
Chapter 85 
Study on Damage Identification 
of Reinforced Concrete Members Based 
on BP Neural Network 
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Abstract Structural damage identification plays an important role in the perfor-
mance evaluation and maintenance of existing structures and post-disaster damaged 
buildings. On the basis of summarizing and analyzing the commonly used damage 
models of concrete structures and the description of structural safety state in domestic 
and foreign codes, a method of damage index fitting and safety state identification 
for reinforced concrete flexural members based on BP neural network is proposed 
in this study. Two independent BP neural network damage models for damage index 
fitting and safety state recognition, respectively, are established using Matlab. For 
the damage index fitting, this method takes the crack characteristic parameters as the 
input of the network, and the damage index calculated by the dual-variable damage 
model based on stiffness and energy is regarded as the output. For the safety state 
recognition, the proposed method takes the crack characteristic parameters as the 
input and the safety state classification result following the FEMA-356 code serves 
as the output. Thereby, the mapping relationship between the crack characteristic 
parameters and reinforced concrete member damage can be established. Compared 
with the traditional damage assessment methods, this proposed method has the advan-
tages of accuracy, promptness and convenience, and it enriches the technical means 
of structural health monitoring. 
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85.1 Introduction 

During the service life of reinforced concrete structures, irreversible material aging 
and structural damage will occur due to factors such as structural conditions and envi-
ronmental erosion. The damage accumulates and leads to degradation in structural 
performance, causing a decrease in bearing capacity and durability and endangering 
the structure. Structural damage can be categorized as sudden or cumulative. The 
former is caused by sudden natural disasters or man-made events, which is unpre-
dictable. The latter is caused by internal damage and crack propagation resulting from 
environmental erosion and structural aging, which is more concealed and dangerous. 
The purpose of structural damage identification is to determine whether damage has 
occurred, its location and degree, and analyze the impact of damage on the structure. 
It provide a basis for the health and lifespan prediction of the structure. 

Traditional damage detection methods include appearance inspection for defects 
such as cracks, deformation, and local damage, as well as non-destructive testing 
using instruments such as ultrasonic waves, infrared cameras [1], and acoustic emis-
sion. However, the effectiveness of detection is influenced by the professional knowl-
edge and engineering experience of the personnel. Structural damage identification 
based on static response involves measuring displacement, strain and other static 
response information through on-site load testing, and obtaining static parameters 
(such as stiffness, elastic modulus) of the structure. However, currently the detection 
equipment is bulky and can affect the normal operation of the structure, making 
online measurement difficult to achieve [2]. Currently, damage identification based 
on dynamic characteristics is a hot research topic, including methods such as dynamic 
fingerprinting [3], model updating [4], and neural network [5]. Among them, dynamic 
fingerprinting is a structural damage identification method based on modal param-
eters. By detecting changes in dynamic indicators (frequency, mode shape, modal 
curvature, strain mode, etc.), it can indicate whether damage has occurred, the degree 
of damage, and the location of damage in the structure. Currently, damage identifi-
cation methods based on multiple modal parameters have been developed [6]. The 
model updating method is an important approach for damage identification. In this 
method, a finite element model of the structure is established first, and then damage 
identification is converted into a model optimization problem under constraint condi-
tions. By continuously adjusting and modifying the parameters of the original model 
[7], such as the stiffness matrix, the results can eventually become consistent with the 
actual structural response, achieving the effect of damage identification. The neural 
network method [8–10] is a type of damage identification method based on artificial 
intelligence. In this method, a damage identification network model is trained through 
sample data, and then it is used to diagnose damage in structures. It is non-parameter 
and suitable for large-scale nonlinear systems. It also has good fault- tolerance and 
robustness, and is widely used in damage identification of structures. 

