are
robust to overfitting. This also indicates that they are likely not underfitted to
the data because they achieve the highest values for different metrics.

Another issue that we observed in AntMiner was that this algorithm sets the
majority class as the default class and then attempts to find rules to describe the
majority and minority classes. As a result, three outputs may be generated at
the end of executing the algorithm: 1) some rules describing the majority class
and some rules describing the minority class, 2) all rules describing the minority
class, or 3) no rules extracted from the data and only the default class is used for
all data instances. As shown in Fig. 1, the distribution and boundary of majority
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data points are more reliable than those of minority data samples because there
may be too few instances for describing the minority class. As a result, noise in
the data or lack of instances may confuse the extraction of rules. This is why
simply describing the majority class seems to be a powerful approach to solving
this problem. Our main contribution in this study is highlighting the relevance
of this approach, which, to the best of our knowledge, has not yet been applied
to any AntMiner-based algorithm. We implemented this approach by modifying
the first version of AntMiner and forced the algorithm to extract rules for the
majority class alone. Therefore, the algorithm used the minority class as the
default class and attempted to find the rules for majority data instances. As
shown in Table 2, after adding this feature to the first version of AntMiner, the
number of extracted rules decreased dramatically (43%) and the classifier with
fewer rules could still detect the behavior of the data. This approach also reduced
the runtime by 47%. Furthermore, the AUPRC was improved by 15.87%. These
results demonstrate that with this added feature, we can reduce the runtime and
number of rules while improving data classification performance. Additionally, as
shown in Table 1, by adding this feature, we achieved a big jump in performance
(from the second-worst AntMiner to the best). This jump demonstrates the
strength of the components added to the algorithm to handle datasets with
various imbalance ratios.

We performed a statistical test using the Demsar method to rank the algo-
rithms considering the uncertainty in ranking caused by the number of datasets
used in the experiments and variance of the results. As shown in Fig. 2, we
first ranked the different algorithms based on the UCI datasets with 10-fold
cross-validation to demonstrate how the proposed algorithm works on datasets
used in previous studies. The results reveal that OCAntMiner ranks first among
all evolutionary and non-evolutionary algorithms. Statistically, it is in the same
group as the J48, RIPPER, and IREP algorithms. We also applied the Demsar
method to the algorithms using 50% of all possible instances, and the results
are presented in Fig. 3. The results show that OCAntMiner ranks second among
all algorithms, but ranks first among the different versions of AntMiner. Addi-
tionally, this test indicated that OCAntMiner belongs to the same group as
RIPPER and IREP. This figure also reveals that the ranking of the J48 algo-
rithm is dramatically reduced compared to that in the previous figure using the
UCI data. Several interpretations can explain this phenomenon. For example,
synthetic datasets are more general than UCI datasets and cover more complex
problems. Under these conditions, J48 may not classify some datasets properly
or the five UCI datasets may not be sufficient to rank the algorithm (5% error
in ranking). Finally, we demonstrated that modifying the AntMiner process can
significantly improve its results without supplementing or modifying the heuris-
tic or quality functions. In future work, we will consider adding this feature to
other AntMiner models, and we also want to extend this method with multiple
classes and analyzing the resulting algorithm behavior.
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Abstract. The University Course Timetabling Problem is a combina-
torial optimisation problem in which feasible assignments of lectures are
sought. Weighted sums of violations of various constraints are used as a
quality measure, with lower scores (costs) being more desirable. In this
study, we develop a domain-specific many-objective optimiser, based on
constructive heuristics and NSGA-III, in which the violations of different
constraints are cast as separate objectives to be minimised concurrently.
We show that feasible solutions can be attained consistently in a first
phase and that a targeted objective can be fully optimised in a second
phase. A set of non-dominated solutions is returned, representing a well-
spread approximation to the Pareto front, from which a decision maker
could ultimately choose according to a posteriori preferences.

Keywords: Many-objective - Optimisation - Timetabling

1 Introduction

The generalised University Course Timetabling Problem (UCTP) is the task of
generating a workable university timetable by assigning lectures to discrete loca-
tions in time and space, subject to various constraints. It is a well studied prob-
lem in combinatorial optimisation and known to be computationally hard [19].
This study works with the standard curriculum-based formulation proposed by
the International Timetabling Competition (ITC) 2007 Track 3 under the pop-
ular UD2 configuration [4,9]. While it is noted in [3] that all (unique) instances
of this benchmark but 3 have been solved to optimality, this does not diminish
its usefulness. The formulation remains challenging for optimisers running on
short-to-medium timeouts, while prior knowledge of the optimal values helps to
contextualise results. The reader is directed to the sources above for an in-depth
description of the problem and constraints, which are modelled on the real world
timetabling problem of the University of Udine. In brief, feasible timetable solu-
tions cannot violate any of five given hard constraints h1l ... h5. These ensure
that all lectures are assigned, pre-designated unavailable periods are avoided, as
are clashes between lectures. The quality of a feasible solution is determined by
violations of four soft constraints, s1 ... s4, which relate to room capacity, min-
imum working days, curriculum compactness and room consistency respectively.
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We use the following notation to refer to entities in the benchmark instances: £
is the set of lectures {ly...l}, d; a day of the week, ¢; a timeslot within a day,
p; = txd a period (or timeslot within a week), r; a room. Adopting the terminol-
ogy used in [16], a room /period pair is referred to as a place. This study proposes
a parameterless many-objective optimiser based on the non-dominated sorting
genetic algorithm III (NSGA-III) [6] and a constructive heuristic. The motiva-
tion is to evolve a set of solutions that approximate the Pareto front, thereby
giving a decision maker a set of high quality timetables to select from. For effi-
ciency, our approach incorporates d-evaluators, as suggested by [12]. Phase 1
of the approach aims to find feasible starting solutions, which are then used to
initialise the genetic algorithm in Phase 2. Here, the 4 soft constraint violation
scores are cast as separate objectives to be minimised concurrently.

Section 2 provides some background work before Sect. 3 details the methodol-
ogy and optimiser development. Section 4 describes the experiments and results.
Sections 5 and 6 feature a discussion and conclusions respectively.

2 Related Work

While results have been published by many authors for the ITC2007 benchmark
(see the Benchmark Analysis section of [13] for an incomplete list), the majority
treat the problem as a single-objective minimisation, as prescribed by the original
competition rules. The original Track 3 competition included five finalists [17],
Z. Lu et al, [2,10] and [5], from which the multi-phase constraint-based solver
of [17] was declared the winner. In the intervening years, the current best known
single-objective results have been achieved by [1] and [15]. The former employed
a hybrid genetic algorithm with Tabu Search, whose movement through the
search space was determined by a sequence of large neighbourhood operators.
The latter embedded an Adaptive Large Neighbourhood Search within a Sim-
ulated Annealing framework. The best known results are reproduced here for
context.

It is noted in [14] that this single-objective approach predominates in educa-
tional scheduling generally, despite the existence of often numerous and conflict-
ing objectives. The authors consider a 3—objective professional training schedul-
ing problem with some similarities to the UCTP, comparing NSGA-II with
NSGA-III. The former was found to be superior on all metrics except speed.
However, the parameter values were tuned only for NSGA-II, and our problem
has a higher-dimensional objective space which may be tackled better by NSGA-
III. Other differences between the UCTP and the problem in [14] must be noted
too, such as its timescale (repeating week-long blocks rather than months or
years), requirement to assign all events, and lack of precedence constraints.

A more direct comparison may be made with [11], in which the many-
objective nature of the UCTP and ITC2007 benchmark was considered. A tra-
jectory search was carried out by selecting a small number of lectures and re-
assigning them. Various acceptance criteria were relied upon for the new evalua-
tions. In both of the two approaches proposed, decision maker preferences were
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assumed a prior: and implied by the cost function. This was defined as either
the standard weighted sum of violations or the Chebyshev distance to a refer-
ence point (the origin). Using the latter resulted in a more even spread of scores
across individual objectives.

To the best of our knowledge, there are as yet no published results for the
benchmark that attempt to approximate the Pareto set in the absence of decision
maker preferences. The following section outlines the development and reasoning
behind the different components of our system.

3 Methodology

Encoding: Our system is built in MATLAB and incorporates modules from
the platEMO optimisation suite [20]. Its first task is re-encoding the problem
instances, by converting each problem from its original .ctt file format to a 2-D
indexed cell array data structure.

Solutions to the problem — the timetables themselves — must also be
encoded. This is a design choice with serious implications for the efficacy of any
evolutionary algorithm used. The proposed solution encoding represents each
assignment using the 3-tuple: {d;,t;,r;), where d; and ¢; are the day and timeslot
respectively and the element-wise length of a complete chromosome is 3 x |L£].
Disadvantages of using a 3-tuple include the larger data structure and higher
time complexity involved, as well as the potential for epistatic effects caused by
interactions between elements within tuples. More favourably, the induced search
landscape grants connectivity between days, timeslots and rooms as individual
entities, allowing for the design of more nuanced and effective genetic opera-
tors. Each element within a gene resonates with a particular soft constraint. For
example, perturbing d; affects the number of unique days that course lectures
are held on, and therefore the violation score of s2. Compliance with h1 (all
lectures must be assigned) is also ensured by the 1:1 lecture:gene ratio.

Initialisation: The initialisation constitutes Phase 1 of a two-phase optimi-
sation, with the aim being to produce a population of solutions that is as close
to fully feasible as practicable. To this end, two broad categories of construc-
tive heuristics have been proposed in the literature [18]. Static heuristics require
lectures to be sorted by some metric, where this fixed ordering then determines
the sequence of assignments. Dynamic heuristics involve recalculating the metric
values after each assignment, thus providing greater adaptive potential. In both
cases, the chosen metric is intended as a measure of ‘difficulty to assign’.

The static heuristics Largest Enrolment (LE) and Largest Degree (LD) and
the dynamic heuristic Saturation Degree (SD) were tested on the ITC2007 bench-
mark. LE relies on the number of enrolled students for its metric. Lectures with
a larger number of students take priority. LD, as described for the generic case
in [18], uses the number of potential clashes a lecture has with other lectures
resulting from commonality of students. Since explicit student sectioning is not
a feature of the ITC2007 benchmark, the metric is defined analogously as: The
sum total of lectures that have either a curriculum or a teacher in common with
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5r Comparison of constructive heuristics %
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Fig. 1. Performance comparison of 3 constructive heuristics. Lines connect results for
common instances.

the lecture being assessed. Priority is given to lectures with higher numbers of
potential clashes in this respect. The metric for SD is the number of available
feasible places, i.e. those that would not result in a hard constraint violation at
the point of assignment. The lecture with the lowest value at each decision point
is chosen for assignment. Across all heuristics, ties are broken at random.

Once a lecture has been chosen on the basis of its metric value, a place
is randomly selected from the set of feasible places currently available to that
lecture. If no feasible place exists, an infeasible place (excluding unavailable
periods) is chosen at random instead. A secondary, period-based heuristic is
suggested in [18] as an optional, more discriminatory, alternative to random
sampling. Our system neglects to include this with the following justification:
Any infeasible solutions that may have been constructed in Phase 1 are quickly
bred out of the population by the inherent hard constraint handling mechanism.
The extra expense of a period-based heuristic was therefore found to outweigh
the marginal gains in feasibility rate.

In testing LE, LD and SD, 10 independent repetitions were carried out for
each problem instance. In each repetition, 100 timetable solutions were con-
structed. This number was chosen to reflect the order of magnitude of a typical
population. The primary quality measures to consider are the proportion of
solutions that are feasible, and the relative speed of obtaining them. As with all
experiments in this study, the computation was performed on a 12-core Ryzen9
with 32GB RAM, base clock speed 3.8GHz. The wall clock speed shown here
resulted from using a single core and no parallelisation. Figure 1 shows the results
for the three heuristics over the 21 instances.

SD achieves superior feasibility rates for every instance, while being computa-
tionally dearer. At the scale of a population size of 100, this additional time cost
amounts to no more than a few seconds. More pertinently, all SD rates are 0.99
or higher, with the exception of the 3 instances comp02 (0.80), comp05 (0.11) and
comp19 (0.58). Across the infeasible solutions constructed for these 3 problems,
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the mean distances to feasibility, given as a vector of the hard constraints (h2
h3, h4, h5), were (0.3, 3.1, 0.0, 0.2), (0.2, 18.6, 0.0, 0.2) and (0.5, 3.8, 0.0, 0.2)
respectively. These show that in the minority of cases where SD fails to achieve
a near-perfect feasibility rate, the expected violations of hard constraints in the
infeasible subset are nonetheless low. In particular, h4 is zero in all cases.

Besides feasibility and speed, there may be other factors to consider when
assessing the quality of an initial population generated by a constructive heuris-
tic. The percentage of unique individuals in the sample is one example. In the
aforementioned tests, 100% was achieved across all instances and all heuristics on
this measure. Additionally, it may be worth considering some measure of disper-
sion or dissimilarity between individuals. A suitably diverse starting population
may be important in terms of the exploratory power of the optimiser.

Algorithm: NSGA-III is a successful evolutionary algorithm that supports
many-objective optimisation with constraints [6]. It is an extension to the popu-
lar NSGA-IT algorithm, which was originally conceived for lower-dimensional
objective spaces [7]. As the ITC2007 problem has 4 objectives to optimise,
NSGA-III serves as an appropriate base for Phase 2 of our system.

Selection and constraint handling: Alongside the initialised population,
the SD heuristic implementation returns an array of feasibility flags, toggled
during construction. The property con holds the flag associated with each solu-
tion, with a true value indicating at least one violation of a hard constraint. For
the first generation only, scores for the four soft constraint objectives are then
calculated in full. 2-way tournament selection is used to select a mating pool.
Randomly paired candidate solutions are first compared on their con property,
with the lower value indicating the winner. Feasible solutions are thereby given
priority. Should the con values be equal, the sum of the objective scores is used
as a tie-breaking fitness measure.

Genetic operators: For a real-valued encoding, NSGA-III traditionally uses
simulated binary crossover (SBX) and polynomial mutation as its genetic oper-
ators. For this discrete problem, adaptations were first made to both genetic
operators to ensure the preservation of integrality in decision space. Further
investigation determined that, with no meaningful ordering apparent for enti-
ties such as days or periods, traditional polynomial mutation is not necessarily
well suited for this problem domain. Similarly, standard SBX carries the risk of

0.2 T T
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o >
- o
T T
1 1
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75 80 85 90
Percentage of assigned lectures that can feasibly move.

Fig. 2. A histogram of the percentage of assigned lectures with at least one feasible
move available, for comp12. The sample set is 1000 feasible solutions constructed by
SD.
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degenerating timetables by recombining promising subsets in an injudicious way,
thereby worsening the overall solution quality. In complex, combinatorial prob-
lems such as timetabling, a successful crossover operator requires domain-specific
knowledge and can be computationally expensive. The proposed approach there-
fore dispenses with crossover entirely and is instead wholly reliant on a guided
mutator. In developing this mutator, the following test was conducted:

1000 feasible solutions were constructed using SD. For each assigned lecture
of each solution, a check was made on the number of places it could be re-assigned
to without violating the overall solution feasibility. For some assignments, there
were no feasibility-preserving moves available. The histogram in Fig. 2 shows an
example (for comp12) of the distribution of percentages of assigned lectures, over
the 1000 solution sample, with at least one such available move.

For all problems tested, the distributions demonstrate that the expected
chance of an available feasible move is generally high. The optimiser can be
guided, therefore, by imbuing the initial mutator, known as MuPF, with a prefer-
ence for feasible moves where they exist. After randomly selecting one lecture,
l;, to be mutated, another random selection is made from the set of feasible
moves available to that lecture. If this set is found to be empty, MuPF defaults
the assignment to any random place.

Using this mutator, a test run was performed on compO1 with a population
size of 364 over 550 generations. Over the course of this run, the minimum values
of objectives (s1, s2, s3, s4) improved from (1599, 15, 88, 66) to (537, 0, 6, 28)
respectively. Further tests emphasised the large relative contribution that sl
often makes to a scalarised objective score. An enhancement to the mutator, in
which sufficient room capacity is considered, was proposed specifically to target
this objective. Algorithm 1 outlines MuPFPR.

An initial indicative plot comparing MuPF and MuPFPR is given in Fig. 3. A run
on comp01 was carried out with a function evaluation budget of 2 million. The

Algorithm 1: Preference for feasibility, preference for room (MuPFPR)
mutation operator

Inputs: One starting solution
Output: One mutated solution
Randomly select a lecture, l;, to mutate
Identify the set of places, feasMoves(l;), to which [; can be re-assigned without
violating the feasibility of the solution
if feasMoves(l;) = () then
Re-assign [; to a new randomly chosen place in any room with sufficiently
| high capacity and excluding unavailable periods
else
if feasMoves(l;) N sufficientRooms(l;) = () then
| Re-assign lecture i to a place randomly chosen from feasMoves(l;)
else
Re-assign [; to a place randomly chosen from the given non-empty
intersection
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Fig. 3. A comparison of mutator MuPF (grey) and MuPFPR (black) for a single rep of
compO1 with 2 million function evaluations. Traces shown are the min, mean and max
objective scores over each generation.

extra room-related guidance provided by MuPFPR, shown as a black trace, helped
drive the convergence rate for s1 objective in the top left tile, at no detriment
to the remaining objectives.

Incorporated into the mutation process is an implicit feasibility checker.
A violation flag, conMutation, is toggled if and only if feasMoves(i) = 0.
The returned con property for that child is generally given by (conParent V
conMutation) — except in the case when the parent solution is infeasible and
the mutation is feasible. Here, the feasibility of the child is unknown and a full
evaluation of the hard constraints must be called. The rarity of this outcome
ensures that, in practise, the hard constraint evaluators seldom need to be exe-
cuted at all — an example of a time-saving partial evaluation. The following
section details how §-evaluations are used to make similar savings when calcu-
lating the soft constraint objectives.

compi8 comp02 comp07

0.3

Wall clock time for
100 evaluations / s.

5 10 15 20

Number of lectures mutated.

Fig.4. A comparison of the time complexity (mean of 10 reps) for the combined 4-
evaluators (solid line) vs. full (dashed line), for a small (comp01), medium (comp02)
and large (comp07) sized problem and a variable number of mutations.
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d-evaluations: The process by which a d-evaluation negates the need for a
full evaluation on the soft constraint objectives is as follows: The ID of the lecture
to be perturbed is recorded. The value contributed to the parent objective score
by the assignment of this lecture is calculated. This value is subtracted from
the objective score of that parent, which is known a priori from the previous
generation. Lastly, the contribution of the new assignment in the child solution
is added. Objective sl is best suited for a fast § implementation, due to the
fact that the value contributed by an individual lecture is independent of those
from other lectures. For the remainder of the objectives, interactions between the
lecture being perturbed and various other lectures must also be accounted for.
Specifically, those from the same course (for s2 and s4), or those with a common
curriculum (s3). Combined over 4 objectives, the d-evaluators nonetheless offer
a sizeable time saving over their full counterparts, as illustrated in Fig. 4. While
the run time of a full evaluator scales with the number of lectures, the é run
time scales with the number of mutations — due to the resulting combinatorial
interactions. Under a single lecture mutation, the J-evaluator gives the largest
time savings, by multiples of 6.3, 10.7 and 13.2 for the respective problems shown.

Non-dominated sorting: NSGA-III relies initially on the dominance rela-
tion on objective scores to sort a concatenated parent/offspring population into
non-dominated fronts. The efficient non-dominated sort with sequential search
(ENS-SS) is used [21]. The hard constraint handling procedure mandates that
any solution with a con flag value true is automatically dominated by all fea-
sible solutions, regardless of the quality of its objective vector. The only way,
therefore, in which such a solution can be admitted into the next generation is
if the cardinality of the feasible solution set is less than the active population
size. This in turn implies the following about Phase 2: If a given generation
is fully feasible, all subsequent generations are also fully feasible. To promote
diversity, NSGA-IIT also associates solutions with rays passing through a set
of popSize uniformly distributed points on the 4-dimensional unit hyperplane.
The normal-boundary intersection method with two layers is used to obtain
these coordinates. popSize is a geometrically constrained approximation to the
desired, user-input population size, setPopSize.

