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Abstract Fiber-optic distributed acoustic sensors (DASs) can be used for various 
applications, such as seismic wave detection, geological exploration, and large-scale 
structural health monitoring. Phase-sensitive optical time-domain reflectometer (.-
OTDR) is one of DAS’s most common technical schemes. In this paper, a novel phase 
demodulation method for DAS is proposed. In this proposed method, four pairs 
of probing pulses are used to construct in-phase and quadrature (IQ) components 
for phase demodulation. Compared to the conventional quadrature demodulation 
method, this method simplifies the system. The scaler model of .-OTDR and phase 
demodulation algorithm are revealed in theory and simulation. Simulations confirm 
the validity of the proposed method. The demonstrated phase demodulation method 
achieves ~ 80 dB of SNR, capable of vibroacoustic perturbations along the same 
line. It has good potential in low-cost and long-distance health structural health 
monitoring. 
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41.1 Introduction 

Fiber-optic distributed acoustic sensing (DAS) technology is a new sensing tech-
nology that enables continuously distributed detection of vibration and acoustic 
fields. It can be used for various applications, such as seismic wave detection [1–3], 
geological exploration [4–7], and structural health monitoring [8–13]. Using stan-
dard communication fiber cables embedded in infrastructures, DAS provides a novel 
monitoring solution [13]. It has the advantages of anti-electromagnetic interference, 
a large dynamic range, and real-time sensing capabilities. 

Because of the linear relationship between phase information and fiber strain, 
a phase-sensitive optical time domain reflectometer (.-OTDR) becomes one of 
the threading technical solutions for DAS [14]. An accurate phase demodulation 
method plays an important role in waveform recovery of DAS sign Various phase 
extraction methods for DAS have recently been developed to improve the spatial 
resolution, frequency response bandwidth, noise reduction, and sensing distance. In 
[15] proposed a quadrature demodulation scheme using dual-pulse probe signals to 
extract phase information [15]. Other influential works were done by Ren et al. [16] 
and He et al. [17]. In [18] presented a direct detection scheme using cyclic pulse 
coding in .-OTDR-based DAS [18]. The scheme achieves ~ 9 dB signal-to-noise 
ratio (SNR) improvement. In [19] proposed an approach based on temporal adap-
tive processing of φ -OTDR signals to reduce the fading noise in DAS [19]. The 
approach achieved more than 10 dB of SNR without reducing the system bandwidth 
and using an additional optical amplifier. Fu et al. proposed a method to compensate 
for the amplitude imbalance in I/Q demodulated coherent .-OTDR system [20]. As 
an effective phase retrieval scheme, the Kramers–Kronig (KK) receiver has recently 
become a hot topic in fiber-optic communications for its high spectral efficiency and 
l continuous wave-to-signal power ratio requirement. Jiang et al. discussed the feasi-
bility of applying the KK receiver into .-OTDR and analyzed the signal retrieval 
error with KK relation [21]. Its performance is verified through numerical simu-
lations and experiments. In addition, the method can be extended to all existing 
coherent .-OTDR systems with no or only a few modifications. Li et al. presented 
an ultra-high sensitive quasi-distributed acoustic sensor based on coherent detection 
and a cylindrical transducer [22]. The phase sensitivity of the sensor is −112.5 dB (re 
1 rad/μPa) in the field test within the flat frequency range of 500 Hz-5 kHz. In 2023, 
He et al. demonstrated a scheme of integrated sensing. The system communicates 
in an optical fiber using the same wavelength channel for simultaneous data trans-
mission and distributed vibration sensing [23]. The scheme improves transmission 
performance by ~1.3 dB. 

However, most of the improved phase detection schemes mentioned above 
increase the system’s complexity. The cost of the hardware is high. In this paper, a 
novel phase demodulation method for DAS is proposed. In the proposed method, four 
pairs of probing pulses are used to construct the IQ components for phase demodu-
lation. Compared to the conventional quadrature demodulation method in.-OTDR, 
this method simplifies the system. In addition, it can be extended to an existing
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cover with a few modifications on them. The scaler model and phase demodulation 
algorithm are revealed to reorient .-OTDR systems and simulation. Simulation and 
experimental results confirmed the validity of the proposed method. The demon-
strated phase demodulation method can vibroacoustic perturbations along the same 
line, which has good potential in low-cost and long-distance health structural health 
monitoring. 

41.2 Working Principle 

The working principle of .-OTDR is based on coherent detection for Rayleigh 
backscattering (RBS) in optical fiber. A pulse modulator converts continuous light 
into a pulse. The probe pulse is injected into the sensing fiber. Many tiny regions 
of inhomogeneous refractive index exist in single mode fiber (SMF), which interact 
with the probe pulse to produce RBS in all spatial directions [24]. The phase change 
of RBS can be extracted by the proper phase demodulation method [25]. In addition, 
the spatial resolution of the method is determined by the delay τdelay  between the 
pulses. 

τdelay  = cW 
n 

(41.1) 

where W is the probe pulse width, and n is the SMF’s refractive index. And c is 
velocity of the light propagation (Fig. 41.1). 