This article proposes a damage index fitting and safety state assessment method for 
reinforced concrete components based on the basic principles of BP neural network.
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It takes surface crack information of concrete components as the damage identifi-
cation parameter, and construct two BP neural network damage models for damage 
index fitting and safety state recognition, thereby establishing a mapping relation-
ship between crack feature parameters and component damage. This method has 
the advantages of accuracy, promptness and convenience. It enriches the technical 
means of structural health monitoring and provides important decision-making basis 
for timely evaluation of existing structures’ usage conditions and formulation of 
maintenance measures. It also provides a fast, non-destructive, and practical method 
for health diagnosis and safety state assessment of post-disaster buildings. 

85.2 The Damage Index and Safety State Assessment 
of Concrete Structures 

85.2.1 Damage Index and Damage Parameters 

Concrete structures subjected to seismic loading experience various levels of damage. 
This damage can be observed at a macroscopic level as an expansion of microcracks 
within the concrete structure, adhesive effects between materials, and a decrease in 
stiffness and strength of material. Additionally, the structure enters the nonlinear 
stage due to the plastic deformation, leading to a decrease in overall stiffness and 
bearing capacity and an increase in overall ductility. For instance, the elastic–plastic 
restoring force model shown in Fig. 85.1 shows that when the structural elastic force 
caused by seismic activity exceeds the yield load, the structure enters a plastic state, 
with decreased stiffness and increased ductility. The input energy of the structure 
gradually dissipates during the hysteresis process, where the ductility increases and 
the accumulated damage to the structure increases. Therefore, the stiffness, ductility, 
and hysteresis energy of the structure can indicate the degree of damage, and are 
often referred to as damage parameters.

From a microscopic perspective, structural damage is accompanied by the accu-
mulation of plastic strain, plastic strain energy, plastic displacement, and plastic 
energy dissipation. Therefore, plastic strain and plastic strain energy can also be 
used as damage parameters to describe the degree of damage. However, in actual 
situation, macroscopic damage parameters are more practical, and easier to obtain 
than microscopic parameters. Therefore, using stiffness, displacement, and energy 
as damage parameters to quantitatively describe the degree of damage is a more 
practical method. 

For the quantitative evaluation of the degree of damage of concrete structures or 
components, damage indices D can be used. The damage index is a dimensionless 
parameter defined as: 

D = f (x1, x2, x3 · · ·  , xn) (85.1)
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Fig. 85.1 The 
elastic–plastic restoring 
force model

where x1, x2, x3 · · ·  , xn are the damage parameters, such as stiffness, displacement, 
energy, strain, stress, etc., which reflect the mechanical properties and damage of the 
structure, and can be directly measured or calculated by instruments. 

f (·) is the damage model, which is the mapping relationship between the damage 
parameter and the damage index. 

The damage index D has the following characteristics [11, 12]: 

(1) D ∈ [0, 1], D = 0 indicates no damage to the structure, while D = 1 indicates 
complete failure, and 0 < D < 1 indicates partial damage to the structure. 

(2) The damage index D increases gradually with the increase of the service life of 
the structure, and the overall trend of the increase is irreversible. 

85.2.2 Damage Models of Concrete Structures 

A damage model is a mathematical expression used to characterize the extent of 
damage to a structure [13]. Currently, various damage models for concrete struc-
tures have been proposed to evaluate the effects of cumulative low-cycle fatigue 
loads on structural damage. Based on the number of damage parameters, damage 
models can be classified into single-parameter and multi-parameter models, while 
based on the type of damage parameter, they can be divided into displacement-
based, energy-based, and displacement-energy-based models. This paper summa-
rizes several commonly used damage models and their characteristics, as shown in 
Table 85.1.