4 Experimental Design and Results

Each run of the optimiser was allocated to a single core of the Ryzen9 machine,
as per the original ITC2007 stipulation. Parallelisation was used only across
independent runs. In the absence of the original CPU benchmarking program,
termination was after 600s wall clock time, which was the limit intended by
the competition, and setPopSize = 100. For each problem in a subset of 10
tested, 30 repetitions were carried out by varying the random seed. An exter-
nal passive archive, implementing the ND-Tree structure [3,8], was constructed
using the complete search history. The purpose was to update and store the
set of non-dominated solutions found over the course of the search. The results
are reported in terms of the following performance metrics: The best scalarised
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score found (using the original ITC2007 weighted penalty scheme). The size, at
termination, of unique solutions in the non-dominated archive (both in decision
and objective space, as the mapping is many-to-one). A Monte Carlo estimate of
the hypervolume indicator, for which theoretical upper bounds on the maximum
objective scores were used as the reference point coordinates.

Table 1 shows our results and statistics, alongside results from [1,11] and [15].
Figure5 illustrates the spread of non-dominated solutions achieved by a single
rep in 3-D objective space, for 3 problems in which the s1 dimension has suc-
cessfully been collapsed to zero.

Table 1. Results from 30 independent reps. bs is the best scalarised solution score
found over all reps, while b,(s1, s2, s3, s4) gives the objective scores that make it up
(averaged over the unique objective vectors whose sum is bs). A is the final archive of
non-dominated solutions, where sets of unique vectors in objective or decision space
are distinguished by subscripts , and 4 respectively. Cardinalities for both are given as
median values. hv(A,) is the (mean) hypervolume of A,, while HV,..5 is the reference
point used. The best scalarised results from the two approaches in [11] are given as G1
(Threshold Accepting with 1% threshold) and G2 (reference point based). Finally, BK
denotes the best known single-objective scores to date within the time limit, achieved
by either [1]* or [15]f or both.

Instance Proposed approach Others
bs | bs(sl, s2,83,s4) || A | |Ad| | hv(A) HViyey Gl | G2 | BK
compO1 | 11 (4,0, 4, 3) 11 | 7492 | 0.959 | (3606, 360, 294, 124) 5 | 10 | 5*%f

comp03 | 162 | (0, 52.5, 92, 17.5) | 17 | 850 | 0.831 | (11160, 720, 1536, 179) | 115 | 154 | 68f
comp04 | 92 | (0, 6.7, 65.3,20) | 17 | 482 | 0.853 | (8151, 665, 1130, 207) | 67 | 90 | 35%%
comp06 | 167 | (0, 15,104, 48) | 16 | 233 | 0.777 | (10632, 990, 1668, 253) | 94 | 159 | 30*
comp08 | 108| (0,0, 74,34) | 14 | 301 | 0.810 | (7711, 700, 1166, 238) | 75 | 120 | 37*
comp09 | 158 | (0,40, 94,24) | 24 | 623 | 0.821 | (9269, 720, 1492, 203) | 153 | 197 | 100¢
comptl | O (0, 0, 0, 0) 2 |45453| 0.981 | (3196, 335, 500, 103) | 0 | 0O | O%f
comp13 | 131| (0,30, 84,17) | 20 | 390 | 0.832 | (10668, 670, 1292, 226) | 101 | 133 | 59*¢
compld | 125| (0,20,90,15) | 19 | 1289 | 0.866 | (7138, 830, 1392, 190) | 88 | 120 | 51%
compis | 116| (0,30,78,8) | 45 | 1373 | 0.884 | (2638, 455, 954, 91) |n/a|n/a| 64%

comp08 comp13 comp18

Fig. 5. Non-dominated solution sets in (s2,s3,s4)-space, found during single runs for
3 problems in which the fourth objective, s1, was optimised to zero.
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5 Discussion

The strategy for speeding up (or by-passing) calculation of objective scores was
successful in yielding inexpensive evaluations. However, this only partially mit-
igated against the cost of non-dominated sort. The algorithm unsurprisingly
had a lower execution rate for function calls than many single-objective solvers.
Comparing its performance on an equal function evaluation budget rather than
a time budget would be enlightening, as the gradients in Fig. 3 suggest further
gains are available. Despite this, scalarised results are seen to approach those of
single-objective solvers on some problems which is encouraging — comp11 in par-
ticular was solved to optimality. With regard to the individual objective scores,
the targeted operator MuPFPR was capable of rapidly optimising s1 to zero across
the board (except for comp01 where the value of sl in the optimal solution is
known to be 4). These gains were not made at the expense of other objectives
however, which showed improvement without exception during the runs. This
suggests that additional bespoke operators, targeted at these objectives, may be
a promising next step in striving to closer approximate the true Pareto front. A
comparison with the reference point based approach of [11] (G2), shows compet-
itive or improved scalarised scores, although this claim is weakened by the CPU
benchmarking discrepancy. A major point of differentiation though is that our
approach returns a population per run, rather than a single solution, in a compa-
rable timescale. The approach appears relatively problem-agnostic, in contrast
to [12] whose results show high variance across problems. Most importantly, it
works on the assumption of a posteriori decision maker preferences. Different
areas and extremes of the Pareto front are therefore explored simultaneously
and a well-spread set of non-dominated solutions can be provided, as shown in
Fig.5. The hypervolume indicator values in Table 1 also evidence this, with all
10 problems, bar comp06, achieving a mean of 0.82 or higher. As lower absolute
objective scores are achieved, the cardinality |A,| naturally tends to decrease,
as in compO1 (median 11) and comp11 (2). This can be explained by the prox-
imity of the front to the origin and consequent sparsity of distinct points on the
4-D integer lattice. The observation |A4| > |A,| also interestingly highlights the
extent to which multiple designs map to a common objective point.

6 Conclusions and Further Work

In a departure from the single-objective treatment of the ITC2007 timetabling
problem, we propose a two-phase, many-objective optimiser based on NSGA-III
in which hard constraints are handled procedurally and soft constraints are cast
as objectives. It is effectively paramaterless, save for setPopSize and termina-
tion criteria which are pragmatic user choices. The time cost associated with
many-objective algorithms is mitigated by prudent use of d-evaluators. A simple
mutation operator reduces the otherwise large violation contributions caused by
over-filling rooms (constraint s1) to zero wherever possible. Selection and non-
dominated sorting ensure convergence of the other objectives as well as feasibility
of solutions, while a quick start is guaranteed by the SD constructive heuristic.
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Further work will focus on increasing the convergence speed of the remain-
ing 3 objectives by widening the pool of targeted operators. If the mutator is
considered as a neighbourhood, a more systematic exploration may be possible.
Figure 2 gives an intuition about the size of such a neighbourhood. An adaptive
element may be added to Phase 2 to select from such a pool based on the state
of the current population or trajectory of the evolution. Alternatively, objec-
tives that reach optimality may be aggregated with con so that any solutions
sub-optimal in this objective will thereafter be automatically dominated. Fur-
ther analysis will also help characterise the trade-offs between the objectives.
By their definitions, s1/s4 and s2/s3 represent the two pairs with the greatest
potential to conflict. The large cardinalities of the decision space solution sets
suggests that genotype diversity could also play a useful role in the selection
process.
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Abstract. Many machine learning algorithms require the use of good
quality experimental designs to maximise the information available to
the model. Various methods to create experimental designs exist, but
the solutions can be sub-optimal or computationally inefficient. Multi-
objective evolutionary algorithms (MOEAs), with their advantages of
being able to solve a variety of problems, are a good method of creating
designs. However, with such a variety of MOEAs available, it is impor-
tant to know which MOEA performs best at optimising experimental
designs. In this paper, we formulate experimental design creation as a
multi-objective optimisation problem. We compare the performance of
different MOEASs on a variety of experimental design optimisation prob-
lems, including a real-world case study. Our results show that NSGA-IT
can often perform better than NSGA-III in many-objective optimisation
problems; RVEA performs very well; results suggest that using more
objectives can create better quality designs. This knowledge allows us to
make more informed decisions about how to use MOEAs when creating
metamodels.

Keywords: Pareto optimality - Metamodelling - Evolutionary
Computation

1 Introduction

Computer simulations are widely used in many scientific fields to understand sys-
tems that are complex or difficult to measure in the real world. Problems arise
when simulations become computationally expensive. If one wants to understand
the landscape, a small set of samples can be used to construct a metamodel. A
metamodel is a regression model representative of a simulator. This allows the
prediction of unsimulated areas of the landscape without expensive simulator
runs. The problem of metamodeling and experimental designs is to determine
what values to run the true simulator so that the metamodel regression is as
accurate as possible [8]. Intuitively, it is best to uniformly spread the sample
points across the domain, to maximise the information available for the regres-
sion metamodel. Uniform spread, or space filling, is the main concern of creating
experimental designs; how do we position the sample points used for the meta-
model across the domain space?
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There are various ways to create experimental designs, the most simple
method is random sampling/Monte Carlo sampling. This is very limited in its
use for metamodeling, as many samples are required to fill space effectively [8].
Latin hypercube sampling (LHS) improves on random sampling by considering a
one-dimensional projection property for all sample points. LHS, when combined
with space filling criteria, can create effective space filling designs; however,
maintaining the one-dimensional projection property is difficult, as it is a strict
constraint. Methods to obtain optimised LHS are computationally expensive
and for some design parameters become infeasible [15]. Single objective methods
return single solutions; no alternatives are given.

By employing multi-objective optimisation (MOO) in the creation of design
of experiments (DOE), we can overcome these issues and give the decision maker
(DM) greater control over the optimisation process. Multiple desirable proper-
ties of experimental designs can be chosen by the DM and constraints upon
solutions can be applied [6]. For example, we could set a constraint that requires
solutions to be Latin hypercubes/maintain single-dimensional projection. Alter-
natively, the single dimension projection ability of a design can be measured as
an objective that is optimised in conjunction with other objectives; this may not
give exact LHSs, but it can produce families of designs close to pure LHSs in a
fraction of the time.

In addition to speed and customisability, MOO facilitates the creation of a
set of optimal solutions, which provides many alternatives with different evalu-
ation values [6]; the DM can select a design that fits his/her requirements. For
experimental designs specifically, the presence of alternatives is especially pow-
erful due to the multi-modality of the problem. MOO of DoE is a multi-modal
multi-objective optimisation problem (MMOP). As such, experimental designs
with similar evaluation values can have vastly different sample point locations.
This gives the DM an even greater choice [18]. If, for example, a chosen design
produces a substandard metamodel, the decision maker has not to change his
requirements; s(he) can select another experimental design that is similar within
the objective space and distant in the solution space [18]. This new design still
meets the decision makers requirements however may produce a far better meta-
model.

With the advantages of customisability and easy access to alternatives, the
use of MOO for the creation of experimental designs is considered appropriate
and should be explored. MOO is frequently done with the use of multi-objective
evolutionary algorithms (MOEAs); these algorithms have various strengths and
weaknesses. MOEAs can solve many types of problems; they can solve non-
convex problems and without derivatives [6]. They are a good choice for solving
the problem of design of experiments; however, they must be prepared to over-
come the unique problems presented by multi-objective design of experiments.
These problems include:

1. Large Gene Count: Due to the encoding methods, each potential solution in
a modest DOE optimisation problem can contain hundreds of genes. As the
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number of genes becomes very large the search space increases and algorithm
performance deteriorates [19].

2. Multi-Modality: Although multi-modality can be advantageous, it comes with
some drawbacks. For multi-modal problems, diversity management subrou-
tines in MOEAs can inadvertently reduce diversity in the population and
therefore the solution set [18].

3. Many-Objectives: A multi-objective problem with more than three objectives
is called a many-objective problem. When the number of objectives increases,
the effect of evolutionary operators on the population deteriorates and algo-
rithms can struggle to converge on the optimum [12]. In our experiments, we
are executing multi and many objective problems; the algorithms must be
equipped to handle both.

To understand how to best use MOO for the creation of experimental designs,
we will evaluate the performance of different MOEASs in their creation. By com-
paring performance, we can in the future select the correct algorithms to over-
come the challenges of MOO of DOE, and fully reap its benefits. Furthermore,
research into how the number of objectives affects design quality has not been
explored. By performing experiments on different numbers of objectives, we can
understand how adding more objectives affects the quality of the designs.

The rest of the article is structured as follows. In Sect. 2, we provide a back-
ground of MOO and DOE. In Sect. 3, we formulate the DOE as a multi-objective
optimisation problem. In Sects. 4 and 5, we provide results for several benchmark
and real-world problems by using different MOEAs. Finally, we conclude and
mention the future research directions in Sect. 6.

2 Background

Criteria for space filling are widely researched in the experimental design field.
They can be defined via distance based criteria, for example, minimax, max-
imin [13], potential energy [2]; or uniformity based criteria, where deviation
from a uniform distribution is measured. More obscure criteria include corre-
lation based and collapsibility criteria. Often, a single criterion is selected to
optimise the sample points in an experimental design. We can remove this con-
sideration and consider multiple objectives to create designs via multi-objective
optimisation. We consider MOPs of the following form:

minimize f = {f1(x),..., fr(x)} subject to x € S, (1)

with k& (> 2) objective functions and the feasible set S is a subset of the decision
space RP. A solution x! dominates another solution x2 if f;(x!) < fi(x2) for all
i=1,...,kand fi(x}) < f;(x?) for at least one i = 1,..., k. If a solution is not
dominated by any of the possible solutions, it is called non-dominated. The set
of such solutions is called the Pareto set. The aim of solving MOP is to find an
approximated set of Pareto optimal solutions.

There are various methods of multi-objective optimisation: weighted sum,
lexicographic ordering, and multi-objective evolutionary algorithms. All have
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been used to optimise experimental designs with promising results. In [14], multi-
objective designs were created by combining the maximin and linear correlation
criteria. Their designs were good, however, their use of weighted sums makes
their results weaker, as weighted sum requires strong consideration of user pref-
erence and leaves results open to human error. Moreover, the weighted sum
approach is not suitable for non-convex problems [16]. Abdellatif et al. [1] use
lexicographical ordering to create hybrid Latin hypercube designs that optimise
both the maximin criterion and the orthogonality criterion. Although they con-
sidered the proper order of optimisation, lexicographical ordering has weaknesses
concerning the limitation of the search space. Gunpinar [9] used a multi-objective
approach to create a genetic algorithm selection technique for computer-assisted
design. Li et al. [15] created designs using the potential energy and maximin
criteria to optimise designs via a modified NSGA-III. They did not consider the
use of other algorithms. We will build upon their work by investigating which
MOEAs are best for optimising experimental designs.

MOEAs attempt to find a evenly distributed approximation of the Pareto-
optimal set of solutions. They use evolutionary operators like crossover, muta-
tion, and selection to converge on a global optimum. In lower dimensional spaces
where the Pareto set is one or two dimensions finding the optimal set is simple.
Algorithms like NSGA-II [6] can perform very well at these tasks; however, as
the number of objectives increases, selection pressure falls and convergence upon
the optimum is weakened [12].

Work has been done to combine decomposition with Pareto-based
approaches. NSGA-IIT uses predefined reference points. Reference points help
select solutions from the non-dominated set, maintain diversity, and enhance con-
vergence. These reference points must be chosen by the user although typically
are uniformly distributed. NSGA-III selects members that are non-dominated
and close to the given reference points. Proposed by Deb and Jain [7], they
showed that NSGA-III produces good results for problems of up to fifteen objec-
tives.

RVEA [4] also uses reference points to guide selection. Like NSGA-III, RVEA
partitions the objective space, and selection is performed individually inside each
partition. This helps balance diversity and convergence. The authors of RVEA
showed that RVEA is a competitive algorithm when compared to NSGA-III; in
some test problems it outperformed.

Indicator-based approaches, like Indicator Based EA (IBEA) [20], don’t use
dominance as selection measure but a user specified indicator. Indicators include
hypervolume or eta indicators. Therefore, indicator-based approaches do not
suffer the issues of dominance-based evolutionary algorithms. They can be pro-
hibitively expensive when the number of objectives is too large [4]. NSGA-II,
NSGA-III, RVEA, and IBEA are the algorithms that we shall use for the con-
struction of designs. These algorithms have been chosen because they are com-
monly used and cover various paradigms of algorithm design.
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3 Multi-objective Design of Experiments

In this section, we define the objective functions and formulate the design of
experiment as a multi-objective optimisation problem.

3.1 Objective Functions

We have chosen four criteria that are appropriate for a design. All four are to
be minimised. Having a selection of four different criteria allows evaluation of
performance for different numbers of objectives. We can test the performance of
each algorithm by constructing designs via two, three, and four objectives.

Potential Energy (AE). A popular space filling criterion, the Audze-Eiglais
criterion [2] (also known as the potential energy criterion) fills space by treating
each design point as a charged particle that repels all other particles. The total
potential energy between the particles is used to evaluate their space filling.
A design with low potential energy suggests the particles are spread uniformly
across the domain. We chose this criterion for its excellent space filling properties.
The potential energy criterion, for a design X, where N is the total number of
samples, is denoted as:

N

N—
ZINED o T

where dis(x™,x7) is the Euclidean distance between x" and x/.

L2. Derived by Hickernell [10], the centred L2 discrepancy criterion assesses
space filling by quantifying the distance between the continuous distribution
of the design points and a discrete uniform distribution. We chose this criterion
because it is also an effective space filling criterion that optimises from a different
perspective to potential energy. For design X £; where N is the number of sample
points, D is the number of dimensions, and z; is the nth sample in dimension
d, the metric can be denoted as:
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Collapsibility (Coll). The non-collapsibility of a Latin hypercube is advan-
tageous for an experimental design. When two points do not have a mutual
coordinate they are said to be non-collapsible. A design is non-collapsible when
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no two points lie along the same one-dimensional slice; no two points share the
same coordinate. Having non-collapsible points can save resources and provide
more information per simulation run. Suppose that two points are collapsible
along a single coordinate/variable; that is, they have the same or very similar
value. If another variable/coordinate value has very little impact on the output
of the simulator, those two design points will give similar outputs with no fur-
ther information gained. Therefore, minimising the collapsibility of a design is
important for its effectiveness; we have chosen to use a collapsibility criterion
for the optimisation.

Collapsibility does not guarantee an effective space filling design; using this
criterion in conjunction with other space filling criteria will allow its advantages
to be fully utilised. Using the formula below can only be done using a multi-
objective technique; by itself it is useless for space filling. Bates et al. [3] discussed
this penalisation method that allows me to assess collapsibility.

We can assess collapsibility by evaluating each one dimensional projection of
the sample points. If we take the d'"-coordinate of all sample points in a design
and sort them from smallest to largest we get the set My = {ma1, maz...Mdn }.
We can then create a set of equally spaced intervals that each point in My should
lie appropriately within, L = {l;...[,}; where x = N + 1, [; is minimum of the
sample space, and [,, is the maximum of the sample space. For a design to be a
true Latin hypercube, each mg, should lie within the interval {,, < mg, < l41.
We check this equality across every myg,, if any conflicts occur, we penalise the
design. For a design, we sum the number of conflicts across all dimensions. A
design with no conflicts is a Latin hypercube and the function would return zero.
The function treats collapsibility as a minimisation problem. For a design X%
we can write the function as:

D N .
fl, <M<
Coll(XR) = X2 D~ AlMun). A<M>={0’ S b

d=1n=1 1, otherwise

Correlation (Corr). A design that has a strong correlation between its points
will have areas of the domain space unexplored, which is undesirable. However,
a design that has a low correlation is not guaranteed to be space filling. Using
the correlation criterion in conjunction with space filling criteria ensures that
the design is non-correlated and also space filling. By including this criterion the
quality of the designs should increase. In our work we shall be using the Pearson
coefficient; we try to minimise the largest pairwise correlation found across the
design points. If Rx is the Pearson correlation matrix of each point in design
X and [ is an identity matrix of the same size, we can evaluate correlation in a
single value denoted as:

Corr(X) = max|Rx — I

3.2 Encoding

For evolutionary algorithms encoding must be considered. If we consider an
experimental design to be a system of N coordinates in an D dimensional
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hypercube we can represent a design as a N by D array. Most MOEAs do not
support manipulating multi-dimensional arrays within their evolutionary opera-
tors; therefore, conversion is required. When we perform evolutionary operations
upon each individual we flatten the multidimensional array into a single one
dimensional array. When we evaluate the performance of each solution/design
we reshape the one dimensional array into its true N by D array.