Consider that the sensing fiber is discretized into a series of reflectors with widths 
much smaller than the pulse length, as shown in Fig. 41.2. Each reflector acts as 
a scattering center (RC). The RBS of each RC is calculated separately. And the 
superposition of the RBS of all mirrors within the pulse width is used as the scattering
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Fig. 41.1 Schematic diagram of pulsed light backward Rayleigh scattering in a fiber 
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Fig. 41.2 Backscattering signal graphical model 

value of a point. Its amplitude of it follows a Rayleigh distribution [26]. Neglecting 
losses, the sum of backscattered pulses at zn can be expressed as follows: 

R(z) = 
N.

n 
H (2z − 2zn) · e2ikzn (41.2) 

where H (x) is the expression of the RBS pulse, which has the same expression form 
as the probe pulse. 

Sound is a mechanical wave. Based on the photo-elastic effect [27], its effect on 
the optical fiber makes the fiber force and produces deformation. When an external 
acoustic signal is applied to the strain range, a slight change and refractive index 
change occur. As a result, a phase change occurs. An acoustic signal measurement 
model can be formed assuming a linear strain distribution, as shown in Fig. 41.3. 
The RBS pulses of a .-OTDR system overlap and interfere. The interfered pulses 
contain phase information at each RC of the sensing fiber with a length of L . The  
phase delay is ψd = β L . The phase change .ψd is expressed as follows [28] 

.ψd = β · .L + L · .β = β L · .L 
L + L ·

.
∂β 
∂n

.
.n + L ·

.
∂β 
∂α

.
.α (41.3)

Strain Range Behind StrainNo Strain 

Fig. 41.3 Linear strain measurement model of the optical fiber
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Fig. 41.4 Probe pulse sequence 

A novel phase demodulation method using a sequence of four pairs of probe 
pulses is proposed to extract the phase information efficiently, as shown in Fig. 41.4. 

The amplitude of the four pairs of probe pulses can be express as follows 

Ez = A
.
z + τdelay  c n

. + A(z) · ei..k (41.4) 

where ..k changes with four period OTDR-trace, which equal to (k − 1) π 
2 , k = 

1, 2, 3, 4. Then, four intensities I1, I2, I3 and I4 can be obtained 

I1,3 =
.
.R(t) ± R

.
t − τdelay

..
.2 

= .
.R2(t)

.

. + .
.R2

.
t − τdelay

..
. ± .

R(t)R∗.t − τdelay
. + R∗(t)R

.
t − τdelay

..

(41.5) 

I2,4 =
.
.R(t) ± i R

.
t − τdelay

..
.2 

= .
.R2(t)

.

. + .
.R2

.
t − τdelay

..
. ∓ i

.
R(t)R∗.t − τdelay

. + R∗(t)R
.
t − τdelay

..

(41.6) 

where R(t) is RBS amplitude, which has the same expression form as the single pulse. 
Then, the in-phase and the quadrature (IQ) components containing phase difference 
ψd = ψ(t) − ψ(t − τd ) can be obtained 

cosψd = (I1−I3) 
4|R(t)||R(t−τdelay)| (41.7) 

sinψd = (I2−I4) 
4|R(t)||R(t−τdelay)| (41.8) 

Using arctangent operation from Eqs. (41.7) and (41.8), ψd can be retrieved 

ψd = tan−1
.

I2−I4 
I1−I3

.
(41.9)
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Fig. 41.5 Backscattering model is formed in a 3 km range 

Fig. 41.6 Schematic diagram of linear strain distribution and OTDR-trace in the time domain 

41.3 Simulation Results 

To verify the proposed algorithm, a series of simulations are conducted. A graphical 
fiber scalar model with a random distribution of RC along the Z-axis is built. And the 
backscattering model is formed in the 3 km range. The working wavelength of the 
fiber is 1550 nm with a loss factor of 0.0410517 /km. The refractive index is 1.47. 
Simulation results of OTDR-trace are shown in Fig. 41.5. 

When the acoustic signal is applied to the strain range of the sensing fiber, the 
simulated OTDR trace is shown in Fig. 41.6. The 3 km sensing fiber is probed using 
four pairs of 200 ns pulses with a relative delay of 300 ns. The repetition frequency is 
1 kHz. The simulation results of intensity and phase changes are shown in Fig. 41.7.

Usually, a piezoelectric (PZT) cylinder is inserted into the sensing fiber to allow the 
injection of testing signals. The length of the PZT is 30 m. A 10 Hz sinusoidal signal is 
applied to the PZT. Carrier frequency drift of laser can cause decorrelation of OTDR-
traces, which can be described by the sinc(x) function [29]. In the simulation, a 1 kHz 
laser carrier frequency drift is introduced. The retrieved phase results are shown in 
Figs. 41.8 and 41.9. The simulation of demodulation results proves that the proposed 
method is effective and stable, especially when perturbation and disturbance occur
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Fig. 41.7 The 2D and 3D plots of intensity and phase change with four pairs of probe pulses

Fig. 41.8 The 2D plot of retrieved phase result from 0 to 3000 m

to laser frequency. The method can achieve a high SNR of 80 dB, which is valuable 
for phase extraction. 
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Fig. 41.9 Retrieved phase changes in the PZT range 

41.4 Conclusion 

A cost-efficient phase demodulation method for DAS is proposed in this paper. Four 
pairs of pulses are utilized to obtain IQ components for phase extraction. Theory and 
simulation verify the effectiveness of the demonstrated technique. It simplifies the 
system’s hardware and offers a reliable alternative to other methods for .-OTDR-
based DAS. The method has good potential in low-cost and long-distance health 
structural health monitoring. Further works will focus on experimental validation 
and modulation-related optimization. 
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