In summary, different types of damage models can produce different results for the 
damage evolution process of the same structure, and the assessment of the damage
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Table 85.1 Commonly used damage models 

Type Characteristics Researcher Damage model 

Single-prameter Displacement-based Powell [14] DP = Ui−Uy 
Uu−Uy 

Newmark 
[15] DN = 

N∑

i=1 
(μi,max − 1) 

Krawinkler 
[16] DK = 

N∑

i=1 
(μi − 1)b 

Mehanny 
[17] DM = (Ui,max)

α +
(

N∑

i=1 
Ui

)β 

Energy-based Darwin 
[18] DD = 

N∑

i=1 

Ei 
Fy (Uu−Uy ) 

Gosain [19] 
DG = 

N∑

i=1 
(μi − 1)λi 

Ibarra [20, 
21] 

DI = 
N∑

i=1 

⎛ 

⎜ 
⎜ 
⎝ 

Ei 

Et− 
i∑

j=1 
E j 

⎞ 

⎟ 
⎟ 
⎠ 

a 

Stiffness-based Gulkan 
[22] 

DG = 1 − Ks 
K0 

Multi-prameter Displacement-energy-based Park-Ang 
[23] 

DPA  = Um 
Uu 

+ β 

N∑

i=1 
Ei 

FyUu 

Ou et al. 
[24] 

DOU =
(
Ui 
Uu

)β + 

⎛ 

⎜ 
⎜ 
⎝ 

N∑

i=1 
Ei 

Eu 

⎞ 

⎟ 
⎟ 
⎠ 

β 

Banon [25] DB = ⎡
|
|
√(μi,max − 1)2 +

(
N∑

i=1 
h
(
2 · Ei 

FyUu

)d
)2 

Note Ei is the energy dissipated by structure in the ith cycle; Et is the total energy of the structure; Eu is 
the ultimate energy dissipated by the structure under monotonic loading; Ui is the maximum deformation 
in the ith cycle of the structure; Uu is the ultimate deformation value of the structure under monotonic 
loading; Uy is the yield deformation of the structure; Fy is the yield load of the structure; Ks is the secant 

stiffness of the structure; K0 is the initial stiffness of the structure; μi is the ductility coefficient, defined 
as μi = Ui /Uy ; λi is the ductility ratio, defined as λi = Fi /Fy

state of the same structure may also differ. Therefore, for components with different 
types and failure modes, the damage model should be selected accordingly.



1222 Y. Zhang et al.

85.2.3 The Assessment of Safety State for Concrete Structure 

In general, damage index represents the degree of damage to a structure or component. 
The larger the damage index of a structure, the lower its remaining performance level 
and the worse its safety state. Conversely, the smaller the damage index of a structure, 
the higher its remaining performance level and the better its safety state. However, 
different researchers have different ideas of how to correspond quantitative damage 
index to safety state. This paper uses the Park-Ang damage model, Ou’s damage 
model, and Tan’s two-parameter damage model as examples. Table 85.2 shows the 
corresponding relationship between damage index and safety states.

Damage index can quantitatively describe the safety state of a structure or compo-
nent, but in practical applications and regulations, more intuitive and measurable 
damage parameters are usually selected as parameters for damage evaluation and 
safety assessment. Generally, the structural apparent cracking condition and inter-
story drift are selected as qualitative and quantitative evaluation standards. Among 
such regulations, the more representative ones are the Turkish regulation TBEC 2018 
and the US regulation FEMA 356. The Turkish regulation TBEC-2018 pays more 
attention to the inter-story drift angle for structural safety state classification. The 
US regulation FEMA 356 comprehensively considers the apparent damage of the 
component and inter-story drift, and individually evaluates the damage of primary and 
secondary components. Tables 85.3, 85.4 provide some safety assessment standards 
in the above two regulations.

85.3 Damage Identification of RC Structures Based on BP 
Neural Network 

85.3.1 The Construction of BP Neural Network 

The basic theory of the BP neural network has been extensively introduced in 
previous literature. In this section, we will create two neural networks based on the 
design theory for the damage identification method using surface crack parameters 
of concrete. The two neural networks are respectively used for numerical simulation 
of damage index and recognition of safety states. Table 85.5 provides the structural 
parameters for both BP neural networks, and Fig. 85.2 shows the neural network 
structure diagram created in MATLAB.