Each solution is represented as an array of length VD, where every compo-
nent of each coordinate is a gene that can be operated against. Each gene is a
real number between 0 and 1; this is done for ease of optimisation. For example,
selecting 10 samples for a 5 dimensional simulator will grant me 50 genes per
potential solution. The magnitude of samples can increase quite dramatically,
for 200 samples in 5 dimensions the number of genes is 1000 per solution.

Bates et al. [3] compared our encoding solution to an alternative, where each
sample point is represented as a single node number in the design space. The
design contains a finite number of nodes each represented by an integer. A design
can be represented by a sequence of integers each representing the nodes at which
each sample is placed. We will not be using this encoding system as Bates et al.
explains; the coordinates based encoding system requires less bits and therefore
has a lower risk of encountering numerical errors.

4 Numerical Experiments

In this section, we compare different MOEAs with different combinations of
objectives defined in the previous section.

4.1 Problem Specifications and Mumerical Settings

To test the limits of the MOEASs, several experiments with different parameters
shall be executed - each building on the previous. The table below describes the
specifications of each problem.

Experiment | Samples | Dimensions | Genes | Objectives

DOE 5.2 25 5 125 | AE, Coll

DOE 5.3 25 5 125 | AE, Coll, 1.2

DOE 5.4 25 5 125 | AE, Coll, L2, Corr
DOE 10.2 |50 10 500 | AE, Coll

DOE 10.3 |50 10 500 | AE, Coll, L2

DOE 10.4 |50 10 500 | AE, Coll, L2, Corr
DOE 25.2 |40 25 1000 | AE, Coll

DOE 25.3 |40 25 1000 | AE, Coll, L2

DOE 254 40 25 1000 | AE, Coll, L2, Corr
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The experiment names are based on the parameters; a suffix of “5.2” refers
to a 5 dimensional design optimised by 2 objectives.

Hypervolume shall be used as a performance measure upon the algorithms
NSGA-II, NSGA-III, IBEA, RVEA. The reference point is constant across prob-
lems with a mutual number of objectives; for two objectives it is 1500, 1000; for
three objectives it is 1500, 1000, 100; for four objectives it is 1500, 1000, 100, 2.
RVEA parameters include an adaptation frequency of 0.2 and a rate of change
of penalty of 2. IBEA used a kappa value of 0.05. Simulated binary crossover
and polynomial mutation were used, both with a distribution index of 20 and a
probability of 1. Initial population size of 200; the initial population is identical
across problems with mutual levels of dimensionality. Termination occurs after
100,000 function evaluations.
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Fig. 1. PlatEMO hyper-volume performance across all nine DoE problems. The legend
is the same for all subplots.

4.2 Results and Discussion

The results for hypervolume convergence can be seen in Fig. 1. NSGA-III is
designed for many objective problems therefore it is expected to perform bet-
ter than NSGA-II in 4 objectives [7], however the results suggest otherwise.
Ishibuchi et al. [11] showed research that suggests that the choice of problem
has a larger effect on performance comparisons than the number of objectives.
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In their algorithm evaluation of a 500 item knapsack problem they showed that
NSGA-II performs consistently better up to 10 objectives. DOE problems and
knapsack problems are similar in that each individual is represented by a large
number of genes. The performance of NSGA-II over NSGA-III remains constant
across all hypervolume convergence graphs in Fig. 1; the large number of genes
in DoE problems could be a factor in explaining the results. Ishibushi et al. also
showed that NSGA-II performs better than NSGA-III when the Pareto front is
very large compared to the spread of the initial solutions. For these problems,
strong diversification is needed [11]. Figure2 shows the initial population and
the final population for NSGA-II and NSGA-III, we can see that the difference
in spread between the final and initial populations is large and that NSGA-II
produces a more diverse final population. NSGA-IT’s crowding distance diver-
sity measure seems to perform better on this class of problem, as it does with
knapsack problems.
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Fig. 2. DOE 25.4: NSGA-IT and, NSGA-III final and initial population.

As both algorithms had the same initial population, it would be worth con-
firming performance comparisons by re-running the experiment with a different
initial population. Different methods of initial population generation should be
considered also; in these experiments initial populations were random. Perhaps
an initial population of Latin hypercubes would produce better results as the
collapsibility criterion is attempting to achieve Latin hypercube qualities. A non-
optimal Latin hypercube initial population would help the MOEAs produce good
designs with less work.
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RVEA performed better than other algorithms for problems with more than
two objectives. Cheng et al. compared RVEA with other popular MOEAs and
showed their performance was better than other many-objective evolutionary
algorithms. RVEA’s strengths in benchmark problems have been replicated in
MOO of DoE. This high performance is likely due to the unique scalarisation
approach employed by RVEA. IBEA has consistently good performance across
all test problems, this suggests it is good as a general use algorithm for MOO of
DoE.

Cheng et al. [5] showed that in many objective problems with high gene
count, IBEA and RVEA performed better in approximating the Pareto front
than NSGA-III. DoE MOO’s high gene count has replicated these results as both
IBEA and RVEA perform better than NSGA-III across all problems. However,
in Cheng et al.’s work neither IBEA nor RVEA perform best overall, which is
also confirmed by our hypervolume results.

Design of experiments MOO is a multi-modal multi-objective optimisation
problem, two solutions that may be distant in the decision space may be close
or overlapping within the objective space. A consequence of multi-modality is
that conventional MOEAs struggle to maintain diversity within the decision
space. MOEAs will remove solutions that are crowded in the objective space
when they may be distant in the decision space. Removal of distant individuals
reduces diversity in the decision space. This process - along with genetic drift
and the consequence of crossover and mutation not producing diverse offspring
effectively - reduces diversity in the objective space as the population’s decision
variables are somewhat homogeneous [18]. Consequences of multi-modality may
explain the irregular, disconnected final populations found by IBEA, NSGA-II,
and NSGA-III; the objective space can be seen in Fig.3. Multi-modality has
reduced diversity in the decision space and, therefore, reduced diversity in the
objective space that can be seen as disconnected, unexplored regions.

Disconnection is not seen in RVEA; RVEA’s unique angle penalised distance
(APD) scalarisation function gives it the ability to maintain uniformity across
the population. Cheng [4] et al. showed that RVEA produces better quality
Pareto front approximations than NSGA-III in multi-modal MOO problems, as
it does in our results.

5 Case Study

The ultimate goal of experimental design is to create effective metamodels; there-
fore, the quality of metamodels should be verified as a means of determining
optimisation success. We used our designs to explore the landscape of the ratio
between time and molecular weight produced in the batch creation of branched
polymers. Parameters for this simulation include Time, the duration of each
batch production, M, monomer concentration, I, initiator, and T the tempera-
ture of the batch production vessel. For more details about the problem, see [17].
Bounds for each parameter can be seen in Table 1.
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Fig. 3. Final populations for each algorithm, PlatEMO, two objective problems.

Table 1. Branched polymer input specifications.

Parameter Range Unit

Time 30 to 10,000 seconds

Monomer concentration | 10 to 14 Meters cubed per second
Initiator 3E—5 to 1.5E—4 | Meters cubed per second
Temperature 60 to 80 degrees centigrade

5.1 Multi-criteria Decision Making

Once optimisation is complete the DM can select a representative from the
approximated Pareto set. In order to validate the success of the optimisation we
select a design from the final population to use as an experimental design in the
polymerisation problem. We used decomposition to select a choice. The weights
for the four objectives are [0.1,0.1,0.7,0.1] (potential, discrepancy, collapsibility,
correlation). For three objectives, [0.3,0.1,0.6] (potential, discrepancy, collapsi-
bility). In two objectives, [0.4, 0.6] (potential and collapsibility). We considered
collapsibility to be a very important property when exploring the landscape
therefore a high weight was given. The weights suffer the disadvantage of human
error, we cannot see all possibilities and must make assumptions. Investigations
with other weights are not within the scope of this paper.

5.2 Results

The experiment was carried out with varying numbers of objectives on the four
different algorithms. A Gaussian process (GP) was chosen to explore the outputs
of the function because it is non-parameterised and the confidence intervals
provide a good performance measure. A GP was fitted according to the various
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sizes of experimental design. Samples were then taken from these GPs and their
predictions were compared with the true function value. All GPs were built using
a matern32 kernel. The design’s dimensions were scaled to fit the bounds of the
input variables.

After the GPs have been created, we evaluate their performance using the
averages of the confidence intervals across the entire landscape. We created a
Cartesian product across the landscape; four evenly spaced intervals for four
variables produce a Cartesian product of 256 members/points in a grid across the
domain space. If the experimental design has accurately mapped the landscape,
then the confidence intervals of these GPs should be small and uniform.
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Fig. 4. Confidence intervals for the Cartesian evaluation, PlatEMO.

Figure4 shows box-plots of the confidence intervals using the data from
PlatEMO. No algorithm stands out as superior; however, the interquartile ranges
(IQR) generally fall as the number of samples increases. In four objectives, many
of the IQRs are low and thin. This suggests that the inclusion of more objec-
tives produces more desirable qualities; treating DOE optimisation as a many-
objective optimisation problem will produce better metamodels. In four objec-
tives a correlation criterion is included, despite it not conflicting with other
objectives the quality of the designs seems to improve. Suggesting that adding
objectives that define good qualities, but from a different perspective, can add
to the overall quality of the design. Three objectives has noticeably wider IQRs
than two and four objectives. Work should be done to investigate whether it is
the choice of criterions or the number of them that most effects performance;
this result gives merit to both theories.
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6 Conclusions

In this paper, we have explored the use of MOO as a tool for design of exper-
iments. We successfully formulated the problem of DOE into a MOO problem.
Designs have been successfully optimised and used to investigate a real-world
problem where their success was verified. Various objective functions were cho-
sen, potential energy, discrepancy, collapsibility, and correlation; these cover var-
ious desirable qualities. We have successfully investigated the performance of
different MOEAs when optimising experimental designs. We chose four different
algorithms to compare performance. Dominance-based approaches (NSGA-II),
reference-based algorithms (RVEA and NSGA-IIT), and indicator-based algo-
rithms (IBEA) were used. The high gene count and distance between initial
and final population lead NSGA-II to converge better than NSGA-III in higher
objectives. RVEA’s unique scalarisation approach led it to perform well with
high gene counts; IBEA performed well as a general use algorithm. We were
successful in using optimised designs in the construction of metamodels. In the
branch polymer metamodels, two and four objectives had low and narrow IQRs.
Suggesting there is an optimal choice of criteria.

To further improve the knowledge of how best to utilise MOO in experimental
design, further experiments should be conducted. Algorithms designed to tackle
problems with large gene counts should be explored. Exploration of the use
of more objectives/different objectives is needed to confirm how the choice of
objectives effects the performance. More study into the performance of these
designs in real life problems should be done. Ishibuchi et al. [12] discussed how
for many-objective problems the number of solutions needed to best approximate
the Pareto set becomes exponentially large; a bigger population is needed. We
chose 200 individuals for our work however exploration of optimisations with
higher population could be explored. Working on using different reproduction
operators is also one of the future works. It is important to consider decision-
maker’s preferences before or after the optimisation process. This work finds a
set of nondominated solutions and does not utilise preferences. Therefore, getting
one solution based on the preferences (e.g., weights, desirable objective function
values) will be in our future research.
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Abstract. The study of gene regulatory networks (GRNs) allows us
to better understand biological systems such as the adaptation of the
organism to a disturbance in the environment. Hybrid GRNs (hGRNs)
are of interest because they integrate the continuous time evolution in
GRN modeling which is convenient in biology. This study focuses on the
problem of identifying the variables of hGRN models. In a large-scale
case, previous work using constraint-based programming has failed to
solve the minimal constraints on such variables which reflect the bio-
logical knowledge on the system behavior. In this work, we propose to
transform a Constraint Satisfaction Problem (CSP) into a Free Opti-
mization Problem (FOP) by formulating an adequate fitness function
and validate the approach on an abstract model of the circadian cycle.
We compare several continuous optimization algorithms and show that
these first experimental results are in agreement with the specifications
coming from biological expertise: evolutionary algorithms are able to
identify a solution equivalent to the ones found by continuous constraint
solvers.

Keywords: Continuous single-objective optimization - Fitness
formulation - hybrid GRN - Real-world application - Bio-inspired
computation

1 Introduction

Genetic regulatory network (GRN) modeling aims at studying and understand-
ing the molecular mechanisms that enable the organism to perform essential
functions ranging from metabolism to environmental disturbance adaptation.
Two types of control rules coexist in these regulatory networks: activations and
inhibitions. Their combination allows the system to behave in a large variety of
ways and the complexity of these systems comes from the so-called positive and
negative feedbacks commonly observed, which respectively lead to multistation-
arity and homeostasis (ability to maintain a balance). Studying the dynamics of
these systems opens new perspectives with crucial applications in fundamental
biology, pharmacology, medicine, or chronotherapy for instance, which tries to
choose the best time of day to administer the medication in order to limit the
side effects while preserving the therapeutic effects.
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Numerous modeling frameworks have been proposed for representing GRNs
such as differential frameworks (using ordinary differential equations), stochas-
tic ones (considering that transitions between states have a stochastic nature),
or discrete ones (modeling the presence or absence of biological entities in the
system states). Even if each of them presents their own advantages, they all
rely on the identification of the variables that govern the model dynamics and
this variable identification remains the limiting step. To address this difficulty,
a considerable number of research groups apply evolutionary algorithms to fit
GRN models and variables to gene expression data, see e.g. the survey [16].

In the present work, we prefer to consider hybrid frameworks [1], called
hGRNs, which add to discrete ones [17] the time spent in each of the discrete
states. Once more, the variables’ identification remains the bottleneck of the
modeling process, but one can seek in such a hybrid framework for an automation
of this step to build a model in agreement with the experimental observations.
Indeed, modeling variations of protein concentration in a biological system can be
very hard for numerous proteins. Nevertheless, experimental observations allow
us to represent experimental traces by irregularly spaced time series of observ-
able events. From those events, minimal constraints on the hGRN variables can
be deduced and the authors attempted to use continuous Constraint Satisfaction
Problem (CSP) solvers [2] but faced difficulties in extracting solutions.

In this paper, we show that the constraint problem, which characterizes the
set of solutions exhaustively, can be expressed as a FOP [6,8] by indirectly han-
dling constraints. More precisely, the representation of biological knowledge as a
sequence of observable events allows to define a high-dimensional non-trivial con-
tinuous optimization problem in which the search space increases exponentially
with the number of genes involved in the hGRN.

The work focuses on the FOP formulation, on the fitness characterization and
performs some comparisons between several bio-inspired algorithms, leaving out
the scalability problem which is out of the scope of the article. We illustrate the
approach on a very abstract model of the circadian cycle (subsystem allowing
an adaptation of the body to day/night alternation).

The paper is organized as follows: Sect. 2 describes the models used for repre-
senting the dynamics of biological systems and the biological knowledge used as
an input. Section 3 proposes a method whereby the modeling problem is refor-
mulated as a continuous FOP that can be solved by means of a bio-inspired
algorithm. Experimental results are discussed in Sect.4 and some conclusions
are drawn in Sect. 5.

2 Problem Description

2.1 Hybrid GRN

To build a digital model of a biological system, it is necessary to know precisely
how it works. Such a system is defined as a set of genes performing a biological
function and represented in the form of a GRN where vertices V' correspond
to an abstraction of one or more biological genes (within circles) and edges
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Fig. 1. Interaction graph representing the circadian cycle (a), its discrete state graph
(b) and a possible dynamic of its hybrid state graph (c).

depicting activations (4) or inhibitions (—). It can be statically represented as a
labeled directed graph or interaction graph (cf. Fig.1a). For studying the GRN
evolution, we first need to define the system state as the concentrations vector of
the proteins related to genes. Because the regulations take place above particular
thresholds, we associate with the sign of the regulation an abstract threshold:
v an, vy (resp. vq SN v9) means that vy can activate (resp. inhibit) vy only if
the concentration of v; is above its n'" threshold (ranked by increasing order).
For example, graph of Fig. 1a forms a negative feedback loop where each gene
(v1,v2 € V) has an indirect negative action on itself: when vy is active, it is
above its first threshold (we note v = 1), then, v; activates the gene vo and vy
passes from level 0 (under its first threshold) to another level greater than its
first threshold (ve = 1). As vy reaches level 1, vy inhibits vy, and so on. This
represents a highly abstracted model of regulations piloting the circadian cycle
ensuring the cyclic adaptation (day or night) of the organism.

In order to integrate dynamics in the previous model, the first step is to
enumerate all possible states: a discrete state is defined by the level of all genes
contained in the GRN. Thus, if there are n genes, each state 7 is defined by a
vector of n integers (1, ,...,My, ) and S denotes the set of all possible discrete
states of the GRN. For instance, state (0,0), the bottom left gray square box in
Fig. 1b, corresponds to the state where discrete levels of genes v; and vy are both
equal to 0. The second step consists in adding transitions between all these states
(black arrows). Thus, state graph of Fig. 1b represents the dynamics associated
with the interaction graph of Fig. la. Such kind of models is very interesting for
logically reasoning on regulatory changes. Nevertheless, this qualitative modeling
framework totally abstracts time information whereas, for numerous biological
systems, time plays a crucial role in the system’s fate.

In addition to discrete transitions (dotted lines between points in Fig. 1b), an
hGRN adds continuous evolution of gene product concentration in each discrete
state represented by a continuous trajectory (see piecewise linear solid lines).
One point on this trajectory inside a particular discrete state, is given by a
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precise position inside the square: m = (m,,,...,m,,) € [0,1]". Thus, a hybrid
state h is defined by a discrete state n and its fractional part w. For instance,

the coordinates of the initial hybrid state h; are ((nvl,nvz)t,(wq,l,m&)t> =

((0,0)",(0.25,0.25)").

Starting from h;, the hGRN dynamics is given by following the evolution
direction of the discrete state (9y,,7s,) = (0,0). This direction is defined by a
so-called celerity vector. Thus, the celerity of v; in (0,0) is denoted C,, 9,0y in
order to specify that this celerity is associated with v1, when v; and vy levels are
0. In a similar way, the celerity of vy in (0,0) is denoted C.,, (0,0). More generally,
an hGRN is defined by both a GRN and celerity vectors C' = {C, , }, a family
of floated values indexed by (v,n) where v € V and n € S. C,, is called the
celerity of v in 7. The hybrid state graph of Fig. 1b depicts one possible dynamic
associated with the interaction graph of Fig. 1a. Starting from the initial hybrid
state h;, v; concentration increases until it reaches the right border of discrete
state (0,0). From this border, the trajectory jumps into the neighbor state (1,0)
because the celerity vector of this second state does not oppose the entry of
the trajectory (signs of vy celerities in both states are the same). In (1,0), the
trajectory reaches the right border of this discrete state which corresponds to
the maximum admissible concentration of v;. As there is no discrete state at the
right of (1,0), the trajectory evolves on this border in vy direction resulting in
a so-called slide of vy, noted slide*(vq). After sliding, the trajectory enters the
state (1,1). This process follows up until the trajectory enters back the initial
state (0,0). The complete definition of hGRN dynamics can be found in [1].

Such modeling frameworks are very useful to reason on the GRN trajectories.
Nevertheless, as usual, the bottleneck of the modeling process relies on the deter-
mination of variable values controlling the trajectories, that is the celerities. The
goal of this paper is to automatically determine, from some formalized biological
information, all celerity vector values in order to obtain a valid hGRN model
of the biological system studied. In the next part, we introduce the biological
knowledge (BK) from which celerity values can be determined.