It is worth noting that the input layer of both neural networks has 4 nodes, and 
the input vectors are [x1, x2, x3, x4], representing 4 real damage parameters: crack 
length, maximum width, average width, and crack area. 

In the numerical simulation of damage indicators, the initial number of hidden 
layers is 2, with 10 nodes in the first layer and 5 nodes in the second layer. During the 
actual training process, the number of layers and nodes can be dynamically adjusted 
based on the quantity and quality of training samples, in order to achieve the best
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Table 85.3 Assessment of safety state in TBEC 2018 [26] 

Code Structures/ 
Components 

Safety state describe 

Minimum 
damage 

Significant 
damage 

Extreme damage Collapse 
state 

TBEC-2018 RC column δ/H < 1% 1% < δ/H < 3% 3% < δ/H < 4% 4% < δ/H 

Table 85.4 Assessment of safety state in FEMA 356 [27] 

Structures/ 
Components 

Safety State performance level 

Immediate occupancy 
(S-1) 

Life safety 
(S-3) 

Collapse prevention 
(S-5) 

Concrete frame shear 
wall structure 

➀ Wall has fine cracks 
with a width less than 
1/16 inch; 
➁ Beam-to-column 
connections have 
cracks with a width 
less than 1/8 inch 

➀ Some edge 
reinforcement yielded; 
➁ Sliding and cracking 
have occurred at joints; 
➂ Wall has 
experienced spalling 
and flexural cracks, 
with concrete crushing, 
but generally in place 

➀ Obvious flexural 
and shear cracks 
appeared; 
➁ Sliding occurred; 
➂ Obvious concrete 
crushing and steel 
yielding; 
➃ Damage around 
openings 

➀ 0.5% inter-story 
drift; 
➁ No permanent drift 

➀ 1% inter-story drift; 
➁ 0.5% permanent drift 

➀ 2% inter-story 
drift; 
➁ Or permanent drift

Table 85.5 Parameters of the neural network 

Function Input layer 
vector 

Output layer vector Hidden 
layer 
numbers 

Nodes 
number 
in 
hidden 
layer 

Damage 
index 

[x1, x2, x3, x4] y 2 [10, 5] 

Safety 
states 

[x1, x2, x3, x4] [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] 1 10

mapping process. The transfer function of the output layer adopts the ’logsig’ function 
to ensure that the output vector (damage index) is between 0 and 1. The number of 
nodes in the output layer is 1, and the output vector y represents the magnitude of 
the damage index. 

In the safety state recognition network, the initial setting for the number of hidden 
layer is 1, and the output layer has 4 nodes, with an output vector of a 1 × 4 array  
composed of 0 and 1. Each vector represents the different safety state. For example,
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(a) 

(b) 

Fig. 85.2 The structure of the neural network in MATLAB: a the neural network for numerical 
simulation of damage index, b the neural network for recognition of safety states

[1, 0, 0, 0] represents the first stage of the safety state, which in TBEC 2018 specifi-
cation represents a mild damage state, and in FEMA 356 specification represents a 
directly inhabitable state. 

85.3.2 The Calculation of Input and Output Vectors in BP 
Neural Network 

The calculation of input vector [x1, x2, x3, x4] can be obtained by processing a series 
of shear wall images under different loading displacements, and calculating the crack 
parameters based on computer vision (refer to Sect. 4.4.1 for details). As for output 
vector y, it is calculated based on the hysteresis curve during the component loading 
process and the multi-parameter model based on stiffness and energy [13]. The deter-
mination of output vector [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] is based on 
maximum drift capacity and apparent damage parameters for safety states classi-
fication in the FEMA-356. Finally, the corresponding relationship between input 
vector and output vector is established to construct a data sample database for neural 
network training and learning. 

85.3.3 Training and Validation 

The process of damage identification using neural networks mainly consists of two 
stages: training and validation. The sample database is divided into two parts, with 
70% to 80% of the data randomly selected for network training and the remaining
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samples used for validation of the trained network. The recognition accuracy of 
the neural network is calculated during validation. To maximize the recognition 
performance of the network, the proportion and size of training samples can be 
adjusted, and the capacity and quality of the sample database can be improved. 
Additionally, based on the recognition performance of the network, the number of 
hidden layers and nodes in the network can be adjusted systematically to gradually 
improve the recognition performance, achieving the best recognition accuracy. 

85.4 Experimental Verification 

In order to verify the feasibility and accuracy of the neural network model proposed in 
the previous chapter, this section selected the more complex neural network structure 
model used for damage index fitting (Fig. 2a) for test verification. The test object of 
this test is the reinforced concrete shear wall. Through the pseudo-static test of the 
shear wall, the damage degree and crack development of the member during its failure 
process were studied. Firstly, a camera was set up to photograph the cracks on the 
shear wall surface, and the corresponding crack parameters were further extracted. 
Secondly, the damage index of shear wall in the loading process was calculated by 
using the hysteretic curve of the component. Finally, the test data was selected for 
neural network training to realize damage identification of the shear wall. 

85.4.1 Test-Piece Parameter 

The test object of this test is reinforced concrete cast-in-place shear wall, and the 
test-piece is composed of concrete base, concrete wall body and wall top loading 
beam, which is referred to as S1. Its design parameters are shown in Table 85.6. 
HRB400E is used for the steel bar of the test-piece, C30 is used for the concrete, and 
the main mechanical properties of the material are shown in Table 85.7. 

Table 85.6 Design parameters of concrete shear wall 

Member Wall body (mm) Loading beam (mm) Shear span ratio Axial compression 
ratio 

S1 160 × 1400 × 2800 400 × 250 × 1800 2.0 0.25 

Table 85.7 Main performance indexes of materials (unit: MPa) 

Concrete Steel bar 

ft fc fcu E fy fu E 

2.74 28.46 42.55 3.2 × 104 335.41 490.20 2.03 × 105



85 Study on Damage Identification of Reinforced Concrete Members … 1227

85.4.2 Loading Device and Loading System 

The horizontal load was applied by a 1000kN electro-hydraulic servo actuator 
mounted on the reaction wall. The force was concentrated in the center of the beam. 
The vertical load was provided by the 2500kN hydraulic jack distributed at the top 
of the loading beam. The force of the hydraulic jack was reacted on the top of the 
loading beam after passing through the reaction frame. In addition, the loading of 
the test-piece includes two parts: pre-loading and formal loading. 

Pre-Loading 

It is used to test whether the contact between the loading device and the shear wall 
member is good, whether the measuring instrument is accurate, and the preload value 
should be less than 30% of the cracking load. After several pre-loadings, the formal 
loading can be implemented only after the loading device, specimen and measuring 
instrument work normally. 

Formal Loading 

It mainly includes the vertical axial pressure exerted by the hydraulic jack and the 
horizontal load exerted by the actuator. The axial pressure exerted by the vertical 
hydraulic jack can be calculated by converting the axial pressure ratio. The hori-
zontal load applied to the top of the loading beam is provided by the actuator. The 
loading system adopted load–displacement hierarchical loading with load first and 
displacement hierarchical loading later. Since the shear wall is in the elastic stage in 
the early stage and the specimen stiffness is relatively large, the load grading loading 
stage was adopted before the cracking of the specimen. In this way, it’s easier to 
capture the cracking, yield and other characteristic points of the component when 
loading with load control. After yielding, the specimens were changed to displace-
ment grading loading mode, and the maximum displacement Δ at yield was taken as 
the unit displacement for graded loading. The loading displacements were 1Δ, 2Δ, 
3Δ… And the loading cycle is repeated three times for each stage of displacement 
until the specimen is damaged or the load drops to 85% of the maximum load. 