2.2 Biological Knowledge

As opposed to numerous works that attempt to automatically build a model from
raw experimental data [3,5,12,15], the present work takes into consideration
already-formalized information analyzed by biologists themselves coming from
both biological data and expertise. This complementary approach is preferred
because raw data are subject to noisiness and scarcity. A biological experiment
consists of (i) putting the biological system in a particular initial state partially
defined, (ii) recording the sequence of observable events, and (iii) measuring
the reached final state of the observed system. While initial and final states are
described using their discrete and fractional parts h; = (n;, m;) and hy = (15, 7y),
a sequence of observable events is formalized by a sequence of triplets of the form
(At,b,e). Each element of each triplet expresses a property on the behavior in
the current discrete state: At delineates the time spent in the current state; b
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specifies the observed behaviors during the continuous trajectory expressed by
slide(v) and noslide(v); finally, e represents the next discrete state transition
which is of the form v+ (resp. v—) specifying that the next discrete event is the
increasing (resp. decreasing) of the discrete level of v.

For the interaction graph of Fig. 1a, biological expertise can be summarized
as follows: there exists a behavior starting from a particular point of coordinates
going through four discrete states and coming back to the initial point after 24 h.
More precisely, the time spent in each of the 4 discrete states is approximately
5hin (0,0), 7 in (1,0), and so on. See the first properties of each event in the
following description of the biological knowledge:

5.0 7.0 8.0 4.0
{hi} | noslide (v2) | ;| slide™ (v1) | ;| noslide (v2) | ;| slide™ (v1) | {hs} (1)
v+ Vo+ v1— Vo —

where h; = ((0,0)",(0.0,1.0)") is the initial hybrid state and h; (final hybrid
state) is equal to h;. For the first event, v1+ constrains the trajectory to reach
the next discrete state by increasing the concentration level of v;. The second
property noslide(vy) in (0,0) expresses that the trajectory has to reach the
right border of the discrete state without touching the upper or lower borders as
explained in Sect. 2.1. The continuous trajectory of Fig. 1b satisfies all properties
of eq. (1) except for the initial point h; which is misplaced: it should be located
in the top left corner of discrete state (0,0) to allow trajectory to be a cycle.

Figure 2 represents for each discrete state, and one after another all possible
trajectories satisfying eq. (1) using shaded surfaces. Starting from h;, the surface
represents all compatible celerity vectors of (0,0) which lead the trajectory to the
next expected state without sliding at the bottom or top border. For illustrative
purposes, two instances of compatible trajectories are highlighted: a solid one
and a dotted one.

2.3 Constraint Satisfaction Problem (CSP) Approach

Our goal is to identify celerity vectors that define trajectories (cf. Sect.2.1) sat-
isfying constraints given by the biological knowledge BK. An earlier attempt
has been developed using constraint-based programming [2]. This CSP formu-
lation led to constraints on celerity vectors which had to be satisfied for the
hGRN dynamics to be consistent with BK. However, the exploitation of the
constraints generated was not so easy: classical solvers were not able to extract
particular solutions. Let us consider a CSP that aims to find all solutions satisfy-
ing the constraint y < z2. A continuous solver paves the search space in multiple
tiles (shaded rectangles in Fig.3). Light tiles only contain solutions of the CSP
whereas dark tiles may contain values that do not satisfy the constraint (i.e.
y > 2% above the curve).

The problem that arises from using a continuous solver may be summed up
by its inability to extract particular solutions on the function curve. It would
be necessary to obtain a tiling of infinitesimal size. That is why we decided to
reformulate the hGRN variables’ identification as an optimization problem.
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h

3 v

Fig. 2. Visual representation of the Fig. 3. CSP difficulty to target solu-
infinite set of possible solutions. tions for constraint y < z?.

2.4 Problem Characterization

Finding celerity values that satisfy BK constraints consists of finding a contin-
uous trajectory that (i) goes through the right sequence of discrete states, (ii)
spends the right elapsed time in each encountered state, and (iii) satisfies the
right behavior in each state by sliding or not. In the case of a trajectory that
does not satisfy BK, we measure how much it does not respect this knowledge.
For instance, as BK specifies spending 5h in (0, 0), a trajectory spending 5h and
10 min is “better” than a trajectory that only spends 2h in the same discrete
state. In other words, we use the notion of distance between a trajectory and
the expected properties expressed by BK: this distance vanishes as soon as all
properties of BK are satisfied. Since BK specifies the properties of a sequence
of states, we can decompose such distance by computing how a considered tra-
jectory tr inside each state n is far from BK properties of the corresponding
state. Thus, the global distance of one property p is defined by summing such
distances d,, , inside each encountered discrete state n € S where p is one of the
three BK properties At, b, or e. Therefore, we define three criteria:

Time criterion. The first criterion da; is related to the time spent in the current
discrete state. It is the Euclidean distance between the expected time ¢} of BK
and the time ¢,, necessary for the current trajectory to reach the exit point from
the current state:

dAt t?“ BK Z dEuclldean tnatn) (2)

Slide criterion. Second criterion evaluates the distance between the continuous
trajectory behaviors inside each encountered discrete state and the properties
of sliding in BK (denoted b in each observable event). Three different cases
are considered and respectively illustrated in Fig.4 where shaded surfaces and
dotted lines represent BK and black dotted double arrows, the distance dp: (i)
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Fig. 4. Illustration of evaluation cases with respect to BK behavior property.

“v should slide according to BK, but the trajectory tr does not”. In this case
(Fig.4a), we compute the difference between the fractional part of the exit point
of v according to tr (mezit(v)) and e(v) which is the fractional part of the exit
point according to the sliding BK property (it either equals to 0 when slide™ (v)
or 1 when slide™ (v)):

dyn(tr, BK) = |Tezit (v) — e(v)] (3)

where v is the gene concerned by the sliding property of the current discrete state
n; (i) “v should slide on max (resp. min) level according to BK, but the given
trajectory slides on min (resp. max)”. We consider it (see Fig.4b) as a special
case of previous item (eq. (3)) where the exit point of the trajectory megit(v)
is either equal to 0 (sliding right in Fig.4b) or 1 (sliding left in Fig. 4b); (iii)
“v should not slide according to BK, but ¢r does” (Fig.4c). Here we compute
the Manhattan distance between the first hybrid state where v begins to slide
hsiide (v) and the expected exit face noted face*:

db,n (t?”, BK) = dManhattan (hslide (U) ) face*) (4)

In Fig. 4c, the expected exit face is the north one (bold line). As for the previous
criterion, dy(tr, BK) is defined as the sum of the different d ,,(tr, BK) for each
encountered discrete state 7.

Discrete criterium. Intuitively, we have to compare the expected next discrete
state (according to BK) with the discrete one into which the given trajectory
tr enters. Unfortunately, in some cases, it is not possible to compute tr next
discrete state because the trajectory can be blocked in the current discrete state.
Let us take as an example the situation where the celerity vector inside the (0, 0)
discrete state points towards the south-west direction (cf. Fig. 5a). The trajectory
is blocked because the concentration of both gene products vanishes and there
are no neighbors in these directions. In order to accurately evaluate tr, following
the sequence of discrete states of BK, we evaluate the local distance between
the considered trajectory inside the current discrete state and the associated
BK. If the given trajectory does not allow the right discrete transition, then we
artificially restart the trajectory in the next expected discrete state of BK.
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Fig. 5. Illustration of blockage (a) and wrong discrete transition (b).

The initial restart point A,cstqrt is defined by the new discrete state combined
with the same fractional part before it stopped. This step is illustrated by the
curved dotted lines (cf. Fig. 5). Therefore, d. has to take into account, on the one
hand, the Manhattan distance between the expected next discrete state nt and
the next discrete state n* according to tr and, on the other hand, the number
of detected blockages:

d.(tr, BK) = Zn (dManhamn (n*nﬁ*) +J44bzockage(n)) (5)

where blockage(n) is True if the trajectory is blocked in the current discrete
state 77, and 't (resp. 1) is the next discrete state according to tr (resp. to
BK). Note that when a blockage occurs n™ is not defined and in such a case
dManhattan (77+, 7]+*) is considered zero (the penalty comes from Wyjockage(1))-

Aggregating Criteria. We are focusing on formulating an adequate fitness func-
tion by indirectly handling constraints. Constraints are embedded into the three
previously described optimization criteria such that all we need to care about is
optimizing them. Thus, identifying celerity values consists in minimizing these
criteria. One could consider this problem as a multi-criteria optimization prob-
lem. However, they are neither conflicting nor invariant: solutions exist that
simultaneously optimize each criterion. Therefore, we suggest to combine them
into a global distance g(tr, BK) which consists in a combination of da¢(tr, BK),
dp(tr, BK) and d.(tr, BK) where the criteria weights are equal. Minimizing g
leads to a single-objective optimization problem and will be addressed using bio-
inspired algorithms. We propose two versions of the aggregation of three different
criteria: an additive version defined by g4 = da, + dp + d. and a multiplicative
version defined by g = (1+da,) x (1 +dp) x (1 +d.) — 1. Although the former
is commonly used, the latter is proposed because, intuitively, it could have a
greater impact on the convergence rate: errors are amplified and improvements
are better controlled thanks to a steeper gradient. As each distance should be
as close to 0 as possible, g1 (resp. gx) should also be as close to 0 as possible
(resp. thanks to the subtraction of 1). That leads to the definition of two fitness
functions (knowing that BK is fixed):

f+(x) = g1 (tr, BK) (6) fx(x) = gx(tr, BK) (7)
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whose domain is ([T, c[0,64]) x [0,1]" x RI®l and codomain R¥.

3 Bio-Inspired hGRN Modeling Search

This section presents different bio-inspired approaches for identifying celerities of
an hGRN. For this purpose, we compare several continuous single-objective bio-
inspired algorithms for searching trajectories that satisfy biological knowledge
BK as explained in Sect. 2.4.

Representation. As presented in Sect.2.2, a trajectory is characterized by all
celerities of all discrete states {C,,} plus the initial hybrid state h;. Thus,
trajectory genotype of Fig.1b is defined by a tuple of 2 integers and 2 float
values for h; and 8 float values for celerities: the genotype is represented by x =
(hz‘; Cvl,(o,o);CUQ,(0,0)§CU1,(1,0); CUQ,(LO)? Cvl,(l,l);CUQ,(l,l);Cvl,(O,l); C'Ug,(o,l))'

Each floated value varies in the interval [—r;r] with r equals 2 by default.
In the presented example, the problem of identifying variables of an hGRN
may seem trivial, nevertheless, in realistic models, the size of the genome is
exponential with respect to the number n of genes: the initial hybrid state h; =
(n;,m;) is described by n integer values for the discrete state and n float values
for the fractional part. Because the number of celerities is also equal to n in each
state and because the number of states is [S| = [ ],y (b, + 1), the total number
of celerities |C| is at most n x [S| = n x [], .y (b, + 1) (possibly less in case of
equality of a priori different celerities).

Fitness Evaluation. Evaluating a candidate solution consists in computing the
difference between BK formalized in 2.2 and the given trajectory obtained from
celerities contained in the genome. To do so, we simulate the trajectory thanks
to the initial state h; and evaluate, discrete state by discrete state, each of the
three introduced criteria da;, dp, and d..

Continuous Optimization Methods. A baseline random optimization (RO) [11]
and the following four continuous meta-heuristic algorithms are compared:

(i) Differential Evolution (DE) [14], a global search heuristic using a binomial
crossover and a mutation operator of DE/rand/1/bin. The different control
parameters are Pcr = 0.3 and F is selected from the interval [0.5,1.0]
randomly for each difference vector with the dither technique.

(ii) a simple (u 4+ A) Genetic Algorithm (GA), used with a binary tourna-
ment selection and the following operators: Simulated Binary Crossover
and Polynomial Mutation are applied with Fitness Survival. All duplicates
are removed.

(iii) Adaptive Particle Swarm Optimization (APSO) [18] which is based on the
simulating of social behavior. The algorithm uses a swarm of particles to
guide its search. Each particle has a velocity and is influenced by locally
and globally best-found solutions. The default parameters are w = 0.9, ¢; =
2.0, co = 2.0 with a max_velocity_rate = 0.2.
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Fig. 6. Comparison of monotonic evolution of (a) mean and (b) median best fitness
values by algorithm and fitness function on 100 runs. The y-axis is log scaled.

(iv) Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [9], which
is a state-of-the-art and self-adaptive EA with the default initial standard
deviation in each coordinate o = 0.1.

4 Experimental Study

The four meta-heuristics are implemented in pymoo [4]. To evaluate the algo-
rithms’ performance, we execute 100 independent runs for each algorithm and
each fitness function. An initial population size of 500 is applied, followed by
35000 function evaluations (NFE). Both experiments are realized on the hGRN
of Fig. 1b using BK described by eq. (1) with h; fixed to ((0,0)%,(0.0,1.0)%).

Results. For each algorithm and each fitness function, at each generation we
compute the best candidate solution so far, repeat 100 times the executions and
compute the mean (resp. median) over the 100 runs. Monotonic evolutions of all
algorithms are depicted in Fig. 6 where dark lines represent f; and light lines,
fx. It can be observed that (i) as expected, meta-heuristics results are (far)
better performing compared to RO algorithm, (ii) decreases of f and fx values
are done at the same pace (the curves are roughly parallel), except for CMA-ES
whose fx median evolution has a better convergence rate than with f;, and (iii)
apart from this case, GA convergence of the fitness function is one of the best
(with both f and f«) when focusing on the mean (resp. median).

Table Ta summaries statistics of the results obtained after 100 runs of the five
considered algorithms. The best result (column by column) for fi (resp. fx) is
bolded. Minimum, average and standard deviation are reported along with the
Biological Success Rate (BSR) defined by the number of times an algorithm finds
a solution with a fitness close to 0 with a precision error € equal to 1072. BSR
is based on the traditional success rate but introduces an important precision
error coherent with biological expertise. For instance, a trajectory which would
slide in n = (0,0) during a fraction of seconds (< €) very next to the exit point
e(v1) = 1.0 before going to the next discrete state is an acceptable trajectory
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(a)

l A [FE[ avg [stdev[ min [BSR‘

CMA-| f4 ] 0.9644 [ 1.18 | 3e-9 [ 0.41

ES |fx]0.7661 | 2.51 [4e-10| 0.86

DE f+10.3102 | 0.23 |0.0171] 0.13
fx]0.6004 | 0.77 |0.0373| 0.04

on | J+]0:0029]2e-3] Ge-d | 1.
fx10.0172|0.05|0.0016/0.98

PSO f+10.8053 | 0.98 | 4e-4 |0.48
fx]0.6938 | 1.71 | 2e-4 |0.68

o | [+ 91934 [ LIT[5.1679] 0. ,
fx|16.6763| 2.5 |7.9144| O. o 107 10’5Hm9515°:me 102 10°

Fig. 7. Summary (a) and CDF curves (b) of overall best results.

despite BK stating noslide(v). In addition, Cumulative Distribution Function
(CDF) curves are constructed in Fig. 7b for f1 (top) and fx (bottom). Each CDF
curve describes the probability that a solution is found at, or below, a given
fitness score. For instance, in fy experiment, there is almost 60% probability
that a user obtains a solution at a fitness score less than or equal to 10~* with
CMA-ES (given 35000 NFE). From both diagrams, two algorithms stand out:
GA has the highest probability to obtain good results and there is a non-zero
probability for CMA-ES to perform top results (< 107%).

To statistically validate the observed differences among the algorithms, we
conducted a statistical validation campaign on the reported performance values
of the two following scenarios: (i) algorithms performances obtained with fy
objective function and (ii) algorithms performances achieved with fy one. In
addition, a third scenario is suggested as being a comparison of algorithms per-
formances between f; and fy. First, we employ the Friedman rank-sum test [10]
to assess whether at least two algorithms exhibit significant differences in the
observed performance values. The p-values for the null hypothesis are p; = 5e-56
and py = 2e-64 for f, and fy respectively. At the 0.05 confidence level, the dif-
ferences among the algorithms are significant. The statistical analysis proceeds
with a post hoc analysis to determine which pairs of algorithms show significant
differences in performance (for the three scenarios considered). In this step, we
proceed to the Wilcoxon signed-rank test (as neither normality nor homoscedas-
ticity conditions required for the application of parametric tests hold [7]) on the
performance samples of each pair of algorithms. In addition, to reduce the issue
of having Type I errors given multiple comparisons, the Bonferroni correction
method is applied.

For all scenarios, Table 1 present tile-plots to illustrate all pairwise differences
in the observed performance samples at the 0.05 confidence level. More specifi-
cally, the outcomes of the pairwise Wilcoxon-signed rank tests, without and with
the application of the Bonferroni correction method, are provided on the left and
right-hand side of the table respectively. Each tile corresponds to a pairwise sig-
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Table 1. Pairwise Wilcoxon statistical tests (left) with Bonferroni post hoc analysis
(right) for the three considered scenarios.

[ Fail to reject HO [ Reject HO (p < 0.05)

PSO 4e-18 PSO 4e-17
(f+) GA 4e-16|4e-18 GA 4e-15|4e-17
DE 4e-18(2e-4 |4e-18 DE 4e-17|2e-3 |4e-17
CMA-ES|3e-5 |5e-13 [2600 | 4e-18 CMA-ES|3e-4 |5¢-12 [P0 4e-17
DE GA PSO RO DE GA PSO RO
PSO 4e-18 PSO 4e-17
(fx ) GA le-6 |4e-18 GA le-5 |4e-17
DE 4e-1819e-5 |4e-18 DE 4e-17|9e-4 |4e-17
CMA-ES|2e-7 |7e-4 |2e-5 |de-18 CMA-ES|2e-6 |7e-3 |2e-4 |de-17
DE GA PSO RO DE GA PSO RO
(fs vs. fx) |5e-6 |3e-5 |1e-15[2e-2 [5e-18] |3e-5 [1e-4 |5e-15 [868aN] 2¢-17|
CMA DE GA PSO RO CMA DE GA PSO RO

nificance test between the algorithms of the corresponding row and column. The
color of the tile indicates if the observed performance differences were enough to
reject the null hypothesis at the significance level (p-value < 0.05). Light gray
tiles indicate significant differences between the pair of algorithms, while dark
gray tiles indicate that no significant differences were observed. Analyzing these
results, if we base acceptance or rejection of the above hypotheses, we arrive
at the following insights: (i) in f; scenario PSO performances are not signif-
icantly different and (ii) Bonferroni correction reveals that PSO performances
are the same whatever fitness function. Nevertheless, the performances of other
algorithms depend on the chosen fitness function. Therefore, according to the
algorithm considered, the fitness function choice has definitely an impact on the
performances: f is preferred when considering DE and GA while fy is in the
case of CMA-ES and PSO.

Finally, with respect to the conducted experiments, GA and CMA-ES will
be investigated in the future as the first one gives good and stable results with
high probability, whereas the second performs better overall (the best solutions
are obtained using CMA-ES), but is subject to instability (due to exploration
phases).

Visualization of the results. The application of bio-inspired algorithms allows
us to exhibit different solutions consistent with BK and they seem complemen-
tary to the CSP approach. Both diagrams of Fig.8 present as solid lines the
overall best trajectory obtained by GA (a) and CMA-ES (b) together with the
dotted one, obtained by the CSP approach using the CSP solver Absolute [13]
combined with a possible strategy for cutting the search space [2]. The solutions
provided by GA and CMA-ES illustrate the diversity of acceptable solutions



Evolutionary Continuous Optimization of hGRNs 171

Fig. 8. Best trajectories (solid) obtained by GA (a) and CMA-ES (b) with f4 compared
to one of the solutions obtained by the CSP approach (dotted).

that are compliant (the structure of the trajectories is similar) with BK. From
a modelization perspective, it would be great to exhibit a diverse sampling of
possible solutions, in order to reason not only on one possible identification but
on a set of sensible identifications.

5 Conclusion

The goal of this paper is to show that the problem of identifying variables in
an hGRN, already formalized as a CSP, can be transformed into a bio-inspired
optimization problem.

In previous works, many biological experiments have been formalized as con-
straints on time, behavior, and discrete events with the help of biologists’ exper-
tise. From these constraints, our work focused on finding how to model them as
an FOP: we proposed a representation of a candidate solution and designed two
appropriate fitness evaluation functions. To empirically test our approach, we
conducted a study with a random optimization algorithm and four well-known
continuous meta-heuristics: the proposed method shows satisfying results as the
newly introduced BSR metric is high. In our experiments, CMA-ES obtains the
overall best solutions satisfying BK constraints. Nevertheless, for this kind of
problem, GA appears to be the best meta-heuristic because of its high probabil-
ity of getting good results.