85.4.3 Measuring Device and Measuring Method 

In the measurement system, Canon EOS800D was used for the camera, and the 
parameter information is shown in Table 85.8. The focal length of the camera and 
the position height of the tripod were adjusted to ensure that the shear wall was always 
within the image range during the loading process. It should be noted that once the 
camera position and parameters have been adjusted, the camera cannot be adjusted 
during the loading process to ensure that the resolution of the image is unique. In 
addition, in order to ensure the sufficiency and stability of the environmental light
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Table 85.8 Camera parameters 

Parameter Form Degree of freedom 

Intrinsic parameter 

M1= 

⎡ 

⎢ 
⎢ 
⎣ 

fx 0 u0 0 

0 fy v0 0 

0 0  1  0  

⎤ 

⎥ 
⎥ 
⎦ 

4 

Radial distortion 
Tangential distortion 

k1, k2 
p1, p2 

4 

Extrinsic parameter (Rotation matrix and 
translation vector) 

R= 

⎡ 

⎢ 
⎢ 
⎣ 

r1 r2 r3 

r4 r5 r6 

r7 r8 r9 

⎤ 

⎥ 
⎥ 
⎦, T= 

⎡ 

⎢ 
⎢ 
⎣ 

tx 

ty 

tz 

⎤ 

⎥ 
⎥ 
⎦ 6 

source, two ground lamps were used as supplementary light sources to project on 
the surface of the shear wall during the test. The test site is shown in Fig. 85.3. 

In terms of measurement methods, calibration plates needed to be posted for cali-
bration image shooting before formal loading, so as to facilitate the later resolution 
calculation and correction. During the formal loading process, the camera needed 
to take photos of the shear wall at the position where the maximum displacement

Fig. 85.3 Test site 
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of each loading cycle is loaded, and classify the photos to facilitate the construction 
of the corresponding relationship between the pictures and the damage in the later 
stage. 

85.4.4 Test Results and Analysis 

Extraction of Test Results 

Crack Parameter Identification 

Based on the shear wall images under different loading displacements collected 
by the measurement system, crack parameters were identified and extracted from 
images under different loading displacements. Specific image processing processes 
include: image clipping, image graying, image enhancement, image smoothing, 
image binarization, morphological operation and main crack extraction. Based on the 
extracted main crack edges, the image crack parameters could be further identified 
and calculated. 

(1) Crack length calculation 

In this paper, the piecewise summation method was used to calculate the length 
of cracks. This method uses the idea of differentiation and selects the coordi-
nates (xk, yk) of different positions on the crack skeleton in the image with the 
mouse, so as to divide the whole crack into n short cracks, and then carries out 
approximate calculation for each segment according to the length formula of 
line segments. 

L = α × 
n∑

k=1 

√ 
(xk+1 − xk)2+(yk+1 − yk)2 (85.2) 

where: α is the image resolution, which can be obtained through image cali-
bration, and (xk, yk), (xk+1, yk+1) is the image coordinates of the k and k + 1 
points taken by the mouse point. The segmental calculation method does not 
need to burr the fracture skeleton curve, so it has the characteristics of conve-
nient calculation and strong adaptability. Meanwhile, the method also has the 
advantages of strong visualization degree and high calculation accuracy, which 
can better meet the needs of practical engineering.

(2) Crack width calculation 

This paper adopted the crack width calculation method based on local crack edge 
search, as shown in Fig. 85.4. The specific calculation process is as follows:
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Fig. 85.4 Schematic 
diagram of crack width 
calculation 

➀ Extract the crack edge and locate the position coordinates (i1, j ), (i0, j ) of 
the upper and lower edge points O1 and O0 of the first row of the crack in 
column j. 

➁ Take O1 as the center, search the gray values at positions 2–5 in the 8 
neighborhood in the clockwise direction, label the first crack point found as 
O2, and calculate the distance |O0 O2| between O0 and O2; 

➂ Similarly, taking O2 as the center and repeating step ➁, the point O3 and 
the distance |O0 O3| can be obtained; 

➃ Repeat step ➁ and ➂ to get the set L = {|O0 O1|, |O0 O2|, ......|O0 Om |}; 
➄ Take O1 as the center, search the gray values at positions 5–8 in the 8 

neighborhood in the counterclockwise direction, label the first crack point 
found as O '

2, and calculate the distance
|
|O0 O '

2

|
| between O0 and O '

2; 
➅ Similarly, taking O '

2 as the center and repeating step ➄, the point O '
3 and 

the distance
|
|O0 O '

3

|
| can be obtained; 

➆ Repeat the steps ➄ and ➅ to get the set L ' ={|
|O0 O '

1

|
|,

|
|O0 O '

2

|
|, ......

|
|O0 O '

m

|
|
}
; 

➇ The width of the crack in column j is ω( j) = min{L , L '}. 

Based on the above method, by traversing the j-th column in step ➀ to 
all pixels of the extracted crack edges in the image, the maximum and 
average crack widths within the image range can be further obtained. It is 
worth noting that the above steps are aimed at transverse cracks. For vertical 
cracks, only the column operations in the above steps need to be converted 
into row operations. 

(3) Crack area calculation 

By counting the number of pixels in the crack area in the binary image and 
multiplying it with the image resolution, the crack area in the actual situation 
can be calculated, that is
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S = n × α2 (85.3) 

where: n is the number of pixels in the crack area in the image, and S is the 
actual area of the crack. 

Damage Index Calculation 

In terms of damage indexes selection, the two-parameter model based on stiffness 
and energy [13] was used in this paper to calculate the damage indexes. The model 
takes into account the effects of first surpassing failure and cumulative failure on the 
damage, and can better describe the evolution of structural damage under earthquake 
action. At the same time, the damage index of this model is stable between [0,1], and 
the quantitative evaluation of damage degree is more accurate. The damage model 
is: 

DKE  = 1 − (1 −
∫
dE  

Et 
) 
Ki 

K0 
(85.4) 

where,
∫
dE  is the cumulative energy consumption of the structure under a certain 

state, Et is the total energy consumption of the structure, Ki is the secant stiffness 
of the structure under a certain state, and K0 is the initial elastic stiffness of the 
structure. 

Figure 85.5 shows the hysteretic curve of component S1. Select the maximum 
displacement of each loading cycle, and calculate the damage index of its corre-
sponding position using formula (85.4), so as to realize the assessment of shear wall 
damage degree.

Fig. 85.5 Hysteretic curve 
of S1
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Damage Identification 

For the 53 groups of sample data extracted from S1 component, 42 groups were 
randomly selected for training and 11 groups were tested. The constructed neural 
network model was used to fit the damage index data of the above test results. 
From 42 groups of training samples, 70%, 15% and 15% were selected respec-
tively for network training, verification and testing. The training algorithm adopted 
Levenberg–Marquardt algorithm, which is suitable for function approximation and 
fitting problems and has a fast training speed. In addition, in order to ensure that 
the network output meets the requirement that the damage index is between [0,1], 
the Log-Sigmoid function was used as the transfer function of the output layer. The 
training results are shown in Figs. 85.6, 85.7. The results show that with the increase 
of the number of iterations, the performance error (mean square error) of the neural 
network gradually decreases, and the training results of the neural network gradu-
ally tend to be stable. The mean square error of training and testing data is mainly 
distributed near zero, and the correlation coefficient R > 0.95, indicating that the 
training output of neural network can simulate the target output well, and the training 
effect of neural network is gratifying.

The 11 groups of test samples were input into the neural network completed 
with the above training, and the target output and actual output were compared and 
analyzed. The results showed that the identification accuracy of damage indicators 
of S1 component could reach 90.26%, and the neural network achieved the fitting 
effect of high accuracy damage indicators, as shown in Fig. 85.8.