The proof-of-concept developed in this paper will shortly be applied to
designing a new cell cycle hGRN model where time plays a crucial role in pass-
ing through each phase. Although this cell cycle model contains only 5 abstract
genes, the number of celerities is about 240. The optimization problem will be
challenging and lead us to apply large-scale optimization algorithms.

Moreover, when working with biologists, our ability to propose different solu-
tions compliant with BK is of great importance because it leads to consider-
ate new information which would not exhibit otherwise. Diversity in solutions
reflects, on the one hand, a plurality of functioning within an observed system
and, on the other hand, helps to evaluate the robustness of oscillating biologi-
cal systems (the more diversity, the more robustness). From such a perspective,
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future work will focus on multimodal approaches that could be able to sample
the set of solutions compliant with the formalized biological knowledge.
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Abstract. Automatic diagnosis of abnormalities and diseases using med-
ical scans consisting of different modalities (X-rays, mammograms, Optical
Coherence Tomography (OCT)) is a challenging task due to changing clini-
cal environment and varying noise levels. Manually designing deep learning
architectures is a tedious task. However, Neural Architecture Search (NAS)
provides the flexibility to automatically search for a suitable architecture
for a given problem. In this paper GAMED-A-CNN, a Genetic Algorithm
(GA)-based NAS approach is proposed for the medical image classification
problem. The proposed algorithm is applied on different datasets consid-
ering multiple performance measures, where the effectiveness of the pro-
posed approach was demonstrated. Furthermore, a variable-length encod-
ing scheme is used for the representation of CNN architecture. The con-
volution attention layer is also used in the search space, which focuses on
salient regions in the images to improve the classification performance. The
comparison shows that the proposed approach achieves equal or superior
performance compared to the best-known approaches.

Keywords: medical image classification - neural architecture search -
genetic algorithm - automatic machine learning - deep learning - visual
attention

1 Introduction

Advances in Convolutional Neural Networks (CNNs) enable research on more com-
plex and advanced computer vision topics such as object detection, classification
and segmentation [1]. CNN has achieved state-of-the-art performance on medical
image diagnosis tasks, where the nature of data is complex [2]. Various CNN archi-
tectures have been proposed in recent years for different application domains.
Designing CNN architectures using a hit-and-trial approach is a tedious task.
because the researchers needs to try combinations of different layers to create
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these architectures, which requires a lot of time. The famous ResNet-50 archi-
tecture that uses residual connections to overcome the overfitting problem con-
sists of 50 layers and has over 23 million trainable parameters [15]. Likewise,
EfficientNet-b0 architecture consists of 5.3 million parameters. These architec-
tures are trained on large-scale image recognition datasets with multiple classes,
which can also be used as a Transfer Learning (TL) task for medical image
analysis. In TL, the pre-trained model is fine-tuned into some different relevant
tasks.

However, training these architectures on medical datasets having different
characteristics does not guarantee optimal performance. Specific architectures
are designed to achieve better performance on these tasks having smaller archi-
tecture sizes and fewer parameters. The Neural Architecture Search (NAS) app-
roach consists of three components: (i) Search Space, (ii) Optimization Method,
and (iii) Evaluation Strategy. The search space comprises possible Neural Net-
work (NN) architectures for exploration. For example, in the case of CNN-
based NAS, a search space consists of a set of operations used in convolution
blocks (convolution, fully connected, pooling layers), and numerous architec-
tures are formed based on their combinations. Furthermore, the combination of
these layers is represented either by a Direct Acyclic Graph (DAG) encoding
or some meta-architecture representation. The optimization method also called
the search algorithm, explores the search space to find the optimal architec-
ture. Over the last decade, Automatic Deep Learning (AutoDL) and NAS have
gained popularity due to their ability to solve various problems automatically.
The evaluation strategy evaluates the performance of the search architecture on
the training dataset. One of the simple evaluation strategies is to train the neural
network from scratch, but to reduce the evaluation time, multiple approaches
have been proposed, such as early stopping, surrogate-based, one-shot, and zero-
shot proxy-based methods.

Following the literature, multiple methods have been proposed to search for
best performing architecture from search space, such as Reinforcement Learn-
ing (RL), Random Search (RS), Bayesian Optimization (BO), gradient-based
optimization, and Evolutionary Approaches (EA). Early research on NAS uti-
lizes RL-based algorithms. However, the computational time of this approach is
very long [9]. Gradient-based methods are more efficient compared to RL meth-
ods. Unfortunately, they often find ill-conditioned architectures and require con-
structing supernet architecture in advance. This latter needs human expertise
to initially design supernet and makes the approach semi-automatic [4]. Mul-
tiple evolutionary approaches have been proposed to search for an architecture
for a given problem. Due to their ability to self-adopt the search for the opti-
mum solution using nature-inspired computing they are widely adopted for NAS.
Genetic Algorithm (GA) is a popular metaheuristic algorithm inspired by the
theory of natural selection process. Metaheuristics have been found effective in
searching for Deep Learning (DL) architectures in multiple application domains
such as image classification [5,8], time series classification [6] and medical Image
segmentation [7] etc.
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Various studies have been proposed in the literature for medical image classi-
fication using NAS. However, these studies have considered only a limited num-
ber of datasets and performance measures. In order to overcome these issues, in
this study an approach is proposed for designing CNN architecture using GA
for medical image classification. The contribution of proposed GAMED-A-CNN
approach is as follows:

— A GA approach is proposed for designing attention-based CNN architectures
for medical image classification that use a variable length encoding scheme
to explore a diverse population of individuals consisting of different number
of layers.

— We performed experiments on multiple benchmark datasets, including Med-
MNISTv2, as well as breast, chest, and brain datasets. These experiments
involved evaluating performance measures across different datasets.

— A monoobjective fitness function is introduced to combine multiple objective
functions using weighted sum approach.

— Extended the proposed approach for weakly-supervised segmentation by gen-
erating heat-maps from Grad-CAM layer to verify the reliability of the pro-
posed approach.

The rest of the article is organized as follows: The related work is discussed
in Sect. 2, In Sect. 3, the proposed GA-CNN approach with the explanation of
sub-modules in the proposed approach is presented. In Sect.4, the results and
experimental settings are discussed in details. Finally the paper is concluded in
Sect. 5.

2 Related Work

Several studies have been proposed for designing CNN-based architectures using
GA and other metaheuristics [8,10,11]. These studies use two types of search
structures: (i) micro and (ii) macro structure. In macro structure, NN’s topo-
logical structure is built by finding connections between cells, whereas the cells
consist of convolution, pooling, and other layers. The optimization algorithm
searches for the operations between the cells or nodes inside the neural network
in micro structure.

Usually, a CNN architecture consists of multiple building blocks, also known
as layers, i.e., convolution, pooling, attention, and normalization layers. These
layers contain parameters that need to be optimized, such as the number of
filters, kernel, and padding size in the convolution layer, pooling size in the
max-pooling layer, and probability of dropping the neural units in the dropout
layer. The convolution layer uses the kernels to perform convolution operations
on an image viewed as a matrix. Multiple convolution layers stacked one after
another with variable channel and kernel sizes assist CNN in automatic feature
extraction and more refined features. The pooling layer down-samples the fea-
ture maps by selecting the maximum, minimum, or average value in each patch
of the feature map. This patch is also called a grid of size [gxg], where the value
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of g is a parameter. To overcome the overfitting problems faced by CNN archi-
tectures, multiple approaches have been used. Skip connections are found to be
effective in overcoming the overfitting problem [15]. ResNet architecture based
on residual connections outperforms previous architectures [15]. However, these
architectures are human designed and the building of these architectures requires
human expertise. To overcome this issue, NAS algorithms try combinations of
skip connections between different layers and search for the best performing
architecture.

Recently, attention mechanisms have shown state-of-the-art performance on
Natural Language Processing (NLP) tasks. Motivated by attention in NLP [12],
researchers proposed to use visual attention for computer vision tasks [13]. The
attention mechanism is inspired from the human visual system, which natu-
rally finds salient regions in complex scenes. Such a system adopts dynamically
weight adjustment process based on the image features. The attention mech-
anism in computer vision can be treated as a dynamic selection process that
adaptively assign weights to features according to the importance of input. Only
limited number of studies have used NAS for searching attention-based CNN
architectures for computer vision tasks [14].

A large number of studies have been proposed for designing CNN architec-
tures using GA. In [8], the authors proposed a GA-based approach that searches
for CNN architectures consisting of skip connections and multiple convolution
layers using a variable size encoding scheme. Their proposed approach achieves
satisfying results on the CIFAR 10 dataset. Similarly, in [16], the authors pro-
posed an automatic CNN design approach that uses a novel chromosome repre-
sentation scheme designed to achieve high accuracy within limited resources. To
improve the efficiency of the proposed approach, they adopted an ensemble-based
majority voting approach. In the first step, multiple CNN models are generated
using the GA approach. Then, an ensemble of top-performing individuals is built
to achieve better accuracy.

Other studies adopt CNN for the optimization of hyperparamters. John-
son et. al [17] proposed a sequential crossover operation, using an incremental
selective schedule that leads to higher diversity in early generations and evalu-
ating individual performance with early stopping to reduce the evaluation and
searching time [17]. An evolution-grammar approach is proposed for designing
CNN architecture for medical image classification in [18]. They formulated the
problem as a grammar representing the encoding of CNN architecture and multi-
objectives for fitness evaluation. They evaluated the performance of the proposed
approach on three datasets from the MedMNIST benchmark [3]!.

The encoding scheme and fitness evaluation plays an important role while
designing CNN architectures using GA [19]. The encoding scheme consists of
multiple steps. In each step, a small architecture is encoded and different small
architectures are stacked to build more complex architecture. In [8], the authors
show that using variable length encoding is better compared to the fixed length

! MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical
Image Classification. available at https://medmnist.com/.
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one because the optimal depth of CNN architecture is unknown for a given
problem. Inspired by this work, a variable length encoding approach is adopted
in our study.

3 Proposed GAMED-A-CNN Approach

The proposed GAMED-A-CNN algorithm consists mainly of three steps (i) pop-
ulation initialization (ii) recombination and crossover operations and (iii) fitness
evaluation. The graphical representation of proposed methodology is shown in
Fig. 1 and algorithm is shown in Algorithm 1, in which all the steps of proposed
methodology are summarized.
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3.1 Representation of Individual

The CNN architecture generated by the proposed algorithm combines multiple
blocks using skip connection to generate different architectures. These blocks
consist of Convolution Attention Skip Layers (CASK) block, Pooling Layers
(PL) block and a Fully Connected (FC) layer. The CASK block consists of
two convolution layers, with a batch normalization layer and a Channel-Wise
Attention (CWA)-2D layer after the second convolution layer. The CWA-2D
layer is used [25] which performs attention on channels of the previous layers. In
CWA, to reduce the number of operations the number of channels are reduced
by applying 1D convolution on the input. A 128-32 string represents the CASK
block.
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Algorithm 1. Proposed GA-CNN for Medical Images Classification

1: Input: Number of Epochs (Ng), Crossover Probability (Cp), Mutation Probability
(Mp), Dataset (D), Population size (Pg), Number of Generations (NoG)

2: Output: Discovered best architecture

3: Po: Initialize Population randomly with given Population size (Pg)

4: g=1

5: while g < NoG do

6: model = decode_model(g,Pop)

7 model = Train model on dataset D

8: Accuracy,F1-Score,Parameters = Evaluate model on dataset D

9: Fitness = a* Accuracy + 8 * F1 Score +(1 - v ) * log (Parameters)
10: Store individual in population with obtained fitness

11: parents = Select individual parents from population Pop

12: offsprings = crossover_operator(parents, Cp)

13: mutated_offsprings = mutation_operator (offsprings, Mp)

14: Pop = best_parents_mutated_offsprings ( mutated_offsprings U parents)
15: g=g+1

16: end while
17: Select best individual from population (Pop)

The first value represents the number of channels for the first convolution
layer, and the second value represents the number of channels for the second
convolution layer. The pooling layer consists of max, average, global average and
global max average pooling. This block is represented by “mean”, “max”, “gavg”
and “gmax” which represent the type of pooling layer selected randomly during
the population initialization procedure.Furthermore, the visual representation of
an individual is shown in Fig. 2.

28 28
% § Mean % 5 Max
EE Pooling EE Pooling
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g &£
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Fig. 2. Graphical representation of individual with 128-32-mean-512-64-max pheno-
type.

3.2 Population Initialization

Population initialization is the first phase of GAMED-A-CNN algorithm in which
the individuals are generated randomly. During initialization, the length of an
individual is represented by L, which is initialized randomly. The individual is
stored in a linked list data structure containing L nodes, whereas each node
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represents some layer or block. Linked-list is adopted for this problem because
it is dynamic and handles variable length input.

3.3 Fitness Function

The fitness function used to evaluate individuals uses a weighting method to
combine multiple performance measures (accuracy, f1-score, and the number of
parameters). The key idea is to combine the maximum objective ( accuracy and
fl-score) and minimum objective ( number of parameters) using a weighted sum
approach. The goal is to identify the individual with the maximum accuracy and
precision score with fewer parameters. The fitness function is formulated as:

Fitness = o* Accuracy + 8 * F1 Score +(1 - v ) * log (Parameters)

The values of these parameters adopted in this study are: « = 0.4, 8 = 0.4
and v = 0.8. The key idea is to have the sum of weights equal to 1. These values
are obtained after experimenting with different values of a , 3 and ~y, as these
values directly affects the quality of the individuals obtained.

3.4 Crossover Operation

Three-point crossover is adopted in this study to generate individual offsprings
from parents. Compared to a two-point crossover approach, a three-point
crossover approach results in diversity among individuals, and offspring have
diverse representation from both individuals. If the generated random number is
greater than the crossover probability, which is 0.9 by default as suggested in [26],
the crossover operation is not performed. This probability value allows maximum
individuals to be generated and added to the population. For crossover opera-
tion, two individuals are selected from the population list. The selection criteria
for these individuals are based on their fitness values. A three-point crossover is
then performed on these two individuals to produce offspring as illustrated in
Fig. 3.

| | |
Parent 1 641512-256-512}32-64-max}128-32

| | [
| |
Parent 2 32-256/mean!512-128-mean!mean

Offspring 1 | 32:256- [512:256-513 512-128-mean [128-32

Offspring 2 64 - mean <‘ 32-64-max - mean

Fig. 3. Graphical representation of crossover operator.
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3.5 Mutation Operation

The mutation operation is applied to the selected individual by morphing the
phenotype of an individual. The mutation operation does not occur if the gener-
ated random number exceeds the mutation probability, which is 0.2 as suggested
in [26] by default. At first, a layer is randomly selected from the individual repre-
sentation, consisting of multiple layers. Then one operation is randomly selected
and replaced from three operations (i) adding skip or pooling layer (ii) changing
layer with another layer (iii) removing the layer.

4 Results and Experimental Settings

4.1 Experimental Settings

The proposed GAMED-A-CNN algorithm is implemented in Python and Keras,
a DL framework. The total number of generation sizes is set to 20 with a pop-
ulation size of 20. For comparison with multiple DL architectures like ResNet,
Inception, Xception, etc., we extended the implementations provided by the
MedMNIST authors in the PyTorch framework. For experimentation, the same
parameter setting is adopted. A learning rate of 0.001 with Adam optimizer
is used with batch size of 64 for 100 epochs. All the experiments have been
conducted on NVIDIA GeForce GTX 1080 Ti GPU.

Nine datasets from the MedMNIST benchmark belonging to multiple organs
and modalities is used. These datasets include colon pathology, breast mammo-
grams, dermatology images, lung nodules x-rays, and multiple organ datasets.
Furthermore, three other high-resolution datasets are also used for this study.
The dataset of breast mammogram masses consists of a combination of three dif-
ferent breast mammogram datasets, namely: INbreast, MIAS and DDSM, which
are three famous mammograms [20]. For brain Magnetic Resonance Imaging
(MRI) scans, The images from DICOM scans are split into tumor and non-
tumor from Brain Tumor Segmentation (BRaTS) 2019 dataset [24].

4.2 Results and Discussion

A number of experiments have been conducted to evaluate the proposed app-
roach. Several performance measures are used to compare the proposed approach
with existing DL architectures, including accuracy, F1-score, and Area Under the
Curve. (AUC). An ablation study is also performed on the proposed approach,
comparing the effects of using different population sizes on multiple datasets.
Experiments on different population sizes of 10, 15, and 20 are performed on
multiple datasets , as shown in Table 1. It is observed that the increase in pop-
ulation size directly affects the performance of the proposed approach. As the
large population size directly affects the exploration of good individuals among
large population size.
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Table 1. Results on different variations of GA-CNN approach.

Performance Measure Type of Model | Dataset Name
Adresnal Blood | Breast Derma Nodule Organ | Organ Organ | Path Synapse
MNIST3D | A ¢} MNIST | MNIST | MNIST
MNIST | Mnist 3D 3D
ACCURACY GA CNN-10 |0.82 0.94 0.87 0.72 0.91 0.92 0.87 0.83 0.83 0.72
GA-CNN-15 |0.82 0.95 0.88 0.73 0.93 0.92 0.9 0.83 0.85 0.76
GA-CNN-20 |0.83 0.95 0.89 0.77 0.93 0.95 0.92 0.76 0.93 0.77
F1 SCORE GA CNN- 10 |0.57 0.92 0.9 0.71 0.7 0.92 0.85 0.84 0.83 0.81
GA-CNN-15 |0.57 0.95 0.92 0.72 0.71 0.92 0.9 0.87 0.85 0.85
GA-CNN-20 |0.59 0.84 0.92 0.76 0.64 0.95 0.92 0.76 0.93 0.86
AUC GA CNN- 10 |0.75 0.97 0.88 0.94 0.91 0.99 0.89 0.98 0.95 0.69
GA-CNN-15 |0.84 0.99 0.89 0.95 0.93 0.99 0.99 0.99 0.97 0.66
GA-CNN-20 |0.84 0.98 0.9 0.95 0.93 0.99 0.99 0.94 0.98 0.72
Number of Parameters | GA CNN- 10 | 1451457 | 3674167 | 3278432 | 5128661 | 896531 735915 | 5687843 | 7923861 | 5213183 | 434521
GA-CNN-15 |158977 | 2647176 | 3169025 | 4414343 | 696609 627915 | 5416843 | 4816683 | 3076265 | 442401
GA-CNN-20 |5207489 | 479816 | 4443649 | 1887719 4889889 1060427 | 4098699 | 660747 | 4440521 | 991873

In Table3 the proposed algorithm is compared with DL architectures
(VGG16, VGG19, ResNet 50, ResNet101, Xception and InceptionV3). Com-
pared to most algorithms, the proposed method performs better on all perfor-
mance measures and has fewer parameters than existing DL architectures. In
addition, it is observed that after embedding the CWA-2D layer in the indi-
vidual block, some of the networks generated by GA achieved higher f1 scores
and AUC scores than GA-CNN and some achieve lower scores, which means the
attention layer somehow assists the network in having more positive predictions
but sometimes it fails to find a suitable architecture with attention layer due
to fixed population size. The nature of attention is to dynamically adjust the
weights according to the importance of the input image.

However, compared to the number of parameters, the networks generated by
the proposed approach contain up to 50% fewer parameters than the ResNet
architecture.The p-values of accuracy, fl-score, and AUC are given below with
the null hypothesis that these methods have no difference. The friedman test is
used to first reject the null hypothesis at the significance level of 0.05 for evalu-
ation of results statistically. The value of p < 0.05 means a significant difference
between the methods.The results of the proposed approach is also compared with
AutoML techniques mentioned in the MedMNIST article [3] named AutoSKlearn
and AutoKeras. In AutoKeras, the authors proposed a NAS approach based on
network morphism by searching the architecture and hyperparameters with the
bayesian optimization approach. Their approach uses a network kernel, and tree-
structured acquisition function in bayesian optimization for efficient exploration
of search space [22].

Table 2. Comparison of proposed GA-CNN approach with AutoKeras and
AutoSKlearn AutoML approaches.