Fig. 85.6 Neural network 
error distribution statistical 
chart
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Fig. 85.7 Fitting curve of damage index of neural network training group

Fig. 85.8 Damage index 
identification results of the 
test group of component
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85.5 Conclusion 

On the basis of summarizing and analyzing the commonly used damage models of 
concrete structures and the description of structural safety state in relevant foreign 
codes, a method of damage index fitting and safety state identification for reinforced 
concrete members based on BP neural network is proposed in this study. This method 
takes surface crack information of concrete components as the damage identification 
parameter, and construct two BP neural network damage models for damage index 
fitting and safety state recognition, thereby establishing the mapping relationship 
between crack feature parameters and component damage. The method enriches the 
technical means of structural health monitoring and provides a fast, non-destructive 
method for health diagnosis and safety state assessment of damaged structures and 
post-disaster buildings. The main conclusions of this paper are as follows. 

(1) In the research of neural network damage identification, this paper proposes 
the method of damage index fitting and safety state identification for reinforced 
concrete members based on BP neural network, and designs multi-layer BP 
neural networks. For the damage index fitting, this method takes the crack 
characteristic parameters as the input of the network, and the damage index 
calculated by the dual-variable damage model based on stiffness and energy 
is regarded as the output. For the safety state recognition, the method takes 
the crack characteristic parameters as the input and the safety state classifica-
tion result following the FEMA-356 code serves as the output. Therefore, the 
mapping relationship between the crack characteristic parameters and reinforced 
concrete member damage can be established. 

(2) In the aspect of surface crack parameter extraction of concrete members based on 
image processing technology, the applicability of commonly used image prepro-
cessing algorithms and feature parameter extraction algorithms in concrete crack 
image recognition is studied in this paper. On this basis, for the calculation of the 
length of the crack, the segmented calculation method used in this paper does 
not need to deal with the burr noise of the crack skeleton curve. It has the char-
acteristics of convenient calculation and strong adaptability. At the same time, 
the method also has the advantages of strong visualization and high calculation 
accuracy, which can better meet the needs of practical engineering. Crack width 
is one of the most important characteristic parameters in crack information, 
and it is also an important index affecting the quality of damage assessment. 
For the calculation of crack width, this paper starts from the definition of crack 
width and adopts the calculation method based on local crack edge search. This 
method avoids the problem that the calculated value becomes larger when the 
traditional tangent method is used to calculate the crack width at the place with 
a large crack curvature, thereby improving the recognition accuracy of the crack 
width. 

(3) In order to verify the feasibility and accuracy of the BP neural network method 
applied to the damage identification of reinforced concrete members, in this 
paper, the quasi-static loading test of shear wall is carried out for the neural
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network model used for damage index fitting, which is more representative and 
more complex. The training results of the neural network applied to the damage 
index fitting of the shear wall in the test show that with the increase of the number 
of iterations, the performance error (mean square error) of the neural network 
gradually decreases, and the training results of the neural network gradually 
tend to be stable. The mean square error of training and testing data is mainly 
distributed near zero, and the correlation coefficient R > 0.95, indicating that the 
training output of neural network can simulate the target output well, and the 
training effect of neural network is gratifying. The damage index identification 
results of the test group of component S1 show that the identification accu-
racy of damage indicators of S1 component could reach 90.26%, and the neural 
network achieved the fitting effect of high accuracy damage indicators. The test 
results show good damage identification ability, which verifies the feasibility 
and accuracy of BP neural network method applied to damage identification of 
reinforced concrete members. The damage identification method of reinforced 
concrete members based on BP neural network proposed in this paper estab-
lishes the mapping mechanism between the apparent damage parameters and 
the damage index of the member, and realizes the identification process from 
the surface crack parameters of the concrete member to its internal damage. 
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