Type of Model Dataset
Blood Breast Derma Organ Organ Path TissueMNIST | Pnumenia | OrganSMNIST | OCT MNIST
A MNIST MNIST

MNIST Mnist
ACC|AUC | ACC |AUC | ACC | AUC | ACC | AUC | ACC|AUC | ACC | AUC| ACC|AUC |ACC AUC |ACC| AUC ACC|AUC

GA-CNN-20 0.95 {0.98 [0.89 (0.9 |0.770.95 |0.95/0.99 |0.92 [0.99 |0.93 |0.98 |0.55 |0.88 0.86 |0.92 |0.93 |0.87 0.78 | 0.89
GA-CNN-Attention | 0.96 [0.99 | 0.91|0.92 |0.72 |0.95 | 0.87 [0.97 [0.74 |0.97 |0.74 |0.95 | 0.67 |0.92 0.9 |0.95 |0.94 | 0.98 0.77 10.94
AutoKeras [3] 0.87 |0.98 |0.8 |0.87 [0.71 [0.91 |0.76 |0.99 |0.82 [0.99 |0.71 |0.95 0.82 |0.94 0.85 |0.94 |0.67 |0.97 0.78 | 0.95

Auto-Sklearn [3] 0.96 |0.98 |0.83 |0.83 [0.74 (0.9 0.9 |0.96 |0.87 [0.97 0.83 |0.93 |0.94 |0.82 0.87 |0.94 |0.81 |0.94 0.87 | 0.87
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AutoSKlearn formulates the problem as Combined Algorithm Selection and
Hyper-parameter Optimization (CASH). They used two components for hyper-
parameter optimization: (i) meta-learning to initialize the Bayesian optimizer
(ii) automatic ensemble construction from configurations evaluated during opti-
mization [21]. Table2 compares the proposed approach with AutoSKlearn and
AutoKeras in terms of AUC and accuracy scores. The AUC and accuracy scores
of the proposed approach outperform in most of the datasets. The AutoSKlearn
and AutoKeras took more time to search for an optimal architecture than the
proposed approach.

Furthermore, the line graph as shown in Fig. 4 visualize the comparison of
CNN parameters generated by the proposed approach with simple accuracy and
weighted-sum based fitness function . The parameters generated using the simple
accuracy fitness functions are larger than the modified fitness function, which
means the modified fitness function assists the proposed approach in finding
architectures with fewer parameters.

Table 3. Comparison of proposed approach with existing deep learning approaches.

Performance Measure Dataset
Type of Model Blood Breast Derma Organ A |Organ C | Path TissueMNIST | Pnumenia | OrganSMNIST
MNIST | Mnist MNIST MNIST
ACCURACY vggl6 0.87 0.82 0.72 0.88 0.86 0.91 0.63 0.84 0.74
vegl9 0.95 0.82 0.67 0.94 0.87 0.63 0.62 0.86 0.75
resnet18 0.95 0.87 0.74 0.94 0.91 0.91 0.66 0.83 0.79
resnet50 0.95 0.79 0.73 0.83 0.9 0.9 0.67 0.87 0.78
resnet101 0.95 0.73 0.73 0.94 0.9 0.92 0.66 0.87 0.78
Inceptionv3 0.95 0.75 0.74 0.92 0.8 0.92 0.66 0.87 0.79
xception 0.94 0.78 0.74 0.94 0.91 0.9 0.66 0.85 0.79
GA-CNN-20 0.95 0.8 0.77 0.95 0.92 0.93 0.55 0.86 0.93
GA-CNN-Attention | 0.96 0.91 0.72 0.87 0.74 0.74 0.67 0.9 0.94
p-Value L77E-06  |6.42E-09 [1.15E-10 |287E-08 |4.28E-08 |0.00048084 |3.71E-09 3.09E-05 | 3.90E-05
F1 SCORE vggl6 0.87 0.81 0.71 0.88 0.86 0.9 0.63 0.83 0.74
vgglo 0.95 0.82 0.54 0.94 0.87 0.63 0.62 0.96 0.75
resnet18 0.95 0.87 0.73 0.94 0.91 0.91 0.62 0.82 0.79
resnet50 0.95 0.78 0.71 0.84 0.9 0.9 0.61 0.86 0.78
resnet101 0.95 0.84 0.71 0.94 0.9 0.91 0.66 0.86 0.78
xception 0.92 0.86 0.73 0.94 0.91 0.9 0.65 0.89 0.79
Inceptionv3 0.95 0.85 0.73 0.92 0.8 0.92 0.66 0.87 0.79
GA-CNN-20 0.84 0.92 0.76 0.95 0.92 0.93 0.54 0.9 0.92
GA-CNN-Attention | 0.96 0.8 0.72 0.87 0.74 0.74 0.63 0.92 0.93
p-value 279E-07 |[4.03E-11  |884E-08 |2.50E-08 | 4.34E-08 | 0.00058632 | 2.78E-08 6.87E-14 | 1.19E-05
AUC vggl6 0.98 0.85 0.87 0.99 0.98 0.99 0.89 0.95 0.96
vgglo 0.98 0.85 0.92 0.99 0.98 0.93 0.89 0.93 0.96
resnet18 0.99 0.8 0.9 0.99 0.99 0.98 0.89 0.93 0.97
resnet50 0.99 0.82 0.88 0.98 0.99 0.97 0.91 0.95 0.97
resnet101 0.99 0.57 0.88 0.99 0.98 0.99 0.91 0.82 0.97
Inceptionv3 0.99 0.75 0.89 0.96 0.98 0.99 0.91 0.94 0.97
xception 0.98 0.75 0.97 0.99 0.98 0.97 0.91 0.92 0.97
GA-CNN-20 0.98 0.9 0.95 0.99 0.99 0.98 0.88 0.92 0.87
GA-CNN-Attention | 0.99 0.92 0.95 0.99 0.97 0.95 0.92 0.95 0.98
p-value 1.33E-10  [3.31E-07 [9.00E-15 |1.69E-14 |1.37E-13 | 9.88E-07 | 3.0E-08 3.49E-11 | 8.17E-07
Number of Parameters | vggl6 82200000 | 82200000 | 82200000 |82200000 | 82200000 | 82200000 | 82200000 82200000 | 82200000
vggl9 138,000,000 | 138,000,000 | 138,000,000 | 138,000,000 | 138,000,000 | 138,000,000 | 138,000,000 | 138,000,000 | 138,000,000
resnet18 11,511,784 |11,511,784 11,511,784 | 11,511,784 | 11,511,784 | 11,511,784 | 11,511,784 11,511,784 | 11,511,784
resnet50 25,600,000 | 25,600,000 | 25,600,000 | 25,600,000 | 25,600,000 | 25,600,000 | 25,600,000 25,600,000 | 25,600,000
resnet101 44,500,000 | 44,500,000 | 44,500,000 | 44,500,000 | 44,500,000 | 44,500,000 | 44,500,000 44,500,000 | 44,500,000
Inceptionv3 302 | 23,885,302 | 23,885,302 | 23,885,302 | 23,885,302 | 23,885,302 |2 23,885,302 | 23,885,302
xception 22,800,000 | 22,800,000 | 22,800,000 | 22,800,000 | 22,800,000 | 22,800,000 22,800,000 | 22,800,000
GA-CNN-20 479816 | 4443640 | 1887710 | 1060427 |4008699 | 4440521 | 1623432 126145 8974651
GA CNN Attention | 1104465 | 152452 | 1224714 | 1894225 | 1797809 | 184626 | 1890766 10180 9572631

In Table4, the results on three different datasets apart from MedMNIST on
proposed GA-CNN is given. It is noted that the proposed approach can find
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Comparison of CNN Paramters before and after
using the modfied fitness function
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e CNN Parameters after modfied fitness function

Fig. 4. Comparison of Number of parameters of generated CNN by proposed GA-CNN
algorithm using modified fitness function on Blood dataset.

high-performing architecture with a small number of parameters. Class Activa-
tion Map (CAM) is a technique to generate heat maps to highlight class-specific
regions of interest. CAMs are designed to provide insights into how CNN makes
different predictions by highlighting the regions that contribute most to the pre-
dicted class. This helps visualize the regions within the image that contribute
most while making the decision. Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) is a famous visualization technique that uses the gradient of
the target concept flowing into the last convolution layer to generate a local-
ization map highlighting the important region for a visual explanation of the
concept [23]. The visual heatmaps are generated using the Grad-CAM approach
from networks generated by the proposed approach on brain, breast and chest
datasets to verify the effectiveness of the proposed approach. In Fig. 5, some of
the heatmaps generated from chest, brain and breast datasets are shown. The red
region shows that the probability of predictions is very high and highlights the
important region. As in our problem, the network task is to identify the tumor-
ous/injuries region in the image. The Figs.5a and 5d visualize the heatmaps
generated from brain MRI scans, highlighting the tumorous region which means
the architecture successfully locates the class-specific region. Similarly in Fig. 5b,
the breast tumor region is highlighted by red pixel values and Fig. 5c highlights
the infected region. These predictions can also be formulated for segmentation
problem in which the infected region is located, also called weakly-supervised
segmentation.
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Table 4. Results of breast density, brain tumor and chest pneumonia datasets classified
using GAMED-A-CNN approach.

Dataset | Accuracy | Precision | Recall F1-Score | AUC Params
Brain |0.837104 | 0.781553 |0.947059 | 0.856383 | 0.909725 | 12289
Breast | 0.733898 | 0.840035 | 0.643591 | 0.728807 | 0.830682 | 12289
Chest |0.773305 |0.775597 |0.995074 | 0.871733 | 0.653106 | 3073

(a) Brain Tumor (b) Breast Can- (c) Pneumonia (d) Brain Tumor
cer

Fig.5. Visual Heat-maps generated from multiple chest, brain and breast dataset
outlining possible application of proposed approach for semi-supervised segmentation
using NAS.

5 Conclusion

This study proposes a genetic algorithm-based approach for searching CNN
architecture for medical image classification problems. A variable-length encod-
ing scheme was introduced to represent the architecture and weighted sum fit-
ness function. Numerical and visual experiments on MedMNIST and three other
datasets have shown the effectiveness of the proposed approach in terms of dif-
ferent performance measures. In the near future, more applications of NAS for
medical image analysis will be explored. Furthermore, our aim is to investigate
the influence of other metaheuristics when searching for optimal CNN architec-
tures.
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Abstract. This study focuses on a 3D multi-objective collision-free
offline UAV path planning problem by considering the variability in fly-
ing altitude over an urban environment that is replete with static obsta-
cles. The environment is decomposed into several equal-sized ground cells
with an infinite flying altitude. The UAV can adjust the altitude to fly
above obstacles or bypass them by choosing another way. Various cells
may have different flying risks at different altitude levels. This study
aims to find the most efficient and safe trajectory toward the destina-
tion while maximizing the number of visited obstacle-free cells. This
aim could be followed in real-world surveillance and disaster tracking
operations, where the users may want to collect data even en route to
the destination. This problem is formulated as a multi-objective mixed-
integer non-linear mathematical model in which minimizing the flying
distance, the required energy, the maximum path risk, and the number
of not-visited obstacle-free cells are the objective functions. An enhanced
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is developed to
solve the problem. Computational results indicate the superiority of the
developed algorithm in solving several real-world data sets.

Keywords: Path Planning + UAV - Multi-objective Optimization -
NSGA-II

1 Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, are aerial vehicles
without carrying a human operator. They could be controlled remotely or fly
automatically. The first purpose of designing UAVs was to deploy them in mili-
tary operations. Something that has led to the era of drone wars regarding the
significant role of armed UAVs in Libya, Nagorno-Karabakh, Syria, and Ukraine
wars [6]. Amazon’s Prime Air project in 2013 was a milestone in using UAVs for
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civil missions. Labor cost reduction, higher moving speed, wider aerial vision,
and avoiding traffic jams are the main advantages of aerial vehicles. UAVs flexi-
bility and cost efficiency have made them one of the most popular aerial vehicles
for a wide variety of civil operations such as last-mile delivery [25], relief distri-
bution [13], mapping [29], search and rescue [3], surveillance [19], etc.

The mentioned extended scope of applications highlighted the need for opti-
mization studies in UAV-based missions. The literature is now replete with opti-
mization studies focusing on determining the best location of launching and/or
refueling stations [26], the optimal visit sequence and route of drones [21], the
shortest path to the target point [11], etc. This study aims to focus on the UAV
path planning problem by introducing a new multi-objective version that tries to
maximize the number of en route visited cells while minimizing the path length,
the required energy, and minimizing the aggregation of the maximum path risk.

As one of the main problems in the navigation of autonomous UAVs, path
planning aims to safely direct each UAV toward the desired destination such that
the main goals and objectives are fulfilled [14]. Generally, the main objective is
to find the shortest collision-free path, however, other objectives such as optimiz-
ing the required energy, path smoothness, path risk, and the number of visited
cells are also considered. The main objective could be considered as a criterion
to categorize path planning problems based on the applications. The main type
is the UAV shortest path problem which aims to find the shortest traveling dis-
tance to reach the destination. Considering the available resources, informative
path planning maximizes the collected data about an unknown environment [22].
Cooperative path planning refers to coordinated missions having a set of UAVs
flying simultaneously [2]. Determining a path that passes through all points of
the area of interest refers to the full coverage path planning problem [15]. Max-
imum coverage path planning [5] could be a solution for cases in which limited
resources are not enough to cover the entire area. It is noteworthy to men-
tion that there are some multi-objective studies considering a combination of
these objectives, simultaneously. The existing literature surveys [28,33,34] scru-
tinize different types of UAV path planning problems and corresponding solu-
tion algorithms. Path planning could also be categorized into offline and online
problems [31]. Offline path planning is applied in a completely known environ-
ment, where the best path could be obtained prior to the actual flight. Online
path planning is for uncertain environments with unknown moving obstacles and
adversaries.

Modeling the environment is one of the key issues in UAV path planning
problems. The 3D flying space, known as world space, has been represented using
different methods in the literature [8]. Voronoi diagrams were among the first
methods applied to represent free space using a network of one-dimensional lines.
The cell decomposition approach represents the free space with a set of convex
polygons, called cells. The adjacency relationship among the cells is represented
by the connectivity graph. The potential field is another method that represents
the free space by assigning repulsive and attractive forces to obstacles and the
destination, respectively, such that the UAV can move toward the goal in a
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collision-free manner. One of the predominantly used methods to represent the
environment is the occupancy grid map that decomposes the world space into a
set of equal-sized cells with unique indices. The cells could be related to the free
space or obstacles.

Based on the type of the studied problem and the characteristics of the
applied environment modeling technique, there may be different methods to solve
the UAV path planning problem [30]. Like the majority of optimization prob-
lems, the path planning problem can be formulated as a mathematical model
and solved using the existing mathematical approaches. The complexity of the
studied problem and the size of the solution space are the main barriers to solv-
ing the developed mathematical models. Graph search methods are among the
classical techniques to solve the UAV path planning problem. The Dijkstra and
A* algorithms are the most well-known graph search methods applied to find the
shortest paths. Among classical methods, A* is well-known, as the most efficient
approach in larger world spaces [4]. Sampling-based methods such as proba-
bilistic roadmap (PRM) and rapidly exploring random tree (RRT) are effective
planners to find feasible solutions in a short time, without focusing on optimal-
ity conditions. The potential field is another method that not only represents
the space but also determines the collision-free path to reach the destination.
Although this method has a quick response speed, it can be easily trapped in
local minima, especially in larger environments. These solution approaches are
generally suitable for single-objective path planning problems. They are mainly
focused on finding the shortest collision-free path between origin and destination.
Introducing new objective functions or studying the problem in a multi-objective
framework requires implementing other solution algorithms. Metaheuristics are
the solution algorithms that can be applied to solve these types of path plan-
ning problems in both single or multiple UAV scenarios. By a glimpse into the
literature one can find several applications of metaheuristics such as Genetic
Algorithms [27], Ant Colony Optimization [16], and Differential Evolution [32]
in solving UAV path planning problems.

The majority of UAV path planning problems are inspired by robotic motion
planning studies in which moving through an area occupied by an obstacle is
forbidden. However, the main difference between a ground-moving robot and a
UAV is the possibility of adjusting the altitude and flying above existing obsta-
cles. One of the first studies considering the possibility of flying above obstacles
or bypassing them is done by Golabi et al. [12]. Using occupancy grid maps
to represent the environment, they studied a multi-objective UAV path plan-
ning problem to minimize the path length, the consumed energy, and the path
risk, simultaneously. Introducing several constraints and decision variables for
linearizing, they formulated the problem as a mixed-integer linear programming
model. They solved the problem using several state-of-the-art evolutionary multi-
objective optimization algorithms.

The current paper tries to study a maximum-covering version of [12] by
adding a new objective function to minimize the number of non-visited obstacle-
free cells. Considering a continuous flying altitude level, the problem is formu-
lated using a modified mathematical programming model. Finally, the problem
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is solved on several real-world 3D datasets using a modified solution algorithm.
The rest of this paper is organized as follows. The problem definition is given
in Sect.2. The developed mathematical formulation is presented in Sect.2.2.
Section 3 describes the applied solution algorithms. The obtained results and
discussion are presented in Sect. 4. Finally, the paper is concluded in Sect. 5.

2 Problem Definition

2.1 Problem Description

This work studies a 3D UAV path planning problem to find the most efficient and
safe trajectory toward the destination while maximizing the number of visited
obstacle-free cells. This aim could be followed in real-world surveillance and
disaster tracking operations where the users may want to collect data even en
route to the destination. The main objectives of this study could be listed as
minimizing the path length, the consumed energy, the path maximum risk, and
the number of non-visited obstacle-free cells. Adverse to the majority of existing
UAV path planning problems that consider a fixed flying altitude level, this
work reflects a more realistic image of the problem by taking the possibility of
altitude change into account. Traditionally, obstacles are considered as forbidden
flying zones in UAV path planning problems. This assumption has been inherited
from robotic motion planning studies in which a robot can’t move through an
area occupied by obstacles. Therefore, bypassing an obstacle and selecting a free
way-point is the only option to reach the destination without any collision with
obstacles. Adjusting the altitude to fly above the obstacles is another option
that could be chosen in the case of having the possibility of changing the flying
altitude while moving toward the destination.

Using the occupancy grid map technique, the environment is represented as
several equal-sized ground cells with an infinite flying altitude. These cells form
a collection of rows and columns on the ground space. The cells occupied with
obstacles with the heights of corresponding obstacles are determined in advance.
The UAV starts the mission from the origin by following a path to reach the
destination such that the considered objectives are optimized. The path could
be modeled as a combination of visited ground cells and the concomitant fly-
ing altitudes above while passing through them. For each ground cell, the next
move is defined using a set of succeeding cells by considering flying in 5 different
directions such that the UAV would be either one column closer to the destina-
tion, or at least at the same flying column (see Fig. 1). If the selected succeeding
cell contains an obstacle, the UAV needs to adjust the altitude level and fly
above that obstacle. Therefore, the flying distance between any two consecutive
cells would be a function of their ground distance and the amount of altitude
change. It should be noticed that the altitude level while flying above different
cells may be restricted by air space authorization due to different reasons such as
the proximity to military bases, airports, or traditional flying corridors. Based
on the previous data and proximity to dangerous obstacles and windy areas,
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A: Origin

Z: Destination

--»: Altitude levels

— : Toward the succeeding cell

Fig. 1. The flying environment.

there would be various risk factors associated with different altitude levels of
each ground cell.

As it was mentioned earlier, the flying distance between any two consecutive
cells depends on their ground distance and the change in altitude level. Having
these two values, the flying distance is calculated using the Pythagoras theory.
The energy consumption will also be a function of both altitude level and flying
distance. The consumed energy while moving from point i to point j at different
altitude levels is calculated using the formula proposed by Dorling et al. [10].
Since it is assumed that the flying altitude is not fixed, the term (WgA;;) is
added to the mentioned formulation for considering the extra energy needed to
increase the flying altitude:

o= w2 | LT s M
2p¢n v I

Here, W is the drone and battery weight (kg), g is the gravity (N), p is the fluid
density of air (kg/m°), d;; is the distance between point ¢ and j (m), Ajj is the
increased altitude (m), v is the flying speed (m/s), ¢ is the area of spinning blade
disc in m?, and n is the number of rotors. Considering the normal flying altitude
of UAVs, the gravity could be considered as a fixed value as the gravitational
force would have decreased just by 1.2% if an object flies at an altitude of 40 km.
The fluid density of air is calculated using Eq.2 [20], where H is the average
altitude while flying from point 4 to point j.

p = (1—22558.107°H)*2577 o)

For each visiting cell, the maximum risk factor of traversed altitude levels while
passing to the successive cell is calculated. The accumulated maximum risk factor
is considered as the maximum path risk. On the premise that obstacles are
barriers to collecting data about occupied cells, the number of visited obstacle-
free cells could be a criterion to optimize the data collected en route to the
destination. In other words, it is not possible to observe the area concealed by
the obstacles.
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2.2 Mathematical Model

Considering a continuous flying altitude, the modified maximum-covering version
of the multi-objective mathematical model proposed in [12] is defined using the
following nomenclature:
Sets:
I the set of ground cells (4, j, g, A (the starting cell), N (the final destination)
€1
87+ the set of cell i's succeeding cells
0; : the set of cell #’s preceding cells
Scalars:
M : a large positive number
v: the drone’s flying speed
0: a scalar used in calculation of consumed energy (6 = W3/2,/g3/2(n)
Parameters:
«;: 1 if there exist an obstacle at cell 7; 0 otherwise
a;: the height of obstacle located in cell j, if exists
Uj: the maximum allowed flying altitude over cell j
7. the risk factor concomitant to flying on cell i at altitude &
hA: the drone’s starting altitude
d;;: the direct distance between the neighbour cells 7 and j
Decision Variables:
Xij: 1if drone enters cell j from cell 4 0 otherwise
hij: the adjusted altitude while entering cell j from cell ¢ (h;; > 0)
A;;: absolute value of altitude change while flying from cell i to cell j (A;; > 0)
A7 the ascended altitude while flying from cell 4 to cell j (Aj; >0)
Aj;: the descended altitude while flying from cell i to cell j (A;; > 0)
The first set of constraints refers to the network flow constraints:

> Xaj=1 (3)

jest
> Xiv=1 (4)
i€dy

S Xij=> X Viell{li#A and i#N} (5)

jest jes;

Z Xnj=0 (6)
jest
Leaving the origin and reaching the destination are guaranteed by Eq.3 and
Eq. 4, respectively. Equation 5 indicates that the drone should leave any visited
cell, except for the starting cell and destination. Equation 6 assures that the
path is finished just after reaching the final destination. The altitude level while
arriving at each cell is adjusted using the following set of constraints.

hij 2 a; — M(1-Xy;)  VjelIl{j# A}, Vied; (7)
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hig SMXy;  Viell{j# A}, Vied; ®)
hij <U;  Vjiell{j# A}, Vied; ©)

Eq. 7 assures that the adjusted altitude while arriving at cell jis higher than the
located obstacle (if any). If the drone does not fly from cell 7 to cell j, Eq. 8 sets
h;; equal to zero. Equation9 defines an upper bound for the adjusted altitude
while arriving at cell j. Considering the adjusted altitude, the value of altitude
change for each pair of consecutive visiting cells could be calculated using the
following constraints.

Al =max(hij — Y hgi, 0)  Viell{i#A}, Vjed) (10)
ges;

=maz( Y hg —hij — M(1—Xy;), 0) Viell{i#A},VjesS (11)
geS;

A% =maz(ha; — b, 0)  Vjeds) (12)
Ay =max(h® —ha;— M(1—Xy;), 0)  Vjed) (13)

Eq. 10-13 define the change in altitude while assuring that in case of not traveling
from i to j, the related change in altitude is set to zero. This set of constraints
guarantees that while flying from cell ¢ to cell j, the altitude can be increased,
decreased, or kept at the same level. The absolute change in altitude, ignoring
the increasing or decreasing nature is calculated as:

Aij:A;;+Ai_j Vjiel, Vied; (14)

The first objective function is to minimize the path length. Considering a triangle
in which the base is the direct distance between the consecutive visiting cells and
the height is the absolute value of altitude change, the UAV’s flying distance is
calculated using the Pythagoras theorem. So, the first objective function that
minimizes the aggregate flying distance is:

Min Z; = Z Z (dij® + A X4 (15)

i€l jeéj

The energy consumption while traveling from cell i to cell j depends on the
related fluid density of air and the flying distance. The fluid density of air is a
function of flying altitude. In this research, the fluid density between cells ¢ and
J shown as p;; is considered as the average of fluid density of air while arriving
at cells 7 and j:

hij + de(s; hygi

pij = (1 —2.2558.107°( 5

NPT Vie I{i # A},Vj € 6F (16)
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))4.2577 v] c (52: (17)
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Using Eq. 16 and 17, the second objective functions could be written as:

Min ZQ

d” + Aw )Xij) + WQA;;' (18)
1€Ij€5+

To account for the maximum risk while moving from cell ¢ to cell j the sky is
decomposed into several altitude levels with different risk factors. Let’s assume
that a is the adjusted altitude at cell j such that a = h;;. So, the actual altitude
at cell ¢ could be called b such that b = h;; — Aj; + A; The accumulated
maximum path risk could be formulated as:

Min Zy= Y el max {ri}Xa; +

k min(a,A),max(a,A)]
Je A

SOY L max (19)

k€[min(a,b),max(b,a)]
i€li#A J€5+

Finally, the fourth objective function that minimizes the number of not-visited
obstacle-free cells could be formulated as follows:

Min Zy=Y_Y (1-X;)(1-a) (20)

i€l jest

3 Solution Method

Path planning is known as an NP-hard problem [17]. Thus, these problems are
generally solved using metaheuristic algorithms. Golabi et al. [12] reported the
superiority of the NSGA-IT algorithm in solving their proposed multi-objective
UAV path planning model. They also showed a correlation between path length
and energy consumption and tried to combine these two objective functions. As
an expanded maximum-covering version of [12], this study applies a modified
version of the NSGA-II algorithm to solve the proposed multi-objective model
in which the first two objectives are combined to form a new objective function.

3.1 Preliminary Concepts of NSGA-II

NSGA-II is a well-known evolutionary algorithm for solving multi-objective opti-
mization problems [7]. It starts with a randomly generated population. Each indi-
vidual in the population is associated with a two-level ranking scheme. The first
level refers to non-dominated sorting that assigns solutions to different Pareto
fronts based on their dominance relationship. The second level, known as the
crowding sort, is a strong reflection of the diversity that determines superior-
ity /inferiority relationships between entities at the same rank based on their
crowding distance. Evolution is based on a two-step process of variation based
on recombination operators, and selection that results in a new generation of
individuals.
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3.2 The Proposed Evolutionary Components

In this study, each solution is represented as a matrix with two rows, where
the first-row alleles represent the visited ground cells and the second-row alleles
indicate the adjusted altitude just before entering the corresponding ground cell.
It is noteworthy to mention that the first-row alleles start with the origin and
end at the destination. Each first-row allele is followed by a randomly selected
non-visited neighbor cell. The solution would be infeasible if all the neighbor cells
are previously visited before reaching the destination. For each allele of the first
row, the corresponding second-row allele would be a random integer between the
first-row cell’s obstacle height (if any) and the related maximum allowed flying
altitude.

This study applies a one-point crossover operator that decomposes each solu-
tion into two segments. This operator generates two offspring by merging differ-
ent segments of two parental chromosomes. It should be mentioned that merg-
ing the parental chromosomes from the crossover point may violate the idea of
neighbor cells. In other words, the merging cells of different segments may not
be neighbors. Thus, further instructions may be needed to merge the parental
chromosomes and generate feasible offspring that satisfy the concept of neigh-
bor cells. Let’s assume that C'is the position of the crossover point. Based on
first-row genes, if the C+1"" allele of the second parent is a neighbor cell of the
C*" allele of the first parent, the first child is generated by merging all the first
segment of the first parent with all the second segment of the second parent.
Otherwise, until reaching a point by which merging the parents is possible, the
crossover point will be iteratively shifted to the right-hand side for the selected
parent or both of the parents. It could be required to add some new first and
second-row genes to one of the parents before merging it with another one. This
procedure is fully explained in [12]. Due to the mentioned complexity raised by
changing the first-row alleles, the mutation operator is only applied to second-
row genes. In this operator, a random number of second-row genes are randomly
chosen and their alleles are replaced with randomly generated numbers in their
allowed ranges.

The horizontal diversity of the Pareto front in multi-objective evolutionary
algorithms is realized by removing extra solutions when the number of non-
dominated solutions exceeds the population size [24]. NSGA-II uses the crowding
distance to remove excess individuals. The main drawback of crowding distance
is the lack of uniform diversity in the obtained non-dominated solutions [9].
The modified NSGA-II algorithm applied in this study uses a dynamic crowding
distance method to overcome this problem [18]. The main idea of this method
is to remove the individual with the lowest crowding distance value, followed by
the recalculation of crowding distance for the remaining solutions.

The modified NSGA-II algorithm also benefits from a rank-based roulette
wheel selection to choose better solutions for recombination [1]. This operator
uses crowding distance to rank the solutions in the non-dominated set. The
solution with a better rank would have a higher chance of being selected as a
potential parent in the mating pool. Last but not least, the developed modified
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NSGA-II applies a local search operator on some randomly selected obstacle-
free second-row genes of offspring generated through the mutation operation by
copying the preceding allele. This operator refrains from unnecessary changes in
altitude levels.

4 Results and Discussion

The modified NSGA-IT algorithm is applied to solve the developed math-
ematical model on a partial map of Berlin city imported using 3D City
Database Importer/Exporter! and FME Data Inspector? to extract the Geog-
raphy Markup Language (.gml) files. The map is used as a large scenario based
on the number of considered buildings treated as static obstacles, and based
on different origins and destinations (see Fig.2). Polygon triangulation is used
to partition buildings with different polygon shapes into a set of triangles with
pairwise non-intersecting interiors. Each scenario is represented as a grid-based
map with equal-size cells, such that each cell is identified with a unique index. A
cell is considered obstacle-free if it is not occupied by any triangle of considered
buildings.

To evaluate the performance of the modified NSGA-II, the same scenario is
also solved using a classic NSGA-II algorithm. The comparisons are based on
50,000 function evaluations, with 15 independent runs on each scenario. For each
algorithm, the applied parameters comprising the population size, the crossover
probability, the mutation probability, the mutation rate, and selection pressure
are tuned using MAC [23] as an automated algorithm configuration tool for
multi-objective optimization. The experiments in MAC are executed subject
to 100 function evaluations. For each generated configuration, experiments are

1000,

0 200 400 600 800 1000

Fig. 2. An example of a considered scenario.

! https:/ /www.3dcitydb.org/3dcitydb/3dimpexp/.
2 https://www.safe.com/transformers/inspector/.
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repeated 5 times to reduce the noise for the adopted surrogate model in MAC.
Fine-tuned algorithms are implemented to solve the generated scenario extracted
from the map of Berlin city. The effect of using MAC on improving the obtained
hypervolume is illustrated in Fig. 3.a. Furthermore, Fig. 3.b exemplifies the non-
dominated solutions of one of the considered scenarios obtained from the modi-
fied NSGA-II algorithm. Generally, the obtained results indicate the superiority
of the modified NSGA-IT algorithm based on the hypervolume metric, as well as
the obtained number of non-dominated solutions.

The results obtained from implementing the solution algorithm on the con-
sidered occupancy grid map highlight the effect of the new objective function
added to minimize the number of non-visited obstacle-free cells. The algorithm
is able to obtain longer paths due to the trade-off between conflicting objec-
tive functions. Besides, the continuous variable for flying altitude provides more
realistic solutions. It is noteworthy to mention that the algorithm is coded in
MATLAB R2022a and implemented on an Intel Core i7-6500U CPU @ 2.50 GHz
laptop with 8 GB RAM, 6 MB L3 Cache, and 1 MB L2 Cache. It took almost
3200 seconds to solve the problem on a grid map of size 10000 cells.

Non-dominated Solutions (E-NSGAII)
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Fig. 3. Examples of: (a) convergence plot of hypervolume; (b) non-dominated solutions
obtained using modified NSGA-II.

5 Conclusion

Considering both the possibilities of bypassing obstacles or adjusting the altitude
to fly above them, this work studies a multi-objective offline maximum-covering
path planning problem. Considering a continuous variable altitude level, this
study aims to minimize the flying distance, the required energy, the maximum
path risk, and the number of not-visited obstacle-free cells, simultaneously. The
studied problem is formulated by a novel mathematical model. The applicability
of the developed model is checked using real scenarios generated from a partial
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map of Berlin city. Using a rank-based roulette wheel selection and a dynamic
crowding distance method, the problem is solved by a modified NSGA-II algo-
rithm hybridized with a local search operator. Considering a dynamic online
environment consisting of both static and moving obstacles could be an inter-
esting guideline for future studies.
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Abstract. During escaped wildfires, community assets are at risk of
damage or destruction. Preventive operations requiring dispatching
resources and cooperation can be taken to protect these assets. The
planning of such operations is sensitive to unforeseen disruptions that
may occur. To account for the effects of the disruption, it may be neces-
sary to alter the initial routes of the vehicles. The problem rising from
the rescheduling of the vehicles is a bi-objective optimization problem
known as the Dynamic Asset Protection Problem (D-APP). We pro-
pose a genetic algorithm based on the Non-dominated Sorting Genetic
Algorithm (NSGA-II) to solve the D-APP. We define new mutation and
crossover operators adapted to our problem, and we propose procedures
to repair and evaluate a solution based on Mixed Integer Programming
(MIP).

Keywords: bi-objective optimization * vehicle routing * team
orienteering - synchronization - NSGA-IT

1 Introduction

In the recent years, wildfires break out more frequently throughout the world.
When wildfires are not controlled, they quickly expand and can burn thousands
of hectares of vegetation. In urban areas, the fire can also harm people and dam-
age infrastructure. Emergency response teams and resources must be deployed
to respond to these escaped wildfires. Multiple operations are jointly carried
out, from fire containment to evacuation, sheltering operations and including
asset protection. In this paper, we will focus on the preventive actions for the
protection of community assets.

Depending on the community asset, different actions can be taken to mitigate
or nullify the damages caused when the wildfire reach them. Such actions include
removing fuel materials, wetting down buildings, or reducing fire. Preventive pro-
tection actions must be taken in a timely manner: it has to be performed before
the fire reaches the asset, but not too early to be efficient. Some interventions
may require several trucks with specific capacities, thus requiring different teams
to collaborate to perform the task in a synchronous way. In particular, we will
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focus on rerouting the vehicles after a disruption occurs that invalidates their
initial routes. A wide range of disruptions can impact our initial plans in dif-
ferent ways. For example, we may not have all the resources available, due to a
faulty equipment or a vehicle breakdown. The time windows on some assets may
be updated after unforeseen wind or weather changes, altering the propagation
of the fire. Travel times between assets may also change if traffic jams are caused
by people evacuating, or a road might be blocked by a fallen tree.

The problem of routing vehicles for preventive protection operations can
be viewed as a variant of the Team Orienteering Problem (TOP) with time
windows and synchronization constraints. This problem was first introduced by
Merwe et al. [9] as the Asset Protection Problem (APP). The authors proposed
a Mixed Integer Linear Programming (MILP) formulation of the problem. Later,
Merwe et al. [10] introduced the dynamic APP (D-APP), which is a bi-objective
problem for rerouting the vehicles after a disruption. The authors updated the
MILP formulation from the mono-objective version of the problem to account
for the deviation. They generated theset of solutions offering optimal trade-off
between protection of the assets and deviation from the initial routes using an
e-constraint scheme. Pena et al. [13] proposed a new mathematical formulation
and valid inequalities based on the properties of the D-APP.

In this paper, we will present a heuristic solution method for the D-APP
based on the Non-dominating Sorting Genetic Algorithm (NSGA-II) [3]. We
will introduce different crossover and mutation operators specific to our problem,
including a destruction/construction operator as well as different MILP to repair
and evaluate a solution.

2 Dynamic Asset Protection Problem

During a wildfire, community assets such as schools, hospitals, bridges are at
risk of being damaged. A fleet of heterogeneous vehicles must be dispatched to
the different assets to perform preventive protection operations. These opera-
tions must be accomplished within a specific time window, and often require the
cooperation of multiple vehicles.

An asset is protected if, within its time window, enough vehicles are present
at the asset to accomplish the protection operation. The protection of an asset
requires some resources (e.g., crew size, number of fire hoses, ...), that need to
be met by the vehicles assigned to the asset.

In the dynamic APP, we already have routes assigned to the vehicles. How-
ever, an unforeseen disruption occurred and these initial routes may no longer
be feasible nor optimal. We want to recompute the routes to take into account
the consequences of the disruption. We then have two competing objectives:

— maximizing the total value of the protected assets
— minimizing the deviation from initial routes

We define the deviation as the number of vehicle/asset reassignments, i.e., if
an asset is added to or removed from the initial route of a vehicle, then it implies
a deviation of one.
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2.1 Problem Presentation

An instance of our problem is represented by a graph G = (V, A), with V
representing the locations and A the arcs. There are n total locations. The first
m locations represent the depots from which the vehicles depart, and the n-th
location is a fictitious sink node. The remaining n —m — 1 locations represent the
assets to protect. We define subsets of V: the depots V% and the assets V. Each
asset 7 has a value v;, a requirement vector r;, a service duration a; and a time
window [0;; ¢;]. The set P represents the available vehicles. Each vehicle p has a
capability vector cap,. In order to be protected, the vehicles assigned to an asset
must collectively meet the resource requirement of the asset. For example, an
asset with resource requirement r; = (1,2,1) can be protected by vehicles p and
g with respective capability cap, = (1,1,0) and cap, = (1,1,1). All the vehicles
assigned to the asset must be present when the service starts, and throughout
the entirety of the service. Parameters ¢;;, are the travel time between locations
i and j for vehicle p. Travel times satisfy the triangle inequality. We note ® the
solution representing the routes of the vehicles before disruption.

Before proceeding further, we introduce some definitions. An arc between two
assets ¢ and j is called a valid arc for vehicle p if 0, +a;+t;;, < c;. In other words,
vehicle p can visit asset ¢ before asset j within the respective time windows of
the assets. Additionally, we say that the insertion of an asset k& between two
assets ¢ and j in the route of vehicle p is at a valid position if arcs (i, k) and
(k, ) are valid arcs for vehicle p.

2.2 Bi-Objective Optimization

The D-APP is a bi-objective optimization problem. We recall some terminology
related to Multi-objective Optimization Problems (MOP).

In MOP, a solution is evaluated according to an objective function vector
f={(f1,..., fa) with d objectives. Without loss of generality, we suppose that all
the objectives are to be maximized. These d objectives are competing against
each other: improving one of the objective will often degrade one or multiple
other objectives. Hence, we want to find the set of efficient solutions based on a
dominance relation between solutions [7].

Definition 1. Let u and v be vectors of R?, we say that u dominates v if and
only if u; > v; for each i € {1,...,d} and there exists j € {1,...,d} such that
u; > v;. We denote this dominance relation by u > v.

Definition 2. A solution s is efficient if there is no other solution s’ such that
f(s") = f(s), with f(s) the objective function vector associated with solution s.

For ease of use, we say that a solution s dominates a solution s’ if and
only if its objective function vector f(s) dominates f(s’). The set of all efficient
solutions is known as the efficient set. The set of objective vectors with respect
to the efficient set is call the non-dominated set, or Pareto front [12].
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In many vehicle routing problems, multiple competing objectives have been
considered [6]. A popular approach is to solve the multi-objective problem using
a decomposition approach. The multi-objective problem is decomposed in mul-
tiple single objective problems, using aggregation functions. For instance, the
bi-objective traveling salesman problem has been solved using ant colony opti-
mization based on decomposition [2]. A metaheuristic method that combines a
Pareto ant colony optimization algorithm and a variable neighborhood search
method has been proposed for the bi-objective TOP (BTOP) [14]. Finally, a two-
phase decomposition method based on Local Search has been proposed to solve
Selective Pickup and Delivery Problems with Time Windows (SPDPTW) [1].

Several approaches extend the fast and elitist Non-Dominated Sorting
Genetic Algorithm (NSGA-II) [3]. It has been efficiently applied to various multi-
objective problems including but not limited to the BTOP [11], the Green Vehicle
Routing Problem [4] and the Vehicle Routing Problem with Route Balancing [5].

3 NSGA-II

In this section, we will discuss the implementation of the NSGA-IT algorithm to
solve the D-APP. We will first present in Sect. 3.1 an overview of the NSGA-IT
algorithm. We will then present in Sect. 3.2 the encoding we encounter in the
literature for a genetic algorithm on a problem similar to the problem at hand.
We will introduce mutation and crossover operators based on the properties
of our problem in Sect. 3.3. Finally, we will define two different procedures for
repairing and evaluating a solution in Sect. 3.4.

3.1 Overview

NSGA-II is an iterative algorithm. For each generation ¢, we consider a popula-
tion R; of size 2N, that is the combination of two subpopulations of size N: P;,
the parents, and @, the offspring. There are three main steps in the NSGA-II
algorithm, described below. A solution i has two fitness criteria relative to the
current population: a rank r; and a crowding distance d;. The rank represents
the quality of the solution with regards to the dominance relation presented in
Sect. 2.2. The crowding distance represents the quality of the solution in terms
of diversification. For more information on how these criteria are computed, we
refer the reader to [3].
At generation t, the three steps are:

Step 1 - Initialization. Create the population R; by combining the parent and
offspring populations. Compute the rank of the solutions in R; and identify all
the non-dominated fronts F = (Fy, Fa,...). Compute the crowding distance of
the solutions within each non-dominated front.

Step 2 - Parent population selection. Create the parent population for next
generation P;y; by selecting the N solutions from population R;. Between two
solutions with different ranks, we prefer the solution with the lowest rank. If
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both solutions belong to the same front, we prefer the solution with the lowest
crowding distance.

Step 3 - Offspring creation. Create offspring population Q41 from Pyy.
Details are given in Algorithm 1. The tournament operator is binary tournament,
as described in [3]. Two solutions are selected at random, the solution with lowest
rank is selected, or with lowest crowding distance if there is a tie. The crossover
and mutation operators are discussed in Sect.3.3. The repair and evaluation
procedure is discussed in Sect. 3.4.

Algorithm 1. Offspring creation
Data: Parent population P, mutation rate p
Result: Offspring population @

1: Q «— 0

2: while |Q] < N do

3:  p1 < tournament(P);

4:  po « tournament(P);

5: s« crossover(pi,p2); (See Section 3.3)

6:  if rand() < p then

7 s < mutate(s); (See Section 3.3)

8 end if

9: s« repair_and_evaluate(s); (See Section 3.4)
10: Q< QU{s}

11: end while

12: return Q

3.2 Encoding

We based the implementation of the NSGA-II algorithm for our problem on a
genetic algorithm proposed for the mono-objective version of the APP with a
homogeneous fleet of vehicles [8].

A solution s is represented by an array of integers, representing the order
in which assets are visited for each vehicle. The route of a vehicle always starts
at a depot and ends at the sink node. For instance, there are three vehicles
in solution [1,2,6,4,11,1,5,7,3,11,1,7,3,11], the route of the first vehicle is
(1 -2—6—4— 11), the second (1 - 5 — 7 — 3 — 11) and the last
(1—-7—3—11).

We note P; the set of vehicles assigned to asset ¢ in solution s, and Pif the
set of available vehicles not assigned to asset 7 in solution s.

3.3 Operators

Valid Crossover Operator (CXVAL). This crossover operator between two
solutions s; and s selects a vehicle at random. The route for this vehicle in
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s1 is cut after a random asset ix. The route for this vehicle in so is also cut,
after asset j;. The offspring route for this vehicle is constructed by the taking
the part of the route up to, and including, asset i in s; first, and then the
part of the route after asset j; in ss. For example, suppose we have two routes
(i1 — ip — i3 — 44 — i5) and (j1 — Jo — j3 — j4 — Js5 — Je), and assume the
cuts happen after assets i3 and j, respectively, indicated in bold. The resulting
route would be (i; — is — i3 — j5 — jg). The route of the second vehicle is
cut in a way such that arc (ig, ji+1) is a valid arc. This crossover may result in
duplicate assets in the route of a vehicle; we only keep the first occurrence of an
asset to fix this issue.

Time Crossover Operator (CXTIM). This crossover operator between two
solutions s; and ss selects a time at random within the time horizon. The routes
for the vehicles in s; are cut when the start time of service of the asset exceeds
the chosen time, and represent the first part of the offspring routes. We then cut
the routes of the vehicles in so such that there is a valid arc between the last
asset of the first part of the route and the first asset of the second part of the
route.

Single-Change Operators. We define two different mutation operators that
perform a single change on the solution, with same probability of being used: an
insertion operator and a removal operator.

Insertion Operator. The insertion operator adds one randomly selected asset to
the route of one or multiple vehicles. An asset is selected at random. The asset
is added at a random valid position in the route of vehicles, taken in a random
order, until the resource requirement of the asset is met.

Remowal Operator. The removal operator removes one randomly selected asset
from the route of one or multiple vehicles. An asset is selected at random. The
asset is removed from the route of all the vehicles.

Multi-change Operator. We define a mutation operator that performs mul-
tiple changes on the solution, first removing multiple assets from the solution in
the destruction phase, then inserting multiple protected assets in the construc-
tion phase.

During the destruction phase, the operator randomly selects d assets to be
removed from the current solution. The number of assets removed is randomly
selected between 1 and d,,,q.. The destruction parameter d,,q. is initially set to 3.
If there is no improvement on the optimal Pareto front F7i, its value is increased,
and resets to 3 when an improvement is found. In the random selection process,
we can assign weights to the assets in order to favor removing assets that induce
most deviation. We note w; the weight associated to asset i. The probability
of selecting asset i to be removed is thus p~ (1) = w; /Y w; . If w; =1 for all

1
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assets, we have fully random behavior. Alternatively, we can use a weight based
on the deviation induced by the removal of asset ¢ from solution s, with v a
parameter to be determined:

wy” = (1+maz(0, 77| - [PF))” M)

During the construction phase, the operator uses a Best Insertion Heuristic
(BIH) to insert a subset of assets to the current solution. The number of assets
to add is chosen randomly between d and d + ¢;,4.- The construction parameter
Cmagz 1s initially set to 3. The assets to be inserted are randomly selected. We
can assign weights to the assets in the selection process. We note w;" the weight
associated to asset i. We can use a weight based on the profit v; associated with
the protection of asset i and a lower bound on the deviation necessary for the
protection of the asset nb;, with o and 3 parameters to be defined:

wi =vf /(1 +nb])” (2)

We want to add each asset to the route of enough vehicles for the resource
protection to be met. We also want to minimize the number of vehicles we use to
protect the asset. As we do not know how many vehicles will be required to meet
the resource requirement, we will generate multiple insertion patterns and select
the one minimizing our criterion. We detail the process in Algorithm 2. In order
to account for the deviation from the pre-disruption routes, we first select the
vehicles for which the asset is in the pre-disruption route. If these vehicles are
not sufficient to meet the resource requirement, we continue the process with the
remaining vehicles. We select the vehicles in a random order, until the protection
requirement is met.

Adaptive Parameters. The multi-change operator relies on parameters «, 3
and v to control the relative importance of the different factors when associating
weights to assets. They are first initialized with o = 1, § = 1 and v = 0.5,
and then adaptively tuned during the offspring creation phase. We generate M
offspring solutions with slightly different values of o, 3 and . The values leading
to the best offspring subpopulation are recorded to be used in the next iteration.
All the offspring solutions generated are considered in the offspring population
Q@ of the current step.

3.4 Repair and Evaluation Procedure

A solution is represented by the route of each vehicle. It is sufficient to know the
routes of the vehicles to compute the deviation from the pre-disruption routes.
However, we cannot determine which assets are effectively protected: we must
check if it is possible to synchronize the visits of all assigned vehicles within
the time window of the asset, and if the resource requirement is met by these
vehicles.

Some solutions are not feasible. For instance, two vehicles may visit two assets
in a different order, thus causing the synchronization to be impossible.
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Algorithm 2. Construction: Add an asset
Data: Solution S, asset k, number of insertion patterns nb_p
Result: A solution that protects asset k, if possible

1: if the available vehicles cannot meet the resource requirement then
2:  return S

3: end if
4: for cpt = 1...nb_p do

5 Vept — 0; {Set of selected vehicles at iteration cpt}
6:  costepr = 0;
7.
8

Determine a random order on the vehicles that prioritizes vehicles in Pg
for each vehicle p following the previously defined order do

9: if there is a valid position in the route of vehicle p then

10: Vept = Vept U{p}

11: coStept < COStept + 1

12: if vehicles in V,,; meet the resource requirement of asset k£ then
13: Begin new insertion pattern (next cpt)

14: end if

15: end if

16: end for

17: end for

18: Select set of vehicles V. with lowest cost
19: Insert asset k in the routes of vehicles in Vi in solution S
20: return S

Our repair procedure aims at finding the best subroutes of the solution, to
make it feasible and maximize total protected value. We do not modify the
order in which assets are visited by a vehicle, nor do we add new assets to the
routes. The repair procedure determines which assets can actually be protected,
thus contributing to the total protected value. It also gives data to correct the
deviation, if unprotected assets have been added to the route of a vehicle for
instance. At the end of the repair procedure, we know the value of the two
objective functions for the solution we have just repaired. Hence, we can use the
repair procedure as the evaluation procedure for our solutions. By doing so, we
also ensure that all the solutions we consider are feasible.

We propose two different MIPs used for repairing and evaluating solutions
for our problem. We note P; the set of vehicles that have asset ¢ in their route.
We note X, the set of arcs (i,4;) between assets in the route of vehicle p, with
k<l

Asset Penalization. The first MIP tries to find a feasible solution from the
given routes. Assets can be visited outside of their time windows, but these assets
cannot be protected. Infeasibilities are lifted by removing assets entirely from
the solution.

We define three sets of decision variables:

— Binary variables Y;, set to 1 if asset 4 is protected. Asset ¢ is protected when
service starts within its time window and its resource requirement is met.
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— Binary variables 6;, set to 1 if asset ¢ is removed from the solution.
— Continuous variables 5;, that represent the start time of service of asset 1.

Mazximize ZviYi (3)
(1-6,) Z cap, > 1;Y; YieV*® (4)

P
Sithiijrai SSJ+M1(91+9]) Vp € P, (Z,]) € X, (5)
Oi—Mg(l—Yi)SSiSCi—i-Mz(l—Yi) Vie Ve (6)
Y; € {0,1}, 6, € {0,1}, S; e R Vie V* (7)

Objective function (3) maximizes the total protected value.

Constraints (4) ensure that the protection requirement is met for protected
assets. Assets that have been removed from the solution (with 6; = 1) cannot
be protected. Constraints (5) set correct start time of service for assets i and
j when asset ¢ is visited by the vehicle before asset j. The order in which the
assets are visited is fixed within the solution. However, as assets can be removed,
we need to consider every pair of assets (i,j) visited by the vehicle such that
asset i is visited before asset j. Constraints (6) ensure that a protected asset is
visited within its time window. Constraints (7) define the domain of the decision
variables.

Assignment Penalization. The second MIP tries to find a feasible solution
from the given routes. Infeasibilities are lifted by removing assets from the routes
of individual vehicles.

We use binary variables Y; and continuous variables .S;. We replace variables
0; by variables 8,,;, set to 1 if asset 7 is removed from the route of vehicle p.

Mazximize Z v;Y; (8)

Z (1 —0pi)cap, > 1Y; Vie Ve (9)
PEP;

Si+ tijp +a; < S+ My(0pi +0p5) VpeP, (i,5) € X, (10)
Yi+0,>1Vp, VieV* (11)

0, —Ms(1-Y;) < S; <c¢;+ Ma(1-Y;) VieV® (12)
Y, €{0,1}, S; eR Vie V* (13)

0, €{0,1} VieV*, peP; (14)

Objective function (8) maximizes the total protected value.
Constraints (9) ensure that the protection requirement is met for protected
assets. If asset 7 is removed from the route of the vehicle (with 6,; = 1), the
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vehicle does not contribute to the protection. Constraints (10) set correct start
time of service for assets ¢ and j when asset ¢ is visited by the vehicle before
asset j, similarly to constraints (5). Constraints (11) ensure that unprotected
assets are removed from the routes of all vehicles. Constraints (12) ensure that
a protected asset is visited within its time window. Constraints (13) and (14)
define the domain of the decision variables.

Local Search. After repairing a solution, we explore its neighborhood to find a
dominating solution. We base our local search on the MIP used in the e-constraint
method for the D-APP introduced in [13]. We use the MIP that maximizes total
protected value with deviation limited to the value of the deviation of the solution
we are considering. This solution is used as a warm-start for the MIP. We set a
high relative gap tolerance in our solver, meaning that the resolution will stop
before optimality is proven. For example, with a tolerance of 0.05, a solution is
returned when it is proved to be within 5% of optimal.

4 Computational Results

We carried out computational testing on a computer with an Intel Core i7-8550U
processor and 8 GB of RAM. We implemented the method in Julia.

We generated 10 benchmark instances', following the guidelines provided by
Merwe et al. [9]. Each instance has 100 assets randomly distributed within a
80km by 80 km grid. Instances of less than 100 assets are created using a subset
of the 100-asset instances.

In order to evaluate our algorithm performance, we will use a quality indicator
to compare approximate PFs: the hypervolume (HV) [15]. The hypervolume (or
S-volume) is widely used in multi-objective optimization as we can compute it
without knowing the optimal PF. We suppose, without loss of generality, that
we want to maximize objective function f; and minimize objective function fs.
The hypervolume requires two reference points in order to be computed: it is
important to use the same reference points when we compare two approximate
fronts. For a set of approximate fronts, the references points called nadir and ideal
are defined as nadir = (f{*", fi"%*) and ideal = (f"%, fa""), where ™" and
flrer i = 1,2 refer to the minimum and maximum values of objective functions
f1 and fo encountered in the set of approximate fronts. Let A(a;) be the size of
the rectangular area a; constructed with a solution s; from an approximation
set A and the nadir as corners. For approximate set A, we compute the HV as

follows:
/1 ( Cli)
(A) . a; €A

R R

(15)

1 See https://www.hds.utc.fr/~penaquen for the detailed instances and pre-
disruptions routes.
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4.1 Mutation Rate Tuning

In this section, we want to test the influence of the mutation rate p on the output
of our algorithm. We launched the algorithm five times with a time limit of 60s
on five training instances with 30, 40, 50 and 60 assets, with two different vehicle
breakdowns as the disruption.

Based on preliminary tuning work, we used fixed values for some of our
parameters. The population size is set to N = 100. We use the time crossover
operator as crossover operator and multi-change operator as mutation operator.
For the choice criteria w; and w;r, the parameters are set to a = 1.0, § = 0.5 and
~ = 1.0. Destruction and construction parameters ¢4, and d,,q, are initially set
to 3. The initial population is generated by applying the multi-change operator
with high ¢4, and dy,q; values on the solution representing the initial routes.

We report in Fig.1 the average gap between the hypervolume of the non-
dominated front F; obtained with each mutation rate and the hypervolume of
the best known Pareto front.

60 —e— Best
—m— Average

Gap (%)

0
0.0 0.1 02 03 04 05 06 0.7 08 09 1.0

Mutation rate

Fig. 1. Average gap between the front obtained by NSGA-II and best known front,
based on mutation rate pu.

We can see that our mutation operator impacted the quality of the front
we generated. We obtained the worst results when the mutation operator was
disabled (u = 0), with a gap superior to 63%. The gap steeply decreased to 15%
on average when the mutation operator was enabled and steadily decreased,
dropping below 9% on average for . = 0.5. The gap reached its lowest point for
@ = 0.8 and slightly deteriorated for higer mutation rates.

4.2 Performance Analysis

In this section, we test the influence of our evaluation models and operators,
and the impact of our additional components. Following preliminary work, we
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chose not to consider the valid crossover operator (CXVAL). Hence, we will
only present results using the time crossover operator (CXTIM). We will first
compare the results obtained using our two different evaluation models, with our
single-change operators and our multi-change operator. Then, we will evaluate
the impact of the adaptive scheme and the local search procedure we presented.

We launched our NSGA-IT algorithm five times with the different sets of
operators for each of our ten benchmark instances with 30, 40, 50 and 60 assets,
and two different random vehicle breakdowns as the disruption. We used the
parameters presented in Sect.4.1, and set the mutation rate p = 0.6.

Table 1 shows the results of NSGA-II within a time limit of 300s. For each
evaluation model (shown in row “Eval.”) and operator (shown in row “Opera-
tor”) combination, we give the average hypervolume of the non-dominated fronts
F1 we obtained (HVg,4), and the hypervolume on the best run (HVjqz). In the
last column “e — 3007, we indicate the hypervolume of the front obtained using
the e-constraint method with the model introduced in [13], with a 300-second
time limit. Due to the time limit, this method does not always yield the full
optimal Pareto front.

Table 1. Average hypervolume of fronts obtained by NSGA-II in 300s.

Eval Asset penalization Assignment penalization e — 300
Operator | Single-change | Multi-change | Single-change | Multi-change
HViaz | HVavg | HVinaz | HVavg | HVinas | HVavg | HVinaz | HVavg | HV

n=230 |84.3% |79.9% |84.2% | 80.8% |85.0% |80.5% |84.7% |81.2% |86.3%

40 82.2% |76.7% | 82.9% |79.0% |81.6% |77.0% |83.4% |79.7% |82.5%
50 78.9% |74.6% | 80.2% |76.7% |80.5% |76.1% |81.7% |77.9% |70.6%
60 78.4% | 73.0% |78.7% |72.5% | 80.1% |74.4% | 79.9% |73.9% |58.9%

We can see that the second evaluation model on average gave fronts with
higher hypervolume on average than the first model for the same operators. For
instances with 30, 40 and 50 assets, the multi-change operator performed better
than the single-change operators. The multi-change operator offers more stable
results than the single-change operators, and find solutions with higher profit.
For larger instances, we obtain better fronts on average than the € — constraint
method within the same time limit.

Based on Table 1, we will consider the second evaluation model with multi-
change operator to evaluate our additional components. We performed a parame-
ter analysis similar to Sect. 4.1 to determine good values for our adaptive method
and local search parameters. We set the initial population to N = 50, and off-
spring population to M = 50/4. For the local search, we apply it to 5% of the
solutions, with a relative gap tolerance of 0.05. Each model is run five times on
each instance, to ensure the robustness of our results. In order to avoid overfit-
ting, we selected new breakdowns at random for the benchmark instances.
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Table 2 summarizes the results of our algorithm with no additional compo-
nent, with the adaptive parameters enabled and our local search procedure. It
shows the average value of the hypervolume found in the best run (HV,,4,) and
the average value in all the runs (HVg.g).

Table 2. Comparison of the components of our NSGA-II implementation.

Method | No component | Adaptive Local Search € — 300
vaax Hvavg vaaac Hvavg vaa:c Hvavg HV
n=30 |79.5% |77.6% |79.8% |77.8% |82.3% |81.9% |82.3%

40 75.8% |73.5% |75.8% |73.6% 79.9% |79.2% |79.1%
50 74.5% |72.2% | 75.1% | 73.1% | 80.7% |79.5% |68.9%
60 70.5% |67.8% |73.0% |69.7% |80.0% |78.3% |56.4%

The adaptive component yielded similar results for instances with 30 and 40
assets and slightly better results for 50 and 60 assets when enabled. We obtained
significant improvements for all instances when enabling our local search proce-
dure, up 10% for instances with 60 assets on average. The local search procedure
also improved the stability of our algorithm, reducing the gap between the best
solution and the average solution for all size of instances.

5 Conclusion

NSGA-II is a popular algorithm for multi-objective heuristic resolution that has
proven efficient for multiple vehicle routing problems. We proposed an imple-
mentation of NSGA-II for the D-APP. Due to the numerous constraints that are
part of the D-APP, we introduced mutation and crossover operators based on
properties of the problem and MIPs to repair and evaluate solutions. It is the
first heuristic solution method dedicated to the D-APP. The approach can be
improved by defining operators that better take the deviation into account, and
finding faster procedures to repair and evaluate a solution.
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